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ER protein homeostasis plays an important role in normal organism 

physiological and pathological conditions. ER stress induces activation of the 

unfolded protein response, which reacts to reset ER homeostasis by enhancing 

protein folding capacity, reducing protein translation load and up-regulating ER 

associated degradation. It is important to understand the physiological role of each 

main UPR or ERAD component as well as their molecular regulatory 

mechanisms. 

IRE1α, the most conserved UPR sensor protein, is a bifunctional enzyme 

containing both a kinase and RNase domain that are important for trans-

autophosphorylation and Xbp1 mRNA splicing, respectively. However, the amino 

acid residues important for structural integrity remain largely unknown. This 

research has identified a highly conserved proline residue at position 830 (P830) 

that is critical for IRE1α structural integrity, hence the activation of both kinase 

and RNase domains. Further structural analysis reveals that P830 could form a 

highly conserved structural linker with adjacent tryptophan and tyrosine residues 

at positions 833 and 945 (W833 and Y945) thereby bridging the kinase and 

RNase domains. This finding may facilitate the identification of small molecules 

which specifically compromise IRE1α function. 
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Previously, ER stress has been shown to activate inflammatory responses. 

Yet, whether this is true with ERAD in vivo remains to be demonstrated. Using 

macrophage-specific Sel1L (a key protein component of the Sel1L-Hrd1 ERAD 

complex) knock-out mice, our data challenges the causal link between ER stress 

and inflammation in a physiological setting. This research shows that Sel1L is 

dispensable for normal macrophage innate immunity functions. Although these 

macrophages exhibited elevated protein levels of a subset of ER chaperones and 

dilated ER cisternae at the basal conditions, surprisingly these changes are 

uncoupled from macrophage antigen presenting function, cytokine secretion 

function, and inflammatory responses against bacterial pathogens as well as in 

obese adipose tissues. Thus, we conclude that physiological mild ER stress may 

not play a causal role in inflammation in macrophages.  
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Chapter 1 INTRODUCTION AND LITERATURE 
REVIEW 

 

1.1 THE ENDOPLASMIC RETICULUM 

All eukaryotic cells have an endoplasmic reticulum (ER). It is organized by 

interconnected flattened sacs and tubules and is continuous with the outer nuclear 

membrane. Thus, the ER membrane and the outer nuclear membrane form an 

enclosing internal space, called the ER lumen or the ER cisternal space, which 

often occupies more than 10% of the total cell volume. 

 

The ER is structurally and functionally diverse among different cell types in 

order to meet diverse functional demands. Even within a cell, distinct regions of 

the ER may be highly specialized. In general, the ER is divided into rough ER and 

smooth ER. Mammalian cell proteins are translated in the cytosol. Secretory 

proteins or membrane proteins are then cotranslationally transported to the ER 

(1). Electron microscopy shows membrane-bound ribosomes coating the surface 

of the ER; therefore these regions are termed rough ER. Regions that lack 

membrane-bound ribosomes are termed smooth ER. Some smooth ER and 

transitional ER (the parts of ER between the rough and the smooth ER) form buds 

off vesicles carrying newly synthesized proteins of lipids for transportation to the 

Golgi apparatus where proteins are further modified. 
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The first and major function of the rough ER is protein sorting, where proteins 

become fully folded, maturated, modified, and transported to their destined 

locations: plasma membrane, lysosomal vesicles or extra-cellular space. This 

process requires abundant protein chaperones that assist protein folding and 

quality control. The main function of smooth ER lies in lipid metabolism. The ER 

membrane synthesizes nearly all the major classes of lipids -- for example 

phospholipids and cholesterol. The second ER function is lipogenesis, because the 

enzymes that synthesize the lipid components of the lipoprotein particles are 

located in the membrane of the smooth ER. The third function of ER is calcium 

storage. A Ca2+ pump transports Ca2+ from the cytosol into the ER lumen where a 

high concentration of Ca2+ binding proteins facilitates calcium storage. Following 

many rapid responses to extracellular signals, a release of Ca2+ from the ER to the 

cytosol initiates important physiological reactions -- for example -- myofibril 

contraction in the muscle cells. 

 

 Approximately one-third of cell’s proteins are secretory or membrane 

proteins that rely on ER for protein sortation (1). Previous studies have 

established the Signal Recognition Particle (SRP) pathway for ER resident or 

secretory proteins (2-5). Newly exported mRNAs yield the synthesis of an N-

terminal signal sequence that is recognized by the SRP which suppresses protein 

synthesis. The ribosome-nascent polypeptide-SRP complex is recruited to the ER 

via binding interactions with the ER resident SRP receptor. Upon binding of the 

SRP receptor, SRP is released, translation resumes and the growing peptide is 

cotranslationally translocated into the ER. 
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ER plays a significant role in the expression of the mRNA transcriptome. 

Previous studies have demonstrated an enhanced half-life for ER-associated 

mRNA (6). Additionally, ER-associated mRNAs are excluded from the stress 

granule-directed trafficking pathways (7). Recently, studies on the mRNA 

translation and partitioning have further revealed the importance of ER in protein 

synthesis. Nicchitta’s lab has reported two primary observations based on cell 

fractionation and ribosome profiling (8, 9): First, mRNAs encoding cytosolic 

proteins were broadly represented in the ER ribosome-associated mRNA pool and 

second, steady-state ribosome loading on ER-bound mRNAs was substantially 

higher than in the cytosol. These findings suggest that the ER might serve as a 

preferred locale for the synthesis of proteins. The existence of two compartments 

(ER and cytosol) in protein translation indicates that many RNA-binding proteins 

modulate a wide range of post-transcriptional processes (10) and confer 

compartment-specific translational efficiency (11); therefore, they are 

compartmentally segregated between cytosolic and ER-bound polysomes. 

 

1.2 PROTEIN HOMEOSTASIS 

1.2.1 Protein synthesis 

Protein synthesis is operated by ribosomes. At the AUG start codon on the 5’ 

end of mRNA, the large (60S) and the small (40S) ribosomal subunits form an 

initiation complex. Transfer tRNAs donate amino acids to elongate nascent 
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polypeptides at a rate of ~4-5 amino acids/second in mammalian cells (12). At the 

3’ end of mRNA, when a stop codon (UAG/UGA/UAA) is read, the large and 

small subunits of ribosomes disassemble and so translation stops. Translation has 

an error rate of about 1 amino acid in 103-104 (13-16). In addition to a high error 

rate in protein translation and transcription, proteins destined for the plasma 

membrane, lysosomal or extracellular space are folded in the ER at a 2.5-4 times 

faster rate than proteins synthesized in the cytosol (17). These ER dependent 

proteins also require more modifications to create structural complexity, thereby 

requiring the complicated regulation and quality control system discussed below.  

 

1.2.2 Chaperone-assisted protein folding in the ER 

The ER houses factors that assist protein folding and maturation in a 

challenging environment -- high concentrations of calcium ions and oxidizing 

conditions. Classical chaperones are grouped in several subfamilies: Hsp40, 60, 

70, 90 and 100 kDa in size (18). Their synthesis is strongly enhanced under 

conditions of ER overload, glucose deprivation, and disruption of calcium or 

redox homeostasis (19, 20). BiP, for example, also known as GRP78 protects 

immature proteins from aggregation by binding to extended hydrophobic domains 

with relatively low affinity (1-100 mM) (18). BiP also plays an important role in 

the preparation of terminally misfolded ER proteins for dislocation into the 

cytosol for degradation (21-24); BiP also contributes to the unfolded protein 

response (25). 
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1.2.3 Lectins and protein quality control in the ER 

Glycosylated proteins are decorated with a preassembled oligosaccharide core 

N-acetylglucosamine2-mannose9-glucose3 (Glc3Man9GlcNac2) at selective 

asparagine (N) residues (in Asn-X-Ser/Thr consensus site) by the 

oligosaccharyltransferase (OST) from a lipid pyrophosphate donor on the ER 

membrane, dolichol-PP (26, 27). After peptide translocation, the �-glucosidases 

I and II remove the two outermost glucose residues to produce a mono-

glucosylated core glycan (28). Then two homologous ER lectins, calnexin (CNX) 

and calreticulin (CRT), in association with ERp57, an oxidoreductase that 

catalyzes disulfide bond formation, interact with the substrate to perform protein 

folding (29). Once folded, the innermost glucose residue is rapidly removed by 

glucosidase II while mis-folded or non-native deglucosylated glycoproteins are 

recognized by the ER folding sensor UDP-glucose:glycoprotein 

glucosyltransferase (UGT1) (30). UGT1 specifically re-glucosylates folding 

intermediates released from the CNX/CRT cycle so they will remain in the ER to 

enter more rounds of CNX/CRT-assisted folding. These additional rounds of 

CNX/CRT-assisted folding serve to delay aggregation and loss of folding 

competence (31, 32). This process is called the CNX/CRT cycle. The substrates 

that fail to acquire their native well-folded structure are eventually cleared by ER-

associated degradation (ERAD) (33). In contrast, properly folded proteins 

released from CNX/CRT are transported to the Golgi compartment and assisted 

by mannose-binding lectins, such as ERGIC-53, VIPL, ERGL (34, 35). 
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Although in cultured cells, a single deletion of a single chaperone does not 

cause evident ER stress (36, 37), in vivo whole-body deletion of ER components 

such as ERP57 (38) or calreticulin (39, 40) results in embryonic lethality in mice. 

Calnexin-deficient mice displayed obvious motor disorders associated with a 

dramatic loss of large myelinated nerve fibers (41). The physiological functions of 

a specific type of chaperone or lectin are probably tissue-specific or specific 

during the development period (41, 42). MHC class I molecules expressed in a 

calreticulin-deficient cell line exhibited defective peptide loading and impaired T 

cell recognition (38, 43). These results all indicate the importance of lectins in 

maintaining normal ER homeostasis in cellular physiology. 

 

1.2.4 Disulfide bond formation  

The formation of disulfide bonds also serves to stabilize ER proteins. The 

incorrect pairing of cysteine residues usually prevents the folding of a protein into 

its native conformation (44). Prokaryotic and eukaryotic cells share similar 

pathways of disulfide-bond formation. In eukaryotic cells, protein disulfide -

bonds are predominantly formed in the lumen of the ER. In vivo, the most 

common mechanism for the formation of protein disulfide bonds is a thiol- 

disulfide exchange reaction (44). Protein disulfide isomerase (PDI) was one of the 

first-identified thiol- disulfide oxidoreductases (45, 46) (47). Individual PDI 

homologues facilitate the maturation of discrete sets of proteins and they might 

also differ in their redox activity within the cell. Additionally, ERP57, a PDI 



 

 

 

 

 

 

7 

family member, acts in a unique pathway together with calnexin and calreticulin 

to assist in the maturation of a class of glycoproteins (48, 49). 

 

1.2.5 Substrate-specific chaperones 

While most proteins can be well folded by the traditional chaperone and 

lectins system, other proteins require a subgroup of specific chaperones for proper 

folding and maturation due to their unique expression levels or protein structure. 

For example, an LDL receptor needs the assistance of Receptor-Associated 

Protein (RAP) to prevent aggregation and premature ligand binding when being 

escorted to the Golgi (50, 51). Collagen also requires Hsp47 for its proper 

maturation in the ER (52) because Hsp47 mice display collagen deficiency and 

premature death (53). 

 

1.2.6 Protein sorting from the ER 

The ER proteins that are destined for the Golgi apparatus or beyond are 

transported in the form of COP-II coated vesicles. Proteins must be properly 

folded in order to exit from the ER. Despite the unclear mechanism of ER luminal 

protein transportation to the Golgi apparatus, it is known that many membrane 

proteins are actively concentrated in the specialized ER regions called ER exit 

sites. As vesicles bud from the ER, they start to merge with other vesicles that 

have matching SNARES. The clusters are moved quickly along microtubules to 

the Golgi apparatus while selective proteins with ER retrieval signals (KKXX 
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sequence at the C-terminal end for membrane proteins or KDEL sequence at the 

C-terminal end for soluble ER proteins) are returned to the ER through vesicles 

coated with COPI.  

 

The Golgi apparatus is a polarized organelle consisting of cis, medial and 

trans cisternae. Proteins and lipids move from the cis to the trans cisternae by 

vesicular transport, by progressive maturation of the cis cisternae migrating 

continuously or, most likely, by a combination of the two mechanisms. The Golgi 

apparatus contains many sugar nucleotides and glycosyl transferase enzymes. 

Proteins undergo further glycosylation reactions and modifications, e.g. the O-

linked (Pyrrolysine-linked) glycosylation occurs within the Golgi. N-linked 

(Asparagine-linked) oligosaccharides glycosylation initially occurs in the ER and 

the oligosaccharides are usually removed in the Golgi. The finished protein in the 

trans- Golgi will be packed into vesicles and further transported into destined 

locations: lysosome, plasma membrane or extracellular space. 

 

Terminally misfolded proteins in the ER are removed to the cytosol where 

they are degraded by the ubiquitin-proteasome system. This process is called ER-

associated degradation (ERAD) (54). It is used for physiological protein turnover 

and is also utilized by viruses for structural protein breakdown. ERAD is an 

important aspect of the protein quality control system. The details will be 

discussed in 1.4. 
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1.2.7 ER STRESS 

The ER protein homeostasis is maintained at a dynamic state of balance in 

which the input of newly synthesized proteins and the export of mature proteins, 

or degradation of misfolded proteins, remain equal. Accumulation of misfolded 

proteins in the ER causes ER stress. Two main mechanisms are adopted by the 

cells to maintain ER protein homeostasis: the unfolded protein response (UPR) 

and the ER associated degradation (ERAD) (Figure 1.1). The unfolded protein 

response (UPR) is activated to enhance protein folding machineries for the 

purpose of increasing protein output from the ER. UPR is also activated to 

attenuate protein translation in order to reduce the accumulation of misfolded 

proteins. The details of unfolded protein response (UPR) will be discussed in 1.3. 

The ERAD components can also be enhanced by UPR signaling pathways. 

Activation of ERAD will lead to ER protein translocation into the cytosol where 

these proteins are degraded by the cytosolic proteasome system. The details of 

ERAD will be discussed in 1.4. 

 

ER stress can be caused by multiple physiological or pathological conditions: 

nutrient deprivation (55), virus infection (56) or calcium depletion (57). Most of 

the time, ER stress is caused by mutations of ER proteins such as anti-trypsin (58) 

or Parkin (59). The most common ER stress inducing drugs include thapsigargin 

(Tg), which inhibits ER calcium transport ATPase (60), tunicmycin (Tm), which 

blocks protein glycosylation (61) and dithiothreitol (DTT) which disrupts 

disulfide bond formation. 
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Figure 1.1  Mechanisms which maintain ER protein homeostasis. 

The ER protein homeostasis is maintained by a balance between the protein 

input into the ER and the protein output for transportation or degradation. An 

accumulation of misfolded proteins in the ER leads to ER stress accompanied by 

increased levels of protein chaperones and lectins in the ER. The unfolded protein 

response (UPR) and the ER associated degradation (ERAD) are the two major 

mechanisms which reduce ER stress. Activation of UPR enhances ER protein 

folding machineries and attenuates protein translation. ERAD activation promotes 

protein translocation into the cytosol where the proteins are degraded by the 

proteasomes. 
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1.3 THE UNFOLDED PROTEIN RESPONSE (UPR) 

In response to ER stress, organisms have developed an evolutionarily 

conserved ER-to-nucleus signaling pathway. The pathway is called the unfolded 

protein response (UPR) and copes with the stress for survival (62). The activation 

of UPR promotes protein export and reduces input by up-regulating ER protein 

folding capacity, enhancing ER-associated degradation, attenuating global 

translation, or inducing apoptosis when the stress is irreversible (63). IRE1α-

XBP1, PERK, and ATF6 pathways are known to mediate unfolded protein 

response in mammalian cells. 

 

1.3.1 IRE1α PATHWAY 

Inositol requiring kinase 1 α (IRE1α) is the most conserved UPR pathway as it 

is the only identified UPR initiation protein in yeast (64, 65). IRE1α is a type I 

transmembrane protein that consists of four major domains: an N-terminal 

luminal sensor domain, a single transmembrane domain, a C-terminal cytosolic 

kinase domain and an endoribonuclease (RNAse) domain. The schematic figure 

of IRE1α protein is shown below (Figure 1.2).  IRE1α knock-out mice exhibited 

embryonic lethality after 12.5 days of gestation (66). IRE1α has a homolog which 

is IRE1β. IRE1β is expressed selectively in the digestive tract and plays a 

distinctive role in mucin-secreting goblet cells. IRE1β knock-out mice showed 

aberrant mucin 2 (MUC2) accumulating in the ER of goblet cells. The mice also 

showed ER distension and elevated ER stress which signaled increased XBP1 
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mRNA splicing (67). Most studies of the mammalian UPR signaling pathway are 

focused on IRE1α. Activation of IRE1α kinase and RNase domain cleaves XBP1 

mRNA (X-box binding protein 1) (1.3.1.1), mediates mRNA decay (1.3.1.2), 

regulates inflammatory signaling pathways and determines cell fate  (1.3.1.3) 

(Figure 1.3).  

 

Figure 1.2 Schematic figure of IRE1α 

IRE1α is composed of an N-terminal luminal sensor domain, a single 

transmembrane domain and C-terminal cytosolic kinase domain and an 

endoribonuclease (RNAse) domain. The numbers of the amino acids indicate the 

position of each domain. 
  

571 832 835 963

Transmembrane Domain

444 4641
RNaseKinaseLinkerLuminal

human IRE1α
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Figure 1.3 Mammalian IRE1α signaling pathways 

Under ER stress conditions, BiP disassociates from the IRE1α luminal domain 

and then monomers of IRE1α undergo oligomerization, phosphorylation and 

conformational changes that expose the active nuclease sites. Activated IRE1α 

RNase domain cleaves XBP1 mRNA. The spliced form -- XBP1s -- is translated 

into a transcriptional factor that enhances protein folding machineries and ERAD. 

Regulated IRE1α-dependent mRNA decay (RIDD) reduces protein load in the ER 

under ER stress. Activated IRE1α can also form a complex with TRAF2 and 

ASK1 to induce JNK and MAPK pathways that regulate inflammatory responses 

and determine cell fate. IRE1α also induces apoptosis through the caspase 

signaling by degrading miR-17/-34a/-96/-125b.  
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1.3.1.1!The!physiological!role!of!IRE1α3XBP1s!signaling!pathway!

Upon activation, IRE1α can function as an endoribonuclease that cleaves a 

unique mRNA called XBP1 (X-box binding protein 1) in metazoans. After the 

cleavage at two specific positions franking an intron, the exons are then ligated to 

form XBP1s mRNA which is translated into XBP1s protein. Splicing of XBP1 

mRNA cuts out 26 nt and results in a frame shift at 165 aa. Hereafter, unspliced 

XBP1u and spliced XBP1s encode proteins of 261 and 376aa respectively (68). 

XBP1s binds to CRE-like sequences. The function of XBP1u is not fully 

understood yet. XBP1u contains a C-terminal degradation domain and a nuclear 

exclusion signal. It is known that XBP1u forms a complex with XBP1s. The 

complex can be transported to cytosol and rapidly degraded by the proteasome 

because of the degradation motif of XBP1u. Therefore, XBP1u may serve as a 

negative regulator of XBP1s (69). 

 

XBP1s is a transcription factor that contributes to lipid biosynthesis, ER 

expansion, chaperones that enhance protein folding, ERAD and secretory 

pathways. Studies with XBP1 knock-out mice show that it is required for cardiac 

myogenesis, hepatogenesis, plasma cell differentiation and for the development of 

secretory tissues (70-73). XBP1 targets a diverse range of genes. These genes 

include (74): 1) In UPR pathways, ER chaperones and ERAD components such as 

ER degradation enhanced mannosidase alpha-like 1 (EDEM1), DnaJ/Hsp40 

homolog subfamily B member 9 (ERDJ4/DNAJB9) and DnaJ/Hsp40 homolog 

subfamily C member 3 (P58IPK/DNAJC3). 2) Tissue specific metabolic genes. 

For example, Mist 1 in skeletal muscles, C/EBPα in adipocytes and lipogenic 
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genes in hepatocytes are all XBP1s targets. 3) Disease-associated genes. For 

example several targets are linked to neurodegenerative diseases (e.g. Cdk5, 

Cdk5rap3, and Sil1) and myodegenerative diseases (e.g. Als2, Lmna, and Mbnl2). 

Specifically, γ-secretase complex components Ncstn, Psen1 and Psenen are 

involved in processing the amyloid precursor protein (APP) to generate amyloid 

beta peptide (Aβ). 4) Metabolic genes including those that regulate glycosylation, 

carbohydrate metabolism, glycolysis, gluconeogenesis, lipid and fatty acid 

metabolism, and apoptosis/cell survival. 5) Regulators of gene expression and 

chromosomal architecture, cell growth and differentiation, RNA processing and 

export, signal transduction, ubiquitin-associated processes, ion channels, 

transporters and proton pumps as well as DNA replication and repair, redox 

homeostasis and oxidative stress response. These functional targets suggest that 

XBP1 plays dual roles in both adjusting to the increased demand from the 

biosynthesis in the ER and neutralizing the byproducts produced in the process.  

 

1.3.1.2!Regulated!IRE1α3dependent!mRNA!decay!(RIDD)!

IRE1α independently mediates the rapid degradation of a specific subset of 

mRNAs (75). This function is processed by direct IRE1α endonucleolytic 

cleavage, since IRE1α showed a reduced specificity similar to its closest 

homolog, ribonuclease (RNase) L (76). Alternatively, IRE1 may rapidly recruit or 

activate a second ribonuclease. IRE1α may also promote translational stalling and 

cleavage by no-go decay (75, 77). The substrates of RIDD are divergent in 

eukaryotes. RIDD operates only in fission yeast, but not in budding yeast, and it is 
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the only identified mechanism of UPR in fission yeast (78). Detailed mechanisms 

of RIDD are still unknown and require further investigation. 

 

Recently it has been discovered that sustained IRE1α RNAse activity causes 

rapid decay of microRNAs (miR-17, �34a, �96 and �125b) that normally repress 

caspase-2 mRNA (79), therefore inducing apoptosis. The molecular mechanisms 

and implications of microRNAs and ER stress response await further 

investigation.  

 

1.3.1.3!IRE1α!is!a!cell!fate!determinant!

IRE1α was not only identified as a positive regulator of cell survival but was 

also identified as a regulator of stress-induced apoptosis through cross talk 

between the ER and mitochondria. First, Bax-inhibitor 1 (BI-1/Tmbim6) is a 

highly conserved multi-transmembrane protein that resides predominantly in the 

ER. It serves to suppress IRE1α kinase and endoribonuclease activity. This 

suppression has implications for controlling cell death and autophagy (80). 

Second, when attempts to restore ER protein homeostasis fail, IRE1α can 

represses adaptive responses (81-83) and activate apoptosis through IRE1α 

dependent degradation of miR-17/-34a/-96/-125b, thereby up-regulating Caspase 

2 (84). Third, IRE1α stimulates activation of the Apoptotic-Signaling Kinase-1 

(ASK1) through formation of an IRE1-TRAF2-ASK1 complex (85). ASK1 

activates the c-Jun N-terminal kinase (JNK) and the p38 MAPK kinase which, in 

turn, signal cascades that promote ROS-induced apoptosis in a mitochondria-
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dependent pathway (86). ASK1 also plays a role in cell adaptation by opposing 

various stresses (86). Moreover, ER stress induces activation of mTORC1, which 

reduces AKT phosphorylation and induces activation of IRE1-JNK pathway and 

apoptosis (87). 

 

Among the apoptosis-inducing substrates of JNK are two members of the 

BH3-only subgroup of Bcl2-related proteins, Bim and Bmf, which are normally 

sequestered by binding to dynein and myosin V motor complexes. Once 

phosphorylated by JNK, Bim and Bmf are released from the motor complex and 

induce Bax/Bak-dependent mitochondrial apoptosis (88). Bax and Bak also 

function in the ER membrane and bind to the cytosolic domain of IRE1α for 

activation (89). In addition, the transcription factor CHOP is downstream of 

IRE1α and regulates apoptosis. This regulation functions in part by enhancing 

DR5 (90) and Bim (91) while directly inhibiting Bcl-2 transcription (92, 93). 

Therefore, IRE1α closely interact with BCL-2 family proteins in regulating stress-

induced apoptosis through a cross talk between the ER and mitochondria. 

 

1.3.1.4!IRE1α!activation!mechanism!

IRE1α is activated upon sensing the accumulation of unfolded proteins in the 

ER. The activation process of IRE1α can be divided into several steps: the 

luminal domain sensing the ER stress; auto-phosphorylation; oligomerization and 

conformational change. For the ER stress sensing mechanism, the N-terminal 

luminal region of yeast IRE1α is composed of five sub-regions, termed I-V, 



 

 

 

 

 

 

18 

extending from the N-terminus to the transmembrane region (94). When the core 

luminal domain (cLD) binds to unfolded proteins or to peptides that are primarily 

composed of basic and hydrophobic residues (95), dimerization and 

oligomerization of IRE1α occur, mediated by subregions II-IV interacting as 

homodimers (96). The homodimer formation can be impaired by an internal 

deletion on subregion IV S103P mutation (96). S103P mutation on the luminal 

domain of yeast IRE1α led neither to BiP dissociation nor to a change in self-

association. However, S103P mutant IRE1α remained constitutively activated 

upon ER stress, indicating that self-association and BiP dissociation are not 

required for activation of yeast IRE1α (97). Analysis of the yeast IRE1α crystal 

structure revealed that the core luminal domain dimerizes to form a shared central 

groove, and its architecture is similar to the peptide binding domains of major 

histocompatibility complex (MHC). Therefore, it is proposed that the cLD 

directly binds unfolded proteins, which changes the conformational structure of 

IRE1α monomers and in turn positions the cytosolic kinase domains prone to 

autophosphorylation (98). On the contrary, the mammalian IRE1α binds to BiP at 

basal conditions, and the activation of IRE1α is strongly dependent on the 

disassociation of BiP (99). Recently, it has been proved that BiP provides a buffer 

system against mild stress because BiP binding accelerates IRE1α deactivation 

and deoligomerization. Therefore BiP modulates the sensitivity and kinetics of 

IRE1α (94, 100). Unlike mammalian IRE1α, the luminal domain of its homolog 

IRE1β does not interact with BiP, but it interacts with unfolded proteins instead 

(101). 
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Once sensing the ER stress signal, either by direct binding to unfolded 

proteins or by disassociation of BiP, interactions between cLD initiate dimer 

formation which is required to configure higher-order oligomers necessary for 

UPR activation (98). It was also reported that the dimer contained an 

intermolecular disulfide bond formation (102). The dephosphorylated cytosolic 

portion of the crystal structure of human IRE1α, when bound with ADP, showed a 

face-to-face dimer complex which was distinct from the back-to-back yeast 

IRE1α dimer conformation (103). Transient dimer, or oligomerization, positions 

the kinase domain for trans-autophosphorylation among the adjacent IRE1α 

activation loops. It also orders the RNase domain to form an interaction surface 

which is required for the Xbp1 specific ribonuclease activity (103, 104). In 

mammalian cells, higher orders of IRE1α oligomers were found to comprise four 

or eight IRE1α molecules (105). Yet it is still believed that dimer rather than 

oligomer is the basic functional unit of IRE1α activation, because loss of foci 

formation only delays downstream signaling (106).  

 

IRE1α foci formation upon ER stress can be visualized by attaching a GFP tag 

to a IRE1α expressing plasmid. With TM treatment, 293T cell IRE1α starts foci 

formation after two hours and reaches a peak after four hours with fewer and 

larger foci. After six hours, IRE1α foci start to dissociate and vanish completely at 

eight hours. Interestingly, IRE1α phosphorylation, XBP1 mRNA splicing and the 

kinetics of BiP induction all synchronize well with IRE1α foci formation. The 

IRE1α signal attenuates after prolonged ER stress. Attenuation includes cluster 

dissolution, dephosphorylation and a decline in endoribonuclease activity. 
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However, reactivation of IRE1α can still occur after the reset of ER homeostasis 

under additional stimuli (105). 

 

Lipid composition in mammalian membrane phospholipid also serves as an 

important activator of UPR. It has been reported that stearoylCoA desaturase 1 

(SCD1) knockdown causes an increase in the amount of saturated fatty acids and 

a decrease in the amount of monounsaturated fatty acids in phospholipids. This 

process does not affect the amount or the composition of the free fatty acid pool. 

SCD1 knockdown also induces expressions of CHOP and GRP78, and the IRE1α 

mediated splicing of XBP1 mRNA (107). Lipid induced UPR activation can be 

alleviated by treating molecular chaperones (108). This indicates that lipid-

induced ER stress is associated with increased misfolded proteins (109). 

Similarly, cholesterol loading was found to deplete endoplasmic reticulum 

calcium stores, induce UPR, and eventually activate caspase-3 mediated apoptosis 

-- an event likely to promote the progression of atherosclerosis (110). Despite an 

association with increased misfolded protein, the mechanism of IRE1α activation 

(as well as PERK) also lies in an ER-spanning transmembrane domain that may 

directly sense lipid composition of the ER membrane. This is because deletion of 

the IRE1α luminal sensing domain does not repress the responsiveness to ER 

stress induced by increased lipid saturation (111). 
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1.3.2 PERK PATHWAY 

PERK is also a type I transmembrane protein composed of an ER luminal 

stress sensor and a cytosolic kinase domain. The activation mechanism of 

mammalian PERK is similar to that of IRE1α. BiP dissociation from the N-

terminus of PERK initiates homo-dimerization/oligomerization and 

autophosphorylation of the kinase domain (112). Unlike IRE1α, PERK 

phosphorylates the α-subunit of eukaryotic translation initiation factor-2 (eIF2α) 

at Serine 51. This phosphorylation blocks the guanine nucleotide exchange factor 

so eIF2α cannot bind to GTP to form its active state. Instead, it remains bound to 

eIF2B and therefore inhibits translation initiation (113). 

 

Once eIF2α is phosphorylated, a global effect of translation attenuation 

occurs, thus reducing the burden of peptides entering the ER. Furthermore, PERK 

also enhances ERAD and expressions of prosurvival genes such as cIAP (cellular 

inhibitor of apoptosis) (114). However, not all protein translation is attenuated. 

EIF2α phosphorylation promotes translation and expression of ATF4, CHOP and 

BiP. The transcription factor ATF4 drives pro-survival functions and is 

responsible for amino acid import, glutathione biosynthesis and oxidative stress 

resistance (115). Interestingly, ATF4 also induces a transcription factor C/EBP-

homologous protein (CHOP/GADD153). CHOP actively promotes apoptosis 

primarily by repressing Bcl2 and other bZIP transcription factors expression (92). 

CHOP also induces Bcl-2 family protein Bax translocation from cytosol to 

mitochondria (116).  
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PERK is inhibited by P58IPK which binds to the cytosolic kinase domain of 

PERK (117, 118). Alternatively, PERK induces a negative feedback though 

CHOP. CHOP induces GADD34 expression and GADD34 dephosphorylates 

eIF2α by forming a phosphatase with protein phosphatase 1 (PP1) (119). In 

addition, CReP (a constitutive repressor of eIF2α phosphorylation) encodes the 

substrate targeting subunits of two phosphatase complexes that independently 

dephosphorylate eIF2α constitutively (120). With these mechanisms, PERK 

pathway can be rapidly reversed within minutes when ER homeostasis is reset, 

and activated PERK is dephosphorylated (121). 

 

1.3.3 ATF6 PATHWAY 

ATF6 is also a transmembrane UPR initiator with a large luminal domain, a 

transmembrane domain and a cytosolic domain. Upon ER stress, it is transported 

from the ER to the Golgi apparatus where it is sequentially cleaved by S1P (site 1 

protease) and S2P (site 2 protease) to remove the luminal domain and 

transmembrane anchor, respectively (122, 123). For this process, ATF6 shares the 

same protease with sterol response element binding protein (SREBP). After 

cleavage, the remaining cytosolic N-terminal domain of ATF6 is then translocated 

to the nucleus to serve as a transcription factor that up-regulates UPR target genes 

such as chaperones (BiP and Grp94) and protein disulfide isomerase (63). Similar 

to IRE1α and PERK, ATF6 also binds to BiP, and BiP is released under ER stress 

to initiate the ATF6 Golgi localization process (124). In addition, 
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underglycosylated ATF6, in association with Calreticulin, has a higher rate of 

Golgi transportation and activation. This also serves as a mechanism to sense ER 

stress (125). Under basal conditions, ATF6 remains as a monomer, dimer or 

oligomer due to the intermolecular and intramolecular disulfide bonds between 

two conserved cysteine residues in the luminal domain. Upon ER stress, the 

extent of disulfide bond reduction correlates with activation, and only reduced 

ATF6 monomer reaches the Golgi apparatus (126). Details of the ATF6 activation 

mechanism under ER stress remain to be further investigated (63).  

 

Cleaved ATF6, referred to as P50ATF6, (uncleaved ATF6 is of 90KD in size) 

regulates gene transcription in association with other bZIP transcription factors 

and co-regulators. In mammalian systems, the UPR is mediated by the cis-acting 

ER stress response element (ERSE). For example, ERSE mediates the 

transcription factors XBP1 and CHOP induction. The ERSE consensus sequence 

is CCAAT-N9-CCACG (127). Activated ATF6 binds to CCACG when CCAAT 

is bound by the general transcription factor NF-Y/CBF (128). Direct interaction of 

ATF6 and ERSE is critical for transcriptional induction of ER chaperones and 

UPR transcription factors. Recently ERSE-II has been revealed as the second ER 

stress response element; it is composed of ATTGG-N-CCACG. The activation of 

ERSE-II is similarly dependent on ATF6 (128).  

 

Overall, ATF6 induces a cytoprotective gene expression program. ATF6 

upregulates BiP, protein disulfide isomerase (PDI), ER degradation-enhancing 

alpha-mannosidase-like protein 1 (EDEM1), XBP1 (68) and CHOP, etc (121). 
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ATF6 also induces the Regulator of Calcineurin 1 (RCAN1) expression which 

leads to anti-apoptotic activity through Bcl2 and the Bcl2-antagonist of cell death 

(BAD) pathway (129) (130). In addition, there are many ATF6 homologs that are 

processed like ATF6; however, their functions are not yet fully understood. These 

include OASIS, CREBH, LUMAN/CREB3, CREB4, and BBF2H7 (131). In 

addition to protein homeostasis, ATF6(N) also binds to SREBP2(N) and inhibits 

SREBP2 targeted genes in liver cell lipogenesis (132). 

 

Within the inactivation mechanism of ATF6, it is known that XBP1u regulates 

ATF6 degradation. XBP1u has a cytoplasm relocation signal NES and a 

proteasome-mediated degradation signal DEG; both are in the C-terminus of 

XBP1u. XBP1u directly interacts with ATF6 for translocation into the cytosol 

where they are both degraded by the proteasome system (133). 

 

1.4 ER ASSOCIATED DEGRADATION (ERAD) 

Many misfolded proteins are removed from the ER to be degraded by the 

cytosolic proteasome system. This process is called ER-associated degradation 

(ERAD). The major steps of ERAD include: 1) substrate recognition, 2) substrate 

relocation and 3) proteasome degradation (134). A transmembrane complex 

composed mainly of an E3 ligase, together with multiple cofactors, is called an 

ERAD component. Understanding both yeast and mammalian ERAD pathways is 

not enough. The total number of ERAD components remains unclear. Equally 

unclear are the relationships among different ERAD components and the identity 
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of the endogenous substrates for each E3 ubiquitin ligase. This lack of clarity is 

the result of previous research focusing on the model exogenous substrates to 

study their specificity to each ERAD component. 

 

E3 ubiquitin ligases are at the center of ERAD transmembrane complexes. 

The ERAD complexes are responsible for substrate recognition, translocation and 

ubiquitination. The E3s usually have several transmembrane domains with a 

cytosolic RING finger domain (135). They are also associated with cytoplasmic 

AAA-ATPase Cdc48p/p97 that is thought to provide energy for substrate release 

from the ER. In yeast, one conserved E3 ligase complex is composed of E3 ligase 

Hrd1p and ER membrane proteins Der1p. Hrd3p is a substrate recruitment factor 

and is associated with Cdc48p (136). Two additional cofactors, Kar2p and Yos9p, 

are chaperones that can bind to substrates in association with Hrd1p. Another 

yeast E3 ligase is Doa10. Doa10 requires the Ub-conjugating enzymes Ubc6 and 

Ubc7 as well as the Ubc7 cofactor Cue1 and Cdc48 ATPase complex (the AAA-

ATPase Cdc48p, and its cofactors Ufd1 and Npl4) (137, 138). The Cdc48 ATPase 

is only required for degradation of membrane-embedded Doa10 substrates, but 

not for any soluble substrates (137).  

 

In mammalian systems, the ERAD complex is more complicated and diverse 

than that in yeast systems. For E3 ligases, gr78/RNF45/AMFR complex, 

HRD1/Sel1L complex, TCR8 and TEB4 are the known mammalian ERAD 

components, and more are being investigated (139). E2 ligases are also more 

diverse in mammalian systems. Yeast E2 ligase Ubc6 and Ubc7, for example, 
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have two mammalian homologs: Ube2j1, Ube2j2 (140-142) and Ube2g1, Ube2g2 

(59, 143, 144), respectively (139). Similar to the yeast ERAD system, three major 

steps apply to the mammalian ERAD process (Figure 1.4). The details are 

discussed below. 
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Figure 1.4 Three major steps of mammalian ERAD process 

(1) Substrates are folded in the calnexin/calreticulum cycles. If they fail to 

achieve native states or contain lesions, they are recognized by lectins and 

chaperones for ERAD. N-linked glycosylation serves as a marker in this step. A 

variety of known transmembrane E3 ligases are shown in orange in the figure. 

Diversified E2s are indicated in different colors and shapes. HRD1, one of the 

most well known E3 ligases, needs a cofactor, Sel1L, for its own stability and for 

recognizing specific substrates. Lectins and chaperones recognize protein 

substrates and transport them to different E3 ligase complexes. Lectins XTP3-B 

and OS-9 are specifically recognized by HRD1/Sel1L ERAD components. (2) 
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After substrate recognition and targeting, the proteins are translocated through a 

channel composed of Derlin1/2. Herp connects Derlin1/2 translocon to 

HRD1/Sel1L complex. The Ring domain on HRD1 or other E3 ligases add 

ubiquitin to the translocated substrates with the help of ATPase P97. (3) After 

translocation, the protein substrates are finally degraded by 26S proteasomes.   

 

1.4.1 MAJOR STEPS OF ERAD PROCESS 

1.4.1.1!Substrate!Recognition!

Substrates of ERAD include soluble and integral membrane proteins, 

polypeptides that have failed to be post-translationally modified or are otherwise 

damaged or misfolded, and unassembled members of multiprotein complex, as 

well as regular physiological proteins. For example, the cystic fibrosis 

transmembrane conductance regulator (CFTR) relies on the ERAD for regular 

protein turnover and for prevention of toxic protein aggregation (145). 

 

Chaperones, such as the heat-shock protein (Hsp70) family, bind to short 

polypeptide motifs with hydrophobic properties to prevent protein aggregation 

and maintain soluble status. Although molecular chaperones facilitate recognition 

of some ERAD substrates (146, 147), it is still not clear whether the chaperones 

are required for recognition of every ERAD substrate. It is clear though that BiP 

mutant knock-in mice showed defects that were consistent with compromised ER 

quality control and displayed profound brain development defects (148). 
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N-linked oligosaccharide (GlcNAc2-Man9-Glc3) also plays a role in ERAD 

substrate recognition. After the calnexin-calreticulin folding cycle, the 

glycoprotein contains a GlcNAc2-Man9 residue which is a signal for exit from 

ER or transit to its final destinations. On the contrary, if the glycoprotein contains 

hydrophobic patches or is in a molten globule-like state, a glucose molecule will 

be added to the glycoprotein by UDP-glucose:glycoprotein glucosyltransferase 

(UGGT) so it will re-enter the calnexin-calreticulun cycle (149) (150, 151). To 

prevent glycoproteins from becoming permanently trapped in a re-glucosylation 

and folding cycle, mannosidases act as timers. In later ERAD steps, mannosidases 

are required for delivery of certain glycoproteins from EDEM1 to lectins (152, 

153).  

 

Mammalian PDI and its homologs also participate in ERAD substrate 

translocations. PDI enables the retrotranslocation of the cholera toxin and the 

simian virus-40 (SV40) polyoma virus (45, 154). The PDI homologue, ERDJ5 

accelerates formation of the monomer form of null Hong Kong (NHK) from 

disulfide-linked dimers for degradation (155). 

 

1.4.1.2!Substrate!Targeting!

The ERAD system must be able to differentiate among actively folding, fully 

folded or misfolded proteins. It is still not clear how different types of substrates 

are recognized by a subgroup of chaperones followed by different E3 ligase 

complexes. One method is to divide substrates on the site of the misfolded lesion. 
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In yeast, it is hypothesized that there is a sequential check point mechanism to 

determine the destiny of ERAD substrates: if the lesion is in the cytosol (ERAD-

C), then the misfolded protein is targeted for ERAD; if the lesion is in the luminal 

domain (ERAD-L), then the misfolded protein is targeted for the ER-to-Golgi 

transport system (156). Another theory postulates ERAD-L and substrates with 

transmembrane domain lesions (ERAD-M) use Hrd1p/Hrd3p ligase complex. The 

substrate forms a complex together with Der1p via the linker protein Usa1p and is 

recognized by Yos9p (157). ERAD-M differs from ERAD-L in that it is 

independent of Usa1p and Der1p. ERAD-C substrates are directly targeted by 

Doa10p complex for degradation. All three pathways share the Cdc48p ATPase 

complex (158). 

 

Several ER-resident targeting lectins were recently discovered to deliver 

ERAD substrates to the retrotranslocation channel. EDEM (including EDEM1, 

EDEM2 and EDEM3) interacts with calnexin and possibly receives substrates 

from the calnexin cycle (159-164). Yos9 was shown to bind to misfolded proteins 

and form a complex with BiP. Yos9 possibly regulates the selectivity of Hrd1 for 

substrate targeting (157, 158, 165). Yos9p and Hrd3p, having similar 

mechanisms, both serve as “gatekeepers” in recognizing substrates (138). In the 

absence of Hrd3p and Yos9p, overexpression of Hrd1p can still degrade 

substrates. They can bind to substrates for ERAD independent of their 

carbohydrate groups, but still require the site-specific group processed by α-

mannosidase I. Yos9 mammalian homologes, OS9 and XTP3-B were found to 

have similar functions. OS9, interacting with GRP94, recruits NHK for HRD1 
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complex (166). XTP3-B forms a complex with BiP and interacts with 

HRD1/Sel1L (167). 

 

ERAD substrates must be ubiquitylated before degradation by the proteasome 

in the cytosol. The ubiquitylation process involves an E1 ubiquitin-activating 

enzyme, E2 ubiquitin-conjugating enzymes, E3 ubiquitin ligases and, in some 

cases, E4 ubiquitin-chain-extension enzymes (168-170). In yeast, Doa10-

dependent ubiquitylation prefers Ubc6 and Ubc7 (137, 171) whereas Hrd1 uses 

Ubc7.  

 

Mammalian orthologues of E2 ligases are more diverse and the specificity of 

E2 to different substrates and E3 ligases needs further investigation. The 

complexity of E3 is also less studied, and the research is based only on limited 

substrate examples. For instance, F-box only protein (SCF) E3 complex binds to 

glycosylated substrates and affects the stability of the α-subunit of TCRα (172). 

GP78, in cooperation with RMA1, promotes the ubiquitylation of the mutant 

CFTR as an E4-like activity for ERAD (173). Parkin, another E3 ligase, works 

with UBC6 and UBC7 homologues and ubiquitylates a putative G protein-

coupled transmembrane polypeptide named Pael receptor. The Pael receptor 

interacts with Parkin and is responsible for automosal recessive juvenile 

Parkinsonism (ARJP) (59). 

 

Apart from lectins and E2 as important cofactors for substrate targeting, there 

are other important cofactors controlling E3-substrate interactions. Hrd3p in yeast 
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and its metazoan counterpart SEL1L are the most thoroughly characterized 

adaptors and will be discussed more in depth in 1.4.4. Housekeeping chaperones 

Hsp70 and Ssa1p facilitate substrate interaction with Doa10p (174). Hsp70s and 

Kar2p interact with Yos9p-Hrd3p (157). In mammals, BiP interacts with OS-

9/XTP3-B/Sel1L complex (167). 

 

Interestingly, E3s are autoubiquitylated and trigger their own degradation. 

Yeast Hrd3p inhibits Hrd1p degradation and ensures Hrd1p is active only in the 

presence of controlled substrate delivery (175). In mammals, transient expressed 

SEL1L is rapidly degraded but is stabilized when HRD1 is coexpressed (175). In 

yeast, Hrd1 oligermerization is also essential for its activity and is regulated by 

Usa1p (176).  

 

1.4.1.3!The!retrotranslocon!

Previously, Sec61α was thought to compose the retrotranslocon channel. 

However, using real-time fluorescence to detect the ERAD substrates, it was 

discovered that retrotranslocation was blocked by antibodies against Derlin-1 but 

not against Sec61α (177). More studies now show that the Derlin family functions 

as the retrotranslocation channel. In yeast, Der1 interacts with a Ubl-domain-

containing protein, the U1 SNP-associating protein-1 (Usa1), which is a Herp 

homologue and forms a complex together with Hrd1 (158). In mammalian 

systems, Derlin-1 associates with different substrates and the inactivation of 

Delin-1 results in ER stress. Derlin-1 interacts with US11, which is encoded by a 



 

 

 

 

 

 

33 

virus and specifically targets MHC class I heavy chains for export from the ER. 

Moreover, Derlin-1 interacts with VIMP which recruits the p97 ATPase and its 

cofactor (178). Derlin-1 also interacts with US11, which recruits MHC products 

to Derlin-1 (179). Derlin-1 has a rhomboid pseudoprotease domain, and mutation 

of this domain stabilizes NHK at the cytosolic face of the ER without disrupting 

the p97/VCP interaction. Therefore it is proposed that the rhomboid domain is 

responsible for substrate interaction whereas the C terminus of Derlin-1 is 

independently responsible for p97/VCP recruitment (180).  

 

1.4.1.4!Cytoplasmic!extraction!and!proteasome!degradation!

Ubiquitylated substrates can follow multiple dynamically controlled pathways 

to be degraded in the cytosol. The AAA adenosine triphosphatases (ATPase) 

Cdc48p (or p97 in metazoans), or at times the proteasome lid, play an important 

role in the extraction of substrates from the ER membrane (181). Once in the 

cytosol, peptide N-glycanase (PNGase), recruited by p97, removes the N-linked 

glycans from the substrates before entering into the proteasome (182, 183))(184). 

Deubiquitination is also required in the process of dislocation and is processed by 

YOD1 (185). During the entire process, ERAD is tightly coupled to substrate 

dislocation in a complex manner (134). 
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1.4.2 THE CONCEPT OF ERAD TUNING 

It is proposed that a complex comprised of SEL1L and LC3-I acts as an 

ERAD tuning receptor and regulates the COPII-independent vesicle-mediated 

removal of the luminal ERAD regulators EDEM1 and OS-9 from the ER. This 

model suggests that during basal condition, SEL1L disengages and the absence of 

ERAD substrates possibly causes E3 ligase-induced ubiquitylation and 

degradation of the retro-translocon. EDEM1 and OS-9 are segregated in ER-

derived ERAD tuning vesicles with the intervention of SEL1L and LC3-I. 

However during ER stress with accumulated proteins in the ER, elevation of the 

intraluminal levels of ERAD substrates competitively bind Sel1L, thus reducing 

the interaction of SEL1L with EDEM1, OS-9 and LC3-I. The dislocation 

machineries are stabilized, so the intraluminal concentration of ERAD factors and 

ERAD activity are enhanced (186). In short, the ERAD tuning pathways offer 

rapid and readily reversible adaptation response to deal with transient problems 

which may arise in the folding compartment. Activation of UPR, on the other 

hand, requires more time for transcription and translation regulations (186). 

 

The concept of ERAD tuning is based on three pieces of evidence (187): 1) 

Several ERAD factors including ERManI (188, 189), EDEM1 (190-193), OS-9 

(186), XTP3-B (167), HERP (194, 195), SEL1L (196, 197), the E3 ligases 

SMURF1 (198, 199) and gp78 (200, 201), JAMP (202) and ataxin-3 (203, 204) 

are subjected to faster turnover than conventional ER-resident chaperones and 

enzymes. This indicates that they may be involved in the ubiquitin proteasome 
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system, autophagy or autophagy-like pathways. 2) Some ERAD factors are 

constitutively segregated from the ER (186, 205). 3) Luminal expression of 

misfolded polypeptides may delay the turnover of ERAD factors, may retain them 

in the ER by interfering with their vesicle-mediated segregation from the 

compartment, or may directly affect the composition of ERAD complexes and 

their activity (186, 206, 207). 

 

The ERAD tuning theory is also proved in the coronaviruses (including SARS 

and mouse hepatitis virus, MHV) during their infection cycle. The viruses hijack 

components of the ERAD tuning machinery and presumably co-opt EDEM1/OS-

9/LC3-I-containing vesicles for replication (186, 192). 

 

1.5 ER STRESS AND DISEASES 

Increasing numbers of diseases are discovered to be associated with misfolded 

protein accumulation. In many cases, the unfolded protein response is specifically 

activated to reverse the ER stress by enhancing protein folding, ERAD or global 

translation attenuation. The type of diseases that result from mutations that 

interfere with proper protein folding or trafficking are called “conformational 

diseases” (208, 209). These misfolded proteins can lead to the accumulation of 

aggregated forms of the protein which become toxic for the cell (210). Typical 

examples include prion encephalopathies, neurodegenerative diseases 

(Alzheimer’s, Parkinson’s, Huntington’s), type 2 diabetes, amyloidosis, etc. On 

the other hand, when the aberrant conformer of a protein undergoes abnormal 
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degradation by the ubiquitin-proteasome system, it can lead to a loss-of-function 

effect (211). One example of loss-of-function disease is cystic fibrosis which is 

characterized by a loss of the functional Cystic Fibrosis Transmembrane 

Conductance Regulator (CFTR) (201, 212, 213).  

 

Chemical chaperones are low molecular weight compounds that stabilize 

proteins in their native conformation. Chemical chaperones are effective in 

rescuing processing defects in the mutant protein. They can inhibit protein 

aggregation and enable the mutant proteins to escape the quality control systems 

(214). Compounds such as receptor ligands or enzyme inhibitors that selectively 

recognize the mutant proteins were found to rescue conformational mutants and 

were termed pharmacological chaperones (215-217). Increasing evidence has 

suggested that chemical and pharmacological chaperones could be effective in 

treating conformational diseases (218). In this introduction, I will focus on 

metabolic and immune conformational diseases. 

 

1.5.1 ER STRESS AND METABOLIC DISEASES 

1.5.1.1!ER!stress!and!obesity!and!diabetes!

UPR has been proposed as the intermediate link between obesity and diabetes. 

ER stress has been shown to exist in metabolic tissues, mostly liver, pancreas and 

adipose tissues. Activation of the IRE1α-JNK pathway in liver and fat leads to 

suppression of the insulin receptor signal by suppressing serine phosphorylation 

of the insulin receptor substrate-1 (IRS-1) (219). XBP-1 deficient mice develop 
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insulin resistance (219). In the hypothalamus of obese mice, increased 

endoplasmic reticulum stress and activation of the unfolded protein response 

inhibits leptin receptor signaling (220). Moreover, chemical chaperones, 4-phenyl 

butyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) improve leptin-

sensitivity (220).  

 

XBP1 β-cell specific knock-out mice display modest hyperglycemia and 

glucose intolerance resulting from decreased insulin secretion from β cells. This is 

due to a decreased number of insulin granules, impaired proinsulin processing, 

blunted glucose-stimulated insulin secretion and inhibited cell proliferation (221). 

A negative feedback activation of IRE1α also contributes to β-cell dysfunction in 

XBP1 mutant mice (221). Meanwhile, XBP1 deficiency in the liver results in 

hypocholesterolemia and hypotriglyceridemia, indicating that hepatic XBP1 is 

responsible for lipogenesis (222). On the contrary, liver IRE1α deletion displays 

modest hepatosteatosis, and was found to be necessary for efficient secretion of 

apolipoproteins upon disruption of ER homeostasis. Furthermore, IRE1α 

represses expression of key metabolic transcriptional regulators including 

CCAAT/enhancer-binding protein (C/EBP)β, C/EBPδ, peroxisome proliferator 

activated receptor γ (PPARγ) and enzymes involved in triglyceride biosynthesis 

(223). 

 

PERK-eIF2α pathway plays an important role in pancreas development. 

Ser51Ala eIF2α mutant mice die after birth with pancreatic β cell deficiency 

(224). PERK is highly expressed in a mouse pancreas, although the exocrine and 
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endocrine pancreas develop normally in PERK -/- mice. Postnatally, IRE1α 

activation and increased cell death lead to progressive diabetes mellitus with 

exocrine pancreatic insufficiency, progressive degeneration of the islets of 

Langerhans and loss of insulin-secreting β cells followed by loss of glucagon-

secreting α cells (225, 226). PERK deficiency causes suppression of insulin 

mRNA and does not lead to uncontrolled protein synthesis (227). Instead it leads 

to impaired ER-to-Golgi anterograde trafficking, retrotranslocation from the ER 

to the cytoplasm, proteasomal degradation, enlarged ER and retention of 

proinsulin (228). Liver specific suppression of eIF2α phosphorylation results in 

lower liver glycogen levels and susceptibility to fasting hypoglycemia in lean 

mice and glucose tolerance and diminished hepatosteatosis (229). Attenuation of 

eIF2α phosphorylation also correlates with the lower lipogenesis transcription 

factor, PPARγ, and its upstream regulators C/EBPα and C/EBPβ (229). Therefore, 

PERK-eIF2α mediates the translation of key hepatic transcriptional regulators of 

glucose and lipid metabolism and thereby contributes to obesity and diabetes. 

 

It is also believed that CHOP is a fundamental factor linking protein 

misfolding in the ER to oxidative stress and apoptosis in β cells under conditions 

of increased insulin demand. CHOP deletion in multiple type 2 diabetes mouse 

models result in improved glycemic control and expanded β cell mass, improved 

β cell ultrastructure and prolonged cell survival (230). In addition, islets from 

CHOP deletion mice show increased expression of UPR and oxidative stress 

response genes and reduced levels of oxidative damage (230). 
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1.5.1.2!ER!stress!and!cardiovascular!diseases!

UPR activation is associated with the pathophysiology of heart failure in 

humans. The hearts showed a marked increase of GRP78 expression and 

morphological change of ER (231, 232). In the mouse model, after transverse 

aortic constriction (TAC), activation of the UPR was found in both hypertrophic 

(1 week after TAC) and failing hearts (4 weeks after TAC). While CHOP was 

activated, JNK or caspase-12 was not, indicating that CHOP may be involved in 

the transition from cardiac hypertrophy to heart failure. ASK1, as previously 

discussed is a kinase to phosphorylate JNK. The ASK1 knock-out mouse model 

also showed fewer cardiac dysfunctions and cardiac apoptosis cells after TAC 

(233). The expression of sarco/endoplasmic reticulum calcium ATPase isoform 3f 

(SERCA3f) was found to be up-regulated in failing human hearts (234).  

 

Moreover, atherosclerosis plaques were found to have ER stress and UPR 

activation in endothelial cells, macrophages and smooth muscle cells (235). In 

normal conditions, macrophages ingest ApoB containing lipoproteins cholesterol 

and the ER esterifies the cholesterol to form cholesterol ester. Excessive amounts 

of free cholesterol, as well as oxysterols induce ER stress and ER stress induced 

apoptosis (110, 236-238). The apoptosis pathway is dependent on CHOP and 

involves the release of ER calcium, the mitochondrial release of apoptogens and 

activation of the death receptor Fas (239-241). For macrophages particularly, the 

ER stress-induced apoptosis usually requires a “second hit” either by pattern 

recognition receptors or by toll-like receptors (242, 243). Oxidized phospholipids 

activate a CD36-TLR2 pathway that initiates an oxidative burst. This oxidative 
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burst further amplifies the CHOP pathway mediated primarily by NADPH 

oxidase (244). Activation of the IRE1α pathway and CHOP was also found in 

smooth muscle cells in the culture treated by 7-ketocholesterol (245), unesterified 

cholesterol (246), homocysteine (247) or glucosamine (248). The mechanism of 

ER stress-induced apoptosis is still not fully understood in smooth muscle cells. 

Apoptotic endothelial cells are procoagulant, and increase the adhesiveness of 

platelets, at least partially, by the mechanism that disturbs blood flow and is 

associated with IRE1-XBP1 branch activation (249, 250). Homocysteine (251, 

252) and modified forms of LDL (253, 254)  are associated with both IRE1 and 

CHOP activation. Activation of IRE1α partially phosphorylates JNK or, by a 

direct interaction with BAX or BAK on the ER membrane, regulates the 

mitochondria dependent apoptosis. On the other hand, PERK or ATF6 activation 

can, in turn, activate Fas signaling pathway to initiate mitochondria independent 

apoptosis, which is mediated by CHOP. Details were discussed previously in 1.3. 

 

Increased expression of UPR-related genes has been reported in 

cardiomyocytes close to the site of myocardial infarction in mice and humans 

(255, 256). Cardiomyocytes infected with a recombinant adnovirus encoding 

dominant-negative XBP1 showed an increased hypoxia/reoxygenation-induced 

apoptosis, suggesting that the XBP1 arm of the UPR may have a cardioprotective 

role against hypoxic insults (255). ATF6 transgenic mice showed increased 

expression of ER resident chaperones GRP78 and GRP94 and better functional 

recovery after ex vivo ischemic/reperfuse (I/R). They also showed significantly 

less necrosis and apoptosis (257). Adenoviral-mediated transfer of the PDI gene 
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also showed significantly reduced cardiomyocyte apoptosis and a smaller left 

ventricular end-diastolic (256). These findings all suggest that activation of the 

UPR plays a protective role against I/R injury. However, with prolonged stimuli, 

ER stress induces the expression of PUMA. PUMA is a pro-apoptotic member of 

the Bcl-2 family. The suppression of PUMA expression leads to inhibition of 

cardiomyocyte apoptosis induced by a pharmacological ER stressor (258). This 

means ER stress can induce both protective UPR and apoptotic signaling in 

ischemic heart diseases, depending on the severity and length of stimuli induced 

by I/R. 

 

1.5.1.3!ER!stress!and!cancer!

Following initiation of malignancy, rapid tumor growth results in 

microenvironmental stress and a change of ER protein homeostasis. Hypoxia, 

glucose deprivation, lactic acidosis, oxidative stress and decreased amino acid 

supplies as well as intrinsic stressors -- such as errors in glycoproteins and lipid 

biosynthesis that result from an increased mutation rate -- all contribute to UPR 

induction (259). Activation of UPR both protects neoplastic cells from apoptosis 

and permits recurrence of tumor growth once favorable growth conditions have 

been restored (260, 261). However, if the stress persists, UPR will promote tumor 

cell apoptosis. 

 

Indeed, ATF6 nuclear translocation has been observed to increase in various 

types of cancers, for example human hepatocellular carcinoma (HCC) (262) and 
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Hodgkin’s lymphoma (263). ATF6 primarily induces cytoprotective responses 

including ER biogenesis, chaperone up-regulation and protein degradation (264, 

265). ATF6 also induces transcription of XBP1 that can adjust the ER capacity to 

match demand. Therefore ATF6 has been hypothesized as a survival factor for 

quiescent carcinoma cells. ATF6 is also responsible for the adaptation of tumor 

cells to chemotherapy which is regulated by the Ras homolog enriched in brain 

(RHEB) and by the mammalian target of rapamycin (mTOR) (266). The ATF6-

RHEB-mTOR pathway could be the possible target for the reduction of the 

metastatic cancer relapse rate (259). 

 

IRE1α has been shown to promote cell proliferation through XBP1, because 

XBP1 splicing itself could lead directly to tumourigenesis. Elevated XBP1s levels 

in B and plasma cells drive multiple myeloma pathogenesis and promote hallmark 

myeloma characteristics (267-269). Moreover, IRE1 is required for tumor 

angiogenesis and also contributes to VEGF expression (270, 271). VEGF can also 

induce internalization of VEGF receptors, and subsequently induce IRE1α 

activation and XBP1 splicing (272). XBP1s also increases BCL-2 levels after 

antiestrogen stimulation in breast cancer cells, and it suppresses apoptosis (273). 

On the other hand, IRE1α prolonged RIDD activation has also been reported to 

induce apoptosis by interacting with TRAF2, which further triggers JNK and 

caspase-12 activation (274, 275). Thus, IRE1α plays a dual role in tumor cell 

survival. 
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Similar to IRE1α, PERK has been implicated in tumor progression and 

angiogenesis. PERK mutation or dominant negative PERK leads to smaller 

tumors and impaired angiogenic abilities (276, 277). PERK knock-down in 

human esophageal and breast carcinomas also results in ROS accumulation, 

oxidative DNA damage and subsequently, cell-cycle arrest at the G2/M phase 

through the PERK downstream transcription factor NRF2 (278, 279). On the 

contrary, pharmacologically activated PERK can also induce growth arrest and 

suppress tumor growth because eIF2α phosphorylation-induced translational 

arrest down-regulates cell-cycle regulators and arrests the cells in the G1 phase 

(280). After acute ER stress, eIF2α phosphorylation stalls protein synthesis to 

reduce the stress. However, if the stress persists, severe ER stress eventually leads 

to ROS and ultimately apoptosis. 

 

ER stress activates UPR in an overlapping mechanism. CHOP is a 

downstream target of all PERK, IRE1α and, to a milder degree, ATF6, although 

PERK-CHOP branch shows stronger activity during prolonged ER stress (281). 

Most targets can be regulated separately by each pathway, while each pathway 

activates its own specific down stream transcriptional activities. Some targets 

require the concomitant activation of two initiators, e.g. P58IPK depends on both 

ATF6 and IRE1α activation (264). Finally, some downstream effectors exhibit 

multiple mechanisms in reducing ER stress. The three UPR pathways can also 

shift balance between cytoprotection and apoptosis based on the timing of ER 

stress. For example IRE1α and PERK initially attenuate ER stress. However, 

sustained PERK activation upregulates CHOP levels, and accumulation of CHOP 
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until it reaches a sufficient level will stimulate the pro-apoptotic BCL-2 family 

proteins. Currently, the way tumor cells adapt to long-term ER stress is unclear, 

and tissue-specific UPR activation also complicates the research. Due to the 

incomplete understanding of UPR pathway redundancy, the timing effect, and the 

interplay between all the UPR pathways, understanding the mechanisms of UPR 

in cancers remains a challenge (259). 

 

1.5.2 ER STRESS AND IMMUNE DISEASES 

The UPR can initiate inflammation in variable cells and tissues. The 

fundamental link between UPR and inflammation is now thought to be an 

important aspect of the pathogensis of inflammatory diseases. The interconnection 

mechanisms include the production of reactive oxygen species (ROS), the release 

of calcium from the ER, the activation of the transcription factor nuclear factor-

κB (NF-κB), JNK, and the induction of the acute-phase response (282).  

 

The process of disulfide-bond formation requires a robust driving force based 

on molecular oxygen because the terminal electron recipient leads to the 

production of ROS (283). Furthermore, additional oxidative stress can result from 

the depletion of reduced glutathione, which is consumed to reduce unstable and 

improperly formed disulfide bonds (284). PERK activates its downstream ATF4 

and phosphorylates nuclear factor-erythroid-derived 2-related factor 2 (NRF2). 

Following phosphorylation, NRF2 translocates to the nucleus, and activates a set 
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of antioxidant plus oxidant-detoxfying enzymes in order to maintain the cellular 

level of glutathionen as a redox buffer in the cell.  

 

As discussed in 1.3.1, IRE1α activation induces a conformational change so 

that its cytosolic domain binds to the adaptor protein tumor-necrosis factor α 

receptor-associated factor (TRAF2) (285). IRE1α-TRAF2 complex recruits IκB 

kinase (IKK), and IKK phosphorylates IκB, which exposes a nuclear-localization 

signal in NF-κB (286). NF-κB is a transcriptional factor that is responsible for 

numerous inflammatory genes. Similarly, IRE1α-TRAF2 complex recruits the 

protein kinase JNK, which activates JNK. JNK induces inflammatory genes by 

phosphorylating the transcription factor activator protein 1 (AP1) (287). PERK-

eIF2α also contributes to the activation of NFκB, because global translation 

attenuation causes a faster degradation of IκB to NFκB due to a shorter half-life 

(288). 

 

UPR participates in the development of autoimmunity. Inadequate UPR and 

aberrant protein folding contribute to autoimmunity through the following four 

mechanisms (289): 1) misfolded proteins overwhelm the UPR and act as 

autoantigenes that promote autoimmunity; 2) UPR-related genes themselves act 

as autoantigens, and it has been suggested that patients with rheumatoid arthritis 

present BIP specific autoantibodies; 3) Defective UPR pathways in non-immune 

cells may still allow autoimmunity by overwhelming normal mechanisms of 

immune tolerance; 4) upregulating ERAD confers resistance to UPR-mediated 

apoptosis or a survival advantage to autoreactive cells. 
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UPR plays an important role in B-cell development and lymphopoiesis, since 

XBP1 is responsible for terminally differentiated immunoglobulin secretions 

during the development of plasma cells (72, 290). Rag (recombinantion activating 

gene-2 RAG2 bloastocyst complementation system) was used to study the role of 

XBP1 in B cells. XBP1-deficient B cells expressed normal cellular markers of 

B220, IgM and IgD. However, Xbp1-/- Rag-/- chimeric mice had decreased basal 

levels of all immunoglobulin isotypes, and failed to produce antibodies in 

response to antigens or viral infection. They also did not express CD138 marker 

for plasma cells, and showed a lack of plasma cell development (72). It is 

believed that the phenotype of Xbp1-/- Rag-/- mice was due to a lack of UPR in 

these B cells (290, 291). The upstream transcription factor B-lymphocyte-induced 

maturation protein 1 (BLIMP1) is also upregulated in XBP1 deficient B cells as a 

lack of negative feedback (291). Interestingly, IRE1α -/- B cells showed similar 

phenotype as Xbp1-/- Rag-/- mice, because the B cells have defects in antibody 

production (292). ATF6 cleavage is also found in stimulated B cells, indicating its 

function in terminal B cell differentiation (293). Yet, PERK-/- B cells develop 

normally into plasma cells (292, 294). The malignant transformation of plasma 

cells form myeloma. Early experiments also showed that Xbp1 was highly 

expressed in myeloma cells (295), and patients with myeloma have high Xbp1s 

levels in the bone marrow (269). Bortezomib, a therapeutic agent for the treatment 

of myeloma, has a potent and selective inhibiting effect on 26S proteasome. 

Therefore the mechanism of selectivity for myeloma cells can be explained by an 

increased susceptibility of myeloma cells to endoplasmic reticulum induced 
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apoptosis; for example, activation of PERK, CHOP and ATF6, as well as JNK 

(296, 297). 

 

In macrophages, TLR2/4 specifically activates the IRE1α-XBP1 pathway and 

activates transcription profiles similar to those under ER stress induction, and 

TLR2/4 is required for optimal expression of cytokines including IL-6, IL-1β, 

TNF and IFN-β (298-300). XBP1 is also essential for dendritic cell (DCs) 

development and survival. Lymphoid chimeras lacking XBP-1 possessed 

decreased numbers of DCs, whereas overexpression of XBP1 rescues and 

enhances DC development (301). On the other hand, prior engagement of TLR3/4 

suppresses CHOP and ATF4 expression in splenic macrophages, renal tubule 

cells, and hepatocytes. Suppression of CHOP and ATF4 prevent renal dysfunction 

and hepatosteatosis, the effect of which is dependent on TRIF. These mechanisms 

might be beneficial for TLR-expressing cells to survive when experiencing 

prolonged levels of ER stress in the process of inflammatory reactions (302). 

 

It has now been reported that ER stress plays a role in inflammatory bowel 

diseases (IBD). XBP1 specific knock-out in intestinal epithelial cells showed 

susceptibility to colitis induced by dextran sodium sulfate and resulted in 

apoptosis of Paneth cells (303). Furthermore, XBP1 deletion in gut epithelia also 

results in the reduction in size and number of goblet cells. In addition, 

autophagosome formation is activated in hypomorphic Paneth cells via PERK, 

eIF2α and ATF4 (304). Commensal microbiota and increased intestinal epithelial 

cell death induce ileitis, and activate the IRE1-NFκB pathway when autophagy is 
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deficient. ATG16L1 is shown to ameliorate ER stress induced intestinal 

inflammation and eases the NF-κB pathway (304). Similarly, dextran sodium 

sulfate (DSS) induced colitis was found in gastrointestinal IRE1β knock-out mice. 

Therefore, a tight regulation of UPR and inflammatory pathways regulate the 

development of inflammatory diseases including inflammatory bowel diseases. 

 

1.6 RESEARCH AIM AND DISSERTATION ORGANIZATION 

Since the identification of UPR sensors in the early 1990s, it has been 

concluded that UPR plays an essential role in maintaining ER protein 

homeostasis. Activation of UPR is known to be required in important 

physiological and pathological regulations. IRE1α-XBP1 is the most famous 

pathway required for plasma cell development and production of 

immunoglobulins and cytokines. Altering the IRE1α signaling pathway is also 

known to affect the severity of diseases including obesity and diabetes, cancer, 

inflammatory diseases and neurodegenerative diseases. In this thesis, chapter 1 

reviewed facts about UPR and ERAD and their relationship to metabolic and 

inflammatory diseases. 

 

Pursuant to this research, the IRE1α-XBP1 pathway is the most 

revolutionarily conserved and well-studied UPR pathway. A comprehensive 

understanding of the regulatory mechanisms underlying mammalian IRE1α 

activation is critical to understanding the UPR and future interventions. Kinase 

activity and trans-autophosphorylation of IRE1α protein are important for the 



 

 

 

 

 

 

49 

activation of the RNase domain. Moreover, the two cytosolic domains of IRE1α 

protein are functionally linked via autophosphorylation. One outstanding question 

remains: How is the activation of IRE1α RNase and kinase domain coherently 

regulated? And, is phosphorylation of IRE1α dispensable in the activation of its 

RNase domain? Chapter 2 discusses the molecular mechanism of human IRE1α 

activation, and in particular, reveals that the internal link between the kinase and 

RNase domain is required for the coordinated activation of IRE1α and foci 

formation. In appendix A, the importance and mechanism of IRE1α 

phosphorylation based on more mutant variables will be discussed.  

 

Growing evidence has further suggested a close interaction between UPR and 

inflammatory responses. In response to ER stress, IRE1α-TRAF2-JNK pathway is 

activated, as well as NF-κB and CREBH transcription factors that promote pro-

inflammatory responses and acute-phase responses. On the other hand, ER stress 

can also be triggered by inflammation. TNFα causes the activation of all three 

UPR mammalian pathways in fibrosarcoma cells (305). TNFα, IL-1β and IL-6 

also induce UPR activation in hepatocytes (306). ER stress can also be triggered 

by excess metabolic factors such as lipids, glucose, cytokines, and 

neurotransmitters. These stimuli activate UPR, and UPR further causes more 

inflammatory responses and disruption of metabolic functions. Such a cycle 

exacerbates inflammatory signaling and stress signaling and deteriorates 

metabolic phenotypes. 
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Equally important as UPR, ERAD degrades unfolded and misfolded proteins 

from the ER lumen in the cytosolic proteasome and acts upon UPR. Defects in 

ERAD are known to cause accumulation of misfolded proteins or early 

degradation of physiologically required proteins. However, the molecular 

mechanisms of variable mammalian ERAD components remain largely 

unexplored. More research is needed to understand the diversity of E3 ligases, 

their physiological functions in each tissue type and their relevant temporal 

expressing manners. An intriguing question is whether ERAD contributes to 

inflammatory responses. In chapter 3, a macrophage specific Sel1L deletion 

model is used to study the interconnection between ERAD and inflammatory 

responses. Surprisingly, the study shows that Sel1L is dispensable in macrophage 

innate immunity functions. With a lack of Sel1L, macrophages remain intact in 

the functions of cytokine secretion, antigen presenting, pathogen defense and 

inflammatory responses in type 2 diabetes. This research challenges the notion of 

a dependence of UPR in inflammatory responses in highly secretory cell types. It 

also suggests a tightly regulated mammalian ERAD compensatory mechanism. 

 

Finally, chapter 4 summarizes the research findings and discusses the 

direction of future research. 
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2.1 ABSTRACT 

The UPR sensor inositol-requiring enzyme 1α (IRE1α) is a bifunctional 

enzyme containing both kinase and RNase domains that are important for trans-

autophosphorylation and Xbp1 mRNA splicing, respectively, in response to ER 

stress. However, the amino acid residues important for structural integrity remain 

largely unknown.  Here, through analysis of IRE1α mutants associated with 

human somatic cancers, we have identified a highly conserved proline residue at 

position 830 (P830) that is critical for its structural integrity, hence the activation 

of both kinase and RNase domains. Structural analysis revealed that P830 may 

form a highly conserved structural linker with adjacent tryptophan and tyrosine 

residues at positions 833 and 945 (W833 and Y945), thereby bridging the kinase 

and RNase domains. Indeed, mutation of P830 to leucine (P830L) completely 

abolished the kinase and RNase activities, significantly decreased protein stability 

and prevented oligomerization of IRE1α upon ER stress; similar observations 

were made for mutations of W833 to alanine (W833A) and to a lesser extent for 

Y945A. Our finding may facilitate the identification of small molecules to 

specifically compromise IRE1α function. 

 

2.2 INTRODUCTION 

The unfolded protein response (UPR), a highly evolutionarily conserved 

endoplasmic reticulum (ER)-to-nucleus signaling pathway, is critical for 

maintaining ER homeostasis and has been implicated in the pathogenesis and 
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development of many human diseases including diabetes, cancer, and lung and 

heart diseases. UPR, the quality-control system designed to re-establish ER 

homeostasis, is initiated by the activation of three major sensors at the ER 

membrane: inositol-requiring enzyme 1 (IRE1), PKR-like-ER kinase (PERK), and 

activating transcription factor 6 (ATF6). Activation of UPR leads to the induction 

of chaperones and ERAD (ER-associated degradation) components, global 

translational attenuation, and is required for the maintenance of ER function, 

clearance of misfolded protein in the ER, and, if stress persists, induction of 

apoptosis (131). Among the three branches, the IRE1α-initiated pathway is the 

most evolutionarily conserved and represents the only UPR branch in yeast (307, 

308). Recent studies have shown that the IRE1 branch plays important roles in a 

wide range of physiological and disease conditions including B cell and adipocyte 

differentiation, secretory function for pancreas and salivary glands, 

neurodegeneration, and obesity and insulin resistance (131, 309). Hence, a 

comprehensive understanding of the regulatory mechanisms underlying 

mammalian IRE1α activation is critical to the development of new therapeutic 

approaches. 

 

In addition to a kinase domain, the cytoplasmic tail of the IRE1 protein also 

possessed endoribonuclease (RNase) activity, which cleaves Hac1/Xbp1 mRNA 

(310, 311). The Hac1/Xbp1 mRNA encodes for a potent transcription factor 

responsible for the upregulation of many genes involved in protein folding, 

degradation and trafficking (68, 312-314). The ER luminal domain of IRE1α 

protein is critical for sensing ER stress and subsequent IRE1α activation. While 



 

 

 

 

 

 

54 

earlier studies of human IRE1α have suggested that IRE1α dimers are sufficient 

for its activity (102, 315-317), recent studies showed that the formation of stress-

induced IRE1α foci is conserved between yeast and mammals (104, 105).  The 

formation of IRE1α foci in response to ER stress is believed to juxtapose the 

IRE1α kinase and RNase domains, allowing for a more efficient way to relay 

signals emanating from the ER lumen.  

 

One outstanding question remains as how important is the molecular 

mechanism underlying the activation of IRE1α RNase and kinase domains. Some 

recent studies have shed light on this question. First, kinase-defective K599A 

mutant abolishes the RNase activity of IRE1α, suggesting that kinase activity and 

trans-autophosphorylation of IRE1α protein is important for the activation of its 

RNase domain (104). This is likely achieved by phosphorylation-induced 

conformational changes. Moreover, a previous study reported the failure to 

express stable forms of individual kinase and RNase domains (318). Together, 

these studies imply that the two cytosolic domains of IRE1α protein are 

functionally linked via autophosphorylation. However, two recent studies 

suggested a dispensable role of phosphorylation of IRE1α in activation of its 

RNase domain (319, 320). Thus, further studies are required to elucidate the 

relationship between the two domains.  

 

Through analysis of IRE1α mutants associated with human somatic cancers 

(321), our study identifies the interdomain linker region of the cytosolic domain 

of IRE1α as an important structural determinant for its function. Thus, this region 
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may be used as a potential drug target for small molecules to regulate IRE1α/UPR 

signaling. 

 

2.3 EXPERIMENTAL PROCEDURES 

Cell lines and reagents.  IRE1α-/- MEFs were generous gifts from Dr. David 

Ron (New York University School of Medicine). T-REx293 cell line and T-

Rex293 stably expressing IRE1α-3F6HGFP were recently described (105, 322) 

and provided Dr. P. Walter and Han Li (University of California, San Francisco). 

HEK293T, T-REx293 and Phoenix cells as described (322) were maintained in 

DMEM supplemented with 10% FBS (Hyclone) and 1% penicillin/streptomycin. 

Thapsigargin (Tg) (EMD Calbiochem) and stock cycloheximide (Sigma) were 

dissolved in DMSO and ethanol, respectively.  Cells were treated with Tg at 

indicated concentrations for the indicated times and immediately snap-frozen in 

liquid nitrogen.  Phos-tag was purchased from the NARD Institute (Japan). 

 

Plasmids and mutagenesis. The pDsRed2-ER (Clontech) plasmid was 

provided by Dr. Fenghua Hu (Cornell University). pMSCV-IRE1α–HA encoding 

wildtype human IRE1α (89) was a gift from Dr. C. Hetz (University of Chil). 

IRE1α-3F6HGFP plasmid (105) was provided by Dr. P. Walter and Han Li 

(University of California, San Francisco). Mutagenesis was performed and 

sequenced as described (323).   
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Transfection, retroviral transduction and stable cell lines. HEK293T were 

transfected with plasmids using polyethylenimine (PEI, Sigma) as we recently 

described (323).  Cells were snap-frozen in liquid nitrogen 24 h post-transfection 

followed by Western blot.  To avoid experimental variations due to transfection 

efficiency, stable IRE1α-/- MEF lines expressing various IRE1α constructs were 

generated using retroviral transduction as described (322).  Stable cell lines were 

selected in hygromycin (VWR) at 125 µg/ml. Stable cell lines were made and 

tested independently at least twice.  

 

Analysis of IRE1α foci formation.  It was performed essentially as described 

(105) with the following modifications. T-REx293 cells were transfected with 

0.2-0.5 µg IRE1α-3F6HGFP plasmid and 1 µg OG44 (Invitrogen) for 24 hours 

followed by 62.5 µg/ml hygromycin (VWR) selection for 2-3 weeks.  Cells were 

treated with doxycycline (VWR) at 10nM for 24 h to induce the expression of 

IRE1-3F6HGFP followed by Western blot. Cells were treated with thapsigargin 

(Tg) at 300 nM for 4 hours to induce ER stress. Fluorescent microscopic picture 

of the T-REx293 were taken with the Zeiss 710 confocal microscope. 

 

Intracellular localization of WT and mutant IRE1α with ER marker. T-

REx293 cells stably expressing WT or mutant IRE1α-3F6HGFP were placed on 

the cover slip and grow until 50% confluent. pDsRed2-ER was transfected 1.5 µg 

per well for 6-well for 12 hours followed by 10 nM Dox treatment for 24 hr. 

Fixed by 4% paraformaldehyde for 20 min, washed by PBS twice and d-water 

once, cover slip was then put onto glass slide and stained by prolong Gold 
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antifade reagent with DAPI (invitrogen) and later concealed for observation under 

confocal microscope.  

 

Western blot, phosphatase treatment and image quantification.  

Preparation of cell lysates, nuclear extract, and Western blot were performed as 

we previously described (322, 323). Antibodies used in this study included XBP1 

and HSP90 (Santa Cruz), IRE1α (Cell Signaling) and PARP (a gift from Lee 

Kraus, UT Southwestern Medical Center).  Phos-tag gel and phosphatase 

treatment were performed as described (322, 324, 325). Membranes were 

routinely strip-reprobed for HSP90 as a position control.  Band density was 

quantitated using the Image Lab software on the ChemiDOC XRS+ system (Bio-

Rad) and presented as mean ± SEM from several independent experiments or as 

representative data from at least two independent experiments.  

 

RNA extraction and XBP1 splicing assay. RNA extraction was 

described in the previous paper (322). XBP1 splicing assay was performed 

following David Ron’s protocol at 

http://saturn.med.nyu.edu/research/mp/ronlab/protocols.html. 

 

Structure of yeast and human IRE1α.  The crystal structure of the cytosolic 

domain of yeast IRE1α (PDB accession number 3FBV) (104) and human IRE1α 

(PDB accession number 3P23) (103) were used for structural analysis of IRE1α 

mutants. 
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Cycloheximide treatment.  Stable MEF cell lines with various IRE1α 

constructs were treated with 100µg/ml cycloheximide  (Calbiochem) for 0, 6, 9, 

12, 16 and 24 hours. Cells were then snap-frozen in liquid nitrogen and analyzed 

by Western blot and image quantification. 

 

Statistical analysis.  Results are expressed as mean ± SEM. Comparisons 

between groups were made by unpaired two-tailed Student t-test.  P<0.05 was 

considered as statistically significant. All experiments were repeated 

independently at least twice. 

 

2.4 RESULTS 

The S769F and P830L mutations abolish IRE1α phosphorylation and 

activation. In a recent proteomic screening study, seven mutations (N244S, 

L474R, R635W, S769F, Q780-stop and P830L) were identified to be associated 

with various cancers (321) (Figure 2.1A).  As they present in tumor cells in one 

copy (321), their significance in cancer is unclear. Nonetheless, the identification 

of these mutants allowed us to address how the cancer-associated mutation may 

affect IRE1α structure and function. The relative positions of these mutations in 

the kinase domain of the active form of yeast IRE1α protein (104), based on 

homology, are shown in Figure 2.1B.  

 

 To determine the impact of these mutants on IRE1α activity, we generated 

IRE1α-/- MEF cells stably expressing the mutant proteins and assessed IRE1α 
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phosphorylation in response to ER stress using Phos-tag gels as we recently 

described (322, 324, 325).  Our previous studies have shown that the slower-

migrating band on the Phos-tag gel represents the phosphorylated form of IRE1α 

and the ratio of phosphorylated- to total- IRE1α correlates with the amount of ER 

stress (324, 325). Strikingly, mutation of IRE1α at either S769F or P830L, but not 

R635W nor L474R, completely abolished IRE1α mobility shift upon thapsigargin 

(Tg) treatment, indicating defective IRE1α kinase activity (lanes 7-14 of Figure 

2.2A and lanes 1-8 of Figure 2.2B).  Of note, we were not able to detect N244S 

and Q780stop mutant proteins due to technical reasons.
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A
Tissue Histology/type cDNA annotation AA annotation Location

Renal Clear cell carcinoma A731G N244S ER lumen

Lung Adenocarcinoma T1421G L474R Cytosol (linker)

Stomach Adenocarcinoma C1903T R635W Cytosol (Kinase)

Brain Glioblastoma C2306T S769F Cytosol (Kinase)

Brain Glioblastoma C2338T Q780* (STOP) Cytosol (Kinase)

Ovary Serous carcinoma C2489T P830L Cytosol (Kinase)

571 832

835 963

TM
444 464

1
*

N244S
*

L474R
*

R635W
*

S769F

*

Q780*

*

P830L

RNase

Kinase

LinkerLuminal

human IRE1α
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Figure 2.1 The P830L mutation identified in human cancers abolished IRE1α 

phosphorylation and activation.   

The list of mutations identified in human cancers (upper) and their distribution in 

human IRE1α (lower). Mutations that abolish IRE1α activity are highlighted in 

red. Luminal, luminal domain; TM, transmembrane; Kinase, kinase domain and 

RNase, RNase domain of human IRE1α.  (B) Location of four mutations in the 

kinase domain of yeast IRE1α protein.  Kinase domain in orange, RNase domain 

in green and activation loop in blue shown. The amino acid position in yeast, 

based on homology, indicated.  Position in human IRE1α protein indicated in 

parenthesis.

B

P978 (P830)

S915 
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 It is worth pointing out that it is necessary to use phos-tag gels to analyze 

phosphorylation of IRE1α mutants, as p-IRE1α did not separate well in regular 

gels under the same running conditions (Figure 2.2B-C). The kinase-dead K599A 

mutant (326) exhibited no IRE1α phosphorylation while dimerization-defective 

D123P mutant (317) showed a 70% reduction (lanes 7-8 and 10-11, Figure 2.2C). 

As additional controls, mutations at S548D and T973D had no effect on IRE1α 

phosphorylation upon ER stress (lanes 1-6, Figure 2.2A). Supporting the notion 

that the slower migrating band is due to phosphorylation, phosphatase treatment 

abolished the band shift in WT IRE1α (lane 3, Figure 2.2C); by contrast, there 

was no change in the electrophoretic mobility of P830L IRE1α following 

phosphatase treatment (lanes 4-6, Figure 2.2C). Quantifications of the percent of 

p-IRE1α in total IRE1α from at least two independent experiments are shown in 

Figure 2.2D and E. 

 

 To further examine the effect on RNase activity, we assessed the 

production of XBP1s protein by Western blot.  K599A completely and D123P 

partially abolished XBP1s production (lanes 5-8, Figure 2.2F lower) while other 

mutations such as K748A and T973D (lanes 9-12, Figure 2.2F lower) had no 

effect. XBP1s protein was barely detectable in IRE1α-/- MEFs expressing P830L 

or S769F (lanes 9-12, Figure 2.2F upper), but was less affected in cells expressing 

L474R or R635W (lanes 5-8, Figure 2.2F upper). This was also confirmed by RT-

PCR analysis of Xbp1 mRNA splicing (lanes 5-6, Figure S2.1).  Taken together, 

among the 4 cancer-associated mutants, our data showed that P830L and S769F 
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mutations had detrimental effect on IRE1α kinase and RNase functions whereas 

L474R and R635W had no major impact. 
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Figure 2.2 The P830L mutation abolished IRE1α phosphorylation and activation. 

(A-C) Western blot analysis of IRE1α in cell lysates of IRE1α-/- MEFs stably 

expressing wildtype or mutant IRE1α. Cells were treated with 60nM Tg for 3 hr. 

In C, lysates were treated with λPPase. Phos-tag gels indicated with a straight line 

on the left-hand side. HSP90, a loading control. Note the difference of IRE1α 

pattern in Phos-tag gels vs. regular SDS-PAGE gels. (D-E) Quantitation of p-

IRE1α in Phos-tag gels shown in panels A-C. Results expressed as mean ± SEM. 

All the P values <0.05 using unpaired Student’s t-test comparing the P830L to 

other mutants or wildtype (except S769F and K599A). For simplicity, the P 

values are not indicated in the figures. (F) Western blot analysis of XBP1s protein 

in IRE1α-/- MEFs stably expressing wildtype or mutant IRE1α. Cells were treated 

with 60 nM Tg for 3 hr. *, a non-specific band. Data is representative of at least 

two repeats with two independent stable cell lines for each mutant. 
  



 

 

 

 

 

 

65 

P830 is located in a linker region bridging two domains of IRE1 protein.  

We then analyzed potential effect of the two loss-of-function mutants on IRE1α 

structure (Figure 2.3A). Based on the structure of human IRE1α (103), S769 is 

located in the kinase domain (Figure 2.3A). Replacement of the serine with a 

bulky phenylalanine residue causes sterical collisions with at least two 

neighboring residues Y765 and C794 (Figure 2.3B), which may affect the 

stability and activation of the kinase domain. While C794 is not conserved, both 

S769 and Y765 are highly evolutionally conserved (Figure 2.3D).   

 

 Interestingly, P830 is located at the junction between the kinase and 

RNase domains (Figure 2.3A). Further analysis revealed that P830 may form a 

highly hydrophobic patch with W833 and Y945 or with L941 on the other side 

(Figure 2.3C).  Based on this, mutation of P830 to L was not favored as the side 

chain of leucine (L) would contact the W833 and Y945 residues (Figure 2.3C), or 

L941 in the other direction (not shown), and hence, disrupt this structural element. 

All four residues involved in this structural motif (P830, W833, L941 and Y945) 

were highly conserved in both IRE1α and IRE1β proteins through evolution from 

yeast to humans (Figure 2.3E), suggesting that the P830-containing structural 

linker bridging the two domains of IRE1 may be critical for IRE1 activation in a 

highly conserved manner. We speculated that understanding the effect of P830L 

may provide some insight into the importance of the region linking the kinase and 

RNase domains of IRE1α, hereafter termed the “linker”. Therefore, in the 

remainder of this study, we focused on the P830 residue. 
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Figure 2.3 P830 is located in the highly conserved hydrophobic patch connecting 

two domains of human IRE1 proteins.  

(A) Ribbon diagram of the cytosolic domain of human IRE1α protein (PDB 

accession number 3P23) highlighting two cancer-relevant mutations, the S769F 

(in purple box) and P830L site  (in red box).  (B) A close view of the S769 site in 

wildtype (left) and the structural modeling of the S769F mutant (right). Residues 

(Y765 and C794) that in close contact with the modeled phenylalanine (F) are 

shown in sticks. (C) A close view of the P830 site in wildtype (left) and the 

structural modeling of the P830L mutant (right).  Residues (W833, Y945, and 

L941) that may be in collision with the mutant leucine (L) are shown in sticks. P, 

proline; W, tryptophan; Y, tyrosine; L, leucine; S, serine and C, cystein. (D-E) 

Amino acid sequence alignment showing the conservation of (B) S769, Y765 and 

C794 residues and (E) P830, W833 and Y945 and L941 residues in IRE1 

proteins. Number refers to residue positions in human IRE1α protein. H. Sapiens, 

human; P. troglodytes, chimpanzee; M. mulatta, macaque; E. caballus, horse; M. 

musculus, mouse; G. gallus, chick; O. latipes, fish; D. melanogaster, fly; C. 

elegans, worm; S. cerevisiae, yeast. 
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The structural element consisting of P830-W833-Y945 is critical for 

IRE1α function.  We next attempted to delineate the effect of this hydrophobic 

patch consisting of P830, W833 and Y945 or L941 on IRE1α activation by 

mutagenesis. Interestingly, W833A caused a similar dramatic defect on IRE1α 

phosphorylation as P830L in response to ER stress (lanes 7-8 Figure 2.4A), and to 

a lesser extent for Y945A (lanes 11-12 Figure 2.4A), but not L941A (lanes 9-10, 

Figure 2.4A).  To exclude the possibility that the P830L effect was caused by 

random mutations generated at other sites during mutagenesis, we mutated P830L 

back to P (P830L→P).  Indeed, the P830L→P mutation fully restored the WT 

phenotype (lanes 13-14, Figure 2.4B). Pointing to the importance of the P830 

position, mutation at the nearby P821L, also a highly conserved residue (Figure 

2.3E), had only a minor effect (~20%) on IRE1α phosphorylation (lanes 5-6, 

Figure 2.4B).  Moreover, mutation of P830 to alanine (P830A) caused a much 

milder defect in IRE1α phosphorylation relative to the P830L mutant, with ~70% 

of IRE1α being phosphorylated under ER stress (lanes 1-2, Figure 2.4B-C).  

 

      Next, we asked whether mutating Y945 or W833 to a smaller residue 

alanine could reverse the detrimental effect of P830L by accommodating P830L. 

However, the double mutants of P830L/Y945A or P830L/W833A exhibited the 

same phenotype as P830L with no IRE1α phosphorylation in response to ER 

stress (lanes 7-8 and 11-12, Figure 2.4B). Quantification of IRE1α activation in 

all mutants was shown in Figure 2.4C. Thus, these data suggest that the P830-

W833-Y945 residues, not P830-L941, form a structural linker bridging the two 

cytosolic effector domains of IRE1α.   
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 Next we checked the RNase activity of these mutants by assessing the 

protein levels of XBP1s using Western blot.  Indeed, XBP1s protein levels 

seemed to correlate with the extent of IRE1α phosphorylation: The P830L, 

W833A or Y945A mutations led to no XBP1s production in response to ER 

stress, and to a much lesser extent for L941A and P830A (Figure 2.4D). As a 

positive control, RNase-dead K907A mutant (327) with normal IRE1α 

phosphorylation (lanes 5-6, Figure 2.4A) was defective in XBP1s production in 

response to ER stress (Figure 2.4D). Taken together, our data showed that three 

residues P830, W833 and Y945 likely form a structural linker that is critical for 

IRE1α function. 
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Figure 2.4 The structural element consisting of P830-W833-Y945 is critical for 

IRE1α function.   

(A-B) Western blot analysis of IRE1α in cell lysates of IRE1α-/- MEFs stably 

expressing wildtype or mutant IRE1α. Cells were treated with 60nM Tg for 3 hr. 

(C) Quantitation of p-IRE1α in Phos-tag gels shown in panels A-B. Results 

expressed as mean ± SEM, an average of at least two independent experiments. 

All the P values <0.05 using unpaired Student’s t-test comparing the P830L to 

other mutants or wildtype (except W833A). For simplicity, the P values are not 

indicated in the figures. (D) Western blot of XBP1s protein in IRE1α-/- MEFs 

stably expressing wildtype or mutant IRE1α. Cells were treated with 60nM Tg for 

3 hr. Phos-tag gels indicated with a straight line on the left-hand side of the gel. *, 

a non-specific band.  HSP90, a loading control. Data is representative of at least 

two repeats for each mutant. 
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The P830-containing structural linker of IRE1α is important for its 

stability.  To further shed light on the defects caused by P830L, we examined the 

stability of IRE1α mutants under basal conditions. IRE1α-/- MEFs stably 

expressing various mutant proteins were treated with cycloheximide, an inhibitor 

of protein synthesis, for the indicated time periods followed by Western blot 

analysis of IRE1α protein levels. While K599A had a similar half-life as wild type 

protein (t1/2 = 12 h, Figure 2.5A-B), the P830L, W833A and Y945A mutations 

dramatically reduced the half-life of IRE1α to 6 hours or less (Figure 2.5D-F), 

pointing to the specificity of these three residues, but not L941A on IRE1α 

stability (Figure 2.5C). Taken together, these results suggested that P830L, 

W833A and Y945A mutations at the linker region had a significant impact on 

IRE1α protein stability, an effect distinct from the kinase-dead K599A mutation. 
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Figure 2.5 The P830-containing structural linker of IRE1α is important for its 

stability.  

Western blot analysis of IRE1α (upper) and quantitation of IRE1α half-life 

(lower) for IRE1α-/- MEFs stably expressing wildtype or mutant IRE1α. Cells 

were treated with cycloheximide (CHX) for the indicated time. IRE1α protein 

levels at various time points were normalized to the 0 time point of its own 

protein. Protein half-life refers to the time at which protein levels reach to 50% of 

that at 0 time point. Data is representative of at least two repeats for each mutant. 

HSP90, loading control. 
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The P830-containing structural linker of IRE1α is important for its 

oligomerization.  As mammalian IRE1α oligomerizes upon ER stress (105), we 

next tested the effect of P830L on its foci formation. To this end, we used an 

inducible system to detect IRE1α foci formation in T-REx293 cells (105) (Figure 

2.6A).  Using co-expression of ER-localized dsRed encoded in the pDsRed2-ER 

plasmid, we first confirmed that exogenous wild type and mutant IRE1α proteins 

were predominantly localized to the ER (Figure S2.2).  In line with a previous 

study (105), foci formation peaked in cells expressing WT-IRE1α protein upon 4 

h treatment of 300 nM TG (Figure 2.6B and not shown).  Interestingly, unlike 

wildtype IRE1α protein, P830L IRE1α protein failed to form foci upon ER stress 

(Figure 2.6C), so did the dimerization-defective D123P IRE1α (Figure 2.6D).  

Thus, these results suggested that the P830-containing structural linker of IRE1α 

affects its oligomerization in response to ER stress.  

 

 To test whether mutant IRE1 protein would have a dominant negative 

effect on endogenous IRE1α protein, we transfected mutant proteins into 

HEK293T cells and tested for ER stress response. Despite being 10-fold more 

than endogenous protein, exogenous mutant proteins failed to significantly reduce 

IRE1α activity as assessed by XBP1s protein levels (Figure 2.6E).  This result 

suggested that the P830L mutant does not act as dominant negative mutation, 

rather might just act a loss-of-function mutation.  
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Figure 2.6 The P830-containing structural linker of IRE1α is critical for its 

oligomerization in response to ER stress.  

(A) Western blot of IRE1α-GFP proteins in the T-REx293 system. Parental T-

Rex293 cells (-) or T-REx293 cells stably expressing different IRE1α proteins, 

either WT or D123P or P830L, were treated with 10 nM Dox for 24 hr followed 

by Western blot. (B-D) Confocal microscopic images of IRE1α foci in wildtype 

(B), P830L (C) and D123P (D)-expressing cells treated as in A with or without 

300 nM Tg for 4 hr. Images are representatives of over 100 cells from 3 

independent experiments. Scale bar, 5 µm.  (E) Dominant negative effect of 

P830L. Western blot analysis of XBP1s and IRE1α following overnight 

transfection of HEK293T cells with near 100% transfection efficiency.  Cells 

were treated with 300 nM Tg for 4 hr prior to harvest.  PARP and HSP90, loading 

controls for XBP1s and IRE1α, respectively. Representative of two independent 

experiments.  Numbers shown below the XBP1s blot refer the relative abundance 

of XBP1s protein (after normalized with PARP). Arrow next to the IRE1α blot 

indicates the endogenous IRE1α band.  The ratio of endogenous to exogenous 

IRE1α protein levels is 1:10. 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 
Figure S2.1 Xbp1 mRNA splicing.  

RT-PCR analysis of Xbp1 mRNA splicing in IRE1α-/- MEF stably expressing 

various IRE1α mutants.  Cells were treated with 60 nM Tg for 3 hr.  L32, a 

loading control.  Xbp1u and s are shown.  Representative of two experiments. 
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Figure S2.2 Confocal analysis of intracellular localization of IRE1α WT and 

mutants.  

Cells expressing wildtype (top), P830L (middle) and D123P (bottom) IRE1α-

3F6HGFP were co-transfected with ER-dsRed plasmid to mark the ER. No 

observable difference was found for WT or mutant IRE1α location in the ER. 

Images are representatives of over 100 cells from 2 independent experiments.  

Scale bar, 10 µm. 
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2.5 DISCUSSION  

 This is the first study addressing how cancer-associated IRE1α mutations 

affect its structure and function. Here we have identified an important structural 

element that is critical for the function of IRE1α. This structural linker consisted 

of P830, W833 and Y945 bridges the kinase and RNase domains of IRE1α 

protein. Disturbance of this linker structure abolishes the activities of both the 

kinase and RNase domains of IRE1α and prevents foci formation in response to 

ER stress. This mechanism is likely to be evolutionarily conserved as these three 

residues are highly conserved from yeast to humans. Although it remains unclear 

how P830L affect tumor development in vivo (This mutation is probably not 

tumorigenesis because it led to a defect in XBP1s pro-survival signaling.  

However, it is not the focus of this study), this study demonstrates that the P830L 

mutation is deleterious for IRE1α stability and function. 

 

 How the folding and activation of two cytosolic domains of IRE1α are 

coupled in vivo remains unclear. Currently, one prevailing model is that the 

activation of the RNase domain of IRE1α depends on the trans-

autophosphorylation of its adjacent kinase domain following dimerization or 

oligomerization (131, 318).  Efforts to further understand this phosphorylation-

mediated regulatory event is hampered by the fact that specific phosphorylated 

residues on mammalian IRE1α protein remain unknown. In yeast, an estimated 17 

Ser/Thr residues located at both the activation loop and the adjacent αEF-αF loop 

are believed to be phosphorylated under ER stress (104). While we predict that 
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trans-autophosphorylation of mammalian IRE1α protein is not likely to be as 

extensive as in yeast, as indicated in the Phos-tag-based Western blots (322, 324, 

325), the identities and the importance of these possible phosphorylation sites on 

the activation of mammalian IRE1α protein remains an interesting question.  

 

 Our data suggest that the “P830-W833-Y945” residues in the IRE1α 

hydrophobic core are important for its folding and activation. This linker region 

affects not only the activities of the kinase and RNase domains, but also its half-

life and the ER-stress-induced oligomerization. The effect of P830-related 

mutations on IRE1α function is indeed more severe than the kinase-dead K599A 

and dimerization-defective D123P mutants, suggesting that P830-related 

mutations may interfere with the folding process of IRE1α protein.  How we can 

translate this finding to therapeutic purposes require further studies.  
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2.7 APPENDIX 

2.7.1 The P830-containing structural linker of IRE1α is important for cell 

growth.  

 

Introduction 

IRE1α and its down stream XBP1s were previously reported to govern cell 

fate in a cell type specific and condition specific way (74). It was demonstrated 

that XBP1 expression was induced in cancers including multiple myeloma, acute 

myeloid leukemia, and breast cancer (273, 328-332). The role of XBP1 as a 

survival factor in cancer cell types makes it a potential drug target. The initial 

identification of P830L in ovary serous carcinoma (321) raised the crucial 

scientific question: What is the biological consequence of this mutation in cancer 

formation? Soft Agar Assay for colony formation is an anchorage independent 

growth assay, normally considered as the most stringent assay for detecting 

malignancy. Therefore, WT and P830L IRE1α mutant, as well as P830A, K599A, 

L941A and L945A IRE1α mutant MEFs were used to perform soft agar assay.  

 

Experimental Procedures 

Soft Agar Assay 

0.5% base agar (Sigma Agarose, Type VII (A4018-5G)) with 1X Dulbecco’s 

Modified Eagle Medium (DMEM) and 10% fetal bovine serum (FBS) were 

prepared and 1ml was used in a well of a 6-well plate. The plates were stored at 

room temperature for more than 30 minutes to solidify. Top agar 0.3% with 1X 
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DMEM and 10% FBS were than prepared and preheated to 37 °C and mixed with 

5000 cells to cover the top of the base agar. The cells were incubated under 

normal conditions and 1.5ml of regular media were added at the top biweekly. 

The cells were incubated to grow for 3 weeks. Then the number and size of the 

colonies were observed by light microscope (ZEISS SN 3832000516). Whole 

plate pictures were scanned by a printer. 

 

Results 

Compared with IRE1α -/- MEFs transfected with wild type IRE1α, P830L 

IRE1α mutant MEF cells showed a much slower rate of growth. The P830 mutant 

group showed much fewer and smaller colonies; whereas a less severe growth 

retardation was observed in K599A, P830A, L931A and Y945A IRE1α mutant 

MEFs (Figure. Appendix 1.1). This result was consistent with the XBP1s mRNA 

splicing and protein level and indicated that XBP1 plays a pro-survival role in 

MEFs and that the P830 containing linker region is critical for the effective 

cleavage event of XBP1. 
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Figure. Appendix.1.1 P830-L941-Y945 linker mutation causes cell growth 

retardation. 

IRE1α -/- MEFs expressing empty vector, WT, P830L, P830A, K599A, 

L941A, and L945A mutant IRE1α were cultured to perform soft agar assay. (A) 

Pictures showed the formation of colonies in the wells of 6-well plates after three 

weeks. (B) Pictures showed the representative morphology and relative size of 

colonies under 10X5 ZEISS microscopy magnification. (C) The chart showed the 

quantification of average colony numbers in each well (n=3).  
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Discussions 

It remains puzzling why IRE1α mutants in cancer were proved to be anti-

malignancy. One possible explanation is that these mutations were not a cause of 

malignant transformation. Instead, the lack of a DNA error correction system (e.g. 

P53) led to a random mutation which coincidentally depleted the IRE1α normal 

function. Another potential explanation was the presence of a negative feedback 

due to increased pro-survival signaling in the cancer cells. However, the 

transcriptional regulation of IRE1α appeared stable; therefore, this possibility was 

less likely. Nevertheless, the biological effect of P830L IRE1α mutant in MEFs 

colony formation assay further proved the role of P830-containing linker in 

activating IRE1α-XBP1 signaling. Currently the idea of developing a drug based 

on this residue seems promising. 

 

In the past, IRE1α has been shown to be a cell fate determinant. The 

downstream of IRE1α, XBP1s, could therefore directly lead to tumorigenesis. 

Relevant evidence indicates that increased XBP1s levels in B cells could drive 

multiple myeloma pathogenesis (269). Evidence also indicates that XBP1s could 

promote cell proliferation by regulating cyclin A1 expression in prostate cancer 

cell lines (267). However, IRE1α can also promote apoptosis by mediating JNK 

pathway (274) or by mediating prolonged RIDD (333). Activation of JNK can 

induce caspase-12 signaling pathway and apoptosis (274). Although the 

mechanisms remain unclear, prolonged RIDD activation also increases apoptosis 

(319). Therefore, it is important for us to understand that the biological effect of 

IRE1α P830L mutant is depleted cell growth signaling. This further proves that 



 

 

 

 

 

 

87 

the linker region containing P830 can serve as a drug target to suppress cell 

growth in cancers. 
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2.7.2 Analysis of IRE1α phosphorylation sites on the activation loop 

 

Introduction 

Controversy still surrounds the question: Is autophosphorylation of IRE1α 

required for its activation? On one side, abundant evidence shows that in yeast the 

activation of the RNase domain of IRE1α depends on the trans-

autophosphorylation of its adjacent kinase domain. Following a signal, trans-

autophosphorylation of the kinase domain makes the unfettered binding of 

nucleotide possible, which in turn, promotes dimerization or oligomerization to 

compose the ribonuclease activity (131, 318). On the other side, two papers 

suggest a dispensable role of phosphorylation of IRE1α in activation of its RNase 

domain (319, 320). They show that a L745G mutant IRE1α, which has a defect in 

kinase activity and phosphorylation, can constitutively activate all downstream 

functions in the presence of an ATP-competitive inhibitor 1NM-PP1 through 

conformational change in the kinase domain (319, 320).  

 

The effort to further understand this phosphorylation-mediated regulatory 

event on mammalian IRE1α protein is hampered by the fact that specific 

phosphorylated residues remain unknown. In yeast, an estimated 17 Ser/Thr 

residues located at both the activation loop and at the adjacent αEF-αF loop are 

believed to be phosphorylated under ER stress (104). While we predict that trans-

autophosphorylation of mammalian IRE1α protein is not likely to be as extensive 

as in yeast, as indicated in the Phos-tag-based Western blots (322, 324, 325), the 
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identities and the importance of these possible phosphorylation sites on the 

activation of mammalian IRE1α protein still pose interesting questions.  

 

 From all the phosphorylation sites in yeast, we selected evolutionarily 

more conserved Serine (S) sites on the human IRE1α activation loop as 

candidates, S724, S726 and S729. We mutated them either into smaller nonpolar 

amino acid Alanine (A) as a loss of phosphorylation mutation, or mutated them to 

the acidic polar residues Aspartic acid (D) or Glutamic acid (E) to determine if the 

mutations would enhance phosphorylation. The phosphorylation of IRE1α was 

then evaluated in both the basal and ER stress conditions by phos-tag gels. 

Downstream effectors XBP1 splicing and XBP1s protein levels were evaluated to 

understand their relevant RNase activity. 

  

Experimental Procedures 

As described in chapter 2.3, alignment structure pictures were produced by 

PyMOL. 

 

Results 

S724 and S726 are two phosphorylation residues of human IRE1α. 

Stable cell lines were produced by using IRE1α -/- MEFs cells expressing 

mutant human IRE1α plasmids following mutagenesis. By aligning seven species’ 

IRE1α activation loops, two Serine (S) residues were found to be the most 

conserved -- S724 and S726 (Figure. Appendix 2.1 A upper). Structural pictures 

also showed that human IRE1α S724 matched S841 in yeast, while S726 has a 



 

 

 

 

 

 

90 

different spacial position than S726 in yeast (Figure. Appendix 2.1 A lower). This 

indicates the phosphorylation status of mammalian IRE1α might be differently 

regulated than that in yeast. Very interestingly, we found that S724A and S726A 

mutant cell lines both showed an almost complete abolishion of IRE1α 

phosphorylation (Figure. Appendix 2.1 B) in the ER stress condition. The down 

stream effect of IRE1α activation such as XBP1 splicing and chaperone induction 

(Figure. Appendix 2.1 C), as well as the XBP1s protein level (Figure. Appendix 

2.1 B) were consistent with the phosphorylation level. Therefore, we concluded 

that for human IRE1α, phosphorylation is important for its kinase and RNase 

domain activation. S724 and S726 are two phosphorylation sites of human 

hIRE1α. 
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Figure. Appendix.2.1 S724 and S726 are two phosphorylation residues of human 

IRE1α. 

(A) Alignment of IRE1α activation loop. The lower part shows the alignment 

of the activation loop between yeast (orange) and human (blue) IRE1α in a 3D 

structure. (B) IRE1α -/- MEFs expressing WT, S724A and S726A IRE1α 

plasmids treated with or without Tg in a time course. Hsp90 is the loading control 

for cytosolic fraction and Lamin A/C is the loading control for nuclear fraction 

XBP1s. Phostag gels show the phosphorylated and non-phosphorylated IRE1α. 

(C) qPCR data showing the induction of UPR genes in three cell line groups in a 

Tg treatment time course. 
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When mutating the S724 and S726 to the acidic polar residues Aspartic 

acid (D) or Glutamic acid (E), S726D and S726E showed similar 100% 

phosphorylation under ER stress conditions, while at basal level, they do not 

exceed the phosphorylation level of WT (Figure. Appendix 2.2 B, data not 

shown). S726D IRE1α also can induce full activation of XBP1s as WT (Figure. 

Appendix 2.2 A). S724D was found to be similar to S726D in its downstream 

effect shown as full XBP1s expression (Figure. Appendix 2.2 A). However, 

S724D appeared not to be fully phosphorylated upon ER stress. The 

phosphorylation condition of S724D was difficult to interpret because the 

phosphorylation band seemed to migrate more slowly than the non-

phosphorylated band but faster than the fully phosphorylated bands of WT and 

S726D. It is not yet known whether there is a half-phosphorylated condition. 

(Figure. Appendix 2.2 B). This means that although S724 is a very important 

residue for IRE1α phosphorylation and its RNase function, under certain 

conditions such as S724D mutation, phosphorylation can still be bypassed to 

permit XBP1s full expression. Non-conserved nearby residue S710 showed no 

defect in phosphorylation under ER stress. The less conserved residue S729 

showed a half reduction in phosphorylation and XBP1s production compared to 

WT (Figure. Appendix 2.2 A,B). Kinase dead IRE1α mutant K599A (326) and 

luminal domain mutant D123P (182) were used as controls (Figure. Appendix 2.2 

C). PERK phosphorylation conditions were not affected by IRE1α mutants 

(Figure. Appendix 2.2 B).  
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Figure. Appendix.2.2 S726D IRE1α mutant shows full phosphorylation ability  

IRE1α -/- MEFs expressing mutant IRE1α plasmids, as indicated in the above 

figure, were treated with or without Tg. (A) (D) XBP1s protein level of IRE1α 

mutants were shown in western blots. (B) (C) IRE1α phosphorylation and PERK 

phosphorylation under the condition of various IRE1α mutants were shown in 

western blots. Hsp90 is the loading control for cytosolic fraction (IRE1α and 

PERK). Lamin A/C is the loading control for nuclear fraction. 
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Based on the previous discovery that S724, S726, and S729 to a lesser 

extent, are responsible for mammalian IRE1α phosphorylation, we next wanted to 

know what are the possible residues interacting with these serine residues. Thus, 

we aligned human and yeast IRE1α in a 3-D structure using the yeast 

oligomerization model (104). It was found that D575 in humans and K678 in 

yeast could be related to S724 and S841 in human and yeast IRE1α, respectively 

(Figure. Appendix 2.3). K574 might be related to S726 (Figure. Appendix 2.3).  
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Figure. Appendix.2.3 Alignment of yeast and human IRE1α two monomers in an 

oligomerization model. 

Alignment of yeast (orange and yellow) and human (blue and green) IRE1α in 

a 3D structure shows two monomers of IRE1α in the oligomerization model. In 

the corner, magnified activation loops are shown and possible interaction between 

residues is indicated. 
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Based on the phenotype of a full phosphorylation ability of S726D, we 

made a double mutant S726D/K574A. Indeed, this double mutant showed 

abolishion of phosphorylation under ER stress condition but K574 single mutant 

cells were not affected. This proved that K574 residue contributes to S726 

phosphoryation; therefore possible residue interactions are likely to exist (Figure. 

Appendix 2.4 A, B). Similarly D575K mutant cell lines showed normal 

phorsphorylation in ER stress. However, trying to rescue the phosphorylation 

defect in S724D mutant by changing the D575 to a positively charged residue 

lysine (K) failed to show any improvement (Figure. Appendix 2.4 C, D). 

Therefore, there is no conclusive association between D575 and S724. Further 

study is required to assess the exact conformational change based on S724D 

mutation. It is also puzzling that, even with a defect in IRE1α phosphorylation, 

double mutant S726D/K574A and S724D/D575K both lead to only a slight 

reduction in XBP1s expression (Figure. Appendix 2.2 D). S724D/S726D and 

S726D/S729D have reduced XBP1s; S724A/S726A and S726A/S729A have no 

XBP1s expression (Figure. Appendix 2.2 D). 
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Figure. Appendix.2.4 Possible interaction between S726 and K574 in hIRE1α 

(A) (C) IRE1α -/- MEFs expressing mutant IRE1α plasmids as indicated in the 

figure were treated with or without Tg. Hsp90 is the loading control for cytosolic 

fraction. Phos-tag gels show the phosphorylated and non-phosphorylated IRE1α. 

(B) (D) 3D structural alignment shows a special relationship between the residues 

indicated. 
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Discussion 

This appendix shows the importance of phosphorylation in human IRE1α 

activation. It has been proved that by mutating S724 or S726 to alanine causes a 

defect in IRE1α downstream functions including XBP1 splicing. However, it still 

cannot be concluded that phosphorylation of IRE1α is absolutely required for its 

RNase function. Because situations were observed, such as S724D and 

S726D/K574A mutants, which does not present a full phosphorylation phenotype, 

still possessing almost normal XBP1s protein levels. Yet, in most situations, 

IRE1α phosphorylation condition still correlates with the extent of XBP1 splicing. 

Therefore, the phos-tag gel measuring the percentage of IRE1α is still a valuable 

tool to understand the activation status of human IRE1α, especially under 

physiological conditions where the chances of having special kinds of genetic 

mutations and chemical compound activation are very rare. 

 

Previously there were controversial opinions about whether IRE1α activation 

is in the form of dimer or oligomers. One crystal structure of the kinase/RNase 

domain of Ire1 reveals a symmetric dimer with a back-to-back arrangement (318). 

This model dos not support autophosphorylation on the activation loop, because it 

positions the phosphorylation sites more than 40Å away (104). This study, 

showing the importance of phosphorylation on the activation loop, supports the 

oligomerization model. It was proposed that a rod-shaped assembly, with no 

known precedence among kinases, and kinase assembly trans-autophosphorylates 

subsequently order the RNase domain to create an interaction surface for mRNA 
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binding (104). It is possible that human IRE1α can be activated in the form of 

oligomers (334). 
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2.7.3 Summary of IRE1α mutants and corresponding XBP1s levels 

In order to identify the important residues responsible for IRE1α 

autophosphorylation upon activation and to identify the importance of 

phosphorylation for the RNase domain function, all possible residues in the kinase 

domain, activation loop and RNase domain were mutated. The following tables 

summarize the results of multiple western blot repeats of variable IRE1α mutant 

MEFs. P-IRE1α % is measured on phos-tag gels in an ER stress condition (Tg 

75nM for 3 hours). Raw data from each single repeat is shown in the table. XBP1 

mRNA splicing levels and protein levels are repeated once to twice each. Detailed 

methods are described in chapter 2.3. Representative figures of p-IRE1α, XBP1 

mRNA levels and XBP1 protein levels are shown in Appendix 2.7.2. 
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3.1 ABSTRACT 

Alterations in endoplasmic reticulum (ER) homeostasis or ER stress have 

been causally linked to inflammatory responses but the physiological evidence in 

vivo remains to be demonstrated. ER-associated degradation (ERAD) is 

responsible for the clearance of misfolded proteins in the ER, thus essential for 

the maintenance of ER homeostasis. Using macrophage-specific ERAD-deficient 

mice, our data challenges the causal link between ER stress and inflammation in a 

physiological setting. We show that Sel-1 homolog 1 (Sel1L), a key protein 

component of the Sel1L-Hrd1 ERAD complex, is required for the clearance of 

misfolded proteins and the maintenance of ER homeostasis in macrophages. 

Although Sel1L-deficient macrophages exhibit elevated protein levels of a subset 

of ER chaperones and dilated ER cisternae at the basal conditions with increased 

sensitivity to ER stress upon challenge, to our surprise, these changes are 

uncoupled from inflammatory responses against bacterial pathogens both in vitro 

and in vivo, as well as in obese adipose tissues, pointing to a dispensable role for 

ERAD in macrophage inflammation. Thus, we conclude that physiological mild 

ER stress may not play a causal role in inflammation in macrophages.  
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3.2 INTRODUCTION 

Macrophages play a key role in inflammatory responses, such as 

autoimmunity, pathogen infection and obesity and type-2 diabetes. Indeed, it has 

been widely accepted now that macrophage activation dictates the quality, 

duration, magnitude and specificity of most, if not all, inflammatory responses. 

This is associated with two major functions of macrophages: First, macrophages 

phagocytose non-self antigens and act as professional antigen-presenting cells 

(APCs) via major histocompatibility complex (MHC)-peptide complexes to 

activate T lymphocytes of the adaptive immune system. Unpaired MHC class I 

molecule is a known misfolded protein that is normally cleared. Second, activated 

macrophages secrete a large amount of cytokines such as tumor necrosis factor α 

(TNFα), interferon γ (IFNγ), interleukin (IL) -6 and IL-1β, all of which are key 

mediators of inflammatory responses (335). ER associated degradation (ERAD) 

recognizes ER misfolded or unfolded proteins in the ER and translocate proteins 

while ubiquitylating the substrates to be finally degraded in proteasome and 

ERAD is activated upon UPR (336).  As the biosynthesis, folding and maturation 

of MHC protein and most cytokines occur in the endoplasmic reticulum (ER), we 

hypothesized that ERAD plays a critical role in macrophage innate immunity 

functions.  

 

Indeed, ER stress response or unfolded protein response (UPR) has been 

implicated in macrophage function in inflammatory responses and metabolic 

diseases (235, 337). Upon lipopolysaccharide (LPS) stimulation, UPR may be 
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activated in Toll-like receptor (TLR)-dependent manner and the IRE1α-XBP1 

pathway of the UPR is required for the innate function (i.e. cytokine 

transcription/production) of macrophage (298). In X-box binding protein 

1(Xbp1)-deficient macrophages, cytokine mRNA levels were impaired (298). 

Recently, UPR activation has been linked to inflammation, although the 

underlying mechanism is less well defined. ER stress activation may lead to the 

activation of JNK and NF-κB (285, 288, 338), both of which are key mediators of 

inflammation. Moreover, ER stress or IRE1α activation was recently directly 

linked to inflammasome activation in β cells and macrophages (339, 340), which 

may contribute to the cell death that occurs with prolonged treatment of 

pharmacological ER stress inducers (341, 342). However, as most studies used 

high nonphysiological concentrations of ER stress inducers such as thapsigargin, 

tunicamycin and DTT, whether ER stress plays a role in inflammation in vivo 

under various physiological settings remains to be demonstrated.  

 

ER-associated degradation (ERAD) machinery recognizes, translocates and 

degrades misfolded proteins in the ER, acting as a component of the ER quality 

control system, and is critical for the maintenance of ER homeostasis (134). At 

least 10 different ubiquitin ligases have been implicated in ERAD in mammals 

(134, 343). Perturbations of ER homeostasis (caused by disturbance of ERAD, 

protein folding capacity, ER microenvironment etc) culminate in ER stress and 

activate the UPR (63, 344). Although the nature of substrate recognition and the 

physiological role of the complex in vivo largely remain unknown, recent studies 

using model antigens have shown that each ERAD system is responsible for a 
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subset of overlapping substrates. The physiological roles of ERAD in vivo and in 

macrophages have not been studied so far.  

 

The most well-characterized ERAD machinery is composed of Hrd1 E3 

ubiquitin ligase, and its complex with the Sel1L protein, an adaptor protein that 

regulates both stability and substrate specificity of Hrd1 (135, 345, 346). Sel1L 

and its function are highly conserved from yeast to humans (347). Mammalian 

Sel1L/yeast Hrd3 encodes an ER-resident single transmembrane protein with a 

large luminal domain and a short cytosolic tail (348, 349). Both mammalian 

Sel1L and yeast Hrd3 form a complex with E3 ubiquitin ligase Hrd1 and are 

responsible for the degradation of a subset of misfolded proteins in the ER (135, 

166, 196, 350). While Hrd3-deficient yeast and Sel1-deficient worms are viable 

(135, 178, 346, 351), Sel1L-deficient mice are embryonic lethal (352). Variants in 

the Sel1L gene have been identified in Japanese patients with autoimmune thyroid 

diseases (353), and Sel1L has been identified as a candidate gene for canines and 

humans with progressive early-onset cerebellar ataxia (354) and Alzheimer’s 

disease (355). Nonetheless, the physiological significance of the Sel1L-Hrd1 

complex in vivo remains unknown.  

 

One significant difference between ERAD-deficient animal models and UPR-

deficient mice (such as IRE1α-, PERK-, Xbp1-null and etc) is that ERAD-

deficient cells are capable of mounting strong UPR in the face of accumulation of 

misfolded proteins in the ER, whereas UPR-deficient cells or mice are not.  Upon 

accumulation of misfolded proteins (due to ERAD failure), the activation of UPR 
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branches may collectively alleviate misfolded protein load by elevation of ER 

chaperones (such as GRP78, calnexin and ERp57 and etc), expansion of ER 

membranes and attenuation of protein synthesis; if stress persists, cells may 

undergo apoptosis. 

 

To study the role of Sel1L in ERAD and inflammation, we generated myeloid 

cell-specific Sel1L-deficient mice (MKO). We initially hypothesized that Sel1L 

deficiency in macrophages may lead to activation of the UPR, which may directly 

induce inflammatory responses. However, here we report a surprising finding 

that, although ERAD is essential for ER homeostasis, MKO macrophages have 

normal cytokine secretion, antigen presentation, pathogen defense, and other 

innate immunity functions both in vitro and in vivo. Thus, our findings suggest a 

dispensable role of HRD1/Sel1L ERAD complex in macrophages inflammatory 

responses. 
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3.3 EXPERIMENTAL PROCEDURES 

 

Mice   The Sel1Lflox/+ ES cells on the C57BL/6N background were purchased 

from the KOMP Repository Project (ID CSD44577, UC Davis, 

http://www.knockoutmouse.org/martsearch/project/44577). Exon 6 of Sel1L gene 

was flanked with two loxP sites (floxed). The lacZ-neo cassette was deleted by 

crossing the animals onto the βActin-FLPe deleter mice (356). The Sel1Lflox/flox 

animals were then crossed with myeloid-specific Lyz2-Cre mice (B6.129P2-

Lyz2tm1(cre)Ifo/J, JAX 004781), which have been backcrossed onto the 

C57BL/6J background for more than 5 generations prior to arrival at our facility. 

The last stage of cross generated MKO and the control cohort Sel1Lflox/flox 

littermates without Cre (termed “WT” hereafter) at 1:1 ratio.  HFD contained 60% 

fat, 20% carbohydrate and 20% protein (Research Diet D12492) while ND 

consisted of 13% fat, 67% carbohydrate and 20% protein (Teklad 2914). All 

animal procedures have been approved by the Cornell IACUC (#2007-0051).  

 

Preparation of Primary Macrophages    Peritoneal macrophages were 

obtained 4 days after intraperitoneal injection of 2 ml aged 4% brewed 

thioglycollate broth (Inc and catalog #). Mice were euthanized by CO2 and the 

abdomens were soaked with 70% alcohol. Retract the abdominal skin manually to 

expose the intact peritoneal wall, and use 6-ml syringe with room temperature 

PBS to inject along the left side of peritoneal wall, and fluids were aspirated and 

removed to regular polypropylene centrifuge tubes. Centrifuge the peritoneal 

exudate cells (PEC) at ~1,000 rpm for 10 min. 200 µl lysis buffer for red blood 

cells was added to the cell suspension after centrifuge, and the reaction was 

stopped by the addition of 15 ml PBS. Peritoneal macrophages were counted 

using hemocytometer. 3X106 cells were plated in each well of a 6-well plate for 
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western blot or other biochemistry analysis.  For bone marrow derived 

macrophages (BMDM), femur bones were collected and flushed with a 27 1/2-

gauge needle. After centrifugation, cells were seeded onto 10-cm Petri dishes at 

approximately 1X107 cells/plate in DMEM (Sigma) containing 10% FBS and 

20% L929 cell conditioned media as a source of macrophage colony-stimulating 

factor (M-CSF) for 5-8 days. Flow cytometric analysis shows that nearly 95% 

cells were BMDM.  

 

Drug Treatment and Cell Culture   Thapsigargin (Tg, EMD Calbiochem) 

was dissolved 0.6 mM in DMSO. Lipopolysaccharides (LPS, Sigma L4130) was 

dissolved in culture media at 1 µg/ml.  Aliquots were stored at -200C.  MG-132 

(FISHER NC9937881) was dissolved in DMSO at 10mM and stored at -800C. In 

most experiments, cells were treated with various drugs over a time course as 

indicated in the figures and figure legends.  

 

Transmission Electron Microscopy (TEM)    Peritoneal macrophages were 

seeded on 6 well plates as described above with 15X106 cells each well and fixed 

with 5% glutaraldehyde, 4% paraformaldehyde in 0.1M phosphate buffer for 2 h 

and post fix in 1% osmium tetroxide in 0.1 M phosphate buffer. The further 

processing and imaging acquisition were performed on a fee-for-service basis by 

the Electron Microscopy & Histology Core Facility at Weill Cornell Medical 

College.  

 

Western Blot and Image Quantitation    Preparation of cell lysates, PPase 

treatment and Phos-tag and regular Western blot were performed as previously 

described (322, 324). IRE1α phosphorylation allows directly visualization of ER 

stress response and accurate assessment of stress in the ER (322, 324, 325). 

Antibodies used in this study: HSP90 (rabbit, 1:5,000), GRP78 (goat, 1:1000), 
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Caspase 3 (rabbit, 1:2,000) from Santa Cruz; IRE1α (rabbit, 1:1,000), PERK 

(rabbit, 1:1,000), eIF2α p-Ser51 (rabbit, 1:2000), eIF2α (rabbit, 1:2000), LC3B 

(rabbit, 1:1000), IκBα (rabbit, 1:2000), ACC (rabbit, 1:2000) from Cell Signaling; 

Sel1L (rabbit, 1:1,000) from Abcam; HRD1 (rabbit, 1:8000) from Novus 

Biologicals; PDI (rabbit, 1:10,000), ERp57 (rabbit, 1:2,000), Calnexin (rabbit, 

1:10,000) from Assay Design; Hsp70 (mouse 1:1,000) from LifeSpan 

BioSciences; Derlin1 (rabbit, 1:5,000) and Derlin2 (rabbit, 1:5,000), gifts from H. 

Ploegh (MIT); iRhom2 (rabbit, 1:5,000), a gift from M. Freeman (Cambridge, 

UK). Of note, to ensure sufficient signal for cleaved caspase 3, the membrane for 

caspase 3 was cut around the 25 kDa line and then probed separately with caspase 

3 antibody. Band density was quantitated using the Image Lab software on the 

ChemiDOC XRS+ system (Bio-Rad) and presented as mean ± SEM from several 

independent experiments or as representative data from at least two independent 

experiments.    

 

RNA Extraction and qPCR    RNA from cells and tissues were extracted 

using Trizol and Qiagen RNA miniprep kit and performed as previously described 

(322). qPCR primer sequences have been previous reported (322, 324). 

 

Cell Survival Assay    3X106 peritoneal macrophages in wells of 6 well plate 

were treated with Tg 300nM for 6.5 hour. Scrape the cells up, and count cell 

number to plate 1X106 in a 10cm dish and change fresh media every 3 days. 12 

days later, the cells were briefly washed in PBS and fixed in freshly prepared 

3.7% formaldehyde in PBS for 15 min followed by 30 min incubation in 0.05% 

crystal violet in distilled water (filtered before use) with gentle rocking at room 

temperature. Cells were washed 3 times for 5 min each with ddH2O, 

permeabilized with methanol for 15 min and sampled aliquots were read at OD 

540 nm with Bio-Tek Synergy 2 plate reader (Bio-Tek Inc.). 
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Brefeldin-A BODIPY, Cell Surface Marker Analysis and Flow Cytometry 

Cells were incubated at 370C for 30 - 45 min with 0.4 µg/ml Brefeldin A-

BODIPY (Invitrogen) in culture media followed by flow cytometric analysis 

using a BD FACSCalibur flow cytometer. For surface marker analysis, 

fluorochrome- or biotin- conjugated antibodies against CD4 (GK1.5), CD8 

(YTS169), F4/80 (BM8), CD11b (M1/70), Gr1 (RB6-8C5), B220 (RA3-6B2), 

CD45 (30-F11), CD69 (H1.2F3), and isotype control antibodies were purchased 

from BioLegend, UCSF Flow Core Facility or BD Biosciences. Following 

incubation with anti-CD16/CD32 antibody to block Fc receptors, 1×106 cells were 

incubated with 20 µl of antibodies diluted at optimal concentrations for 20 min at 

40C. Cells were washed three times with PBS and then resuspended in 200 µl PBS 

for analysis. Data was analyzed using the CellQuest and FlowJo software.  

 

T cell and NKT Cell Activation Assay BMDM from both WT and MKO 

were cultured in 96 well (4x105 BMDM/well), as well as 4x105 CD8+ T cells, 

isolated from OT1 mouse splenocytes. To each well, 5uM OVA257-264 

(SIINFEKL, Biomatik) or CON-DMEM (not shown) were added and incubated in 

37°C incubator for 48 hours. The supernatant was collected at the end of 

incubation and analyzed for IL-2 analysis using ELISA. (C) NKT cells 

(1*10^4/well) and 1*10^5 peritoneal macrophages were co-cultured in a 96 well 

for 12 hours and culture medium were then spin and collected for analyzing IL-2 

by ELISA. 

 

LPS Challenge   8-w-old female mice were injected i.p. with LPS at 40mg/kg 

body weight and observed for survival every 4 h. In some experiments, 200 µl 

serum was collected at 0, 3 and 6 h time points post injection for cytokine 

analysis. 
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Listeria monocytogenes Infection    Mice were anesthetized with isofluorane 

and infected with 104 Listeria monocytogenes strain 10403S by retro-orbital 

injection.  Mice were sacrificed at 3 days post-infection and blood, liver and 

spleen were collected.  Tissues were homogenized in 0.05% NP-40 solution and 

serial dilutions were plated on LB-agar to determine bacterial loads.  Cytokines 

levels of TNFα and IFNγ in serum were quantified using eBioscience Ready-Set-

Go ELISA kits. 

 

Cytokine Analysis   TNF-α, IL-6 and IL-1β ELISA kits were purchased from 

eBioscience or Biolegends.  All ELISAs were performed per supplier’s protocols. 

 

Inflammasome Activation    Inflammasomes activation, in vivo and in vitro, 

was performed as previously described (357). Briefly, 8w-old mice were injected 

i.p. with LPS at 2 ng/g BW (Sigma L4130) 1.5 h prior to the ATP challenge i.p. 

(50mM ATP, adjusted to pH 7 with NaOH, Sigma) at 10µl per gram of body 

weight. 1 h later, mice were euthanized. Blood and peritoneal lavage fluid were 

collected to measure cytokines and Gr-1+ CD11b+ neutrophils. The IL-1β level 

was measured by ELISA and the neutrophil levels were measured by the flow 

cytometer. In vitro, peritoneal macrophages were treated with 0.1 µg/ml LPS 

(Sigma L4391) for 5 h followed by addition of 5 mM ATP (Sigma) for 30 min 

followed by protein extraction. 

 

H&E Staining    Tissues were collected at what condition and fixed in 10% 

formaldehyde and sent to Cornell Histology Core Facility for sectioning and HE 

staining on a fee-for-service basis. Pictures of HE staining sections were taken by 

a Leica microscope (Leica Microsystems, Buffalo Grove, IL). 
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Glucose/Insulin Tolerance Test (GTT/ITT) Male mice on HFD for 20 

weeks (from the age of 8 weeks) were subjected to the glucose tolerance test 

(GTT). Mice were fasted for 18 hours before the test, and injected i.p. glucose 

(Sigma) 1 g/kg body weight. During ITT, mice were fasted… Blood glucose was 

monitored using One-Touch Ultra Glucometer at 0, 30, 60, 90 and 120min post-

injection.  

 

Statistical Analysis      Results are expressed as mean ± SEM unless indicated 

otherwise. Comparisons between groups were made by unpaired two-tailed 

Student’s t-test, where p < 0.05 was considered as statistically significant. All 

experiments were repeated at least two to three times and representative data are 

shown. 
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3.4 RESULTS 

Generation of myeloid-cell specific Sel1L-deficient (MKO) mice.   In 

macrophages, Sel1L is a transmembrane glycoprotein residing in the endoplasmic 

reticulum (346, 352) as confirmed by its complete sensitivity to endoH (Figure 

3.1A). It is expressed in embryonic and cancer cells (348, 358-360), as well as 

organs with a high protein secretion function (Figure S3.1A). During the process 

of cell differentiation, from bone marrow progenitor cells into mature 

macrophages with the stimulation of CSFs (colony-stimulating factor produced by 

L929 cell lines), Sel1L protein level increased (Figure S3.1B), indicating its 

important role in BMDM. ER stress, but not LPS, induced Sel1L mRNA levels by 

50% (Figure 3.1B). To study the role of Sel1L/HRD1 ERAD complex in 

macrophages inflammatory responses, we generated myeloid-cell specific Sel1L 

KO mice, hereafter termed MKO mice. In the Sel1Lflox/+ ES cells, exon 6 of Sel1L 

gene was flanked with two loxP sites (Sel1Lflox/flox) (Figure 3.1C).  The 

Sel1Lflox/flox animals were crossed with myeloid-specific Lyz2-Cre mice. The last 

stage of crosses generated MKO and the control cohort Sel1Lflox/flox littermates 

without Cre (termed WT hereafter) at 1:1 ratio as expected (Figure 3.1F). 

Western blot analysis revealed significant reduction of Sel1L protein in bone 

marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages 

of MKO mice compared to WT mice, but not in other tissues (e.g. liver, spleen, 

and pancreas, Figure 3.1D). Of note, it is not clear what the bands underneath 

Sel1L bands are. They could be non-specific bands bound by Sel1L antibodies, or 

could be unknown alternatively spliced isoforms of Sel1L. However, the size of 
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these lower bands does not match any Sel1L isoforms that are currently known 

(348). MKO mice on low-fat diet (LFD) appeared normal and exhibited no body 

weight differences up to 16 weeks of age (Figure 3.1E). The amount of myeloid-

derived macrophages and neutrophils in spleens of naïve or thioglycollate-

challenged mice were comparable between MKO and WT mice (Figure 3.1G, 

Figure S3.2), suggesting that Sel1L deficiency does not affect myeloid cell 

differentiation and proliferation. Finally, total peritoneal macrophages cell 

numbers were the same between the two cohorts (Figure 3.1H). This indicates 

that Sel1L deficiency does not affect myeloid cell activation and infiltration. 
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Figure 3.1 Characterization of MKO mice.  

(A) Sel1L protein is sensitive to endoH in peritoneal macrophages. (B) Sel1L 

mRNA level induced by Thapsigargin (Tg) and lipopolysaccharide (LPS) 

measured by qPCR. (C) Schematic gene structure of mouse Sel1L manipulated in 

transgenic mice. Exon 6 was flanked with two floxP sites. Exons are shown in 

purple and introns in black line. (D) Sel1L expression level in different tissues in 

WT and Sel1L KO mice. (E) Growth curve (body weight) of WT and MKO from 

week 3 to 9 after birth. (WT n=10, MKO n=6) (F) Observed ratio of birth between 

WT and MKO mice was consistent with expected ratio. (G) Naïve or 

Thioglycollate-injected mice spleen were dissected and performed FACS. CD11b, 

Gr1 and F4/80 antibodies were used to gate and quantify the percentage of 

macrophages. (H) Cell count of collected peritoneal macrophages from each WT 

(n=5) and MKO (n=5) mouse. 
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ERAD deficiency and alterations in ER homeostasis in Sel1L deficient 

macrophages. (Thereafter Sel1L deficient macrophages are referred to as MKO 

macrophages, and Sel1L myeloid-cell specific knock-out mice are referred to as 

MKO mice). In line with the observations in yeast (135) and in mammalian cell 

lines (345, 350), but in contrast to one mammalian cell study (361), loss of Sel1L 

significantly reduced the level of Hrd1 by 50-60% in macrophages (Figure 3.2A-

B), highlighting the importance of Sel1L in Hrd1 stability and in the formation of 

the HRD1 ERAD complex. Sel1L deficiency had few effects on other ERAD 

components. Derlin 1 and 2 protein levels were only slightly affected (by 20-

30%) in Sel1L-deficient macrophages (Figure 3.2B).  

 

 To directly visualize ER homeostasis, we next performed transmission 

electron microscopy (TEM) to visualize organelle morphology in cells. 

Dramatically, ER cisternae in the MKO cells were dilated (arrows in Figure 

3.2D). The normal flat cisternae of ER are expanded into a ballooned structure in 

Sel1L KO peritoneal macrophages. In the ER of MKO macrophages, we also 

noticed significantly higher luminal density, possibly representing an 

accumulation of misfolded proteins (Figure 3.2D). There was no difference in 

cell size and intracellular granule particles between the two cell groups (Figure 

3.2D). In addition, Sel1L KO macrophages showed normal numbers of 

mitochondria with no differences in average size and morphology (Figure S3.3), 

suggesting that mitochondrial reactive oxygen species (ROS) were unlikely to 

cause an increase of proinflammatory cytokine production (362, 363) in this case. 

We also measured ER expansion in MKO peritoneal macrophages by the flow 
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cytometer using ER/Gogi mass specific Brefeldin A-Bodipy staining (Figure 

3.2C). 

 

We then determined the consequence of Sel1L-Hrd1 ERAD deficiency on ER 

homeostasis. To this end, we either mock-treated or treated primary macrophages 

(bone marrow-derived (BMDM) and thioglycollate-elicited peritoneal 

macrophages) obtained from WT and MKO mice with thapsigargin (Tg) or 

lipopolysaccharides (LPS) to induce ER stress and inflammation, respectively. 

Interestingly, while PDI and calnexin protein levels were not affected (Figure 

3.2F), a subset of ER chaperones including ERP57 and GRP78 were upregulated 

by 2-4 fold in MKO macrophages (Figure 3.2E), indicating a chaperone specific 

effect in resetting ER homeostasis. Similar results were confirmed by qPCR 

measuring GRP78, Grp58 and Calnexin mRNA levels (Figure S3.4). Under the 

condition treated, cytosolic chaperones such as HSP70 were not affected by Sel1L 

knock-out (Figure 3.2F), pointing to a specific effect of Sel1L on resetting ER 

homeostasis. 
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Figure 3.2 ERAD deficiency and alterations in ER homeostasis in MKO 

macrophages.  

(A) Thioglycollate induced peritoneal macrophages and bone marrow derived 

macrophages (BMDM) were cultured and treated by Thapsigargin (Tg, 300nM) 

or lipopolysaccharides (LPS, 1000ng/ml) for 4 hours or as indicated time course. 

Whole cell lysates were extracted and performed SDS-page western blots.  Data 

were representative of 2 independent experiments. Both peritoneal macrophages 

and BMDM showed decreased HRD1 protein levels in MKO. Quantification of 

untreated state was shown in numbers below. (B) WT and MKO peritoneal 

macrophages and BMDM were treated by LPS in 2, 4, 6, 8 hours and western 

blots showed MKO Derlin 1 and Derlin 2 level remained comparable to WT. (C) 

FACS data of WT and MKO peritoneal macrophages stained with Brefeldin A-

Bodipy showed increased ER size in MKO (n=4). Quantification of mean 

fluorescence index (MFI) was listed below. (D) Representative TEM images of 

peritoneal macrophages.  Scale bar was shown in the picture. Arrows indicated 

ER, N indicated nucleus. (E) (F) WT and MKO peritoneal macrophages and 

BMDM were treated in the same condition as (A). Western blots showed up-

regulation of ER chaperones ERP57 and GRP78, but not PDI ad Calnexin. 

Quantification of untreated state data shown in numbers below. HSP90, HSP70 

were loading controls. 
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Increased sensitivity to ER stress induced cell death in MKO 

macrophages.  We next directly assess the activation status of UPR pathways, 

mostly the IRE1α and PERK pathways as we previously described (324). A 

dramatic increase of IRE1α protein was observed in both MKO peritoneal 

macrophages and bone marrow derived macrophages (BMDM) by 10-30 fold 

(Figure 3.3A-B), similar to the Xbp1- or Derlin 2- deficient cells (79, 364). 

However, the absolute amount of phosphorylated IRE1α in MKO macrophages 

under basal conditions was comparable to that in WT, but the amount of p-IRE1α 

was highly increased in MKO cells compared to WT cells with Tg treatment 

(Figure 3.3A-C). However, the percent of total IRE1α that was phosphorylated 

was reduced in MKO cells at both basal and Tg-treated conditions, reflecting up-

regulation of IRE1α in MKO cells (Figure 3.3A-C). Xbp1 mRNA splicing was 

significantly elevated in MKO macrophages compared to WT macrophages under 

basal conditions (Figure 3.3D), while upon ER stress challenge, Xbp1 mRNA 

splicing was comparable between the two cell groups (Figure 3.3D). 

Consistently, MKO macrophages showed an increase in Xbp1s, ATF4 and CHOP 

transcription factors (Figure 3.3E). Similar to the IRE1α pathway, total PERK 

protein increased over 4-6 fold in MKO macrophages (Figure 3.3F). Slight 

mobility-shift of PERK protein was noted in MKO cells at both basal and Tg-

treated conditions (Figure 3.3F). Phosphorylation of e-IF2α, a downstream of the 

PERK pathway, was not elevated in Sel1L KO macrophages (Figure 3.3G). 

While the underlying mechanism for IRE1α and PERK accumulation in MKO 

macrophages remains unclear, our data demonstrated that IRE1α and PERK 

signaling pathways were modestly elevated in MKO macrophages compared to 
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the WT cohorts. To be noted, the accumulation of IRE1α and PERK protein in 

MKO were not only due to the ERAD defect, as blocking cytosolic proteasome by 

MG-132 only induced a mild increase of IRE1α and PERK (Figure S3.5). 

Moreover, the half-life of IRE1α, PERK, GRP78 and HRD1 seem to be shorter in 

Sel1L KO macrophages compared to WT (Figure S3.6). Since the mRNA level 

of IRE1α and PERK is not induced in MKO (Figure S3.4), we assume IRE1α and 

PERK protein degradation might be dependent on Sel1L/HRD1. At the 

transcription level, some chaperones such as GRP78 was elevated, while others 

were unaffected at the basal conditions (Figure S3.4). Overall, WT and MKO 

cells exhibited similar ER stress-induced transcription profiles (Figure S3.4). 
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Figure 3.3 Sel1L/HRD1 ERAD deficiency caused a mild UPR activation in MKO 

macrophages.  

Thioglycollate induced peritoneal macrophages and bone marrow derived 

macrophages (BMDM) were cultured and treated by Thapsigargin (Tg, 300nM) 

or lipopolysaccharides (LPS, 1000ng/ml) for 4 hours or as indicated time course. 

Whole cell lysates were extracted and performed SDS-page western blots.  Data 

were representative of 2 independent experiments. Western blot showed 

peritoneal macrophages (A) and BMDM (B) p-IRE1α in phos-tag gels, total 

IRE1α and loading control hsp90 on regular SDS page gel. Cell lysates were 

treated with/without λPPase. The absolute amount of p-IRE1α and p-IRE1α/total 

IRE1α were shown in (C). N/A, non-treated control. (D) XBP1 splicing by RT 

PCR under basal condition, Tg and LPS treatment. Quantification of XBP1s/total 

XBP1 was shown below. (E) Nuclear extraction protein lysates run on western 

blots showed transcription factors XBP1s, ATF4 and CHOP. (F) PERK protein 

levels in both peritoneal macrophages and BMDM from WT and MKO mice 

under the listed treatment conditions. (G) p- or total eIF2α protein levels in both 

peritoneal macrophages and BMDM from WT and MKO mice under listed 

treatment conditions. Quantification of p/total eIF2α in BMDM was shown on the 

right side. 
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As ER stress is linked to cell death (63), we next asked whether MKO cells 

are predisposed to cell death. Surprisingly, at the basal condition, MKO cells 

exhibited similar levels of caspase-3 cleavage (Figure 3.4A,C) and Annexin V 

levels (Figure 3.4F). However, MKO cells exhibited increased caspase-3 

cleavage and Annexin V levels under ER stress condition (Figure 3.4A-B, D, F) 

but not with LPS stimulation (Figure 3.4C, E, F). 
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Figure 3.4 Increased sensitivity to ER stress in MKO macrophages. 

 (A) Peritoneal macrophages were treated by Thapsigargin (Tg, 300nM) for 

the indicated time course. Western blot for pro- and cleaved form of caspase-3 

were shown in (A). Quantification of cleaved caspase-3 was shown in numbers 

below. (B) For the same conditions as (A), western blot for RIP3 and RIP1. (C) 

Peritoneal macrophages were treated by LPS (1000ng/ml) for a time course as 

listed. Western blots showed pro- and cleaved form of caspase-3, RIP3, RIP1, 

LC3-B and quantification of caspase-3 was shown in (E).  (F) FACS data showed 

the percentage of Annexin-V positive peritoneal macrophages in the conditions 

listed. 
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Normal immune functions of MKO macrophages in vitro. As macrophages 

play a key role in both innate and acquired immunity, we next asked how Sel1L 

deficiency affects immune functions of macrophages such as antigen presenting 

and cytokine secretion upon stimulation.  Macrophages are professional antigen 

presenting cells to process peptide and lipid antigens and present them in complex 

with MHC class I/II and CD1d proteins to activate CD8+, CD4+ T cells and 

natural killer T (NKT) cells, respectively. Assembly and maturation of MHC class 

I/II and CD1d proteins occurs in the ER, as well as the loading of endogenous 

peptides onto the MHC class I molecules. Thus, we anticipated that Sel1L 

deficiency might affect antigen presentation function of macrophages via the 

regulation of the assembly, maturation and presentation of MHC-peptides or 

CD1d-lipid complexes. 

 

To our surprise, protein levels of MHC class I and II molecules at the 

cellular surface were comparable between MKO and WT macrophages (Figure 

3.5A).  In a co-culture system with both macrophages and CD8+ T cells, 

supplemented with corresponding ovalbumin 257-264 (SIINFEKL) peptides, 

there was no difference in the activation of CD8+ T cells, because IL-2 released 

from the CD8+ T cells showed no differences (Figure 3.5B). Similarly, when 

pulsed with lipid agonist α-galactoceramides (αGalCer, binds to CD1d), MKO 
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cells had no defect in activating NKT cell line DN32 (Figure 3.5C). Thus, these 

data showed that despite the dilation of the ER, the assembly and maturation of 

functional surface MHC-peptide complex and antigen presentation by MHC class 

I and CD1d molecules were not compromised by Sel1L deficiency. 

 

We next examined the immunological response to LPS. Sel1L protein 

levels were not changed upon the stimulation of various Toll-Like Receptors 

(TLR) agonists (Figure S3.7A). In vitro, LPS increased inflammation in both 

MKO and WT macrophages at a comparable level and dynamic pattern, as shown 

by IΚappaB (Figure 3.5D-E) and p-JNK (Figure S3.7B). Commassie blue 

staining of secreted proteins in the culture medium of WT and MKO macrophages 

revealed comparable levels of overall protein secretion in response to LPS and Tg 

(Figure 3.5F). Furthermore, Tumor Necrosis Factor alpha (TNFα) and 

Interleukin-6 (IL-6) secreted by MKO macrophages in response to LPS were 

similar to those of WT macrophages (Figure 3.5G). At the molecular level, an 

ER-transmembrane protein iRhome2, a key regulator of TNFα activation (365, 

366), was not altered in MKO macrophages (Figure 3.5H). Thus, these data 

strongly support that Sel1L deficiency does not affect LPS-induced acute 

macrophage activation and inflammatory cytokine secretion.  
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Figure 3.5 Normal innate function of MKO macrophages in vitro.  

(A) Peritoneal macrophages were collected fresh from both WT and MKO 

mice and performed FACS to detect MHC-I and II expression levels. (B) BMDM 

from both WT and MKO were cultured in 96 well (4x105 BMDM/well), together 

with 4x105 CD8+ T cells that were isolated from OT1 mouse spleens. To each 

well, 5µM OVA257-264 (SIINFEKL, Biomatik) or control-DMSO (data not 

shown) were added and incubated in 37°C incubator for 48 hours. The culture 

medium was collected at the end of incubation and ELISA was performed to 

measure IL-2. (C) NKT cells (1x104/well) and 1x105 peritoneal macrophages 

were co-cultured in a 96 well for 12 hours and the culture medium was pulsed 

with lipid agonist α-galactoceramides. Then the medium was collected for 

analyzing IL-2 by ELISA. (D) Western blot showed IκB levels of peritoneal 

macrophages treated with LPS by indicated time points. Hsp90, a loading control. 

Quantification of IκB/Hsp90 was shown in (E). (F) BMDM were cultured on 10 

cm plates (18x106/dish) and treated with Tg or LPS in DMEM without FBS for 4 

hours. The culture medium was then collected and concentrated from 6ml to 

100µl and run a SDS-page gel, followed by Commassie Blue Staining. (G) 

Stimulated by LPS in a time course, macrophage cytokine TNFa and IL-6 levels 

in culture medium were analyzed by ELISA. (H) Protein levels of iRhom2 in 

WT/MKO BMDM in basal level, Tg and LPS treatments. ACC, a loading control. 
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Sel1L is not required for inflammatory responses against pathogens in 

vivo. Next we examined the whole body responses to LPS endotoxin shock and 

the listeria pathogen infection, the outcome of which were known to be 

determined by the function of macrophages (365, 366).  First, WT and MKO mice 

were challenged with LPS. MKO mice exhibited no difference from WT 

littermates in survival rate with 100% death within 24 hours (Figure 3.6A). 

Serum cytokine levels (TNFα, IL-6 and IL-1β) were dramatically induced within 

hours post injection, which were not different between WT and MKO mice 

(Figure 3.6B). Second, we challenged mice with L. monocytogenes, an 

intracellular anaerobe causing listeriosis (367). There were no differences in 

bacterial load in the liver and spleen (Figure 3.6C).  Moreover, serum levels of 

IFNγ and TNFα were also comparable (Figure 3.6D). Taken together, our data 

demonstrated that macrophage innate immunity functions against pathogens in 

vivo were not perturbed by Sel1L deficiency and alterations in ER homeostasis. 

 

In addition, inflammasomes have been shown to be activated upon both 

bacterial and viral infections, and inflammasomes activation was known to be 

dependent on monocytes and macrophages (368-373). Here, we also tested in 

vivo inflammasome activation by an LPS and Adenosine Triphosphate (ATP) 

two-step signaling model. Macrophages and dendritic cells need a TLR-ligand 
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activation to induce pro-IL-1β transcription and a second signal ATP to induce 

caspase-1 cleavage that leads to IL-1β maturation and secretion (357, 374). We 

were surprised to find no severe activation of inflammasomes in MKO mice in 

vivo (Figure 3.6E). Although there was an increase of TNFα both in the serum 

and lavage fluid, IL1β levels, as well as the number of total cells, neutrophils, 

macrophages, B cells, and T cells were all the same between MKO and WT 

groups. In addition, the cellular surface and intracellular ATP receptor P2X7 

levels remained similar between WT and MKO cells (Figure S3.8), consistent 

with the results that showed similar levels of pro-inflammatory cytokines and 

MHC class I proteins (374-376). These results thus prove there was no defect or 

enhancement of inflammasomes activation in Sel1L MKO mice; indicating Sel1L 

in macrophages is dispensable for the maintenance of normal inflammasomes 

function in vivo. 
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Figure 3.6 Sel1L is not required for inflammatory responses against pathogens in 

vivo. 

(A) Survival curve of MKO and WT mice that were challenged by 40mg/kg 

LPS in an endotoxin shock model. (B) Serum levels of TNFa, IL-6 and IL-1b at 

the indicated time points from mice challenged with LPS. (C) Tissue bacterial 

burdens from both WT and MKO mice at the third day post Listeria. 

monocytogenes infection. (D) Cytokine levels of IFNγ and TNFα in serum 3d 

post-infection as analyzed by ELISA. (E) 8w-old mice were injected (i.p.) with 

LPS, and 1.5 h later injected with ATP, then after 1 hour, the blood and peritoneal 

lavage fluid was collected. ELISA was performed to measure cytokines IL-1β and 

TNFα. Total cell number, Gr-1+ CD11b+ neutrophils, F4/80+ macrophages, B220+ 

B cells, and CD4+ or CD8+ T cells numbers were all measured by the flow 

cytometer. 
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Sel1L in macrophages is not required for chronic inflammatory responses 

in obesity. ER stress in adipose tissue and the liver has been causally linked to 

obesity-induced type-2 diabetes (219, 377). Indeed, chemical chaperones that may 

help protein folding have been shown to be effective in treating type-2 diabetic 

mouse models (377). In obesity, macrophage infiltration into white adipose tissue 

(WAT) may play a significant role in the development of inflammatory tone in 

the adipose tissue and hence insulin resistance (378-380). Based on these studies, 

we postulated that Sel1L deficiency in macrophages might influence adipose 

inflammation in obese animals.  

 

To this end, mice were placed on a 60% high fat diet (HFD), in which 

60% calories were derived from fat for up to 20 weeks. There was no difference 

in body and liver/adipose weight between MKO and WT mice upon 20-week 

HFD feeding (Figure 3.7A-C). Histological assessment of WAT revealed 

comparable levels of immune cell infiltration (Figure 3.7D), which was further 

confirmed by Q-PCR and Western blot analyses of macrophage markers and 

inflammatory genes in WAT (Figure 3.7E-F). No dramatic difference in 

morphology was observed in the liver as assessed by H&E staining (Figure 3.7D). 

Serum cytokine levels of IL-6 and TNFα were comparable (Figure 3.7G), 

indicative of comparable systemic inflammatory responses. Finally, glucose and 
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insulin tolerance as measured by glucose tolerance test (GTT) and insulin 

tolerance test (ITT) were similar between the two cohorts (Figure 3.7H-I). Taken 

together, our data supported that macrophage Sel1L is dispensable for adipose 

inflammation in obesity. 
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Figure 3.7 Sel1L in macrophages is not required for chronic inflammatory 

responses in obesity.  

WT and MKO mice (n=6 each) were set on HFD from week 6 continuously 

till week 20. (A) Body weight (B) Percentage of WAT weight and (C) Percentage 

of liver weight of WT or MKO mice. (D) HE staining of WAT and liver tissue 

sections of MKO or WT mice fed on HFD. (E) Western blots of Arginase 1 (Arg 

1), I-kappa-B (IκB), phosphorylated JNK (p-JNK), total JNK and IRE1α in WAT 

after 20w HFD. Quantification of proteins as normalized to hsp90 was shown at 

the right side. (F) Q-PCR showed M1 M2 gene markers in WAT tissue in MKO 

and WT mice fed on HFD. (G) Serum TNFα and IL-6 levels were measured by 

ELISA. (H) Serum glucose level and insulin level after 18 hours fasting. (I) GTT 

and ITT in MKO or WT mice fed on HFD. Values represent mean ± S.E. *, p < 

0.05, and ***, p < 0.005. 
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SUPPLEMENTAL FIGURES 

 

 
 

Figure S3.1 Distribution of Sel1L protein level in MKO mouse model.  

(A) Sel1L protein levels in different adult mouse tissues. (B) Collected bone 

marrow cells from WT and MKO mice were cultured and stimulated by 

macrophage colony-stimulating factor (M-CSF) by a time course. Sel1L protein 

levels were shown in the western blot and the quantification was shown below. 

Hsp90, a loading control. 
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Figure S3.2 Normal spleen T cell and B cell population in naïve WT and MKO 

mice.  

Naïve (A) or Thioglycollate-injected mice (B) spleens were dissected and 

analyzed by FACS. CD4 and CD8 antibodies were used to gate and quantify the 

percentage of T cells; B220 and CD69 were used to gate and quantify the 

percentage of B cells; CD11b and F4/80 antibodies were used to gate and quantify 

the percentage of macrophages. CD11b and Gr1 were used to gate and quantify 

the percentage of myeloid cell lines. (N=7 each and 2 repeats for CD4+, CD8+, 

B220+ FACS; N=4 each for F4/80+, Gr1+ FACS) 
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Figure S3.3 Normal Mitochondria number and morphology in MKO peritoneal 

macrophages.  

Representative transmission electron microscopy (TEM) images of peritoneal 

macrophages are shown here. The scale bars were shown in the picture, with 

arrows indicating mitochondria and N indicating nucleus. Quantifications were 

shown on the right side. 
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Figure S3.4 UPR genes in MKO peritoneal macrophages.  

Peritoneal macrophages were cultured and treated in the conditions as listed 

above. Q-PCR was performed to show relative UPR gene expression levels in 

both the WT and MKO peritoneal macrophages. 
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Figure S3.5 Accumulation of IRE1α and PERK by blocking cytosolic 

proteasomes. 

Peritoneal macrophages were collected and cultured overnight, then treated 

with MG-132 (1mM) for the indicated time course. Western blots showed the 

protein levels of IRE1α and PERK. Hsp90 was a loading control. Quantifications 

were shown below. 
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Figure S3.6 The half-life of UPR and ERAD component proteins in MKO 

macrophages.  

Peritoneal macrophages were collected and cultured overnight, then treated 

with cycloheximide (CHX) (100µg/ml) for indicated time points. Western blots 

showed the protein levels of UPR and ERAD components. Hsp90 was a loading 

control. Quantifications of half-lives were shown below. 
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Figure S3.7 MKO peritoneal macrophage inflammatory response model in vitro. 

(A) Sel1L protein levels under the stimulation of various TLR agonists were 

indicated in the western blots. (B) Peritoneal macrophages were treated with LPS 

(1000ng/ml) by the indicated time points. P-JNKs were shown in the western blot. 

Hsp90 was a loading control. Quantification of p-JNK normalized to hsp90 was 

shown below. 
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Figure S3.8 P2X7 levels in MKO peritoneal macrophages.  

Peritoneal macrophages were treated with 0.1 µg/ml LPS for 5 h followed by 

addition of 5 mM ATP for 30 min. Intracellular and cellular surface P2X7 levels 

with or without the treatment were measured by the flow cytometer. 
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3.5 DISCUSSION 

 The link between ER homeostasis, UPR and inflammation is an emerging 

paradigm for the inflammatory responses in many disease settings. The prevailing 

view that the ERAD functions as a critical regulator of cellular function is based 

largely on the premise that ERAD deficiency causes an accumulation of 

misfolded proteins, perturbs ER homeostasis and stimulates ER stress response. 

However, the physiological significance of ERAD pathways and the necessity of 

a particular ERAD pathway in the normal cellular function of a specific cell type 

remain largely unknown.  

 

A recent study using liver-specific gp78 (a membrane-anchored ubiquitin 

ligase and main component of gp78 ERAD complex) knock-out mice showed that 

gp78 mediated the degradation of HMGCR via Insig proteins and ER stress is not 

activated based on chaperone GRP78 protein levels (381). By contrast, our 

present data in macrophages demonstrate that Sel1L deficiency significantly alters 

ER homeostasis with elevated protein levels of IRE1α and a subset of chaperones. 

Nonetheless, we believe that the Sel1L-deficient macrophages have adapted to the 

loss of the SelL-Hrd1 ERAD function through the function of UPR, thus 

rendering cells with very modest ER stress as judged by direct sensor 

phosphorylation (IRE1α and PERK) and Xbp1 mRNA splicing (Figure 3.3). 

Indeed, compared to WT cells, MKO macrophages have significantly increased 

ER volume with dilated ER cisternae while cell apoptosis is normal under basal 

culture conditions. This suggests alterations of ER homeostasis and successful 
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cellular adaptation. The notion of cellular adaptation is further supported by both 

in vitro and in vivo studies of macrophage functions: innate responses to LPS 

shock, pathogen infection (cytokine release and survival), inflammasome 

activation and inflammation related to obesity were completely normal. 

Furthermore, using the phos-tag approach, we showed that although total IRE1α 

protein is dramatically increased, IRE1α in MKO macrophages are only slightly 

hyperphosphorylated. Consistently, Xbp1 mRNA splicing is only slightly 

upregulated in MKO macrophages. These observations were supported by recent 

in vitro studies where no-to-low UPR activation was noted in Sel1L-knockdown 

HeLa cells (186, 382). Collectively, these and our data suggest cellular adaptation 

to Sel1L and ERAD deficiency.  

 

Our data provided direct and strong evidence that Sel1L plays a critical role in 

ERAD function, as indicated by previous elegant biochemical studies (166, 196, 

345, 350). However, whether Sel1L function in vivo is exclusively mediated 

through the Hrd1 ERAD complex remains unknown. Earlier in vitro studies have 

shown that in the absence of Sel1L, Hrd1-mediated degradation of model 

substrate antigens such as T-cell receptor (TCR), mutant transthyretin (TTRD18G) 

and null Hong Kong variant of α1-antitrypsin (A1ATNHK) is attenuated. 

Interestingly, a recent study showed that the Hrd1 substrate glutamate receptor 

subunit (GluR1) may be Sel1L-independent (345), suggesting that Sel1L may not 

be involved in the degradation of all Hrd1 substrates. On the other hand, Sel1L 

may have Hrd1-independent functions as it has been reported that not all Sel1L is 

associated with Hrd1 (135, 383, 384). Nonetheless, proteomic analyses from two 
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laboratories in HEK293T and HeLa cells have identified a number of Sel1L-

interacting proteins, most of which are involved in the ERAD function (166, 345, 

350). This list includes Hrd1 and p97, key components of ERAD; and OS-9 and 

XTP-3B, two lectins that help define substrate specificity for the ERAD complex. 

More studies are required to determine whether other aspects of macrophage 

function, such as iron metabolism, are impaired in MKO mice and whether Sel1L 

has additional ERAD-independent functions. The identification of bona fide 

Sel1L-Hrd1 substrates in macrophages will help address these questions.   

 

Our data showed that both IRE1α and PERK protein levels are dramatically 

elevated in Sel1L-deficient macrophages, although IRE1α phosphorylation and 

RNase activity are not.  The increase of IRE1α protein has also been observed, 

albeit to a much lesser extent, in Derlin 2- and XBP1- deficient cells (222, 364). 

Whether IRE1α and PERK are direct substrates of the Sel1L-Hrd1 ERAD 

complex remains to be demonstrated. Moreover, unlike that in Sel1L-deficient 

macrophages, IRE1α in XBP1-deficient hepatocytes is hyperphosphorylated with 

elevated IRE1α RNase activity (222). The authors proposed that this might be due 

to the negative feedback regulatory mechanism of IRE1α by XBP1s. Thus, the 

difference in IRE1α activity between Sel1L- and XBP1-deficient cells may be due 

to the different levels of XBP1s proteins.  In addition, unlike our MKO mice, 

mice with macrophage-specific deletion in Xbp1 gene are defective in 

inflammatory responses against LPS challenges and bacterial infections (298). 

Mechanistically, Martinon et al. (2010) showed that the TLR signaling synergizes 

with the IRE1α-XBP1 pathway, in part through XBP1s-mediated transcriptional 



 

 

 

 

 

 

159 

regulation of various inflammatory cytokines.  Thus, the Sel1L MKO mouse 

model is not equivalent to the UPR sensor- or effector- null mouse models, as in 

MKO mice, the three UPR branches are intact thus allowing them to respond 

efficiently to the disturbance of ER homeostasis. 

 

Why MKO macrophages and mice showed no defects in immunity functions 

could also be explained by multiple compensatory mechanisms: First, increases in 

the levels of chaperones and ER volume via the UPR pathway could explain this 

phenomenon. Second, the function of Sel1L/HRD1 ERAD complex could also be 

compensated for by other ERAD complexes (385). And third, increased 

autophagy functions or other proteasome pathways could compensate for the 

defect of ERAD function. Another possibility is the existence of macrophage 

specific Sel1L isoforms. Currently, there are five predicted isoforms of Sel1L 

based on computational predictions and experimental confirmations: 

Sel1LA/B/C/D/E (348). These isoforms are the result of alternative splicing. 

Although none of the predicted sizes of known Sel1L isoforms match the lower 

bands found on the Sel1L western blot, there is still a possibility that macrophage-

specific Sel1L variants may exist. These isoforms may not be completely knocked 

out by the Flox-Cre system. It could be an isoform with a random start codon after 

the exon 6, or it could be an isoform that skips the exon 6. Thus, more research 

needs to be performed to identify the mechanisms for these unexpected results, 

which show that Sel1L is dispensable for macrophages immunity functions. 
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 Sel1L is ubiquitously expressed in tissues and most abundantly in 

secretory organs such as the pancreas. Although the Sel-1 null worm and Hrd3 

deficient yeast are viable, whole body Sel1L knock out mice are embryonic lethal 

(352). The embryos did not survive embryonic day e14.5, indicating a critical 

developmental stage that requires the Sel1L function. Whether this is related to its 

ERAD function or other functions such as the Notch signaling pathway remains 

unclear. Interestingly, in addition to two isoforms of Sel1L, there are two 

homologs of Sel1L in mice and humans: Sel1L2 and Sel1L3 

(http://genome.ucsc.edu). The functions of these two homologs are completely 

unknown. As Sel1L2 shares more than a 50 percent identity with Sel1L and is 

predicted to be a transmembrane protein, it may be able to compensate for Sel1L 

ERAD function in the absence of Sel1L. Further characterization of tissue-

specific functions of Sel1L and its isoforms may help identify the importance of 

Sel1L in various cell types in vivo. 

 

We have concluded that although Sel1L deficiency disrupts a key ERAD 

function, it does not result in a sustained UPR. This is probably due to the 

compensatory function of other quality-control systems that allow adaptation to 

Sel1L knock out. In other words, Sel1L-deficient cells have re-set their ER 

homeostasis, also known as “proteostasis” (386, 387). Whether this is true in cell 

types other than macrophages or tissues remains to be seen.  It is also interesting 

to note the similarities between our macrophage-specific Sel1L-deficient mice 

and mice with Derlin 2 deficiency, specifically in hepatocytes and B cells where 

the increased protein levels of several chaperones and IRE1α were noted (364).  
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Chapter 4 SUMMARY AND FUTURE DIRECTIONS 

It has been concluded that the unfolded protein response plays an important 

role in maintaining cell ER protein homeostasis. IRE1α, PERK and ATF6, the 

three major UPR pathways, respond to ER stress by up-regulating protein folding 

capacity, global translation attenuation and enhancing ER protein degradation. 

The activation of the UPR pathways is tightly regulated under various 

physiological and pathological conditions in a both tissue specific and temporally 

specific manner, depending on the kind of stimulation received. The UPR plays 

an essential role, not only in normal developmental process, but also in metabolic 

diseases such as obesity and diabetes, cardiovascular diseases, cancer, 

neurodegenerative diseases and immune diseases. Therefore, it is desired, yet 

challenging, to dissect the UPR pathways under variable conditions. At the same 

time, the molecular mechanism of UPR regulation is also of importance for 

further research into new therapies that target UPR pathways. 

 

 This thesis focused on both the physiological functions of ERAD and on the 

molecular mechanisms of UPR activation. In Chapter 2, a highly conserved 

proline residue at IRE1α position 830 (P830) was determined to be critical for 

IRE1α structural integrity, as well as the activation of both kinase and RNase 

domains.  Structural analysis revealed that P830 may form a highly conserved 

structural linker with adjacent tryptophan and tyrosine residues at positions 833 

and 945 (W833 and Y945), thereby bridging the kinase and RNase domains. 

Mutation of P830 to leucine (P830L) completely abolished the kinase and RNase 
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activities, thus significantly decreasing protein stability and preventing 

oligomerization of IRE1α upon ER stress.  

 

Besides the individual amino acid residue functions and inner-molecule or 

inter-molecule interactions, there are several other aspects to be further studied for 

a better understanding of the molecular mechanism of IRE1α activation.  

 

1) IRE1 is known to interact with multiple cofactors to facilitate diversified 

downstream effects. For example IRE1-TRAF2-ASK1 complex activates the JNK 

pathway (131), and IRE1α-TXNIP activates the NLRP3 inflammasome and 

terminal UPR pathway to induce apoptosis (339). Certain cofactors are also 

required to resolve IRE1α activation; e.g. nonmuscle myosin heavy chain IIB is 

required for IRE1α aggregation and foci formation. It is likely there are more 

interactive proteins associated with IRE1α to regulate its activation function, 

particularly in a tissue-specific manner. Therefore, in future research, I propose to 

perform IRE1α Immunoprecipitation in different detergent buffers. Further, I will 

perform protein mass spectrometry to identify more interacting proteins with 

IRE1α and then use specific knock-out or overexpression model to study the 

relevant biological functions.  

 

2) Based on IRE1α kinase activation, RNase domain of IREα will undergo 

conformational change and cleave the mRNA XBP1u to form XBP1s. However, 

it is still not clear how XBP1u is recruited to IRE1α and whether there is cross-

talk between IRE1α sensor and XBP1 trafficking. On the other hand, it’s not clear 
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yet how the cleaved XBP1s regulate the negative feedback to suppress IRE1α. 

Understanding the cross-talk between IRE1α-XBP1 is essential for further 

manipulating of this pathway.  

 

3) Under ER stress conditions, IRE1α mRNA and total protein levels are not 

significantly increased (Fig S3.4). This indicates a fast reaction based on 

phosphorylation and conformational change. Chemical compounds are now being 

developed to modulate the signaling output from IRE1α. For yeast IRE1α, Papa 

first made a L745G mutant IRE1α which, while bypassing the kinase activity and 

phosphorylation, can constitutively activate all downstream functions at the 

presence of ATP-competitive inhibitor 1NM-PP1 through conformational change 

in the kinase domain (320). In addition, ADP, APY29, Cdk1/2 inhibitor III, and 

JAK inhibitor 1 all bound the IRE1α cytosolic domain and help conformational 

change in back-to-back dimers, which correlates with stimulation of IRE1 

nuclease activity (388). More importantly, these chemical compounds need to be 

studied in mammalian IRE1α, as mammalian IRE1α are able to form high order 

oligomers (334), indicating a slightly different activation mechanism. I would 

propose to work on the crystal structure of mammalian IRE1α structure, test the 

compatibility of chemical compounds and identify new ones for drug discovery.  

 

4) In Sel1L knock-out macrophages, we observed more than a ten-fold 

increase in IRE1α protein levels. It was indicated in the previous research that 

IRE1α is degraded through HRD1 (389). Data in Chapter 3 also suggested a 

possibility that Sel1L regulates the IRE1α degradation by HRD1. Therefore I 
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propose in future research to delineate the relative role of Sel1L, HRD1, Derlin1 

or Derlin2, and other interaction proteins facilitating IRE1α degradation. It is 

interesting that the increase in phosphorylated forms of IRE1α is much less than 

the total IRE1α protein accumulation. This indicates that the constitutive 

dephosphorylation process was increased. Whether Sel1L regulates the IRE1α 

dephosphorylation process is still unknown. 

 

In chapter 3, the physiological role of Sel1L in macrophage innate 

immunology was studied. Although ERAD plays an important role in maintaining 

ER protein homeostasis, and previous research has shown a close link between 

UPR activation and inflammatory response (reviewed in chapter 1.5.2), 

surprisingly our results showed that Sel1L is dispensable for macrophage immune 

functions including antigen presentation, cytokine secretion, pathogen defense 

and mild inflammatory response in metabolic diseases. This indicates 

compensatory mechanisms exist to cope with Sel1L defects. For future study, I 

propose to focus on possible compensatory mechanisms. This is important 

because it helps us understand the cross-talk between ERAD and UPR pathways, 

as well as the tissue specific function of ERAD, since other tissue Sel1L knock-

out models in our lab showed different defective phenotypes. 

 

The first hypothesis is that other mammalian ERAD E3 complex compensates 

for Sel1L knock-out and a decrease in HRD1 protein level. Secondly, it is 

possible that the overall process of protein transportation, from the ER to the 

Golgi and then to lysosome or extracellular, is enhanced. Third, it could be the 
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activation of autophagosomes. Fourth, other protein degradation pathways such as 

a proteasome system in the nuclear could compensate for protein degradation. 

And fifth, it could be that in macrophages there are no important physiological 

substrates that are strictly dependent on Sel1L-HRD1 degradation. Therefore, 

future study could utilize different antagonists to block individual compensatory 

pathways to identify the most important ones. For example 3-Methyladenine (3-

MA) could be used to block autophagy (390), MG-132 to block the proteasome, 

the downstream common pathway of ERAD, and Eeyarestatin to inhibit P97 

(391). Identification of compensatory pathways will reveal the overall protein 

degradation cross-talk in macrophages. 
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