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1 Introduction

Kleene algebras are algebraic structures with operators +, -, *, 0, and 1 satisfying certain
properties. They arise in a variety of settings: relational algebra, semantics and logics of
programs, automata theory, and the design and analysis of algorithms.

An important example of a Kleene algebra is Regy,, the family of regular sets over a
finite alphabet ¥. The equational theory of this structure has been called the algebra of
regular events. This theory was first studied by Kleene [8], who posed axiomatization as an
open problem. Salomaa [15] gave two complete axiomatizations of the algebra of regular
events in 1966, but these axiomatizations depend on rules of inference that are sound under
the standard interpretation in Regy but not sound in general under other interpretations.
Redko [14] proved in 1964 that no finite set of equational axioms could characterize the
algebra of regular events. The algebra of regular events and its axiomatization is the
subject of the extensive monograph of Conway [4]. In 1981, this author gave a sound and
complete infinitary equational deductive system for the algebra of regular events that is
sound over all *-continuous Kleene algebras [7]. A completeness theorem for relational
algebras with * was given by Ng and Tarski [11,12], but this relies on the presence of a
converse operator.

There is some disagreement regarding the proper definition of Kleene algebras [4,13,7].
In this paper we define a Kleene algebra to be any model of the equations and equational
implications listed in §2. This definition is consistent with the philosophy espoused by
Pratt [13] of adopting the most general finitary characterization that captures the desired
equational theory; that the desired theory is indeed captured is the main result of this
paper.

By general considerations of equational logic, the axioms of Kleene algebra listed in §2,
along with the usual axioms for equality, instantiation, and rules for the introduction and
elimination of implications, constitute a complete deductive system for the universal Horn
theory of Kleene algebras (the set of universally quantified equational implications

c1=BiANan=Pha > a=p (1)

true in all Kleene algebras) [17].

The main result of this paper is that this deductive system is complete for the algebra
of regular events. In other words, two regular expressions a, 8 over ¥ denote the same
regular set in Regy, if and only if the equation a = [ is alogical consequence of the axioms.
Equivalently, Regy is the free Kleene algebra on generators X. .

The proof of completeness is essentially an implementation of the followmg idea: we
show that the classical results of the theory of finite automata (equivalence with regular
expressions, determinization via the subset construction, elimination of e-transitions, and
state minimization) can be coded as theorems of Kleene algebra.



1.1 Examples of Kleene Algebras

Kleene algebras abound in computer science. We have already mentioned the regular sets
Regy.

In the area of relational algebra, the family of binary relations on a set with the oper-
ations of U for +, relational composition

R-S = {(z,2) |3y (z,y) € R, (y,2) € S}

for -, the empty relation for 0, the identity relation for 1, and reflexive transitive closure
for * constitute a Kleene algebra.

In semantics and logics of programs, Kleene algebras are used to model programs in
Dynamic Logic and Dynamic Algebra [7,13].

In the design and analysis of algorithms, n x n Boolean matrices and matrices over the
so-called min, + algebra are used to derive efficient algorithms for reachability and shortest
paths in directed graphs [2,10]. These Kleene algebras appear in [2,10] in the guise of
closed semirings, which are precisely the S-algebras of Conway [4]. Closed semirings and
S-algebras are defined in terms of an infinitary summation operator ¥, whose sole purpose,
it seems, is to define *.

1.2 Salomaa’s Axiomatizations F; and F,

Let Ry denote the interpretation of regular expressions over ¥ in the Kleene algebra Regy
in which

Rs(a) = {a}, a€X.

This is called the standard interpretation.

Salomaa [15] presented two axiomatizations F; and F; for the algebra of regular events
and proved their completeness. Aanderaa [1] independently presented a system similar
to Salomaa’s F;. These systems are equational except for one rule of inference in each
case that is sound under the standard interpretation Ry, but not sound in general for
interpretations over other Kleene algebras.

In Salomaa’s system F, let us say a regular expression possesses the empty word property
(EWP) if the regular set it denotes under Ry contains the null string . The EWP can be
characterized syntactically: a regular expression a has the EWP if either

o a=1 o

o a = fB* for some 3;

e « is a sum of regular expressions, at least one of which has the EWP; or



e a is a product of regular expressions, both of which have the EWP.

The system F;j contains the rule

Y+ aBf =, a doesnot have the EWP
a*y=p '

(2)

This rule is sound under the interpretation Ry.

The proviso “a does not have the EWP” in the premise of (2) is not preserved under
substititution, and consequently (2) is not valid under nonstandard interpretations. For
example, if a, 3, and v are the single letters a, b and c respectively, then (2) holds; but it
does not hold after the substitution

a — 1
b — 1

c — 0.

Another way to say this is that (2) is not to be interpreted as a universal Horn formula.

To describe Salomaa’s system F,, say a regular expression [ possesses the null set
property (NSP) if the regular set it denotes under Ry is §. As with the EWP, the NSP can
be characterized syntactically: a regular expression o has the NSP if either

o a=10;

e « is a sum of regular expressions, both of which have the NSP; or

e a is a product of regular expressions, at least one of which has the NSP.
Salomaa’s second axiomatization F, depends on the rule

By"6<a, 0<n<2ll4+2  + does not have the NSP
fy*é<a

(3)

where |a| is the length of the expression a. This is a truncated version of the infinitary
rule
pyté<a, n>0
By*é < a

used to prove that the :equational theories of *-continuous Kleene algebrastand the algebra
of regular events coincide [7]. Rule (3) is not valid in nonstandard interpretations: if
B =6 =1, v is the single letter ¢, and « is the single letter a, then |a| = 1 and (3) becomes

c"<a, 0<n<4
c*<a

3



which does not hold under the interpretation

a — (1+¢)*

cC — cC.

The axioms for Kleene algebra given in §2 below are all equations or equational im-
plications in which the symbols are regarded as universally quantified, so substitution is

allowed.



2 Axioms for Kleene Algebra
A Kleene algebra is an algebraic structure

K = (K, +, - %0,1)
satisfying the following equations and equational implications:

a+(b+c) = (a+b)+c

a+b = b+a
a+0 = a
ata = a
a(bc) = (ab)c
la = a
al = a
a(b+¢) = ab+ac
(a+bd)c = ac+bc
Oa = O
a0 = 0
1+ aa* < a*
1+a*a < o
b+ar < z — a*b < =z
b+za < z — ba* <

where < refers to the natural partial order on K:
a<b o a+b=>b.

Instead of (17) and (18), we might take the equivalent axioms

a*:z:

*

ar

IN A

r — iy
r — Ta Z .

IN A

ra

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(17)
(18)

(19)
(20)

Axioms (4-7) say that (K, +, 0) is an idempotent commutative monoid. Axioms
(8-10) say that (K, -, 1) is a monoid. Axioms (4-14) say that (K, +, -, 0, 1) is an

idempotent semiring.



The remaining axioms (15-20) deal with *. They say essentially that * behaves like the
Kleene star operator of formal language theory or the reflexive transitive closure operator
of relational algebra. Using (15) and the distributivity axiom (12), we see that

b+aa*db < a*b,

thus the left-hand-side of the implication (17) is satisfied when a*b is substituted for z;
moreover, (17) says that a*b is the least element of K for which this is true.

Axioms (17-20) are studied by Pratt [13], who attributes (17) and (18) to Schréder
and Dedekind. The equivalence of (17) and (19) (and, by symmetry, of (18) and (20)) are
proved in [13].

All the structures mentioned in §1, in particular Regy, are Kleene algebras.

2.1 Elementary consequences

In this section we derive some basic consequences of the Kleene algebra axioms. Many of
these properties have been derived before in the literature; we refer the reader to [4] for a
comprehensive introduction.

It is straightforward to verify that the relation < is a partial order, and is monotone
with respect to all the Kleene algebra operators in the sense that if a < b, then ac < be,
ca < cb,a+c< b+c, and a* < b*. With respect to <, K is an upper semilattice with join
given by + and minimum element 0.

Basic properties of * such as

1 < a*

a < a*
a*a* = ao*
o a*

are also easily derived. See [4] for formal proofs.

Lemma 1 In any Kleene algebra, a* is the unique element satisfying (15) and (17). It is
also the unique element satisfying (16) and (18). ‘

Proof. By 15 , a* satisfies the inequalit
1+(l.’L’ < z

when substituted for z. By (17), it is the least such element. Thus a* is unique.
The second assertion is proved by a symmetric argument involving (16) and (18). O



Proposition 2 In any Kleene algebra, the inequalities (15) and (16) can be strengthened to
equations:

1+aa* = q*

14+a*a = o*.
Proof. The inequality 1 + aa™ < a* is given by (15). To show
«* < 1+ad* ,
it suffices by (17) and (10) to show that
1+a(l+ad®) < 14ad™.

But this is immediate from (15) and the monotonicity of - and +.
The proof of 1 + a*a = a* is symmetric. O

Proposition 3 (Pratt [13]) Under the assumptions (4—15), the implications (17) and (19)
are equivalent. Under the assumptions (4-14) and (16), the implications (18) and (20) are
equivalent.

Proof. We prove the first statement; the second is symmetric. First assume (17) and
the premise of (19). By assumption, az < z, therefore z + az < z. By (17), a*z < z.
Discharging the hypothesis, we obtain the implication (19).

Now assume (19) and the premise of (17). By assumption, b + az < z, thus b < z
and az < z. By (19), a*z < z, and by monotonicity, a*b < a*z, therefore a*b < z.
Discharging the hypothesis, we obtain the implication (17). O

The following proposition is a key tool in the completeness proof of §5.
Proposition 4 In all Kleene algebras,
ar =zb — a*z =zb*.
Proof. Suppose first that axz < xb. Then
azb® < zbb* .
by monotonicity, and |

T+ zbb* < zb*



by (15) and distributivity, therefore by monotonicity,

T+ azb® < 4 zbb*

< zb*.
By (17),
a*z < azb*.
By a symmetric argument using (16) and (18),
tb<azr — zb*<d*z.
The proposition follows from these two implications. O
Corollary 5 In all Kleene algebras,
(cd)*c = c(dc)* .
Proof. Substitute ¢ for z, ¢d for a, and dc for b in Proposition 4. O

Corollary 6 Let p be an invertible element of a Kleene algebra with inverse p~'. Then

pla*p = (p7lap)* .

Proof. We have

a*p = (pp7'a)*p

= p(p~'ap)*
by Corollary 5. The result follows by multiplying on the left by p~1. O
Proposition 7 In all Kleene algebras,

(a+b)* = a*(ba™)*.

Proof. To show

(a+b)* < a*(ba)* (21)
observe that
1 < a*(ba*)* |
aa®*(ba®)* < a*(ba™)*
ba(ba®)* < (ba*)?
< a*(ba)*

0 d]



therefore

1+ aa*(ba™)* + ba™*(ba™)*

1+ (a+b)a*(ba™)* <
< a®(ba™)* .

Then (21) follows from (17).
To show the reverse inequality, we use the monotonicity of all the operators:

(a+b5)*((a+b)(a+b)*)*

(a+b)*((a +b)*)*
(a+0)*.

a*(ba*)*

ININIA



3 Matrices over a Kleene Algebra

In this section we show that under the appropriate definitions of the operators +, -, *,

0, and 1, the family M(n,K) of n X n matrices over a Kleene algebra X forms a Kleene
algebra. This result is proved for various related classes of algebras in [4], none of which
are Kleene algebras according to our definition.

Define + and - on M(n,K) to be the usual operations of matrix addition and multi-
plication, respectively, Z, the n x n zero matrix, and I,, the n X n identity matrix. The

partial order < is defined on M(n,K) by
A<B o A+B=B.
Under these definitions, it is routine to verify
Lemma 8 The structure
(M(n,K), +, -, Z,, I,)
s an idempotent semiring; that is, the Kleene algebra azioms (4-14) are satisfied.
Proof. See [4]. O

To define the E* for E € M(n,K), we first consider the case n = 2. This construction
will later be applied inductively.

Let
a b

5= [0 d]
Let

f = a+bd*c
and define ‘

* *bd* o

E* = ltj:;*cf* d*+d*0;*bd*:| . (22)

This construction is motivated by a two-state finite automaton over the élphabet Y=
{a,b,c,d} with states {s,#} and transitions s > s, s Lt t S s, t% ¢ For each pair of
states u, v, consider the set of input strings in £* taking state u to state v in this automaton.

10



Each such set is regular and is represented by a regular expression corresponding to those
derived for the matrix E*:

s—s : (a+bd*c)*

s—t : (a4 bd*c)*bd*

t—s : d¥c(a+bd*c)*

t—t : d*+d*c(a+ bd*c)*bd* .

Lemma 9 The matriz E* defined in (22) satisfies the Kleene algebra azioms (15-18). That
18,

I+EE* < E* (23)
I+E*E < E* (24)
and for any X,
EX < X - E*X < X (25)
XE <X —- XE* < X. (26)

Proof. We show (23) and (25). The arguments for (24) and (26) are symmetric.
The matrix inequality (23) reduces to the four inequalities

14 af* +bd*cf* < f*
af*bd* + b(d* + d*cf*bd*) < f*bd*
cf* +dd*ef* < d¥cf*
1+ cf*bd* 4 d(d* + d*cf*bd*) < d* + d*cf*bd*

in K. These are equivalent to the inequalities

1+ ff* < fF
1+ ffpd" < f*bd”
(1+dd*)ef* < d¥cf*
(1 +dd*)(1 +cf*bd*) < d*(1+ cf*bd*)

respectively, which follow from the axioms and basic properties of §2.

We now establish (25). We show that (25) holds for X an arbitrary column vector of
length 2; then (25) for X any 2 X n matrix follows by applying this result to the columns
of X separately. o

Let



We need to show that under the assumptions

az+by < z (27)
cz+dy < (28)
we can derive
f*e+ f*od*y < =z (29)
d*cf*z 4+ (d* + d*cf*bd*)y < y. (30)

We establish (29) and (30) in a sequence of steps. With each step, we identify the premises
from which the conclusion follows by one of the axioms or basic properties of §2.

az < (27) (31)

by < =z (27) (32)

cz < y (28) (33)

dy <y (28) (34)

d'y <y (34), (19) (35)

bd*y < by (35), monotonicity (36)
bd*y < (32), (36) (37)
bd*cz < bd*y (33), monotonicity (38)
bd*cx < (37), (38) (39)

fz < (31), (39) (40)

ffz < (40), (19) (41)
f*od*y < f*z (37), monotonicity (42)
bty < o (41), (42) (43)
d*cf*z < d¥ex (41), monotonicity (44)
d¥cz < d*y (33), monotonicity (45)
d*cf*z <y (35), (44), (45) (46)
d*cf*bd*y < d*cf*z (37), monotonicity . : (47)
d*cf*bd*y < y (46), (47) | (48)

The conclusion (29) now follows from (41) and (43) and (30) follows from (4!16), (35), and
(48). O o

We now apply this argument inductively.

12



Lemma 10 Let E € M(n,K). There is a unique matriz E* € M(n,K) satisfying the
Kleene algebra azioms (15-18). That is,

E* (49)
E* (50)

I+ EE*
I+ E*E

IN A

and for any n x m matriz X over K,

EX < X - E*X
XE < X —» XE*

X (51)
X. (52)

IAIA

Proof. Partition F into submatrices A, B, C, and D such that A and D are square.

- 448

By the induction hypothesis, D* exists and is unique. Let F = A + BD*C. Again by the
induction hypothesis, F'* exists and is unique. We define

(54)

[ F* | F*BD*
~ | DY*CF*| D¥+ D*CF*BD*

The proof that E* satisfies (15-18) is essentially identical to the proof of Lemma 9. We

must check that the axioms and basic properties of §2 used in the proof of Lemma 9

still hold when the primitive symbols of regular espressions are interpreted as matrices of

various dimensions, provided there is no type mismatch in the application of the operators.
The uniqueness of E* follows from Lemma 1. O

Combining Lemmas 8 and 10, we obtain

Theorem 11 The structure
(M(Tl,K:), +a y *a Zn’ In)
1s a Kleene algebra.

We remark that the inductive definition (54) of E* in Lemma 10 is independent of the
partition of E chosen in (53). This is a consequence of Lemma 1, once we haye established
that the resulting structure is a Kleene algebra under some partition; cf. [4, Theorem 4,
p- 27]. -

In the proof of Lemma 10, we must check that the basic axioms and properties of §2
still hold when the primitive letters of regular expressions are interpreted over matrices of
various shapes, possibly nonsquare, provided there is no type mismatch in the application

13



of operators; e.g., one cannot add two matrices unless they are the same shape, one cannot
form the matrix product AB unless the column dimension of A is the same as the row
dimension of B, and one cannot form the matrix A* unless A is square.

For example, the Kleene algebra theorem

az = zb — a*z = zb*

(Proposition 4) holds even when a is an m X m matrix, bis an n X n matrix, and = is an
m X n matrix.

In order to formulate this property at an appropriate level of abstraction, we need to
extend the notions of regular expression and Kleene algebra to allow types. This leads to
a general notion of typed regular expression and typed Kleene algebra involving the typing
rules

a:s,t B:s,t a:s,t B:tu Qa:s,s
a+pf:s,t af :s,u a*:s,s
1:s,s 0:s,t (55)
a:s,t B:s,t
a=pf:s,t

which determine when an operator or relation symbol may be applied to a pair of typed
regular expressions and the type of the resulting expression. The typing rules (55) de-
termine a most general typing of a regular expression, and a general metatheorem can be
proved to the effect that any theorem of Kleene algebra is a theorem of typed Kleene
algebra under its most general typing.

A satisfactory development of this theory would constitute a major digression, so we
forego it for the present and content ourselves with the following special case, which suffices
for the purposes of this paper.

Theorem 12 The azioms and basic properties of Kleene algebra listed in §2 hold when the
basic letters are interpreted as possibly nonsquare matrices over a Kleene algebra, provided
that there are no type conflicts in the application of operators as specifiediby the typing rules

(55).

Proof. A quick review of the axioms and basic properties of §2 in light of this more
general interpretation should convince the reader of the truth of this statement. For
example, consider the distributive law

a(b+c¢) = ab+ac.

14



Interpreting a, b, and ¢ as matrices over a Kleene algebra X, the typing rules (55) allow
the formation of this equation provided the shapes of b and c are the same and the column
dimension of a is the same as the row dimension of b and ¢. Other than that, there are no
type constraints. It is easy to verify that the distributive law holds for any matrices a, b
and c satisfying these constraints.

For a more involved example, consider the equational implication of Proposition 4:

*r = zb* .

ar=zb — a
The type constraints imposed by the typing rules (55) say that a and b must be square
(say s x s and t x t respectively) and that z must be s x . Under this typing, all steps
of the proof of Proposition 4 involve only well-typed expressions, thus the proof remains
valid in the typed case. O

15



4 Finite Automata

Regular expressions and finite automata have traditionally been used as syntactic repre-
sentations of the regular languages over an alphabet ¥. The relationship between these two
formalisms forms the basis of a well-developed classical theory, but the classical treatment
as found for example in [9,6] is generally combinatorial. Algebraic approaches involving
formal power series over a free monoid, as found for example in [16,15,5,3] do not consider
arbitrary Kleene algebras.

In this section we define the notion of an automaton over an arbitrary Kleene algebra.
In subsequent sections, we will use this formalism to derive the classical results of the
theory of finite automata (equivalence with regular expressions, determinization via the
subset construction, elimination of e-transitions, and state minimization) as consequences
of the axioms of §2.

In the following, although we consider regular expressions and automata as “syntax”,
as a matter of convenience we will be reasoning modulo the axioms of Kleene algebra.
Officially, we are considering regular expressions to be elements of Fy, the free Kleene
algebra over ¥. The Kleene algebra Fy is constructed by taking the quotient of the reg-
ular expressions modulo provable equivalence. The canonical map assigns to each regular
expression its equivalence class in Fy. Since we will be interpreting expressions only over
Kleene algebras, and all interpretations factor through Fy via the canonical map, this
usage is without loss of generality.

The following definition is closer to the algebraic definition used for example in [3,4]
than to the combinatorial definition used in [9,6].

Definition 13 A finite automaton over K is a triple
A = (u,Av),

where u,v € {0,1}" and A € M(n,K) for some n.

The states are the row and column indices. The vector u determines the start states
and the vector v determines the final states; a start state is an index i for which u(z) = 1
and a final state is one for which v(i) = 1. The n X n matrix A is called the transition
matriz.

The language accepted by A is the element

uTA*y € K. .

For automata over Regy, this definition is essentially equivalent to the classical com-
binatorial definition as found in [9,6].

16



Example 14 Consider the two-state automaton in the sense of [9,6] with states {p, ¢},
start state p, final state ¢, and transitions

Pop g5g
b b
pP—q g—q.

Classically, this automaton accepts the set of strings over ¥ = {a, b} containing at least
one occurrence of b. In our formalism, this automaton is specified by the triple

(o] [5 ot)- 121)

Modulo the axioms of Kleene algebra, we have
*
a b 0| _ a* a*b(a + b)* 0
[10]’[0 a+bJ'[1]_[10]’[0 (a+bd)* | |1
= a*bla+0)*. (56)

The language in Regy, accepted by this automaton is the image under Ry of the expression
(56). O

Definition 15 Let A = (u, A,v) be an automaton over Fy, the free Kleene algebra on free
generators ¥. The automaton A is said to be simple if A can be expressed as a sum

A= J+)> a A, (57)
a€X

where J and the A, are 0-1 matrices. In addition, A is said to be e-free if J is the zero
matrix. Finally, A is said to be deterministic if it is simple and e-free, and u and all rows
of A, have exactly one 1. O

In Definition 15, € refers to the null string. The matrix A, in (57) corresponds to the
adjacency matrix of the graph consisting of edges labeled @ in the combinatorial model
of automata [6,9] or the image of a under a linear representation map in the algebraic
approach of [16,3]. An automaton is deterministic according to this definition iff it is
deterministic in the sense of [6,9]. "

The automaton of Example 14 is simple, e-free, and deterministic.

17



5 Completeness

In this section we show the completeness of the axioms of §2 for the algebra of regular
events. Another way of stating this is that Regy is the free Kleene algebra on generators
¥, and the homomorphism Ry, : 5, — Regy is an isomorphism of Kleene algebras.

The first lemma asserts that Kleene’s representation theorem [8] is a theorem of Kleene

algebra.

Lemma 16 For every regular ezpression o over ¥ (or more accurately, its image in Fx
under the canonical map), there is a simple automaton (u, A,v) over Fx such that

*
a = uTA*v.

Proof. The proof is by induction on the structure of the regular expression. For a € T,

the automaton ([3] [3 3]’ m)

SRR RO AN

= a.

suffices, since

For the expression a + f, let A = (u, A,v) and B = (s, B, t) be automata such that

a = uTA*v
g = sTB*t.

Consider the automaton with transition matrix

i
ohalu)

respectively. This construction corresponds to the combinatorial construction of forming
the disjoint union of the two sets of states, taking the start states to be the union of the

and start and final state vectors

18



start states of A and B, and the final states to be the union of the final states of A and B.

Then
Alo]"  [a*]o
0|B - 0 | B ’

and
A*| 0 v
T| T _ T p% T p*
[uls][ B]-[—}_uAv-i-th
= a+p.
For the expression af3, let A = (u, A,v) and B = (s, B,t) be automata such that

a = ulA*v
B = sTB*t.

Consider the automaton with transition matrix

Al wvsT
0| B

o] = 12

respectively. This construction corresponds to the combinatorial construction of forming
the disjoint union of the two sets of states, taking the start states to be the start states of
A, the final states to be the final states of B, and connecting the final states of A with the
start states of B by e-transitions (this is the purpose of the vsT in the upper right corner
of the matrix). Then

and start and final state vectors

[A vsT}* _ [A*|A*USTB*]
0| B o ’

and

For the expression o*, let A4 = (u, A,v) be an automaton such that
a = ulA*v.

19



We first produce an automaton equivalent to the expression aa™. Consider the automaton
(u, A+vul, v).

This construction corresponds to the combinatorial construction of adding e-transitions
from the final states of A back to the start states. Then
uT(A + vuT)*v = uTA*(vuT A*)*v by Proposition 7
= ulA*v(uTA*v)* by Proposition 5

*
aox .

Once we have an automaton for aa™, we can get an automaton for o* = 1 4+ aa™ by the
construction for + given above, using a trivial one-state automaton for 1. O

Lemma 17 For every simple automaton (u, A,v) over Fx, there is a simple e-free automa-
ton (s, B,t) such that

uTA*vy = sTB*t

Proof. By Definition 15, the matrix A can be written as a sum A = J + A’ where J is
a 0-1 matrix and A’ is e-free. Then

ulTA*y = uT(A' 4+ J)*v

= uTJ*(A'T*)*v by Proposition 7 ,
so we can take
T = JTJ*
B = AJ*
t = v.

Note that J* is 0-1 and therefore B is e-free. This construction models algebraically the
combinatorial idea of computing the e-closure of a state; see [6,9]. O

Lemma 18 For every simple e-free automaton (u, A,v) there is a determmzstzc automaton
(4, A, ) such that

uTA*y = aTA*h .

Proof. We model the “subset construction” [6,9] algebraically. Let (u, A, b).be a simple
e-free automaton with states ). By Definition 15, A can be expressed

Za-Aa

a€x
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where each A, is a 0-1 matrix.

Let P(Q) denote the power set of Q. We identify elements of P(Q) with their char-
acteristic vectors in {0,1}". For each s € P(Q), let e, be the P(Q) x 1 vector with 1 in
position s and 0 elsewhere.

Let X be the P(Q) x @ matrix whose s*} row is s7; i.e.,

efX = sT.

For each a € I, let A, be the P(Q) x P(Q) matrix whose s*" row is e,r,_; in other
words,

T A
€, As = €474, .
Let
A= Ya-A
a€X
U = €y
v = Xv.

The automaton (4, A, ©) is simple and deterministic.
The relationship between A and A is expressed succinctly by the equation

XA = AX. (58)
Intuitively, this says that the actions of the two automata in the two spaces K9 and K@)
commute with the projection X. To prove (58), observe that for any s € P(Q),
eTXA = sTA

= Za-sTAa

a€l

= Za-esrAaX

a€x
= Z a- GZAGX
a€x
= eTAX .
Now, by Proposition 4,
XA* = A*X.
The theorem now follows:
aTA* = efA*Xv
el X A*v
= uTA*v.
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Lemma 19 Let (u, A,v) be a simple deterministic automaton and let (7, A,7T) be the equiv-
alent minimal deterministic automaton obtained from the classical state minimization pro-

cedure [6,9]. Then

Proof. In the combinatorial approach [6,9], the unique minimal automaton is obtained
as a quotient by a Myhill-Nerode equivalence relation after removing inaccessible states.
We simulate this construction algebraically.

Let @ denote the set of states of (u, 4,v). For ¢ € @, let e, € {0,1}? denote the vector
with 1 in position ¢ and 0 elsewhere. For a € ¥, let A, be the 0-1 matrix as given in
Definition 15 (57). Then

A = Za-Aa.

a€x

For each a € ¥ and p € Q, let §(p,a) be the unique state in @ such that the p* row of A,
. T .
1S €5(pa) 1€

T _.T
epA“ = Cs(pa) -

The state §(p,a) exists and is unique since the automaton is deterministic.
First we show how to get rid of unreachable states. A state ¢ is reachable if

uTA*e, # 0,

otherwise it is unreachable. Let R be the set of reachable states and let U = Q — R be
the set of unreachable states. Partition A into four submatrices Arr, Ary, Avr, and Ayy
such that for S,T € {R,U}, Asr is the S X T submatrix of A. Then Apy is the zero
matrix, otherwise a state in U would be reachable. Similarly, partition the vectors u and
v into up, uy, vg and vy. The vector uy is the zero vector, otherwise a state in U would

be reachable. We have

WAt = [u%IO]-[AR""l 0 r.[vR]‘

Aur | Avu vy
= [ UT | 0 ] . AT{R | 0 . YR '
R AfyAurAgg I Ay w|

T p%

Moreover, the automaton (ug, Agrr,vr) is simple and deterministic, and all states are
reachable.
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Assume now that (u, A, v) is simple and deterministic and all states are reachable. An
equivalence relation = on Q is called Myhill-Nerode if p = ¢q implies

§(p,a) = b8(g,a), a€X, (59)
v = elv. (60)

(In combinatorial terms, = is Myhill-Nerode if it is respected by the action of the automaton
under any input symbol a € ¥, and the set of final states is a union of =-classes.)
Let = be any Myhill-Nerode equivalence relation, and let

[Pl = {¢€eQlq=p}
Q/= = {lpllre@}.

For [p] € Q/=, let ep € {0,1}9/= denote the vector with 1 in position [p] and 0 elsewhere.
Let Y be the @ x Q/= matrix whose [p]*h column is the characteristic vector of [p]; ..,

elj;Y = e[ﬁ] .
For each a € X, let A, be the Q/= xQ/= matrix whose [p]'" row is e[5(,.q)); @.€.,
epida = €spa) -

The matrix A, is well-defined by (59). Let

4 =) a4,

a€s

! = 4Ty .

Also, let 7 € {0,1}9/= be the vector such that
eg)lﬁ = egv .

The vector T is well-defined by (60). Note also that

eg Yo = eﬁlﬁ
= efu ,
therefore '
Y? = v.

The automaton (@, 4,7) is simple and deterministic.

23



As in the proof of Lemma 18, the action of A and A commute with the linear projection

Y:
AY = YA. (61)

To prove (61), observe that for any p € Q,
eEAY = Z a- egAaY
T
" €5(pa)Y

T
= ) a-e€ppa)

- e

Il
J

I
N
|

Now by Proposition 4,

therefore
A7 = JYA'D
= uTA*YD
= uTA*v.
a

Theorem 20 (Completeness) Let a and § be two regular ezpressions over ¥ denoting the
same regular set. Then a = f is a theorem of Kleene algebra.

Proof. Let A = (s,A,t) and B = (u,B,v) be minimal deterministic finite automata
over Fx such that '

Rz(a) = RE(STA*t)
Rz(B) = Rx(uTB*v). .
By Lemmas 16, 18, and 19, we have '
«a sTA*t
g = uI'B*v
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as theorems of Kleene algebra. Since

Rs(a) = Rg(B),

by the uniqueness of minimal automata, A and B are isomorphic. Let P be a permutation
matrix giving this isomorphism. Then

A = PTBP
s = PTy
t = PTy.

Using Corollary 6, we have

a = sTA*t
(PTw)T(PTBP)*(PTv)
uT P(PTBP)*PTy
uTPPTB*PPTy

uT B*v

g .
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