A Theory of Interleavers

Kenneth Andrews*
andrews@ee.cornell.edu

Abstract

An interleaver is a hardware device commonly used
in conjunction with error correcting codes to counteract
the effect of burst errors. Interleavers are in widespread
use and much is known about them from an engineering
standpoint.

In this paper we propose a mathematical model that
provides a rigorous foundation for the theoretical study
of interleavers. The model captures precisely such no-
tions as block and convolutional interleavers, spread,
periodicity, causality, latency, and memory usage.

Using this model, we derive several optimality results
on the latency and memory usage of interleavers. We
describe a family of block interleavers and show that
they are optimal with respect to latency among all block
interleavers with a given spread. We also give tight
upper and lower bounds on the memory requirements
of interleavers.

1 Introduction

Interleaving is a standard signal processing tech-
nique used in a variety of communications systems.
An interleaver is a hardware device that takes symbols
from an fixed alphabet as the input and produces the
identical symbols at the output in a different temporal
order. The classical use for interleaving is to disperse
sequences of bits in a bitstream so as to minimize the
effect of burst errors introduced in transmission.

Error correcting codes can correct errors successfully
as long as there are not too many errors in a single code-
word. However, errors sometimes tend to be bursty
in the sense that there can be a local concentration
of many errors, too many for typical error correction
schemes to handle. This situation occurs for example
in (i) burst error channels such as wireless communica-

*School of Electrical Engineering, Cornell University, Ithaca,
NY 14853-7501, USA
tDepartment of Computer Science, Cornell University,

Tthaca, NY 14853-7501, USA

Chris Heegard*
heegard@ee.cornell.edu

Dexter Kozen'!
kozen@cs.cornell.edu

tions channels, and (ii) concatenated coding, in which
the first stage of decoding generates burst errors, such
as in Viterbi decoders [4, 7]. Another very recent appli-
cation of interleaving is in parallel concatenated turbo
coding [1].

There are two classical kinds of interleavers, com-
monly referred to as block and convolutional [4, 7]. In
a block interleaver, the input data is written along the
rows of a memory configured as a matrix, and then
read out along the columns. A variation of a block in-
terleaver is a pseudorandom block interleaver, in which
data is written in memory in sequential order and read
in a pseudorandom order [6, 2]. In a convolutional in-
terleaver, the data is multiplexed into and out of a fixed
number of shift registers [5, 3].

In this paper, we propose a mathematical model that
is motivated by these classical designs and the need to
understand the foundations of interleaving in the realm
of turbo coding. Our model captures the notions of
block and convolutional interleavers as well as various
notions such as spread, periodicity, causality, latency,
delay, and memory usage.

Using this model, we study the latencies of a popu-
lar family of interleavers called block interleavers. We
identify a certain class of block interleavers and show
that they are optimal with respect to latency among all
block interleavers of a given spread. More specifically,
we show that for spread s,

(i) there do not exist block interleavers with period
less than s2;

(ii) there are exactly two block interleavers of period
52, and both have latency 2s% — 2s;

(iii) the interleaver a@ — as + 1 mod s® + 1 has period
5?2 + 1 and latency 2s® — 3s + 1;

(iv) this latency is optimal among block interleavers of
spread s.

The interleavers described in (iv) were introduced in

[2].
In addition to these results, we also derive exact
upper and lower bounds on memory requirements of

interleavers. We characterize the number of memory
cells necessary to implement a given interleaver and
describe a hardware implementation that achieves this
bound.

2 Mathematical Framework

In the information theory literature, an interleaver
is usually understood to be a single input, single out-
put finite-state device that takes sequences of symbols
in a fixed alphabet and produces an output sequence
over the same alphabet that is identical to the input
sequence except for order. Every interleaver has a cor-
responding de-interleaver that acts on the output of
the original interleaver and puts the symbols back into
their original order (with a possible time delay).

For our study, the input/output alphabet is irrele-
vant; it is only the permutation on time instants that
is important. In other words, if the input sequence is
cee,Q_2,0_1,00,01,03,03,... and the output sequence
is ...,b_2,b_1,b0,b1,b2,b3,..., then we focus on the
permutation 7 : Z — Z such that a; = br(;y. Thus, for
the purposes of this paper, we define an interleaver to
be a periodic permutation 7 : Z — Z of the integers.
Here permutation means that the map 7 is one-to-one
and onto, and periodic means that for some p > 1,

m(z+p) = =(z)+p
for all z. The number p is called a period of w. Equiv-
alently, 7 is periodic with period p if it commutes with
DP under composition, where D is the successor func-
tion®

def
D =

Az.xz + 1.
Periodicity models the fact that interleavers are real-
ized as finite-state devices.

The only interleavers of period 1 are the powers of D.
These are called delay interleavers. The fundamental
period of an interleaver is the ged of all its periods.

The family of all interleavers forms a group under
composition. The lcm of the periods of two interleavers
is a period of their composition.

2.1 Shifting

A shift of an interleaver 7 is an interleaver of the
form

D*omoD™ = Xzm(z4+m)+Ek

1Here we are using standard A-notation for functions:
Az.M(z) is the function that on input a produces M(a).

for some k,m. We say that interleavers 7 and p are

shift equivalent, or that p is a shift of «, if there exist

integers k, m such that
p = D*omoD™.

This relation identifies two interleavers if one can be

obtained from the other by shifting the input or the

output or both.

We say that interleavers m and p are strongly shift
equivalent, or that p is a strong shift of «, if there exists
an integer n such that

p = D "omoD™
This relation identifies two interleavers if one can be
obtained from the other by shifting the input and the
output the same distance. The strong shift equivalence
class of 7 contains exactly p elements, where p is the
fundamental period of 7.

2.2 Causality

An interleaver is causal if for all z, w(z) > z. This
property models the fact that in an actual implemen-
tation, a symbol cannot come out before it goes in.
An interleaver is minimal causal if it is causal and if
m(z) = z for some z. Every interleaver has a unique
(up to strong shift equivalence) minimal causal shift.

In the literature on interleavers, it is common to
restrict attention to causal interleavers, because non-
causal ones are not realizable. However, for theoretical
purposes, the property of causality can sometimes be
a red herring. The key properties of interleavers are
shift-invariant, and it often simplifies the mathematics
considerably to ignore causality. We will see several
examples of this below.

2.3 Delay and Latency

For an interleaver 7, define

def

(f = maxw(z) -z,

z

_ def
V4 =

. minw(z) -z = —{i,.

z

The quantity £} is called the delay of . This is the
maximum time delay between the arrival of an input
symbol and the time it should be produced as an out-
put. An interleaver is causal iff £, > 0 and is minimal
causal iff £ = 0.

A related concept is latency, which we define to be
the shift-invariant quantity

def

G oo

In other words, denoting the action of 7 on Z by arrows,
it is the sum of the lengths of the longest leftward and
longest rightward arrow.? An interleaver is causal iff
£+ > £, and is minimal causal iff £ = {,. Thus the
minimal causal shift of 7 has the minimum delay among
all causal shifts of 7.

The de-interleaver corresponding to 7 is just the in-
verse 7 1. It follows immediately from the definitions
that 7 and 7~! have the same latency.

In a real implementation, we would use a causal shift
of 7 for interleaving and a causal shift of 7! for de-
interleaving. Define the minimum total delay of an
interleaver 7 to be the minimum sum of delays for in-
terleaving and de-interleaving using causal shifts of =
and 7~ 1. Since the delays of both these causal shifts
are at least the latency of m, one might expect the
minimum total delay to be at least twice the latency.
Somewhat surprisingly, it turns out that it is exactly
the latency.

Theorem 1 The minimum total delay of an inter-
leaver is equal to its latency. It is achieved by com-
posing minimal causal shifts of the interleaver and its
inverse.

Proof. Let D™ o be a causal shift of 7; then m >
—{7. Let D* o v~ be a causal shift of 771; then k >
—{__,. Before we can compose these two interleavers,
we must take a strong shift of one of them so that the
outputs of the first interleaver line up with the inputs
of the second. Strongly shifting D* o 7~! by m, we
obtain

DmoDFor toD™™,
Composing this with D™ o 7 gives
DmoD*or'oD ™oDM™or = D™k,
which is just the identity shifted by m + k; this is the
total delay. This number is minimized by taking m =

—{; and k = —{__, = {}, in which case m + k = {r,
the latency of . O

Example 2 Consider the minimal causal interleaver

k+2 ifk=0mod3,
w(k) = Ek if k=1 mod 3, (1)
k+1 ifk=2mod3

with latency 2. Its inverse is

k-1 if k=0 mod 3,
k) = k if k=1 mod 3,
k-2 if k=2 mod 3.

?In case there are no leftward arrows, read “negative of the
length of the shortest rightward arrow” for “length of the longest
leftward arrow.”

Shifting the output by 2 gives the minimal causal in-
terleaver

k+1 if k=0mod 3,
Dlon (k) = E+2 ifk=1mod3, (2)
k if k=2 mod 3,

also with latency 2. Composing (1) and (2) gives

D’ontonr = D2
o 1 2 3 4 5 6 7 8 9
[]
T \
[]
O

2.4 Spread

We say that an interleaver = has spread s,t if |7 (z)—
w(y)| > ¢t whenever |[x—y| < s. Intuitively, = has spread
s,t if any two input symbols in an interval of length s
are separated by a distance of at least ¢ at output. An
interleaver has spread s, ¢ iff its inverse has spread ¢, s.

In this paper we focus on the case s = t. We abbre-
viate spread s,s by spread s. The property of having
spread s is invariant under shift and inverse.

It is desirable to have large spread, since this is
how we counteract burst errors. In practice, a typi-
cal spread might be 18. However, larger spreads entail
longer latencies. We analyze this tradeoff in Section 3.

2.5 Memory

Intuitively, the memory required by a causal inter-
leaver 7 is the maximum number of input symbols that
must be remembered from some time 7 — 1 to time 1.
Formally, for causal interleavers, we can define this to
be

max|{z | z < ¢ and 7(z) > i}|.

In Section 4 we give a shift-independent definition and
show that for block interleavers, this quantity is ex-
actly —£_,, where 7’ is a permutation interleaver shift-
equivalent to 7. We also give tight upper and lower
bounds on memory usage for any causal interleaver.

2.6 Examples of Interleavers

2.6.1 Multiplexed Interleavers

A multiplexed shift register interleaver [5, 3, 4] is de-
scribed in the literature as a hardware device that

1. de-multiplexes the input sequence into p subse-
quences,

2. introduces a uniform delay on each subsequence,

3. multiplexes the p results.

These devices can be implemented efficiently in hard-
ware using a set of p shift registers, where the lengths
of the registers determine the delay.

In terms of our model, a multiplexed interleaver with
period p is one that is shift equivalent to an interleaver
with p | w(z) — z for all . Such an interleaver is
uniquely determined (up to shift equivalence) by the
integers k; = (7(z) — z)/p, 0<i<p-1

2.6.2 Block Interleavers

Another wide class of interleavers in common use are
the block interleavers. An interleaver 7 is a block inter-
leaver of blocksize p if p is a period of 7w and there is an
interval of length p whose image under 7 is also an in-
terval of length p. The blocksizes of a block interleaver
7 are exactly the periods of =.

The property of being a block interleaver of blocksize
p is invariant under shift and inverse.

Any block interleaver is shift equivalent to a permu-
tation interleaver. A permutation interleaver is given
by a permutation on {0,1,...,p — 1} repeated with
period p. For example, the period 3 interleaver

k+1 ifk=0mod3,
k+2 ifk=1modS3,
k+3 ifk=2mod3

k —

is D®o0po D~ where p is the permutation interleaver
described by the permutation (0)(1 2) in cycle notation.

Not all interleavers are block interleavers. For ex-
ample, the interleaver

E+1 ifk=0mod 3,
E+5 ifk=1mod3,
E+9 ifk=2mod3

k —

is not. However, if p is a period, then for any z,y €
{0,1,...,p — 1}, & # y, the residues of 7 (z) and 7 (y)
modulo p must be distinct. Thus an arbitrary inter-
leaver is completely determined (up to shift equiva-
lence) by a permutation on {0,1,...,p— 1} along with
a delay of a multiple of p on each element. In other

words, every interleaver is shift equivalent to a compo-
sition of a permutation interleaver and a multiplexed
interleaver.

An interleaver that is not a block interleaver is called
a convolutional interleaver.

3 Block Interleavers of Minimal La-
tency

The following are our main results on latency.

Theorem 3 For block interleavers of spread s,
(i) there are none with period s> — 1 or less;

(ii) up to shift equivalence, there are ezactly two with
period 2, and both have latency 252 — 2s;

(iii) the permutation interleaver a — as+1 mod s?+1
has period s*> + 1 and latency 25> — 3s + 1;

(iv) this latency is optimal among block interleavers of
spread s.

We remark that the interleaver a — as mod s* +
1 has nonoptimal latency 2s?> — 2s, the same as the
interleavers of (ii).

Proof. (i) Let 7 be an arbitrary block interleaver of
spread s. By shift-invariance, we can assume that 7 is
a permutation interleaver. Let I = w(I) = [0,p — 1],
where p is a period of 7.

Certainly p > s, since otherwise we would have

m@)+p-7(e) = p < s
p < s

|7(a +p) = 7(a)|
l(a+p)-a|

contradicting spread s. Thus |I| > s.

Define an s-interval to be a subinterval of I of length
s. Define an s-anti-interval to be a subset of I of
size s such that no two elements are of distance less
than s from each other. A necessary condition for
to have spread s is that it send s-intervals to s-anti-
intervals. This condition is not sufficient, for we must
also worry about what happens at the boundary of ad-
jacent blocks.

Since p > s, s — 1 € I and every element of I is
contained in at least one s-interval. Let J be an s-
interval containing 7=!(s — 1). Then w(J) C I is an
s-anti-interval. Let 7(J) = {ao,a1,...,05s—1} with

a < a1 < < Qs—1-.
Note that s—1 = ay, since no s-anti-interval containing
s — 1 can contain any smaller element.

Since w(J) is an s-anti-interval, we must have

ai+1—a; > 8, 0<i<s-—2.

Combining these in a telescoping sum, we have

5—2
as—1 = ap+ E Qi+1 —
i=0

s—2
> s—1+Zs
i=0

= s—1+(s—1)s

= §2-1.

Thus s> —1 € I, so |I| > s%.

(ii) We show there are exactly two permutation in-
terleavers of spread s and period s, namely
(S -1-])S + ia

is+j 0<4,7<s—1(3)

and its inverse

is+j — js+(s—1-14), 0<i,j<s—1. (4)
The permutations (3) and (4) can be described intu-
itively as follows. Let I be the interval [0, s? — 1]. Ar-
range the elements of I in an s x s matrix R in row
major order; thus R;; =45+ j,0<14,5 < s—1. The
permutations (3) and (4) are obtained by rotating R
a quarter turn counterclockwise and clockwise, respec-
tively.
For0<i4,7 <s—1,let

I, =
Jj

{is,is +1,is +2,...,is+s— 1},
{8 +5,25+j,...,(s = 1)s +j}.

The sets I; and J; are the elements appearing in the
i-th row and j-th column of R, respectively. Note that
the sets I; are s-intervals (among others), and the sets
J; are s-anti-intervals (among others). As observed
above in (i), a necessary condition for a permutation
7w : I — I to have spread s is that it send s-intervals to
s-anti-intervals.

Now let 7 be an arbitrary permutation of I of spread
s. We will show that 7 must be either (3) or (4).

By inspecting the matrix R, it can be observed that
each of s — 1 and s? — s is contained in exactly one s-
anti-interval, namely Js;_; and Jy, respectively. Since
every distinct s-interval must go to a distinct s-anti-
interval under 7, there can be at most one s-interval
containing 7 ~!(s — 1) and at most one s-interval con-
taining 7 1(s? — s5). But there are only two elements
of I contained in exactly one s-interval, namely 0 € I,
and s2 — 1 € I,_;. Thus either

A. 7(0) = s> — s and m(s®> — 1) = s — 1, in which case

I[)) = JO and W(Is_l) = Js—l; or

™

(
(
B. 7(0) = s —1 and (s* — 1) = s” — s, in which case
7(Ip) = Js—1 and 7(Ls_1) = Jp.

These two cases will give rise to (3) and (4), respec-
tively.
In case A, we claim more generally that
W(Ii) = J;, 0<i<s—1. (5)
We have just shown this for 2 = 0 and 7 = s — 1. Pro-
ceeding by induction, suppose we have shown it for 0 <
i<k—-1,k<s—1 Letc=71(s>—s+k). Thereis
exactly one s-anti-interval containing s — s+k disjoint
from Jy,...,Jg—1, namely Jg. Since every distinct s-
interval containing ¢ disjoint from Iy,..., I _1 must go
to a distinct s-anti-interval disjoint from Jy,..., Jg—1
under 7, there can be at most one s-interval containing
¢ disjoint from Ip,...,Ix—1. There are only two ele-
ments of I for which this is true, namely ks and s® — 1,
and we have already argued that w(s?—1) = s—1 & J,
therefore ¢ = ks and 7 (1) = Ji.
In case B, a symmetric argument shows that
m(l) =

Jecizi, 0<i<s—1. (6)

Now 7! is also a permutation interleaver of spread
s and period s?, thus satisfies either (5) or (6). But
if 7 satisfies (5), then m~! cannot satisfy (5), because
s2—s€ly_ybut 7 1(s?—s)=0¢ Jy_1. Thus 7!
must satisfy (6); that is,

7N L) = Je14, 0<i<s-—1.
Inverting, we have
m(J;) = Is-1ij, 0<j<s—L (7)

Using the fact that row I; and column J; intersect in
the single element is + 7, (3) follows immediately from
(5) and (7).

By a symmetric argument, 7 and 7! cannot simul-
taneously satisfy (6), thus if 7 satisfies (6) then 7!
must satisfy (5); in other words,

W(Jj) = I;, 0<5<s—-1.
This and (6) imply (4).

To verify that the interleavers (3) and (4) indeed
have spread s, we need only observe the form of the
image of any s-interval contained in I, as well as any
interval of length s straddling a boundary between two
blocks. In all cases the rotation of R (or two adjacent
copies of R) a quarter turn in either direction takes
such a set to an s-anti-interval.

(iii) Consider the permutation interleaver

a — as+1mods®+1, 0<a<s

In particular,

s—1 — §2—s5+1,
$2—s5+1 — 2.

By inspection, it can be ascertained that these are
the longest leftward and rightward arrows, respectively,
giving a latency of 2s> — 3s + 1. As we show in (iv),
this is the optimal latency for block interleavers with
spread s.

(iv) Consider an arbitrary permutation interleaver
7 of spread s and period p:

[0,])— 1]

We will show that 7 has latency at least 25 — 35 + 1.
By (ii) we can assume without loss of generality that
p > s2. As in (ii), subdivide the interval [0,p — 1]
into disjoint contiguous s-intervals Iy, Ii,...
where

m:[0,p—1] —

7Isfla"'

def

I, = [ks,(k+1)s—1]

(the last subinterval will be shorter if p is not a multiple

of s). Since w(Iy) is an s-anti-interval, all (¢) for i € Iy

must occupy different I. Thus at least one such ()

lies in I for some k£ > s — 1; in other words,
max{|7(:)/s||i € Iy} > s—1.

Thus

max{7r(i)—i|i € Iy}

v

min I,_1 — max I

= (s—1)s—(s—-1)

= s2-2s+1. (8)
The same argument holds for 7!, since the periods,
latencies and spreads of 7 and 7! are the same. Thus

max{r (i) —i|i€ L} > s*—2s+1. (9)

Let Iy = {ao,a1,..-,as_1}, where the elements are
numbered in order of their images under 7:
m(ao) < m(a1) < < m(@s-1).

If w(ao) € Iy, we are done: in this case,

v

max{r (i) —i |3 € Ip} min I, — max Iy
s —(s—1)

= s> —s+1, (10)

and the latency is at least the sum of (9) and (10),
which is 2s? — 3s + 2. Similarly, number the elements
of Iy =[-s,—1] asa_1,a_2,...,a_s, where

mla_s) < -+ < w(a_2) < w(a—1).

As above, if w(a—1) & I_1, we are done.
Assume therefore that 7(ag) € Ip and w(a—1) € I_1.
Either

@ —a_1 > § oOr (11)
w(ag) —w(a—1) > s, (12)

since 7 has spread s. By the symmetry between 7 and
7!, we can assume (12) without loss of generality; if
(12) is false but (11) is true, interchange 7 and 7!
throughout.

Since 7(Ip) is an s-anti-interval, we must have

m(ait1) —7m(a;)) > s, 0<i<s—2.

Combining these in a telescoping sum, we have

wa) = o)+ Y wlain) - (e
> m(ag) + (s—1)s, (13)
and symmetrically,
m(a—1) > w(a—s)+(s—1)s. (14)
By (13), we have
m(as—1) —as—1 > m(as—1)—(s—1)
> 7w(ag)+(s—1)s—(s—1)

m(ag) + 5% — 25+ 1. (15)

Symmetrically, using (14), we also have

a_s—m(a_s) > —s—m(a_s)
> —s—m(a_1)+(s—1)s
= —m(a_1)+ s> - 2s. (16)

The latency of 7 is at least the sum of (15) and (16):

(7(a0-1) = 0-1) + (a_s = 7(a_s))
(m(ag) + 8% — 25+ 1) + (=7(a—1) + s* — 2s)
m(ao) — m(a—1) +2s® —4s+1

> s+2s°—4s+1 by (12)

25 —3s + 1.

v

4 Memory-Optimal Interleavers

We have defined the memory required by a causal
interleaver 7 to be the maximum number of input sym-
bols that must be remembered from some time : — 1 to
time ¢; in other words, the maximum over all integers
¢ of the quantity

{z |z < ¢ and 7(z) > i}|. (17)

For example, for the multiplexed shift register inter-
leavers described in Section 2.6.1, the memory required
is no more than the sum of the lengths of the shift reg-
isters.

We argue below that the quantity (17) is indepen-
dent of 7, and that it is both a lower and an upper
bound on the memory needed to implement 7. For
the latter, we describe a hardware implementation that
uses exactly this many memory cells.

We are also interested in minimizing the memory
usage over all causal shifts 7. We show that memory
usage is minimized by the unique minimal causal shift
of 7. Thus the minimal causal shift of a given inter-
leaver optimizes both memory and total delay among
all causal shifts of .

As above, we will find it mathematically convenient
to ignore causality. For any interleaver m, causal or
not, and z,y € Z, define

def 1 ify=m(x)
- 0 otherwise,

Mmax(%,7) def Z ex(z,y) — Z ex(z,9).

z <1 z>1
y>J y<j

ex(z,y)

Intuitively, if we draw arrows from z to w(z), then
M (i,7) is the number of arrows going from 7 — 1 or
before to j or after less the number of arrows going
from ¢ or after to 7 —1 or before. Because of periodicity,
there are only finitely many such arrows, so mx(3,7)
exists. Note that m,(7,¢) is the number of arrows that
cross over a vertical line between ¢ — 1 and 7 from left
to right less the number that cross from right to left.
If 7 is causal, there are no arrows that cross from right
to left; as already observed, in this case m,(7,i) is a
lower bound on the number of memory cells required
to implement 7.

The following are some basic properties that follow
from these definitions.

Lemma 4
$7y7i7j7 k7m7

For any interleaver w and integers

(Z) er—l(xay) = e‘”(yvx);

(%) €promopm(T,y) = ex(z +m,y — k);
(iit) M= (i,) = —mx(5,4);
(iv) m-(i+m,j+ k) =mx(i,j) +m —k;
(v) Mproropm(i,7) = mx(i,j) +m + k.
Proof. All these properties follow in a straightfor-

ward way from the definitions. We prove (iv) explicitly.
First,

ma(i,j+1) = Y ex(zy)— Y, ex(z,y)
z <1 z>1
y>2j+1 y<j+1
= Z e,r(x,y) - Z qu($,y)
z <1 z <1
y2>7 y=7
_(Z eﬂ(xiy) + Z eﬂ'(way))
z>1 z>1
y<j y=7
= Z e.,,(a:,y) - Z 6."(511',:1/)
<1 z>1
y2>7 y<j
—ZBW(QE,]')— ex(z,])
r<1 z>1
= mw(la])_ze"f(m’])
= mw(iaj)_l
By iterating,
mx(i,j+k) = ma(i,j) — k.

Using this fact and (iii),

m(i+m,j+k) = ma(i+m,j)—k

—Mg-1(f, i +m) — k

—Mg-1(f,0) +m—k
= mg(i,J)+m—k.

O

It follows immediately from Lemma 4(iv) that for
all 4,5 € Z, mg(i,7) = m«(j,7), thus this quantity
depends only on w. We denote this number by m.

Define a cycle of an interleaver 7 to be a minimal
nonempty set of elements of Z closed under 7 and 7~ 1.
A cycle is nontrivial if it contains more than one el-
ement. If 7 is causal, then every nontrivial cycle is
infinite. If 7 is minimal causal, then it has trivial cy-
cles as well.

Example 5 The minimal causal interleaver

E+4 ifk=0mod 3,
ko k+2 ifk=1mod3,
k if k=2 mod 3

has two nontrivial cycles

{...,—6,-2,0,4,6,10,12,16,18,22,24, ...}
{...,-5,-3,1,3,7,9,13,15,19,21,25,...} (19)

as well as infinitely many trivial cycles

Tt {_7}7 {_4}7 {_1}7 {2}’ {5}7 {8}7 {11}7 {14}7 T
O

It is apparent that the number of nontrivial cycles of
a causal interleaver 7 is just m., since for any 7, there
is exactly one z € Z in each nontrivial cycle with z < ¢
and 7(z) > .

Theorem 6 (i) If m is minimal causal, then m, is
minimum among all causal shifts of m. Thus the
minimal causal shift minimizes both the total delay
and memory among causal shifts of a given inter-
leaver.

(ii) For a minimal causal block interleaver w with block
I=[0,p—1] and 7(I) = [m,m+p—1], mz =m.

(iii) For a causal interleaver m, m, memory cells are
necessary and sufficient for implementing .

Proof. (i) Let = be minimal causal. It follows from
Lemma 4(v) that mpso, = my + k, thus m, is mini-
mum among causal shifts of 7.

(i) Let us call an interleaver p zero-memory if m, =
0. By Lemma 4(v), every interleaver m has a unique
(up to strong shift equivalence) zero-memory shift

© = D ™M or.

Then

L, = L —mg.
If w is minimal causal, then £; = 0, therefore {_, =
—m,. The result for block interleavers follows from
this and the additional observation that permutation
interleavers are zero-memory: at any block boundary,
there are no arrows crossing in either direction.

(iii) Let 7 be causal. We have already argued that
my is a lower bound on memory usage. We now de-
scribe a simple hardware implementation of 7 using
synchronous clocked logic that achieves this bound.

Our device uses m, shift registers of length 1, one for
each nontrivial cycle of 7. The idea is that at any time
1, the cell associated with a given cycle ¢ holds the sym-
bol that was input at time z < 7 and will be output
at time m(x) > 4, where z lies on ¢. Since 7(z) lies
on c¢ as well, the symbol vacates the cell at the same
time the next symbol comes in. Trivial cycles require
no memory; the symbols are passed directly from input
to output with no time delay.

For example, consider the interleaver of Example
5. Let ¢ and d be the shift registers associated with
the nontrivial cycles (18) and (19), respectively. The
following is a protocol that tells at each time instant
which register the input should be written to and the
output should be read from.

Time Write to/Read from

-3 d
-2 c

|
—
o,
=z
=
@
a
o+

direct
c
d
direct
d
c

O 00~ Uik WN O

[
o

Note that this protocol is periodic with period 6.

In general, the protocol will be periodic with period
some multiple of p, say np, which could be exponential
in the number of cycles. A basic hardware implementa-
tion simply requires a cyclic counter of period np with
combinatorial logic to convert the counter value to a
memory address as described by the table above. 0O

As noted, the period np can be exponential in the
number of cycles, which could make this implementa-
tion impractical. Moreover, the counter must maintain
its own state, which requires additional internal mem-
ory of size log(np). We present two alternative imple-
mentations that address these issues. The first stores
symbols as just described, but uses an array of smaller
cyclic automata, each no larger than the number of
cycles, to generate the memory addresses. This imple-
mentation uses the traditional memory architecture, in
which each symbol is stored at a fixed addressable lo-
cation; this makes it necessary to maintain extra state

information beyond the minimum required to identify
the current interleaver phase {0,1,...,p—1}. Our sec-
ond implementation uses a shift register architecture
and only a cyclic counter of length p.

Method 1 For each z € Z, let ¢, denote the cycle
of m occupied by z. For any residue z mod p, consider
the sequence of cycles

<3 Ci—2p, Ci—p, Ci; Citp, Cit2p, Cit3py - - - (20)

associated with successive integers congruent to
1 mod p. If one of these cycles is trivial, then by period-
icity, they all are. In this case we just mark ¢ as repre-
senting only trivial cycles. The protocol will maintain
a counter modulo p, and at time instants congruent
to 2 mod p will pass the input symbol directly to the
output.

Otherwise, all cycles in the sequence (20) are non-
trivial. We claim that the sequence is periodic with
period at most the number of cycles. To see this, sup-
pose ¢ > 0 is the minimum number such that for some
j congruent to ¢ mod p, both 7 and j + ¢p lie on the
same cycle. Then ¢ is at most the number of cycles,
and j + gp = 7#™(j) for some m, since that is what it
means for 7 and 7 + gp to lie on the same cycle. Then
by periodicity,

(G +p) = 7"({)+p = j+ep+p,

so 7+p and j+p+gp lie on a common cycle as well. It
follows that the sequence (20) is periodic with period
q. In this case we associate with the residue i a cyclic
finite-state automaton that tells at each successive inte-
ger congruent to : mod p the next cycle in the sequence
(20). In fact, the same automaton can be used for all
residues of integers on a common cycle; in other words,
the cyclic automata associated with 7*(z) mod p and
z mod p are the same, albeit perhaps out of phase. Ev-
ery nontrivial cycle is associated with exactly one state
of exactly one such automaton, so that the sum of the
sizes of the cyclic automata is just m,, the number of
nontrivial cycles.

In the interleaver of Example 5, p = 3. The residue
2 mod 3 is marked as direct: the input is passed di-
rectly to the output at any time instant congruent to
2 mod 3. The residues 0 mod 3 and 1 mod 3 are both
associated with the cyclic automaton ¢ < d, except
out of phase, indicating that at times...,0,3,6,9,...
the appropriate cycles are ..., c,d,c,d,... respectively,
and at times ...,1,4,7,10,... the appropriate cycles
are ...,d,c,d,c,... respectively.

Method 2 Consider a single shift register of max-
imum length m, implementing a queue in which inser-

tions are allowed at any position. An insertion at posi-
tion k causes the values currently occupying positions
k—1,k—2,...,2,1,0 to be shifted down, producing
the symbol currently at position 0 as output, while the
remainder of the register remains fixed. If ¥ = 0, then
the new symbol is sent directly to the output.

At each time ¢, a position k; is selected and the
new symbol inserted at that position in the queue. In-
tuitively, k; is chosen so that the new symbol will be
inserted behind all stored symbols that must be output
before time 7(¢). This method essentially implements
a priority queue in which the priorities are the output
times. However, we need not store the actual priorities;
since the pattern of insertions is cyclic with period p,
we can just calculate once and for all the insertion po-
sition for each residue modulo p. Specifically, this is

ki = >

r <1
i<y < 7(3)

= Mg— E ex(z,y). (21)
z <1
y 2 w(4)

ex(z,y)

It can be seen from (21) that the length of the shift
register never exceeds m..

Continuing Example 5, we find that the appropriate
insertion points are kg = 2, k1 = 1, and ks = 0.

A dual implementation would insert symbols at one
end of the queue and extract them from the appropriate
position in the middle. This is essentially the above
implementation for the interleaver

Az, — 7 (=)

executed backwards.

5 Future Research

A number of interesting questions present them-
selves, perhaps the most interesting of which is to try
to apply these techniques to ascertain optimal latencies
for convolutional (nonblock) interleavers.

Acknowledgments

The authors would like to thank Subramanya
P. N. Rao, Moss Sweedler, and Stephen Wicker for
many helpful discussions on interleaving. The support
of the National Science Foundation under grants NCR-
9520981 and CCR-9317320 is gratefully acknowledged.

References

1]

(2]

(3]

(4]

(5]

[6]

[7]

C. Berrou, A. Glavieux, and P. Thitimajshima. Near
Shannon limit error-correcting coding and decoding:
Turbo codes. ICC, pages 1064-1070, 1993.

S. Dolinar and D. Divsalar. Weight distributions for
turbo codes using random and nonrandom permuta-
tions. Technical Report TDA Progress Report 42-121,
JPL, August 1995.

J. G. David Forney. Burst-correcting codes for the clas-
sic bursty channel. JEEE Transactions on Communica-
tions, COM-19(10):772-781, October 1971.

J. George C. Clark and J. B. Cain. Error-Correction
Coding for Digital Communications. Plenum Press,
1981.

J. L. Ramsey. Realization of optimum inter-
leavers. IEEE Transactions on Information Theory, IT-
16(3):338-345, May 1970.

I. Richer. A simple interleaver for use with Viterbi de-
coding. IEEE Transactions on Communications, COM-
26(3):406-408, March 1978.

S. B. Wicker. Error Control Systems for Digital Com-
munications and Storage. Prentice Hall, Englewood
Cliffs, N7, 1995.

10

