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This thesis deals with four models of stochastic dynamics on relevant large finite

systems.

The first one is the contact process on random graphs on n vertices with

power law degree distributions. If the infection rate is λ, then nonrigorous mean

field calculations suggest that the critical value λc of the infection rate is positive

when the power α is larger than 3. Physicists seem to regard this as an estab-

lished fact, since the result has recently been generalized to bipartite graphs in

[25]. Here, we show that the critical value λc is zero for any value of α larger than

3, and the contact process starting from all vertices infected, with a probability

tending to 1 as n increases to infinity, maintains a positive density of infected

vertices for time at least exp(n1−δ) for any positive δ. We also establish the ex-

istence of a quasi-stationary distribution in which a randomly chosen vertex is

infected with probability ρ(λ). It is expected that ρ(λ) is asymptotically Cλβ as

λ decreases to zero for some positive constants C and β. Here we show that β

lies between α − 1 and 2α − 3, and so β is larger than 2 for any α larger than 3.

Thus even though the graph is locally tree-like, β does not take the mean field

critical value which equals 1.

The second one is a model for gene regulatory networks that is a modifica-

tion of Kauffmann’s [30] random Boolean networks. There are three parameters:



n = the number of nodes, r = the number of inputs to each node, and p = the

expected fraction of 1’s in the Boolean functions at each node. Following a stan-

dard practice in the physics literature, we use an appropriate threshold contact

process on a random graph on n nodes, in which each node has in degree r, to

approximate its dynamics. We show that if r is larger than 2 and r · 2p(1− p) is

larger than 1, then the threshold contact process persists for a long time, which

corresponds to chaotic behavior of the Boolean network. We prove that the per-

sistence time is at least exp
(
cnb(p)

)
with b(p) > 0 when r · 2p(1 − p) > 1, and

b(p) = 1 when (r − 1) · 2p(1− p) > 1.

The third one is related to a gossip process defined by Aldous [3]. In this

process, space is a discrete N ×N torus, and the state of the process at time t is

the set of individuals who know the information. Information spreads from a

vertex to its nearest neighbors at rate 1/4 each and at rateN−α to a vertex chosen

at random from the torus. We will be interested in the case in which α is smaller

than 3, where the long range transmissions significantly accelerate the time at

which everyone knows the information. We prove three results that precisely

describe the spread of information in a slightly simplified model on the real

torus. The time until everyone knows the information is asymptotically (2 −

2α/3)Nα/3 logN . After an appropriate random centering and scaling by Nα/3,

the fraction of informed population is almost a deterministic function which

satisfies an integro-differential equation.

The fourth and the final one is about the discrete time threshold-two con-

tact process on a random r-regular graph on n vertices. In this process, a vertex

with at least two occupied neighbors at time twill be occupied at time t+1 with

probability p, and vacant otherwise. We use a suitable isoperimetric inequality



to show that if r is larger than 3 and p is close enough to 1, then starting from

all vertices occupied, there is a positive density of occupied vertices up to time

exp(c(p)n) for some positive constant c(p). In the other direction, another ap-

propriate isoperimetric inequality allows us to show that there is a decreasing

function ε2(p) so that if the number of occupied vertices in the initial configu-

ration is smaller than ε2(p)n, then with high probability all vertices are vacant

at time 2 log n/ log(2/(1 + p)). These two conclusions imply that the density of

occupied vertices in the quasi-stationary distribution (defined in Chapter 5) is

discontinuous at the critical probability pc ∈ (0, 1).



BIOGRAPHICAL SKETCH

Shirshendu Chatterjee was born in November, 1982 in Kolkata, India. After

completing schooling from Rahara Ramakrishna Mission Boys’ Home, he joined

the Bachelor of Statistics (B.Stat) program at the Indian Statistical Institute (ISI)

in July, 2001. Upon graduating in 2004 with a Bachelor’s degree, he decided to

continue studying at the same institute for a Master of Statistics (M.Stat) degree.

After spending five wonderful years at ISI, Shirshendu joined the School of

Operations Research and Information Engineering (ORIE) of Cornell University

in August, 2006 to pursue his Ph.D. with concentration in applied probability

and statistics.

Shirshendu has accepted an instructor position in the Courant Institute of

Mathematical Sciences, New York University and he will join there soon after

completing his Ph.D.

iii



To my family

iv



ACKNOWLEDGEMENTS

At the end of my journey as a graduate student in the vast ocean of unknown,

foremost, I would like to convey my deepest appreciation, sincere regards and

gratitude to my advisor Professor Richard T. Durrett, who has been much more

than an amazing mentor and great collaborator. Like a guiding compass for a

sailor, his constant advice and guidance have enabled me not to lose direction

in research and also have greatly enriched my research . His endless enthu-

siasm and deep insight into the subject have encouraged and supported me

throughout my entire PhD life and made me realize that academia can be inci-

sive, invigorating and fun all at once. Above all, he is among the nicest persons

I have been fortunate enough to meet in my life so far. I would hardly ever have

enough words to thank him.

Professor Laurent P. Saloff-Coste and Professor Adrian Lewis deserve spe-

cial thanks for agreeing to be in my special committee. I have learnt a lot from

attending their classes. The discussions about my research with them have al-

ways been exciting and in many occasions, their prompt feedback and valuable

suggestions have given me new insights.

I had the privilege to take numerous outstanding courses at Cornell Univer-

sity which have immensely enhanced my knowledge in Mathematics and Opti-

mization. Expounding on the quality of education that I have received from the

faculty of Cornell University would be impossible to fit within these pages. So

I refrain from the brazen attempt and thank all of my instructors for their excel-

lent lessons. I am also particularly grateful to Professor Gennady Samorodnit-

sky for his continuous encouragement and precious advice. I am grateful to the

entire OR & IE department at Cornell University for providing a stimulating

v



yet friendly environment for research. In addition, I am earnestly thankful to

the department for the opportunity to be the summer instructor for the course

ORIE 3510/5510, as I have gained invaluable teaching experience from it. I will

also never forget the efficient service and kind help that I have received from

the department staff members.

I consider myself fortunate to be a part of the Indian Statistical Institute, an

exceptional place to learn the basics and prepare for a journey in the academia,

and to learn mathematics and statistics from devoted teachers including Pro-

fessors S.C. Bagchi, Arup Bose, Alok Goswami, A.R. Rao, B.V. Rao, K. K. Roy

and Debashis Sengupta. They taught me to Love mathematics as a young man,

and whose encouragement, in spite of the difficulties I posed as a student, have

given me the necessary motivation and confidence to achieve my goals. I will

remain grateful to them forever.

I am specially indebted to my Master thesis advisors Professor Probal

Chowdhury and Professor Debasis Sengupta who are responsible for my ’real’

introduction to do research and who have inspired me to go for academia.

The role of my wonderful friends in my journey goes far beyond than what

can be reciprocated by a mere thanks. Without their support and friendship

it would have been impossible for me to travel across the treacherous journey

of PhD. Parthanil Roy and Soumik Pal have been extremely helpful during my

application for graduate schools. Their words of advice and encouragement

throughout the initial stages of my PhD. have been an important guiding force

for me. Talking to ever smiling Arijit and humorous Bikramjit has always been

a pure joy. Sweet melodies of Aritro and many interesting discussions with

him, great companionship from Abhimanyu, Amrita, Anandarup, and all those

vi



laughs and nice experiences with my friends there have made my years in Ithaca

a cherished memory.

I consider myself extremely lucky to have Arnab and Partha by my side

as true friends and helpful comrade throughout the entire journey of my PhD.

Even though I was miles apart from them, the stimulating discussions on topics

ranging from derivation of probability estimates to recent documentaries and

movies are too good to forget. Samriddhi, Sayantani, Sirshendu and Subarata

have always stood by me at best and worst of times.

Last but not the least, I dedicate this thesis to the architects of this dream -

my family members. In the insecure world of research, I am really ecstatic to

have my sweetheart Roshni, who is always there for me, both in buoyant and

dark hours, to listen patiently to my complaints and stressed-out monologues

and to rescue me out of my melancholic moods. I am also extremely fortunate

to have my parents, who, with all their endurance and perseverance, have sur-

mounted the daunting task of raising me with my severe visual impairment,

and my brother Saptarshi, whose empathy has boosted me in every possible

way. They have instilled in me a sense of self confidence and helped me come

out of hard times. Though they do not understand most of my math, their love,

support and sacrifice are hidden in every page of this dissertation.

vii



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Overview 1
1.1 Contact process on power-law random graphs . . . . . . . . . . . 1
1.2 Random Boolean networks . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Aldous’ Gossip Process . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Threshold-two contact process on random regular graphs . . . . . 8

2 Contact process on power-law random graphs 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Persistence of infection at stars . . . . . . . . . . . . . . . . . . . . 20
2.3 Density of infected stars . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Upper bound in Theorem 2 . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Proof of connectivity and diameter . . . . . . . . . . . . . . . . . . 42

3 Random Boolean networks 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Aldous’ Gossip Process 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Properties of the balloon branching process At . . . . . . . . . . . 86
4.3 Hitting times for At and Ct . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Limiting behavior of Ct . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Asymptotics for the cover time . . . . . . . . . . . . . . . . . . . . 120

5 Threshold-two contact process on random regular graphs 121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Sketch of the proofs of the isoperimetric inequalities. . . . . . . 130

5.2.1 Isoperimetric inequality in Proposition 5.1.5 . . . . . . . . 131
5.2.2 Isoperimetric inequality in Proposition 5.1.6 . . . . . . . . 133

5.3 Behavior of ξt starting from a small occupied set . . . . . . . . . . 135
5.4 The critical value pc . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5 First order phase transition at pc . . . . . . . . . . . . . . . . . . . . 143
5.6 Proof of the first isoperimetric inequality . . . . . . . . . . . . . . 145
5.7 Proof of the second isoperimetric inequality . . . . . . . . . . . . . 150
5.8 Probability estimates for e(U,U c) and |∂U | . . . . . . . . . . . . . . 155

viii



Chapter 1

Overview

In recent years it has become increasingly clear that to effectively understand

complex stochastic systems, it is crucial to analyze the interplay between the

underlying spatial structure and the stochastic dynamics of the system. It has

been unanimously established that many social, biological and technological

systems are complex networks. However after the structures have been esti-

mated and the geometric properties of the graphs such as their ”small world”

nature have been studied, there remains the question: how does the structure

of the networks affect the behavior of processes taking place on the networks?

This thesis considers several processes in the context of epidemiology, biology

and percolation of information that take place on large finite networks.

1.1 Contact process on power-law random graphs

There is empirical evidence that many real-world communication networks,

such as the Internet network [22], social networks [39], human sexual contact

networks [36] etc., have degree distributions with power-law tails, i.e. the degree

of a typical vertex is k with probability

pk ∼ Ck−α as k →∞ for some constants C, α > 0. (1.1.1)

However, in addition to estimating the degree distributions, one must consider

the implications for the behavior of processes that take place on these networks.

1



2

One of the standard models used in the study of viral infections is the contact

process, also called the susceptible-infected-susceptible (SIS) model, which has been

studied extensively for bounded degree homogeneous graphs [35, Part I]. In this

model, every vertex of the underlying graph is either infected or healthy (but

susceptible). An infected vertex becomes healthy at rate 1 independent of the

status of other vertices, and a healthy vertex becomes infected at a rate equal to

the infection rate, λ, times the number of infected neighbors. In order to study

epidemics on real-world networks, it is natural to consider the contact process

on the networks with power-law degree distributions.

Motivated by this, we have studied the behavior of the contact process with

infection rate λ on a random graph Gn on n vertices with power-law degree

distributions, i.e. the degree di of any vertex i satisfies (1.1.1).

Nonrigorous mean field predictions [43, 44, 45] suggest that if the power

α > 3 (which is equivalent to the finite second moment condition for the degree

distribution), then the critical value λc of the infection rate is positive, i.e. for

small enough infection rate, everyone heals quickly. Also the critical value in-

creases to 1 as α increases. Physicists seem to regard this as an established fact,

since the result has recently been generalized to bipartite graphs [25]. We show

that the critical value λc for the contact process on Gn is zero for any α > 3. So

there is always a chance of an epidemic even if the infection rate is small.

Ours was not the first result in this direction. The contact process on a gen-

eralization of the preferential attachment graph was considered by Berger, Borgs,

Chayes, and Saberi [6]. They argue that the critical value λc = 0 for their graph

model. Their arguments also suggest that the infection on such a graph model
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may persist for a time longer than exp
(
cn1/(α−1)

)
for some constant c > 0, when

the associated degree distribution satisfies (1.1.1).

Based on the behavior of the contact process on (Z mod n) [19, 21] and on

(Z mod n)d [37], it is natural to conjecture that the right lower bound for the

maximum possible survival of the infection for the contact process on Gn is

exp(cn) for some constant c > 0. Here we almost prove the right lower bound

for the persistence time: with high probability the contact process onGn starting

from all infected vertices maintains a positive density of infected vertices till

time exp(n1−δ) for any δ > 0.

We also establish the existence of a quasi-stationary distribution in which a

randomly chosen vertex is infected with probability ρ(λ). It is expected that for

some critical exponent β > 0, ρ(λ) ∼ C(λ − λc)β as λ decreases to λc. We prove

α − 1 ≤ β ≤ 2α − 3. Our bounds for β disproves the nonrigorous mean field

predictions about the critical exponent as well.

In the physics literature the mean field arguments are widely used and be-

lieved to give correct results specially in case of locally tree-like graphs. But

they lead to erroneous conclusions for the contact process on Gn, even though

the random graph Gn is locally tree-like.

1.2 Random Boolean networks

Experimental evidence [1] suggests that the complex kinetics involved in dif-

ferent steps of a transcriptional pathway in real biological systems are, in many
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cases, reasonably well approximated by much simplified Boolean network mod-

els. In these models, each gene is represented by a node of a directed network

and each node has one of two states: ‘on’ (i.e. expressing its target protein) or

‘off’. The state of every node is simultaneously updated according to some func-

tion of its inputs, which approximates the action of activators (or inhibitors), i.e.

proteins that act to increase (or decrease) expression of a given gene.

Random Boolean networks were originally developed by Kauffman [30] an

abstraction of genetic regulatory networks. Recently similar approaches have

been used in [29] and [33] to model the cell-cycle and transcriptional networks

for yeast respectively. We consider a modification of Kauffman’s model. There

are three parameters: n = the number of nodes, r = the number of inputs to

each node, and p = the expected fraction of 1’s in the Boolean functions at

each node. The state of a node x ∈ Vn ≡ {1, 2, . . . , n} at time t = 0, 1, 2, . . .

is ηt(x) ∈ {0, 1}, and each node x receives input from r uniformly chosen

distinct nodes y1(x), . . . , yr(x) ∈ Vn \ {x}, which are called input nodes for

x. We put oriented edges to each node from its input nodes to get a ran-

dom graph Gn having uniform distribution over the collection of all directed

graphs on the vertex set Vn in which each vertex has in-degree r. Once cho-

sen the graph remains fixed through time. The updating rule for node x is

ηt+1(x) = fx(ηt(y1(x)), . . . , ηt(yr(x))), where the values fx(v), x ∈ Vn, v ∈ {0, 1}r,

chosen at the beginning and then fixed for all time, are independent and = 1

with probability p.

An important question for these Boolean network models is: when is the net-

work ‘chaotic’ (i.e. the values (ηt(x), x ∈ Vn) fluctuate for a long time), and when is
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it ‘ordered’ (i.e. those values stabilize quickly)? Real biological systems avoid the

chaotic phase as expected, see e.g. [31, 46, 42]. A number of simulation studies

have investigated the behavior of these Boolean network models, see e.g. [2] for

a survey. The degenerate case of r = 1 has been studied [24] in detail.

Derrida and Pomeau [15] have argued that a network is ‘chaotic’, if r · 2p(1−

p) > 1, and ‘ordered’, if r · 2p(1 − p) < 1. To explain their conclusion, we have

considered another process ζ ≡ {ζt(x) ∈ {0, 1} : t ≥ 1, x ∈ Vn}, which they have

called the annealed approximation, where ζt(x) = 1 if and only if ηt(x) 6= ηt−1(x).

Following a standard practice in the physics literature, we have used a threshold

contact process to approximate ζ.

P (ζt+1(x) = 1| ζt(y1(x)) + · · ·+ ζt(yr(x)) > 0) = 2p(1− p) ≡ q.

It is widely accepted that the condition for prolonged persistence of the

threshold contact process is qr > 1. As in Section 1.1, the maximum possible per-

sistence time is exp(γn) for some constant γ > 0. We prove that if q(r − 1) > 1,

then the threshold contact process on Gn, starting from the all-one configura-

tion, persists for time ≥ exp(γn) for some constant γ > 0.

The ‘r−1’ in the condition occurs because we use an “isoperimetric inequal-

ity” to bound a worst-case scenario. We have also shown that if qr > 1, then the

threshold contact process onGn, starting from the all-one configuration, persists

for time ≥ exp
(
γnB(q)

)
, where B(q) ≈ (1/8) log(qr)/ log(r).

The quasi-stationary density of 1s’ is given by the survival probability of an

appropriate branching process.
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1.3 Aldous’ Gossip Process

In the last few years there has been a lot of interest in studying many real-world

networks including social and professional networks. In these systems informa-

tion sometimes reaches one part of the network, and then gradually circulates in

the entire network. Exchange of information during insider trading in the finan-

cial market and gossip percolation in a society are two such examples. In order to

study the percolation of information through networks one of the main techni-

cal tools is the first-passage percolation process associated with the communication

strategy of the network agents.

In this context, Aldous [3] considered a first-passage percolation process,

which he called short-long FPP, on the N × N torus. In this process, the state

of any vertex is either 1 (informed) or 0 (uninformed). Once a vertex gets the

information, it never loses it. If x is informed, each of its uninformed neighbors

gets the information at rate 1/4. In addition, at rateN−α it sends the information

to a vertex uniformly chosen from the torus.

The most important question in percolation of information is: how quickly

does the information spread and if TN is the cover time, i.e. the time when everyone has

got the information, then how does it grow with the size of the network? In order to

have a deeper understanding of the percolation process and to analyze its con-

sequences, one also needs to know: what are the appropriate centering and scaling

factors for the size of the set of informed individuals and after the right centering and

scaling how does the proportion of informed individuals increase from 0 to 1?

Here we answer these questions for the short-long FPP process, but for a
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slightly simplified model on the (real) torus (R mod N)2, which we call “bal-

loon process” Ct. The balloon process starts with one “center” chosen uniformly

from the torus at time 0. When a center is born at x, a disk with radius 0 is put

there, and its radius grows deterministically so that the area of the disk after

time s is s2/2. New centers are born at rate N−α|Ct|. The location of each new

center is chosen uniformly from the torus. A new center landing on Ct has no

contribution. For the balloon process we have:

• if α ≥ 3 and TN is the cover time, then TN/N converges in distribution to

a limit, which is a point mass at
√
π if α > 3,

• if α < 3, then there is a random variable M so that for ψ(t) := Nα/3[(2 −

2α/3) logN − logM + t], N−2|Cψ(·)| converges in probability to a determin-

istic limit h(·) satisfying

h(t) = 1− exp

(
−
∫ t

−∞
h(s)

(t− s)2

2
ds

)
uniformly on compact time sets.

• if α < 3, then TN/Nα/3 logN converges to 2− 2α/3.

So, the long range transmission significantly accelerates the cover time only

when α < 3. In that case, there is a cutoff phenomenon, as the time that the

fraction of covered area takes to reach a small level ε is O(Nα/3 logN), whereas

the time that it takes to increases from ε to 1 is O(Nα/3), which is much smaller

than the previous time.
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1.4 Threshold-two contact process on random regular graphs

In many situations, e.g. social networks, random graphs are better models than

regular lattices for the spatial structure of the underlying system. Because of

this, particle systems on random graphs need to be studied, as they often behave

much differently from their Euclidean analogues.

Inspired by our study of random Boolean networks, and the fact that the

sexual reproduction model has been studied extensively on regular lattices, see

[20, 38], we study the behavior of the threshold-two contact process on random

undirected r-regular graphs on n vertices. In this discrete time system, the state

of a site x ∈ Vn := {1, 2, . . . , n} at time t = 0, 1, . . ., ζt(x), is either 0 (vacant) or

1 (occupied). ζt+1(x) = 1 with probability p, if at least two of the neighbors of x

are occupied at time t, and ζt+1(x) = 0 otherwise.

Like many other particle systems, the first question is whether there is any

phase transition in the behavior of the system. The next concern is whether

there is any quasi-stationary distribution as in the case of the contact process

on power-law random graphs, and if yes, what are the properties of the corre-

sponding density? Here we address these questions.

Using appropriate isoperimetric inequalities we prove that that the criti-
cal probability pc, which defines the boundary between rapid convergence to

all-zero configuration within logarithmically small time and exponentially pro-

longed persistence of changes, lies strictly between 0 and 1. We also show that

for p > pc there is a quasi-stationary distribution with density u(p) > 0. Note

that u(p) is an analogue of the density of occupied vertices in the upper invari-
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ant measure for the contact process with sexual reproduction on regular lattices,

which is conjectured to have a continuous phase transition (see Conjecture 1 and

heuristic argument following that in [20]). Here we show

inf
p>pc

u(p) > 0.

So, unlike the predicted behavior of its Euclidean analogue, the quasi-stationary

density of the threshold-two contact process on a random regular graph is dis-

continuous at the critical value pc.



Chapter 2

Contact process on power-law random

graphs

2.1 Introduction

In this chapter we will study the contact process on random graphs with a

power-law degree distribution, i.e., for some constant α, the degree of a typ-

ical vertex is k with probability pk ∼ Ck−α as k → ∞. Following Newman,

Strogatz and Watts [40, 41], we construct the random graph Gn on the vertex

set {1, 2, . . . , n} having degree distribution p = {pk : k ≥ 0} as follows. Let

d1, . . . , dn be independent and have the distribution P (di = k) = pk. We condi-

tion on the event En = {d1 + · · · + dn is even} to have a valid degree sequence.

As P (En) → 1/2 as n → ∞, the conditioning will have a little effect on the dis-

tribution of di’s. Having chosen the degree sequence (d1, d2, . . . , dn), we allocate

di many half-edges to the vertex i, and then pair those half-edges at random.

We also condition on the event that the graph is simple, i.e., it neither contains

any self-loop at some vertex, nor contains multiple edges between two vertices.

It can be shown (see e.g. [16, Theorem 3.1.2]) that if the degree distribution p

has finite second moment, i.e., if α > 3, the probability of the event that Gn is

simple has a positive limit as n → ∞, and hence the conditioning on this event

will not have much effect on the distribution of di’s.

We will be concerned with epidemics that take place on these random

10
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graphs. First consider the SIR (susceptible-infected-removed) model, in which

sites begin as susceptible, and after being infected they get removed, i.e., be-

come immune to further infection. In the simplest discrete-time formulation,

an infected site x at time n will always be removed at time n + 1 and for each

susceptible neighbor y at time n x will cause y to become infected at time n + 1

with probability p, with all of the infection events being independent.

In this case the spreading of the epidemic is equivalent to percolation. To

compute the threshold pc for a large, i.e., O(n), epidemic to occur with positive

probability, one notes that for a randomly chosen vertex x, the number of ver-

tices at distance m from x, Zm, is approximately a two-phase branching process

in which the number of first generation children has distribution p, but in the

second and subsequent generations the offspring distribution is the size biased

distribution q = {qk : k ≥ 0} satisfying

qk−1 =
kpk
µ

where µ =
∑

k kpk. (2.1.1)

This occurs because vertices with degree k are k times as likely to be chosen for

connections, and the edge that brings us to the new vertex uses up one of its

degrees. For more details on this and the facts that we will quote in the next

paragraph, see [16, Chapter 3].

With the above observation in hand, it is easy to compute the critical thresh-

old for the SIR model. Let ν be the mean of the size biased distribution,

ν =
∑
k

kqk. (2.1.2)

Suppose we start the infection at a randomly chosen vertex x. Now if Ym is

the number of sites at distance m from x that become infected, then EYm =
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pµ(pν)m−1. So the epidemic is supercritical if and only if p > 1/ν. In particular,

if pk ∼ Ck−α as k → ∞ and α ≤ 3, then ν = ∞ and pc = 0. Conversely if α > 3

then ν <∞ and pc = 1/ν > 0. Hence for the SIR epidemic model on the random

graph Gn with power-law degree distribution, there is a positive threshold for

the infection to survive if and only if the power α > 3.

We will study the continuous-time SIS (susceptible-infected-susceptible)

model and show that its behavior differs from that of the SIR model. In the

SIS model, at any time t each site x is either infected or healthy (but suscepti-

ble). We often refer to the infected sites as occupied, and the healthy sites as

vacant. We define the functions {ζt : t ≥ 0} on the vertex set so that ζt(x) equals

0 or 1 depending on whether the site x is healthy or infected at time t. An in-

fected site becomes healthy at rate 1 independent of other sites and is again

susceptible to the disease, while a susceptible site becomes infected at a rate λ

times the number of its infected neighbors. Harris [27] introduces this model

on the d-dimensional integer lattice and named it the contact process. See [35]

for an account of most of the known results. We will make extensive use of the

self-duality property property of this process. If we let ξt ≡ {x : ζt(x) = 1} to be

the set of infected sites at time t, we obtain a set-valued process. If we write ξAt

to denote the process with ξA0 = A, then the self-duality property says that

P (ξAt ∩B 6= ∅) = P (ξBt ∩ A 6= ∅) (2.1.3)

for any two subsets A and B of vertices.

Pastor-Satorras and Vespignani [44, 43, 45] have made an extensive study of

this model using mean-field methods. Their nonrigorous computations suggest

the following conjectures about λc the threshold for “prolonged persistence” of
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the contact process.

• If α ≤ 3, then λc = 0.

• If 3 < α ≤ 4, then λc > 0 but the critical exponent β, which controls the

rate at which the equilibrium density of infected sites goes to 0, satisfies

β > 1.

• If α > 4, then λc > 0 and the equilibrium density ∼ C(λ− λc) as λ ↓ λc, i.e.

the critical exponent β = 1.

Notice that the conjectured behavior of λc for the SIS model parallels the results

for pc in the SIR model quoted above.

Gómez-Gardeñes et al. [25] have recently extended this calculation to the

bipartite case, which they think of as a social network of sexual contacts between

men and women. They define the polynomial decay rates for degrees in the two

sexes to be γM and γF , and argue that the epidemic is supercritical when the

transmission rates for the two sexes satisfy

√
λMλF > λc =

√
〈k〉M 〈k〉F
〈k2〉F 〈k2〉M

where the angle brackets indicate expected value and k is shorthand for the

degree distribution. Here λc is positive when γM , γF > 3.

Our first goal is to show that λc = 0 for all α > 3. Our proof starts with the

following observation due to Berger, Borgs, Chayes, and Saberi [6]. Here, we

follow the formulation in [16, Lemma 4.8.2].



14

Lemma 2.1.1. Suppose G is a star graph with center 0 and leaves 1, 2, . . . , k. Let At be

the set of vertices infected in the contact process at time t when A0 = {0}. If kλ2 →∞,

then P (Aexp(kλ2/10) 6= ∅)→ 1.

Based on results for the contact process on (Z mod n) [19, 21], and on

(Z mod n)d [37], it is natural to conjecture that in the contact process onGn, with

probability tending to 1 as n→∞, the infection survives for time ≥ exp(cn) for

some constant c. It certainly cannot last longer, because the total number of

edges is O(n), and so even if all sites are occupied at time 0, there is a constant

c so that with probability ≥ exp(−cn) all sites will be vacant at time 1. Our next

result falls a little short of that goal.

Theorem 2.1.2. Consider a Newman, Strogatz and Watts random graphs Gn on the

vertex set {1, 2, . . . , n}, where the degrees di satisfy P (di = k) ∼ Ck−α as k → ∞

for some constant C and some α > 3, and P (di ≤ 2) = 0. Let {ξ1
t : t ≥ 0} denote

the contact process on the random graph Gn starting from all sites occupied, i.e., ξ1
0 =

{1, 2, . . . , n}. Then for any value of the infection rate λ > 0, there is a positive constant

p(λ) so that for any δ > 0

inf
t≤exp(n1−δ)

P

(
|ξ1
t |
n
≥ p(λ)

)
→ 1 as n→∞.

One could assume that ν > 1 and look at the process on the giant component,

but we would rather avoid this complication. The assumption P (di ≤ 2) = 0 is

convenient, because it implies the following.

Lemma 2.1.3. Consider a Newman, Strogatz and Watts graphs, Gn, on n vertices,

where the degrees of the vertices, di, satisfy P (di ≤ 2) = 0, and the mean of the size
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biased degree distribution ν <∞. Then

P (Gn is connected )→ 1 as n→∞,

and if Dn is the diameter of Gn,

P (Dn > (1 + ε) log n/ log ν)→ 0 for any ε > 0.

The size of the giant component in the graph is given by the nonextinction prob-

ability of the two-phase branching process, so P (di ≤ 2) = 0 is needed to have

the size ∼ n. Intuitively, Lemma 2.1.3 is obvious because the worst case is the

random 3-regular graph, and in this case, the graph is not only connected and

has diameter ∼ (log n)/(log 2), see [8, Sections 7.6 and 10.3], but the probability

of a Hamiltonian cycle tends to 1, see [28, Section 9.3]. We have not been able

to find a proof of Lemma 2.1.3 in the literature, so we give one in Section 5. By

comparing the growth of the cluster with a branching process it is easy to show

P (Dn < (1− ε) log n/ log ν)→ 0 for any ε > 0.

In a sense the main consequence of Theorem 1 is not new. Berger, Borgs,

Chayes, and Saberi [6], see also [7], show that λc = 0 for a generalization of the

Bárabasi-Albert model in which each new point has m edges which are with

probability β connected to a vertex chosen uniformly at random and with prob-

ability 1−β to a vertex chosen with probability proportional to its degree. It has

been shown [13, Theorem 2] that such graphs have power law degree distribu-

tions with α = 1 + 2/(1− β), so these examples have α ∈ [3,∞) and λc = 0.

Having acknowledged the previous work of BBCS, it should be noted that

(i) our result applies to a large class of power law graphs that have a different
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structure; and (ii) the BBCS proof yields a lower bound on the presistence time

of exp(cn1/(α−1)) compared to our exp(n1−δ). Our improved bound on the sur-

vival times relies only on the power law degree distribution and the fact that

the diameter is bounded by C log n, so it also applies to graphs BBCS consider.

Theorem 2.1.2 shows that the fraction of infected sites in the graph Gn is

bounded away from zero for a time longer than exp(n1/2). So using self-duality

we can now define a quasi-stationary measure ξ1
∞ on the subsets of {1, 2, . . . , n}

as follows. For any subset of vertices A, P (ξ1
∞ ∩ A 6= ∅) ≡ P (ξA

exp(n1/2)
6= ∅).

Let Xn be uniformly distributed on {1, 2, . . . , n} and let ρn(λ) = P (Xn ∈ ξ1
∞).

Berger, Borgs, Chayes and Saberi [6] show that for the contact process on their

preferential attachment graphs, there are positive, finite constants so that

bλC ≤ ρn(λ) ≤ Bλc.

In contrast, we get reasonably good numerical bounds on the critical exponent.

Theorem 2.1.4. Suppose α > 3. There is a λ0 > 0 so that if 0 < λ < λ0 and 0 < δ < 1,

then there exists two constants c(α, δ) and C(α, δ) so that as n→∞

P (cλ1+(α−2)(2+δ) ≤ ρn(λ) ≤ Cλ1+(α−2)(1−δ))→ 1.

When α is close to 3 and δ is small, the powers in the lower and upper bounds

are close to 3 and 2. The ratio of the two powers is ≤ (2 + δ)/(1− δ) ≈ 2 when δ

is small.

The intuition behind the lower bound is that if the infection starts from a

vertex of degree d(x) ≥ (10/λ)2+δ, then it survives for a long time with a proba-

bility bounded away from 0. The density of such points is Cλ(2+δ)(α−1), but we
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can improve the bound to the one given by looking at neighbors of these ver-

tices, which have density Cλ(2+δ)(α−2) and will infect their large degree neighbor

with probability ≥ cλ.

For the upper bound we show that if m(α, δ) is large enough and the infec-

tion starts from a vertex x such that there is no vertex of degree≥ λ−(1−δ) within

distance m from x, then its survival is very unlikely. To get the extra factor of λ

we note that the first event must be a birth. Based on the proof of Lemma 2.1.1,

we expect that survival is unlikely if there is no nearby vertex of degree ≥ λ−2

and hence the lower bound gives the critical exponent.

It is natural to speculate that the density of the quasi-stationary measure

ρn(λ) → ρ(λ) as n → ∞. By the heuristics for the computation of λc in the SIR

model, it is natural to guess that, when α > 2, ρ(λ) is the expected probability

of weak survival for the contact process on a tree generated by the two-phase

branching process, starting with the origin occupied.

Here the phrase ‘weak survival’ refers to set of infected sites being not empty

for all times, in contrast to ‘strong survival’ where the origin is reinfected in-

finitely often. As in the case of the contact process on the Bollobás-Chung small

world studied in [18], it is the weak survival critical value that is the threshold

for prolonged persistence on the finite graph.

Sketch of the proof of Theorem 1.

The remainder of the chapter is devoted to proofs. Let V ε
n be the set of ver-

tices in the graph Gn with degree at least nε. We call the points in V ε
n stars. We
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say that a star of degree k is hot if at least λk/4 of its neighbors are infected and

is lit if at least λk/10 of its neighbors are infected. Our first step, taken in Lemma

2.2.2, is to improve the proof of Lemma 2.1.1 to show that a hot star will remain

lit for time exp(cnε) with high probability.

To keep the system going for a long time, we cannot rely on just one star.

There are O(n1−ε(α−1)) stars in this graph which has diameter O(log n). If one

star goes out, presence of a lit star can make it hot again within a time 2nε/3 with

probability at least n−b. See Lemmas 2.2.3 and 2.2.4 for this. Lemma 2.2.6 shows

that a lit star gets hot within 2 exp(nε/3) units of time with probability

≥ 1− 5 exp(−λ2nε/3/16),

and Lemma 2.2.5 shows that a hot star eventually succeeds to make a non-lit

star hot within exp(nε/2) units of time with probability

≥ 1− 8e−λ
2nε/80.

Using these estimates, we can show that the number of lit stars dominates a

random walk with a strong positive drift, and hence more than 3/4’s of the

collection will stay lit for a time O(exp(n1−αε)). See Proposition 2.2.7 at the end

of Section 2 for the argument.

To get a lower bound on the density of infected sites, first we bound the

probability of the event that the dual process, starting from a vertex of degree

(10/λ)2+δ, reaches more than 3/4’s of the stars. We do this in two steps. In the

first step (see Lemma 2.3.2) we get a lower bound for the probability of the dual

process reaching one of the stars. To do this, we consider a chain of events in

which we reach vertices with degree (10/λ)k+δ for k ≥ 2 sequentially. In the
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second step (see Lemma 2.3.4) we again use a comparison with random walk

to show that, with probability tending to 1, the dual process, starting from any

lit star, will light up more than 3/4’s of the stars. Then we show that the above

events are asymptotically uncorrelated, and use a second moment argument to

complete the proof of Theorem 2.1.2 and the lower bound for the density in

Theorem 2.1.4.

Open Problem. Improve the bounds in Theorem 2.1.4 and extend the result to α > 1.

When 2 < α < 3 the size biased distribution has infinite mean. Chung and

Lu [11, 12] obtained bounds on the diameter in this case, and later it has been

shown [48] that if Hn is the distance between 1 and 2 then

Hn ∼
2 log log n

− log(α− 2)

When 1 < α < 2 the size-biased distribution has infinite mass. It has been

shown [47] in this case

lim
n→∞

P (Hn = 2) = lim
n→∞

1− P (Hn = 3) = p ∈ (0, 1)

so the graph is very small.

All of the results about the persistence of infection at stars in Section 2 are

valid for any α, since they only rely on properties of the contact process on a

star graph and an upper bound on the diameter. The results in Section 3, rely

on the existence of the size biased distribution and hence are restricted to α > 2.

The proof of the lower bound should be extendible to that case, but the proof of

the upper bound given in Section 4 relies heavily on the size-biased distribution
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having finite mean. When 1 < α < 2, the size-biased distribution does not exist

and the situation changes drastically. We guess that in this case ρn(λ) = O(λ).

2.2 Persistence of infection at stars

Let ε > 0 and let V ε
n be the set of vertices in our graph Gn with degree at least

nε. We call these vertices stars. We say that a vertex of degree k is hot if it has at

least L = λk/4 infected neighbors and we call it lit if it has at least 0.4L = λk/10

infected neighbors. We will show that if ε is small, then in the contact process

starting from all vertices occupied, most of the stars in V ε
n will remain lit for time

O(exp(n1−αε).

We begin with a slight improvement of Lemma 2.1.1 which gives a numerical

estimate of the failure probability, but before that we need two simple estimates.

Lemma 2.2.1. If 0 ≤ x ≤ a ≤ 1 then ex ≤ 1 + (1 + a)x and e−x ≤ 1− (1− 2a/3)x.

Proof. Using the series expansion for ex

ex ≤ 1 + x+
ax

2

(
1 +

1

2
+

(
1

2

)2

+ · · ·

)

e−x ≤ 1− x+
ax

2

(
1 +

(
1

2

)2

+

(
1

2

)4

+ · · ·

)

and summing the geometric series gives the result.

Lemma 2.2.2. Let G be a star graph with center 0 and leaves 1, 2, . . . , k. Let At be the

set of vertices infected in the contact process at time t. Suppose λ ≤ 1 and λ2k ≥ 50.

Let L = λk/4 and let T = exp(kλ2/80)/4L. Let PL,i denote the probability when at
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time 0 the center is at state i and L leaves are infected. Then

PL,i

(
inf
t≤T
|At| ≤ 0.4L

)
≤ 7e−λ

2k/80 for i = 0, 1.

Proof. Write the state of the system as (m,n) where m is the number of infected

leaves and n = 1 if the center is infected and 0 otherwise. To reduce to a one

dimensional chain, we will concentrate on the first coordinate. When the state

is (m, 0) with m > 0, the next event will occur after exponential time with mean

1/(mλ + m), and the probability that it will be the reinfection of the center is

λ/(λ + 1). So the number of leaf infections N that will die while the center is 0

has a shifted geometric distribution with success probability λ/(λ+ 1), i.e.,

P (N = j) =

(
1

λ+ 1

)j
· λ

λ+ 1
for j ≥ 0.

Let NL be the realization of N when the state of the system is (L, 0). Then NL

will be more than 0.1L with probability

PL,0(NL > 0.1L) ≤ (1 + λ)−0.1L ≤ e−λL/20 = e−λ
2k/80. (2.2.1)

Here we use the inequality 1 + λ ≥ eλ/2. If NL ≤ 0.1L, then there will be at least

0.9L infected leaves when the center is infected.

The next step is to modify the chain so that the infection rate is 0 when the

number of infected leaves is L = λk/4 or greater. In this case the number of

infected leaves ≥ Yt where

at rate

Yt → Yt − 1 λk/4

Yt → Yt + 1 3λk/4 for Yt < L .
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Yt → Yt −N 1

To bound the survival time of this chain, we will estimate the probability

that starting from 0.8L it will return to 0.4L before hitting L. During this time Yt

is a random walk that jumps at rate λk + 1. Let X be the change in the random

walk in one step. Then

X =



−1 with probability (λk/4)/(λk + 1)

+1 with probability (3λk/4)/(λk + 1)

−N with probability 1/(λk + 1),

and so

EeθX = eθ · 3

4
· λk

λk + 1
+ e−θ · 1

4
· λk

λk + 1

+
1

λk + 1

∞∑
j=0

e−θj
(

1

λ+ 1

)j
· λ

λ+ 1
.

If e−θ/(λ+ 1) < 1, the third term on the right is

λ

λk + 1
· 1

1 + λ− e−θ
.

If we pick θ < 0 so that e−θ = 1 + λ/2, then

EeθX =
λk

λk + 1

(
1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+

2

λk

)
.

Since 1/(1 + x) < 1− x+ x2 for 0 < x < 1,

1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+

2

λk
− 1

<

(
−λ

2
+
λ2

4

)
3

4
+
λ

8
+

2

λk

< −3λ

16
+
λ

8
+

2

λk
,
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where in the last inequality, we have used λ < 1. Since we have assumed λ2k ≥

50, the right-hand side is < 0.

To estimate the hitting probability we note that if φ(x) = exp(θx) and Y0 ≥

0.6L, then φ(Yt) is a supermartingale until it hits L. Let q be the probability

that Yt hits the interval (−∞, 0.4L] before returning to L. Since θ < 0, we have

φ(x) ≥ φ(0.4L) for x ≤ 0.4L. So using the optional stopping theorem we have

qφ(0.4L) + (1− q)φ(L) ≤ φ(0.8L),

which implies that

q ≤ φ(0.8L)/φ(0.4L) = exp(0.4θL) ≤ e−λ
2k/40,

as e−θ = 1 + λ/2 ≥ eλ/4 when λ/4 < 1/2 (sum the series for ex).

At this point we have estimated the probability that the chain started at a

point ≥ 0.8L will go to L before going below 0.4L. When the chain is at L,

the time until the next jump is exponential with mean 1/(L + 1) ≥ 1/2L. The

probability that the jump takes us below 0.8L is (since 1 + λ ≥ eλ/2)

≤ (1 + λ)−0.2L ≤ e−λL/10 = e−λ
2k/40.

Thus the probability that the chain fails to return to L, M = eλ
2k/80 times before

going below 0.4L is

≤ 2e−λ
2k/80.

Using Chebyshev’s inequality on the sum, SM of M exponentials with mean 1

(and hence variance 1),

P (SM < M/2) ≤ 4/M.
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Multiplying by 1/2L we see that the total time, TM of the first M excursions

satisfies

P (TM < M/4L) ≤ 4e−λ
2k/80.

Combining this with the previous estimate on the probability of having fewer

than M returns and the error probability in (2.2.1) proves the desired result.

Thus Lemma 2.2.2 shows that a hot star will remain lit for a long time with

probability very close to 1. Our next step is to investigate the process of trans-

ferring the infection from one star to another. The first step in doing that is to

estimate what happens when only the center of the star infected.

Lemma 2.2.3. LetG be a star graph with center 0 and leaves 1, 2, . . . , k. Let 0 < λ < 1,

δ > 0 and suppose λ2+δk ≥ 10. Again let Pl,i denote the probability when at time 0

the center is in state i and l leaves are infected. Let τ0 be the first time 0 becomes

healthy, and let Tj be the first time the number of infected leaves equals j. If L = λk/4,

γ = δ/(4 + 2δ), and K = λk1−γ/4, then for k ≥ k0(δ)

P0,1(TK > τ0) ≤ 2/kγ,

PK,1(T0 < TL) ≤ exp(−λ2k1−γ/16) ≤ 1/kγ,

E0,1(TL|TL <∞) ≤ 2.

Combining the first two inequalities P0,1(TL < ∞) ≥ 1 − 2/kγ , and using

Markov’s inequality, if we can infect a vertex of degree at least k such that

k ≥ k0(δ) and λ2+δk > 10, then with probability ≥ 1 − 5/kγ the vertex gets

hot within the next kγ units of time.
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Proof. Note that τ0 ∼ exp(1), and for any t ≤ τ0, the leaves independently be-

comes healthy at rate 1 and infected at rate λ. Let p0(t) is the probability that leaf

j is infected at time t when the central vertex of the star has remained infected

for all times s ≤ t. p0(0) = 0 and

dp0(t)

dt
= −p0(t) + (1− p0(t))λ = λ− (λ+ 1)p0(t).

So solving gives p0(t) =
∫ t

0
λe−(λ+1)(t−s) ds = λ

λ+1

(
1− e−(λ+1)t

)
. From this it

follows that

P0,1(TK < τ0) ≥ P (Binomial(k, p0(k−γ)) > K)P (τ0 > k−γ). (2.2.2)

Now if kγ > 8/3, (λ+ 1)k−γ ≤ 3/4 and it follows from Lemma 2.2.1 that

p0(k−γ) ≥ λk−γ/2.

Writing p = p0(k−γ) to simplify formulas, if θ > 0

P (Binomial(k, p) ≤ K) ≤ eθK
(
1− p+ pe−θ

)k
.

Since log(1 + x) ≤ x the right-hand side is

≤ exp

(
θλk1−γ

4
+ (e−θ − 1)

λk1−γ

2

)
.

Taking θ = 1/2 and using Lemma 2.2.1 to conclude e−1/2 − 1 ≤ −1/3, the above

is

≤ exp(−λk1−γ/24) ≤ exp(−k1/2−γ/8),

since λ2k ≥ 9. Using this in (2.2.2), the right-hand side is

≥ (1− exp(−k1/2−γ/8))(1− k−γ) ≥ 1− 2/kγ,

if k1/2−γ ≥ 8γ log k.
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Using the supermartingale from the proof of Lemma 2.2.2, if q = PK,1(T0 <

TL), then we have

q · 1 + (1− q)eθL ≤ eθK ,

and so q ≤ eθK ≤ e−λK/4. In the last step we have used eθ = 1/(1 + λ/2) ≤ e−λ/4,

which comes from Lemma 2.2.1. Filling in the value of K, e−λK/4 = e−λ
2k1−γ/16.

Now

λ2k1−γ = (λ2+δk)2/(2+δ)k1−γ−2/(2+δ) ≥ 102/(2+δ)kδ/(4+2δ).

So if kδ/(4+2δ) > 16 · 10−2/(2+δ)γ log k, then e−λK/4 ≤ 1/kγ .

To bound the time we use the lower bound random walk Yt from Lemma

2.2.2. EN = 1/λ, so

EYt =

(
λk

2
− 1

λ

)
t =

(
λ2k − 2

2λ

)
t.

Let T YL be the hitting time of L for the random walk Yt. Using the optional

stopping theorem for the martingale Yt−(λ2k−2)t/2λ and the bounded stopping

time T YL ∧ t we get

EYTYL ∧t −
(
λ2k − 2

2λ

)
E
(
T YL ∧ t

)
= EY0 = 0.

Since EYTYL ∧t ≤ L = λk/4, it follows that

E(T YL ∧ t) ≤
(

2λ

λ2k − 2

)
L =

λ2k/2

λ2k − 2
=

1

2− 4/λ2k
≤ 1,

as by our assumption λ2k ≥ 4. Letting t → ∞ we have ET YL ≤ 1. Since Yt is a

lower bound for the number of infected leaves, TL1[TL<∞] ≤ T YL . Hence

E0,1(TL|TL <∞) =
E0,1

(
TL1[TL<∞]

)
P0,1(TL <∞)

≤ E0,1T
Y
L

P0,1(TK < τ0)PK,1(TL < T0)
≤ 1

1/2
= 2

for large k.
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To transfer infection from one vertex to another we use the following

Lemma.

Lemma 2.2.4. Let v0, v1, . . . vm be a path in the graph and suppose that v0 is infected

at time 0. Then the probability that vm will become infected by time m is ≥ (e−1(1 −

e−λ)e−1)m.

Proof. The first factor is the probability that the infection at v0 lasts for time 1, the

second the probability that v0 infects v1 by time 1, and the third the probability

that the infection at v1 remains until time 1. Iterating this m times brings the

infection from 0 to m.

When the diameter of the graph is≤ 2 log n, the probability in Lemma 2.2.4 is

≥ n−b for some b ∈ (1/2,∞), and the time required is ≤ 2 log n. Combining this

with Lemma 2.2.3 (with k = nε and γ = 1/3) shows that if n is large, then with

probability≥ Cn−b we can use one hot star to make another star hot within time

2nε/3. Using Lemma 2.2.2 and trying repeatedly gives the following Lemma.

Lemma 2.2.5. Let s1 and s2 be two stars in V ε
n and suppose that s1 is hot at time 0.

Then, for large n, s2 will be hot by time T = exp(nε/2) with probability

≥ 1− 8e−λ
2nε/80.

Proof. If n is large, Lemma 2.2.2 shows that s1 remains lit for T units of time

with probability ≥ 1 − 7e−λ
2nε/80. Let tn = 2nε/3 and consider the discrete time

points tn, 2tn, . . .. At all of these time points we can think of a path starting

from an infected neighbor of s1 up to s2. Using one such path the infection gets
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transmitted to s2 and it gets hot in 2nε/3 units of time with probability ≥ Cn−b

for some constant C. So s1 fails to make s2 hot by time T with probability

≤ (1− Cn−b)T/tn ≤ exp(−Cn−bT/tn) ≤ exp(−λ2nε/80)

for large n. For the first inequality we use 1− x ≤ e−x. Combining with the first

error probability in this proof, we get the result.

Next we show that a lit star becomes hot with a high probability, and then

helps to make other non-lit stars lit.

Lemma 2.2.6. Let s be a star of V ε
n and suppose that s is lit at time 0. Then s will be

hot by time 2 exp(nε/3) with probability

≥ 1− 5 exp(−λ2nε/3/16), if n is large.

Proof. Since s is lit, it has at least λnε/10 infected neighbors at time 0. If s itself is

not infected at time 0, let N be the number of leaf infections that die out before s

gets infected. Using similar argument as in the beginning of the proof of Lemma

2.2.2,

P (N = j) =

(
1

λ+ 1

)j
· λ

λ+ 1
for j ≥ 0,

which implies

P (N > λnε/20) ≤ (1 + λ)−λn
ε/20 ≤ e−λ

2nε/40,

as 1 + λ > eλ/2 by Lemma 2.2.1. Also the time TM taken for M = λnε/20 leaf

infections to die out is a sum ofM exponentials with mean at most 1/(λ+1)M ≤

1/M . Now if n2ε/3 > 40/16, the above error probability is ≤ e−λ
2nε/3/16.
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Using Chebyshev’s inequality on the sum, SM of M exponentials with mean

1 (and hence variance 1), we see that if exp(nε/3) ≥ 2, i.e., nε/3 > log 2

P (SM > M exp(nε/3)) ≤ 1

M(exp(nε/3)− 1)2

≤ 4

M exp(2nε/3)
≤ exp(−λ2nε/3/16).

where in the final inequality we have usedM > 4, i.e., nε > 80/λ, and λ2/16 < 2.

Multiplying by 1/M we see that the total time, TM , satisfies

P (TM > exp(nε/3)) ≤ exp(−λ2nε/3/16).

Combining these two error probabilities gives that s will be infected along with

at least λnε/20 infected neighbors within exp(nε/3) units of time with error prob-

ability

≤ 2 exp(−λ2nε/3/16). (2.2.3)

Now λnε/20 ≥ λnε/3/4, when n2ε/3 > 5. So if s is infected and has at least λnε/20

infected neighbors, then using the second inequality of Lemma 2.2.3 (with γ =

2/3 and k = nε), s becomes hot with error probability

≤ exp(−λ2nε/3/16).

Finally using Markov’s inequality and the third inequality of Lemma 2.2.3, the

time Ts taken by s to get hot, after it became infected, is more than T = exp(nε/3)

with probability

≤ 2 exp(−nε/3) ≤ 2 exp(−λ2nε/3/16),

as λ < 1. Combining all these error probabilities proves the Lemma.
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We now use Lemmas 2.2.5, 2.2.6 and 2.2.2 to prove that if the contact process

starts from all sites infected, then for a long time at least 3/4’s of the stars will

be lit.

Proposition 2.2.7. Let Iεn,t be the set of stars in V ε
n which are lit at time t in the contact

process {ξ1
t : t ≥ 0} on Gn. Let tn = 2 exp(nε/2) and Mn = exp(n1−αε). Then there is

a stopping time Tn such that Tn ≥Mn · tn and

P
(∣∣Iεn,Tn∣∣ ≤ (3/4) |V ε

n |
)
≤ exp(−Cnε).

Proof. Let αn = |V ε
n |. Clearly |Iεn,0| = αn. We will estimate the probability that

starting from (7/8)αn lit stars, the number goes below (3/4)αn before reaching

αn. Define the stopping times τis’ and σis’ as follows. Let τ0 = σ0 = 0 and for

i ≥ 0 let

τi+1 ≡ inf
{
t > τi + σitn :

∣∣Iεn,t∣∣ = (7/8)αn
}
,

σi+1 ≡ min
{
s ∈ N :

∣∣∣Iεn,τi+1+s·tn

∣∣∣ 6∈ ((3/4)αn, αn)
}
.

We need to look at time lags that are multiples of tn in the definition of σi because

in our worst nightmare (which is undoubtedly a paranoid delusion) all the lit

stars of degree k ≥ nε at time τi+1 have exactly 0.1k infected neighbors .

Lemma 2.2.6 implies that a lit star of V ε
n gets hot within time 2 exp(nε/3) ≤

exp(nε/2) (for large n) with probability≥ 1−5 exp(−λ2nε/3/16). Combining with

Lemma 2.2.2 gives that a lit star at time 0 gets hot by time tn/2 and remains lit at

time tn with probability≥ 1−6 exp(−λ2nε/3/16) for large n. Now if |Iεn,t| < αn for

some t, then the number of lit stars will increase at time t + tn with probability

≥ P (A ∩B), where
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• A: All the lit stars will get hot by tn/2 units of time, and be lit for time tn.

• B: A non-lit star will become hot by time tn/2 in presence of another hot

star, and remain lit for another tn/2 units of time.

Now using the above argument P (A) ≥ 1 − 6n exp(−λ2nε/3/16), as there

are at most n stars. Combining Lemma 2.2.5 and 2.2.2 gives P (B) ≥ 1 −

9 exp(−λ2nε/80). So P (A ∩ B) ≥ 1 − exp(−nε/4) for large n. Using the stop-

ping times
∣∣Iεn,τi+r·tn∣∣ ≥ Wr for r ≤ σi, where {Wr : r ≥ 0} is a discrete time

random walk satisfying

Wr → Wr − 1 with probability exp
(
−nε/4

)
,

Wr → Wr + 1 with probability 1− exp
(
−nε/4

)
, (2.2.4)

and W0 = (7/8)αn. Now θWr is a martingale where

θ =
exp(−nε/4)

1− exp(−nε/4)
< exp(−nε/4/2). (2.2.5)

If q is the probability thatWr goes below (3/4)αn before hitting αn, then applying

the optional stopping theorem

q · θ(3/4)αn + (1− q) · θαn ≤ θ(7/8)αn ,

which implies

q ≤ θ(αn/8) ≤ exp
(
−Cn1−(α−1)ε

)
,

as αn ∼ Cn1−(α−1)ε for some constantC. So the probability that the random walk

fails to return to αn at least Mn = exp(n1−αε) times before going below (3/4)αn

is ≤ exp(−Cnε). Now if

K = min
{
i ≥ 1 :

∣∣Iεn,τi+σi·tn∣∣ ≤ (3/4)αn
}
,
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the coupling with the random walk will imply P (K ≤ Mn) ≤ exp(−Cnε), and

hence for Tn ≡ τMn + σMn · tn

P
(∣∣Iεn,Tn∣∣ ≤ (3/4) |V ε

n |
)
≤ exp(−Cnε).

As σi ≥ 1 for all i, by our construction Tn ≥Mn · tn, and we get the result.

So the infection persists for time longer than exp (n1−αε) in the stars of V ε
n .

2.3 Density of infected stars

Proposition 2.2.7 implies that if the contact process starts with all vertices in-

fected, most of the stars remain lit even after exp(n1−αε) units of time. In this

section we will show that the density of infected stars is bounded away from

0 and we will find a lower bound for the density. We start with the following

Lemma about the growth of clusters in the random graph Gn, when we expose

the neighbors of a vertex one at a time. For more details on this procedure see

[16, Section 3.2].

Lemma 2.3.1. Suppose 0 < δ ≤ 1/8. Let A be the event that the two clusters, starting

from 1 and 2 respectively, intersect before their sizes grow to nδ. Then

P (A) ≤ Cn−( 1
4
−δ).

Proof. If d1, . . . , dn are the degrees of the vertices, then

P

(
max
1≤i≤n

di > n3/(2α−2)

)
≤ n · P (d1 > n3/(2α−2)) ≤ c/

√
n (2.3.1)
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for some constant c. Suppose all the degrees are at most n3/(2α−2). Suppose R1

and R2 are the clusters starting from 1 and 2 up to size nδ. Let B be the event

that R1 contains a vertex of degree ≥ n1/(2α−2). Let en be the sum of degrees of

all those vertices with degree ≥ n1/(2α−2). While growing R1 the probability that

a vertex of degree ≥ n1/(2α−2) will be included on any step is

≤ en∑n
i=1 di − nδ+3/(2α−2)

≡ βn.

Since the size biased distribution is qk ∼ Ck−(α−1) as k →∞,
∑

s≥k qs ∼ Ck−(α−2)

as k →∞, and we have en ∼ Cn1−(α−2)/(2α−2) and hence βn ∼ Cn−(α−2)/(2α−2) as

n→∞. So for large n βn ≤ c1n
−1/4 for some constant c1, when α > 3. Thus

P (Bc) ≥ 1− c1/n
1/4−δ.

If Bc occurs, all the degrees of the vertices of R1 are at most n1/(2α−2). In that

case, while growing R2 the probability of choosing one vertex from R1 is

≤ nδ+1/(2α−2)∑n
i=1 di − nδ+3/(2α−2)

≤ c2/n
1−δ−1/(2α−2).

So the conditional probability

P (Ac|Bc) ≥
(
1− c2n

−(1−δ−1/(2α−2))
)nδ ≥ 1− c2/n

1−2δ−1/(2α−2).

Hence combining these two

P (Ac) ≥ (1− c1/n
1/4−δ)(1− c2/n

1−2δ−1/(2α−2)) ≥ 1− C1/n
1/4−δ,

and that completes the proof.

Lemma 2.3.1 will help us to show that in the dual contact process, staring

from any vertex of degree ≥ (10/λ)2+δ for some δ > 0, the infection reaches a

star of V ε
n , with probability bounded away from 0.



34

Lemma 2.3.2. Let ξAt be the contact process on Gn starting from ξA0 = A. Suppose

0 < ε < 1/20(α − 1). Then there are constants λ0 > 0, n0 < ∞, c0 = c0(λ, ε) and

pi > 0 independent of λ < λ0, n ≥ n0 and ε such that if T = nc0 , v2 is a vertex with

degree d(v2) ≥ (10/λ)2+δ for some 0 < δ < 1 and v1 is a neighbor of v2,

P
(
ξ
{v2}
T ∩ V ε

n

)
≥ p2, P

(
ξ
{v1}
T+1 ∩ V

ε
n

)
≥ p1λ.

Proof. The second conclusion follows immediately from the first, since the prob-

ability that v1 will infect v2 before time 1, and that v2 will stay infected until time

1 is

≥ λ

λ+ 1
(1− e−(λ+1))e−1 ≥ cλ.

Let Λm be the set of vertices in Gn of degree ≥ (10/λ)m+δ for m ≥ 2. Define

γ = δ
2(2+δ)

and

B = 2(α− 1) log(10/λ), u =
(
e−1(1− e−λ)e−1

)−(B+1)
,

wn ≡ log(nε)/ log(10/λ)− δ Tm = T 1
m + T 2

m

where T 1
m = (10/λ)(m+δ)γ , T 2

m = um, and we let nc0 =
∑wn

m=2 Tm.

Define E2 =
{
ξ
{v2}
T2
∩ Λ3 6= ∅

}
and for m ≥ 3, having defined E2, . . . , Em−1,

we let

Em =
{
ξ
{vm}
Tm
∩ Λm+1 6= ∅

}
, and vm ∈ ξ{vm−1}

Tm−1
∩ Λm.

Let Am be the event that the clusters of size (10/λ)(m+δ+1)(α−2) starting from two

neighbors of vm do not intersect and

F = ∩wnm=2Am.
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Since ε < 1/20(α − 1), the cluster size (10/λ)(m+δ+1)(α−2) is at most n1/10 for

m ≤ wn. So using Lemma 2.3.1 and the fact
(
k
2

)
< k2,

P (F c) ≤

(
wn∑
m=2

(10/λ)2m+2δ

)
cn−(1/4−1/10)

≤ n2εcn−(1/4−1/10) < cn−(1/4−3/20) < 1/6

for large n.

Since each vertex has degree at least 3, if F occurs then by the choice

of B the neighborhood of radius Bm around vm will contain more than

(10/λ)(m+δ+1)(α−2)+m vertices. Let Gm be the event that the neighborhood of ra-

dius Bm around vm intersects Λm+1. In the neighborhood of vm probability of

having a vertex of Λm+1 is at least c(λ/10)(m+δ+1)(α−2). Hence

P (Gc
m ∩ F ) ≤

(
1− c(λ/10)(m+δ+1)(α−2)

)(10/λ)m+(m+δ+1)(α−2)

≤ exp(−(10/λ)m).

If λ is small,
∑∞

m=2 exp(−(10/λ)m) ≤ 1/6.

On the intersection of F and Gm we have a vertex of Λm+1 within ra-

dius Bm of vm. Using Lemma 2.2.2 and Lemma 2.2.3, in the contact process{
ξ
{vm}
t : t ≥ 0

}
, vm gets hot at time T 1

m and remains lit till time Tm with error

probability ≤ cλ(m+δ)γ for small λ. If vm is lit, then Lemma 2.2.4 shows that

vm fails to transfer the infection to some vertex in Λm+1 within time T 2
m with

probability

≤
[
1− (e−1(1− e−λ)e−1)Bm

]T 2
m/(Bm)

≤ exp
[
−(e−1(1− e−λ)e−1)−m/(Bm)

]
≡ ηm.
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where ≡ indicates we are making a definition, and hence P (Ec
mGmF ) ≤

cλ(m+δ)γ + ηm. If λ is small
∑wm

m=2[cλ(m+δ)γ + ηm] ≤ 1/6, we can take p2 = 1/2

and the proof is complete.

Lemma 2.3.2 gives a lower bound on the probability that an infection starting

from a neighbor of a vertex of degree ≥ (10/λ)2+δ reaches a star. Lemma 2.2.3

shows that if the infection reaches a star, then with probability tending to 1

the star gets hot within nε/3 units of time. Combining these two we get the

following.

Proposition 2.3.3. Suppose 0 < ε < 1/20(α−1). There are constants λ0 > 0, n0 <∞

c1 = c1(λ, ε) and p1 > 0, which does not depend on λ < λ0, n ≥ n0 and ε, such that for

any vertex v1 with a neighbor v2 of degree d(v2) ≥ (10/λ)2+δ for some δ ∈ (0, 1), and

T = nc1 the probability that ξ{v1}T contains a hot star is bounded below by p1λ.

Next we will show that if we start with one lit star, then after time exp(nε/2)

at least 3/4’s of the stars will be lit.

Lemma 2.3.4. Let Iεn,t be the set of stars which are lit at time t in the contact process

on Gn such that |Iεn,0| = 1. Then for T ′ = exp(nε/2)

P (|Iεn,T ′ | < (3/4)|V ε
n |) ≤ 7 exp(−λ2nε/3/16).

Proof. Let s1 be the lit star at time 0. As seen in Proposition 2.2.7, s1 remains lit

at time T ′ = exp(nε/2) with probability ≥ 1− 6 exp(−λ2nε/3/16) for large n. With

probability ≥ Cn−b another star gets hot within time tn = 2nε/3 and remains lit

at time T ′. Using similar argument as in Lemma 2.2.5, the process fails to make
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(3/4)|V ε
n |many stars lit by time T ′ with probability

≤ (3/4)|V ε
n |(1− Cn−b)T

′/tn

≤ (3/4)|V ε
n | exp(−Cn−bT ′/tn) ≤ exp(−λ2nε/3/16),

as |V ε
n | = Cn1−(α−1)ε and 1 − x ≤ e−x. So combining with the earlier error

probability we get the result.

Now we are almost ready to prove our main result. However, we need one

more Lemma that we will use in the proof of the theorem.

Lemma 2.3.5. Let F and G be two events which involve exposing nδ many vertices

starting at 1 and 2 respectively for some 0 < δ ≤ 1/8. Then

|P (F ∩G)− P (F )P (G)| ≤ Cn−(1/4−δ).

Proof. Let R1 and R2 be the clusters for exposing nδ many vertices starting from

1 and 2 respectively, and let A be the event that they intersect. Clearly

P (F ∩G) ≤ P (A) + P (F ∩G ∩ Ac)

= P (A) + P (F ∩ Ac)P (G ∩ Ac)

≤ P (A) + P (F )P (G).

Using similar argument for F c and G we get

|P (F ∩G)− P (F )P (G)| ≤ P (A).

We estimate P (A) using Lemma 2.3.1.

Lemma 2.3.5 shows that two events which involve exposing at most n1/8 ver-

tices starting from two different vertices are asymptotically uncorrelated. Now

we give the proof of the main theorem.
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Proof of Theorem 1. Given δ > 0, choose ε = min{δ/α, 1/20(α − 1)}. Let An be

the set of vertices in Gn with a neighbor of degree at least (10/λ)2+δ. Clearly

|An|/n → c0(λ/10)(2+δ)(α−2) as n → ∞ for some constant c0. Define the random

variables Yx, x ∈ An as Yx = 1 if the dual contact process starting from x can

light up a star of V ε
n and 0 otherwise. By Proposition 2.3.3, EYx ≥ p1λ for some

constant p1 > 0 and for any x ∈ An.

If we grow the cluster starting from x ∈ An and exposing one vertex at a

time, we can find a star on any step with probability at least cn−(α−2)ε. So with

probability 1−exp (−cnε), we can find a star of V ε
n within the exposure of at most

nαε vertices. So, with high probability, lighting a star up is an event involving at

most n(α+1)ε many vertices. As (α + 1)ε < 1/8, using Lemma 2.3.5, we can say

P (Yx = 1, Yz = 1)− P (Yx = 1)P (Yz = 1)

≤ (1− exp (−cnε))Cn−(1/4−(α+1)ε) + exp (−cnε) ≡ θn.

Using our bound on the covariances,

var

(∑
x∈An

Yx

)
≤ n+

(
n

2

)
θn,

and Chebyshev’s inequality gives

P

(∣∣∣∣∣∑
x∈An

(Yx − EYx)

∣∣∣∣∣ ≥ nγ

)
≤
n+

(
n
2

)
θn

n2γ2
→ 0 as n→∞,

for any γ > 0, since θn → 0 as n → ∞. Since EYx ≥ p1λ and |An|/n →

c0(λ/10)(2+δ)(α−2), if we take pl ≡ p1λ · c0(λ/10)(2+δ)(α−2)/2 then

lim
n→∞

P

(∑
x∈An

Yx ≥ npl

)
= 1. (2.3.2)

Now if Yx = 1, Proposition 2.3.3 says that the dual process starting from x

makes a star hot after T1 = nc1 units of time. Then by Lemma 2.3.4 within next
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T2 = exp(nε/2) units of time the dual process lights up 75% of all the stars with

probability 1− 7 exp(−λ2nε/3/16).

Let Iεn,t be the set of stars which are lit at time t in the contact process

{ξ1
t : t ≥ 0} and

T3 = inf
{
t > exp(n1−αε) :

∣∣Iεn,t∣∣ ≥ (3/4) |V ε
n |
}
.

By Proposition 2.2.7, P (T3 <∞) ≥ 1− exp(−cnε). Let

S =
{
S ⊂ {1, 2, . . . , n} : ξ1

t = S ⇒ |Iεn,t| ≥ (3/4)|V ε
n |
}
.

Using the Markov property and self-duality of the contact process we get the

following inequality. For any subset B of the vertex set, and for the event Fn ≡

[T3 <∞] we have

P
[(
ξ1T1+T2+T3

⊃ B
)
∩ Fn

]
=
∑
S∈S

P
(
ξST1+T2

⊃ B
)
P
(
ξ1
T3

= S|Fn
)
P (Fn)

=
∑
S∈S

P
(
ξ
{x}
T1+T2

∩ S 6= ∅ ∀x ∈ B
)
P
(
ξ1
T3

= S|Fn
)
P (Fn)

≥
∑
S∈S

P
(
|ξ{x}T1+T2

∩ Iεn,T3
| > (3/4)|V ε

n | ∀x ∈ B
)
P
(
ξ1
T3

= S|Fn
)
P (Fn)

≥ P (Yx = 1 ∀x ∈ B)
(
1− 7|B| exp

(
−λ2nε/3/16

))
P (Fn)

≥ P (Yx = 1 ∀x ∈ B)(1− 2 exp
(
−cnε/4

)
),

as |B| ≤ n and P (Fn) ≥ 1 − exp(−cnε). Hence for T = T1 + T2 + T3, combin-

ing with (2.3.2) and using the attractiveness property of the contact process we

conclude that as n→∞

inf
t≤T

P

(
|ξ1t |
n

> pl

)
= P

(
|ξ1T |
n

> pl

)
(2.3.3)
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≥ P

(
ξ1T ⊇ {x : Yx = 1},

∑
x∈An

Yx ≥ npl

)
→ 1,

which completes the proof of Theorem 1, and proves the lower bound in Theo-

rem 2.

2.4 Upper bound in Theorem 2

For the upper bound, we will show that if the infection starts from a vertex x

with no vertex of degree > 1/λ1−δ nearby, it has a very small chance to survive.

To get the 1 in upper bound we need to use the fact that first event in the contact

process starting at x has to be a birth so we begin with that calculation.

Let Λδ be the set of vertices of degree > λδ−1. Define Zx, x ∈ {1, 2, . . . , n} as

Zx = 1 if the dual contact process {ξ{x}t : t ≥ 0} starting from x survives for

T ′ = 1/λα−1 units of time, and 0 otherwise. We will show EZx ≤ Cλ1+(α−2)(1−δ)

for some constant C. If T1 is the time for the first event in the dual process,

then ET1 ≤ 1 and using Markov’s inequality P (T1 > 1/λα−1) < λα−1. So if

T1 < 1/λα−1, the first event must be a birth for Zx to be 1. So for x ∈ Λδ,

P (Zx = 1) ≤ P (T1 > 1/λα−1) +
∑
i>λδ−1

pi
λi

λi+ 1

≤ λα−1 + Cλ
∑
i>λδ−1

i−(α−1)

≤ λα−1 + Cλ · λ(α−2)(1−δ).

For x ∈ Λc
δ, let w(λ) ≤ Cλ(α−2)(1−δ) be the size-biased probability of hav-

ing a vertex of Λδ in its neighborhood. If d(x) = i, the expected number

of vertices in a radius m around x is at most i · EZm, where Zm is the total
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progeny up to mth generation of the branching process with offspring distribu-

tion qk = (k + 1)pk+1/µ ∼ ckα−1. So the expected number of vertices, which are

within a distance m = d(α − 1)/δe, the smallest integer larger than (α − 1)/δ,

from x and belong to Λδ, is

≤
(1/λ)1−δ∑
i=2

pi · i · EZm · Cλ(α−2)(1−δ) ≤ Cλ(α−2)(1−δ).

Using Markov’s inequality the probability of having at least one vertex of Λδ

within a distance m from x has the same upper bound as above.

Until we reach Λδ, |ξ{x}t | ≤ Yt where

Yt → Y1 − 1 at rate Yt

Yt → Yt + 1 at rate Ytλ · (1/λ)1−δ = Ytλ
δ

So Yt jumps at rate Yt(1+λδ) and it jumps to Yt+1 with probability λδ/(1+λδ) <

λδ. If T1 < 1/λα−1, the first event in the dual process ξ{x}t must be a birth for

Zx to be 1. Let T2m is the time of the 2mth event after the first event. Then

ET2m ≤ 2m/(1 + λδ) and using Markov’s inequality

P (T2m > 1/λα−1) ≤ Cλα−1.

Now if T2m < 1/λα−1 and there is no vertex of Λδ within a distance m of x, the

infection starting at x survives for time T ′ only if Yt has at least m up jumps

before hitting 0. If there are ≤ m − 1 up jumps in the first 2m then Yt will hit 0

by T2m, as Y0 = 2. The probability of this event is

≤ P (B ≥ m) where B ∼ Binomial (2m,λδ)

≤ 22mλmδ ≤ 22mλα−1.
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Combining all three error probabilities, for any x ∈ Λc
δ,

P (Zx = 1) ≤ P (T1 > 1/λα−1) + P (T2m > 1/λα−1)

+
∑
i≤λδ−1

pi
λi

λi+ 1
· Cλ(α−2)(1−δ)

≤ Cλ1+(α−2)(1−δ).

Using an argument similar to one at the end of the proof of Theorem 2.1.2

P

(∣∣∣∣∣∑
x

(Zx − EZx)

∣∣∣∣∣ > nγ

)
→ 0 as n→∞

for any γ > 0. Since EZx ≤ Cλ1+(α−2)(1−δ) for all x ∈ {1, 2, . . . , n}, if we take

pu = 3Cλ1+(α−2)(1−δ), then

P

(∑
x

Zx ≥ npu

)
→ 0 as n→∞.

So by making C larger in the definition of pu and using the attractiveness of

the contact process

inf
t≥T ′

P (|ξ1
t | ≤ pun)→ 1

as n→∞.

2.5 Proof of connectivity and diameter

We conclude the chapter with the proof of Lemma 2.1.3. We begin with a large

deviations result. The fact is well-known, but the proof is short so we give it for

completeness.
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Lemma 2.5.1. Let X1, X2, . . . be i.i.d., nonnegative with mean µ. If ρ < µ, then there

is a constant γ > 0 so that

P (X1 + · · ·+Xk ≤ ρk) ≤ e−γk

Proof. Let φ(θ) = Ee−θX . If θ > 0 then

e−θρkP (X1 + · · ·+Xk ≤ ρk) ≤ φ(θ)k.

So we have

P (X1 + · · ·+Xk ≤ ρk) ≤ exp(k{θρ+ log φ(θ)}).

log(φ(0)) = 0 and as θ → 0

d

dθ
log(φ(θ)) =

φ′(θ)

φ(θ)
→ −µ.

So log φ(θ) ∼ −µθ as θ → 0, and the result follows by taking θ small.

Proof of Lemma 2.1.3. We will prove the result in the following steps.

Step 1: Let kn = (log n)2. The size of the clusterCx, starting from x ∈ {1, 2, . . . n},

reaches size kn with probability 1− o(n−1).

Step 2: There is aB <∞ so that if the size of Cx reaches sizeB log n, it will reach

n2/3 with probability 1−O(n−2).

Step 3: Let ζ > 0. Two clusters Cx and Cy, starting from x and y respectively, of

size n(1/2)+ζ will intersect with probability 1− o(n−2).

Steps 2 and 3 follow from the proof of Theorem 3.2.2 of [16], so it is enough to

do Step 1. Before doing this, note that if d1, . . . , dn are the degrees of the vertices,
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and η > 0 then as n→∞,

P

(
max
1≤i≤n

di > n(1+η)/(α−1)

)
≤ n · P (d1 > n(1+η)/(α−1)) ∼ Cn−η.

Given α > 3, we choose η > 0 small enough so that (1 + η)/(α− 1) < 1/2.

To prove step 1, we will expose one vertex at a time. Following the notation

of [16], suppose At, Ut and Rt are the sets of active, unexplored and removed

sites respectively at time t in the process of growing the cluster starting from

1, with R0 = {1}, A0 = {z : 1 ∼ z} and U0 = {1, 2, . . . , n} − A0 ∪ R0. At time

τ = inf{t : At = ∅} the process stops. If At 6= ∅, pick it from At in some way

measurable with respect to the process up to that time and let

Rt+1 = Rt ∪ {it}

At+1 = At ∪ {z ∈ Ut : it ∼ z} − {it}

Ut+1 = Ut − {z ∈ Ut : it ∼ z}.

Here |Rt| = t + 1 for t ≤ τ and so C1 = τ + 1. If there were no collisions,

then |At+1| = |At| − 1 + Z where Z has the size biased degree distribution q.

Let qη be the distribution of (Z|Z ≤ n(1+η)/(α−1)). Then on the event {maxi di ≤

n(1+η)/(α−1)}, |At| is dominated by a random walk St = S0 +Z1 + · · ·+Zt, where

S0 = A0 and Zi ∼ qη. Since qk−1 = kpk/µ, we have q0 = q1 = 0 and hence

qη0 = qη1 = 0. Then St increases monotonically.

If we let T = inf{m : Sm ≥ kn} then

P (|C1| ≤ kn) ≤ P (St − |At| ≥ 4 for some t ≤ T ). (2.5.1)

As observed above, if n is large, all of the vertices have degree ≤ nβ where

β = (1 + η)/(α − 1) < 1/2. As long as St ≤ 2kn, each time we add a new vertex
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and the probability that it is in the active set is at most

γn =
2knn

β∑n
i=1 di − 2knnβ

≤ Cknn
β−1

for large n. Thus the probability of two or more collisions while St ≤ 2kn is

≤ (2kn)2γ2
n = o(n−1).

If ST − ST−1 ≤ kn, then the previous argument suffices, but ST − ST−1 might

be as large as nβ . Letting m > 1/(1 − 2β), we see that the probability of m or

more collisions is at most

(nβ)m(Cnβ−1)m = o(n−1).

To grow the cluster we will use a breadth first search: we will expose all the

vertices at distance 1 from the starting point, then those at distance 2, etc. When

a collision occurs, we do not add a vertex, and we delete the one with which

a collision has occurred, so two are lost. There is at most one collision while

St ≤ 2kn. Since S0 ≥ 3, it is easy to see that the worst thing that can happen in

terms of the growth of the cluster is for the collision to occur on the first step,

reducing S0 to 1. After this the number of vertices doubles at each step so size

kn is reached before we have gone a distance log2 kn from the starting point.

In the final step we might have a jump Sτ−Sτ−1 ≥ kn andm collisions, but as

long as kn = (log n)2 > 2mwe do not lose any ground. In the growth before time

T , each vertex, except for possibly one collision, has added two new vertices to

the active set. From this it is easy to see that the number of vertices in the active

set is at least kn/2− 2m.

To grow the graph now, we will expose all of the vertices in the current active
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set, then expose all of the neighbors of these vertices, etc. Let ε > 0. The proof

of Theorem 3.2.2 of [16, page 78] shows that if δ is small then until nδ vertices

have been exposed, the cluster growth dominates a random walk with mean

ν − ε. Let J1, J2, . . . be the successive sizes of the active set when these phases

are complete. The large deviations result, Lemma 2.5.1, implies that there is a

γ > 0 so that

P (Ji+1 ≤ (ν − 2ε)Ji|Ji = ji) ≤ exp(−γji)

Since J1 ≥ (log n)2/2 − 8, it follows from this result that with probability ≥

1− o(n−1), in at most (
1

2
+ ζ

)
log n

log(ν − ε)

steps, the active set will grow to size n(1/2)+ζ . Using the result from Step 3 and

noting that the initial phase of the growth has diameter ≤ log2 kn = O(log log n)

the desired result follows.



Chapter 3

Random Boolean networks

3.1 Introduction

Random Boolean networks were originally developed by Kauffman [30] as an

abstraction of genetic regulatory networks. The idea is to identify generic prop-

erties and patterns of behavior for the model, then compare them with the be-

havior of real systems. Protein and RNA concentrations in networks are of-

ten modeled by systems of differential equations. However, in large networks

the number of parameters such as decay rates, production rates and interaction

strengths can become huge. Recent work in [1] on the segment polarity network

in Drosophila melanogaster, see also [10], has shown that Boolean networks can

in some cases outperform differential equation models. Random Boolean net-

works have been used in [29]to model the yeast transcriptional network, and

this approach have been used tin [33] to model the yeast cell-cycle network.

In our version of his model, the state of each node x ∈ Vn ≡ {1, 2, . . . , n}

at time t = 0, 1, 2, . . . is ηt(x) ∈ {0, 1}, and each node x receives input from r

distinct nodes y1(x), . . . , yr(x), which are chosen randomly from Vn \ {x}.

We construct our random directed graph Gn on the vertex set Vn =

{1, 2, . . . , n} by putting oriented edges to each node from its input nodes. To

be precise, we define the graph by creating a random mapping φ : Vn ×

{1, 2, . . . , r} → Vn, where φ(x, i) = yi(x), such that yi(x) 6= x for 1 ≤ i ≤ r

47
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and yi(x) 6= yj(x) when i 6= j, and taking the edge set En ≡ {(yi(x), x) : 1 ≤

i ≤ r, x ∈ Vn}. So each vertex has in-degree r in our random graph Gn. The

total number of choices for φ is [(n − 1)(n − 2) · · · (n − r)]n. However, the re-

sulting graph Gn will remain the same under any permutation of the vector

yx ≡ (y1(x), . . . , yr(x)) for any x ∈ Vn. So if ezx ∈ {0, 1} is the number of directed

edges from node z to node x in Gn, then
∑n

z=1 ez,x = r, and the total number of

permutations of the vectors yx, 1 ≤ x ≤ n, that correspond to the same graph is

(r!)n. So if P denotes the distribution of Gn, then

P(ezx, 1 ≤ z, x ≤ n) =
(r!)n

[(n− 1)(n− 2) · · · (n− r)]n
=

1[(
n−1
r

)]n ,
if ez,x ∈ {0, 1}, ex,x = 0 and

∑n
z=1 ezx = r for all x ∈ Vn, and P(ezx, 1 ≤ x, z ≤

n) = 0 otherwise. So our random graph Gn has uniform distribution over the

collection of all directed graphs on the vertex set Vn in which each vertex has

in-degree r. Once chosen the network remains fixed through time. The rule for

updating node x is

ηt+1(x) = fx(ηt(y1(x)), . . . , ηt(yr(x))),

where the values fx(v), x ∈ Vn, v ∈ {0, 1}r, chosen at the beginning and then

fixed for all time, are independent and = 1 with probability p.

A number of simulation studies have investigated the behavior of this

model. See [2] for survey. Flyvberg and Kjaer [24] have studied the degen-

erate case of r = 1 in detail. Derrida and Pommeau [15] have argued that for

r ≥ 3 there is a phase transition in the behavior of these networks between rapid

convergence to a fixed point and exponentially long persistence of changes, and

identified the phase transition curve to be given by the equation r ·2p(1−p) = 1.
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The networks with parameters below the curve have behavior that is ‘ordered’,

and those with parameters above the curve have ‘chaotic’ behavior. Since chaos

is not healthy for a biological network, it should not be surprising that real bio-

logical networks avoid this phase. See [31], [46] and [42].

To explain the intuition behind the conclusion of [15], we define another

process {ζt(x) : t ≥ 1} for x ∈ Vn, which they called the annealed approximation.

The idea is that ζt(x) = 1 if and only if ηt(x) 6= ηt−1(x), and ζt(x) = 0 otherwise.

Now if the state of at least one of the inputs y1(x), . . . , yr(x) into node x has

changed at time t, then the state of node x at time t + 1 will be computed by

looking at a different value of fx. If we ignore the fact that we may have used

this entry before, we get the dynamics of the threshold contact process

P (ζt+1(x) = 1| ζt(y1(x)) + · · ·+ ζt(yr(x)) > 0) = 2p(1− p), and

P (ζt+1(x) = 0| ζt(y1(x)) + · · ·+ ζt(yr(x)) = 0) = 1.

Conditional on the state at time t, the decisions on the values of ζt+1(x), x ∈ Vn,

are made independently.

We content ourselves to work with the threshold contact process, since it

gives an approximate sense of the original model, and we can prove rigorous

results about its behavior. To simplify notation and explore the full range of

threshold contact processes we let q ≡ 2p(1 − p), and suppose 0 ≤ q ≤ 1. As

mentioned above, it is widely accepted that the condition for prolonged persis-

tence of the threshold contact process is qr > 1. To explain this, we note that

vertices in the graph Gn have average out-degree r, so a value of 1 at a vertex

will, on the average, produce qr 1’s in the next generation.
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We will also write the threshold contact process as a set valued process. Let

ξt ≡ {x : ζt(x) = 1}. We will refer to the vertices x ∈ ξt as occupied at time t.

So if PGn is the distribution of the threshold contact process ξ ≡ {ξt : t ≥ 0}

conditioned on the graph Gn, then

PGn (x ∈ ξt+1| {y1(x), . . . , yr(x)} ∩ ξt 6= ∅) = q, and

PGn (x ∈ ξt+1| {y1(x), . . . , yr(x)} ∩ ξt = ∅) = 0,

and if P denotes the distribution of the threshold contact process on the random

graph Gn, which has distribution P, then

P(·) = EPGn(·), (3.1.1)

where E is the expectation corresponding to the probability distribution P.

Let ξA ≡
{
ξAt : t ≥ 0

}
denote the threshold contact process starting from

ξA0 = A ⊂ Vn, and ξ1 ≡ {ξ1
t : t ≥ 0} denote the special case when A = Vn. Let

ρ be the survival probability of a branching process with offspring distribution

pr = q and p0 = 1− q. By branching process theory

ρ = 1− θ, where θ ∈ (0, 1) satisfies θ = 1− q + qθr. (3.1.2)

Using all the ingredients above we now present our first result.

Theorem 3.1.1. Suppose q(r− 1) > 1 and let δ > 0. Let P be the probability distribu-

tion in (3.1.1). Then there is a positive constant C(δ) so that as n→∞

inf
t≤exp(C(δ)n)

P

(
|ξ1
t |
n
≥ ρ− 2δ

)
→ 1.

The threshold contact process will eventually die out on any finite graph. But

it certainly cannot last longer than exp(O(n)) units of time, because the number
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of vertices is n, and so even if all vertices are occupied at time 0, there is a

probability ≥ (1− q)n that all of them will be vacant at time 1.

To prove Theorem 3.1.1, we will consider the dual coalescing branching pro-

cess ξ̂ ≡ {ξ̂t : t ≥ 0}. In this process if x is occupied at time t, then with

probability q all of the sites y1(x), . . . , yr(x) will be occupied at time t + 1, and

with probability 1− q none of them will be occupied at time t + 1. Birth events

from different sites are independent. Let ξ̂
A
≡ {ξ̂At : t ≥ 0} be the dual process

starting from ξ̂A0 = A ⊂ Vn. The two processes can be constructed on the same

sample space so that for any choices of A and B for the initial sets of occupied

sites, ξA and ξ̂
B

satisfies the following duality relationship, see [26].{
ξAt ∩B 6= ∅

}
=
{
ξ̂Bt ∩ A 6= ∅

}
, t = 0, 1, 2, . . . . (3.1.3)

Taking A = {1, 2, . . . , n} and B = {x} this says{
x ∈ ξ1

t

}
=
{
ξ̂
{x}
t 6= ∅

}
, (3.1.4)

or, taking probabilities of both the events above, the density of occupied sites in

ξ1 at time t is equal to the probability that ξ̂
{x}

survives until time t. Since over

small distances our graph looks like a tree in which each vertex has r descen-

dants, the last quantity ≈ ρ.

From (3.1.3) it should be clear that we can prove Theorem 3.1.1 by studying

the coalescing branching process. The key to this is an “isoperimetric inequal-

ity”. Let Ĝn be the graph obtained from our original graph Gn = (Vn, En) by

reversing the edges. That is, Ĝn = (Vn, Ên), where Ên = {(x, y) : (y, x) ∈ En}.

Given a set U ⊂ Vn, let

U∗ = {y ∈ Vn : x→ y for some x ∈ U}, (3.1.5)
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where x → y means (x, y) ∈ Ên. Note that U∗ can contain vertices of U . The

idea behind this definition is that if U is occupied at time t in the coalescing

branching process, then the vertices in U∗ may be occupied at time t+ 1.

Theorem 3.1.2. Let E(m, k) be the event that there is a subset U ⊂ Vn with size

|U | = m so that |U∗| ≤ k. Given η > 0, there is an ε0(η) > 0 so that for m ≤ ε0n

P [E(m, (r − 1− η)m)] ≤ exp(−ηm log(n/m)/2).

In words, the isoperimetric constant for small sets is r − 1. It is this result that

forces us to assume q(r − 1) > 1 in Theorem 3.1.1.

Claim. There is a c > 0 so that if n is large, then, with high probability, for each

m ≤ cn there is a set Um with |Um| = m and |U∗m| ≤ 1 + (r − 1)m.

Sketch of Proof. Define an undirected graph Hn on the vertex set Vn so that x and

y are adjacent in Hn if and only if there is a z so that x→ z and y → z in Ĝn. The

drawing illustrates the case r = 3.
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The mean number of neighbors of a vertex in Hn is r2 ≥ 9, so standard argu-

ments show that there is a c > 0 so that, with probability tending to 1 as n→∞,

there is a connected component Kn of Hn with |Kn| ≥ cn. If U is a connected
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subset of Kn with |U | = bcnc, then by building up U one vertex at a time and

keeping it connected we get a sequence of sets {Um,m = 1, 2, . . . , bcnc} with

|Um| = m and |U∗m| ≤ 1 + (r − 1)m.

Since the isoperimetric constant is ≤ r − 1, it follows that when q(r − 1) < 1,

then for any ε > 0 there are bad sets A with |A| ≤ nε, so that E
∣∣∣ξ̂A1 ∣∣∣ ≤ |A|.

Computations from the proof of Theorem 5.1.5 suggest that there are a large

number of bad sets. We have no idea how to bound the amount of time spent

in bad sets, so we have to take a different approach to show persistence when

1/r < q ≤ 1/(r − 1).

Theorem 3.1.3. Suppose qr > 1. If δ0 is small enough, then for any 0 < δ < δ0, there

are constants C(δ) > 0 and B(δ) = (1/8− 2δ) log(qr − δ)/ log r so that as n→∞

inf
t≤exp(C(δ)·nB(δ))

P

(
|ξ1
t |
n
≥ ρ− 2δ

)
→ 1.

Based on results for the basic contact process on (Z mod n) [19, 21] and on

(Z mod n)d [37], it is natural to believe that the conclusion of Theorem 3.1.1

holds in all situations with qr > 1. But here we content ourselves with the

rather weak result.

To prove Theorem 3.1.3, we will again investigate persistence of the dual.

Let

d0(x, y) ≡ length of a shortest oriented path from x to y in Ĝn,

d(x, y) ≡ min
z∈Vn

[d0(x, z) + d0(y, z)], (3.1.6)

and for any subset A of vertices let

m(A,K) = max
S⊆A
{|S| : d(x, y) ≥ K for all x, y ∈ S, x 6= y}. (3.1.7)
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Let R ≡ log n/ log r be the average value of d0(1, 2). So R is an average distance

between any two distinct vertices of the graph. Also let a = 1/8 − δ and B =

(a−δ) log(qr−δ)/ log r. We will show that ifm
(
ξ̂As , 2daRe

)
< bnBc at some time

s, then with high probability, we will later have m
(
ξ̂At , 2daRe

)
≥ bnBc for some

t > s. To do this we explore the vertices in Ĝn one at a time using a breadth-

first search algorithm based on the distance function d0. We say that a collision

has occurred if we encounter a vertex more than once in the exploration process.

First we show in Lemma 3.3.1 that, with probability tending to 1 as n→∞, there

can be at most one collision in the set {u : d0(x, u) ≤ 2daRe} for any x ∈ Vn. Then

we argue in Lemma 3.3.2 that when we first have m
(
ξ̂As , 2daRe

)
< bnBc, there

is a subset N of occupied sites so that |N | ≥ (q− δ)bnBc, and d(z, w) ≥ 2daRe−2

for any two distinct vertices z, w ∈ N , and {u : d0(z, u) ≤ 2daRe − 1} has no

collision. We run the dual process starting from the vertices of N until time

daRe − 1, so they are independent. With high probability there will be at least

one vertex w ∈ N for which
∣∣∣ξ̂{w}daRe−1

∣∣∣ ≥ dnBe. By the choice of N , for any two

distinct vertices x, z ∈ ξ̂{w}daRe−1, d(x, z) ≥ 2daRe. It seems foolish to pick only one

vertex w, but we do not know how to guarantee that the vertices are suitably

separated if we pick more.

3.2 Proof of Theorem 3.1.1

We begin with the proof of the isoperimetric inequality, Theorem 5.1.5.

Proof of Theorem 2. Let p(m, k) be the probability that there is a set U with |U | =



55

m and |U∗| = k. First we will estimate p(m, `) where ` = b(r − 1− η)mc.

p(m, `) ≤
∑

{(U,U ′):|U |=m,|U ′|=`}

P(U∗ = U ′) ≤
∑

{(U,U ′):|U |=m,|U ′|=`}

P(U∗ ⊂ U ′).

According to the construction of Gn, for any x ∈ U the other ends of the r edges

coming out of it are distinct and they are chosen at random from Vn \ {x}. So

P(U∗ ⊂ U ′) =

[ (|U ′|
r

)(
n−1
r

)]|U | ≤ ( |U ′|
n− 1

)r|U |
,

and hence

p(m, `) ≤
(
n

m

)(
n

`

)(
`

n− 1

)rm
. (3.2.1)

To bound the right-hand side, we use the trivial bound(
n

m

)
≤ nm

m!
≤
(ne
m

)m
, (3.2.2)

where the second inequality follows from em > mm/m!. Using (3.2.2) in (3.2.1)

p(m, `) ≤ (ne/m)m(ne/`)`
(
`

n

)rm(
n

n− 1

)rm
.

Recalling ` ≤ (r−1−η)m, and accumulating the terms involving (m/n), r−1−η

and e the last expression becomes

≤ em(r−η)(m/n)m[−1−(r−1−η)+r](r − 1− η)−(r−1−η)m+rm[n/(n− 1)]rm

= em(r−η)(m/n)mη(r − 1− η)m(1+η)[n/(n− 1)]rm.

Letting c(η) = r−η+r log(n/(n−1))+(1+η) log(r−1−η) ≤ C for η ∈ (0, r−1),

we have

p (m, b(r − 1− η)mc) ≤ exp (−ηm log(n/m) + Cm) .

Summing over integers k = (r − 1− η′)m with η′ ≥ η, and noting that there are

fewer than rm terms in the sum, we have

P [E(m, (r − 1− η)m)] ≤ exp(−ηm log(n/m) + C ′m).
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To clean up the result to the one given in Theorem 5.1.5, choose ε0 such that

η log(1/ε0)/2 > C ′. Hence for any m ≤ ε0n,

η log(n/m)/2 ≥ η log(1/ε0)/2 > C ′,

which gives the desired result.

Our next goal is to show that the graph Ĝn locally looks like a tree with high

probability. For that we explore all the vertices in Vn one at a time, starting from

a vertex x, and using a breadth-first search algorithm based on the distance

function d0 of (3.1.6). More precisely, for each x ∈ Vn, we define the sets Akx,

which we call the active set at the kth step, and Rk
x, which we call the removed

set at kth step, for k = 0, 1, . . . , βx, where βx ≡ min{l : Alx = ∅}, sequentially as

follows. R0
x ≡ ∅ and A0

x ≡ {x}. Let D(x, l) = {y : d0(x, y) ≤ l}. For 0 ≤ k < βx,

we get k0 = min{l : 0 ≤ l ≤ k,Akx ∩D(x, l) 6= ∅}, and choose xk ∈ Akx ∩D(x, k0)

with the minimum index.

If xk ∈ Rk
x, then Ak+1

x ≡ Akx \ {xk}, Rk+1
x ≡ Rk

x and

if xk 6∈ Rk
x, then Ak+1

x ≡ Akx ∪ {y1(xk), . . . , yr(xk)} \ {xk}, Rk+1
x ≡ Rk

x ∪ {xk}.

If xk ∈ Rk
x, we say that a collision has occurred while exploring Ĝn starting from

x. The choice of xk ensures that while exploring the graph starting from x, for

any j ≥ 1, we consider the vertices, which are at d0 distance j from x, prior to

those, which are at d0 distance j + 1 from x.

The next Lemma shows that with high probability Rk
x will have k vertices,

and for x 6= z, Rk
x and Rk

z do not intersect each other, when k ≤ n1/2−δ. For the

lemma we need the following stopping times.

π1
x ≡ min

{
l ≥ 1 : |Rl

x| < l
}
,
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πx,z ≡ min
{
l ≥ 1 : Rl

x ∩Rl
z 6= ∅

}
, x 6= z,

αn,δx ≡ min
{
l ≥ 1 : |Rl

x| ≥ dn1/2−δe
}
, δ < 1/2, (3.2.3)

βx = min
{
l ≥ 1 : Alx = ∅

}
So π1

x is the time of first collision while exploring Ĝn starting from x, and πx,z is

the time of first collision while exploring Ĝn simultaneously from x and z.

Lemma 3.2.1. Suppose 0 < δ < 1/2. Let I1
x , x ∈ Vn, and Ix,z, x, z ∈ Vn, x 6= z, be the

events

I1
x ≡

{
π1
x ∧ βx ≥ αn,δx

}
, Ix,z ≡ I1

x ∩ I1
z ∩

{
πx,z ≥ αn,δx ∨ αn,δz

}
,

where π1
x, πx,z, α

n,δ
x and βx are the stopping times defined in (3.2.3). Then

P
[(
I1
x

)c] ≤ n−2δ, P(Icx,z) ≤ 5n−2δ (3.2.4)

for large enough n.

Note that the randomness, which determines whether the events I1
x and Ix,z

occur or not, arises only from the construction of the random graph Gn, and

does not involve the threshold contact process ξ1 on Gn.

Proof. Let δ′ = 1/2 − δ. Since in the construction of the random graph Gn the

input nodes yi(z), 1 ≤ i ≤ r, for any vertex z are distinct and different from z,

there are at least n− r choices for each yi(z). Also
∣∣Rl

x

∣∣ ≤ l for any l. So

P(|Rk
x| = |Rk−1

x |) ≤ (k − 1)/(n− r). (3.2.5)

It is easy to check that π1
x ∧ βx ≥ αn,δx if |Rk

x| 6= |Rk−1
x | for k = 1, 2, . . . , dnδ′e. So

P
[(
I1
x

)c] ≤ P
[
∪dn

δ′e
k=1

(∣∣Rk
x

∣∣ =
∣∣Rk−1

x

∣∣)] ≤ dnδ′e∑
k=1

P
(
|Rk

x| = |Rk−1
x |

)
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≤
dnδ′e∑
k=1

(k − 1)/(n− r) ≤ n2δ′/n = n−2δ

for large enough n. For the other assertion, note that Ix,z occurs if |Rk
x| 6=

|Rk−1
x |, |Rk

z | 6= |Rk−1
z | and Rk

x ∩ Rk
z = ∅ for k = 1, 2, . . . , dnδ′e. Also if for some

k ≥ 1Rk
x∩Rk

z 6= ∅ andRl
x∩Rl

z = ∅ for all 1 ≤ l < k, then eitherRk
x = Rk−1

x ∪{xk−1}

and xk−1 ∈ Rk−1
z , or Rk

z = Rk−1
z ∪ {zk−1} and zk−1 ∈ Rk

x. Now since each of the

input nodes in the construction of Gn has at least n−r choices, and |Rl
x|, |Rl

z| ≤ l

for any l,

P
(
Rk
x ∩Rk

z 6= ∅, Rl
x ∩Rl

z = ∅, 1 ≤ l < k
)
≤ P

(
xk−1 ∈ Rk−1

z

)
+P
(
zk−1 ∈ Rk

x

)
≤ (2k−1)/(n−r).

(3.2.6)

Combining the error probabilities of (3.2.5) and (4.4.6)

P
(
Icx,z
)
≤ P

[
∪dn

δ′e
k=1

(∣∣Rk
x

∣∣ =
∣∣Rk−1

x

∣∣) ∪dnδ′ek=1

(∣∣Rk
z

∣∣ =
∣∣Rk−1

z

∣∣) ∪dnδ′ek=1

(
Rk
x ∩Rk

z 6= ∅
)]

≤
dnδ′e∑
k=1

[
P
(∣∣Rk

x

∣∣ =
∣∣Rk−1

x

∣∣)+ P
(
|Rk

z | = |Rk−1
z |

)
+ P

(
Rk
x ∩Rk

z 6= ∅, Rl
x ∩Rl

z = ∅, 1 ≤ l < k
)]

≤
dnδ′e∑
k=1

(4k − 3)/(n− r) ≤ 5n2δ′−1 = 5n−2δ

for large n.

Lemma 3.2.1 shows that Ĝn is locally tree-like. The number of vertices in

the induced subgraph Ĝx,M with vertex set Gn ∩ {u : d0(x, u) ≤ M} is at most

1+r+· · ·+rM ≤ 2rM . So if I1
x occurs, then, for anyM satisfying 2rM ≤ n1/2−δ, the

subgraph Ĝx,M is an oriented finite r−tree, where each vertex except the leaves

has out-degree r. Similarly if Ix,z occurs, then for any such M , Ĝx,M ∩ Ĝz,M = ∅.

In the next lemma, we will use this to get a bound on the survival of the dual

process for small times. Let ρ be the branching process survival probability
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defined in (3.1.2).

Lemma 3.2.2. If q > 1/r, δ ∈ (0, qr−1), γ = (20 log r)−1, and b = γ log(qr− δ) then

for any x ∈ Vn, if n is large,

P
(∣∣∣ξ̂{x}d2γ logne

∣∣∣ ≥ dnbe) ≥ ρ− δ.

Proof. Let I1
x be the event

I1
x =

{
π1
x ∧ βx ≥ αn,1/4x

}
,

where π1
x, βx, α

n,1/4
x are as in (3.2.3). Let PZx be the distribution of a branching

process Zx ≡ {Zx
t : t = 0, 1, 2, . . .} with Zx

0 = 1 and offspring distribution

p0 = 1 − q and pr = q. Since q > 1/r, this is a supercritical branching process.

Let Bx be the event that the branching process survives. Then

PZx(Bx) = ρ,

where ρ is as in (3.1.2). If we condition onBx, then, using a large deviation result

for branching processes from [4],

PZx

(∣∣∣∣Zx
t+1

Zx
t

− qr
∣∣∣∣ > δ

∣∣∣∣Bx

)
≤ e−c(δ)t (3.2.7)

for some constant c(δ) > 0 and for large enough t. So if Fx = {Zx
t+1 ≥ (qr −

δ)Zx
t for bγ log nc ≤ t < d2γ log ne}, then

PZx(F
c
x |Bx) ≤

(d2γ logne)−1∑
t=bγ lognc

e−c(δ)t ≤ Cδn
−c(δ)γ/2 (3.2.8)

for some constant Cδ > 0 and for large enough n. On the event Bx ∩ Fx,

Zx
d2γ logne ≥ (qr − δ)d2γ logne−bγ lognc ≥ (qr − δ)γ logn = nγ log(qr−δ),
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since Zx
bγ lognc ≥ 1 on Bx.

Now coming back to the dual process ξ̂
{x}

, let PI1x denote the conditional

distribution of ξ̂
{x}

given I1
x . This does not specify the entire graph but we will

only use the conditional law for events that involve the process on the subtree

whose existence is guaranteed by I1
x . By the choice of γ, the number of vertices

in the subgraph induced by {u : d0(x, u) ≤ d2γ log ne} is at most 2rd2γ logne < n1/4.

Then it is easy to see that we can couple PI1x with PZx so that

PI1x

[(∣∣∣ξ̂{x}t

∣∣∣ , 0 ≤ t ≤ d2γ log ne
)
∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ d2γ log ne) ∈ ·] .

Combining the error probabilities of (3.2.4) and (3.2.8)

P
(∣∣∣ξ̂{x}d2γ logne

∣∣∣ ≥ dnbe) ≥ PI1x

(∣∣∣ξ̂{x}d2γ logne

∣∣∣ ≥ dnbe)P(I1
x)

= PZx
(
Zx
d2γ logne ≥ dnbe

)
P(I1

x)

≥ PZx(Bx ∩ Fx)P(I1
x)

= PZx(Bx)PZx(Fx|Bx)P(I1
x)

≥ ρ
(
1− Cδn−c(δ)γ/2

) (
1− n−1/2

)
≥ ρ− δ

for large enough n.

Lemma 3.2.2 shows that the dual process starting from one vertex will with

probability ≥ ρ − δ survive until there are dnbe many occupied sites. The next

lemma will show that if the dual starts with dnbe many occupied sites, then for

some ε > 0 it will have dεne many occupied sites within time dεne with high

probability.

Lemma 3.2.3. If q(r − 1) > 1, then there exists ε1 > 0 such that for any A with
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|A| ≥ dnbe the dual process ξ̂
A

satisfies

P

(
max

t≤dε1n−nbe

∣∣∣ξ̂At ∣∣∣ < ε1n

)
≤ exp

(
−nb/4

)
.

Proof. Choose η > 0 such that (q− η)(r− 1− η) > 1, and let ε0(η) be the constant

in Theorem 5.1.5. Take ε1 ≡ ε0(η). Let ν ≡ min
{
t :
∣∣∣ξ̂At ∣∣∣ ≥ dε1ne}. Let Ft ≡{∣∣∣ξ̂At ∣∣∣ ≥ ∣∣∣ξ̂At−1

∣∣∣+ 1
}

, and

Bt ≡
{

at least (q − η)
∣∣∣ξ̂At ∣∣∣ occupied sites of ξ̂At give birth

}
,

Ct ≡ {|U∗t | ≥ (r − 1− η)|Ut|} , where Ut =
{
x ∈ ξ̂At : x gives birth

}
.

Now if Bt and Ct occur, then

∣∣∣ξ̂At+1

∣∣∣ = |U∗t | ≥ (r − 1− η)|Ut| ≥ (r − 1− η)(q − η)
∣∣∣ξ̂At ∣∣∣ > ∣∣∣ξ̂At ∣∣∣ , (3.2.9)

i.e. Ft+1 occurs. So Ft+1 ⊇ Bt ∩ Ct for all t ≥ 0. Using the binomial large

deviations, see [16, Lemma 2.3.3, page 40],

PGn

(
Bt| ξ̂At

)
≥ 1− exp

(
−Γ((q − η)/q)q

∣∣∣ξ̂At ∣∣∣) , (3.2.10)

where Γ(x) = x log x − x + 1 > 0 for x 6= 1. If we take H0 ≡
{∣∣∣ξ̂A0 ∣∣∣ ≥ dnbe} and

Ht ≡ ∩ts=1Fs, then
∣∣∣ξ̂At ∣∣∣ ≥ dnbe on the eventHt for all t ≥ 0. Keeping that in mind

we can replace
∣∣∣ξ̂At ∣∣∣ in the right side of (3.2.10) by nb to have

PGn(Bc
t ∩Ht) ≤ PGn

(
Bc
t ∩
{∣∣∣ξ̂At ∣∣∣ ≥ dnbe}) ≤ exp

(
−Γ((q − η)/q)qnb

)
∀t ≥ 0.

(3.2.11)

The same bound also works for the unconditional probability distribution P.

Next we see that PGn(Ct|Ut) ≥ 1Ec , where E = E(|Ut|, (r−1− η)|Ut|), as defined

in Theorem 5.1.5. Taking expectation with respect to the distribution of Gn,
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P(Ct|Ut) ≥ P(Ec). Since for t < ν, |Ut| < ε0(η)n, and |Ut| ≥ (q−η)nb ≥ nb/(r−1)

on Ht ∩Bt, using Theorem 5.1.5

P(Cc
t ∩Bt ∩Ht ∩ {t < ν}) ≤ P[Cc

t ∩ {(nb/(r − 1)) ≤ |Ut| < ε1n}]

≤ exp

(
−η

2

nb

r − 1
log

n(r − 1)

nb

)
. (3.2.12)

Combining these two bounds of (3.2.11) and (3.2.12) we get

P(F c
t+1 ∩Ht ∩ {t < ν}) ≤ P((Bt ∩ Ct)c ∩Ht ∩ {t < ν})

≤ P(Bc
t ∩Ht) + P(Cc

t ∩Bt ∩Ht ∩ {t < ν}) ≤ exp
(
−nb/2

)
for large n. Since ν ≤ dε1n− nbe on Hdε1n−nbe,

P
(
ν > dε1n− nbe

)
≤ P

[(
ν > dε1n− nbe

)
∩
(
∪dε1n−n

be
t=1 F c

t

)]
≤

dε1n−nbe∑
t=1

P(F c
t ∩Ht−1 ∩ {ν > t− 1})

≤ (dε1n− nbe) exp
(
−nb/2

)
≤ exp

(
−nb/4

)
for large n and we get the result.

The next result shows that if there are dεnemany occupied sites at some time

for some ε > 0, then the dual process survives for at least exp(cn) units of time

for some constant c.

Lemma 3.2.4. If q(r−1) > 1, then there exist constants c > 0 and ε1 > 0 as in Lemma

3.2.3 such that for T = exp(cn) and any A with |A| ≥ dε1ne,

P

(
inf
t≤T

∣∣∣ξ̂At ∣∣∣ < ε1n

)
≤ 2 exp(−cn).

Proof. Choose η > 0 so that (q − η)(r − 1 − η) > 1, and then choose ε0(η) > 0

as in Theorem 5.1.5. Take ε1 = ε0(η). For any A with |A| ≥ dε1ne, let U ′t =
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{
x ∈ ξ̂At : x gives birth

}
, t = 0, 1, . . .. If |U ′t| ≤ bε1nc, then take Ut = U ′t . If

|U ′t| > ε1n, we have too many vertices to use Theorem 5.1.5, so we let Ut be the

subset of U ′t consisting of the bε1nc vertices with smallest indices. Let

Ft =
{∣∣∣ξ̂At ∣∣∣ ≥ dε1ne} , Ht = ∩ts=0Fs,

Bt =
{

at least (q − η)
∣∣∣ξ̂At ∣∣∣many occupied sites of ξ̂At give birth

}
,

Ct = {|U∗t | ≥ (r − 1− η)|Ut|}.

Now using an argument similar for the one for (3.2.9), Ft+1 ∩ Ht ⊃ Bt ∩ Ct ∩

Ht for any t ≥ 0. Using our binomial large deviations result (3.2.10) again,

PGn

(
Bt| ξ̂At

)
≥ 1 − exp

(
−Γ((q − η)/q)q

∣∣∣ξ̂At ∣∣∣). On the event Ft,
∣∣∣ξ̂At ∣∣∣ ≥ dε1ne,

and so

PGn(Bc
t ∩Ht) ≤ PGn

(
Bc
t ∩
{∣∣∣ξ̂At ∣∣∣ ≥ dε1ne}) ≤ exp (−Γ((q − η)/q)qε1n) .

The same bound works for the unconditional probability distribution P.

Since |Ut| ≤ ε1n, and on the event Ht ∩ Bt |Ut| ≥ (q − η)ε1n ≥ ε1n/(r − 1),

using Theorem 5.1.5 and similar argument which leads to (3.2.12) we have

P(Cc
t ∩Ht ∩Bt) ≤ exp

(
−η

2

ε1n

r − 1
log

r − 1

ε1

)
.

Combining these two bounds

P(F c
t+1 ∩Ht) ≤ P[(Bt ∩ Ct)c ∩Ht]

≤ P(Bc
t ∩Ht) + P(Cc

t ∩Bt ∩Ht) ≤ 2 exp(−2c(η)n),

where

c(η) =
1

2
min

{
Γ

(
q − η
q

)
qε1,

η

2

ε1
r − 1

log
r − 1

ε1

}
.
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Hence for T ≡ exp(c(η)n)

P

(
inf
t≤T

∣∣∣ξ̂At ∣∣∣ < ε1n

)
≤ P

(
∪bT ct=1F

c
t

)
≤
bT c−1∑
t=0

P(F c
t+1 ∩Gt) ≤ 2T exp(−2c(η)n) = 2 exp(−c(η)n).

which completes the proof.

Lemma 3.2.4 confirms prolonged persistence for the dual. We will now give

the

Proof of Theorem 3.1.1. Choose δ ∈ (0, qr − 1) and γ = (20 log r)−1. Define the

random variables Yx, 1 ≤ x ≤ n, so that Yx = 1 if the dual process ξ̂
{x}

starting

at x satisfies
∣∣∣ξ̂{x}d2γ logne

∣∣∣ ≥ dnbe for b = γ log(qr − δ), and Yx = 0 otherwise. By

Lemma 3.2.2, if n is large, then

EYx ≥ ρ− δ for any x.

Let π1
x, πx,z and α

n,3/10
x be the stopping times as in (3.2.3), and I1

x, Ix,z be

the corresponding events as in Lemma 3.2.1. Recall that Ĝx,M is the subgraph

with vertex set Vn ∩ {u : d0(x, u) ≤ M}. On the event Ix,z, Ĝx,d2γ logne and

Ĝz,d2γ logne are oriented finite r−trees consisting of disjoint sets of vertices, since

2rd2γ logne ≤ n1/5 by the choice of γ. Hence if PIx,z is the conditional distribution

of
(
ξ̂
{x}
, ξ̂
{z})

given Ix,z, then

PIx,z

[(
ξ̂
{x}
t , 0 ≤ t ≤ d2γ log ne

)
∈ ·,

(
ξ̂
{z}
t , 0 ≤ t ≤ d2γ log ne

)
∈ ·
]

= PIx,z

[(
ξ̂
{x}
t , 0 ≤ t ≤ d2γ log ne

)
∈ ·
]
PIx,z

[(
ξ̂
{z}
t , 0 ≤ t ≤ d2γ log ne

)
∈ ·
]
.

Having all the ingredients ready we will now estimate the covariance be-

tween the events {Yx = 1} and {Yz = 1} for x 6= z. Standard probability argu-
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ments give the inequalities

P(Yx = 1, Yz = 1) ≤ P[(Yx = 1, Yz = 1) ∩ Ix,z] + P(Icx,z)

= PIx,z(Yx = 1, Yz = 1)P(Ix,z) + P(Icx,z)

= PIx,z(Yx = 1)PIx,z(Yz = 1)P(Ix,z) + P(Icx,z)

= P[(Yx = 1) ∩ Ix,z]P[(Yz = 1) ∩ Ix,z]/P(Ix,z) + P(Icx,z)

≤ P(Yx = 1)P(Yz = 1)/P(Ix,z) + P(Icx,z).

Subtracting P(Yx = 1)P(Yz = 1) from both sides gives

P(Yx = 1, Yz = 1)−P(Yx = 1)P(Yz = 1)

≤ P(Yx = 1)P(Yz = 1)

(
1

P(Ix,z)
− 1

)
+ P(Icx,z)

≤ P(Icx,z)[1 + 1/P(Ix,z)], (3.2.13)

where in the last inequality we replaced the two probabilities by 1. Now from

Lemma 3.2.1 P(Icx,z) ≤ 5n−3/5, and so

P(Yx = 1, Yz = 1)−P(Yx = 1)P(Yz = 1) ≤ 5n−3/5
(
1 + 1/

(
1− 5n−3/5

))
≤ 15n−3/5

for large enough n. Using this bound,

var

(
n∑
x=1

Yx

)
≤ n+ 15n(n− 1)n−3/5,

and Chebyshev’s inequality shows that as n→∞

P

(∣∣∣∣∣
n∑
x=1

(Yx − EYx)

∣∣∣∣∣ ≥ nδ

)
≤ n+ 15n(n− 1)n−3/5

n2δ2
→ 0.

Since EYx ≥ ρ− δ, this implies

lim
n→∞

P

(
n∑
x=1

Yx ≥ n(ρ− 2δ)

)
= 1. (3.2.14)
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Our next goal is to show that ξ1
T contains the random set D ≡ {x : Yx = 1}

at T = T1 + T2, a time that grows exponentially fast in n. We choose η > 0 so

that (q − η)(r − 1 − η) > 1. Let ε1 and c(η) be the constants in Lemma 3.2.4. If

Yx = 1, then
∣∣∣ξ̂{x}T1

∣∣∣ ≥ dnbe for T1 = d2γ log ne. Combining the error probabilities

of Lemmas 3.2.3 and 3.2.4 shows that for T2 = bexp(c(η)n)c+
⌈
ε1n− nb

⌉
, and for

any subset A of vertices with |A| ≥ dnbe

P
(∣∣∣ξ̂AT2

∣∣∣ ≥ dε1ne) ≥ 1− 3 exp
(
−nb/4

)
(3.2.15)

for large n.

Let C be the set of all subsets of Vn of size at least dnbe, and denote Cx ≡ ξ̂
{x}
T1

.

Using the duality relationship of (3.1.4) for the conditional probability distribu-

tion

P(·) = P
(
·
∣∣∣ξ̂{x}t , 0 ≤ t ≤ T1, x ∈ Vn

)
,

we see that

P
(
ξ1
T1+T2

⊇ D
)

= P
[
∩x∈D

{
x ∈ ξ1

T1+T2

}]
= P

[
∩x∈D

{
ξ̂
{x}
T1+T2

6= ∅
}]

.

Since D = {x : Yx = 1}, it follows from the definition of Yx that Cx ∈ C for all

x ∈ D. So by the Markov property of the dual process the above is

=
∑

Cx∈C,x∈D

P
[
∩x∈D

(
ξ̂
{x}
T1+T2

6= ∅, ξ̂{x}T1
= Cx

)]
=

∑
Cx∈C,x∈D

P
[
∩x∈D

(
ξ̂CxT2
6= ∅
)]
P
[
∩x∈D

(
ξ̂
{x}
T1

= Cx

)]
.

Using (5.8.1) P
(
ξ̂CxT2
6= ∅
)
≥ P

(∣∣∣ξ̂CxT2

∣∣∣ ≥ dε1ne) ≥ 1− 3 exp
(
−nb/4

)
. So the above

is

≥
(
1− 3|D| exp

(
−nb/4

)) ∑
Cx∈C,x∈D

P
[
∩x∈D

(
ξ̂
{x}
T1

= Cx

)]
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≥ 1− 3n exp
(
−nb/4

)
.

For the last inequality we use |D| ≤ n and P(Yx = 1∀x ∈ D) = 1. Since the

lower bound only depends on n, the unconditional probability

P
(
ξ1
T1+T2

⊇ {x : Yx = 1}
)
≥ 1− 3n exp

(
−nb/4

)
.

Hence for T = T1 + T2 using the attractiveness property of the threshold

contact process, and combining the last calculation with (3.2.14) we conclude

that as n→∞

inf
t≤T

P

(
|ξ1
t |
n

> ρ− 2δ

)
= P

(
|ξ1
T |
n

> ρ− 2δ

)
≥ P

(
ξ1
T ⊇ {x : Yx = 1},

n∑
x=1

Yx ≥ n(ρ− 2δ)

)
→ 1.

This completes the proof of Theorem 3.1.1.

3.3 Proof of Theorem 3.1.3

Recall the definition of the active sets Akx, k = 0, 1, . . . , βx, and the removed sets

Rk
x, k = 0, 1, . . . , βx, introduced before Lemma 3.2.1. Also recall the stopping

times π1
x and αn,δx in (3.2.3) and define

π2
x ≡ min

{
l > π1

x :
∣∣Rl

x

∣∣ < l − 1
}
.

This is the time of second collision while exploring Ĝn starting from x. First

we show that with high probability for every vertex x ∈ Vn the second collision

occurs after dn1/4−δemany steps for any δ ∈ (0, 1/4).
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Lemma 3.3.1. Let δ ∈ (0, 1/4) and I2
x be the event

I2
x ≡

{
π2
x ∧ βx ≥ αn,1/4+δ

x

}
.

Then for I ≡ ∩x∈VnI2
x , P(Ic) ≤ 2n−4δ for large enough n.

Proof. Let δ′ = (1/4) − δ. Since in the construction of the random graph Gn the

input nodes yi(z), 1 ≤ i ≤ r, for any vertex z are distinct and different from

z, there are at least n − r choices for each yi(z). Also
∣∣Rl

x

∣∣ ≤ l for any l. So

P(|Rk
x| = |Rk−1

x |) ≤ (k − 1)/(n− r). Now if I2
x fails to occur, then there will be k1

and k2 such that 1 ≤ k1 < k2 ≤ dnδ
′e and |Rki

x | = |Rki−1
x | for i = 1, 2. So

P
[(
I2
x

)c] ≤ ∑
1≤k1<k2≤dnδ′e

P
(∣∣Rk1

x

∣∣ =
∣∣Rk1−1

x

∣∣ , ∣∣Rk2
x

∣∣ =
∣∣Rk2−1

x

∣∣)
≤

∑
1≤k1<k2≤dnδ′e

(k1 − 1)(k2 − 1)

(n− r)2
≤

∑
1≤k1,k2≤dnδ′e

2
(k1 − 1)(k2 − 1)

n2
≤ 2n4δ′−2

for large enough n. The second inequality holds because the choices of the input

nodes are independent. Hence P(Ic) ≤
∑

x∈Vn P
[
(I2
x)
c] ≤ 2n4δ′−1 = 2n−4δ.

Lemma 3.3.1 shows that with high probability for all vertices there will be at

most one collision until we have explored dn1/4−δe many vertices starting from

any vertex of Ĝn. Now recall the definition of the distance functions d0 and d

from (3.1.6), and m(A,K) given in (3.1.7). Let R = log n/ log r, a = (1/8− δ) and

let ρ be the branching process survival probability defined in (3.1.2).

Lemma 3.3.2. Let PI denote the conditional distribution of ξ̂
{x}
, x ∈ Vn given I , where

I is the event defined in Lemma 3.3.1. If qr > 1 and δ0 is small enough, then for any

0 < δ < δ0 there are constants C(δ) > 0, B(δ) = (1/8 − 2δ) log(qr − δ)/ log r and a

stopping time T satisfying

PI
(
T < 2 exp

(
C(δ)nB(δ)

))
≤ 2 exp

[
−C(δ)nB(δ)

]
,
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such that for any A with m(A, 2daRe) ≥ bnB(δ)c,
∣∣∣ξ̂AT ∣∣∣ ≥ bnB(δ)c.

Proof. Let mt ≡ m
(
ξ̂At , 2daRe

)
. We define the stopping times σi and τi as fol-

lows. σ0 ≡ 0, and for i ≥ 0

τi+1 ≡ min
{
t > σi : mt < bnBc

}
,

σi+1 ≡ min
{
t > τi+1 : mt ≥ bnBc

}
.

Since τi > σi−1 for i ≥ 1, mτi−1 ≥ bnBc, and hence there is a set Xi ⊂ ξ̂Aτi−1 of

size at least bnBc such that d(u, v) ≥ 2daRe for any two distinct vertices u, v ∈ Xi.

Let Ei be the event that at least (q− δ)|Xi|many vertices of Xi give birth at time

τi. Using the binomial large deviation estimate (3.2.10)

PGn(Ei) ≥ 1− exp
(
−Γ((q − δ)/q)qbnBc

)
, (3.3.1)

where Γ(x) = x log x− x+ 1.

Now let I be the event defined in Lemma 3.3.1. Since |{z : d0(x, z) ≤ 2daRe}|

is at most 2r2daRe ≤ 2rn2a ≤ n1/4−δ, so if I occurs, then for any vertex x ∈ Vn there

is at most one collision in {z : d0(x, z) ≤ 2daRe}, and hence there are at least r−1

input nodes u1(x), . . . , ur−1(x) of x such that {z : d0(ui(x), z) ≤ 2daRe − 1} is a

finite oriented r−tree for each 1 ≤ i ≤ r − 1. Since the right hand side of (4.3.8)

depends only on n,

PI(I ∩ Ei) = PI(Ei) ≥ 1− exp
(
−c1(δ)nB

)
,

where c1(δ) = Γ((q − δ)/q)q/2. If I ∩ Ei occurs, then we can choose one suitable

offspring of each of the vertices inXi, which give birth, to form a subsetNi ⊂ ξ̂Aτi

such that |Ni| ≥ (q − δ)bnBc, d(u, v) ≥ 2daRe − 2 for any two distinct vertices
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u, v ∈ Ni, and {z : d0(u, z) ≤ 2daRe − 1} is a finite oriented r−tree for each

u ∈ Ni.

By the definition of Ni it is easy to see that for each x ∈ Ni

PI

[(∣∣∣ξ̂{x}t

∣∣∣ , 0 ≤ t ≤ 2daRe − 1
)
∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ 2daRe − 1) ∈ ·] ,

where Zx is a supercritical branching process, as introduced in Lemma 3.2.2,

with distribution PZx and mean offspring number qr. Let Bx be the event of

survival for Zx, and Fx = ∩daRe−2
t=bδRc−1

{
Zx
t+1 ≥ (qr − δ)Zx

t

}
. So PZx(Bx) = ρ > 0 as

in (3.1.2). Using the error probability of (3.2.7)

PZx(F
c
x |Bx) ≤

daRe−2∑
t=bδRc−1

e−c
′(δ)t ≤ Cδe

−c′(δ)δ logn/(2 log r) = Cδn
−c′(δ)δ/(2 log r) (3.3.2)

for some constants Cδ, c′(δ) > 0. On the event Bx ∩ Fx,

Zx
daRe−1 ≥ (qr − δ)(daRe−1)−(bδRc−1) ≥ (qr − δ)(a−δ)R = n(a−δ) log(qr−δ)/ log r = nB.

Hence for Qx ≡
{∣∣∣ξ̂{x}daRe−1

∣∣∣ ≥ dnBe} for x ∈ Ni, we use standard probability

arguments and (4.4.26) to have

PI(Qx) = PI

(∣∣∣ξ̂{x}daRe−1

∣∣∣ ≥ dnBe) = PZx
(
Zx
daRe−1 ≥ dnBe

)
≥ PZx(Bx ∩ Fx) ≥ PZx(Bx)PZx(Fx|Bx) ≥ ρ− δ (3.3.3)

for large enough n.

Since d(u, v) ≥ 2daRe − 2 for any two distinct vertices u, v ∈ Ni, ξ̂Nit is a

disjoint union of ξ̂{x}t over x ∈ Ni for t ≤ daRe− 1. Let Hi be the event that there

is at least one x ∈ Ni for which Qx occurs. Then recalling that |Ni| ≥ (q− δ)bnBc

on Ei,

PI(H
c
i |Ei) ≤ (1− ρ+ δ)(q−δ)bnBc = exp

(
−c2(δ)nB

)
, (3.3.4)
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where c2(δ) = (q − δ) log(1/(1− ρ+ δ))/2.

If Hi ∩ Ei occurs, choose any vertex wi ∈ Ni such that Qwi occurs and let

Si ≡ ξ̂
{wi}
daRe−1. By the choice of wi, |Si| ≥ bnBc. Since (daRe − 1) + daRe =

2daRe − 1, for any two distinct vertices x, z ∈ Si the subgraphs induced by

{u : d0(x, u) ≤ daRe} and {u : d0(z, u) ≤ daRe} are finite r−trees consisting of

disjoint sets of vertices, and hence d(x, z) ≥ 2daRe. Hence using monotonicity

of the dual process σi ≤ τi + daRe − 1 on this event Hi ∩ Ei. So

PI(σi > τi + daRe − 1) ≤ PI(E
c
i ) + PI(H

c
i |Ei) ≤ 2 exp(−2C(δ)nB),

where C(δ) ≡ min{c1(δ), c2(δ)}/2. Let L = inf{i ≥ 1 : σi > τi + daRe − 1}. Then

PI
[
L > exp

(
C(δ)nB

)]
≥
[
1− 2 exp(−2C(δ)nB)

]exp(C(δ)nB)

≥ 1− 2 exp
(
−C(δ)nB

)
.

Since σi > τi > σi−1, σL−1 ≥ 2(L− 1). As
∣∣∣ξ̂AσL−1

∣∣∣ ≥ bnBc, we get our result if we

take T = σL−1.

As in the proof of Theorem 3.1.1, survival of the dual process gives persis-

tence of the threshold contact process.

Proof of Theorem 3.1.3. Let 0 < δ < δ0, ρ, a = (1/8− δ) and B = (1/8− 2δ) log(qr−

δ)/ log r be the constants from the previous proof. Define the random variables

Yx, 1 ≤ x ≤ n, as Yx = 1 if the dual process ξ̂
{x}

starting at x satisfies
∣∣∣ξ̂{x}daRe−1

∣∣∣ >
bnBc and Yx = 0 otherwise.

Consider the event I1
x =

{
π1
x ∧ βx ≥ α

n,1/4+δ
x

}
, where π1

x, βx and α
n,1/4+δ
x are
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stopping times defined as in (3.2.3). Using Lemma 3.2.1 and 3.3.1

PI
[(
I1
x

)c] ≤ P
[
(I1
x)
c]

P(I)
≤ n−2(1/4+δ)

1− 2n−4δ
≤ 2n−(1/2+2δ). (3.3.5)

Let Jx ≡ I ∩ I1
x and PJx be the conditional distribution of ξ̂

{x}
given Jx. Since

the number of vertices in the set {u : d0(x, u) ≤ daRe − 1} is at most 2rdaRe−1 ≤

2raR < n1/4−δ by the choice of a,

PJx

[(∣∣∣ξ̂{x}t

∣∣∣ , 0 ≤ t ≤ daRe − 1
)
∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ daRe − 1) ∈ ·] ,

where Zx is a supercritical branching process, as introduced in Lemma 3.2.2,

with distribution PZx and mean offspring number qr. Let Bx and Fx =

∩daRe−2
t=bδRc−2

{
Zx
t+1 ≥ (qr − δ)Zx

t

}
. So PZx(Bx) = ρ > 0 as in (3.1.2), and similar

to (4.4.26)

PZx(F
c
x |Bx) ≤

daRe−2∑
t=bδRc−2

e−c
′(δ)t ≤ Cδn

−c′(δ)δ/(2 log r)

for some constants Cδ, c
′(δ) > 0. On the event Bx ∩ Fx, Zx

daRe−1 ≥ (qr −

δ)(daRe−1)−(bδRc−2) > (qr − δ)(a−δ)R ≥ bnBc. Hence using (4.3.7)

PI(Yx = 1) ≥ PI

(
I1
x ∩

{∣∣∣ξ̂{x}daRe−1

∣∣∣ > bnBc})
= PJx

(∣∣∣ξ̂{x}daRe−1

∣∣∣ > bnBc)PI(I1
x)

= PZx
(
Zx
daRe−1 > bnBc

)
PI(I

1
x)

≥ PZx(Bx ∩ Fx)PI(I1
x) = PZx(Bx)PZx(Fx|Bx)PI(I

1
x) ≥ ρ− δ

for large enough n.

Next we estimate the covariance between the events {Yx = 1} and {Yz = 1}.

We consider the stopping times π1
x, βx, πx,z, α

n,1/4+δ
x as in (3.2.3) and the corre-

sponding event Ix,z as in Lemma 3.2.1. We can use similar argument, which
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leads to (3.2.13), to conclude

PI(Yx = 1, Yz = 1)− PI(Yx = 1)PI(Yz = 1) ≤ PI(I
c
x,z)(1 + 1/PI(Ix,z)).

From Lemma 3.2.1 and 3.3.1,

PI(I
c
x,z) ≤

P(Icx,z)

P(I)
≤ 5n−2(1/4+δ)

1− 2N−4δ
≤ 10n−(1/2+2δ)

for large enough n, and so

PI(Yx = 1, Yz = 1)− PI(Yx = 1)PI(Yz = 1) ≤ 30n−(1/2+2δ)

for large n. Using the bound on the covariances,

varI

(
n∑
x=1

Yx

)
≤ n+ 30n(n− 1)n−2δ,

and Chebyshev’s inequality gives that as n→∞

PI

(∣∣∣∣∣
n∑
x=1

(Yx − EYx)

∣∣∣∣∣ ≥ nδ

)
≤ n+ 30n(n− 1)n−2δ

n2δ2
→ 0.

Since EYx ≥ ρ− δ for all x ∈ Vn, this implies

lim
n→∞

PI

(
n∑
x=1

Yx ≥ n(ρ− 2δ)

)
= 1. (3.3.6)

Our next goal is to show that ξ1
T contains the random set D ≡ {x : Yx = 1}

with high probability for a suitable choice of T . If Yx = 1, then
∣∣∣ξ̂{x}T1

∣∣∣ > bnBc,
where T1 = daRe − 1. Note that daRe − 1 + daRe ≤ 2daRe, and on the event I

there can be at most one collision in {u : d0(x, u) ≤ 2daRe}. Even though the first

collision occurs between descendants of two vertices in ξ̂{x}T1
, still we can exclude

one vertex from ξ̂
{x}
T1

to have a setWx ⊂ ξ̂
{x}
T1

of size at least bnBc such that for any

two distinct vertices z, w ∈ Wx, the subgraphs induced by {u : d0(z, u) ≤ daRe}

and {v : d0(w, v) ≤ daRe} are finite oriented r−trees consisting of disjoint sets
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of vertices, i.e. d(z, w) ≥ 2daRe. So if Yx = 1, then m
(
ξ̂
{x}
T1
, 2daRe

)
≥ bnBc on

the event I . Using Lemma 3.3.2, after an additional T2 ≥ 2 exp
(
C(δ)nB

)
units

of time, the dual process contains at least bnBc many occupied sites with PI

probability ≥ 1− 2 exp
(
−C(δ)nB

)
.

Let F be the set of all subsets of Vn of size > bnBc, and denote Fx ≡ ξ̂
{x}
T1

.

Using the duality relationship of (3.1.4) for the conditional probability PI(·) ≡

P(·|I), where

P(·) = P
(
·
∣∣∣ξ̂{x}t , 0 ≤ t ≤ T1, x ∈ Vn

)
,

we see that

PI
(
ξ1
T1+T2

⊇ D
)

= PI
[
∩x∈D

{
x ∈ ξ1

T1+T2

}]
= PI

[
∩x∈D

{
ξ̂
{x}
T1+T2

6= ∅
}]

.

Since D = {x : Yx = 1}, Fx ∈ F for all x ∈ D. So by the Markov property of the

dual process the above is

=
∑

Fx∈F ,x∈D

PI
[
∩x∈D

(
ξ̂
{x}
T1+T2

6= ∅, ξ̂{x}T1
= Fx

)]
=

∑
Fx∈F ,x∈D

PI

[
∩x∈D

(
ξ̂FxT2
6= ∅
)]
PI
[
∩x∈D

(
ξ̂
{x}
T1

= Fx

)]
.

Now since Wx ⊂ Fx, using monotonicity of the dual process, PI
(
ξ̂FxT2
6= ∅
)
≥

PI

(
ξ̂Wx
T2
6= ∅
)

. Also using Lemma 3.3.2, PI

(∣∣∣ξ̂Wx
T2

∣∣∣ ≥ bnBc) ≥ 1 −

2 exp
(
−C(δ)nB

)
for any Fx ∈ F . So the above is

≥
(
1− 2|D| exp

(
−C(δ)nB

)) ∑
Fx∈F ,x∈D

PI
[
∩x∈D

(
ξ̂
{x}
T1

= Fx

)]
≥ 1− 2n exp

(
−C(δ)nB

)
.

For the last inequality we use |D| ≤ n and PI(Yx = 1∀x ∈ D) = 1. Since the



75

lower bound only depends on n,

PI
(
ξ1
T1+T2

⊇ {x : Yx = 1}
)
≥ 1− 2n exp

(
−C(δ)nB

)
⇒ P

(
ξ1
T1+T2

⊇ {x : Yx = 1}
)
≥ P(I)

[
1− 3n exp

(
−C(δ)nB

)]
→ 1,

as n→∞, since P(I) ≥ 1− 2n−4δ by Lemma 3.3.1.

Hence for T = T1 + T2 using the attractiveness property of the threshold

contact process, and combining the last calculation with (3.3.6) we conclude that

as n→∞

inf
t≤T

P

(
|ξ1
t |
n

> ρ− 2δ

)
= P

(
|ξ1
T |
n

> ρ− 2δ

)
≥ P

(
ξ1
T ⊇ {x : Yx = 1},

n∑
x=1

Yx ≥ n(ρ− 2δ)

)
→ 1,

which completes the proof of Theorem 3.1.3.



Chapter 4

Aldous’ Gossip Process

4.1 Introduction

We study a model introduced by Aldous [3] for the spread of gossip and other

more economically useful information. His paper considers various game the-

oretic aspects of random percolation of information through networks. Here

we concentrate on one small part, a first passage percolation model with near-

est neighbor and long-range jumps introduced in his Section 6.2. The work

presented here is also related to work in [23] and [9], where the impact of long-

range dispersal on the spread of epidemics and invading species have been con-

sidered.

Space is the discrete torus Λ(N) = (Z mod N)2. The state of the process at

time t is ξt ⊂ Λ(N), the set of individuals who know the information at time t.

Information spreads from i to j at rate

νij =


1/4 if j is a (nearest) neighbor of i

λN/N
2 if not.

If λN = 0, this is ordinary first passage percolation on the torus. If we start

with ξ0 = {(0, 0)}, then the shape theorem for nearest-neighbor first passage

percolation, see [14] or [32], implies that until the process exits (−N/2, N/2)2,

the radius of the set ξt grows linearly and ξt has an asymptotic shape. From

this we see that if λN = 0, then there is a constant c0 so that the time TN , until

76
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everyone knows the information, satisfies

TN
N

P→ c0,

where P→ denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest neigh-

bor part of the process, and formulate it on the (real) torus Γ(N) = (R mod N)2.

One should be able to prove a similar result for the first passage percolation

model but there are two difficulties. The first and easier to handle is that the

limiting shape is not round. The second and more difficult issue is that the

growth is not deterministic but has fluctuations. One should be able to handle

both of these problems, but the proof is already long enough.

We consider what we call the “balloon process”, in which the state of the

process at time t is Ct ⊂ Γ(N). It starts with one “center” chosen uniformly

from the torus at time 0. When a center is born at x, a disk with radius 0 is put

there, and its radius grows deterministically as r(s) = s/
√

2π, so that the area

of the disk at time s after its birth is s2/2. If the area covered at time t is Ct,

then births of new centers occur at rate λNCt. The location of each new center is

chosen uniformly from the torus. If the new point lands at x ∈ Ct, it will never

contribute anything to the growth of the set, but we will count it in the total

number of centers, which we denote by X̃t.

Before turning to the details of our analysis we would like to point out that

a related balloon process was used by Barbour and Reinert [5] in their study

of distances on the small world graph. Consider a circle of radius L and intro-

duce a Poisson mean ρL/2 number of chords with length 0 connecting randomly
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chosen points on the circle. To study the distance between a fixed point O and

a point chosen at random one wants to examine S(t) = {x : dist(O, x) ≤ t}.

If we ignore overlaps and let M(t) be the number of intervals in S(t) then

S ′(t) = 2M(t) and M(t) is a Yule process with births at rate 2ρM(t) due to the

interval ends encountering points in the Poisson process of chords. This is a

balloon process in which the new births come from the boundaries. As in our

case, one first studies the growth of the balloon process and then estimates the

difference from the real process to prove the desired results. There are interest-

ing parallels and differences between the two proofs, see [16, Section 5.2] for a

proof.

Here we will be concerned with λN = N−α. To begin we will get rid of trivial

cases. If the diameter of Ct grows linearly, then
∫ c0N

0
Ct dt = O(N3). So if α > 3,

with probability tending to 1 as N goes to∞, there is no long range jump before

the initial disk covers the entire torus, and the time TN until the entire torus is

covered satisfies
TN
N

P→ c1, where c1 =
√
π.

If α = 3, then with probabilities bounded away from 0, (i) there is no long range

jump and TN ≈ c1N , and (ii) there is one that lands close enough to (N/2, N/2)

to make TN ≤ (1− δ)Nc1. Using⇒ for weak convergence, this suggests that

Theorem 0. When α = 3, TN/N ⇒ a random limit concentrated on [0, c1] and with

an atom at c1.

Proof. Suppose without loss of generality that the initial center is at 0, and view

the torus as (−N/2, N/2]2. The key observation is that the set-valued process
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{CNt/N, t ≥ 0} converges to a limit Dt. Before the first long-range dispersal, the

state ofDt is the intersection of the disk of radius t/
√

2π with (−1/2, 1/2]2. Long

range births occur at rate equal to the area of Dt and are dispersed uniformly.

Since the distance from (0,0) to (1/2,1/2) is 1/
√

2, if there are no long range

births before time c1 =
√
π or if all long range births land inside Dt then the

torus is covered at time c1. Computing the distribution of the cover time when

it is < c1 is complicated, but the answer is a continuous functional of the limit

process, and standard weak convergence results give the result.

For the remainder of the paper we suppose λN = N−α with α < 3. The

overlaps between disks in Ct pose a difficulty in analyzing the process, so we

begin by studying a simpler “balloon branching process” At, in which At is the

sum of the areas of all of the disks at time t, births of new centers occur at rate

λNAt, and the location of each new center is chosen uniformly from the torus.

Let Xt be the number of centers at time t in At.

Suppose we start C0 and A0 from the same randomly chosen point. The

areas Ct = At until the time of the first birth, which can be made to be the

same in the two processes. If we couple the location of the new centers at that

time, and continue in the obvious way letting Ct and At give birth at the same

time with the maximum rate possible, to the same place when they give birth

simultaneously, and letting At give birth by itself otherwise, then we will have

Ct ⊂ At, Ct ≤ At, X̃t ≤ Xt for all t ≥ 0. (4.1.1)

Xt is a Crump-Mode-Jagers branching process, but saying these words does

not magically solve our problems. Define the length process Lt to be
√

2π times
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the sum of the radii of all the disks at time t.

Lt =

∫ t

0

(t− s)dXs =

∫ t

0

Xs ds, (4.1.2)

At =

∫ t

0

(t− s)2

2
dXs =

∫ t

0

Ls ds.

Here and later we use
∫ t

0
for integration over the closed interval [0, t], i.e., we

include the contribution from the atom in dXs at 0. (X0 = 1 while Xs = 0 for

s < 0.) For the second equality on each line integrate by parts or note that

L′t = Xt and A′t = Lt. Since Xt increases by 1 at rate λNAt, (Xt, Lt, At) is a

Markov process.

To simplify formulas, we will often drop the subscript N from λN . For com-

parison with Ct, the parameter λ is important, but in the analysis of At it is not.

If we let

X1
t = X(tλ−1/3), L1

t = λ1/3L(tλ−1/3), A1
t = λ2/3A(tλ−1/3), (4.1.3)

then (X1
t , L

1
t , A

1
t ) is the process with λ = 1.

To study the growth of At, first we will compute the means of Xt, Lt, and At.

Let F (t) = λt3/3!. Using the independent and identical behavior of all the disks

in At it is easy to show that (see the proof of Lemma 4.2.4)

EXt = 1 +

∫ t

0

EXt−s dF (s).

Solving the above renewal equation and using (4.1.2), we can show

EXt =
∞∑
k=0

F ∗k(t) = V (t) =
∞∑
k=0

λkt3k

(3k)!
,

ELt =
∞∑
k=0

λkt3k+1

(3k + 1)!
, (4.1.4)
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EAt =
∞∑
k=0

λkt3k+2

(3k + 2)!
.

To evaluate V (t) we note that V ′′′(t) = λV (t) with V (0) = 1, V ′(0) = V ′′(0) = 0,

so

V (t) =
1

3

[
exp(λ1/3t) + exp(λ1/3ωt) + exp(λ1/3ω2t)

]
. (4.1.5)

Here ω =
(
−1 + i

√
3
)
/2 is one of the complex cube roots of 1 and ω2 =(

−1− i
√

3
)
/2 is the other. Note that each of ω and ω2 has real part −1/2. So

the second and third terms in (4.1.5) go to 0 exponentially fast.

If Fs = σ{Xr, Lr, Ar : r ≤ s}, then

d

dt
E


Xt

Lt

At

∣∣∣∣∣∣∣∣∣∣
Fs


∣∣∣∣∣∣∣∣∣∣
t=s

=


0 0 λ

1 0 0

0 1 0



Xs

Ls

As

 . (4.1.6)

Let Q be the matrix in (4.1.6). By computing the determinant of Q− ηI it is easy

to see that Q has eigenvalues η = λ1/3, ωλ1/3, ω2λ1/3, and e−ηt(Xt + ηLt + η2At) is

a (complex) martingale. To treat the three martingales separately, let

It = Xt + λ1/3Lt + λ2/3At, Mt = exp
(
−λ1/3t

)
It,

Jt = Xt + (ωλ1/3)Lt + (ωλ1/3)2At, J̃t = exp
(
−ωλ1/3t

)
Jt,

Kt = Xt + (ω2λ1/3)Lt + (ω2λ1/3)2At, K̃t = exp
(
−ω2λ1/3t

)
Kt,

so that Mt is the real martingale, and J̃t and K̃t are the complex ones.

Theorem 4.1.1. {Mt : t ≥ 0} is a positive square integrable martingale with respect

to the filtration {Ft : t ≥ 0}. EMt = M0 = 1.

EM2
t =

8

7
− 1

3
exp(−λ1/3t) +O

(
exp(−5λ1/3t/2)

)
,
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E|J̃t|2, E|K̃t|2 =
1

6
exp(2λ1/3t) +O

(
exp(λ1/3t/2)

)
.

If we let M = limt→∞Mt, then P (M > 0) = 1 and

exp(−λ1/3t)Xt, λ
1/3 exp(−λ1/3t)Lt, λ

2/3 exp(−λ1/3t)At →M/3

a.s. and in L2. The distribution of M does not depend on λ.

The last result follows from (4.1.3), which with (4.1.2) explains why the three

quantities converge to the same limit. The key to the proof of the convergence

results is to note that 1 + ω + ω2 = 0 implies

3Xt = It + Jt +Kt,

3λ1/3Lt = It + ω2Jt + ωKt,

3λ2/3At = It + ωJt + ω2Kt.

The real parts of ω and ω2 are −1/2. Although the results for E|J̃t|2 and E|K̃t|2

show that the martingales J̃t and K̃t are not L2 bounded, it is easy to show that

exp
(
−λ1/3t

)
Jt and exp

(
−λ1/3t

)
Kt → 0 a.s. and in L2, and Theorem 5.1.2 then

follows from Mt = exp
(
−λ1/3t

)
It →M .

Recall that λN = N−α and let

a(t) = (1/3)N2α/3 exp(N−α/3t), l(t) = N−α/3a(t), x(t) = N−2α/3a(t), (4.1.7)

so that At/a(t), Lt/l(t), Xt/x(t)→Ma.s.. Let

S(ε) = Nα/3[(2− 2α/3) logN + log(3ε)], (4.1.8)

so a(S(ε)) = εN2. Let

σ(ε) = inf{t : At ≥ εN2} and τ(ε) = inf{t : Ct ≥ εN2}. (4.1.9)
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The first of these is easy to study.

Theorem 4.1.2. If 0 < ε < 1, then as N →∞

N−α/3(σ(ε)− S(ε))
P→ − log(M).

The coupling in (4.1.1) implies τ(ε) ≥ σ(ε). In the other direction, for any γ > 0

lim sup
N→∞

P [τ(ε) > σ((1 + γ)ε)] ≤ P
(
M ≤ (1 + γ)ε1/3

)
+ 11

ε1/3

γ
.

The last result implies that for ε < 1

τ(ε) ∼ (2− 2α/3)Nα/3 logN. (4.1.10)

Our next goal is to obtain more precise information about τ(ε) and about how

|Ct|/N2 increases from a small positive level to reach 1.

The first result in Theorem 4.1.2 shows that (σ(ε)−S(ε))/Nα/3 is determined

by the random variable M from Theorem 5.1.2, which in turn is determined by

what happens early in the growth of the branching balloon process. Let

R = Nα/3[(2− 2α/3) logN − log(M)], (4.1.11)

R is defined so that a(R) = (1/3)N2/M , and hence AR/N2 P→ 1/3. Define

ψ(t) ≡ R +Nα/3t, W ≡ ψ(log(3ε)), and Iε,t = [log(3ε), t] (4.1.12)

for log(3ε) ≤ t. W is defined so that a(W ) = εN2/M and hence AW/N2 P→ ε. The

arguments that led to Theorem 4.1.2 will show that if ε is small then CW/AW is

close to 1 with high probability.

To get a lower bound on the growth of Ct after time W we declare that

the centers in CW and AW to be generation 0 in Ct and At respectively, and
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we number the succeeding generations in the obvious way, a center born from

an area of generation k is in generation k + 1. For t ≥ log(3ε), let Ck
W,ψ(t) and

AkW,ψ(t) denote the areas covered at time ψ(t) by respective centers of genera-

tions j ∈ {0, 1, . . . , k} and let

g0(t) = ε

[
1 + (t− log(3ε)) +

(t− log(3ε))2

2

]
, f0(t) = g0(t)− ε7/6. (4.1.13)

To explain these definitions, we note that Lemma 4.4.3 will show that for any t,

there is an ε0 = ε0(t) so that for any 0 < ε < ε0

lim
N→∞

P

(
sup
s∈Iε,t

∣∣N−2A0
W,ψ(s) − g0(s)

∣∣ > η

)
= 0 for any η > 0,

P

(
inf
s∈Iε,t

N−2(C0
W,ψ(s) − A0

W,ψ(s)) < −ε7/6
)
≤ P (M < ε1/3) + ε1/12.

Since C0
W,ψ(t) ≤ A0

W,ψ(t), if ε is small, with high probability g0(t) and f0(t) provide

upper and lower bounds respectively for C0
W,ψ(t).

To begin to improve these bounds we let

f1(t) = 1− (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
f0(s) ds

)
,

and define g1 similarly. To explain this equation note that an x 6∈ C0
W,ψ(t) will not

be in C1
W,ψ(t) if and only if no generation 1 center is born in the space-time cone

Kε
x,t ≡

{
(y, s) ∈ Γ(N)× [W,ψ(t)] : |y − x| ≤ (ψ(t)− s)/

√
2π
}
.

Lemma 4.4.4 shows that for 0 < ε < ε0 and δ > 0,

lim sup
N→∞

P

(
inf
s∈Iε,t

N−2C1
W,ψ(s) − f1(s) < −δ

)
≤ P (M < ε1/3) + ε1/12.

To iterate this we will let

fk+1(t) = 1− (1− fk(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
(fk(s)− fk−1(s)) ds

)
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for k ≥ 1. The difference fk(s)− fk−1(s) in the integral comes from the fact that

a new point in generation k + 1 must come from a point that is in generation k

but not in generation k − 1. Combining these equations we have

1− fk+1(t) = (1− fk(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
(fk(s)− fk−1(s)) ds

)
= (1− fk−1(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2

k∑
l=k−1

(fl(s)− fl−1(s)) ds

)

· · · = (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2

k∑
l=1

(fl(s)− fl−1(s)) + f0(s) ds

)

so that

fk+1(t) = 1− (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
fk(s) ds

)
. (4.1.14)

Since f1(t) ≥ f0(t), letting k → ∞, fk(t) ↑ fε(t), where fε is the unique solution

of

fε(t) = 1− (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
fε(s) ds

)
(4.1.15)

with fε(log(3ε)) = ε− ε7/6. gk(t) and gε(t) are defined similarly.

gε(t) and fε(t) provide upper and lower bounds on the growth of Cψ(t) for

t ≥ log(3ε). To close the gap between these bounds we let ε→ 0.

Lemma 4.1.3. For any t <∞, if Iε,t = [log(3ε), t], then as ε→ 0,

sup
s∈Iε,t

|fε(s)− h(s)| , sup
s∈Iε,t

|gε(s)− h(s)| → 0

for some nondecreasing h with (a) limt→−∞ h(t) = 0, (b) limt→∞ h(t) = 1,

(c) h(t) = 1− exp

(
−
∫ t

−∞

(t− s)2

2
h(s) ds

)
,

and (d) 0 < h(t) < 1 for all t.
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If one removes the 2 from inside the exponential, this is equation (36) in

[3]. Since there is no initial condition, the solution is only unique up to time

translation.

Theorem 4.1.4. Let h be the function in Lemma 5.8.5. For any t <∞ and δ > 0,

lim
N→∞

P

(
sup
s≤t
|N−2Cψ(s) − h(s)| ≤ δ

)
= 1.

This result shows that the displacement of τ(ε) from (2−2α/3)Nα/3 logN on the

scale Nα/3 is dictated by the random variable M that gives the rate of growth

of the branching balloon process, and that once Ct reaches εN2, the growth is

deterministic.

The solution h(t) never reaches 1, so we need a little more work to show that

Theorem 4.1.5. Let TN be the first time the torus is covered. As N →∞

TN/(N
α/3 logN)

P→ 2− 2α/3.

The remainder of the paper is organized as follows. In section 2, we prove

the properties of At presented in Theorem 5.1.2. In section 3, we prove the

properties of the hitting times s σ(ε) and τ(ε) stated in Theorem 4.1.2. In section

4, we prove the limiting behavior of Ct mentioned in Theorem 4.1.4. Finally in

section 5, we prove Theorem 4.1.5.

4.2 Properties of the balloon branching process At

Lemma 4.2.1.
∫ t

0
sm(t− s)nds = m!n!

(m+n+1)!
tm+n+1.
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Proof. If you can remember the definition of the beta distribution, this is trivial.

If you can’t then integrate by parts and use induction.

Let F (t) = λt3/3! for t ≥ 0, and F (t) = 0 for t < 0. Let V (t) =
∑∞

k=0 F
∗k(t),

where ∗k indicates the k-fold convolution.

Lemma 4.2.2. If ω =
(
−1 + i

√
3
)
/2, then

V (t) =
∞∑
k=0

λkt3k

(3k)!
=

1

3

[
exp

(
λ1/3t

)
+ exp

(
λ1/3ωt

)
+ exp

(
λ1/3ω2t

)]
.

Proof. We first use induction to show that

F ∗k(t) =


λkt3k/(3k)! t ≥ 0

0 t < 0

(4.2.1)

This holds for k = 0, 1 by our assumption. If the equality holds for k = n, then

using Lemma 4.2.1 we have for t ≥ 0

F ∗(n+1)(t) =

∫ t

0

F ∗n(t− s) dF (s) =

∫ t

0

λn(t− s)3n

(3n)!

λs2

2
ds =

λn+1t3n+3

(3n+ 3)!
.

It follows by induction that V (t) =
∑∞

k=0 λ
kt3k/(3k)!. To evaluate the sum we

note that setting λ = 1, U(t) =
∑∞

k=0 t
3k/(3k)! solves

U ′′′(t) = U(t) with U(0) = 1 and U ′(0) = U ′′(0) = 0.

This differential equation has solutions of the from eγt, where γ3 = 1, i.e. γ = 1, ω

and ω2. This leads to the general solution

U(t) = Aet +Beωt + Ceω
2t

for some constants A,B,C. Using the initial conditions for U(t) we have

A+B + C = 1, A+Bω + Cω2 = 0, A+Bω2 + Cω = 0.
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Since 1 +ω+ω2 = 0, we have A = B = C = 1/3. Since V (t) = U(λ1/3t), we have

proved the desired result.

Our next step is to compute the first two moments of Xt, Lt and At. For that

we need the following lemma in addition to the previous one.

Lemma 4.2.3. Let {Nt : t ≥ 0} be a Poisson process on [0,∞) with intensity λ(·) and

let Πt be the set of points at time t. If {Yt, Zt : t ≥ 0} are two complex valued stochastic

processes satisfying

Yt = y(t) +
∑
si∈Πt

Y i
t−si , Zt = z(t) +

∑
si∈Πt

Zi
t−si ,

where (Y i, Zi), i = 1, 2, . . . are i.i.d. copies of (Y, Z), and independent of N , then

EYt = y(t) +

∫ t

0

EYt−sλ(s) ds,

E(YtZt) = (EYt)(EZt) +

∫ t

0

E(Yt−sZt−s)λ(s) ds.

Proof. Nt has Poisson distribution with mean Λt =
∫ t

0
λ(s)ds. Given Nt = n, the

conditional distribution of Πt is same as the distribution of {t1, . . . , tn}, where

t1, . . . , tn are i.i.d. from [0, t] with density β(·) = λ(·)/Λt. Hence

E(Yt|Nt) = y(t) +
Nt∑
i=1

EY i
t−ti = y(t) +Nt

∫ t

0

EYt−s β(s) ds,

and taking expected values EYt = y(t) +
∫ t

0
EYt−sλ(s) ds.

Similarly EZt = z(t) +
∫ t

0
EZt−sλ(s)ds. Using the conditional distribution of

Πt given Nt, E(YtZt|Nt) is

= y(t)z(t) + y(t)E
Nt∑
i=1

Zi
t−ti + z(t)E

Nt∑
i=1

Y i
t−ti + E

[
Nt∑
i=1

Y i
t−tiZ

i
t−ti +

∑
i 6=j

Y i
t−tiZ

j
t−tj

]
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= y(t)z(t) + y(t)Nt

∫ t

0

EZt−s β(s) ds+ z(t)Nt

∫ t

0

EYt−s β(s) ds

+Nt

∫ t

0

E(Yt−sZt−s) β(s) ds+Nt(Nt − 1)

∫ t

0

EYt−s β(s) ds

∫ t

0

EZt−sβ(s)ds.

Taking expectation on both sides and using ENt(Nt − 1) = Λ2
t , we get

E(YtZt) = (EYt)(EZt) +

∫ t

0

E(Yt−sZt−s)λ(s)ds,

which completes the proof.

Now we use Lemma 4.2.2 and 4.2.3 to have the first moments.

Lemma 4.2.4. E(Xt, Lt, At) = (V (t), V ′′(t)/λ, V ′(t)/λ).

Proof. Recall that F (t) = λt3/3!. In the balloon branching process, the initial

center x gives birth to new centers at rate F ′(t) = λt2/2, and all the centers

behave independently and with the same distribution as the one at x. So

Xt = 1 +
∑
si∈Πt

X i
t−si , (4.2.2)

where Πt ⊂ [0, t] is the set of times when new centers are born in At and X i, i =

1, 2, . . . , are i.i.d. copies of X , and using Lemma 4.2.3,

EXt = 1 +

∫ t

0

EXt−s dF (s).

Using (4.5) from Chapter 3 of [17] and then (4.1.2):

EXt = V (t) =
∞∑
k=0

λkt3k

(3k)!
,

ELt =

∫ t

0

EXs ds =
∞∑
k=0

λkt3k+1

(3k + 1)!
, (4.2.3)

EAt =

∫ t

0

ELs ds =
∞∑
k=0

λkt3k+2

(3k + 2)!
.
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Since V (t) = 1 +
∑∞

k=0 λ
k+1t3k+3/(3k + 3)!, it is easy to see that EAt = V ′(t)/λ

and ELt = V ′′(t)/λ.

Lemma 4.2.5. If Mt = exp(−λ1/3t)[Xt + λ1/3Lt + λ2/3At], then {Mt : t ≥ 0} is a

square integrable martingale with respect to the filtration {Ft : t ≥ 0}. EMt = 1 and

EM2
t =

8

7
− 1

3
exp

(
−λ1/3t

)
+ θt where |θt| ≤

4

15
exp(−5λ1/3t/2).

and hence (8/7)− EM2
t ≤ exp(−λ1/3t).

Proof. Let h(t, x, `, a) = exp(−λ1/3t)[x+ λ1/3`+ λ2/3a], and let L be the generator

of the Markov process (t,Xt, Lt, At). (4.1.6) implies Lh = 0, soMt is a martingale

from Dynkin’s formula. EMt = EM0 = 1.

To computeEM2
t we use Lemma 4.2.3 as follows. Let Yt = Zt = Xt+λ

1/3Lt+

λ2/3At and g(t) ≡ (EYt)
2. Since EMt = 1, g(t) = exp

(
2λ1/3t

)
. Combining (4.1.2)

and (4.2.2), letting Lit =
∫ t

0
X i
s ds and Ait =

∫ t
0
Lis ds, i = 1, 2, . . . , and changing

the variables u = s− si, we see that

Lt =
∫ t

0

[
1 +

∑
si∈Πs

X i
s−si

]
ds = t+

∑
si∈Πt

∫ t−si
0

X i
u du = t+

∑
si∈Πt

Lit−si , and hence

At =
∫ t

0

[
t+
∑

si∈Πs
Lis−si

]
ds = t2/2 +

∑
si∈Πt

∫ t−si
0

Liu du = t2/2 +
∑

si∈Πt
Ait−si .

Thus all of Xt, Lt and At satisfy the hypothesis of Lemma 4.2.3 and so do Yt and

Zt, as they are linear combinations of Xt, Lt and At. So applying Lemma 4.2.3

EY 2
t = g(t) +

∫ t

0

EY 2
t−s dF (s).

Solving the renewal equation using (4.8) in Chapter 3 of [17],

EY 2
t = g ∗ V (t) = exp

(
2λ1/3t

)
+

∫ t

0

exp(2λ1/3(t− s))V ′(s) ds,
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where V =
∑∞

k=0 F
∗k. To evaluate the integral we use Lemma 4.2.2 to conclude

∫ t

0

exp
(
−2λ1/3s

)
V ′(s) ds

=
1

3

∫ t

0

exp
(
−2λ1/3s

)
· λ1/3

[
exp

(
λ1/3s

)
+ ω exp

(
λ1/3ωs

)
+ ω2 exp

(
λ1/3ω2s

)]
ds

=
1

3

[
1

1− 2

{
exp

(
−λ1/3t

)
− 1
}

+
ω

ω − 2

{
exp

(
(ω − 2)λ1/3t

)
− 1
}

+
ω2

ω2 − 2

{
exp

(
(ω2 − 2)λ1/3t

)
− 1
}]

.

Now using 1 = −ω − ω2 and ω3 = 1,

1− ω

ω − 2
− ω2

ω2 − 2
= 1− ω3 − 2ω + ω3 − 2ω2

ω3 − 2ω2 − 2ω2 + 4
= 1− 4

7
=

3

7
.

Since ω =
(
−1 + i

√
3
)
/2 and ω2 =

(
−1− i

√
3
)
/2, the remaining error satisfies

3|θt| =
∣∣∣∣ ω

ω − 2
exp

(
(ω − 2)λ1/3t

)∣∣∣∣+

∣∣∣∣ ω2

ω2 − 2
exp

(
(ω2 − 2)λ1/3t

)∣∣∣∣
=

(
1

|ω − 2|
+

1

|ω2 − 2|

)
exp

(
−5λ1/3t/2

)
≤ 2 · 2

5
exp

(
−5λ1/3t/2

)
,

since ω − 2 and ω2 − 2 each have real part −5/2. Putting all together∫ t

0

exp
(
−2λ1/3s

)
V ′(s) ds =

1

7
− 1

3
exp

(
−λ1/3t

)
+ θt, (4.2.4)

Since EM2
t = exp

(
−2λ1/3t

)
EY 2

t , the desired result follows.

We use the previous calculation to get bounds for EA2
t , EL

2
t and EX2

t , which

will be useful later.

Lemma 4.2.6. Let a(·), l(·) and x(·) be as in (4.1.7). Then

EA2
t ≤

27

2
a2(t), EL2

t ≤
27

2
l2(t), EX2

t ≤
27

2
x2(t).
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Proof. By (4.2.4) we have∫ t

0

exp
(
−2λ1/3s

)
V ′(s) ds ≤ 1

7
+

4

15
=

43

105
≤ 1

2
. (4.2.5)

Now using Lemma 4.2.3

EA2
t = (EAt)

2 +

∫ t

0

EA2
t−s dF (s), EL2

t = (ELt)
2 +

∫ t

0

EL2
t−s dF (s),

EX2
t = (EXt)

2 +

∫ t

0

EX2
t−s dF (s).

Solving the renewal equations EA2
t = φa ∗ V (t), EL2

t = φl ∗ V (t) and EX2
t =

φx ∗ V (t), where V (·) is as in Lemma 4.2.2 and φa(t) = (EAt)
2, φl(t) = (ELt)

2

and φx(t) = (EXt)
2. A crude upper bound for φa(t) is 9a2(t). Since a(t − s) =

a(t) exp
(
−λ1/3s

)
,

a2 ∗ V (t) = a2(t)

[
1 +

∫ t

0

exp
(
−λ1/3s

)
V ′(s) ds

]
≤ 3a2(t)

2
(4.2.6)

by (4.2.5). Hence EA2
t ≤ 9a2 ∗ V (t) ≤ (27/2)a2(t).

Similarly using the bounds 9l2(t) and 9x2(t) for φl(t) and φx(t) respectively

and noting that l(t − s)/l(t) = x(t − s)/x(t) = exp
(
−λ1/3s

)
, we get the desired

bounds for EL2
t and EX2

t .

Lemma 4.2.7. Let J̃t, K̃t = e−ηt(Xt+ηLt+η
2At) with η = ωλ1/3, ω2λ1/3 respectively.

Then J̃t and K̃t are complex martingales with respect to the filtration Ft, and

E|J̃t|2, E|K̃t|2 =
1

6
exp(2λ1/3t) +

1

2
+ θt, where |θt| ≤

2

3
exp

(
λ1/3t/2

)
,

and hence E|J̃t|2, E|K̃t|2 ≤ (4/3) exp
(
2λ1/3t

)
.

Proof. Let h(t, x, `, a) = e−ηt(x + η` + η2a), and let L be the generator of the

Markov process (t,Xt, Lt, At). (4.1.6) implies Lh = 0 when η = λ1/3ω, λ1/3ω2, so

that J̃t and K̃t are complex martingales by Dynkin’s formula.
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First we compute E|Jt|2, where Jt = exp
(
λ1/3ωt

)
J̃t. For that we use Lemma

4.2.3 with Yt = Jt and Zt = J̄t, the complex conjugate. Since J̃t is a complex

martingale with J̃0 = 1 and ω =
(
−1 + i

√
3
)
/2, EJ̃t = 1 and hence

|EJt|2 = exp(−λ1/3t).

Using Lemma 4.2.3 E|Jt|2 = |EJt|2 +
∫ t

0
E|Jt−s|2 dF (s). Solving the renewal

equation as we have done twice before

E|Jt|2 = exp(−λ1/3t) +

∫ t

0

exp(−λ1/3(t− s))V ′(s) ds.

Repeating the first part of the proof forKt = exp
(
λ1/3ω2t

)
K̃t, we see thatE|Kt|2

is also equal to the right-hand side above.

The integral is exp(−λ1/3t) times

1

3

∫ t

0

exp
(
λ1/3s

)
· λ1/3

[
exp

(
λ1/3s

)
+ ω exp

(
λ1/3ωs

)
+ ω2 exp

(
λ1/3ω2s

)]
ds

=
1

3

[
1

1 + 1

{
exp

(
2λ1/3t

)
− 1
}

+
ω

ω + 1

{
exp

(
(ω + 1)λ1/3t

)
− 1
}

+
ω2

ω2 + 1

{
exp

(
(ω2 + 1)λ1/3t

)
− 1
}]

.

Now using 1 = −ω − ω2 and ω3 = 1,

−1

2
− ω

ω + 1
− ω2

ω2 + 1
= −1

2
− ω3 + ω + ω3 + ω2

ω3 + ω2 + ω + 1
= −3

2
.

Since ω =
(
−1 + i

√
3
)
/2 and ω2 =

(
−1− i

√
3
)
/2, if we take

θt =
1

3

[
ω

ω + 1
exp

(
(ω + 1)λ1/3t

)
+

ω2

ω2 + 1
exp

(
(ω2 + 1)λ1/3t

)]
, then

3|θt| ≤
(

1

|ω + 1|
+

1

|ω2 + 1|

)
exp

(
λ1/3t/2

)
≤ 2 exp

(
λ1/3t/2

)
,

since each of ω + 1 and ω2 + 1 has real part 1/2. Putting all together

E|Jt|2 ≤
1

6
exp

(
λ1/3t

)
+

1

2
exp

(
−λ1/3t

)
+

2

3
exp

(
−λ1/3t/2

)
, (4.2.7)
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which completes the proof, since E|J̃t|2/E|Jt|2 = exp(λ1/3t) = E|K̃t|2/E|Kt|2.

Lemma 4.2.8. If M = limt→∞Mt, we have P (M > 0) = 1 and

exp(−λ1/3t)Xt, λ
1/3 exp(−λ1/3t)Lt, λ

2/3 exp(−λ1/3t)At →
M

3
a.s. and in L2.

Proof. M = limt→∞Mt exists a.s. and in L2, since Mt is an L2 bounded martin-

gale. Recall that

It = Xt + λ1/3Lt + λ2/3At,

Jt = Xt + ωλ1/3Lt + ω2λ2/3At,

Kt = Xt + ω2λ1/3Lt + ωλ2/3At.

Since 1 + ω + ω2 = 0 and ω3 = 1,

3Xt = It + Jt +Kt,

3λ1/3Lt = It + ω2Jt + ωKt, (4.2.8)

3λ2/3At = It + ωJt + ω2Kt.

Since Mt = exp(−λ1/3t)It → M , it suffices to show that exp(−λ1/3t)Jt and

exp(−λ1/3t)Kt go to 0 a.s. and in L2. We will only prove this for Jt, since the

argument for Kt is almost identical. J̃t is a complex martingale, so |J̃t| is a real

submartingale. Using the L2 maximal inequality, (4.3) in Chapter 4 of [17], and

Lemma 4.2.7,

E

(
max
0≤s≤t

|J̃s|2
)
≤ 4E|J̃t|2 ≤

16

3
exp(2λ1/3t). (4.2.9)

The real part of ω is −1/2. So writing J̃s = exp(λ1/3(1− ω)s) · exp(−λ1/3s)Js, we

see that

E

(
max
u≤s≤t

|J̃s|2
)
≥ exp(3λ1/3u)E

(
max
u≤s≤t

∣∣exp(−λ1/3s)Js
∣∣2) . (4.2.10)
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Combining these bounds with Chebyshev inequality, and taking tn =

2λ−1/3 log n for n = 1, 2, . . .

P

(
max

tn≤s≤tn+1

∣∣exp
(
−λ1/3s

)
Js
∣∣2 ≥ ε

)
≤ ε−2E

(
max

tn≤s≤tn+1

∣∣exp(−λ1/3s)Js
∣∣2)

≤ 16

3
ε−2 exp

(
λ1/3(2tn+1 − 3tn)

)
=

16

3
ε−2 (n+ 1)4

n6
(4.2.11)

for any ε > 0. Summing over n, and using the Borel-Cantelli lemma

| exp(−λ1/3s)Js| → 0 a.s.

To get convergence in L2 we use (4.2.7).

E
∣∣exp

(
−λ1/3t

)
Jt
∣∣2 ≤ 4

3
exp

(
−λ1/3t

)
→ 0 as t→∞.

To prove that P (M > 0) = 1 we begin by noting that convergence in L2

implies that P (M > 0) > 0. Every time a new balloon is born it has positive

probability of starting a process with a positive limit, so this will happen even-

tually and P (M > 0) = 1.

4.3 Hitting times for At and Ct

Recall that σ(ε) = inf{t : At ≥ εN2} and τ(ε) = inf{t : Ct ≥ εN2}. Also

recall the definitions of a(·), l(·), x(·) and S(·) from (4.1.7) and (4.1.8). Note that

a(S(ε)) = εN2 and At/a(t), Lt/l(t), Xt/x(t) → M a.s. by Theorem 5.1.2. We

begin by estimating the difference between M and each of At/a(t), Lt/l(t) and

Xt/x(t).

Lemma 4.3.1. For any γ, u > 0

P

(
sup
t≥u
|At/a(t)−M | ≥ γ2

)
≤ Cγ−4 exp

(
−λ1/3u

)
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for some constant C. The same bound holds for P
(
supt≥u |Lt/l(t)−M | ≥ γ2

)
and

P
(
supt≥u |Xt/x(t)−M | ≥ γ2

)
.

Proof. Using (4.2.8) At/a(t) = Mt + ω exp
(
−λ1/3t

)
Jt + ω2 exp

(
−λ1/3t

)
Kt. For

0 < u ≤ t the triangle inequality implies

|At/a(t)−M | ≤ |Mt −M |+
∣∣exp

(
−λ1/3t

)
Jt
∣∣+
∣∣exp

(
−λ1/3t

)
Kt

∣∣ . (4.3.1)

Taking the supremum over t,

P

(
sup
t≥u
|At/a(t)−M | ≥ γ2

)
≤ P

(
sup
t≥u
|Mt −M | ≥ γ2/3

)
+P

(
sup
t≥u

∣∣exp
(
−λ1/3t

)
Jt
∣∣ ≥ γ2/3

)
+ P

(
sup
t≥u

∣∣exp
(
−λ1/3t

)
Kt

∣∣ ≥ γ2/3

)
.

(4.3.2)

To bound the first term in the right hand side of (4.3.2) we note that

E

(
sup
t≥u
|Mt −M |2

)
= lim

U→∞
E

(
max
u≤t≤U

|Mt −M |2
)
.

Using triangle inequality |Mt−M | ≤ |Mt−Mu|+ |Mu−M |. Taking supremum

over t ∈ [u, U ] and using the inequality (a+ b)2 ≤ 2(a2 + b2),

E

(
max
u≤t≤U

|Mt −M |2
)
≤ 2

(
E

(
max
u≤t≤U

|Mt −Mu|2
)

+ E|Mu −M |2
)
.

Using the L2 maximal inequality, (4.3) in Chapter 4 of [17], and orthogonality of

martingale increments,

E

(
max
u≤t≤U

|Mt −Mu|2
)
≤ 4E(MU −Mu)

2 = 4(EM2
U − EM2

u).

Since the martingaleMt converges toM in L2, EM2 = limt→∞EM
2
t = 8/7. Then

using orthogonality of martingale increments and Lemma 4.2.5,

E(Mu −M)2 = EM2 − EM2
u ≤ exp

(
−λ1/3u

)
.
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Combining the last four bounds with Lemma 4.2.5, and using Chebyshev in-

equality

P

(
sup
t≥u
|Mt −M | ≥ γ2/3

)
≤ 9γ−4 · 10 exp

(
−λ1/3u

)
. (4.3.3)

To bound the second term in the right hand side of (4.3.2) we take tn =

u + 2λ−1/3 log n for n = 1, 2, . . . and use an argument similar to the one leading

to (4.2.11) together with Chebyshev inequality to get

P

(
sup
t≥u

∣∣exp
(
−λ1/3t

)
Jt
∣∣ ≥ γ2/3

)
≤

∞∑
n=1

P

(
max

tn≤t≤tn+1

∣∣exp
(
−λ1/3t

)
Jt
∣∣ ≥ γ2/3

)
≤ 9γ−4

∞∑
n=1

E

(
max

tn≤t≤tn+1

∣∣exp
(
−λ1/3t

)
Jt
∣∣)2

≤ 9 · 16

3
γ−4

∞∑
n=1

exp(λ1/3(2tn+1 − 3tn))

= 48γ−4 exp(−λ1/3u)
∞∑
n=1

(n+ 1)4

n6
. (4.3.4)

Repeating the previous argument for the third term in the right hand side of

(4.3.2) we get the same upper bound as in (4.3.4). Combining (4.3.2), (4.3.3) and

(4.3.4) we get the desired bound for At/a(t).

The bound in (4.3.1) also works for both Lt/l(t) and Xt/x(t), since using

(4.2.8)

Lt/l(t) = Mt + ω2 exp(−λ1/3t)Jt + ω exp(−λ1/3t)Kt,

Xt/x(t) = Mt + exp(−λ1/3t)Jt + exp(−λ1/3t)Kt,

and so the assertion of this lemma holds if At/a(t) is replabed by Lt/l(t) or

Xt/x(t).

We now use Lemma 4.3.1 to study the limiting behavior of σ(ε).



98

Lemma 4.3.2. LetWε = S(ε/M), where S(·) is as in (4.1.8) andM is the limit random

variable in Theorem 5.1.2. Then for any η > 0

lim
N→∞

P (|AWε − εN2| > ηN2) = lim
N→∞

P (|LWε − εN2−α/3| > ηN2−α/3)

= lim
N→∞

P (|XWε − εN2−2α/3| > ηN2−2α/3) = 0.

Proof. Since P (M > 0) = 1, given θ > 0, we can choose γ = γ(θ) > 0 so that

γ < η/ε and

P (M < γ) < θ. (4.3.5)

Using Lemma 4.3.1 we can choose a constant b = b(γ, θ) such that

P

(
sup

t≥bNα/3

|At/a(t)−M | > γ2

)
< θ.

Combining with (4.3.5)

P

(
sup

t≥bNα/3

|At/a(t)−M | > γM

)
< 2θ.

Since a(Wε) = εN2/M , by the choices of γ and b,

P (|AWε − εN2| ≥ ηN2) ≤ P (|AWε − εN2| ≥ εγN2)

= P (|AWε/a(Wε)−M | ≥ γM) < 2θ + P
(
Wε < bNα/3

)
.

By the definition of S(·),

P
(
Wε < bNα/3

)
= P

(
M >

3ε

b
N2−2α/3

)
→ 0

as N → ∞, and so lim supN→∞ P (|AWε − εN2| > ηN2) ≤ 2θ. Since θ > 0 is

arbitrary, we have shown that

lim
N→∞

P
(
|AWε − εN2| ≥ ηN2

)
= 0.

Repeating the argument for LWε and XWε , and noting that l(Wε) = εN2−α/3/M

and x(Wε) = εN2−2α/3/M , we get the other two assertions.
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As a corollary of Lemma 4.3.2 we get the first conclusion of Theorem 4.1.2.

Corollary 4.3.3. As N →∞, N−α/3(σ(ε)− S(ε))
P→ − log(M).

Proof. For any η > 0 choose γ > 0 so that log(1 +γ) < η and log(1−γ) > −η. Let

Wε be as in Lemma 4.3.2. Clearly W(1+γ)ε = S(ε) + Nα/3[log(1 + γ)− logM ] and

W(1−γ)ε = S(ε) +Nα/3[log(1− γ)− logM ]. Using Lemma 4.3.2

P
[
N−α/3(σ(ε)− S(ε)) > − logM + η

]
≤ P

(
σ(ε) > W(1+γ)ε

)
= P

(
AW(1+γ)ε

< εN2
)
→ 0,

P
[
N−α/3(σ(ε)− S(ε)) < − logM − η

]
≤ P

(
σ(ε) < W(1−γ)ε

)
= P

(
AW(1−γ)ε > εN2

)
→ 0

as N →∞, and the proof is complete.

The second conclusion in Theorem 2 follows from Ct ≤ At. To get the third

we have to wait till Lemma 4.3.6. First we need to show that when At/N
2 is

small,Ct/N2 is not very much smaller. To prepare for that we need the following

result.

Lemma 4.3.4. Let F (t) = λt3/3!. If u(·) and β(·) are functions such that u(t) ≤

β(t) +
∫ t

0
u(t− s)dF (s) for all t ≥ 0, then

u(t) ≤ β ∗ V (t) = β(t) +

∫ t

0

β(t− s)dV (s),

where V (·) is as in Lemma 4.2.2.

Proof. Define β̃(t) ≡ β(t) +
∫ t

0
u(t − s)dF (s) − u(t). So β̃(t) ≥ 0 for all t ≥ 0. If

β̂(t) ≡ β(t)− β̃(t), then

u(t) = β̂(t) +

∫ t

0

u(t− s)dF (s).
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Solving the renewal equation we get u(t) = β̂ ∗ V (t), where V (·) is as in Lemma

4.2.2. Since β̂(t) ≤ β(t) for all t ≥ 0, we get the result.

We now apply Lemma 4.3.4 to estimate the difference betweenEAt andECt.

Lemma 4.3.5. For any t ≥ 0 and a(·) as in (4.1.7),

ECt ≥ EAt −
11a2(t)

N2
.

Proof. In either of our processes, if a center is born at time s, then the radius of

the corresponding disk at time t > s will be (t− s)/
√

2π. Thus x will be covered

at time t if and only if there is a center in the space-time cone

Kx,t ≡
{

(y, s) ∈ Γ(N)× [0, t] : |y − x| ≤ (t− s)/
√

2π
}
. (4.3.6)

If 0 = s0, s1, s2, ... are the birth times of new centers in Ct, then

P (x 6∈ Ct|s0, s1, s2, . . .) =
∏
i:si≤t

[
1− (t− si)2

2N2

]
≤ exp

[
−
∑
i:si≤t

(t− si)2

2N2

]
,

since 1 − x ≤ e−x. Let q(t) ≡ P (x 6∈ Ct), which does not depend on x, since we

have a random chosen starting point. Recall that X̃t is the number of centers

born by time t in Ct. Using the last inequality

q(t) ≤ E exp

[
−
∫ t

0

(t− s)2

2N2
dX̃s

]
,

and ECt = N2(1 − q(t)). Integrating e−y ≥ 1 − y gives 1 − e−x ≥ x − x2/2 for

x ≥ 0. So

ECt ≥ N2E

[
1− exp

(
−
∫ t

0

(t− s)2

2N2
dX̃s

)]
(4.3.7)

≥ N2E

[∫ t

0

(t− s)2

2N2
dX̃s −

1

2

(∫ t

0

(t− s)2

2N2
dX̃s

)2
]
.
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For the first term on the right we use EX̃t = 1+λ
∫ t

0
ECsds. For the second term

on the right, we use the coupling between Ct and At described in the introduc-

tion, see (4.1.1), so that we have
∫ t

0
(t− s)2dX̃s ≤

∫ t
0
(t− s)2dXs. Combining these

two facts

ECt ≥
t2

2
+

∫ t

0

(t− s)2

2
λECsds−

1

2N2
E

[∫ t

0

(t− s)2

2
dXs

]2

=
t2

2
+

∫ t

0

(t− s)2

2
λECsds−

EA2
t

2N2
. (4.3.8)

The last equality follows from (4.1.2), as does the next equation for EAt:

EAt =
t2

2
+

∫ t

0

(t− s)2

2
V ′(s) ds =

t2

2
+

∫ t

0

(t− s)2

2
λEAsds. (4.3.9)

Here V (·) is as in Lemma 4.2.2 and EAt = V ′(t)/λ by Lemma 4.2.4. Combining

(4.3.8) and (4.3.9), if u(t) ≡ EAt − ECt, and F (s) = λs3/3!, then

u(t) ≤ EA2
t

2N2
+

∫ t

0

(t− s)2

2
λu(s) ds =

EA2
t

2N2
+

∫ t

0

u(t− r) dF (r),

where the last step is obtained by changing variables s 7→ t − r. If β(t) =

EA2
t/2N

2, then by Lemma 4.2.6 β(t) ≤ 27a2(t)/4N2, and using Lemma 4.3.4

and (4.2.6)

u(t) ≤ β ∗ V (t) ≤ 27

4N2
(a2) ∗ V (t) ≤ 27

4N2

3

2
a2(t),

which gives the result, since 81/8 ≤ 11.

To complete the proof of Theorem 4.1.2 it remains to show the third conclu-

sion of it, which we separate as the following lemma and prove it using Lemma

4.3.5.

Lemma 4.3.6. For any γ > 0

lim sup
N→∞

P (τ(ε) > σ((1 + γ)ε)) ≤ P
(
M ≤ (1 + γ)ε1/3

)
+ 11

ε1/3

γ
.
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Proof. Let U = σ((1 + γ)ε) and T = S(ε2/3), where S(·) is as in (4.1.8). Now

S(ε2/3)− S((1 + γ)ε) = Nα/3

[
−1

3
log(ε)− log(1 + γ)

]
.

It follows from Corollary 4.3.3 that lim supN→∞ P (U ≥ T )

≤ P

(
− log(M) ≥ −1

3
log(ε)− log(1 + γ)

)
= P

(
M ≤ (1 + γ)ε1/3

)
.

Using Markov’s inequality, Lemma 4.3.5, and a(T ) = ε2/3N2,

P
(
|AT − CT | > γεN2

)
≤ E(AT − CT )

γεN2
≤ 6(a(T ))2

γεN4
≤ 11 · ε

1/3

γ
. (4.3.10)

Using these two bounds and the fact that |At − Ct| is nondecreasing in t, we get

lim sup
N→∞

P [τ(ε) > σ((1 + γ)ε)] = lim sup
N→∞

P
[
|AU − CU | > γεN2

]
≤ lim sup

N→∞
P (U ≥ T ) + lim sup

N→∞
P
[
|AU − CU | > γεN2, U < T

]
≤ lim sup

N→∞
P (U ≥ T ) + P

(
|AT − CT | > γεN2

)
,

which completes the proof.

4.4 Limiting behavior of Ct

Let C0
s,t be the set of points covered in Ct at time t by the balloons born before

time s. If we number the generations of centers in Ct starting with those existing

at time s as Ct-centers of generation 0, then C0
s,t is the set of points covered at

time t by the generation 0 centers of Ct. Let C1
s,t be the set of points, which are

either in C0
s,t, or are covered at time t by a balloon born from this area. This is the

set of points covered by Ct-centers of generations ≤ 1 at time t , ignoring births

from C1
s,t \ C0

s,t, which are second generation centers. Continuing by induction,
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we let Cks,t be the set of points and Ck
s,t =

∣∣Cks,t∣∣ be the total area covered by Ct-

centers of generations 0 ≤ j ≤ k at time t. Similarly Aks,t denotes the total area

of the balloons in At of generations j ∈ {0, 1, . . . , k} at time t, where generation

0 centers are those existing at time s.

Recall the following definitions from (4.1.7), (4.1.8), (4.1.11) and (4.1.12).

a(t) = (1/3)N2α/3 exp
(
N−α/3t

)
,

S(ε) = Nα/3[(2− 2α/3) logN + log(3ε)],

R = Nα/3[(2− 2α/3) logN − log(M)],

where M is the limit random variable in Theorem 5.1.2, and for log(3ε) ≤ t,

ψ(t) ≡ R +Nα/3t, W ≡ ψ(log(3ε)), and Iε,t = [log(3ε), t].

Note that ψ(t) ≤ 0 only if M ≥ N2−2α/3t.

Obviously C0
s,t ≤ A0

s,t. For the other direction we have the following lemma.

Lemma 4.4.1. For any 0 < s < t,

EC0
s,t ≥ EA0

s,t −
a2(s)

N2
p
(
(t− s)λ1/3

)
,

where for some positive constants c1, c2 and c4,

p(x) = c1 + c2x
2/2! + c4x

4/4!. (4.4.1)

Proof. By the definition of A0
s,t,

A0
s,t =

∫ s

0

(t− r)2

2
dXr =

(t− s)2

2
Xs + (t− s)Ls + As. (4.4.2)

For the second equality we have written (t−r)2 = (t−s)2+2(t−s)(s−r)+(s−r)2

and used (4.1.2). As in Lemma 4.3.5, a point x is not covered by time t by the
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balloons born before time s, if and only if no center is born in the truncated

space-time cone

Kx,s,t ≡
{

(y, r) ∈ Γ(N)× [0, s] : |y − x| ≤ (t− r)/
√

2π
}
.

So using arguments similar to the ones for (4.3.7) and 1− e−x ≥ x− x2/2,

EC0
s,t ≥ N2E

[
1− exp

(
−
∫ s

0

(t− r)2

2N2
dX̃r

)]
≥ N2

[
E

∫ s

0

(t− r)2

2N2
dX̃r −

1

2
E

(∫ s

0

(t− r)2

2N2
dX̃r

)2
]
.

For the first term on the right, we use EX̃t = 1 + λ
∫ t

0
ECsds. For the second

term on the right, we use the coupling between Ct andAt described in the intro-

duction, see (4.1.1), to conclude that∫ s

0

(t− r)2 dX̃r ≤
∫ s

0

(t− r)2 dXr = 2A0
s,t.

Combining these two facts, using the first equality in (4.4.2), EXt = 1 +

λ
∫ t

0
EAs ds, and Lemma 4.3.5,

EC0
s,t ≥

t2

2
+

∫ s

0

(t− r)2

2
λECr dr −

E(A0
s,t)

2

2N2

≥ t2

2
+

∫ s

0

(t− r)2

2
λEAr dr − 11

∫ s

0

(t− r)2

2

λa2(r)

N2
dr −

E(A0
s,t)

2

2N2

= EA0
s,t − 11

∫ s

0

(t− r)2

2

λa2(r)

N2
dr −

E(A0
s,t)

2

2N2
. (4.4.3)

To estimate the second term in the right side of (5.8.1), we write

(t− r)2/2 = (t− s)2/2 + (t− s)(s− r) + (s− r)2/2,

change variables r = s− q, and note a(s− q) = a(s) exp
(
−λ1/3q

)
, to get∫ s

0

(t− r)2

2
λa2(r) dr = a2(s)

[
(t− s)2

2
λ2/3

∫ s

0

λ1/3 exp
(
−2λ1/3q

)
dq
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+ (t− s)λ1/3

∫ s

0

λ2/3q exp
(
−2λ1/3q

)
dq +

∫ s

0

λ
q2

2
exp

(
−2λ1/3q

)
dq

]
≤ a2(s)

2

[
(t− s)2

2
λ2/3 + (t− s)λ1/3 + 1

]
. (4.4.4)

For the last inequality we have used∫ s

0

rk exp(−µr) dr ≤
∫ ∞

0

rk exp(−µr) dr =
k!

µk+1
.

To estimate the third term in the right side of (5.8.1) we use (4.4.2) to get

E
[
(A0

s,t)
2
]
≤ 3[EX2

s (t− s)4/4 + EL2
s(t− s)2 + EA2

s].

Applying Lemma 4.2.6 and using the fact that a(s) = λ−1/3l(s) = λ−2/3x(s),

E
[
(A0

s,t)
2
]
≤ 3 · 27

2

[
x2(s)

(t− s)4

4
+ l2(s)(t− s)2 + a2(s)

]
≤ 243a2(s)

[
(t− s)4

4!
λ4/3 +

(t− s)2

2!
λ2/3 + 1

]
. (4.4.5)

Combining (5.8.1), (4.4.4) and (4.4.5) we get the result.

To show uniform convergence of Ck
W,ψ(·) to Cψ(·), we also need to bound the

difference At and Aks,t for suitable choices of s and t.

Lemma 4.4.2. If T = S(ε2/3), where S(·) is as in (4.1.8), then for any t > 0

EAT+tNα/3 − EAkT,T+tNα/3 ≤ 3ε2/3N2

∞∑
j=k+1

tj

j!
.

Proof. By (4.4.2) EA0
s,t = EAs+ELs(t−s)+EXs(t−s)2/2. IfXk

s,t and Lks,t denote

the number of centers and sum of radii of all the balloons in At of generations

j ∈ {1, 2, . . . , k} at time t, where generation 0 centers are those which are born

before time s, then for t > s,

d

dt
EX1

s,t = N−αEA0
s,t,

d

dt
EL1

s,t = EX1
s,t,

d

dt
EA1

s,t = EL1
s,t.
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Integrating over [s, t] and using (4.4.2) we have

EX1
s,t = N−α

[
(t− s)EAs +

(t− s)2

2!
ELs +

(t− s)3

3!
EXs

]
,

EL1
s,t = N−α

[
(t− s)2

2!
EAs +

(t− s)3

3!
ELs +

(t− s)4

4!
EXs

]
,

EA1
s,t = N−α

[
(t− s)3

3!
EAs +

(t− s)4

4!
ELs +

(t− s)5

5!
EXs

]
.

Turning to other generations, for k ≥ 2 and t > s,

d

dt

(
EXk

s,t − EXk−1
s,t

)
= N−α

(
EAk−1

s,t − EAk−2
s,t

)
,

d

dt

(
ELks,t − ELk−1

s,t

)
=
(
EXk

s,t − EXk−1
s,t

)
,

d

dt

(
EAks,t − EAk−1

s,t

)
=
(
ELks,t − ELk−1

s,t

)
,

and using induction on k we have

EAks,t =
k∑
j=0

N−αj
[

(t− s)3j

(3j)!
EAs +

(t− s)3j+1

(3j + 1)!
ELs +

(t− s)3j+2

(3j + 2)!
EXs

]
.

Since Aks,t ↑ At for any s < t, EAt = limk→∞EA
k
s,t by Monotone Convergence

Theorem. Replacing s by T and t by T + tNα/3,

EAT+tNα/3 − EAkT,T+tNα/3 (4.4.6)

=
∞∑

j=k+1

[
t3j

(3j)!
EAT +

t3j+1

(3j + 1)!
Nα/3ELT +

t3j+2

(3j + 2)!
N2α/3EXT

]
.

Using the fact that EAT +Nα/3ELT +N2α/3EXT −3a(T ) = 0 and a(T ) = ε2/3N2,

the right hand side of (4.4.6) is ≤ 3ε2/3N2
∑∞

j=k+1 t
j/j!, which completes the

proof.

Recall the definitions of ψ(·),W and Iε,t from the displays before Lemma 4.4.1

and that for log(3ε) ≤ t,

g0(t) = ε

[
1 + (t− log(3ε) +

(t− log(3ε))2

2

]
. (4.4.7)
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Lemma 4.4.3. For any t <∞, there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0,

lim
N→∞

P

(
sup
s∈Iε,t

∣∣N−2A0
W,ψ(s) − g0(s)

∣∣ > η

)
= 0 for any η > 0,

P

(
inf
s∈Iε,t

N−2
(
C0
W,ψ(s) − A0

W,ψ(s)

)
< −ε7/6

)
≤ P (M < ε1/3) + ε1/12.

Proof. To prove the first result we use (4.4.2) to conclude

A0
W,ψ(t) =

(t− log(3ε))2

2
N2α/3XW + (t− log(3ε))Nα/3LW + AW .

Applying Lemma 4.3.2

lim
N→∞

P

(
sup
s∈Iε,t

∣∣N−2A0
W,ψ(s) − g0(s)

∣∣ > η

)

≤ lim
N→∞

P

(
|N−(2−2α/3)XW − ε| >

2η

3(t− log(3ε))2

)
+ lim

N→∞
P

(
|N−(2−α/3)LW − ε| >

η

3(t− log(3ε))

)
+ lim

N→∞
P
(
|N−2AW − ε| >

η

3

)
= 0.

Let ε0 = ε0(t) be such that ε1/12
0 p(t− log(3ε)) ≤ 1, where p(·) is the polynomial

in (4.4.1). Let T = S(ε2/3), where S(·) is defined in (4.1.8), and T ′ = T + (t −

log(3ε))Nα/3. Using the fact that A0
s,s+t − C0

s,s+t is nondecreasing in s, Markov’s

inequality, and then Lemma 4.4.1 we see that

P

(
sup
s∈Iε,t

∣∣A0
W,ψ(s) − C0

W,ψ(s)

∣∣ > ε7/6N2,W ≤ T

)

≤ P
(
|A0

T,T ′ − C0
T,T ′| > ε7/6N2

)
≤
E|A0

T,T ′ − C0
T,T ′|

ε7/6N2

≤ a2(T )p(t− log(3ε))

ε7/6N4
.

Noting that P (W > T ) = P (M < ε1/3), a(T ) = ε2/3N2, and ε1/12p(t− log(3ε)) < 1

for ε < ε0 we have

P

(
sup
s∈Iε,t

∣∣AW,ψ(s) − CW,ψ(s)

∣∣ > ε7/6N2

)
≤ P

(
M < ε1/3

)
+ ε1/12,
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which completes the proof.

Our next step is to improve the lower bound in Lemma 4.4.3. Let

ρ0
t = N−2AW,ψ(t) − ε7/6.

On the event

F =
{∣∣N−2C0

W,ψ(s)

∣∣ ≥ ρ0
s for all s ∈ Iε,t

}
, (4.4.8)

which has probability tending to 1 as ε → 0 by Lemma 4.4.3, C0
W,ψ(s) can be

coupled with a process B0
ψ(s) so that N−2|B0

ψ(s)| = ρ0
s and C0

W,ψ(s) ⊇ B0
ψ(s) for

s ∈ Iε,t. If for k ≥ 1 Bkψ(t) is obtained from B0
ψ(t) in the same way as CkW,ψ(t) is

obtained from C0
W,ψ(t), then, on F , CkW,ψ(s) ⊇ Bkψ(s) for s ∈ Iε,t. For k ≥ 1 let

ρks = N−2|Bkψ(s)|.

We begin with the case k = 1. For f0(t) = g0(t)− ε7/6, where g0 is as in (4.4.7), let

f1(t) = 1− (1− f0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
f0(s) ds

)
. (4.4.9)

Lemma 4.4.4. For any t <∞ there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0 and any

δ > 0,

lim sup
N→∞

P

[
inf
s∈Iε,t

(N−2C1
W,ψ(s) − f1(s)) < −δ

]
≤ P (M < ε1/3) + ε1/12.

Proof. As in Lemma 4.3.5, if x 6∈ B0
ψ(t), then x 6∈ B1

ψ(t) if and only if no generation

1 center is born in the space-time cone

Kε
x,t ≡

{
(y, s) ∈ Γ(N)× [W,ψ(t)] : |y − x| ≤ (ψ(t)− s)/

√
2π
}
.

Conditioning on G0
t = σ{B0

ψ(s) : s ∈ Iε,t}, the locations of generation 1 centers

in B1
t is a Poisson point process on Γ(N)× [W,ψ(t)] with intensity

N−2 × |B0
s |N−α = ρ0

ψ−1(s)N
−α,
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Using this and then changing variables s = ψ(r), where ψ(r) = R +Nα/3r,

P
(
x 6∈ B1

ψ(t)

∣∣G0
t

)
= (1− ρ0

t ) exp

(
−
∫ ψ(t)

W

(ψ(t)− s)2

2
ρ0
ψ−1(s)N

−α ds

)

= (1− ρ0
t ) exp

(
−
∫ t

log(3ε)

(t− r)2

2
ρ0
r dr

)
.

Let Ex,t = {x 6∈ B1
t }. Since Kε

x,t and Kε
y,t are disjoint if |x − y| > 2(t −

log(3ε))Nα/3/
√

2π, the events Ex,t and Ey,t are conditionally independent given

G0
t if this holds. Define the random variables Yx, x ∈ Γ(N), so that Yx = 1 if Ex,t

occurs, and Yx = 0 otherwise. From (4.4.10)

E
(
Yx| G0

t

)
= (1− ρ0

t ) exp

(
−
∫ t

log(3ε)

(t− s)2

2
ρ0
s ds

)
. (4.4.10)

Using independence of Yx and Yz for |x − z| > 2(t − log(3ε))Nα/3/
√

2π, and the

fact that
{
z : |x− z| ≤ 2(t− log(3ε))Nα/3/

√
2π
}

has area 2(t− log(3ε))2N2α/3,

var
(∫

x∈Γ(N)

Yx dx

∣∣∣∣G0
t

)
=

∫
x,z∈Γ(N)

[
E
(
YxYz| G0

t

)
− E

(
Yx| G0

t

)
E
(
Yz| G0

t

)]
dx dz

≤ N2 · 2(t− log(3ε))2N2α/3. (4.4.11)

Using Chebyshev’s inequality, we see that

P

(∣∣∣∣∫
x∈Γ(N)

(
Yx − E

(
Yx| G0

t

))
dx

∣∣∣∣ > η

2
N2

∣∣∣∣G0
t

)
≤

4var
(∫

x∈Γ(N)
Yx dx

∣∣∣G0
t

)
η2N4

.

(4.4.12)

Combining (4.4.10), (4.4.11), and (4.4.12) gives

P

(∣∣∣∣(1− ρ1
t

)
− (1− ρ0

t ) exp

(
−
∫ t

log(3ε)

(t− s)2

2
ρ0
s ds

)∣∣∣∣ > η

2

∣∣∣∣G0
t

)
≤ 8(t− log(3ε))2

η2N2−2α/3
.

The same bound holds for the unconditional probability. By Lemma 4.4.3 if

η > 0 and

F0,η ≡

{
sup
s∈Iε,t

|ρ0
s − f0(s)| ≤ η

}
, then lim

N→∞
P (F c

0,η) = 0.
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Let η′ = η [1 + (t− log(3ε))3/3!]
−1
/2. Using (4.4.9) and the fact that for x, y ≥ 0

|e−x − e−y| =
∣∣∣∣∫ y

x

e−z dz

∣∣∣∣ ≤ |x− y|, (4.4.13)

we see that on the event F0,η′ , we have for any s ∈ Iε,t∣∣∣∣(1− ρ0
s

)
exp

(
−
∫ s

log(3ε)

(s− r)2

2
ρ0
r dr

)
− (1− f1(s))

∣∣∣∣
≤ |
(
1− ρ0

s

)
− (1− f0(s))|+ η′

∫ s

log(3ε)

(s− r)2

2
dr ≤ η′ + η′

(s− log(3ε))3

3!
≤ η

2
.

So for any s ∈ Iε,t

lim
N→∞

P
(∣∣ρ1

s − f1(s)
∣∣ > η

)
≤ lim

N→∞
P
(
F c

0,η′

)
+ lim

N→∞
P

(∣∣∣∣(1− ρ1
s

)
−
(
1− ρ0

s

)
exp

(
−
∫ s

log(3ε)

(s− r)2

2
ρ0
r dr

)∣∣∣∣ > η

2

)
= 0.

Since η > 0 is arbitrary, the two quantities being compared are increasing and

continuous, and on the event F defined in (4.4.8) N−2C1
W,ψ(s) ≥ ρ1

s for s ∈ Iε,t,

lim sup
N→∞

P

[
inf
s∈Iε,t

(N−2C1
W,ψ(s) − f1(s)) < −δ

]
≤ P (F c) + lim sup

N→∞
P

(
sup
s∈Iε,t

|ρ1
s − f1(s)| > δ

)
≤ P (F c),

and the desired conclusion follows from Lemma 4.4.3.

To improve this we will let

fk+1(t) = 1− (1− fk(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
(fk(s)− fk−1(s)) ds

)
, (4.4.14)

and recall from (4.1.15) that as k ↑ ∞, fk(t) ↑ fε(t).

Lemma 4.4.5. For any t <∞ there is an ε0 = ε0(t) > 0 so that for 0 < ε < ε0 and any

δ > 0,

lim sup
N→∞

P

[
inf
s∈Iε,t

(N−2Cψ(s) − fε(s)) < −δ
]
≤ P (M < ε1/3) + ε1/12.
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Proof. Conditioning on Gkt = σ
{
Bjψ(s) : 0 ≤ j ≤ k, s ∈ Iε,t

}
, we have

P
(
x 6∈ Bk+1

ψ(t)

∣∣∣Gkt ) =
(
1− ρkt

)
exp

(
−
∫ t

0

(t− s)2

2

(
ρks − ρk−1

s

)
ds

)
.

Let Fk,η = {sups∈Iε,t |ρks − fk(s)| ≤ η}, and η′ = η [1 + 2(t− log(3ε))3/3!]
−1
/2.

Using (4.4.14) and |e−x − e−y| ≤ |x − y| for x, y ≥ 0, we see that on the event

Gk,η′ = Fk,η′ ∩ Fk−1,η′ , for any s ∈ Iε,t∣∣∣∣(1− ρkt ) exp

(
−
∫ t

log(3ε)

(t− s)2

2

(
ρks − ρk−1

s

)
ds

)
− (1− fk+1(t))

∣∣∣∣
≤ |
(
1− ρkt

)
− (1− fk(t))|+ 2η′

∫ t

log(3ε)

(t− s)2

2
ds

= η′ + 2η′(t− log(3ε))3/3 ≤ η/2.

Bounding the variance as before we can conclude by induction on k that for any

η > 0

lim
N→∞

P

(
sup
s∈Iε,t

∣∣ρks − fk(s)∣∣ > η

)
= 0. (4.4.15)

Next we bound the difference between fk(t) and fε(t). Let G(t) = t3/3! for

t ≥ 0, and G(t) = 0 for t < 0. If ∗k indicates the k-fold convolution, then for

k ≥ 1, using arguments similar to the ones in the proof of Lemma 4.2.2, G∗k(t) =

t3k/(3k)! for t ≥ 0, andG∗k(t) = 0 for t < 0. Now if f∗G∗k(t) =
∫ t

0
f(t−r) dG∗k(r),

f̃k(·) = fk(·+log(3ε)) and f̃ε(·) = fε(·+log(3ε)), then changing variables s 7→ t−r

in (4.1.14) and (4.1.15), and using the inequality in (4.4.13),

|f̃k(t− log(3ε))− f̃ε(t− log(3ε))|

≤
∣∣∣exp(−f̃k−1 ∗G(t− log(3ε)))− exp(−f̃ε ∗G(t− log(3ε)))

∣∣∣
≤ |f̃k−1 − f̃ε| ∗G(t− log(3ε)).

Iterating the above inequality and using |f̃ε(s)− f̃0(s)| = f̃ε(s)− f̃0(s) ≤ 1.

|fk(t)− fε(t)| = |f̃k(t− log(3ε))− f̃ε(t− log(3ε))|
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≤ |f̃0 − f̃ε| ∗G∗k(t− log(3ε)) (4.4.16)

≤ G∗k(t− log(3ε)) =
(t− log(3ε))3k

(3k)!
.

where the last equality comes from (4.2.1).

Choose K = K(ε, t) so that (t− log(3ε))3K/(3K)! < δ/2. Since Cψ(t) ≥ Ck
W,ψ(t)

for any k ≥ 0, and on the event F defined in (4.4.8), we have Ck
W,ψ(t) ≥ |Bkψ(t)|,

we have

P

(
inf
s∈Iε,t

(
N−2Cψ(s) − fε(s)

)
< −δ

)
≤ P (F c) + P

(
sup
s∈Iε,t

∣∣ρKs − fK(s)
∣∣ > δ/2

)
.

Using (4.4.15) and Lemma 4.4.3 we get the result.

It is now time to get upper bounds on Cψ(s). Recall g0(t) defined in (4.4.7), let

g−1(t) = 0 and for k ≥ 1 let

gk(t) = 1− (1− gk−1(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
(gk−1(s)− gk−2(s)) ds

)
(4.4.17)

As in the case of fk(t), the equations above imply

gk(t) = 1− (1− g0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
gk−1(s) ds

)
,

so we have gk(t) ↑ gε(t) as k ↑ ∞, where gε(t) satisfies

gε(t) = 1− (1− g0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
gε(s) ds

)
.

Lemma 4.4.6. For any t <∞ there exists ε0 = ε0(t) > 0 such that for 0 < ε < ε0 and

any δ > 0,

lim sup
N→∞

P

[
sup
s∈Iε,t

(
N−2Cψ(s) − gε(s)

)
> δ

]
≤ P (M < ε1/3) + ε2/3.
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Proof. C0
W,ψ(t) ≤ A0

W,ψ(t). If φ0
t = N−2A0

W,ψ(t) is the fraction of area covered by gen-

eration 0 balloons at time ψ(t), generation 1 centers are born at rate N2−αφ0
ψ−1(·).

Let φ1
t denotes the fraction of area covered by centers of generations ≤ 1 at time

ψ(t), then using an argument similar to the one for Lemma 4.4.4 gives

lim
N→∞

P

(
sup
s∈Iε,t

φ1
s − g1(s) > η

)
= 0

for any η > 0. Continuing by induction, let φkt be the fraction of area covered by

centers of generations 0 ≤ j ≤ k. Since (4.4.17) and (4.4.14) are the same except

for the letter they use, then by an argument identical to the one for Lemma 4.4.5,

lim
N→∞

P

(
sup
s∈Iε,t

∣∣φks − gk(s)∣∣ > η

)
= 0 (4.4.18)

for any η > 0. Now using an argument similar to the one for (4.4.16)

sup
s∈Iε,t

|gk(s)− gε(s)| ≤
(t− log(3ε))3k

(3k)!
. (4.4.19)

Next we bound the difference between Ck
W,ψ(t) and Cψ(t). Let T = S(ε2/3), where

S(·) is as in (4.1.8). Using the coupling between Ct and At,

Cψ(t) − Ck
W,ψ(t) ≤ Aψ(t) − AkW,ψ(t).

Using the fact that EAs+t − EAks,s+t is nondecreasing in s, the definitions of

W and T , Markov’s inequality, and Lemma 4.4.2, we have for T ′ = T + (t −

log(3ε))Nα/3,

P

(
sup
s∈Iε,t

(
Cψ(s) − CkW,ψ(s)

)
>
δN2

4

)
≤ P (W > T ) + P

(
AT ′ − AT,T ′ >

δN2

4

)
≤ P (M < ε1/3) +

4

δN2
E(AT ′ − AT,T ′)

≤ P (M < ε1/3) +
12ε2/3

δ

∞∑
j=k+1

(t− log(3ε))j

j!
.
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Choose K = K(ε, t) large enough so that
∑∞

j=K+1(t − log(3ε))j/j! < δ/12. If we

let

FK =

{
sup
s∈Iε,t

(
Cψ(s) − CK

W,ψ(s)

)
≤ (δ/4)N2

}
, then P (F c

K) ≤ P (M < ε1/3)+ε2/3.

By the choice ofK and (4.4.19), sups∈Iε,t |gK(s)−gε(s)| ≤ δ/2. Combining the last

two inequalities and using the fact that N−2CK
W,ψ(s) ≤ φKs = N−2AKW,ψ(s),

P

(
sup
s∈Iε,t

N−2Cψ(s) − gε(s) > δ

)
≤ P (F c

K) + P

(
sup
s∈Iε,t

∣∣φKs − gK(s)
∣∣ > δ/4

)
.

So using (4.4.18) we have the desired result.

Our next goal is the

Proof of Lemma 5.8.5. We prove the result in two steps. To begin we consider a

function hε(·) satisfying hε(t) = et/3 for t < log(3ε).

hε(t) = 1− exp

(
−
∫ log(3ε)

−∞

(t− s)2

2

es

3
ds−

∫ t

log(3ε)

(t− s)2

2
hε(s) ds

)
(4.4.20)

for t ≥ log(3ε), and prove that hε(·) converges to some h(·) with the desired

properties.

Lemma 4.4.7. For fixed t, hε(t) in (4.4.20) is monotone decreasing in ε.

Proof. If we change variables s = t− u and integrate by parts, or remember the

first two moments of the exponential with mean 1, then∫ t

−∞
(t− s)es ds =

∫ ∞
0

uet−u du = et,∫ t

−∞

(t− s)2

2
es ds =

∫ ∞
0

u2

2
et−u du = et

∫ ∞
0

ue−u du = et. (4.4.21)
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Using (t− s)2/2 = (t− r)2/2 + (t− r)(r− s) + (r− s)2/2 now gives the following

identity. ∫ r

−∞

(t− s)2

2
es ds = er

[
(t− r)2

2
+ (t− r) + 1

]
. (4.4.22)

Using (4.4.20), the inequality 1 − e−x ≤ x, (4.4.21), and changing variables s =

t− u,

hε(t)−
1

3
et ≤

∫ t

log(3ε)

(t− s)2

2

(
hε(s)−

1

3
es
)
ds

=

∫ t−log(3ε)

0

(
hε(t− u)− 1

3
et−u

)
u2

2
du.

Applying Lemma 4.3.4 with λ = 1 and β(·) ≡ 0 to hε(· + log(3ε)) − exp(· +

log(3ε))/3,

hε(t)−
1

3
et ≤ 0 for any t ≥ log(3ε).

This shows that if 0 < ε < δ < 1, then hδ(t) ≥ hε(t) for t ≤ log(3δ). To compare

the exponentials for t > log(3δ), we note that∫ log(3δ)

log(3ε)

(t− s)2

2

(
hε(s)−

1

3
es
)
ds+

∫ t

log(3δ)

(t− s)2

2
(hε(s)− hδ(s)) ds

≤ 0 +

∫ t−log(3δ)

0

(hε(t− u)− hδ(t− u))
u2

2
ds.

Applying Lemma 4.3.4 with λ = 1 and β(·) ≡ 0 to hε(·+log(3δ))−hδ(·+log(3δ)),

we see that hε(t)− hδ(t) ≤ 0 for t ≥ log(3δ).

Lemma 4.4.8. h(t) = limε→0 hε(t) exists. If h 6≡ 0 then h has properties (a)–(d) in

Lemma 5.8.5.

Proof. Lemma 4.4.7 implies that the limit exists. Since 0 ≤ hε(t) ≤ et/3, 0 ≤

h(t) ≤ et/3 and so limt→−∞ h(t) = 0. To show that

h(t) = 1− exp

(
−
∫ t

−∞

(t− s)2

2
h(s) ds

)
, (4.4.23)
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we need to show that as ε→ 0∫ t

log(3ε)

(t− s)2

2
hε(s) ds→

∫ t

−∞

(t− s)2

2
h(s) ds. (4.4.24)

Given η > 0, choose δ = δ(η) > 0 so that

δ
[
1 + (t− log(3δ)) + (t− log(3δ))2/2

]
< η/4.

By bounded convergence theorem, as ε→ 0,∫ t

log(3δ)

(t− s)2

2
hε(s) ds→

∫ t

log(3δ)

(t− s)2

2
h(s) ds.

So we can choose ε0 = ε0(η) so that the difference between the two integrals is

at most η/2 for any ε < ε0. Therefore if ε < ε0, then∣∣∣∣∫ t

log(3ε)

(t− s)2

2
hε(s) ds−

∫ t

−∞

(t− s)2

2
h(s) ds

∣∣∣∣
≤ η

2
+ 2

∫ log(3δ)

−∞

(t− s)2

2

1

3
es ds.

Using the identity in (4.4.22) we conclude that the second term is

≤ 2δ
[
1 + (t− log(3δ)) + (t− log(3δ))2/2

]
≤ η

2
.

This shows that (4.4.24) holds, and with (4.4.20) and (4.4.22) proves (4.4.23).

To prove limt→∞ h(t) = 1 note that if h(·) 6≡ 0, then there is an r with h(r) > 0,

and so for t > r∫ t

−∞

(t− s)2

2
h(s) ds ≥ h(r)

∫ t

r

(t− s)2

2
ds = h(r)

(t− r)3

3!
→∞

as t→∞. So in view of (4.4.23), h(t)→ 1 as t→∞, if h(·) 6≡ 0.

The last detail is to show if h(·) 6≡ 0, then h(t) ∈ (0, 1) for all t. Suppose,

if possible, h(t0) = 0. (4.4.23) implies
∫ t0
−∞ h(s)[(t − s)2/2] ds = 0, and hence
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h(s) = 0 for s ≤ t0. Changing variables s 7→ t− r, and using (4.4.23) again with

the inequality 1− e−x ≤ x, imply that for any t > t0

h(t) ≤
∫ t

−∞

(t− s)2

2
h(s) ds =

∫ t−t0

0

h(t− r)r
2

2
dr.

Applying Lemma 4.3.4 with λ = 1 and β(·) ≡ 0 to the function h(· + t0), we

see that h(t) ≤ 0 for any t > t0. But h(t) ≥ 0 for any t, and hence h ≡ 0, a

contradiction.

To complete the proof of Lemma 5.8.5 it suffices to show that |fε(·)− hε(·)|

and |gε(·)− hε(·)| converge to 0 as ε→ 0. To do this, note that if

h0(t) = 1− exp

(
−
∫ log(3ε)

−∞

(t− s)2

2

es

3
ds

)
,

then

hε(t) = 1− (1− h0(t)) exp

(
−
∫ t

log(3ε)

(t− s)2

2
hε(s) ds

)
,

and so using the inequality |e−x − e−y| ≤ |x− y| for x, y ≥ 0,

|hε(t)− gε(t)| ≤ |h0(t)− g0(t)|+
∫ t

log(3ε)

(t− s)2

2
|hε(s)− gε(s)| ds.

Using the inequality 0 ≤ e−x − 1 + x ≤ x2/2, and the identity in (4.4.22),

|h0(t)− g0(t)| ≤ 1

2

[
ε+ ε(t− log(3ε)) + ε

(t− log(3ε))2

2

]2

≤ 3

2
ε2
[
1 + (t− log(3ε))2 +

(t− log(3ε))4

4

]
.

Applying Lemma 4.3.4 with λ = 1 and β(t) = 1 + t2 + t4/4 to the function

|hε(·+ log(3ε))− gε(·+ log(3ε))| ,

we have |hε(t) − gε(t)| ≤ (3ε2/2)β ∗ V (t − log(3ε)), where V (·) is as in Lemma

4.2.2. Using λ = 1 in the expression of V (·) and Lemma 4.2.1,

β ∗ V (t) = β(t) +

∫ t

0

β(t− s)V ′(s) ds
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=
∞∑
k=0

[
t3k

(3k)!
+ 2

t3k+2

(3k + 2)!
+ 6

t3k+4

(3k + 4)!

]
≤ 6et.

So |hε(t)− gε(t)| ≤ (3ε2/2) · 6 exp(t− log(3ε)), and so

sup
s∈Iε,t

|hε(s)− gε(s)| ≤ 6εet/2.

Repeating the argument for fε(·), and noting that |h0(t)−f0(t)| = |h0(t)−g0(t)|+

ε7/6,

sup
s∈Iε,t

|hε(s)− fε(s)| ≤
(

6
3

2
ε2 + ε7/6

)
exp(t− log(3ε)) =

(
1

3
ε1/6 + 3ε

)
et.

This completes the second step and we have proved Lemma 5.8.5.

Now we have all the ingredients to prove Theorem 4.1.4.

Proof of Theorem 4.1.4. Let h(·) be as in Lemma 5.8.5. Choose ε ∈ (0, δ/6) small

enough so that

sup
s∈Iε,t

|gε(s)− h(s)| < δ/2, sup
s∈Iε,t

|fε(s)− h(s)| < δ/2.

Let D =
{
M ≤ 3εN2−2α/3

}
. On the event D, W = ψ(log(3ε)) > 0. So

P

(
sup
s≤t

∣∣N−2Cψ(s) − h(s)
∣∣ > δ

)
≤ P (Dc) + P

(
N−2CW + h(log(3ε)) > δ

)
+ P

(
sup
s∈Iε,t

(
N−2Cψ(s) − h(s)

)
> δ

)
+ P

(
inf
s∈Iε,t

(
N−2Cψ(s) − h(s)

)
< −δ

)
.

(4.4.25)

To estimate the second term in (4.4.25) note that h(log(3ε)) ≤ (1/3) exp(log(3ε)) <

δ/2, and

P
(
N−2CW > δ/2

)
≤ P

(
AW > (δ/2)N2

)
→ 0
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as N →∞ by Lemma 4.3.2. To estimate the third term in (4.4.25) we use Lemma

4.4.6 to get

lim sup
N→∞

P

(
sup
s∈Iε,t

(
N−2Cψ(s) − h(s)

)
> δ

)

≤ lim sup
N→∞

P

(
sup
s∈Iε,t

(
N−2Cψ(s) − gε(s)

)
> δ/2

)
≤ P (M < ε1/3) + ε2/3.

For the fourth term in (4.4.25) use Lemma 4.4.5 to get

lim sup
N→∞

P

(
inf
s∈Iε,t

(
N−2Cψ(s) − h(s)

)
< −δ

)
≤ lim sup

N→∞
P

(
inf
s∈Iε,t

(
N−2Cψ(s) − fε(s)

)
< −δ/2

)
≤ P (M < ε1/3) + ε1/12.

Letting ε→ 0, we see that for any δ > 0,

lim
N→∞

P

(
sup
s∈Iε,t

∣∣N−2Cψ(s) − h(s)
∣∣ > δ

)
= 0. (4.4.26)

It remains to show that h(·) 6≡ 0. Let ε, γ be such that

P [M ≤ (1 + γ)ε1/3] + 11
ε1/3

γ
< 1.

Fix any η > 0 and let t0 = log(3ε(1 + γ) + 3η). Using Lemma 4.3.2 and 4.3.6

lim sup
N→∞

P
(
N−2Cψ(t0) < ε

)
= lim sup

N→∞
P (τ(ε) > ψ(t0))

≤ lim sup
N→∞

P [τ(ε) > σ(ε(1 + γ))] + lim sup
N→∞

P [σ(ε(1 + γ)) > ψ(t0)]

≤ lim sup
N→∞

P [τ(ε) > σ(ε(1 + γ))] + lim sup
N→∞

P
(∣∣∣N−2AWε(1+γ)+η

− ε(1 + γ)− η
∣∣∣ > η

)
≤ P [M ≤ (1 + γ)ε1/3] + 11

ε1/3

γ
< 1.

But if h(t0) = 0, we get a contradiction to (4.4.26). This proves h(·) 6≡ 0.
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4.5 Asymptotics for the cover time

Proof of Theorem 4.1.5. Theorem 4.1.4 gives a lower bound on the area covered

whcih implies that if δ > 0 and N is large, then with high probability the

number of centers in Cψ(0) dominates a Poisson random variable with mean

λ(δ)N2−(2α/3), where

λ(δ) =

∫ 0

−∞
(h(s)− δ)+ ds.

If δ0 is small enough, λ0 ≡ λ(δ0) > 0. Dividing the torus into disjoint squares

of size κNα/3
√

logN , where κ is a large constant, the probability that a given

square is vacant is exp(−λ0κ
2 logN). If κ

√
logN ≥ 1, the number of squares is

≤ N2−(2α/3) So if λ0κ
2 ≥ 2, then with high probability none of our squares is

vacant. Thus even if no more births of new centers occur then the entire square

will be covered by a time ψ(0) +O(Nα/3
√

logN).



Chapter 5

Threshold-two contact process on random

regular graphs

5.1 Introduction

Interacting particle systems are often formulated on the d-dimensional integer

lattice Zd. See e.g. [34] or [35]. However, if one is considering the spread of

influenza in a town, infections occur not only between individuals who live

close to each other, but also over long distances due to social contacts at school

or at work. Because of this, one should consider how these stochastic spatial

processes change when the regular lattice is replaced by the random graphs

that have been used to model social networks.

[18] considers the contact process on a small world graph S. In the contact

process, each vertex is either occupied or vacant. Occupied vertices become va-

cant at rate 1, while vacant vertices become occupied at rate λ times the number

of occupied neighbors. The small world random graph, which [18] considers, is

a modification of the d-dimensional torus TL := (Z mod L)d in which each ver-

tex has exactly one long-distance neighbor, where the long-distance neighbors

are defined by a random pairing of the vertices of the torus.

The contact process on the small world (or on any finite graph) cannot have

a nontrivial stationary distribution, because it is a finite state Markov chain with

121
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an absorbing state. However, on the small world and many other graphs, there

is a “quasi-stationary distribution” which persists for a long time. To explain

the concept in quotes, we recall the situation for the contact process on the d-

dimensional torus TL. Let ζ0
t ⊆ Zd denote the contact process on Zd starting

with single occupied vertex at the origin and let

λc := inf{λ : P (Ω∞) > 0}, where Ω∞ := {ζ0
t 6= ∅ for all t}.

Let ζ1
t ⊆ Zd denote the contact process on Zd starting with all vertices oc-

cupied. Monotonicity and self-duality imply that (see [35]) if λ > λc and

ζ1
∞ := limt→∞ ζ

1
t , where the limit is in distribution, then ζ1

∞ is a translation in-

variant stationary distribution with P (x ∈ ζ1
∞) = P (Ω∞).

Returning to the torus TL and letting ζ1,TL
t ⊆ TL denote the contact process on

it starting from all vertices occupied, if λ < λc, then there is a k1(λ) > 0 so that

P (ζ1,TL
k1(λ) logn 6= ∅) → 0 as n → ∞, where n = Ld is the number of vertices in TL.

If λ > λc, then with high probability ζ1,TL
t persists to time exp(k2(λ)n) for some

k2(λ) > 0. Furthermore, at times 1� t ≤ exp(k2(λ)n) the finite dimensional dis-

tributions of ζ1,TL
t are close to those of ζ1

∞ (see [35]). Thus the quasi-stationary

distribution for the contact process on the finite graph is like the stationary dis-

tribution for the contact process on the associated infinite graph.

Locally, the small world graph S looks like an infinite graph that is called the

big world B in [18]. In this graph, traversing a long range edge brings one to an-

other copy of Zd. Sophisticates will recognize this as the free product Zd ∗ {0, 1},

where the second factor is Z mod 2. Like the contact process on the homoge-

neous tree, the contact process on B has two phase transitions λ1 < λ2, which

correspond to global and local survival respectively. That is, if ζ0,B
t ⊆ B denotes
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the contact process on B starting with single occupied vertex at the origin, then

λ1 := inf{λ : P (ΩB∞) > 0} and

λ2 := inf
{
λ : lim inf

t→∞
P
(

0 ∈ ζ0,B
t

)
> 0
}
,

where as earlier ΩB∞ = {ζ0,B
t 6= ∅ for all t}. Let ζ1,B

t denote the contact process

on B starting with all vertices occupied. Monotonicity and duality imply that if

λ > λ1 and ζ1,B
∞ := limt→∞ ζ

1,B
t , where the limit is in distribution, then ζ1,B

∞ is a

translation invariant stationary distribution with P (x ∈ ζ1,B
∞ ) = P (ΩB∞).

In order to study the persistence of the contact process ζ1,S
t ⊆ S on the small

world S, [18] introduces births at a rate γ from each vertex, which go from an

occupied vertex to a randomly chosen vertex. With this modification it is shown

that if λ > λ1, then there is a constant k3 = k3(λ, γ) > 0 so that for n = Ld, ζ1,S
t

persists to time exp(k3n) with high probability.

In this paper, we study the behavior of the discrete time threshold-two contact

process on a random r-regular graph on n vertices. We construct our random

graph Gn on the vertex set Vn := {1, 2, . . . n} by assigning r “half-edges” to each

of the vertices, and then pairing the half-edges at random. If r is odd, then

n must be even so that the number of half-edges, rn, is even to have a valid

degree sequence. Let P denote the distribution of Gn. We condition on the event

En that the graph is simple, i.e. it does not contain a self-loop at any vertex, or

more than one edge between two vertices. It can be shown (see e.g. Corollary

9.7 on page 239 of [28]) that P(En) is bounded away from 0, and hence for large

enough n,

if P̃ := P(·|En), then P̃(·) ≤ cP(·) for some constant c = c(r) > 0. (5.1.1)
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So the conditioning on the eventEn will not have much effect on the distribution

of Gn. Since the resulting graph remains the same under any permutation of

the half-edges corresponding to any vertex, the distribution of Gn under P̃ is

uniform over the collection of all undirected r-regular graphs on the vertex set

Vn. We choose Gn according to the distribution P̃ on simple graphs, and once

chosen the graph remains fixed through time.

We write x ∼ y to mean that x is a neighbor of y, and let

Ny := {x ∈ Vn : x ∼ y} (5.1.2)

be the set of neighbors of y. The distribution PGn,p of the (discrete time)

threshold-two contact process ξt ⊆ Vn with parameter p conditioned on Gn can

be described as follows:

PGn,p (x ∈ ξt+1 | |Nx ∩ ξt| ≥ 2) = p and

PGn,p (x ∈ ξt+1 | |Nx ∩ ξt| < 2) = 0,

where the decisions for different vertices at time t + 1 are taken independently.

If Pp denotes the distribution of the threshold-two contact process ξt on the

random graph Gn having distribution P̃, then

Pp(·) = ẼPGn,p(·),

where Ẽ is the expectation corresponding to the probability distribution P̃.

Let ξAt ⊆ Vn denote the threshold-two contact process starting from ξA0 = A,

and let ξ1
t denote the special case whenA = Vn. In the long history of the contact

process the first step was to study whether the critical value of the parameter
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lies in the interior of the parameter-space or not. Based on results for the thresh-

old contact process on random directed graph in [? ], and basic contact process

on the small world S in [18], it is natural to expect the existence of a critical

value pc ∈ (0, 1) defining the boundary between rapid convergence within log-

arithmically small time to all-zero configuration for p < pc, and exponentially

prolonged persistence of changes for p > pc. We define the boundary pc between

convergence to the all-zero configuration within time C(p) log n, and exponen-

tially prolonged persistence as

pc := inf

{
p ∈ [0, 1] : lim

n→∞
Pp

(
inf

t≤exp(k(p)n)

|ξ1
t |
n

> u(p)

)
= 1 for some k(p), u(p) > 0

}
.

(5.1.3)

In order to show that pc < 1, it suffices to show that if p is sufficiently close to

1, then ξ1
t maintains a positive fraction of occupied vertices for time ≥ exp(c1n)

for some constant c1 > 0.

Theorem 5.1.1. If r ≥ 4 and η ∈ (0, 1/4), then there is an ε1 = ε1(η) ∈ (0, 1) such

that for
1− ε1

1−
(

3
2r−4

+ η
)
ε1
< p ≤ 1, (5.1.4)

and for some positive constants C1 and c1(η, p),

Pp

(
inf

t≤exp(c1(η,p)n)

|ξ1
t |
n

< 1− ε1
)
≤ C1 exp(−c1(η, p)n).

In words, if p is sufficiently close to 1 and r is larger than 3, then the fraction

of occupied vertices in the threshold-two contact process starting from all-one

configuration remains close to 1 for exponentially long time with probability

1− o(1). Here and later o(1) denotes a quantity that goes to 0 as n goes to∞. So

Theorem 5.1.1 confirms that pc < 1 for r ≥ 4. The argument does not work for
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r = 3, as the lower bound in (5.1.4) is higher than 1 if we put r = 3. We believe

that similar result holds for r = 3, but the problem remains open. The key to

the proof of Theorem 5.1.1 is an ‘isoperimetric inequality’ (see Proposition 5.1.6

below).

Next we study the behavior of ξAt , when |A| is small.

Theorem 5.1.2. There is a decreasing continuous function ε2 : (0, 1) 7→ (0, 1) and

a collection G of simple r-regular graphs on n vertices such that for any p ∈ (0, 1),

C0(p) := 2/ log(2/(1 + p)), and any subset A ⊂ Vn with |A| ≤ ε2(p)n,

(i) supGn∈G PGn,p

(
ξAdC0(p) logne 6= ∅

)
= o(1),

(ii) P̃(Gc) = o(1).

Hence limn→∞Pp

(
ξAdC0(p) logne 6= ∅

)
= 0.

In words, for any value of p ∈ (0, 1), whenever the fraction of occupied

vertices drops below a certain level depending on p, all vertices of Gn become

vacant within logarithmically small time with probability 1 − o(1). Thus the

density of occupied vertices doesn’t stay in the interval (0, ε2(p)) for long time.

The key to the proof of Theorem 5.1.2 is another ‘isoperimetric inequality’ (see

Proposition 5.1.5 below). As a consequence of Theorem 5.1.2, we have:

Corollary 5.1.3. There is a p0 ∈ (0, 2/3) such that for 0 ≤ p < p0,

lim
n→∞

Pp

(
ξ1
d(C0(p)+1) logne 6= ∅

)
= 0, where C0(p) is as in Theorem 5.1.2.

That is, if p is sufficiently close to 0, then starting from all-one configuration all

vertices ofGn become vacant within logarithmically small time with probability

1− o(1). So Corollary 5.1.3 confirms that pc > 0.
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Theorem 5.1.1 shows that pc < 1, and so for p ∈ (pc, 1) the fraction of oc-

cupied vertices in the graph Gn is bounded away from zero for a time longer

than exp(n1/2). So we can now define a quasi-stationary measure ξ1
∞, which

is an analogue of the upper invariant measure, as follows. For any A ⊂ Vn,

ξ1
∞{B : B ∩ A 6= ∅} := Pp(ξ

1
dexp(n1/2)e ∩ A 6= ∅). Let Xn be uniformly distributed

on Vn, and let

ρn := ξ1
∞{B : Xn ∈ B} =

1

n

∣∣∣ξ1
dexp(n1/2)e

∣∣∣ .
So ρn is the quasi-stationary density of occupied vertices in the threshold-two

contact process on the random graph Gn. Note that ρn is an analogue of the

density of occupied vertices in the upper invariant measure for the contact pro-

cess with sexual reproduction on regular lattices, which is conjectured to have

a continuous phase transition (see Conjecture 1 and heuristic argument follow-

ing that in [20]). As we now explain, things are different in the threshold-two

contact process on a random regular graph.

First observe that if p > pc, then ρn is bounded away from zero with high

probability, because if ρn < ε2(p), where ε2(·) is as in Theorem 5.1.2, then

|ξ1
dexp(n1/2)e| ≤ nε2(p). In that case, for σ = dexp(n1/2)e + dC0 log ne, either

ξ1
σ 6= ∅, which has Pp-probability o(1) by Theorem 5.1.2, or ξ1

σ = ∅, which has

Pp-probability o(1) by the definition of pc in (5.1.3) and the fact that p > pc.

Therefore, for p > pc, ρn ≥ ε2(p) with Pp-probability 1− o(1).

Next observe that for any p1, p2 ∈ [0, 1] with p1 < p2, the random variables

Zi ∼ Bernoulli(pi), i = 1, 2, can be coupled so that Z1 ≤ Z2. Using this coupling

for all the Bernoulli random variables, which are used in deciding whether x ∈
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ξt for x ∈ Vn, t = 1, 2, . . ., it is easy to see that

PGn,p1 ≤ PGn,p2 , i.e. for any increasing event B,PGn,p1(B) ≤ PGn,p2(B).

The same inequality holds for the unconditional probability distributions Pp1

and Pp2 . Since {ρn ≥ ε} = {|ξ1
dexp(n1/2)e| ≥ εn} is an increasing event, it follows

that for any p > p′ > pc

Pp(ρn ≥ ε2(p′)) ≥ Pp′(ρn ≥ ε2(p′)) = 1− o(1)

by the above discussion. Taking p′ sufficiently close to pc and noting that ε2(·)

is a decreasing continuous function, we get the result of this paper that the

threshold-two contact process on the random graph Gn has a discontinuous

phase transition at the critical value pc.

Theorem 5.1.4. Let ρ := ε2(pc), where ε2(·) is as in Theorem 5.1.2 and pc is as in

(5.1.3). Then ρ > 0. For any p > pc and δ > 0,

lim
n→∞

Pp(ρn > ρ− δ) = 1.

The key to the proof of Theorem 5.1.2 is an “isoperimetric inequality”. Given

a subset U ⊂ Vn, let

U∗2 := {y ∈ Vn : y ∼ x and y ∼ z for some x, z ∈ U with x 6= z}. (5.1.5)

The idea behind this definition is that if U = ξt for some t, then U∗2 is the set of

vertices which have a chance of being occupied at time t + 1. Note that U∗2 can

contain vertices of U .

Proposition 5.1.5. Let E(m, k) be the event that there is a subset U ⊂ Vn with size

|U | = m so that |U∗2| ≥ k. Then there is an increasing positive function ε3(·) so that
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for any η > 0 and m ≤ ε3(η)n,

P [E(m, (1 + η)m)] ≤ C3 exp

(
−η

2

8r
m log(n/m)

)
for some constant C3 = C3(r).

In words, if U is a small set, then for any η > 0, |U∗2| ≤ (1 + η)|U | with high

probability. Now if EGn,p is the expectation corresponding to the probability

distribution PGn,p, then EGn,p(|ξt+1| |ξt) = p|ξ∗2t |. Given p ∈ (0, 1), we can choose

η(p) > 0 so that p(1 + η(p)) < (1 + p)/2. So using Proposition 5.1.5, if |ξt| is

small, EGn,p(|ξt+1| |ξt) < |ξt|(1 + p)/2 with high probability. This observation

together with large deviation results for the Binomial distribution implies that

|ξt+1| ≤ |ξt|(1+p)/2 with high probability if |ξt| is small. Finally if the number of

occupied vertices reduces by a fraction at each time, all vertices will be vacant

by time O(log n) and so Theorem 5.1.2 follows.

The key to the proof of Theorem 5.1.1 is another ‘isoperimetric inequality’. If

W = Vn \ξt is the set of vacant vertices at time t, then (W c)∗2 is the set of vertices

which have a chance of being occupied at time t + 1, and so ((W c)∗2)c is the set

of vertices which will surely be vacant at time t+ 1.

Proposition 5.1.6. Let F (m, k) be the event that there is a subset W ⊂ Vn with |W | =

m so that |((W c)∗2)c| > k. Given η > 0, there are positive constants ε4(r, η) and C4(r)

so that for m ≤ ε4n,

P
[
F

(
m,

(
3

2(r − 2)
+ η

)
m

)]
≤ C4 exp(−(η/8)m log(n/m)).

In words, if W is a small set, then for any η > 0, |((W c)∗2)c| ≤ (3/(2r − 4) +

η)|W |with high probability. As noted above, EGn,p(|ξt+1| |ξt) = p|ξ∗2t |. For p as in
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(5.1.4), we can choose δ(p, η) > 0 so that (p−δ)(1−(3/(2r−4)+η)ε1) > 1−ε1. So

using Proposition 5.1.6 withW = Vn \ξt, if |ξt|/n ≥ 1−ε1, then EGn,p(|ξt+1| |ξt) ≥

p(1 − (3/(2r − 4) + η)ε1)n > (1 − ε1)np/(p − δ) with high probability. This

observation together with large deviation results for the Binomial distribution

implies that |ξt+1| ≤ (1 − ε1)n with exponentially small probability if |ξt|/n ≥

1 − ε1. Thus if τ is the first time the fraction of occupied vertices drops below

1 − ε1, then τ > exp(c1(η, p)n) with high probability for a suitable choice of

c1(η, p), and so Theorem 5.1.1 follows.

The remainder of the paper is organized as follows. In section 5.2, we present

sketches of the proofs of Proposition 5.1.5 and 5.1.6. In section 5.3 and 5.4, we

use the propositions to study the behavior of ξt starting from a small occupied

set and the fact that pc ∈ (0, 1) respectively, while in section 5.6 and 5.7 we

present the proofs of the propositions. Section 5.5 is about the first order phase

transition at pc. Finally in section 5.8 we prove several probability estimates,

which are needed in the proof of the propositions.

5.2 Sketch of the proofs of the isoperimetric inequalities.

Recall the definition of U∗2 from (5.1.5). We need some more definitions and

notations. For any vertex x ∈ Vn and subsets U,W ⊂ Vn let ∂U be the boundary

of the set U , U∗1 be the set of vertices which have at least one neighbor in U ,

e(U,W ) be the number of edges between U and W . Also let U0 be the set of

vertices in U which have all their neighbors in U c, and U1 be the complement of
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U0. So

∂U := {y ∈ U c : y ∼ x for some x ∈ U}, U∗1 := {y ∈ Vn : y ∼ x for some x ∈ U},

e(U,W ) := |{(x, y) : x ∈ U and y ∈ W}|,

U0 := {x ∈ U : y ∼ x implies y ∈ U c}, U1 := U ∩ U c
0 .

(5.2.1)

5.2.1 Isoperimetric inequality in Proposition 5.1.5

From the definitions in (5.2.1) it is easy to see that if |U | = m, then

rm ≥
∑
y∈U∗1

e({y}, U) ≥ |U∗1 \ U∗2|+ 2|U∗2| = |U∗1|+ |U∗2|.

So for any subset U of vertices of size m,

if |U∗2| ≥ k, then |U∗1| ≤ rm− k. (5.2.2)

In view of (5.2.2), for proving Proposition 5.1.5 it suffices to estimate the proba-

bility

P [H(m, (r − 1− η)m)] , where H(m, k) = ∪{U⊂Vn:|U |=m}
{
|U∗1| ≤ k

}
(5.2.3)

is the event that there is a subset U of vertices of size m with |U∗1| ≤ k.

Note that U∗1 is a disjoint union of ∂U and U1. Our first step in estimating

(5.2.3), taken in Lemma 5.8.2, is to show the following.

I. For |U | = m and any η > 0, e(U,U c) ≥ (r − 2− η)|U | with probability at least

1− exp (−(1 + η/2)m log(n/m) + ∆1m) for some constant ∆1.

Take α = (r − 2 − η)/r in Lemma 5.8.2 so that (1− α)r/2 = 1 + η/2. We cannot

hope to do better than r − 2. Consider a tree in which all vertices have degree
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r and let U be the set of vertices within distance k of a fixed vertex. If s =

r − 1, then |U | = 1 + r + rs + · · · + rsk−1 ≈ rsk/(s − 1) and e(U,U c) = rsk, so

e(U,U c)/|U | ≈ s− 1 = r − 2.

In the next step, see Lemma 5.8.4, we show the following.

II. Given e(U,U c) = u|U | for some constant u and η > 0, if m = |U | ≤ ε5(η)n,

then |∂U | ≥ (u− η)|U | with probability ≥ 1− exp (−ηm log(n/m) + ∆2m) for some

constant ∆2.

Considering all possible values of u ≥ r − 2− η and using I and II,

|∂U | ≥ (r−2−2η)|U | with probability ≥ 1−2 exp (−(1 + η)m log(n/m) + (∆1 + ∆2)m) .

Using the fact (see Lemma 5.8.1) that

III. the number of subsets of Vn of size m is at most exp(m log(n/m) +m),

the expected number of subsets U of size m with |∂U | < (r − 2 − 2η)|U | is

exponentially small if m ≤ ε(η)n for some small fraction ε(η). Therefore,

with high probability |U∗1| ≥ |∂U | ≥ (r − 2− 2η)|U |, whenever |U | ≤ ε(η)n.

(5.2.4)

But this is not good enough, so we need to work to improve the first inequality

above.

Recall the definitions of U0 and U1 from (5.2.1). There are two possibilities

based on |U1|. Given η > 0, if |U1| ≤ (η/2r)|U |, then e(U,U c) ≥ r|U0| ≥ (r −

η/2)|U | . So using II,

if |U | = m, then |∂U | < (r − 1− η)|U | and |U1| ≤ (η/2r)|U |with probability at most
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exp (−(1 + η/2)m log(n/m) + ∆2m) .

Combining with III the expected number of subsets of size m with the above

property is exponentially small, if m ≤ ε(η)n. Therefore,

with high probability |U∗1| ≥ |∂U | ≥ (r−1−η)|U | whenever |U1| ≤ (η/2r)|U |.

Next we look at the other possibility |U1| > (η/2r)|U |. Using an argument

similar to the one leading to (5.2.4),

with high probability e(U1, U
c
1) ≥ (r−2−η)|U1|whenever |U | ≤ ε(η)n and |U1| > (η/2r)|U |.

(5.2.5)

Using the equalities e(U0, U
c) = e(U0, U

c
0) = r|U0| and e(U1, U

c) = e(U1, U
c
1),

we have e(U,U c) = r|U0| + e(U1, U
c
1). Combining this with another equality

|U∗1| = |U1| + |∂U | and a little algebra give that {|U∗1| ≤ (r − 1 − η)|U |} =

{e(U,U c) − |∂U | ≥ (1 + η)|U0| + e(U1, U
c
1) − (r − 2 − η)|U1|}. In view of (5.2.5),

the probability of the last events is estimated to be small enough (see (5.6.14) for

details), so that using III the expected number of subsets U of size m with the

above property is exponentially small. Combining the last two arguments,

with high probability |U∗1| ≥ (r − 1− η)|U | whenever |U1| > (η/2r)|U |.

This completes the argument to estimate the probability in (5.2.3) and thereby

proves Proposition 5.1.5.

5.2.2 Isoperimetric inequality in Proposition 5.1.6

Recall the definition ofNy from (5.1.2). We need some more notations for Propo-

sition 5.1.6. For any subset W of Vn, let W 0 be the subset of vertices which are in
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W and have at most 1 neighbor in W c, and W 1 be the subset of vertices which

are in W c and have at most 1 neighbor in W c. So

W 0 := {y ∈ W : |Ny ∩W | ≥ r − 1}, β0(W ) := |W 0|/|W |,

W 1 := {y ∈ W c : |Ny ∩W | ≥ r − 1}, β1(W ) := |W 1|/|W |. (5.2.6)

The idea behind these definitions is that if W c is occupied at tine t in the

threshold-two contact process, then the subset of Vn, which cannot be occupied

at time t+ 1, is

(
(W c)∗2

)c
= W 0 ∪W 1, and

∣∣∣((W c)∗2
)c∣∣∣ = |W 0|+ |W 1|.

By I, e(W 0, (W 0)c) ≥ (r−2− (2r−4)η)|W 0|with high probability if |W | ≤ ε(η)n.

But e(W 0,W c) ≤ |W 0| by the definition of W 0. So if e(W 0, (W 0)c) ≥ (r − 2 −

(2r − 4)η)|W 0|, then

e(W 0,W \W 0) = e(W0, (W
0)c)− e(W0,W

c)

≥ (r − 2− (2r − 4)η)|W 0| − |W 0|.

Using e(W 0,W c) ≤ |W 0| again with W0 ⊂ W and the last inequality, we have

e(W,W c) = e(W \W 0,W c) + e(W 0,W c)

≤ r|W \W 0| − e(W \W 0,W0) + |W 0|

= [r − (2r − 4)(1− η)β0(W )]|W |.

Each x ∈ ∂W has e({x},W ) ≥ 1 while each x ∈ W 1 has e({x},W ) ≥ r − 1. So

using the previous result and the definition of βi(W ),

|∂W | ≤ e(W,W c)− (r − 2)|W 1|

≤ [r − (2r − 4)(1− η)β0(W )− (r − 2)β1(W )]|W |.
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Now if (2r − 4)(1− η)β0(W ) + (r − 2)β1(W ) > 2 + η, then the above implies

that |∂W | ≤ (r − 2− η)|W |, which has a small probability as mentioned earlier.

From another viewpoint,

(r − 2)|W 1| ≤ e(W,W c)− |∂W |. (5.2.7)

By II, if |W | = m, then

e(W,W c)−|∂W | ≤ (1+2η)|W |with probability ≥ 1−exp (−(1 + 2η)m log(n/m) + ∆2m) ,

and combining with III the expected number of subsets W with e(W,W c) −

|∂W | > (1 + 2η)|W | is exponentially small if |W | ≤ ε(η)n. Therefore,

with high probability e(W,W c)− |∂W | ≤ (1 + 2η)|W |whenever |W | ≤ ε(η)n.

From (5.2.7), if e(W,W c)− |∂W | ≤ (1 + 2η)|W |, then β1(W ) ≤ (1 + 2η)/(r − 2).

Combining the last two observations, and noting that the maximum value

of β0 + β1 under the constraints (i) 2(1 − η)β0 + β1 ≤ (2 + η)/(r − 2) and (ii)

β1 ≤ (1 + 2η)/(r − 2) is achieved when both constraints are equalities, we see

that with high probability

β0 + β1 ≤
1

2(r − 2)
+

1 + 2η

r − 2
≤ 3

2(r − 2)
+

2

r − 2
η ≤ 3

2(r − 2)
+ η

for r ≥ 4, and Proposition 5.1.6 is established.

5.3 Behavior of ξt starting from a small occupied set

In this section, we will use Proposition 5.1.5 to prove Theorem 5.1.2.
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Proof of Theorem 5.1.2. If p ∈ (0, 1), we can choose η > 0 so that (p + η)(1 + η)

equals any value between p and 1. To fix idea, we want to choose η > 0 so that

(p+ η)(1 + η) = (1 + p)/2. The roots of the quadratic equation η2 + (1 + p)η+ p =

(1 + p)/2 are η± = (−(1 + p) ±
√

3 + p2)/2. Clearly η− < 0. Since p ∈ (0, 1),

(1 + p)2 ≤ 3 + p2, which implies (1 + p) <
√

3 + p2 and so η+ > 0. We choose

η = η(p) :=

√
3 + p2 − (1 + p)

2
> 0 so that (p+ η)(1 + η) =

1 + p

2
< 1. (5.3.1)

Next we take ε2(p) := ε3(η(p)), where ε3(·) is as in Proposition 5.1.5 and η(·) is

as in (5.3.1). Since ε3(·) and η(·) are continuous, so is ε2(·). Also note that ε3(·) is

increasing by Proposition 5.1.5, and

∂η

∂p
=

p

2
√

3 + p2
− 1

2
< 0, as p <

√
3 + p2,

which implies that η(·) is decreasing. Combining these two observations, ε2(·)

is decreasing. Having chosen ε2, let

G := ∩bε2(p)nc
m=1 Ec

m, where Em = E(m, (1+η)m) is the event defined in Proposition 5.1.5.

(5.3.2)

The argument for (i) consists of two steps.

Step 1: In the first step we show that for suitable choices ofC01 > 0 and b ∈ (0, 1),

if |A| ≤ ε2n, then the number of occupied vertices in the threshold-two contact

process ξAt reduces to nb within time C01 log n. The argument of this step goes

through for any choice of b ∈ (0, 1). But for future benefits we will choose b with

the following desirable property.

First note that using the inequality (1 + p) <
√

3 + p2,√
3 + p2

2
<

3 + p2

2(1 + p)
=

(1 + p)2 + 2(1− p)
2(1 + p)

, which implies η <
1− p
1 + p

.
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By the last inequality,

1+η <
2

1 + p
, so that

log(1 + η)

log(2/(1 + p))
< 1 and

log(2/(1 + p))− log(1 + η)

log(2/(1 + p)) + log(1 + η)
∈ (0, 1).

(5.3.3)

The assertion in (5.3.3) suggests that we can choose

b = b(p) ∈ (0, 1) small enough, so that b+(b+1)
log(1 + η)

log(2/(1 + p))
< 1 and b ≤ η2/16r.

(5.3.4)

Having chosen b, let A be any subset of vertices with |A| ≤ ε2n, and define

ν := min
{
t :
∣∣ξAt ∣∣ ≤ nb

}
,

Jt :=

{∣∣ξAt ∣∣ ≤ (1 + p

2

) ∣∣ξAt−1

∣∣} , Nt := ∩ts=1Js for t ≥ 1, N0 := {|ξA0 | ≤ ε2n},

Lt :=
{

at most (p+ η)(1 + η)
∣∣ξAt ∣∣ many vertices of

(
ξAt
)∗2 are occupied at time t+ 1

}
.

Now if Lt occur, then by the choice of η,

∣∣ξAt+1

∣∣ ≤ (p+ η)(1 + η)
∣∣ξAt ∣∣ =

(
1 + p

2

) ∣∣ξAt ∣∣ . So Jt+1 ⊃ Lt. (5.3.5)

By the definition of (ξAt )∗2, each vertex of (ξAt )∗2 will be in ξAt+1 with probability p,

and forGn ∈ G, |(ξAt )∗2| ≤ (1+η)|ξAt | on the eventNt. So using the binomial large

deviations, see Lemma 2.3.3 on page 40 in [16], and the stochastic monotonicity

property of the Binomial distribution,

PGn,p(L
c
t ∩Nt|ξAt ) ≤ P (Binomial((1 + η)|ξAt |, p) > (p+ η)(1 + η)|ξAt |)

≤ exp
(
−Γ((p+ η)/p)p(1 + η)

∣∣ξAt ∣∣) , (5.3.6)

where Γ(x) = x log x − x + 1 > 0 for x 6= 1. Since |ξAt | ≥ nb on {t < ν}, we can

replace |ξAt | in the right side of (5.3.6) by nb to have

PGn,p(L
c
t∩Nt∩{t < ν}) ≤ PGn,p

(
Lct ∩Nt ∩

{∣∣ξAt ∣∣ ≥ nb
})
≤ exp(−Γ((p+η)/p)pnb).

(5.3.7)
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Combining (5.3.5) and (5.3.7) we get

PGn,p(J
c
t+1 ∩Nt ∩ {t < ν}) ≤ PGn,p(L

c
t ∩Nt ∩ {t < ν})

≤ exp(−Γ((p+ η)/p) pnb). (5.3.8)

We choose

C01(p) := (1− b(p))/ log(2/(1 + p)) to satisfy
(

1 + p

2

)C01 logn

n = nb, (5.3.9)

so that NdC01 logne ⊂ {|ξAdC01 logne| ≤ [(1 + p)/2]C01 logn|A| < nb}. Hence {ν >

dC01 log ne} ⊂ N c
dC01 logne. Therefore, recalling the definition of Nt and noting

that N c
t is the disjoint union ∪ts=1(J cs ∩Ns−1),

PGn,p(ν > dC01 log ne) = PGn,p
(
{ν > dC01 log ne} ∩N c

dC01 logne
)

≤ PGn,p

[
∪dC01 logne
t=1 (J ct ∩Nt−1 ∩ {ν > t− 1})

]
≤

dC01 logne∑
t=1

PGn,p(J
c
t ∩Nt−1 ∩ {ν > t− 1}).

Using (5.3.8) we can bound the summands of the above sum, and have

PGn,p(ν > dC01 log ne) ≤ dC01 log ne exp(−Γ((p+η)/p) pnb) ≤ exp(−Γ((p+η)/p)pnb/2)

(5.3.10)

for large enough n.

Step2: Our next goal is to show that starting from any subset B of size |B| ≤ nb,

the threshold-two contact process ξBt dies out within time C02 log n for a suitable

choice of C02 > 0. Note that we always have |ξBt+1| ≤ |(ξBt )∗2|. In addition, for

Gn ∈ G we have |(ξBt )∗2| ≤ (1 + η)|ξBt | only when |ξBt | ≤ ε2(p)n. Keeping this in

mind, we recall the choice of b from (5.3.4) and choose

C02(p) := (b+ 1)/ log(2/(1 + p)) to satisfy b+ C02 log(1 + η) < 1, (5.3.11)
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so that for Gn ∈ G and t ≤ C02 log n and large enough n,

∣∣ξBt ∣∣ ≤ (1 + η)
∣∣ξBt−1

∣∣ ≤ · · · ≤ (1 + η)t
∣∣ξB0 ∣∣ ≤ (1 + η)tnb ≤ nb+C02 log(1+η) < ε2(p)n.

Now if Ft = σ{ξBs : 0 ≤ s ≤ t}, then

EGn,p
(∣∣ξBt+1

∣∣ ∣∣Ft) = p
∣∣∣(ξBt )∗2∣∣∣ , and so (5.3.12)

for t ≤ C02 log n and Gn ∈ G, EGn,p
(∣∣ξBt+1

∣∣ ∣∣Ft) ≤ p(1 + η)|ξBt |.

Iterating the above inequality,

EGn,p
(∣∣ξBdC02 logne

∣∣) ≤ [p(1 + η)]C02 logn|ξB0 | for Gn ∈ G.

Now by the choices of η in (5.3.3), p(1 + η) < (1 + p)/2, and by the choice of C02

in (5.3.11), [(1 + p)/2]C02 logn = n−(1+b). So

[p(1 + η)]C02 logn|ξB0 | ≤
(

1 + p

2

)C02 logn

nb = 1/n.

Combining the last two inequalities,

EGn,p
(∣∣ξBdC02 logne

∣∣) ≤ 1

n
for Gn ∈ G.

Finally using Markov inequality,

PGn,p
(∣∣ξBdC02 logne

∣∣ ≥ 1
)
≤ EGn,p

(∣∣ξBdC02 logne
∣∣) ≤ 1

n
for Gn ∈ G.

Combining with (5.3.10), and using the Markov property of the threshold-two

contact process under the probability distribution PGn,p, we get the result in (i)

for C0(p) := C01(p) + C02(p), where C01 is as in (5.3.9) and C02 is as in (5.3.11).

To show (ii) we use Proposition 5.1.5 and the fact from (5.1.1) that P̃(·) ≤ cP(·)

to have

P̃(Gc) ≤
bε2(p)nc∑
m=1

P̃(Em) ≤ cC3

bε2(p)nc∑
m=dnbe

exp

(
−η

2

8r
m log

n

m

)
+

dnbe−1∑
m=1

exp

(
−η

2

8r
m log

n

m

) .
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Noting that the function φ(η) = η log(1/η) is increasing for η ∈ (0, 1/e) (see

(5.8.2)) and recalling that ε2(p) ≤ 1/e by its definition, m log(n/m) = nφ(m/n) is

an increasing function of m for m ≤ ε2(p)n. So we can bound the summands of

the last display by the first terms of the respective sums to have

P̃(Gc) ≤ cC3

[
(n− nb) exp

(
−η

2

8r
nb log(n/nb)

)
+ nb exp(−(η2/8r) log n)

]
= o(1),

as b ≤ η2/16r by our choice in (5.3.4).

5.4 The critical value pc

In this section, we show that the critical value pc is in the interval (0, 1). The fact

that pc > 0 follows as a consequence of Theorem 5.1.2.

Proof of Corollary 5.1.3. If Ht := σ{ξ1
s : 0 ≤ s ≤ t}, then, as observed in (5.3.12),

EGn,p(|ξ1
t+1| |Ht) = p|(ξ1

t )
∗2| ≤ np. So using Markov inequality,

if Kt := {|ξ1
t | ≥ 3np/2}, then PGn,p(Kt+1|Ht) ≤

2

3
.

Using properties of the conditional expectation,

EGn,p

(
1∩t+1

s=1Ks

∣∣∣Ht

)
= 1∩ts=1Ks

EGn,p(1Kt+1|Ht) ≤
2

3
1∩ts=1Ks

,

so that EGn,p1∩t+1
s=1Ks

≤ 2
3
EGn,p1∩ts=1Ks

. Iterating the last inequality,

PGn,p(∩
blognc
s=1 Ks) ≤ (2/3)blognc ≤ (3/2)n− log(3/2). (5.4.1)

Now since ε2 : (0, 1) 7→ (0, 1) is decreasing and continuous, by intermediate

value theorem there is a unique p0 ∈ (0, 2/3) such that ε2(p0) = 3p0/2 and for p ∈

[0, p0), ε2(p) > 3p/2. So if p ∈ [0, p0), then (5.4.1) suggests that |ξ1
s |/n drops below
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ε2(p) for some s ≤ log n with PGn,p-probability ≥ 1− (3/2)n− log(3/2). Combining

this with (i) of Theorem 5.1.2, noting that blog nc + dC0(p) log ne ≤ d(C0(p) +

1) log ne, and using Markov property of PGn,p, we have

sup
Gn∈G

PGn,p
(
ξ1
d(C0(p)+1) logne 6= ∅

)
= o(1) for p ∈ [0, p0) and Gn ∈ G.

This together with (ii) of Theorem 5.1.2 proves the desired result.

Now we show that pc < 1 using Proposition 5.1.6.

Proof of Theorem 5.1.1. Given η ∈ (0, 1/4) let ε4(η) be the constant in Proposition

5.1.6 and take ε1 := ε4. Since r ≥ 4 and η < 1/4, 3/(2r − 4) ≤ 3/4 < 1− η so that

the fraction in (5.1.4) is < 1. For p between this fraction and 1, we can choose

δ = δ(η, p) > 0 such that

(p− δ)
(

1−
(

3

2r − 4
+ η

)
ε1

)
> 1− ε1. (5.4.2)

For t = 0, 1, . . . if |ξ1
t | ≤ b(1− ε1/2)nc, then let Ut = ξ1

t , and if |ξ1
t | > b(1− ε1/2)nc,

we have too many vertices to use Proposition 5.1.6, so we let Ut be the subset of

ξ1
t consisting of b(1 − ε1/2)nc many vertices with smallest indices. Thus |U c

t | ≥

ε1n/2 for any t ≥ 0. We begin with some notations. For t ≥ 0 let

It :=
{
|ξ1
t | ≥ (1− ε1)n

}
, Ot := ∩ts=0Is,

St :=

{∣∣U∗2t ∣∣ ≥ n−
(

3

2r − 4
+ η

)
|U c

t |
}
,

Tt :=
{

at least (p− δ)
∣∣U∗2t ∣∣ many vertices of U∗2t are occupied at time t+ 1

}
.

On the event St ∩ Tt, |ξ1
t+1| ≥ (p− δ)|U∗2t | ≥ (p− δ)[n− (3/(2r− 4) + η)|U c

t |], and

on the event Ot, |ξ1
t | ≥ (1− ε1)n so that |Ut| = min{|ξ1

t |, b(1− ε1/2)nc} ≥ (1− ε1)n
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and hence |U c
t | ≤ ε1n. Therefore, using (5.4.2) it is easy to see that on the event

St ∩ Tt ∩Ot,

∣∣ξ1
t+1

∣∣ ≥ (p− δ)
(

1−
(

3

2r − 4
+ η

)
ε1

)
n > (1− ε1)n.

So It+1 ∩ Ot ⊃ St ∩ Tt ∩ Ot for any t ≥ 0. Next we see that if we take Ft :=

F (|U c
t |, (3/(2r − 4) + η)|U c

t |), where F (·, ·) is defined in Proposition 5.1.6, then

PGn,p(St|Ut) ≥ 1F ct , since |(U∗2t )c| ≤ (3/(2r − 4) + η)|U c
t | on the event St. Taking

expectation with respect to the distribution of Gn, Pp(St|Ut) ≥ P̃(F c
t ). As noted

above, |U c
t | ≤ ε1n on the event Ot. So, recalling from (5.1.1) that P̃(·) ≤ cP(·), we

can apply Proposition 5.1.6 with m = |U c
t | to have

Pp(S
c
t ∩Ot|Ut) ≤ Pp(S

c
t ∩ {|U c

t | ≤ ε1n}|Ut) ≤ cC4 exp(−(η/8)|U c
t | log(n/|U c

t |)).

Since ε1 = ε4 ≤ 1/e by (5.7.10), combining the facts that the function φ(η) =

η log(1/η) is increasing on (0, 1/e) (see (5.8.2)) and |U c
t | is always ≥ ε1n/2 by

its definition, we have φ(|U c
t |/n) > φ(ε1/2) or equivalently |U c

t | log(n/|U c
t |) ≥

(ε1/2)n log(2/ε1) on the event Ot. Keeping this in mind, we can increase the

upper bound in the last display to have

Pp(S
c
t ∩Ot) ≤ Pp (Sct ∩ {ε1n/2 ≤ |U c

t | ≤ ε1n}) ≤ cC4 exp
(
−η

8

ε1
2

log(2/ε1)n
)
.

(5.4.3)

On the other hand, using the binomial large deviation, see Lemma 2.3.3 on page

40 in [16],

PGn,p(Tt | U∗2t ) ≥ 1− exp
(
−Γ((p− δ)/p)p

∣∣U∗2t ∣∣) , (5.4.4)

where Γ(x) = x log x − x + 1 > 0 for x 6= 1. As noted earlier in the proof, on

the event Ot, |ξ1
t | ≥ (1 − ε1)n so that |Ut| = min{|ξ1

t |, b(1 − ε1/2)nc} ≥ (1 − ε1)n.

Therefore, on the event St ∩Ot, |U∗2t | ≥ [1− (3/(2r− 4) + η)ε1]n. Keeping this in
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mind, we can replace |U∗2t | in the right hand side of (5.4.4) by [1− (3/(2r − 4) +

η)ε1]n to have

PGn,p(T
c
t ∩ St ∩Ot) ≤ PGn,p(T

c
t ∩ {|U∗2t | ≥ [1− (3/(2r − 4) + η)ε1]n})

≤ exp

(
−Γ((p− δ)/p)p

{
1−

(
3

2r − 4
+ η

)
ε1

}
n

)
.(5.4.5)

The same bound also works for the unconditional probability distribution Pp.

Combining these two bounds of (5.4.3) and (5.4.5), and recalling that It+1∩Ot ⊃

St ∩ Tt ∩Ot,

Pp(I
c
t+1∩Ot) ≤ Pp((St∩Tt)c∩Ot) ≤ Pp(S

c
t∩Ot)+Pp(T

c
t ∩St∩Ot) ≤ C1 exp(−2c1(η, p)n),

where C1 = 2 max{1, cC4} and

c1(η, p) =
1

2
min

{
ηε1
16

log(2/ε1),Γ((p− δ)/p)p
(

1− 3ε1
2r − 4

− ηε1
)}

.

Hence for τ = exp(c1(η, p)n), we use the above estimate of Pp(I
c
t+1 ∩Ot) and the

relation between Ot and It to have

Pp

(
inf
t≤τ

∣∣ξ1
t

∣∣ < (1− ε1)n

)
= Pp

(
∪bτct=1I

c
t

)
=

bτc−1∑
t=0

Pp(I
c
t+1 ∩Ot) ≤ C1τ exp(−2c1(η, p)n) = C1 exp(−c1(η, p)n),

and we get the desired result.

5.5 First order phase transition at pc

In this section, we use Theorem 5.1.1 and 5.1.2 to prove Theorem 5.1.4.

Proof of Theorem 5.1.4. First we estimate the probability Pp(ρn ≥ ε2(p)) for p ∈

(pc, 1). Let σ1 = dexp(n1/2)e and σ2(p) = dC0(p) log ne, where C0(p) is as in Theo-
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rem 5.1.2. Depending on the fate of the process ξ1
t at time σ1 + σ2 and whether

Gn ∈ G or not, where G is defined in Theorem 5.1.2, we have

Pp(ρn < ε2(p)) = Pp(|ξ1
σ1
| < ε2(p)n)

≤ Pp(ξ
1
σ1+σ2

= ∅) + ẼPGm,p(|ξ1
σ1
| < ε2(p)n , ξ1

σ1+σ2
6= ∅)

≤ Pp(ξ
1
σ1+σ2

= ∅) + Ẽ1Gc + Ẽ
[
1GPGm,p(|ξ1

σ1
| < ε2(p)n , ξ1

σ1+σ2
6= ∅)

]
.(5.5.1)

By the definition of pc in (5.1.3), the first term in the right side of (5.5.1) is o(1)

for p ∈ (pc, 1). By the estimate in (ii) of Theorem 5.1.2, the second term is also

o(1). To bound the third term in (5.5.1) we use Markov property of PGn,p and the

estimate in (i) of Theorem 5.1.2 to have

1GPGm,p(|ξ1
σ1
| < ε2(p) , ξ1

σ1+σ2
6= ∅) =

∑
A:|A|<ε2(p)n

PGm,p(ξ
1
σ1

= A)1GPGn,p(ξ
A
σ2
6= ∅)

≤ o(1)
∑

A:|A|<ε2(p)n

PGm,p(ξ
1
σ1

= A).

Combining the last three observations,

Pp(ρn < ε2(p)) ≤ o(1) + o(1) + o(1)
∑

A:|A|<nε2(p)

ẼPGn,p(ξ1
σ1

= A) = o(1).

Since pc < 1 by Theorem 5.1.1 and ε2(p) > 0 for p ∈ (0, 1) and ε2(·) is a decreasing

continuous function by Theorem 5.1.2, ε2(pc) > 0 and for any δ ∈ (0, ε2(pc)),

there exists p′ > pc such that ε2(p′) > ε2(pc)− δ.

Therefore, using the fact that ε2(·) is a decreasing function and the stochastic

monotonicity of the probability distributions Pp, p ∈ [0, 1], which is discussed in

the introduction before Theorem 5.1.4, for any p ∈ (pc, 1]

Pp(ρn > ε2(pc)− δ) ≥ Pp(ρn > ε2(p′))

≥ Pp∧p′(ρn ≥ ε2(p ∧ p′)) = 1− o(1),

where p ∧ p′ = min{p, p′} > pc. So letting n→∞ the desired result follows.
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5.6 Proof of the first isoperimetric inequality

In this section, we present the proof of the isoperimetric inequality in Proposi-

tion 5.1.5.

Proof of Proposition 5.1.5. In view of (5.2.2), it suffices to estimate the probability

P[H(m, (r − 1 − η)m), where H(m, k) = {∃U ⊂ Vn : |U | = m, |U∗1| ≤ k}.

Recall the definitions of U0 and U1 from (5.2.1). We need some more notations

to proceed. Given η > 0 define the following events for a subset U ⊂ Vn.

AU := {|U1| ≥ (η/2r)|U |}, BU := {|U∗1| ≤ (r − 1− η)|U |},

DU := {e(U,U c) ≤ (r − 2− η)|U |}.
(5.6.1)

There are three steps in the proof.

Step 1: Our first step is to estimate the probability that there is a subset U of

vertices of sizem for whichBU∩AcU occurs. On the eventAcU , |U0| > (1−η/2r)|U |

and so e(U,U c) ≥ r|U0| ≥ (r − η/2)|U |. Also on the event BU , |∂U | ≤ |U∗1| ≤

(r − 1− η)|U |. From these two observations we have

P(BU ∩ AcU) ≤ P({|∂U | ≤ (r − 1− η)|U |} ∩ {e(U,U c) ≥ (r − η/2)|U |})

≤ P(e(U,U c)− |∂U | ≥ (1 + η/2)|U |). (5.6.2)

Combining (5.6.2) with the bound in (ii) of Lemma 5.8.4,

if |U | = m ≤ ε5n, then P(BU ∩ AcU) ≤ exp [−(1 + η/2)m log(n/m) + ∆2m] .

(5.6.3)

Suppose

F1 := ∪{U⊂Vn:|U |=m} (BU ∩ AcU) .
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Using (5.6.3) and the inequality in Lemma 5.8.1,

if m ≤ ε5n, then P(F1) ≤
(
n

m

)
exp [−(1 + η/2)m log(n/m) + ∆2m]

≤ exp [−(η/2)m log(n/m) + (1 + ∆2)m] . (5.6.4)

Ifm is small enough, then the above estimate is exponentially small, and so with

high probability there is no subset U of size m for which BU ∩ AcU occurs.

Step 2: Our next step is to estimate the probability that there is a subset U of

vertices for which AU occurs and e(U1, U
c
1) ≤ (r − 2 − η)|U1|. If AU occurs for

some subset U of size m, then |U1| ∈ [ηm/2r,m]. So we consider all possible

subsets having size in that range, and let

F2 := ∪{W :(η/2r)m≤|W |≤m}DW .

Then using Lemma 5.8.2 with α = 1 − (2 + η)/r and the inequality in Lemma

5.8.1,

P(F2) = P
(
∪m′∈[ηm/2r,m] ∪{W :|W |=m′} {e(W,W c) ≤ (r − 2− η)m′}

)
≤

∑
m′∈[ηm/2r,m]

(
n

m′

)
C5 exp

[
−
(

2 + η

2

)
m′ log(n/m′) + ∆1m

′
]

≤
∑

m′∈[ηm/2r,m]

C5 exp (−(η/2)m′ log(n/m′) + (1 + ∆1)m′) . (5.6.5)

Noting that the function φ(η) = η log(1/η) is increasing on (0, 1/e) (see (5.8.2)),

if m ≤ n/e, then for m′ ∈ [ηm/2r,m], m′ log(n/m′) ≥ (ηm/2r) log(2rn/ηm).

Using this inequality and the fact that (η/2r) log(2r/η) > 0, we can bound each

summand in (5.6.5) by C5 exp(−(η/2)(η/2r)m log(n/m) + (1 + ∆1)m). As there

are fewer than m terms in the sum over m′ in (5.6.5), if we use the inequality
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m ≤ em for m ≥ 0, and

if m ≤ n/e, then P(F2) ≤ C5 exp (−(η/2)(η/2r)m log(n/m) + (2 + ∆1)m) .

(5.6.6)

If m is small enough, then the right-hand side of (5.6.6) is exponentially small,

and so with high probability there is no subset U of size m for which AU occurs

and e(U1, U
c
1) ≤ (r − 2− η)|U1|.

Step 3: Our final step is to estimate the probability that there is a subset U of

size m for which BU occurs assuming F1 and F2 do not occur. Noting that U∗1 is

a disjoint union of U1 and ∂U , and |U | = |U0|+ |U1|, a little arithmetic gives

|U∗1| =|U1|+ |∂U |

=(r − 1− η)|U |+ |∂U | − (r − 2− η)|U1| − (r − 1− η)|U0|.

Letting

∆(U) = |∂U | − (r − 2− η)|U1| − (r − 1− η)|U0|, (5.6.7)

we see that if BU occurs, then ∆(U) has to be negative. Also if |U | = m, then by

the definition of F1,BU∩F c
1 ⊂ BU∩AU , and on the eventAU∩F c

2 , |U1| ≥ (η/2r)|U |

and so e(U1, U
c
1) > (r − 2− η)|U1|. Combining these two observations,

P(BU∩F c
1∩F c

2 ) ≤ P(BU∩AU∩F c
2 ) ≤ P({∆(U) ≤ 0}∩{e(U1, U

c
1) > (r−2−η)|U1|}).

(5.6.8)

Now by the definitions of U0 and U1,

e(U0, U
c
0) = e(U0, U

c) = r|U0| and e(U1, U
c
1) = e(U1, U

c), so that

e(U,U c) = e(U0, U
c) + e(U1, U

c) = r|U0|+ e(U1, U
c
1), (5.6.9)
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and a little algebra shows that {∆(U) ≤ 0} = {e(U,U c) − |∂U | ≥ (1 + η)|U0| +

e(U1, U
c
1)− (r − 2− η)|U1|}. Also e(U1, U

c
1) < r|U1|. So

P({∆(U) ≤ 0} ∩ {e(U1, U
c
1) > (r − 2− η)|U1|}) (5.6.10)

=
∑

γ∈(0,2+η)

P ({e(U1, U
c
1) = (r − 2− η + γ)|U1|} ∩ {e(U,U c)− |∂U | ≥ (1 + η)|U0|+ γ|U1|}) .

Combining (5.6.8) and (5.6.10), and recalling that |U1| ∈ [ηm/2r,m],

if we write R = r − 2− η,

and if r(γ, k) := P(e(U1, U
c
1) = (R + γ)|U1|, |U1| = k) and

s(γ, k) := P (e(U,U c)− |∂U | ≥ (1 + η)|U0|+ γ|U1| | e(U1, U
c
1) = (R + γ)|U1|, |U1| = k) ,

then P(BU ∩ F c
1 ∩ F c

2 ) =
∑

γ∈(0,2+η)

∑
k∈[ηm/2r,m]

r(γ, k) s(γ, k). (5.6.11)

In view of (5.6.9), if L = (R + γ)k + r(m − k), then {e(U1, U
c
1) = (R + γ)|U1|} ∩

{|U1| = k} = {e(U,U c) = L} ∩ {|U1| = k}. So

s(γ, k) = P(e(U,U c)− |∂U | ≥ γk + (1 + η)(m− k) | e(U,U c) = L, |U1| = k).

Since under the conditional distribution P(·|e(U,U c) = L) all the size-L subsets

of half-edges corresponding to U c are equally likely to be paired with those

corresponding to U , the conditional distribution of e(U,U c)−|∂U | given e(U,U c)

and |U1| does not depend on |U1|. So we can drop the event {|U1| = k} from the

last display and use (i) of Lemma 5.8.4 with η replaced by (γk+(1+η)(m−k))/m

to have

s(γ, k) ≤ exp (−{γk + (1 + η)(m− k)} log(n/m) + ∆2m) , when m ≤ ε5n.

(5.6.12)

In order to estimate r(γ, k), we again use (5.6.9) and recall thatR = (r−2−η)
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to have

r(γ, k) = P(e(U1, U
c
1) = (R + γ)k, |U1| = k)

= P(e(U,U c) = (R + γ)k + r(m− k), |U1| = k)

≤ P(e(U,U c) = rm− (2 + η − γ)k),

Using Lemma 5.8.2 with α = 1− (2 + η − γ)k/rm,

r(γ, k) ≤ C5 exp

(
−2 + η − γ

2
k log(n/m) + ∆1m

)
. (5.6.13)

Combining (5.6.11), (5.6.12) and (5.6.13), if m ≤ ε5n, then

P(BU ∩ F c
1 ∩ F c

2 )

≤
∑

γ∈(0,2+η)

∑
k∈[ηm/2r,m]

C5 exp

[
−
{(

2 + η + γ

2

)
k + (1 + η)(m− k)

}
log(n/m) + (∆1 + ∆2)m

]
.

Noting that there are fewer than rm terms in the sum over γ and at most m

terms in the sum over k, and using the inequality m2 ≤ em for m ≥ 0, the above

is

≤ C5rm
2 exp [−(1 + η/2)m log(n/m) + (∆1 + ∆2)m]

≤ C5r exp [−(1 + η/2)m log(n/m) + (1 + ∆1 + ∆2)m] . (5.6.14)

Recalling the definition ofH(m, (r−1−η)m) and considering whether the events

Fi, i = 1, 2, occur or not,

P(H(m, (r − 1− η)m)) = P
(
∪{U :|U |=m}BU

)
≤ P(F1) + P(F2) + P

(
∪{U :|U |=m}(BU ∩ F c

1 ∩ F c
2 )
)

≤ P(F1) + P(F2) +
∑

{U :|U |=m}

P(BU ∩ F c
1 ∩ F c

2 ).

Combining (5.6.4), (5.6.6) and (5.6.14), and using the inequality in Lemma 5.8.1

to estimate the number of terms in the sum, if m ≤ min{1/e, ε5(η)}n, then

P(H(m, (r − 1− η)m))
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≤ P(F1) + P(F2) +

(
n

m

)
C5r exp [−(1 + η/2)m log(n/m) + (1 + ∆1 + ∆2)m]

≤ P(F1) + P(F2) + C5r exp [−(η/2)m log(n/m) + (2 + ∆1 + ∆2)m]

≤ C3 exp[−(η2/4r)m log(n/m) + (2 + ∆1 + ∆2)m], (5.6.15)

whereC3 = 3 max{1, C5r}. To clean up the result to have the one given in Propo-

sition 5.1.5, choose ε′3 such that

(η2/4r) log(1/ε′3)/2 = 2 + ∆1 + ∆2, and ε3(η) := min{1/e, ε5(η), ε′3(η)},

(5.6.16)

where ε5 is defined in (5.8.8). So for any m ≤ ε3n, the estimate in (5.6.15) holds,

and

(η2/4r) log(n/m)/2 ≥ (η2/4r) log(1/ε′3)/2 = 2 + ∆1 + ∆2,

which gives the desired estimate for the probability in (5.2.3), and thereby, in

view of (5.2.2), provides the required bound for the probability in Proposition

5.1.5.

To finish the proof of Proposition 5.1.5 it remains to check that ε3(·) is increas-

ing. By the definition of ε5(·) in (5.8.8) and the properties of β(·, ·) in Lemma

5.8.3, ε5(·) is increasing. Also by the definition of ε′3 in (5.6.16), log(1/ε′3(·)) is

decreasing and hence ε′3(·) is increasing. Since minimum of increasing functions

is still increasing, we conclude from (5.6.16) that ε3(·) is increasing.

5.7 Proof of the second isoperimetric inequality

In this section, we present the proof of the isoperimetric inequality in Proposi-

tion 5.1.6.
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Proof of Proposition 5.1.6. Recall the definitions of W i and βi(W ) from (5.2.6). We

need some more notations to proceed. Given η > 0, let

QW :=

{
β0(W ) + β1(W ) >

3

2(r − 2)
+ η

}
, RW :=

{
β1(W ) >

1 + 2η

r − 2

}
.

We divide the argument into three steps.

Step 1: Our first step is to estimate the probability that there is a subset W ⊂ Vn

of size m for which RW occurs. Since each x ∈ ∂W has e({x},W ) ≥ 1 and each

x ∈ W 1 has e({x},W ) ≥ r − 1,

e(W,W c) ≥ (r − 1)|W 1|+ (|∂W | − |W 1|) = (r − 2)|W 1|+ |∂W |, (5.7.1)

and so RW ⊂ {e(W,W c)− |∂W | ≥ (1 + 2η)|W |}. Therefore, using (ii) of Lemma

5.8.4

if |W | = m ≤ ε5n, then P(RW ) ≤ exp[−(1 + 2η)m log(n/m) + ∆2m]. (5.7.2)

Now if

M1 := ∪{W :|W |=m}RW ,

then using (5.7.2) and the inequality in Lemma 5.8.1,

if m ≤ ε5n, then P(M1) ≤
(
n

m

)
exp[−(1 + 2η)m log(n/m) + ∆2m]

≤ exp[−2ηm log(n/m) + (1 + ∆2)m]. (5.7.3)

If m is small enough, the above estimate is exponentially small, which implies

that with high probability there is no subset W of size m for which RW occurs.

Step 2: Our next step is to estimate the probability that there is a subset W ⊂ Vn

for whichQW∩Rc
W occurs and e(W 0, (W 0)c) ≤ (r−2−(2r−4)η)|W 0|. IfQW∩Rc

W
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occurs for some subset W of size m, then a little algebra shows that for r ≥ 4,

β0(W ) ≥ 3

2(r − 2)
+ η − 1 + 2η

r − 2
≥ 1

2(r − 2)
,

and so |W 0| ∈ [m/(2r − 4),m]. For this reason we consider all possible subsets

having size in that range and let

M2 := ∪{U :|U |∈[m/(2r−4),m]}{e(U,U c) ≤ (r − 2− (2r − 4)η)|U |}.

Applying Lemma 5.8.2, using the inequality in Lemma 5.8.1, and then using an

argument similar to the one leading to (5.6.6),

if m ≤ n/e, then

P(M2) = P
(
∪m′∈[m/(2r−4),m] ∪{U : |U |=m′} {e(U,U c) ≤ (r − 2− (2r − 4)η)|U |}

)
≤

∑
m′∈[m/(2r−4),m]

(
n

m′

)
C5 exp

[
−2 + (2r − 4)η

2
m′ log(n/m′) + ∆1m

′
]

≤ C5 exp
[
−η

2
m log(n/m) + (2 + ∆1)m

]
. (5.7.4)

If m is small enough, then the right hand side of (5.7.4) is exponentially small,

and so with high probability there is no subset W of size m for which QW ∩Rc
W

occurs, and e(W 0, (W 0)c) ≤ (r − 2− (2r − 4)η)|W 0|.

Step 3: Our final step is to estimate the probability that there is a subset W ⊂ Vn

for which QW occurs assuming M1 and M2 do not occur. If |W | = m, then by

the definition of M1, QW ∩ M c
1 ⊂ QW ∩ Rc

W . On the event QW ∩ Rc
W ∩ M c

2 ,

|W 0| ∈ [m/(2r−4),m] and so e(W 0, (W 0)c) > (r−2−(2r−4)η)|W 0|. Also by the

definition of W 0, e(W 0,W c) ≤ |W 0|. Combining these three observations with

the fact that W 0 ⊂ W , on the event QW ∩M c
1 ∩M c

2 ,

e(W 0,W \W 0) = e(W 0, (W 0)c)− e(W 0,W c)
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≥ (r − 2− (2r − 4)η)|W 0| − |W 0|

= (r − 3− (2r − 4)η)β0(W )|W |. (5.7.5)

Next we see that W is a disjoint union of W 0 and W \W 0, and (W \W 0)c is a

disjoint union of W 0 and W c. So

e(W,W c) = e(W \W 0,W c) + e(W 0,W c)

= e(W \W 0, (W \W 0)c)− e(W \W 0,W 0) + e(W 0,W c).(5.7.6)

Combining the inequalities in (5.7.5) and (5.7.6), recalling that e(W \W 0, (W \

W 0)c) ≤ r|W \W 0|, and again using the inequality e(W 0,W c) ≤ |W 0|, we see

that on the event QW ∩M c
1 ∩M c

2 ,

e(W,W c) ≤ r|W \W 0| − e(W 0,W \W 0) + e(W 0,W c)

≤ [r − (2r − 4)(1− η)β0(W )]|W |.

Therefore by (5.7.1),

|∂W | ≤ e(W,W c)− (r − 2)|W 1|

≤ [r − (2r − 4)(1− η)β0(W )− (r − 2)β1(W )]|W |. (5.7.7)

Now we show that (2r− 4)(1− η)β0(W ) + (r− 2)β1(W ) > 2 + η on the event

QW ∩M c
1 ∩M c

2 . By the definition of M1, β1(W ) ≤ (1 + 2η)/(r − 2) on the event

QW ∩M c
1 ∩M c

2 . So if (2r − 4)(1 − η)β0(W ) + (r − 2)β1(W ) ≤ 2 + η on the same

event, then noting that the maximum value of β0 + β1 under the constraints (i)

(2r − 4)(1 − η)β0 + (r − 2)β1 ≤ 2 + η and (ii) β1 ≤ (1 + 2η)/(r − 2) is attained

when both constraints hold with equality, a little algebra shows that

β1 + β0 ≤
1 + 2η

r − 2
+

1

2(r − 2)
=

3

2(r − 2)
+

2

r − 2
η ≤ 3

2(r − 2)
+ η
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on the event QW ∩M c
1 ∩M c

2 . But the definition of QW contradicts that. So, on the

event QW ∩M c
1 ∩M c

2 , we must have (2r− 4)(1− η)β0(W ) + (r− 2)β1(W ) > 2 + η

and hence |∂W | < (r− 2− η)|W | by (5.7.7). Thus P(QW ∩M c
1 ∩M c

2) ≤ P(|∂W | <

(r− 2− η)|W |). In order to estimate the right-hand side of the last inequality we

apply Lemma 5.8.5 to have

if |W | = m ≤ ε5n, then P(QW∩M c
1∩M c

2) ≤ C7 exp(−(1+η/4)m log(n/m)+(1+∆1+∆2)m).

(5.7.8)

Recalling the definition of F (m, k) and considering whether the events Mi, i =

1, 2, occur or not,

P[F (m, [3/(2r − 4) + η]m)] = P
(
∪{W :|W |=m}QW

)
≤ P(M1) + P(M2) + P

(
∪{W :|W |=m}(QW ∩M c

1 ∩M c
2)
)

≤ P(M1) + P(M2) +
∑

{W :|W |=m}

P(QW ∩M c
1 ∩M c

2).

Combining the probability bounds in (5.7.3), (5.7.4) and (5.7.8), using the in-

equality in Lemma 5.8.1 to estimate the number of terms in the sum, if m ≤

min{1/e, ε5(η)}n, then

P[F (m, [3/(2r − 4) + η]m)]

≤ P(M1) + P(M2) +

(
n

m

)
C7 exp [−(1 + η/4)m log(n/m) + (1 + ∆1 + ∆2)m]

≤ P(M1) + P(M2) + C7 exp [−(η/4)m log(n/m) + (2 + ∆1 + ∆2)m]

≤ C4 exp[−(η/4)m log(n/m) + (2 + ∆1 + ∆2)m], (5.7.9)

where C4 = 3 max{1, C7}. To clean up the result to have the one given in Propo-

sition 5.1.6, choose ε′4(η) such that

(η/8) log(1/ε′4) = (2 + ∆1 + ∆2), and ε4 := min{1/e, ε5(η), ε′4(η)}, (5.7.10)
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where ε5 is defined in (5.8.8). So for any m ≤ ε4n, the estimate in (5.7.9) holds,

and

(η/8) log(n/m) ≥ (η/8) log(1/ε′4) = (2 + ∆1 + ∆2),

which gives the desired result.

5.8 Probability estimates for e(U,U c) and |∂U |

We begin with a simple estimate for the number of subsets of Vn of size m.

Lemma 5.8.1. The number of subsets of Vn of size m is at most exp(m log(n/m) +m).

Proof. The number of subsets of Vn of size m is
(
n
m

)
. Using the inequalities n(n−

1) · · · (n−m+ 1) ≤ nm and em > mm/m!,(
n

m

)
≤ nm

m!
≤
(ne
m

)m
= exp(m log(n/m) +m).

In order to study the distribution of |∂U |, the first step is to estimate e(U,U c).

Because of the symmetries of our random graph Gn, the distribution of e(U,U c)

under P depends on U only through |U |.

Lemma 5.8.2. Let U be any subset of Vn with |U | = m. Then for any α ∈ (0, 1),

P(e(U,U c) ≤ αr|U |) ≤ C5 exp
(
−r

2
(1− α)m log(n/m) + ∆1m

)
for some constants C5 and ∆1.
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Proof. Let f(u) be the number of ways of pairing u objects. Then

f(u) =
u!

(u/2)!2u/2
.

If p(m, s) = P(e(U,U c) = s), then we have

p(m, s) ≤
(
rm

s

)(
r(n−m)

s

)
s!
f(rm− s)f(r(n−m)− s)

f(rn)
.

To see this, recall that we construct the graph Gn by pairing the half-edges at

random, which can be done in f(rn) many ways as there are rn half-edges. We

can choose the left endpoints of the edges from U in
(
rm
s

)
many ways, the right

endpoints from U c in
(
r(n−m)

s

)
many ways, and pair them in s! many ways. The

remaining (rm − s) many half-edges of U can be paired among themselves in

f(rm− s) many ways. Similarly the remaining (r(n−m)− s) many half-edges

of U c can be paired among themselves in f(r(n−m)− s) many ways.

Write D = rn, k = rm and s = ηk for η ∈ [0, 1]. Combining the bounds of

(6.3.4) and (6.3.5) of [16] we get

p(m, s) ≤ C6k
1/2

(
e2

η

)ηk (
k

D

)k(1−η)/2(
1− (1 + η)k

D

)(D−(1+η)k)/2

(5.8.1)

for some constant C6. Now

if φ(η) = η log(1/η), then φ′(η) = −(1 + log η) and φ′′(η) = −1

η
. (5.8.2)

So φ(·) is a concave function and its derivative vanishes at 1/e. This shows

that the function φ(·) is maximized at 1/e, and hence (1/η)η = eφ(η) ≤ e1/e for

η ∈ [0, 1]. So (e2/η)ηk ≤ Ck for C = exp(2 + 1/e). If we ignore the last term of

(5.8.1), which is ≤ 1, then we have

P(e(U,U c) ≤ αrm) =

bαrmc∑
s=1

p(m, s) ≤
∑

{η: ηrm∈N, η≤α}

C6(rm)1/2Crm
(m
n

)rm(1−η)/2
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≤C6r
3/2m3/2Crm

(m
n

)r(1−α)m/2

,

as there are at most rm terms in the sum and (m/n)1−η ≤ (m/n)1−α for η ≤ α.

The above bound is

≤ C5 exp
(
−r

2
(1− α)m log(n/m) + rm logC + 3m/2

)
,

and we get the desired result with C5 = C6r
3/2 and ∆1 = r logC + 3/2.

Lemma 5.8.2 gives an upper bound for the probability that e(U,U c) is small.

Our next goal is to estimate the difference between e(U,U c) and |∂U |. In order

to do that, first we need the following large deviation probability estimate.

Lemma 5.8.3. If T1, T2, . . . are independent random variables and Ti ∼ Geometric(pi)

with pi = (n− i+ 1)/n, then for any u > 0 and η ∈ (0, u) there are positive constants

∆2 and β = β(u, η) such that for large enough n and any m < βn,

P
(
T1 + T2 + · · ·+ Tb(u−η)mc > um

)
≤ exp

[
−ηm log(n/m) + ∆2m

]
.

Moreover, β(u, η) ↓ 0 as η ↓ 0 and for fixed η, β(u, η) is a decreasing function of u.

Proof. Let qi = 1− pi = (i− 1)/n. Then for θ < log(1/qi),

E
[
eθTi
]

=
∞∑
k=1

piq
k−1
i eθk =

pie
θ

1− qieθ
.

Let ε = m/n, θ > 0 and εeθ < 1/(u−η) so that EeθTi is finite for i = 1, 2, . . . , b(u−

η)mc. Using Markov inequality

P
(
T1 + · · ·+ Tb(u−η)mc > um

)
≤ exp [−θum]

b(u−η)mc∏
i=1

EeθTi .
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Using ε = m/n and the formula for E exp(θTi), a little arithmetic shows that the

above is

≤ exp

−θuεn+

b(u−η)εnc∑
i=1

log
pie

θ

1− qieθ


≤ exp

−θηεn+ n · 1

n

b(u−η)εnc∑
i=1

log
1− (i− 1)/n

1− (i− 1)eθ/n

 . (5.8.3)

Since eθ > 1, it can be verified that the function g(x) = log[(1 − x)/(1 − xeθ)]

is increasing, so that we can bound the Riemann sum for the function g(x) in

(5.8.3) by the corresponding integral. Thus the above is

≤ exp

[
−θηεn+ n

(∫ (u−η)ε

0

log(1− x)dx−
∫ (u−η)ε

0

log(1− xeθ)dx

)]
. (5.8.4)

To bound the last quantity we let

h(θ, u, η, ε) = θηε−

(∫ (u−η)ε

0

log(1− x)dx−
∫ (u−η)ε

0

log(1− xeθ)dx

)
.

Clearly h(0, u, η, ε) = 0. We want to maximize h with respect to θ keeping all the

other parameters fixed. Changing the variables y = 1− x and z = 1− xeθ,

h = θηε−
(∫ 1

1−(u−η)ε

log y dy − e−θ
∫ 1

1−(u−η)εeθ
log z dz

)
= θηε−

(
−(1− (u− η)ε) log(1− (u− η)ε)

+ e−θ
(
1− (u− η)εeθ

)
log
(
1− (u− η)εeθ

))
, (5.8.5)

where to evaluate the integrals we recall (x log x− x)′ = log x.

∂h/∂θ = ηε+ e−θ
(
1− (u− η)εeθ

)
log
(
1− (u− η)εeθ

)
+ e−θ(u− η)εeθ log

(
1− (u− η)εeθ

)
− e−θ

(
1− (u− η)εeθ

) −(u− η)εeθ

1− (u− η)εeθ

= ηε+ (u− η)ε+ e−θ log
(
1− (u− η)εeθ

)
= uε+ e−θ log

(
1− (u− η)εeθ

)
.
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∂h/∂θ = 0 implies exp(−uεeθ) = 1− (u− η)εeθ. Letting

β = β(u, η) be the unique positive number satisfying e−uβ = 1− (u− η)β,

(5.8.6)

∂h/∂θ > 0 if εeθ < β. (5.8.6) suggests that β ∈ (0, 1/(u − η)). So for fixed u, η,

ε < β(u, η) and θ∗ := log(β/ε), θ∗ > 0 with εeθ∗ < 1/(u− η), and the function h is

maximized at θ∗. Plugging the value of θ∗ in (5.8.5),

h = ηε log(β/ε)+(1− (u−η)ε) log(1− (u−η)ε)− ε

β
(1− (u−η)β) log(1− (u−η)β).

Noting that the function

ψ(δ) :=
(1− δ) log(1− δ)

δ
satisfies ψ′(δ) =

−δ − log(1− δ)
δ

> 0, and ψ(δ)→


−1 if δ → 0

0 if δ → 1

,

[ψ(δ)− ψ(δ′)] ≥ −1 for δ, δ′ ∈ (0, 1), and so

h = ηε log(1/ε) + ηε log β + (u− η)ε[ψ((u− η)ε)− ψ((u− η)β)]

≥ ηε log(1/ε)− c2(u, η)ε, (5.8.7)

where c2(u, η) = u− η + η log(1/β(u, η)).

To see that β(u, η) has the desired properties, note that if ϕx(u, η) := e−ux −

1 + (u− η)x, then for x > 0, ∂ϕx/∂u = −xe−ux + x > 0 and ∂ϕx/∂η = −x < 0. If

we put x = β(u, η), use (5.8.6), and note that ϕx(u, η) ≤ 0 if and only if 0 ≤ x ≤

β(u, η), then

for u′ > u,ϕβ(u,η)(u
′, η) > ϕβ(u,η)(u, η) = 0, and so we must have β(u′, η) < β(u, η),

for η′ < η, ϕβ(u,η)(u, η
′) > ϕβ(u,η)(u, η) = 0, and so we must have β(u, η′) < β(u, η).

To ensure that β(u, η) ↓ 0 as η ↓ 0, see that if β(u, 0) := limη→0 β(u, η), then using

continuity of β(u, η) and (5.8.6), exp(−uβ(u, 0)) = 1−uβ(u, 0) and so β(u, 0) = 0.
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Using the properties of β(u, η) we can show that c2(u, β) is bounded above

as η and u vary. From the inequality e−y ≥ 1− y we have 1− e−x =
∫ x

0
e−y dy ≥∫ x

0
(1− y) dy = x−x2/2 for any x ≥ 0. In view of (5.8.6), using the last inequality

we see that

1−(u−η)β = e−uβ ≤ 1−uβ+
u2β2

2
, which implies β ≥ 2η

u2
and so c2(u, η) ≤ u−η+η log

(
u2

2η

)
,

and lim supη→0 c2(u, η) ≤ u. In the other direction, β(u, η) → ∞ as η → u, since

for any β0 > 0 we can choose η0 ∈ (0, u) so that 1−(u−η0)β0 > e−uβ0 (e.g. choose

η0 satisfying 1 − (u − η0)β0 = (1 + e−uβ0)/2) to make sure β(u, η0) > β0. Thus

c2(u, η) → −∞ as η → u. From the behavior of c2(u, η) when η is close to 0 and

u , and noting that c2(u, η) depends continuously on η,

c0(u) := max{c2(u, η) : η ∈ (o, u)} <∞.

Next we recall that e(U,U c) ≤ r|U | so that u ∈ [0, r]. Since β(u, η) is decreasing

in u, recalling the definitions of c2(u, η) and c0(u) it is easy to see that for fixed η,

c2(u, η) is increasing in u, and hence so is c0(u). Therefore,

if ∆2 := c0(r), then c2(u, η) ≤ c0(u) ≤ ∆2 for any 0 < η < u ≤ r.

Coming back to estimate h, we can convert (5.8.7) to

h ≥ ηε log(1/ε)−∆2ε.

Plugging the bound on h and ε = m/n in (5.8.4) we get

P
(
T1 + · · ·+ Tb(u−η)mc > um

)
≤ exp(−ηm log(n/m) + ∆2m).

which completes the proof of Lemma 5.8.3
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Now we use Lemma 5.8.3 to get an upper bound for the probability that the

difference between e(U,U c) and |∂U | is large.

Lemma 5.8.4. If U is a subset of vertices of Gn such that |U | = m, then for any η > 0,

u ∈ (η, r] and ∆2 as in Lemma 5.8.3, there is a constant ε5 = ε5(η) > 0 such that for

large enough n and m < ε5n,

(i) P ( |∂U | ≤ (u− η)|U | | e(U,U c) = u|U |) ≤ exp(−ηm log(n/m) + ∆2m),

(ii) P (e(U,U c)− |∂U | > η|U |) ≤ exp(−ηm log(n/m) + ∆2m).

Proof. Since |U c| = n − m, there are r(n − m) many half-edges correspond-

ing to U c. In order to have e(U,U c) = um, we need to choose um half-edges

corresponding to U c and pair them with the same number of half-edges cor-

responding to U . Since the half-edges are paired randomly under the proba-

bility distribution P, all the subsets of half-edges corresponding to U c of size

um are equally likely to be chosen under the conditional probability distribu-

tion P(·|e(U,U c) = um). Noting that the subset of size um, which is obtained

by choosing um objects one at a time from a set of size r(n − m) uniformly at

random without replacement, has uniform distribution over all possible subsets

of that size, we can assume that the half-edges corresponding to U c mentioned

above are chosen one by one uniformly at random without replacement.

Suppose Ri half-edges are chosen by the time i many distinct vertices are

chosen. Let T ′1 = R1 = 1 and T ′i = Ri − Ri−1 for i ≥ 2. Since each vertex has r

half-edges, Ri+1 ≤ 1 + ri and e(U,U c) ≤ r|U | so that u ≤ r. A little arithmetic

gives that for large enough n,

n

r2 + r + 1
≤ n− 1

r2 + r
≤ n− 1

ru+ r
so that for m ≤ n

r2 + r + 1
and i = 1, . . . , um, ri+1+rm ≤ n.
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Combining these inequalities, after choosing the ith distinct vertex the failure

probability to choose the (i+ 1)th distinct vertex at any step is

≤ ri− i
r(n−m)− ri− 1

≤ i

n
for i ≤ um.

Then, on the event {e(U,U c) = um}, the T ′i can be coupled with geometric ran-

dom variables Ti with failure probability (i− 1)/n so that T ′i ≤ Ti. So

P(Rb(u−η)mc > um|e(U,U c) = um) = P
(
T ′1 + · · ·+ T ′b(u−η)mc > um|e(U,U c) = um

)
≤ P

(
T1 + · · ·+ T(u−η)m > um

)
,

when m ≤ n/(1 + r + r2). If we let

ε5(η) = min{1/(1 + r + r2), β(r, η/2)}, (5.8.8)

where β is defined in Lemma 5.8.3, then form ≤ ε5nwe have the above inequal-

ity and can use the probability estimate of Lemma 5.8.3 as β(u, η) > β(r, η).

From those two inequalities we conclude that

P (|∂U | < (u− η)m | e(U,U c) = um) ≤ P(Rb(u−η)mc > um|e(U,U c) = um)

≤ exp(−ηm log(n/m) + ∆2m)

for m ≤ ε5n, which completes the proof of (i).

To prove (ii), recall that e(U,U c) ≤ rm. So based on e(U,U c) we have

P(e(U,U c)− |∂U | ≥ ηm)

≤
∑

u∈(η,r]:um∈N

P(e(U,U c)− |∂U | ≥ ηm, e(U,U c) = um)

=
∑

u∈(η,r]:um∈N

P(e(U,U c)− |∂U | ≥ ηm|e(U,U c) = um)P(e(U,U c) = um).(5.8.9)
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If m ≤ ε5n, we can use (i) to bound the first terms of the summands in the

right-hand side of (5.8.9) and have

P(e(U,U c)− |∂U | ≥ ηm)

≤ exp(−ηm log(n/m) + ∆2m)
∑

u∈(η,r]:um∈N

P(e(U,U c) = um)

≤ exp(−ηm log(n/m) + ∆2m).

Lemma 5.8.4 gives an upper bound for the probability that the difference be-

tween |∂U | and e(U,U c) is large. Now we use Lemma 5.8.2 and 5.8.4 to estimate

the probability that |∂U | is smaller than (r − 2)|U |.

Lemma 5.8.5. Let U ⊂ Vn be such that |U | = m and η > 0. For the constants ∆1 of

Lemma 5.8.2, ε5 and ∆2 of Lemma 5.8.4, if n is large enough and m ≤ ε5n, then

P(|∂U | ≤ (r − 2− η)|U |) ≤ C7 exp[−(1 + η/4)m log(n/m) + (1 + ∆1 + ∆2)m]

for some constant C7.

Proof. First we estimate the probability P(|∂U | = (r − 2 − η′)|U |) when η′ ≥ η.

Noting that |∂U | ≤ e(U,U c) ≤ r|U | for any U ⊂ Vn,

P(|∂U | = (r − 2− η′)|U |)

=
∑

γ∈[0,2+η′]

P(|∂U | = (r − 2− η′)|U |, e(U,U c) = (r − 2− η′ + γ)|U |). (5.8.10)

For the summands with γ ≥ η′/2, we write each summand as the product of

two terms

P(e(U,U c) = (r−2−η′+γ)|U |) P(|∂U | = (r−2−η′)|U ||e(U,U c) = (r−2−η′+γ)|U |).
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We can use Lemmas 5.8.2 to estimate the first term above. For the second term,

note that by the definition of ε5 in (5.8.8) and the properties of β(·, ·) in Lemma

5.8.3, if γ ≥ η′/2, then β(r − 2 − η′ + γ, γ) ≥ β(r, η/2) ≥ ε5. So if |U | = m ≤ ε5n,

we can use (i) of Lemma 5.8.4 to estimate the second term in the last display,

and have

P(|∂U | = (r − 2− η′)|U |, e(U,U c) = (r − 2− η′ + γ)|U |)

≤C5 exp

[
−
(

2 + η′ − γ
2

)
m log(n/m) + ∆1m

]
· exp(−γm log(n/m) + ∆2m).

As there are fewer than rm terms in the sum over γ and each term has the same

upper bound C5 exp(−(1+η′/2)m log(n/m)+(∆1 +∆2)m), noting thatm ≤ em/2

for m ≥ 0,

∑
γ∈[η′/2,2+η′]

P(|∂U | = (r − 2− η′)|U |, e(U,U c) = (r − 2− η′ + γ)|U |)

≤ rC5 exp

[
−
(

2 + η

2

)
m log(n/m) + (1/2 + ∆1 + ∆2)m

]
. (5.8.11)

For the summands in (5.8.10) with γ < η′/2, we can ignore one of the two events

and use Lemma 5.8.2 to have

∑
γ∈[0,η′/2)

P(|∂U | = (r − 2− η′)|U |, e(U,U c) = (r − 2− η′ + γ)|U |) (5.8.12)

≤ P(e(U,U c) ≤ (r − 2− η′/2)|U |) ≤ C5 exp

(
−2 + η′/2

2
m log(n/m) + ∆1m

)
.

Combining (5.8.11) and (5.8.13), noting that there are at most rm terms in the

sum over η′ below, and again using the inequality m ≤ em/2 for m ≥ 0,

P(|∂U | ≤ (r − 2− η)|U |) =
∑

η′∈[η,r−2]

P(|∂U | = (r − 2− η′)|U |)

≤
∑

η′∈[η,r−2]

(C5 + C5r) exp(−(1 + η′/4)m log(n/m) + (1/2 + ∆1 + ∆2)m)
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≤ rC5(1 + r) exp(−(1 + η/4)m log(n/m) + (1 + ∆1 + ∆2)m),

and we get the desired result with C7 = C5r(1 + r).



BIBLIOGRAPHY

[1] R. Albert and H.G. Othmer. The topology of the regulatory interactions

predicts the expression pattern of the segment polarity genes in drosophila

melanogaster. Journal of Theoretical Biology, 223(1):1–18, 2003.

[2] M. Aldana, S. Coppersmith, and L.P. Kadanoff. Boolean dynamics with

random couplings. Perspectives and Problems in Nonlinear Science, 93(4):23–

90, 2003.

[3] D.J. Aldous. When Knowing Early Matters: Gossip, Percolation and Nash

Equilibria.

[4] K.B. Athreya. Large deviation rates for branching processes–i. single type

case. The Annals of Applied Probability, 4(3):779–790, 1994.

[5] A.D. Barbour and G. Reinert. Small worlds. Random Structures & Algo-

rithms, 19(1):54–74, 2001.

[6] N. Berger, C. Borgs, J.T. Chayes, and A. Saberi. On the spread of viruses

on the internet. In Proceedings of the sixteenth annual ACM-SIAM symposium

on Discrete algorithms, page 310. Society for Industrial and Applied Mathe-

matics, 2005.

[7] N. Bergera, C. Borgsb, J.T. Chayesc, and A. Saberid. A weak local limit for

preferential attachment graphs. Preprint, 2009.

[8] B. Bollobás. Random graphs, volume Second Edition. Cambridge Univ Pr,

2001.

166



167

[9] S.A. Cannas, D.E. Marco, and M.A. Montemurro. Long range dispersal and

spatial pattern formation in biological invasions. Mathematical biosciences,

203(2):155–170, 2006.

[10] M. Chaves, R. Albert, and E.D. Sontag. Robustness and fragility of

boolean models for genetic regulatory networks. Journal of theoretical bi-

ology, 235(3):431–449, 2005.

[11] F. Chung and L. Lu. The average distances in random graphs with given

expected degrees. Proceedings of the National Academy of Sciences of the United

States of America, 99(25):15879–15882, 2002.

[12] F. Chung and L. Lu. The average distance in a random graph with given

expected degrees. Internet Mathematics, 1(1):91–113, 2004.

[13] C. Cooper and A. Frieze. A general model of web graphs. Random Struc-

tures & Algorithms, 22(3):311–335, 2003.

[14] J.T. Cox and R. Durrett. Some limit theorems for percolation processes with

necessary and sufficient conditions. The Annals of Probability, 9(4):583–603,

1981.

[15] B. Derrida and Y. Pomeau. Random networks of automata: a simple an-

nealed approximation. Europhys. lett, 1(2):45–49, 1986.

[16] R. Durrett. Random graph dynamics, volume 20. Cambridge Univ Pr, 2007.

[17] R. Durrett and R. Durrett. Probability: theory and examples. Cambridge Univ

Pr, 2005.



168

[18] R. Durrett and P. Jung. Two phase transitions for the contact process on

small worlds. Stochastic Processes and their Applications, 117(12):1910–1927,

2007.

[19] R. Durrett and X. Lin. The contact process on a finite set. The Annals of

Probability, 16(3):1158–1173, 1988.

[20] R. Durrett and C. Neuhauser. Particle systems and reaction-diffusion equa-

tions. The Annals of Probability, 22(1):289–333, 1994.

[21] R. Durrett and R.H. Schonmann. The contact process on a finite set. II. The

Annals of Probability, 16(4):1570–1583, 1988.

[22] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of

the internet topology. In ACM SIGCOMM Computer Communication Review,

volume 29, pages 251–262. ACM, 1999.

[23] JAN Filipe and MM Maule. Effects of dispersal mechanisms on

spatio-temporal development of epidemics. Journal of theoretical biology,

226(2):125–141, 2004.

[24] H. Flyvbjerg and NJ Kjr. Exact solution of kauffman’s model with connec-

tivity one. Journal of Physics A: Mathematical and General, 21(7):1695–1718,

1988.
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