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Abstract

Two generalizations of the Cline-Moler-Stewart-Wilkinson "LINPACK" con-
dition estimator are described. One generalization combines the LINPACK
notion of "look-ahead" with a new feature called "look-behind"” that
results in a more flexibly chosen right-hand side. The other generali-
zation is a "divide-and-conquer" scheme that involves estimating the
condition of certain principal submatrices whose dimension repeatedly
doubles. Both generalizations require the maximization of simple objec-
tive functions. When seeking an L, condition estimate, these functions
are convex while in the L, case they are quadratic. All the algorithms
considered appear to be at least as reliable as the LINPACK estimator
and are equally efficient.
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1. Background

Suppose the n-by-n nonsingular linear system Ax = b is solved using
a "stable"” matrix factorization method such as Gaussian elimination with
pértial pivoting. If t-digit, base b floating point arithmetic is used,

then it is generally the case that the relative error in the computed

. A o .
solution x satisfies
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Here, || x "p = (|x1|p +oaot Ixnlp)1/p and kp(A) is the p-norm condition

of A defined by
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Heuristic (1) implies that an estimate Qb to kp(A) can be useful when

assessing the quality of % .

Among other things, the attractiveness of a condition estimator
depends upon its reliability and how expensive it is to compute. With
respect to reliability, we adopt the convention that QP is a reliable

estimator if

(2) e ky(A) < K, < ey K (A)

P

for "reasonable" constants c, and c, that are independent of A.

Consider, for example, the estimator 22 = 3}/6; where
oy Y eeed % > 0 are the singular values of A computed by either the

LINPACK [2] or EISPACK [7] singular value decomposition (SVD) subrou-



tines. This estimate is provably reliable in that it can be rigorously
shown that the constants in (2) are each of the form 1 + O(b"t ).
Unfortunately, computing the SVD requires about 15 times as many flops
as Caussian elimination and so this is a rather expensive method for
assessing % . (A "flop" is floating point multiplicative operation.)
Condition estimators that require only O(n2) flops once we have com-
puted a "cheap" factorization such as PA = LU (via Gaussian elimination
with partial pivoting) or AP = QR (via Householder triangularization

with column pivoting) are therefore of interest.

Note that with such a factorization available we can readily com-

~
pute ||A||p Il Xl‘p & kp(A) where p = 1 or oo and % is the computed

"

solution to AX I. Although estimators of this type are provably
reliable, they are inefficient because they require O(n3) flops. The
challenge is thus to reliably estimate the condition in O(n2) flops

assuming that A has already been factored.

Forsythe and Moler [3] propose an interesting O(n2) estimator based

on iterative improvement and the assumption that ¥ has been computed

. _ . o t A A
via PA = LU . In particular, they set kOo b " zlloo/ “ X "ao where

z 1is computed by solving Iw = Pr and Uz = w where the residual r =
b - AX is calculated in double precision. Although this estimator is
efficient, its attractiveness is 1limited (a) because of portability
problems associated with the double precision calculation of r and (b)
because an extra n-by-n array is required. Its reliability is unproven

but it appears to be a successful estimation technique.

Karasalo [5] describes an efficient 2-norm condition estimator

that is based on properties of the triangular matrix R that is




computed via Householder triangularization with column pivoting. How-
ever, the estimator is not provably reliable to the extent that the con-
stant ¢, in (2) must be of order 4™ 7 .

]

2. The LINPACK Approach

Another approach to the condition estimation problem is taken by
Cline, Moler, Stewart, and Wilkinson [1] and is implemented in LINPACK.
It amounts to inverse iteration with a special technique for computing
the starting vector. The method assumes that A has been factored and
proceeds as follows:

Step 1. Choose d such that the solution to ATw =d is large in
norm relative to 4 .
Step 2. Solve Az = w .

Step 3. Set ﬁ1 = | Alh I = “1/" Wlh

Note that since | A "1 > |l z |1 /Nl w “1 we have

Iz, “
-1 : k1(A) = k £ k1(A)
A ﬂ1" W "1

Hence, from the standpoint of reliability, it is desirable that the quo-
tient || z ll1 /bW II1 be as close to | A II1 as possible. That Step !
encourages this can be seen via a brief 2-norm argument using the SVD.

Let
A=Udiag(cri)VT UTU=I,vTv=I,c1>--->,o-n>,o

be the SVD of A with U = [u, ,..., u ] and V = vy seens v ).t
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d = 151 aiv1
then
n a n a;
(3) w = 2 — u, and z = I ==V, .
i=1 03 1 i=1 62 1
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A calculation shows that
n
2 2
2 2 a,
(“ 2 "é) 3 %n i=1 *
Z
fw ug 21 4 H: ; (Eé> K
i=1\%/ 1
i.e.,
=l e, |
2 -1 _ n .
T, * A= I, cos(v,,d) , cos(v, ,d) = Tar,

Thus, it is desirable that cos(vn,d) be near unity. As (3) suggests,
striving for a large w in Step 1 tends to produce a vector d that has

a significant component in the direction of Vo

To motivate the LINPACK method for carrying out Step 1, assume that
T is an n-by-n lower triangular matrix and consider the problem of
choosing d such that the solution to Ty = d has a large norm. Note

that y is given by

P = O (k = 1,.0.,n)
For k= 1,...yn

vie = (9 - ) /by

p; = Pyt b,y (i = k+1,...,n)

Hence, it is desirable that dk be chosen so that both Yy and the run-
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ning sums Pi4qr»P, are as large as possible. Towards this end we can

set dk = a where ac¢ L4,+i} maximizes

n

?
(a) = {y ()l + =z w lp +t. ¥y ()l .
1’k k 1=k+1 i "7 ik'k
Here, yk(a) = (a- pk)/tkk and the w, are nonnegative weights. 1In

LINPACK, these weights are all set to 1. Another possibility mentioned

in [1] is to set wo =1/ g -

If A is square and PA = LU, then the LINPACK estimator determines
the vector d in Step 1 by applying the above scheme with T = UT.
Note that Steps 1-3 require O(n2) flops and so the method is efficient.
However, its success depends on an additional heuristic, namely, that by
striving for a large norm solution in UTy = d, we obtain a large norm
solution to ATw = d . Experimental evidence suggests that this is fre-

quently the case but we will comment more fully on the method's relia-

bility in Section 6.



3. Estimators with "Look Behind"

In this and the next section we assume that A = T is lower tri-
angular and we consider various alternatives to the LINPACK method for
producing a large norm solution to Ty = d. Our first alternative
incorporates the notion of "look behind" and we begin by developing a
2-norm condition estimator that has this feature. For the sake of clar-

ity, assume n=6 and that d1, d2, and d3 are known and satisfy

d12 + dg + dg =1 . Also assume that we have solved the system
ty 0 0 ¥y d,

(4) tyy bty O ||Y2f = |%2f ¢
ts  tso s3] (93] a5

and have computed the associated "look-ahead" values:

1 TS R I PRI
(5) Pg = 5yt by, * o tesYs
Pg = tg¥y * tg¥y * teaVse

We now determine c = cos(a) and s = sin(a) such that if

-t” 0 0 0 hy'1- s d1-
tyy  th, O o yé s d,
tsy typ tsz O ||V s 4

(a1 ta2 a3 P44 il L°

4 6
12 2 . . . " v .
then i_2;1(yi) + i-2-5(pi) is maximized where p; = Sp; * t;,¥, ,i=5,6.

e NS o, TSI, WY
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(The p; are the updates of the pi.) Notice that by revising the right
hand side in this fashion the solution of the "enlarged" system is

easily computed:

v, =sy; (i=1,2,3)

[
y4 (C - 5P4)/t44-

Also observe that in the course of doing these calculations

d d2, and d., are revised downwards by a factor of s and that the new

1, 3
right hand side has wnit 2-norm.

In general, at the k-th step when d, is calculated, we "look
behind" and consider the revision of d1”"dk-1 and we "look ahead" to

anticipate the effects on p,,4s--.sP,- Overall we have

Algorithm 1

P, = O (k =1,...,n)
For k=1,...,n
1. Determine ae[0,2l] such that if ¢ = cos (a), s = sin(a), and

yk(a) = (¢ - spk)/tkk then

k-1 n
2 2 2 2 )
¢ (a) = s 151 v, ot v (a)” + i=i+1 w, (sp; + tikyk(a))

is maximized where Wygeee, W are fixed nonnegative weights.
2. ¢ := cos(a); s := sin(a); d, = c; ¥y := (dk - spk)/tkk;

1,¢0,k=1)

d. := s d, (1

1,.0,k-1)

>
]
w
<

~~
o
]

p; = Sp; * ot (i = k+1,...,1)



The parameter a is easily determined. From the equation QL(a) = 0 we

obtain the relation

(6) beta ¥ ¢ * s = alfa * (02 _ g2 )
where
|
_ T T 2,2 2 T 2 7.2 '
beta = (yy + p DIty + (p - 1) + £ D) - 2p t,, P Dt
_ T 2 T 2 .
alfa-pk(1+tDt)-tkkat |
T _
t = (tk+1,k,coc,tn’k)
T _
p = (pk+1’ o o o vpn)

y = (Y1! L ’yk_1)

and

D = diag(w . e e LW ).

Wi+t ? n

The two possible sine-cosine pairs that satisfy (6) can be calculated as

follows:

r := beta/(2%alfa);

r + sqrt(1 + r2); s, 1/sqrt(1 + P?); cy

Ry

[}

0
-

h -]
N

r - sqrt(1 + r2);

2
py s, 1/sqrt(1 + pz); c, 1= 8, My

The pair that maximizes dk(a) can be determined via substitution.

Algorithm 1 requires approximately 5n2 flops and is readily seen to

produce the estimate

(7) (Ungvn’un) ¥ (&nvonvan)

S F LS 52

where o, is the n-th singular value of T and v, and un are the



associated right and left singular vectors. On the other hand, if a
is chosen at each stage so as to minimize ¢k(a), then an estimate of

the largest singular value and its singular vectors result:

~ A A A _ 1
(8) (0'1 ,v1,u1) = (0'1 7V1’u1) = ( '[mrz- y 4, 'l_g,z'ﬂ'; }

Of course, (7) and (8) combine to give ﬁz = 31/3' .

An L, "Jook behind" condition estimator can also be devised. To
illustrate, suppose n = 6, k = 3, and that equations (4) and (5) hold

with la,| + lda,) + |d3| = 1. We then seek Ae [0,1] such that if

%, 0 0 O-_y;- [ aa, ]
tyy toy O 0 y'2 _ A,
tsy txp tx3 O | |3 Mg
(bar tgo by tag 1 V2 LA
4 6 . ‘ ,
then 121 iyil + 135 lpi‘ is maximized where p; = Py + ti4y4 ,

i=5,6. Since the function to be maximized is convex, it suffices merely

to check its value at A = 0 and A = 1. In general we have:
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Algorithm 2

:=o (k= 1,...,1’1)

\J

Py
For k=1 ton

k-1 n
6. (N) =z ly.l + dy.D + 3 w lap-+t
k i=g 1 k i=ksy 11

is maximized where the w; are fixed nonnegative weights.

2. 4 =1 -); Yy = (dk - Apk)/tkk;
d; = Ad; (i=1,...,k-1)

(i=1,.¢..,k-1)

P; = APy * ot ¥y (i=k+1,...,n)

A
With y calculated in this fashion, we obtain the estimate k, =

1
Nz, 0yl

Note that the final right hand side d will be some column of the
identity which implies that y is a column of T—1. We also remark
that Algorithm 2 is considerably more efficient than Algorithm 1, espe-~

cially since the parameter XA is either zero or one.

* | 1. Determine A e{0,1} such that if ¥ (2 = [(1 - 2a) - Py ]/tkk then

ikYk

e T o VO KT T
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4. A Divide and Conquer Estimator

Suppose T11 e RP*P and T22 e R¥*? are lower triangular and that

we have determined Yys Yoo d1, and d2 S0

[}
-

Tyy ¥p = 4 a I,

T =d o, U, =1

237 %

Consider the problem of choosing c¢ = cos(a) and s = sin(a) such that if

., o7z c 4,
Tor Too| %2 s d,
then
) 2 2
b(a) = u Z1 " 2 + " 22 “2

is maximized. Define w by T22w = T21y1. A calculation shows that z,

= cyy and Z, = 8y, - CW and thus,
_ 2 2 i 2 T 2 2
(9) o(a) = Ty I + Uwiz] - 2seyyw + sShy, N5 -

By manipulating the equation ¢'(a) = O, we obtain the following formu-

lae for the sines and cosines:

T T T
beta := Yo¥p = Vq¥y - W W

alfa := ygw
r := beta/(2*alfa)

2
1/sqrt(1 + p1); c, = R8,

By =T sqrt(1 + r2); s,

2 2
p, :=7T- sqrt(1 + r°); Sy 1/sqrt(1 + pz); c,
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Again, the sine-cosine pair that maximizes ¢ can be determined by sub-

stitution.

3
This computation forms the heart of a divide-and-conquer algorithm

that can be used to produce a large normm solution to Ty = d. Consider
the case n=8. We begin by solving the eight 1-by-1 systems (tii)yi =
1 . These linear systems are then paired and combined in the above

fashion to produce four 2-by-2 systems that involve the matrices

t.. 0]
ii

t.. t..

J1i JJ
These systems are in turn paired and combined, all the while choosing
the sines and cosines to encourage growth. Finally, the two 4-by-4 sys-

tems are synthesized to render a final d (l| 4 ﬂ2 = 1) and y (hopefully

large in norm) such that Ty = d.

In the general case there are several ways to handle the pairing of
the systems in the event that the dimension of T is not an exact power
of 2 . Our approach is as follows. Suppose at some stage we have solved
k linear systems S1,...,Sk associated with k principal submatrices
that are ordered along the diagonal of T. Our task is to pair and com-
bine these linear systems togefher according to the scheme described
above. Write k = 2p + q where q is either zero or one. For i =
1y¢¢+,p we combine S2i—1 and S2i to produce S;. If q=0 then we move
on to the next stage with the systems S;,...,S;. Otherwise, q = 1 and
we combine S; with Sk to produce S; and proceed to the next stage with

‘ u

J
the systems S1,...,Sp_1, Sp’

ENEC RPN

PESERTEPUR Ve

G v i iy i

B L

o = ——

.
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We emerge from the overall procedure with an estimate of the form
(7). If ¢ is minimized at each step, then the estimate (8) for the

largest singular value results.

The divide and conquer scheme requires a few n2 flops and can obvi-

ously be adapted to render an L1 condition estimator.
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5. Test Results

The above condition estimators have been tested on numerous exam-

ples. In the L, case, we examined how well

E1 : Divide and Conquer

1/t

E2 : lLook-Behind (Algorithm 1) with weights A 13

L}
-
.

Look-Behind (Algorithm 1) with weights L

E3

could estimate the largest and smallest singular values of a given lower

triangular matrix T.

Test 1.

- The lower triangular elements of T were randomly selected from [—1,+1].
- 1000 examples were run; 100 each for n = 5,10,15,20,25,30,35,40,45,50 .
- The following table reports on the distribution of the "success"

measures q_ = O'n/a'n and q, = 3‘1/0‘1

E1 E2 E3
Greater |But Less
Than Than q, q q, 9 q, 9
.9 1.0 65.1% 1.1% 56.8% 1.0% 62.6% 1.7%
.8 .9 12.4% 2.4% 11.1% 1.2% 11.6% 1.8%
7 .8 6.1% 1.9% 7.9% 1.7% 6.8% 2.6%
.6 .7 4.7% 3.9% 4.8% 6.9% 3.5% 4.9%
.5 .6 4.0% 4.7% 4.2% | 20.5% 4.4% | 10.6%
.4 .5 2.9% 8.6% 4.7% | 43.5% 2.8% | 38.8%
3 4 2.1% | 20.2% 3.4% | 23.2% 3.2% | 38.3% |
.2 .3 1.2% | 36.4% 2.6% 1.7% 1.8% 1.8%
o .2 1.2 | 18.8% 3.2% A% 2.5% 0% |
.0 N .2% 2.0% 3.2% .0% .3% .0% ;

B i DEPIN

[ N N N T e
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Comments

Test 2

We discovered no correlation between the quality of the estimates

and either the dimension of the matrix or the condition of the matrix.
The choice of the LA in the Look-Behind schemes does not seem too
important.

We have no explanation why the estimates of oy are consistently
inferior to those for o,

In no instance was either qq OT q less than .05 .

T generated by computing the QR-with-column-pivoting factorization of a
square matrix A whose entries are randomly selected from [-1,+1]. More
precisely, the factorization AP = QT was computed where T is lower
triangular and P is chosen to maximize tkk (k=n,...,1) at each step.
(It is obviously desirable to have the small elements in the northwest

corner of T.)

- 1000 examples were run; 100 each for n=5,10,15,20,25,30,35,40,45,50.

- The following table reports on the distribution of q, = Gn/éh'

Greater But Less || E1 E2 E3
Than Than q, Q, q,
.9 1.0 97.5% 98.9% 97.4%
.8 .9 1.7% .5% 1.4%
.7 .8 1% 5% .9%
.6 : .7 .0% .0% 2%
.5 .6 1% A% 1%

.0 .5 .0 .0 .0




- 16 -

Comments

k

- By virtue of the column pivoting, tik %> 2 tij for all 1 £ j < k € n.
i=1 .

- The : ' estimates of o, were of the same quality as

in Test 1 and so were unnecessary to report.

- In the majority of cases, q > .99

We remark that in both of the above tests, iz = 31/3h was, in the vast
majority of cases, within a factor of 10 of k2(T). Note that if we per-
formed one step of inverse iteration, an even higher quality estimate

would result.

The L1 look-behind technique (Algorithm 2 with w, = 1) was also

tested and found to be comparably reliable:

Test 3.

- The lower triangular elements of T were randomly selected from [—1,+1].
- 250 examples were run, 5 each for n = 1,2,...,50 .

- The following table reports on the approximate distribution of ?1/k1(T)

Greater But Less ﬁ
1

Than Than k1 )
.50 | .99 6%
.10 .50 12%
.05 .10 4%

A ——— —— o
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6. Conclusions

It is important to ‘interpret the above experimental results
correctly. To begin with, they are just that--experimental results.
They do not "prove” anything. However, they do suggest that our methods
are at least as reliable as the LINPACK estimator which almost always
produces L1 estimates that are within a factor of 10 of the true condi-
tion. Should we therefore argue for the inclusion of one of our methods
in LINPACK, especially since Cline [8] has produced an example upon

which the LINPACK estimator fails?

This question focuses attention on the difficult problem of assess-
ing condition estimation algorithms. Should one's enthusiasm for a 99%
reliable method be diminished because of the existence of counter exam-
ples? If we believed this then we would not have presented the divide
and conquer technique because it is easy to construct examples upon
which it gives arbitrariliy poor estimates! (The counter-example matrix
is in fact the same 4-by-4 matrix that appears in [1].) No, we must not
at this time argue about whose condition estimator is "better." Instead,

we must work to produce an efficient provably reliable technique. We

are personally excited by our approaches because the experimental
results, particularly Test 2, suggest that some rigorous result may be
possible for the case when T is obtained via the QR factorization with

pi&oting.
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