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ABSTRACT

Many problems in geophysics, acoustics, elasticity theory, cancer treatment,

food process control and electrodynamics involve study of wave field synthesis in

some form or another. In the present work, the modeling of wave propagation phe-

nomena is studied as a static problem, using Finite Element Methods and treating

time as an additional spatial dimension. In particular wave field synthesis problems

are analyzed using discrete methods. It is shown that a fully finite element based

scheme is a very natural and effective method for the solution of such problems.

Distributed wave field synthesis in the context of two-dimensional problems is

outlined and incorporation of any geometric or material non-linearities is shown to

be straightforward. This has significant implications for problems in geophysics or

biological media where material inhomogeneities are quite prevalent. Numerical

results are presented for several problems referring to media with material inho-

mogeneities and predefined absorption profiles. The method can be extended to

three dimensional problems involving anisotropic medium properties in a relatively

straightforward manner.
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As a person becomes more spiritual, so much fewer rights does he have in this

life. His obligation is to be patient, to accept injustice and evil words from others.

A crooked stick (perverted person) who is distant from God has many rights: to

strike, to shout and to act unrighteously.

God keeps our rights for the other life. Because of ignorance however we often

seek our rights here. Let us not damage things at all. If they say anything to us,

immediately we give them the right and later we think we trust God. That is a

big joke. Human justice doesn’t mean anything to a spiritual person. However, it

is a great concern for the perverted person.

Monk Paisios

iv



ACKNOWLEDGEMENTS

The author would like to express his sincere thanks and acknowledge:

His advisor

Prof. Sergio D. Servetto

The members of his committee

Prof. Subrata Mukherjee

Prof. Leonard Gross

Prof. Rafaello D’Andrea

Prof. Nicholas Zabaras

and everyone who contributed to the completeness of this work.

v



TABLE OF CONTENTS

1 Introduction 1

2 Preliminaries and modeling 5
2.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Continuous form of the wave PDE at the element level . . . . . . . 7
2.3 Matrix form of the wave PDE . . . . . . . . . . . . . . . . . . . . . 8

3 Distributed Wave Field Synthesis - dWFS 9
3.1 Ideal distributed wave field synthesis problem . . . . . . . . . . . . 9
3.2 Distributed wave field synthesis problem with source constraints . . 12

4 Solution to the dWFS problem 17
4.1 Vector and matrix rearrangement . . . . . . . . . . . . . . . . . . . 17
4.2 Least square error method . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Variable weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Error quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Numerical Section 27
5.0.1 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Problem-1: Circular region . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Geometric effects: Different radii of the inner circular region 32
5.1.2 Variable weights . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Problem-2: Elliptical region . . . . . . . . . . . . . . . . . . . . . . 34
5.2.1 Inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Geometric effects: Scaling of inner elliptical region . . . . . . 37

5.3 Problem-3: Square region . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 Inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Geometric effects: Scaling of inner square region . . . . . . . 41
5.3.3 Variable attenuation coefficient . . . . . . . . . . . . . . . . 42

6 Concluding remarks 43

A Derivation of the matrix form of the wave PDE 44
A.0.4 Element approximations . . . . . . . . . . . . . . . . . . . . 48

B Linear interpolation error 57

References 64

vi



LIST OF TABLES

5.1 Circular region: Partition details . . . . . . . . . . . . . . . . . . 31
5.2 Circular region: Mean absolute error µ(|ε|) and its standard de-

viation σ(|ε|) in Ω, Ω1 and Ω2, as a function of the radius of the
inner circular region. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Circular region: Mean absolute error µ(|ε|) and its standard de-
viation σ(|ε|) in Ω, Ω1 and Ω2, as a function of the weight coefficient
w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Elliptical region: Partition details . . . . . . . . . . . . . . . . . 34
5.5 Elliptical region: Maximum absolute value of the original field

max(|Φ|), mean absolute error µ(|ε|) in the whole domain Ω and
maximum absolute value of the constrained source max(|F1|) in Ω1,
as a function of the propagation velocity in Ω2 (assuming constant
velocity in Ω1 c2

1 = 0.5) and vice versa. . . . . . . . . . . . . . . . . 36
5.6 Elliptical region: Mean absolute error µ(|ε|) and its standard

deviation σ(|ε|) in the domains Ω,Ω1 and Ω2 as a function of the
lengths of the minor and the major axis of the inner elliptical region. 37

5.7 Square region: Partition details . . . . . . . . . . . . . . . . . . . 39
5.8 Square region: Maximum absolute value of the original field

max(|Φ|), mean absolute error µ(|ε|) in the whole domain Ω and
maximum value of the constrained source max(|F1|) in Ω1, as a
function of the propagation velocity in Ω2 (assuming constant ve-
locity in Ω1 c2

1 = 0.5) and vice versa. . . . . . . . . . . . . . . . . . 40
5.9 Square region: Maximum absolute value of the distributed source

max(|F1|), mean absolute error µ(|ε|) and its standard deviation
σ(|ε|) in Ω, Ω1 and Ω2, as a function of the side length of the inner
square region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Square region: Maximum absolute value of the original field
max(|Φ|), mean absolute error µ(|ε|) in Ω, Ω1 and Ω2 and maximum
absolute value of the constrained source max(|F1|) as a function of
different attenuation coefficients of the medium α. . . . . . . . . . 42

B.1 Error components Enmp as a function of the sampling step a. . . . 63

vii



LIST OF FIGURES

3.1 Partitioned space time domain of 2 frames of 9 points each . . . . . 10
3.2 Continuous and partitioned elliptical 2D region . . . . . . . . . . . 14
3.3 Continuous and partitioned domain Ω . . . . . . . . . . . . . . . . 15

4.1 Initial arrangement of source and field vectors . . . . . . . . . . . . 18
4.2 Rearrangement of source vector . . . . . . . . . . . . . . . . . . . . 19
4.3 Matrix, vector and domain division . . . . . . . . . . . . . . . . . . 21
4.4 Linear interpolation of the field values at time instant at a specific

elemental domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Homogeneous circular region: (a) Snapshot of the sampled
wave field based on a finite difference scheme (b) Snapshot of the
source distribution estimated from the algorithm (c) Snapshot of
the reconstructed wave field by the constrained source (d) Snapshot
of the constrained source . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Circular region: Partition . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Circular region: Snapshot of the error distribution . . . . . . . . 31
5.4 Elliptical region: Partition . . . . . . . . . . . . . . . . . . . . . 34
5.5 Elliptical region: Snapshot of the error distribution . . . . . . . 35
5.6 Square region: Partition . . . . . . . . . . . . . . . . . . . . . . . 38
5.7 Square region: Snapshot of the error distribution . . . . . . . . . 39

A.1 Partition into 4 elements . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 Cubic elemental domain . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Region and domain cover . . . . . . . . . . . . . . . . . . . . . . . 57

viii



CHAPTER 1

INTRODUCTION

The area of wave field synthesis is a very broad one that has applications in

various diverse fields like geophysics [3], indoor acoustics [1, 2, 4, 5], elasticity

theory [6],[7], cancer treatment [8], food process control [9] and elastodynamics

[10].

One form of cancer treatment is by Interstitial thermal therapy. This refers

to the use of various heat generating sources to be injected into the body and

selectively raise the temperature of a local tissue region. This offers the promise

of becoming an alternative to surgery, radiation therapy and chemotherapy for the

treatment of certain localized malignancies like cancer. The treatment protocol

involves placing needle-based energy sources directly in the tumor and increasing

the tissue temperature to cause cell death. The energy sources available for in-

terstitial thermal therapy include radio frequency electrodes, microwave antennas,

ultrasound transducers and laser fiber optics. Of these, the largest technological

and clinical experience has been with radio frequencies and microwave applicators.

Using these techniques one can cure tumors up to approximately 3cm in diameter

[11]. Microwave antennas launch electromagnetic waves in the frequency range

of 300 MHz to 2450 MHz in the surrounding tissue. The waves propagate and

interact with each other causing small currents to flow locally as they propagate.

These local currents produce heating of the tissue due to resistance of tissue and

increase the local temperature which depends on the intensity of the wave.

The volume of tissue that can be heated with a single thin antenna is usu-

ally small, and therefore, arrays of several antennas with precisely controlled field

generation are required to destroy an entire tumor. However, placement of these

1
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antennas with accurate field evolution is essential to produce the desired effects

and wave field synthesis provides a way of analyzing this problem. Currently, for-

ward analysis with the two-dimensional finite element/finite difference method is

widely used to solve the wave propagation problem. This forward analysis method

derives the temperature distribution for a given electrode configuration by solving

the wave equation and then the bio-heat transfer equation. This analysis requires

the modification of the electrode configuration by trial and error to reach an opti-

mum configuration for better temperature distribution. This type of analysis does

not give the optimal heating condition directly. Wave field synthesis provides a

convenient way to overcome the above mentioned difficulty. The present work is

related with the field synthesis and hence addresses a part of this problem.

Acoustic wave field analysis or simply wave field analysis (WFA) refers to the

recording of sound fields in enclosures with arrays of microphones and to the pro-

cessing of the recorded data. Acoustic wave field synthesis or simply wave field

synthesis (WFS) refers to the generation of sound fields with desired or prescribed

temporal and spatial properties. The idea of wave field synthesis has been in

existence for many years, and is often credited to have been first introduced by

Berhkout in 1988. A good introductory review of this literature can be found in

[21] and [23, 24].

In traditional applications of sound enhancement or reproduction, individual

(or groups) of loudspeakers are used to generate a replica of the desired sound

pattern. Use of high-quality systems in appropriate manner will help in genera-

tion of required temporal properties of sound, however the spatial properties are

determined by the interference patterns and often the spatial signal is correct only

within a very limited listener area. As an example, consider the use of two loud
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speakers to enhance the signal of a primary point source behind them. Most lis-

teners perceive the signal of the loudspeakers earlier than the primary signal which

leads to mislocalization, since the first arriving sound wave determines the direc-

tion from which the sound is heard. Another drawback of the traditional approach

of sound reproduction, is that the sound field is measured first, at a few chosen

”representative” positions, assuming that the acoustic parameters (sound speed,

attenuation) are valid for some (usually) large region around these points. This,

however, is not a reliable approach as it does not include the spatial and temporal

inhomogeneities of the acoustic medium.

In the current state of the art, these problems are overcome with the use of

array technology involving the use of arrays of microphones and micro-speakers.

These are placed at suitable positions either on the boundary or within an enclosed

volume. Then techniques based on the wave field synthesis (WFS) and the wave

field analysis (WFA) involving a significant amount of experimentation and hence

considerable cost, are used. In the present work a numerical technique to carry

out the procedure of wave field synthesis in a smart way, is described.

A short description of the wave field synthesis problem is as follows. Given

a complete description in space and time of a scalar wave field Φ(x, y, z, t) inside

a spatial region S, specify a source function F (x, y, z, t), distributed at specific

points in this region, which creates a field as similar as possible to the previous

field. In the present work we investigate the effectiveness of finite element method

applied to wave field synthesis problems that are two dimensional.

The thesis is organized as follows. First, preliminary definitions are postulated.

Then a 2-D wave field model both in continuous and in matrix form is described.

Based on this model a formal definition of a distributed wave field synthesis prob-
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lem is presented together with a numerical solution technique. The thesis concludes

with several examples of wave field synthesis applied in various simple domains.

The effect of domain partition and the induced error is studied in detail as well.



CHAPTER 2

PRELIMINARIES AND MODELING

2.1 Preliminary definitions

Consider wave propagation inside a 2 dimensional, inhomogeneous medium (spatial

region S with boundary ∂S) with geometrical characteristics defined by a subset

S ⊂ R2 and properties (modulus of elasticity k, density ρ and absorption coeffi-

cient a) which are functions of both space and time [23],[21]. Additionally consider

[0, T ] to be the time interval of interest.

Under the above assumptions we can make the following definitions:

Definition 1: Continuous space-time domain as the following cartesian product:

Ω = S × [0, T ].

Definition 2: Cubic space-time elemental domain or sub-domain ∆Ω(n) having

as origin the point (xn, yn, tn) and sides ∆X, ∆Y and ∆T as the following set:

∆Ω(n) = [xn, xn + ∆X]× [yn, yn + ∆Y ]× [tn, tn + ∆T ] (2.1)

5
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Definition 3: Square space-time surfaces are boundary surfaces of the elemental

domain ∆Ω(n) defined as:

∆S
(n)
−x = {xn} × [yn, yn + ∆Y ]× [tn, tn + ∆T ]

∆S
(n)
+x = {xn + ∆X} × [yn, yn + ∆Y ]× [tn, tn + ∆T ]

∆S
(n)
−y = [xn, xn + ∆X]× {yn} × [tn, tn + ∆T ]

∆S
(n)
+y = [xn, xn + ∆X]× {yn + ∆Y } × [tn, tn + ∆T ]

∆S
(n)
−t = [xn, xn + ∆X]× [yn, yn + ∆Y ]× {tn}

∆S
(n)
+t = [xn, xn + ∆X]× [yn, yn + ∆Y ]× {tn + ∆T}

(2.2)

Definition 4: Partition of the space time domain Ω into N space-time elemental

domains ∆Ω
(n)
n=1,...,N is defined as the union of N disjoint space-time elemental

domains
⋃N

n=1 ∆Ω(n) satisfying the following properties:

1. Ω ⊂ ⋃N
n=1 ∆Ω(n)

2. No elemental domain ∆Ω(m) with origin the point (xm, ym, tm) can be con-

tained in the remaining set
⋃N

n=1 ∆Ω(n)−Ω. In other words 6 ∃(xm, ym, tm) ∈
⋃N

n=1 ∆Ω(n) − Ω : ∆Ω(m) ⊆ (
⋃N

n=1 ∆Ω(n) − Ω)

3. If the intersection between any two elemental domains from the set

{∆Ω(n)}n=1,...,N is not empty then this intersection is one of the space-time

surfaces defined in definition 3 which belongs to both of the elemental do-

mains.
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Definition 5: Orthogonal grid of points ΩG given a partition
⋃N

n=1 ∆Ω(n) de-

fined in 4 is a set of G global space-time points ΩG = {(xg, yg, tg)g=1,...,G ∈ Ω}
that are defined by the apexes of the elemental domains {∆Ω(n)}n=1,...,N , namely:

{xn, xn + ∆X, yn, yn + ∆Y, tn, tn + ∆T}n=1,...,N

Definition 6: Boundary sets of surfaces N±x, N±y, N±t of a partition

⋃N
n=1 ∆Ω(n) of a domain Ω are surfaces of the elemental domains ∆Ω(n) defined in

3 which satisfy:

N±x = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±x 6= ∆S

(m)
±x }

N±y = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±y 6= ∆S

(m)
±y }

N±t = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±t 6= ∆S

(m)
±t }

(2.3)

2.2 Continuous form of the wave PDE at the element level

Based on the above definitions, and considering an acceptable degree of approxi-

mation, at every space-time point (x, y, t) ∈ ∆Ω(n) the properties of the medium

can be assumed to be constant. More precisely, in acoustics and in mechanics gen-

erally, the modulus of elasticity k(x, y, t), the density ρ(x, y, t) and the absorption

coefficient a(x, y, t), may satisfy:

∀(x, y, t) ∈ ∆Ω(n) : k(x, y, t) ≈ kn, ρ(x, y, t) ≈ ρn, α(x, y, t) ≈ αn (2.4)
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Therefore inside such a domain the 2 dimensional wave partial differential equation

that relates the wave field function Φ(x, y, t) with the source function F (x, y, t),

can be assumed to be satisfied, namely:

kn[Φxx+Φyy]−ρnΦtt−anΦt = −F with Φxx =
∂2Φ

∂2x
Φyy =

∂2Φ

∂2y
Φtt =

∂2Φ

∂2t

(2.5)

The form in (2.5) is the continuous form of the wave equation which is satisfied

at the points of the elemental domain ∆Ω(n). However in the next sections we

make use of a matrix form of the same equation for the points of the orthogonal

grid ΩG. The derivation of this matrix form is presented in Appendix A.

2.3 Matrix form of the wave PDE

Given an orthogonal grid of G space-time points defined in definition 5 and fol-

lowing the procedure described in Appendix A, a linear system that governs the

relationship between the values of a wave field Φ at these space-time points (con-

tained a vector {Φ(G)}) and the values of a source function generating the previous

field at these points (contained in the vector {F (G)}) can be obtained. This system

is call the matrix form of the Wave PDE and can be expressed by:

[KG×G]{Φ(G)}+ {F (G)} = 0 (2.6)

Based on the previous linear system, a formal definition of a distributed wave field

synthesis problem is postulated and a numerical solution technique is described.



CHAPTER 3

DISTRIBUTED WAVE FIELD SYNTHESIS - DWFS

Wave field synthesis problems or WFS are problems that refer to the synthesis

of certain known field functions Φ(x, y, t) in a specific space-time domain Ω by

means of a source function F (x, y, t) that has to be specified. For more details

on these problems refer to [1, 2]. Such problems appear also as inverse wave

field problems [26], as opposed to direct wave field problems in which the field

is the unknown parameter and not the source function. A distributed wave field

synthesis problem, or dWFS [27], is a problem in which both the field and the

source functions are described only in at finite set of points ΩG, as opposed to the

classical WFS problems where both functions were described at the whole domain

Ω. Usually in dWFS problems the values of both the source and the field function

at the points of Ω that are not grid points are derived using linear interpolation

based on the values of these functions at the grid points. There are two versions

of dWFS problems, the ideal and the constrained version. Both of them will be

analyzed next.

3.1 Ideal distributed wave field synthesis problem

Generally, a wave field synthesis problem or an inverse wave problem can be for-

mulated as follows. Given a medium, geometrically defined by a set S ⊂ R2 with

boundaries ∂S which has properties (density ρ, modulus of elasticity k and ab-

sorption coefficient α), a time interval [0, T ] and assuming a time evolving scalar

field Φ(x, y, t) satisfying the equation:

k[Φxx + Φyy]− ρΦtt − aΦt = −F, ∀(x, y) ∈ S ∀t ∈ T (3.1)

9
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specify the source function F (x, y, t) that produces the field distribution Φ(x, y, t).

An important observation that can be derived from the above formulation is

that the resulting source function will not necessarily have to reside in one specific

region or act at specific time intervals, hence can be distributed in both space

and time. These ideas lead us to define a new family of WFS problems called

distributed WFS problems or dWFS.

Compared with the classical WFS problems, dWFS refer to partitioned domains

ΩG (according to definition 5) defined by space time points, ωg = (xg, yg, tg). These

triplets are apexes of elemental cubes. Therefore as an introductory example, lets

consider a simple case of a medium where 18 space time points are defined (9 space

points for each of the two time frames) as displayed in figure 3.1.

1 2 3

4
5 6

7 8
9

10

11
12

13
14

15

16
17 18

FRAME 1
(t=0)

FRAME 2

(t= T)D

(0,0,0)

(0, Y,0)D

( X,0,0)D (2 X,0,0)D

(0,0, )DT

(0,2 Y,0)D

Figure 3.1: Partitioned space time domain of 2 frames of 9 points each

Given the above partition and based on the mathematical derivations in Ap-

pendix A a linear relation between the values of the field Φ and the values of the
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source F at the above space time points can be obtained:

[K
(G)
18×18]{Φ(G)

18×1}+ {F (G)
18×1} = 0, (3.2)

where {Φ(G)
18×1} is a 18x1 vector containing in the first 9 entries the field values

at the space-time points of the first frame and in the next 10-18 entries the field

values at the space-time points of the second frame. In the same manner the vector

{F (G)
18×1} contains the respective source values at the same space-time points.

In a more general context and considering a finer partition for the same domain,

the number of space time points is much larger. Assuming F frames and P space

points at each frame we will have a set {1, ..., G} of G = FP space-time points.

Therefore, generally a G×G system expressing the coupling between the field and

source values at these G space-time points can be written as:

[K
(G)
G×G]{Φ(G)

G×1}+ {F (G)
G×1} = 0 (3.3)

Based on this formulation and the knowledge of field values at these specific

points, it makes sense to evaluate the source function at the same points, by solving

directly the system for the vector {F (G)
G×1}.

{F (G)
G×1} = −[K

(G)
G×G]{Φ(G)

G×1} (3.4)

In this case the {F (G)
G×1} vector contains the values of the required source sig-

nals that must be applied at the G space-time points. In other words this direct

solution describes the amplitudes at specific locations and time instances of the

source function F that produces the field values contained in {Φ(G)
G×1}.
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However very often, a source residing at specific locations and acting at time

intervals specified by the direct solution (3.4), is not physically realizable. For

example in ultrasound cancer treatment, placing sources inside the patient’s body

is impossible.

Therefore we have to impose certain constraints referring to where and when

the source should act. Consequently, a different problem referring to the spatial

and temporal constraints of the source function is formulated. This problem is

analyzed in the next section.

3.2 Distributed wave field synthesis problem with source

constraints

A distributed wave field synthesis problem with source constraints is essentially

a dWFS problem with additional spatial and temporal constraints in the source

function F (x, y, t). We can view these constraints as regions of the space-time

orthogonal grid ΩG where the function is allowed to take non zero values. Equiv-

alently, these constraints can be described by a null set or a subset of ΩG where

the function F is forced to be zero. More precisely:
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Definition 7: Null set ΩF of a constrained source function F (x, y, t) is a subset

of the orthogonal grid of points ΩG, defined in definition 5, satisfying:

ΩF = {(xg, yg, tg) ∈ ΩG : F (xg, yg, tg) = 0} (3.5)

Having defined the null set of a source function we can postulate the definition of

dWFS problem as follows:

Given:

[1] An isotropic spatial medium geometrically defined by a set S ⊂ R2 with

boundaries ∂S which has certain properties (density ρ(x, y, t), modulus of

elasticity k(x, y, t) and absorption coefficient a(x, y, t)) and a time interval

[0, T ] which together with S define a domain Ω = S × [0, T ].

[2] An orthogonal grid of points ΩG that defines a partition of the domain Ω

according to definition 5.

[3] A partition of ΩG into two disjoint subsets Ω1 and Ω2

(ΩG = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅).

[4] The information of a time evolving scalar field Φ(x, y, t) at the space-time

points of ΩG as values {Φ(xg, yg, tg) : (xg, yg, tg) ∈ ΩG} which are contained

in a vector {Φ(G)} .
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Specify:

The values of a constrained source function Fc with null set ΩFc = Ω2, as a vector

{F (G)
c } such that the following quantity is minimized

||{Φ(G)} − {Φ(G)
c }||2 = min (3.6)

subject to the matrix form of the wave PDE, which relates the values of this source

{F (G)
c } to the values of the field it creates {Φ(G)

c }:

[K
(G)
G×G]{Φ(G)

c }+ {F (G)
c } = 0 (3.7)

The notation ||.||2 is used to represent the second norm of a vector, or the square

root of the sum of the squares of its entries.

It is easy to comprehend the previous formulation through an example. Con-

sider a two dimensional elliptical region S consisting of two subregions S1 and S2.

The continuous and the partitioned versions of these regions are displayed in figure

3.2. Also assume that S = S1 ∪ S2 and S1 ∩ S2 = ∅.

Figure 3.2: Continuous and partitioned elliptical 2D region
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Now consider the same divided 2D space region S as it “evolves” during a

specific time interval [0, T ] , T > 0. In other words consider the space-time points

(x, y, t) where (x, y) ∈ S and t ∈ [0, T ]. The created space-time domain Ω =

S × [0, T ] will obtain a cylindrical like shape as figure 3.3 depicts. Following also

the partition of the region S into S1 and S2 and assuming that the boundary

between the regions S1 and S2 does not change with time, the domain Ω can be

partitioned into two sub-domains Ω1 = S1× [0, T ] and Ω2 = S2× [0, T ] as in figure

3.3.

Figure 3.3: Continuous and partitioned domain Ω

An example of such a configuration might be a cross section of a human body

having a tumor in the region S2 and the only feasible locations to place microwave

sources are points in region S1. Therefore by letting the sources reside only in S1

and act at every time instance in [0, T ], is equivalent with forcing the null set of

the constrained source function {Fc} to be the sub-domain Ω2 = S2 × [0, T ].

In order to pass from a continuous domain to a partitioned domain, space time

elemental domains described in definition 2 must be used. A time step or a “side”
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in the time axis of these elemental domains ∆T must be chosen. If the time step is

the same for all the elemental domains then it must be equal to ∆T = T
F−1

where F

is the total number of frames tf , f = 1, ..., F , including the first one. The partition

in space remains the same as presented in figure 3.2. By the apexes of the resulting

elemental domains a grid of G space time points is defined following definition 5.

Then both the source and the field functions are described as vectors, containing

their values at the space-time points defined by the previous grid, namely:

{Φ(G)} = {Φ(xg, yg, tg)}g=1,...,G {F (G)} = {F (xg, yg, tg)}g=1,...,G (3.8)

For the configuration of this example a constrained dWFS problem might de-

scribed as follows. Given a destructive for the tumor field {Φ(G)} (having big

values in Ω2) specify a constrained source {F (G)
c } with null set the grid of points

that belong to Ω2, such that the error between the field it creates {Φ(G)
c } and the

original field {Φ(G)} (||{Φ(G)
c } − {Φ(G)}||2) is minimized.



CHAPTER 4

SOLUTION TO THE DWFS PROBLEM

4.1 Vector and matrix rearrangement

In order to solve a dWFS problem a partition of the space-time domain Ω must

be done, which will create a grid of finite points according to definition 5. Then

a division of the resulting finite set of the grid points into two subsets Ω1 and Ω2

must be applied. An example of such partition and division of an orthogonal grid

is displayed in figure 3.3.

According to this division and based on the results of Appendix A, the entries

of the vectors {Φ(G)} and {F (G)} and the matrix [KG×G] of equation 2.6 can be

separated as follows.

If the base points of region S (points of the first frame in figure 3.2) are P then

the first P entries of the vectors {Φ} and {F} will refer to the first P values of the

field and the source function at the first frame. The next P to the second frame

etc. Now lets assume that B of the P base points refer to the boundary of the base

and I are the inner points of the base (or the non boundary points) as figure 3.2

displays. Then clearly P = B + I.

If now region S1 has I1 inner points and region S2, I2 then the sum of the

inner points of the two regions must be equal to the total inner points of the base,

namely I1 + I2 = I. Therefore for the base points of the first frame it must be:

I1 + I2 + B = P . By applying appropriate labeling in the points of the first frame,

the first I1 inner points of the first frame which also are inner points of the first

region S1 will refer to the first I1 entries of the vectors {Φ} and {F}. Following

the same idea the next I2 inner points of the first frame which are also the inner

17
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points of the second region will refer to the next I2 entries of the vectors {Φ} and

{F}. Finally the remaining B boundary points of the first frame will refer to the

next B entries of the vectors {Φ} and {F}. Following this method the remaining

entries of the vectors {Φ} and {F} will be associated with the respective points of

the second, third,...,F frame. Figure 4.1 refers to such arrangement.

f1

fI1

fP -I -I1 2

…

…

fI +11

Frame 1
Inner Points of
Region 1

Frame 1
Inner Points of
Region 2

fP+1

fP+I1

…

Frame 2
Inner Points of
Region 1

{ }F

fP -I -I +11 2
…

fP

Frame 1
Boundary Points

f1

fI1

fP -I -I1 2

…

…

fI +11

Frame 1
Inner Points of
Region 1

Frame 1
Inner Points of
Region 2

fP+1

fP+I1

…

Frame 2
Inner Points of
Region 1

{F}

fP -I -I +11 2
…

fP

… …

Frame 1
Boundary Points

`

Figure 4.1: Initial arrangement of source and field vectors

Then if the entries in the two previous vectors are rearranged in a way that

the first FI1 entries refer to region S1 for all the frames and the next FI2 refer

to S2 for all the frames and the last FB refer to the boundary points for all the

frames, then the source vector {F} = {f1, ..., fG}, G = FP will obtain a form

that is displayed in figure 4.2 (The rearrangement for the field vector {Φ} follows

the same pattern):

The new form of system (2.6) after the rearrangement of the vectors {Φ(G)}
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Before
Rearrangement

f1

fI1

…

Frame 1
Region 1

f(F-1)I +11

…

Frame f
Region 1

F1

…

…

Frame 1
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fFI +I1 2

…

Frame f
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f(F-1)I+1

fFI

…
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I=I +1 I2

f1

fI1

fP -I -I1 2

…

…

fI +11
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Inner Points of
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Inner Points of
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fP+1

fP+I1

…

Frame 2
Inner Points
of Region 1

fP -I -I +11 2
…

fP

…

Frame 1
Boundary Points

fFI+1

…

fFP

P=B+I +I1 2

FB

Total
Boundary
Points

Figure 4.2: Rearrangement of source vector

and {F (G)} will include also rearrangement of rows and columns of the [KG×G]

matrix:




K11 K12 K1B

K21 K22 K2B

KB1 KB2 KBB








Φ1

Φ2

ΦB





+





F1

F2

FB





= 0 (4.1)

The sub matrices K11 and K22 refer to the inner points of the sub-domains Ω1

and Ω2 and they have dimensions I1F × I1F and I2F × I2F respectively, while
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the sub-matrices K12 and K21 refer to the boundary between the previous two

sub-domains and have dimensions I1F ×I2F and I2F ×I1F respectively. The sub-

matrix KBB refers to the boundary points and has dimension BF ×BF . Finally,

the sub-matrices K1B, K2B , KB1 and KB2 have dimensions I1F ×BF , I2F ×BF ,

BF ×I1F and BF ×I2F respectively. The association between this matrix, vector

division and the domain division is displayed in figure 4.3.

Part of the previous system that refers to the inner points of the domain Ω can

be written as:




K11 K12

K21 K22








Φ1

Φ2





+





F1 + [K1B]{ΦB}
F2 + [K2B]{ΦB}





= 0 (4.2)

The part that is left refers to the boundary points and can be written as:

[KB1]{Φ1}+ [KB2]{Φ2}+ [KBB]{ΦB}+ {FB} = 0 (4.3)

System 4.2 refers to the inner points of the sub-domains Ω1 and Ω2 since we exclude

all the boundary points.

The main reasons why the boundary points are excluded are the following:

• The matrices [K11] and [K22] are non-singular and therefore good for any

matrix operations.

• Many problems refer to synthesis of wave fields in a region that doesn’t have

any boundary points and therefore the values of the field at these points are

not very important.

Equations like (4.2) can be written also for the constrained source Fc and the

field it creates Φc given that the constrained source at the inner points of the
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{ }-{F Fc2}

{F },{F }c2 2

[K ]11

[K  ]22

[K ],[K ]12 21

{ }-{F Fc1}

{F },{F }c1 1

Inner Points of W1

Inner Points

of W2

Figure 4.3: Matrix, vector and domain division

domain Ω2 is zero (equivalently Fc2 = 0). Therefore:




K11 K12

K21 K22








Φc1

Φc2





+





Fc1 + [K1B]{ΦcB}
0 + [K2B]{ΦcB}





= 0 (4.4)

with boundary equation:

[KB1]{Φc1}+ [KB2]{Φc2}+ [KBB]{ΦcB}+ {FcB} = 0 (4.5)

Taking the difference of the systems (4.2) and (4.4) yields:




K11 K12

K21 K22








Φ1 − Φc1

Φ2 − Φc2





+





F1 − Fc1 + [K1B]{ΦB − ΦcB}
F2 + [K2B]{ΦB − ΦcB}





= 0

or
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[K11]{Φ1 − Φc1}+ [K12]{Φ2 − Φc2} = {Fc1} − {F1} − [K1B]{ΦB − ΦcB}

[K21]{Φ1 − Φc1}+ [K22]{Φ2 − Φc2} = −{F2} − [K2B]{ΦB − ΦcB} (4.6)

For the boundary points:

[KB1]{Φ1 − Φc1}+ [KB2]{Φ2 − Φc2}+ [KBB]{ΦB − ΦcB} = {FcB} − {FB} (4.7)

4.2 Least square error method

Now in order to solve the previous system for the constrained source vector {Fc1}
the following optimization technique can be applied:

Step 1. We define the error vectors {e1}, {e2} and {eB}, between the field vector

{Φ} and the constrained field vector {Φc} at the inner points of the sub-domains

Ω1 and Ω2 and at the boundary points, respectively as:

{e1} = {Φ1} − {Φc1} {e2} = {Φ2} − {Φc2} {eB} = {ΦB} − {ΦcB} (4.8)

Based on this, the total square error in the inner space-time points of the whole

domain Ω can be defined as:

E = {e1}T{e1}+ {e2}T{e2}

E = [{Φ1} − {Φc1}]T [{Φ1} − {Φc1}] + [{Φ2} − {Φc2}]T [{Φ2} − {Φc2}]

(4.9)
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Step 2. After the definitions of the error vectors the system (4.6) becomes:

[K11]{e1}+ [K12]{e2} = {Fc1} − {F1} − [K1B]{eB}

[K21]{e1}+ [K22]{e2} = −{F2} − [K1B]{eB}

(4.10)

Now since we have the freedom of choosing the values of the constrain source at

the boundaries ({FcB}) we can force the boundary error vector to take zero values

({eB} = 0). Then utilizing (4.7) we can calculate the required constrained source

values at the boundary:

{FcB} = [KB1]{e1}+ [KB2]{e2}+ {FB} (4.11)

After setting {eB} = 0 and solving system (4.10) for the vectors {e1} and {e2} will

yield:

{e1} = [A]{Fc2}+ {b}

{e2} = [C]{Fc2}+ {d}

[A] = [[K11]− [K12][K22]
−1[K21]]

−1 {b} = [A][[K12][K22]
−1{F2} − {F1}]

[C] = −[K22]
−1[K21][A] {d} = −[K22]

−1[{F2}+ [K21]{b}]

(4.12)

Step 3 Now utilizing (4.12)) and (4.9) we are able to express E as a function of

the vector {Fc2}:
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E = {Fc2}T [H]{Fc2}+ {Fc2}T{L}+ {L}T{Fc2}+ m

[H] = [A]T [A] + [C]T [C]

{L} = [A]T{b}+ [C]T{d} (4.13)

Since the expression for E is convex with respect to {Fc2} and since we want to

minimize it, a straightforward approach is to look for {Fc2}∗ such that:

∂E

∂{Fc2}
∣∣
{Fc2}={Fc2}∗ = 0 (4.14)

After forcing the above derivative to be zero we calculate:

{Fc2}∗ = −[H]−1{L} = −[[A]T [A] + [C]T [C]]−1[[A]T{b}+ [C]T{d}] (4.15)

4.3 Variable weights

In the previous approach a minimization of the sum of the square error E at each

inner space-time point was attempted. However, in some applications we can allow

to have bigger errors at some space-time nodes while at others we want to be more

accurate or have less error. Therefore instead of trying to minimize a simple error

sum given by (4.9) we can minimize a weighted error expression given by:

E ′ = {e′1}T{e′1}+ {e′2}T{e′2} {e′1} = {w1}T{e1} {e′2} = {w2}T{e2} (4.16)

It is very easy to show that the analysis remains the same by replacing the matrices
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[A], [C] and the vectors {b}, {d} with:

[A′] = {w1}[A] [C ′] = {w2}[C] {b′} = {w1}T{b} {d′} = {w2}T{d} (4.17)

where {w1} are {w2} weighting vectors satisfying:

|w1|∑
i=1

w1(i) +

|w2|∑
i=1

w2(i) = |w1|+ |w2| wk(i) ≥ 0 k = 1, 2 i = 1, ..., |wk| (4.18)

Therefore, the solution for the constrained source vector will be given by:

{Fc2}∗ = −[H ′]−1{L′} = −[[A′]T [A′] + [C ′]T [C ′]]−1[[A′]T{b′}+ [C ′]T{d′}] (4.19)

4.4 Error quantification

From the above analysis we can clearly express the relationship between source

function values and the field values at specific space-time nodal points. Further-

more, a linear interpolation for both source function and field function must be

used in order find out the values of these functions at any other space-time points

apart from the grid space-time points. These interpolations, introduce error which

cannot be avoided since we have not complete knowledge of the field and the source

function at any given space-time point. For one time instant and for a square ele-

mental domain with “space” sides ∆X = ∆Y = α, the interpolation is illustrated

by figure 4.4.

As we see the error is introduced by the difference between the curved surface

created by the values of the scalar field and the plane surfaces passing through the

points (xg, yg) defined by the heights φg. These heights are equal to the values of the
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Figure 4.4: Linear interpolation of the field values at time instant at a specific

elemental domain

field at the points (xg, yg). Assuming that the scalar field function Φ is continuous

with respect to x and y and by choosing the sides of the square elemental domains

small enough we can argue that the previously described error can be diminished.

A complete analysis of this error as a function of the spectrum of a continuous

field function Φ can be found in Appendix B.



CHAPTER 5

NUMERICAL SECTION

5.0.1 Code validation

Conceptually. all the examples considered in this chapter refer to 2D regions S like

the ones displayed in figure 3.2 which are divided in two subregions S1 and S2. The

various geometries of the regions that were analyzed are that of a circle, an ellipse

and a square. Both homogeneous and non-homogeneous media are studied. For all

these problems the domain of interest Ω is governed by the geometry of the region

S and by a time interval [0, T ]. This domain is partitioned using linear 3D cubic

finite elements. Therefore a finite set of space-time points is defined. A central

sinusoidal signal is applied at the center of the two dimensional partitioned region

S with period 15 time units. The field evolution is solved via a finite difference

scheme. The resulting field is sampled both in space and time at the space-time

points defined by the apexes of the cubic domains and the samples are used as

inputs to the model illustrated in the previous sections.

Lets consider a circular two dimensional region. A snapshot of a field gener-

ated by a central sinusoidal signal and calculated using a finite difference numerical

scheme, is displayed in figure 5.1(a). By collecting all the sampled field values gen-

erated by this finite difference scheme in a vector {Φ} and solving directly equation

2.6 for {F}, the source producing the sampled field is reconstructed. A snapshot

of this ”revealed” source is displayed in figure. 5.1(b). Since the characteristics of

this ”revealed” source mach with the characteristics of the initially imposed cen-

tral sinusoidal source, a first indication of the validity of the algorithm is obtained.

This source which produces the sampled field is called direct source.

27
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The next step is to divide the domain Ω into two sub-domains. One that will be

the support of the distributed source function (Ω1) and another that will be the null

set of the distributed source function (Ω2) and in which the desired sampled field

must be synthesized accurately. The values of the distributed constrained source

function {Fc1} are specified utilizing the aforementioned least squares optimization

technique. This distributed constrained source synthesizes the sampled field with

minimum error. A snapshot of this constrained source is displayed in figure 5.1(c).

Finally, a snapshot of the field, generated by this constrained source is displayed

in figure 5.1(d).

The main performance measures of this synthesis algorithm is the mean abso-

lute error µ(|ε|) between the initially sampled field and the generated by the con-

strained source field and its standard deviation σ(|ε|). These performance measures

are evaluated for the whole domain Ω and for the sub-domains Ω1 and Ω2. The

results are presented in the next tables, for various geometries, material properties

and region dimensions.

In all the setups studied, cubic elements of side one unit in both space and time

(∆X = ∆Y = ∆T = 1) were used. Unless stated, the propagation velocity of the

wave cn inside each elemental domain ∆Ω(n) was chosen to be cn =
√

kn

ρn
=
√

2.

This was done by forcing kn = 2 and ρn = 1. For simplicity and in order to study

the effectiveness of the algorithm in media with different propagation velocities the

material density was kept ρn = 1 while the modulus of elasticity kn was varied.

(For the coefficients kn and ρn refer to equation (2.5)).
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(a) (b)

(c) (d)

Figure 5.1: Homogeneous circular region: (a) Snapshot of the sampled wave

field based on a finite difference scheme (b) Snapshot of the source distribution

estimated from the algorithm (c) Snapshot of the reconstructed wave field by the

constrained source (d) Snapshot of the constrained source
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5.1 Problem-1: Circular region

A standard circular 2 dimensional region was studied first. A circular disk of

radius 10 units containing an inner circular region of radius 4 units, was considered.

Figure 5.2 displays this setup.

Figure 5.2: Circular region: Partition

The base region for this problem consists of a total of 305 points of which

260 belong to region S1 and 45 in S2. Also it has 72 boundary points as figure

5.2 depicts. In order to build the space time domain we considered 16 frames

(including the initial frame) resulting to 4880 total space-time points. These details

are illustrated in table 5.1.

The synthesis algorithm was implemented using the wave field generated by a

central sinusoidal signal of period 15 time units acting on a circular area of radius

2 space units for 16 time frames (including the initial frame). A snapshot of the
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Table 5.1: Circular region: Partition details

Region Total Points Inner Points Boundary Points

Ω 4880 3262 1618

Ω1 4160 2632 1528

Ω2 720 630 90

S 305 233 72

S1 260 188 72

S2 45 45 0

obtained error distribution across the circular region is displayed in figure 5.3.

Figure 5.3: Circular region: Snapshot of the error distribution
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5.1.1 Geometric effects: Different radii of the inner circu-

lar region

The synthesis algorithm was also implemented on the previous circular geometry

using the wave field generated by the same central source signal for different radii

of the inner circular region (S2) ranging from 2 to 8 units. The radius of the outer

region was kept constant at 10 space units. The observed maximum absolute

value of the sampled field was max(|Φ|) = 4.5796. The results regarding the mean

absolute error µ(|ε|) and its standard deviation σ(|ε|) are summarized in table 5.2.

Table 5.2: Circular region: Mean absolute error µ(|ε|) and its standard deviation

σ(|ε|) in Ω, Ω1 and Ω2, as a function of the radius of the inner circular region.

Radius of S2 µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|)in Ω2

8 0.6202 0.5705 0.6308 0.3197 0.5727

7 0.5153 0.2135 0.7005 0.2500 0.6260

6 0.4414 0.0864 0.8485 0.1446 0.6495

5 0.3826 0.0938 1.0731 0.2506 0.6780

4 0.3257 0.1289 1.1526 0.3845 0.6573

3 0.2074 0.1823 0.4177 0.3915 0.5708

2 0.0566 0.0402 0.4654 0.1828 0.3252

Based on the above table we see that both the mean errors in Ω and Ω1 are

reduced as the size of the inner region is reduced. This fact is expected. The

constrained source is allowed to reside in more points as the inner region becomes

smaller and therefore the synthesis results are better.
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5.1.2 Variable weights

The synthesis algorithm was also applied minimizing a weighted total square error

and using the wave field generated by the same central sinusoidal signal. Initially,

a weight vector for error of the inner points of Ω1 was formed w1 = {w, ..., w}.
Then, a weight vector for the error of the inner points of Ω2 was calculated as

w1 = {s, ..., s} with s = |w1|(1−w)+|w2|
|w2| according to 4.18, (|x| refers to the number

of elements of vector x). The parameter w was varied from 0.1 to 1. The obtained

results are displayed in table 5.3.

Table 5.3: Circular region: Mean absolute error µ(|ε|) and its standard deviation

σ(|ε|) in Ω, Ω1 and Ω2, as a function of the weight coefficient w.

Weight w of Ω1 µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|) in Ω2

0.1 0.8516 0.8503 0.8570 2.4913 0.6737

0.2 0.7377 0.7036 0.8803 2.1069 0.6506

0.3 0.6029 0.5286 0.9131 1.6129 0.6293

0.4 0.4946 0.3865 0.9459 1.1688 0.6204

0.5 0.4127 0.2787 0.9730 0.8611 0.6210

0.6 0.3621 0.2108 0.9942 0.6846 0.6238

0.7 0.3397 0.1788 1.0120 0.5913 0.6251

0.8 0.3325 0.1650 1.0325 0.5333 0.6229

0.9 0.3320 0.1555 1.0692 0.4746 0.6203

1.0 0.3271 0.1296 1.1526 0.3854 0.6573

Based on table 5.3 we observe that as the weight of the inner points of the

domain Ω1 decreases, the mean absolute error in the domain Ω2 decreases while

the standard deviation remains approximately constant.
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5.2 Problem-2: Elliptical region

The next examined geometry was an elliptical two dimensional region which is

displayed in figure 5.4. Its characteristics are presented in table 5.4.

The synthesis algorithm was implemented, using the wave field generated by a

sinusoidal central signal of period 15 time units, acting on an circular area of

radius 1 space unit for 16 time frames (including the initial frame). Figure 5.5

shows a snapshot of the resulted error distribution.

Figure 5.4: Elliptical region: Partition

Table 5.4: Elliptical region: Partition details

Region Total Points Inner Points Boundary Points

Ω 3472 2142 1330

Ω1 2656 1428 1228

Ω2 816 714 102

S 217 153 64

S1 166 102 64

S2 51 51 0
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Figure 5.5: Elliptical region: Snapshot of the error distribution
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5.2.1 Inhomogeneities

In the previous elliptical domain, inhomogeneities were introduced by changing the

propagation velocities at the points of the domain Ω2 while keeping the velocities

at the points in Ω1 constant and vice versa. Table 5.5 shows how the maximum

absolute value of the initial field, the maximum absolute value of the constrained

source and the performance measure µ(|ε|) change as we change the propagation

velocity in one region while keeping it constant in the other region.

Table 5.5: Elliptical region: Maximum absolute value of the original field

max(|Φ|), mean absolute error µ(|ε|) in the whole domain Ω and maximum absolute

value of the constrained source max(|F1|) in Ω1, as a function of the propagation

velocity in Ω2 (assuming constant velocity in Ω1 c2
1 = 0.5) and vice versa.

c2
2 max(|Φ|) µ(|ε|) max(|F1|) c2

1 max(|Φ|) µ(|ε|) max(|F1|)

0.50 0.4563 0.0252 0.3568 0.50 0.4563 0.0252 0.3568

0.45 0.4561 0.0248 0.3821 0.45 0.4829 0.0249 0.3675

0.40 0.4507 0.0239 0.4144 0.40 0.5072 0.0245 0.3685

0.35 0.4224 0.0224 0.5145 0.35 0.5033 0.0240 0.3578

0.30 0.4363 0.0222 0.5757 0.30 0.5441 0.0233 0.3550

0.25 0.4046 0.0246 0.7304 0.25 0.5431 0.0225 0.3744

0.20 0.3935 0.0226 0.7547 0.20 0.5794 0.0212 0.4923

0.15 0.6108 0.0264 1.0416 0.15 0.6423 0.0193 0.6660

0.10 0.4866 0.0403 3.3841 0.10 0.7626 0.0177 0.8195

0.05 0.8758 0.0685 5.6771 0.05 1.2808 0.0453 1.8382
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5.2.2 Geometric effects: Scaling of inner elliptical region

As we did in the circular geometry, the algorithm was implemented considering

different dimensions of the inner elliptical region (S2) and using the wave field

generated by the same central sinusoidal signal (Radius: 1 space unit, Period: 15

time units) for 16 time frames (including the initial frame). The lengths of the

minor and the major axis of the outer elliptical region were 6 and 12 space units

respectively. The lengths of the axes of the inner elliptical region were varied

keeping their ratio constant. The results are presented in table 5.6 as a function of

the minor and the major axis lengths of the inner elliptical region. The maximum

absolute value of the sampled field was max(|Φ|) = 0.4563.

Table 5.6: Elliptical region: Mean absolute error µ(|ε|) and its standard devia-

tion σ(|ε|) in the domains Ω,Ω1 and Ω2 as a function of the lengths of the minor

and the major axis of the inner elliptical region.

Minor/Major Axis µ(|ε|)in Ω µ(|ε|)in Ω1 µ(|ε|)in Ω2 σ(|ε|)in Ω1 σ(|ε|)in Ω2

1 / 2 0.0030 0.0018 0.0612 0.0084 0.0788

2 / 4 0.0042 0.0028 0.0346 0.0105 0.0568

3 / 6 0.0144 0.0100 0.0333 0.0271 0.0387

4 / 8 0.0165 0.0121 0.0284 0.0280 0.0348

5 / 10 0.0300 0.0182 0.0411 0.0288 0.0372



38

5.3 Problem-3: Square region

The last considered geometry was a square two dimensional region displayed in

figure 5.6 with characteristics summarized in table 5.7.

Figure 5.6: Square region: Partition

The synthesis algorithm was applied using the wave field generated by a central

sinusoidal source acting on an circular area of radius 2 space units with period 15

time units for 16 time frames (including the initial frame). A snapshot of the

obtained error distribution is displayed in figure 5.7.
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Table 5.7: Square region: Partition details

Region Total Points Inner Points Boundary Points

Ω 3600 2366 1234

Ω1 2816 1680 1136

Ω2 784 686 98

S 225 169 56

S1 176 120 56

S2 49 49 0

Figure 5.7: Square region: Snapshot of the error distribution
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5.3.1 Inhomogeneities

Inhomogeneities were also considered in the square region. The synthesis algorithm

was implemented using the wave field generated by the same central sinusoidal

signal (Radius: 2 space units, Period: 15 time units) and changing the propagation

velocities c1 and c2 of the two domains Ω1 and Ω2 respectively. The total considered

time duration was again 16 time frames (including the initial frame). Table 5.8

displays the obtained results.

Table 5.8: Square region: Maximum absolute value of the original field max(|Φ|),
mean absolute error µ(|ε|) in the whole domain Ω and maximum value of the

constrained source max(|F1|) in Ω1, as a function of the propagation velocity in

Ω2 (assuming constant velocity in Ω1 c2
1 = 0.5) and vice versa.

c2
2 max(|Φ|) µ(|ε|) in Ω max(|F1|) c2

1 max(|Φ|) µ(|ε|) in Ω max(|F1|)

0.50 2.2335 0.1940 1.6575 0.50 2.2335 0.1940 1.6575

0.45 2.1025 0.1831 1.6265 0.45 2.3585 0.1938 1.7016

0.40 2.0057 0.1688 1.5836 0.40 2.4898 0.1933 1.7075

0.35 1.9357 0.1520 1.8902 0.35 2.6210 0.1923 1.8598

0.30 1.9845 0.1357 2.6321 0.30 2.8039 0.1904 2.5016

0.25 2.1743 0.1220 3.9645 0.25 3.0475 0.1871 3.2449

0.20 2.7449 0.1210 7.1798 0.20 3.4500 0.1811 3.8363

0.15 2.3202 0.1916 13.2381 0.15 4.0989 0.1701 4.8138

0.10 1.3067 0.1075 11.4450 0.10 5.3899 0.1494 11.7534

0.05 3.3350 0.3391 57.7813 0.05 10.1976 0.1677 21.8417
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5.3.2 Geometric effects: Scaling of inner square region

The algorithm was also implemented for different side lengths of the inner square

region (S2) keeping the side length of the outer square region constant at 15 space

units. The wave field generated by the same central sinusoidal signal (Radius: 2

space units, Period: 15 time units) for 16 time frames (including the initial frame)

was used here again. The obtained results are summarized in table 5.9.

Table 5.9: Square region: Maximum absolute value of the distributed source

max(|F1|), mean absolute error µ(|ε|) and its standard deviation σ(|ε|) in Ω, Ω1

and Ω2, as a function of the side length of the inner square region.

Side max(|F1|) µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|) in Ω2

4 2.9199 0.0420 0.0331 0.2003 0.1182 0.2200

6 4.9576 0.1316 0.1181 0.2097 0.1833 0.2559

8 1.6575 0.1940 0.0766 0.4816 0.1796 0.2869

10 2.9633 0.2448 0.1751 0.3205 0.1435 0.2441

12 3.0932 0.2924 0.2253 0.3190 0.1789 0.2582

As we observed in the previous examples, in this case also the smaller the inner

region is, the better the synthesis results are (smaller mean absolute error).
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5.3.3 Variable attenuation coefficient

Finally a change in the attenuation coefficient α was attempted. The coefficient

was varied from 0 to 0.5 with step 0.05. The wave field used for the synthesis

algorithm was the same field used in the previous considered cases of the square

region. The results are presented in table 5.10.

Table 5.10: Square region: Maximum absolute value of the original field

max(|Φ|), mean absolute error µ(|ε|) in Ω, Ω1 and Ω2 and maximum absolute

value of the constrained source max(|F1|) as a function of different attenuation

coefficients of the medium α.

α max(|Φ|) µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 max(|F1|)

0.00 2.2335 0.1940 0.0766 0.2869 1.6575

0.05 2.1695 0.1857 0.0725 0.2730 1.5546

0.10 2.1172 0.1787 0.0689 0.2621 1.4608

0.15 2.0717 0.1725 0.0657 0.2536 1.3747

0.20 2.0353 0.1669 0.0626 0.2472 1.2959

0.25 1.9983 0.1617 0.0596 0.2417 1.2242

0.30 1.9614 0.1568 0.0567 0.2374 1.1637

0.35 1.9250 0.1522 0.0540 0.2331 1.1086

0.40 1.8891 0.1477 0.0513 0.2299 1.0580

0.45 1.8539 0.1434 0.0487 0.2278 1.0578

0.50 1.8193 0.1390 0.0462 0.2261 1.0940



CHAPTER 6

CONCLUDING REMARKS

A formulation of distributed wave field synthesis with and without source con-

strains, in reference to a two dimensional medium has been developed. Material

inhomogeneities and other non-linearities like dissipation are shown to be quite

easy to handle in this formulation.

Also, a fully finite element scheme compared with a hybrid finite element in

space and finite difference in time model, appears to be computationally easier

when it is used to solve wave field synthesis problems. The main reason is that the

knowledge of the field we want to synthesize before hand as vector {Φ} in space

and time, constrains the required computations to be linear matrix calculations.

Also, in such a scheme, the final solution is provided as a vector both in time and

space.

Wave field synthesis has broad applications and involves extensive experimen-

tation and cost. A numerical approach based on a Finite Element Method (FEM)

[22] has been outlined to alleviate some of these concerns. The original signal

corresponding to a given wave field distribution has been generated quite accu-

rately with this scheme for both homogenous and non-homogeneous 2-D media.

The method is straightforward to be extended to 3-D media with dissipation. The

mesh size needed to capture the source distribution with a reasonable accuracy

does indeed depend on the frequency and propagation velocity of the medium as

one would expect. Finally, it is essential to use various sparse algorithms [25] for

the solution of the resultant linear system of equations.
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APPENDIX A

DERIVATION OF THE MATRIX FORM OF THE WAVE PDE

Given the definitions postulated in section 2, consider the Lagrange quantity L

inside an arbitrary elemental domain ∆Ω(n) as a function of the field Φ and its

partial derivatives in space and time as:

L(Φ, Φx, Φy, Φt) =
1

2
ρnΦ2

t + anΦtΦ− 1

2
kn[Φ2

x + Φ2
y] + FΦ (A.1)

Consider the function Φc(x, y, t) satisfying (2.5) and an arbitrary function Φ(x, y, t),

such that (x, y, t) ∈ ∆Ω(n). The deviation of Φ(x, y, t) from the function Φc(x, y, t),

and its derivatives are given by:

∆Φ(x, y, t) = Φ(x, y, t)− Φc(x, y, t) ∆Φt(x, y, t) = Φt(x, y, t)− Φct(x, y, t)

∆Φx(x, y, t) = Φx(x, y, t)− Φcx(x, y, t) ∆Φy(x, y, t) = Φy(x, y, t)− Φcy(x, y, t)

(A.2)

Since L is a function of Φ, Φx, Φy, Φt we can define the deviation of L as follows,

∆L = L(Φ, Φx, Φy, Φt)− L(Φc, Φcx, Φcy, Φct) (A.3)

From (A.1),(A.2) and (A.3) we can write compactly the deviation:

∆L = ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ + E

E =
ρn

2
∆Φ2

t + αnΦ∆Φt − kn

2
[∆Φ2

x + ∆Φ2
y] (A.4)

Integrating both sides of the previous equation within the elemental domain ∆Ω(n)

we obtain:

44
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∫

∆Ω(n)

∆Ldω =

∫

∆Ω(n)

{ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω +

∫

∆Ω(n)

Edω

(A.5)

Next we use integration by parts, and the fact that integrand functions are con-

tinuous and therefore the order of integration can be interchanged. Hence, by

applying the integration by parts principle on the part that involves only partial

derivatives of x we obtain:

∫

∆Ω(n)

∆ΦxΦcxdω =

∫ tn+∆T

t=tn

∫ yn+∆Y

y=yn

[

∫ xn+∆X

x=xn

∂∆Φ

∂x
Φcxdx]dydt =

∫ tn+∆T

t=tn

∫ yn+∆Y

y=yn

[∆Φ(Φcx)]
∣∣xn+∆X

x=xn
dydt−

∫

∆Ω(n)

∆Φ
∂

∂x
[Φcx]dω (A.6)

In more compact form and form definition 3 the previous equation can be written

as:

∫

∆Ω(n)

∆ΦxΦcxdω =

∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt−
∫

∆Ω(n)

∆Φ
∂

∂x
[Φcx]dω (A.7)

Applying the previous property for the terms that include partial derivatives over

y and t, collecting the resulting relations and combining them with (A.5) results

to:
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∫

∆Ω(n)

∆Ldω =

∫

∆Ω(n)

[∆Φ(F + anΦct + kn[
∂

∂x
(Φcx) +

∂

∂y
(Φcy)]− ρn

∂

∂t
(Φct))]dω+

kn[

∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt+

∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[

∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] +

∫

∆Ω(n)

Edω

(A.8)

We know that for Φ = Φc equation (2.5) is satisfied, therefore the volume integral

in the second part of the last equation vanishes, leading to a simpler expression:

∫

∆Ω(n)

∆Ldω =kn[

∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt+

∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[

∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] +

∫

∆Ω(n)

Edω

(A.9)

Finally utilizing (A.5)

∫

∆Ω

{ρnΦct∆Φt + anΦt∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

kn[

∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt+

∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[

∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] (A.10)
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(0,0, )DT

(0,2 Y,0)D

Figure A.1: Partition into 4 elements

Equation (A.10) is the integral form of the 2 dimensional wave equation at the

element level.

For example in the simple partition of the figure A.1 we can write linear equa-

tions similar to (A.10) for each one of the elements n = 1, 2, 3, 4. If we sum the

four equations for each element the intermediate surface integrals that appear in

the second part will eliminate each other resulting to:

4∑
n=1

∫

∆Ω(n)

{ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

∫ 2∆X

x=0

∫ 2∆Y

y=0

ρn[∆Φ[Φct]]
∣∣∆T

t=0
dydx−

∫ 2∆Y

y=0

∫ ∆T

t=0

kn[∆Φ[Φcx]]
∣∣2∆X

x=0
dtdy

−
∫ 2∆X

x=0

∫ ∆T

t=0

kn[∆Φ[Φcy]]
∣∣2∆y

y=0
dtdx (A.11)

We see that the second part of the previous equation contains surface integrals

that refer to boundary surfaces of the partition and belong to only one element.

Therefore to obtain a general expression for the partition
⋃4

n=1 ∆Ω(n) we have to

identify the subset of elements that have surfaces that do not belong to any other

element in the partition. This kind of surfaces will contribute a surface integral
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after the assembly process in the second part of (A.11).

For each boundary element there is at least one boundary surface referring to

it. Since we refer to 3 dimensions (two space and one time), we have 6 kinds of

boundary surfaces (two per dimension). For example in x axis, there are boundary

surfaces with their normal vector pointing out of the domain in either positive or

negative direction. From definition 6 the sets N+x, N−xN+yN−yN+tN−t are the

sets of elemental domains which contain boundary surfaces that belong to only on

elemental domain which is a boundary elemental domain. In a general partition

⋃N
n=1 ∆Ω(n) the surfaces that belong to these sets will contribute with one surface

integral after the summation of all the equations like (A.10).

After summing equations like (A.10) written for every elemental domain one can

conclude that:

N∑
n=1

∫

∆Ω(n)

{ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

∑
n∈N+t

∫

∆S
(n)
+t

ρn[∆Φ[Φct]]dydx−
∑

n∈N−t

∫

∆S
(n)
−t

ρn[∆Φ[Φct]]dydx+

∑
n∈N+x

∫

∆S
(n)
+x

kn[∆Φ[Φcx]]dtdy −
∑

n∈N−x

∫

∆S
(n)
−x

kn[∆Φ[Φcx]]dtdy+

∑
n∈N+y

∫

∆S
(n)
+y

kn[∆Φ[Φcy]]dtdx−
∑

n∈N−y

∫

∆S
(n)
−y

kn[∆Φ[Φcy]]dtdx

(A.12)

A.0.4 Element approximations

For the purpose of our investigation consider a linear approximation of Φ(x, y, t),

Φc(x, y, t) and their difference ∆Φ(x, y, t) both in space and time given by the
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following expressions:

Φ(x, y, t) =
8∑

k=1

φ
(n)
k G

(n)
k (x, y, t) Φc(x, y, t) =

8∑

k=1

φ
(n)
ck G

(n)
k (x, y, t)

∆Φ(x, y, t) =
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t) ∆φ

(n)
k = φ

(n)
k − φ

(n)
ck (A.13)

with φ
(n)
k the values of the field Φ(x, y, t) at the apexes of the domain and G

(n)
k (x, y, t)

the shape functions. Considering ki the ith digit of the dyadic expansion of the

integer number k − 1 and k̄i its complement, the above values φ
(n)
k and functions

G
(n)
k (x, y, t) can be written as:

φ
(n)
k = Φ(xn + k1∆X, yn + k2∆Y, tn + k3∆T ) k ∈ {0, ..., 7}

G
(n)
k = [k̄1 + (−1)k1+1x− xn

∆X
][k̄2 + (−1)k2+1y − yn

∆Y
][k̄3 + (−1)k3+1 t− tn

∆T
] (A.14)

Both the elemental domain ∆Ω and the values of the field at its apexes are dis-

played in figure A.2.

Based on the previous approximations we can write the partial derivatives of the

field Φ and the partial derivatives of the difference ∆Φ as:

Φx =
8∑

k=1

φ
(n)
k

∂G
(n)
k (x, y, t)

∂x
∆Φx =

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂x

Φy =
8∑

k=1

φ
(n)
k

∂G
(n)
k (x, y, t)

∂y
∆Φy =

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂y

Φt =
8∑

k=1

φ
(n)
k

∂G
(n)
k (x, y, t)

∂t
∆Φt =

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂t
(A.15)

Additionally we approximate the source function F (x, y, t) as a constant in the
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Figure A.2: Cubic elemental domain

elemental domain:

F (x, y, t) = f (n) ∀(x, y, t) ∈ ∆Ω(n) (A.16)

Given (A.15) and (A.16)we can write an approximated version of (A.12) as:

N∑
n=1

ρnR∆Ω(n) + anA∆Ω(n) − knKx∆Ω(n) − knKy∆Ω(n) + f (n)F∆Ω(n) =

∑
n∈N+t

ρnR∆S
(n)
+t
−

∑
n∈N−t

ρnR∆S
(n)
−t

+
∑

n∈N+x

knK∆S
(n)
+x
−

∑
n∈N−x

knK∆S
(n)
−x

+

∑
n∈N+y

knK∆S
(n)
+y
−

∑
n∈N−y

knK
∆S

(n)
−y

with
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R∆Ω(n) =

∫

∆Ω(n)

[
8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂t
][

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂t
]dω

A∆Ω(n) =

∫

∆Ω(n)

[
8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂t
][

8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)]dω

Kx∆Ω(n) =

∫

∆Ω(n)

[
8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂x
][

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂x
]dω

Ky∆Ω(n) =

∫

∆Ω(n)

[
8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂y
][

8∑

k=1

∆φ
(n)
k

∂G
(n)
k (x, y, t)

∂y
]dω

F∆Ω(n) =

∫

∆Ω(n)

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)]dω

R
∆S

(n)
+t

=

∫ xn+∆X

xn

∫ yn+∆Y

yn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂t
]
∣∣
tn+∆T

dydx

R
∆S

(n)
−t

=

∫ xn+∆X

xn

∫ yn+∆Y

yn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂t
]
∣∣
tn

dydx

K
∆S

(n)
+x

=

∫ yn+∆Y

yn

∫ tn+∆T

tn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂x
]
∣∣
xn+∆X

dtdy

K
∆S

(n)
−x

=

∫ yn+∆Y

yn

∫ tn+∆T

tn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂x
]
∣∣
xn

dtdy

K
∆S

(n)
+y

=

∫ xn+∆X

xn

∫ tn+∆T

tn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂y
]
∣∣
yn+∆y

dtdx

K
∆S

(n)
−y

=

∫ xn+∆X

xn

∫ tn+∆T

tn

[
8∑

k=1

∆φ
(n)
k G

(n)
k (x, y, t)][

8∑

k=1

φ
(n)
ck

∂G
(n)
k (x, y, t)

∂y
]
∣∣
yn

dtdx

(A.17)

We can rewrite the above expression based on the fact that integration is a linear

operation and also that the coefficients φ
(n)
k , φ

(n)
ck and ∆φ

(n)
k are independent of the

variables (x, y, t).

Also for convenience we replace Gk(x, y, t) with Gk
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N∑
n=1

[
8∑

m=1

8∑

k=1

A
(n)
mkφ

(n)
k ∆φ(n)

m + f (n)

8∑
m=1

F (n)
m ∆φ(n)

m ] =

∑
n∈N+t

8∑
m=1

8∑

k=1

B
(n)
(+t)mkφ

(n)
k ∆φ(n)

m −
∑

n∈N−t

8∑
m=1

8∑

k=1

B
(n)
(−t)mkφ

(n)
k ∆φ(n)

m +

∑
n∈N+x

8∑
m=1

8∑

k=1

B
(n)
(+x)mkφ

(n)
k ∆φ(n)

m −
∑

n∈N−x

8∑
m=1

8∑

k=1

B
(n)
(−x)mkφ

(n)
k ∆φ(n)

m +

∑
n∈N+y

8∑
m=1

8∑

k=1

B
(n)
(+y)mkφ

(n)
k ∆φ(n)

m −
∑

n∈N−y

8∑
m=1

8∑

k=1

B
(n)
(−y)mkφ

(n)
k ∆φ(n)

m (A.18)

with

A
(n)
mk =

∫

∆Ω(n)

ρn
∂G

(n)
m

∂t

∂G
(n)
k

∂t
+ anG

(n)
m

∂G
(n)
k

∂t
− kn

∂G
(n)
m

∂x

∂G
(n)
k

∂x
− kn

∂G
(n)
m

∂y

∂G
(n)
k

∂y
dω

F (n)
m =

∫

∆Ω(n)

G(n)
m dω

B
(n)
(+t)mk =

∫ xn+∆X

xn

∫ yn+∆Y

yn

ρn
∂G

(n)
k

∂t
[G(n)

m ]
∣∣
tn+∆T

dydx

B
(n)
(−t)mk =

∫ xn+∆X

xn

∫ yn+∆Y

yn

ρn
∂G

(n)
k

∂t
[G(n)

m ]
∣∣
tn

dydx

B
(n)
(+x)mk =

∫ yn+∆Y

yn

∫ tn+∆T

tn

kn
∂G

(n)
k

∂x
[G(n)

m ]
∣∣
xn+∆X

dtdy

B
(n)
(−x)mk =

∫ yn+∆Y

yn

∫ tn+∆T

tn

kn
∂G

(n)
k

∂x
[G(n)

m ]
∣∣
xn

dtdy

B
(n)
(+y)mk =

∫ xn+∆X

xn

∫ tn+∆T

tn

kn
∂G

(n)
k

∂y
[G(n)

m ]
∣∣
yn+∆Y

dtdx

B
(n)
(−y)mk =

∫ xn+∆X

xn

∫ tn+∆T

tn

kn
∂G

(n)
k

∂y
[G(n)

m ]
∣∣
yn

dtdx

The next goal is to evaluate the integrals of the shape functions and their deriva-

tives in order to write (A.18) in a matrix form.
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In order to do that, the following notation is introduced.

Given a positive integer number k we denote:

With di(k) the i-th digit of the dyadic expansion of the integer k-1.

With Di(k) the dyadic expansion of the integer k-1 without the i-th digit.

With the symbol ”⊕ ” the bitwize XOR operation between dyadic expansions.

For example: 110⊕ 001 = 3.

Utilizing the above notations the integrals of the shape functions and their deriva-

tives can be written as:

∫

∆Ω(n)

G(n)
m dω =

1

23
∆Ω(n)

∫

∆Ω(n)

∂G
(n)
m

∂x

∂G
(n)
k

∂x
dω =

(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Ω

∆X2

∫

∆Ω(n)

∂G
(n)
m

∂y

∂G
(n)
k

∂y
dω =

(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆Ω

∆Y 2

∫

∆Ω(n)

∂G
(n)
m

∂t

∂G
(n)
k

∂t
dω =

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆Ω

∆T 2

∫

∆Ω(n)

G(n)
m

∂G
(n)
k

∂t
dω =

(−1)d3(k)+1

322D3(m)⊕D3(k)+1
∆X∆Y

∫ yn+∆Y

yn

∫ tn+∆T

t=tn

[G(n)
m

∂G
(n)
k

∂x
]
∣∣xn+∆X

xn
dtdy =

(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Y ∆T

∆X
∫ xn+∆X

xn

∫ tn+∆T

t=tn

[G(n)
m

∂G
(n)
k

∂y
]
∣∣yn+∆y

yn
dtdx =

(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆X∆T

∆Y
∫ xn+∆X

xn

∫ yn+∆Y

y=yn

[G(n)
m

∂G
(n)
k

∂t
]
∣∣tn+∆T

tn
dydx =

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆X∆Y

∆T
(A.19)

In equation (A.18) the notation φ
(n)
k is used for the field values and the notation

∆φ
(n)
m for the variations of these values. The superscript (n) refer to the index

of the element and the subscript m or k to the local (in the element) index of
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the specific point. We can therefore rewrite the previous equation using a more

compact form by defining a mapping function between the local indices of the

points in the elements and the global indices of these points in the whole domain.

Let us consider a generic domain of F time frames each containing P space-time

points. Therefore we will have a total of G = FP global space-time points. Assume

also in this domain, that there are N total elements. Then a mapping function

can be defined as:

T : {1, ..., 8} × {1, .., N} → {1, ..., G} (A.20)

Under the above mapping and based on the ”volume” integrals that appear in

(A.18), a global matrix [A(G)] can be constructed as:

[A
(G)
ij ] =

N∑
n=1

8∑
m=1

8∑

k=1

I(T (m,n) = i)I(T (k, n) = j)[A
(n)
mk]

[A
(n)
mk] = ρn

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆Ω

∆T 2
+ an

(−1)d3(k)+1

322D3(m)⊕D3(k)+1
∆X∆Y−

kn[
(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Ω

∆X2
+

(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆Ω

∆Y 2
]

where I is the identity function.

I(condition) =





1 condition = ”true”

0 condition = ”false”
(A.21)

Based on the ”surface” integrals that appear in (A.18) a global matrix [B(G)] can

be also constructed.
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[B
(G)
ij ] =

N∑
n=1

8∑
m=1

8∑

k=1

I(T (m, n) = i)I(T (k, n) = j)B
(n)
mk

B
(n)
mk =

I(n ∈ N+x)[B
(n)
(+x)mk]− I(n ∈ N−x)[B

(n)
(−x)mk]+

I(n ∈ N+y)[B
(n)
(+y)mk]− I(n ∈ N−y)[B

(n)
(−y)mk]+

I(n ∈ N+t)[B
(n)
(+t)mk]− I(n ∈ N−t)[B

(n)
(−t)mk]

[B
(n)
(+x)mk] = I(d1(m) = 1)kn

(−1)d1(k)+1

322D1(m)⊕D1(k)

∆Y ∆T

∆X

[B
(n)
(−x)mk] = I(d1(m) = 0)kn

(−1)d1(k)+1

322D1(m)⊕D1(k)

∆Y ∆T

∆X

[B
(n)
(+y)mk] = I(d2(m) = 1)kn

(−1)d2(k)+1

322D2(m)⊕D2(k)

∆X∆T

∆Y

[B
(n)
(−y)mk] = I(d2(m) = 0)kn

(−1)d2(k)+1

322D2(m)⊕D2(k)

∆X∆T

∆Y

[B
(n)
(+t)mk] = I(d3(m) = 1)ρn

(−1)d3(k)+1

322D3(m)⊕D3(k)

∆X∆Y

∆T

[B
(n)
(−t)mk] = I(d3(m) = 0)ρn

(−1)d3(k)+1

322D3(m)⊕D3(k)

∆X∆Y

∆T

Under the same principles the global source vector {F (G)
i } will also be:

{F (G)
i } =

N∑
n=1

8∑
m=1

I[T (m,n) = i]{F (n)
m }

{F (n)
m } = f (n)

∫

∆Ω

G(n)
m dω =

f (n)∆Ω

8

Finally the field vector will take the form of:

{Φ(G)} = [φ1, ..., φG]T

Under the above we can define a general matrix [K(G)] as:

[K(G)] = [A(G)]− [B(G)]



56

Therefore based on the previous notations equation (A.18) can be written more

compactly as:

[K(G)]{Φ(G)}+ {F (G)} = {0} (A.22)



APPENDIX B

LINEAR INTERPOLATION ERROR

Consider a continuous square integrable function F : S × [0, T ] → R, where S

is a two dimensional region and [0, T ] is a predefined time interval, like the one in

figure 3.2. Given the region S there is always a rectangular cover of dimensions

Lx, Ly encompassing the region S. Similarly we can define a cover ΩE for the domain

Ω. Both covers are displayed in figure B.1 and their dimensions are chosen to be

multiples of the dimensions ∆X,∆X and ∆Y of the elemental domains ∆Ω(n). In

this way the cover ΩE can be partitioned into a finite number of elemental domains

∆Ω(n) displayed also in figure B.1.

Figure B.1: Region and domain cover

Based on the domain cover we can define a family of basis functions N(x, y, t) as

follows:

N
(nmp)
k =

[k1 cos(
nπx

Lx

) + k̄1 sin(
nπx

Lx

)][k2 cos(
mπy

Ly

) + k̄2 sin(
mπy

Ly

)][k3 cos(
pπt

T
) + k̄3 sin(

pπt

T
)]

(B.1)
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where again k ∈ {1, 2, ..., 8} and ki, i = 1, 2, 3 is the ith digit of the dyadic expan-

sion of the integer k−1 and k̄i its complement. Additionally n,m, p ∈ {1, 2, 3, 4, ...}.

Since the initial function F (x, y, t) is square integrable, it can be expanded

as an infinite linear combination of the above basis functions. Furthermore since

Ω ⊂ ΩE we force F (x, y, t) = 0,∀(x, y, t) ∈ ΩE − Ω.

If we consider a subset of the initial functions F such that the contribution of

the higher order basis functions (n > N, m > M, p > P ) in this linear combination

is negligible then:

F (x, y, t) ≈
8∑

k=1

N,M,P∑
n,m,p=0

c
(nmp)
k N

(nmp)
k (x, y, t)

c
(nmp)
k =

8

LxLyT

∫

ΩE

F (x, y, t)N
(nmp)
k (x, y, t)dω (B.2)

Lets define the operator L which acts on the function F (x, y, t) and gives a

linear interpolated version of this function based in its values at the grid points

defined in definition 5. Assume also for simplicity that the elemental domains have

side (∆X = ∆Y = ∆T = a). Since the operator is linear and acts on a function

F (x, y, t) that can be represented as a linear combination (B.2) then clearly:

L[F (x, y, t)] ≈
8∑

k=1

N,M,P∑
n,m,p=0

c
(nmp)
k L[N

(nmp)
k (x, y, t)]

Now if we choose the side of the elemental domains a, in a way that the sides of

the cover ΩE are multiples of a then we can write that Lx = a(Q+1),Ly = a(R+1)

and T = a(S + 1). In this way the whole cover is partitioned resulting to a total
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number of Atot = QRS elemental domains defined by the sets:

∆Ωlqr = [qa, (q + 1)a]× [ra, (r + 1)a]× [sa, (s + 1)a]

with q ∈ {0, ..., Q} r ∈ {0, ..., R} s ∈ {0, ..., S}.

Following equation (A.14) for every elemental domain ∆Ωqrs we can write:

L[N
(nmp)
k (x, y, t)] =

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs)(x, y, t) ∀(x, y, t) ∈ ∆Ωqrs

g
(nmp)
l(qrs) = N

(nmp)
k (qa + l1a, ra + l2a, sa + l3a) l ∈ {0, ..., 7}

Gl(qrs)(x, y, t) = [l̄1 + (−1)l1+1(
x

a
− q)][l̄2 + (−1)l2+1(

y

a
− r)][l̄3 + (−1)l3+1(

t

a
− s)]

(B.3)

where l1, l2, l3 are the digits of the dyadic expansion of the integer number l−1, l ∈
{1, ..., 8}.

Denoting ΩE = [0, Lx] × [0, Ly] × [0, T ] as the cover of the domain Ω and

assuming that Lx, Ly, T are all multiples of the side a, a good measure for the error

the interpolation induces, is given by the integral of the square of the difference

between each basis function N
(nmp)
k (x, y, t) and its interpolated version in ΩE.

E =
7∑

k=0

N,M,P∑
n,m,p=0

[c
(nmp)
k ]2E

(nmp)
k E

(nmp)
k =

∫

ΩE

{N (nmp)
k − L[N

(nmp)
k ]}2dω (B.4)

Each of the E
(nmp)
k is a component of the total square error. We can divide the

integral of the component of the square error E
(nmp)
k in (B.4) into sums of integrals
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in the elemental domains as:

E
(nmp)
k =

QRS∑
q,r,s=0

∫

∆Ωqrs

{N (nmp)
k − L[N

(nmp)
k ]}2dω (B.5)

Lets concentrate on the integral inside the domain ∆Ωqrs.

The square difference {N (nmp)
k − L[N

(nmp)
k ]}2 in the domain ∆Ωqrs can be written

as:

{N (nmp)
k − L[N

(nmp)
k ]}2 =

= {N (nmp)
k −

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs)}2

= [N
(nmp)
k ]2 − 2N

(nmp)
k

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs) +

8∑

l=1

8∑

l′=1

g
(nmp)
l(qrs) g

(nmp)
l′(qrs)Gl(qrs)Gl′(qrs)

(B.6)

Therefore in order to evaluate the integral of the square of the difference in the

domain ∆Ωqrs we have to evaluate the three following integrals:

A
(nmp)
k(qrs)(a) =

∫

∆Ωqrs

[N
(nmp)
k ]2dω

B
(nmp)
kl(qrs)(a) =

∫

∆Ωqrs

[N
(nmp)
k Gl(qrs)]dω

Cll′(qrs)(a) =

∫

∆Ωqrs

[Gl(qrs)Gl′(qrs)]dω (B.7)

In these integrals the integration can be applied separately along the x, y, t axis

because the integrands are functions that can be written as products of functions

of x with functions of y and with functions of t.
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Therefore after calculating the integrals separately across x,y and t we obtain:

A
(nmp)
k(qrs)(a) = XA

(n)
k(q)Y A

(m)
k(r)TA

(p)
k(s)

XA
(n)
k(q) =

a

2
+

Lx

4nπ
[(k1 − k̄1) sin(

2nπ

Lx

x)](q+1)a
qa

Y A
(m)
k(r) =

a

2
+

Ly

4mπ
[(k2 − k̄2) sin(

2mπ

Ly

y)](r+1)a
ra

TA
(p)
k(s) =

a

2
+

T

4pπ
[(k3 − k̄3) sin(

2pπ

T
t)](s+1)a

sa

B
(nmp)
kl(qrs)(a) = XB

(n)
kl(q)Y B

(m)
kl(r)TB

(p)
kl(s)

XB
(n)
kl(q) =

Lx

nπ
[sin(

nπ

Lx

x)(k1(l̄1 + (−1)l1q − x
(−1)l1

a
)− k̄1

Lx

nπ

(−1)l1

a
)+

cos(
nπ

Lx

x)(k1
Lx

nπ

(−1)l1+1

a
− k̄1(l̄1 + (−1)l1q − x

(−1)l1

a
))](q+1)a

qa

Y B
(m)
kl(r) =

Ly

mπ
[sin(

mπ

Ly

y)(k2(l̄2 + (−1)l2r − y
(−1)l2

a
)− k̄2

Ly

mπ

(−1)l2

a
)+

cos(
mπ

Ly

y)(k2
Ly

mπ

(−1)l2+1

a
− k̄2(l̄2 + (−1)l2r − y

(−1)l2

a
))](r+1)a

ra

TB
(p)
kl(s) =

T

pπ
[sin(

pπ

T
t)(k3(l̄3 + (−1)l3s− t

(−1)l3

a
)− k̄3

T

pπ

(−1)l3

a
)+

cos(
pπ

T
t)(k3

T

pπ

(−1)l3+1

a
− k̄3(l̄3 + (−1)l3s− t

(−1)l3

a
))](s+1)a

sa

Cll′(qrs)(a) =
3∏

i=1

{Alil′ixi
(a) + Blil′ixi

(a) + Clil′ixi
(a)}

Alil′ixi
(a) = (l̄i + (−1)lixi)(l̄′i + (−1)l′ixi)a

Blil′ixi
(a) = [(l̄i + (−1)lixi)(−1)l′i+1 + (l̄′i + (−1)l′ixi)(−1)li+1]

2xi + 1

2
a

Clil′ixi
(a) = (−1)li+l′i

(xi + 1)3 − x3
i

3
aClil′ixi

x1 = q x2 = r x3 = s

(B.8)

Finally combining equations (B.4), (B.5) ,(B.6) and (B.7) we conclude that:
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E =

N,M,P∑
m,n,p=0

8∑

k=1

{[c(nmp)
k ]2

Q,R,S∑
q,r,s=0

ABC
(nmp)
k(qrs)}

ABC
(nmp)
k(qrs) = A

(nmp)
k(qrs)(a)− 2

8∑

l=1

g
(nmp)
l(qrs) B

(nmp)
kl(qrs)(a) +

8∑

l=1

8∑

l′=1

g
(nmp)
l(qrs) g

(nmp)
l′(qrs)Cll′(qrs)(a)

(B.9)

In order to see how the error components change as the sampling step a and the

frequency (determined by the triplet (n,m, p)) change we consider the case where

k = 1 Lx = Ly = T = 10.

Then we plot the coefficients Enmp for a = 1 (1000 elements), a = 0.5 (8000

elements) and 0.25 (64000 elements).

Since N
(nmp)
k (x, y, t) = cos(nπx

Lx
) cos(mπy

Ly
) cos(pπt

T
) and due to symmetry:

Eiij = Eiji = Ejii therefore for n,m, p ∈ {1, 2, ..., 5} we have to calculate only the

components that appear in table B.1.

By looking in table B.1 it is clear that as the sampling step reduces to half the

component of the square error is multiplied by 1
16

. Therefore the total error is

reduced by 1
4
.
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Table B.1: Error components Enmp as a function of the sampling step a.

Enmp a = 1 a = 0.5 a = 0.25

E111 0.079300 0.005000 0.000316

E112 0.321200 0.020700 0.001300

E122 0.692700 0.045500 0.002900

E222 1.184100 0.079300 0.005000

E223 2.325000 0.162100 0.010200

E233 3.731500 0.272300 0.017000

E333 5.363700 0.404900 0.025400

E334 8.117200 0.614200 0.040300

E344 11.206800 0.914700 0.058300

E444 14.490400 1.235100 0.079300

E445 19.246600 1.648100 0.111700

E455 24.122600 2.267500 0.149000

E555 29.042400 2.875900 0.191100



REFERENCES

[1] A.J. Berkhout, D. de Vries P.Vogel ”Acoustic Control By Wave field Synthe-
sis” Journal of Acoustic Society of America 93, pp2764-2778 (1993).

[2] M.M.Boon and E.N.G.Verheijen, ”Multi-Channel Sound Reproduction Based
on Wave Field Synthesis”, 95th AES Convention 1993 October 7-10 New York.

[3] Y.Niwa, S.Kobayashi and T.Fukui,”Applications of the integral equation
method to some geomechanical problems”, Numerical Methods in Geome-
chanics , ASCE, PP. 120-131, 1976.

[4] A.F.Seybert, B.Soenarko, F.J.Rizzo, and D.J. Shippy, ”An advanced com-
putaional method for radiation and scattering of acoustic waves in three di-
mensions”, Journal of Acoustical Society of America, 1985;77:362-68.

[5] Y.H.Pao and V.Varatharajulu, ”Huygens’ principle, Radiation Conditions and
Integral Equations for the Scattering of Elastic waves”, Dept. of Theor. and
Appl. MEch, Cornell University, Ithaca, NY., USA, 1975.

[6] K.F.Graff, Wave motion in elastic solids Ohio state university press, 1975

[7] V.D.Kupradze, ”Potential Methods in the Theory of Elasticity”, Israel Pro-
gramme for Scientific Translation, Jerusulem, 1965.

[8] A.Rosen, M.A.Stuchly and A.V.Vorst, ”Applications of RF/Microwaves in
Medicine”, IEEE Transactions on Microwave Theory and Techniques , vol.
50, Issue-3, 2002.

[9] I.Sanchez, J.R.Banga and A.A.Alonso, ”Robust Identification and control of
microwave heating processes”, International Journal on Microwave and HF
Heating ,PP. 13-17, 1999.

[10] S.Kobayashi, ”Some applications of the the boundary element method in elas-
todynamics”, BETECH 85 , Southampton, Computational Mechanics Publi-
cations, PP. 91-104, 1985.

[11] M.Sherar, J.Trachtenberg, M.Sean, R.Davidson, C.McCann, C.Yue,
M.Haider, and M.Gertner, ”Interstitial Microwave Thermal therapy for
Prostate Cancer”, Journal of Endurology , vol. 17, PP. 617-625, 2003.

[12] C.C.Vernon, J.W.Hand, S.B.Field, ”Radiotherapy with or without hyperther-
mia in the treatment of superficial localized breast cancer: Results from five
randomized controlled trials”, Int J Radiat Oncol Biol Phys , 1996;35:731-744.

[13] J.Van der Zee, G.D.Gonzalez, G.C. Van Rhoon, ”Comparison of radiother-
apy alone with radiotherapy plus hyperthermia in locally advanced pelvic
tumours: A prospective, randomised, multicentre trial”, Lancet, vol. 71, pp.
2000;355:1119-1125.

64



65

[14] P.K.Sneed, P.R.Stauffer, M.W.McDermott, ”Survival benefit of hyperthermia
in a prospective randomized trial of brachytherapy boost 1/2 hyperthermia
for glioblastoma multiforme”, Int J Radiat Oncol Biol Phys, 1998;40:287-295.

[15] T.Satoh,T.M.Seilhan, P.R.Stauffer, ”Interstitial helical coil microwave an-
tenna for experimental brain hyperthermia”, Neurosurgery . 1988;23:564-569.

[16] J.Mendecki, E.Friedenthal, C.Botstein, ”Microwave-induced hyperthermia in
cancer treatment: Apparatus and preliminary results”, Int J Radiat Oncol
Biol Phys, 1978;4:1095-1103.

[17] T.P. Ryan, ”Comparison of six microwave antennas for hyperthermia treat-
ment of cancer: SAR results for single antennas and arrays”, Int J Radiat
Oncol Biol Phys, 1991;21:403-413.

[18] M.G.Skinner, S.Everts, A.D.Reid, ”Changes in optical properties of ex vivo
rat prostate due to heating”, Phys Med Biol, 2000;45:1375-1386.18.

[19] C.Lancaster, A.Toi, J.Trachtenberg, ”Interstitial microwave thermoablation
for localized prostate cancer”, Urology, 1999;53: 828-831.

[20] M.G.Skinner, M.N.Iizuka, M.C.Kolios, M.D.Sherar, ”A theoretical compari-
son of energy sources-microwave, ultrasound and laser - for interstitial thermal
therapy”, Phys Med Biol, vol. 58, 1998;43:3535-3547.

[21] A.J. Berkhout, Applied Seismic Wave Theory, Elsevier, 1987.

[22] O. Zienkievicz, The Finite Element Method, McGraw Hill.

[23] L.E.Kinsler, A.R.Frey, A.B.Coppens and J.V.Sanders, Fundamentals of
Acoustics, Wiley, 1999.

[24] P.M.Morse, K.U.Ingard Theoretical Acoustics, McGraw-Hill, 1968.

[25] T.F.Coleman and Y.Li, Large-Scale Numerical Optimization, Society for In-
dustrial and Applied Mathematics, 1990.

[26] G.N.Lilis, S.Telukunta, S.D.Servetto ”Inverse Wave Field Synthesis” 17th In-
ternational Symposium on Nonlinear Acoustics, State College, PA, July 2005.

[27] G.N.Lilis, S.D.Servetto ”dWFS: Distributed Wave Field Synthesis” IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Toulouse, France, May 2006.


