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Abstract

This paper presents a polynomial time algorithm for determining whether a given univariate
rational function over an arbitrary field is the composition of two rational functions over that
field, and finds them if so.

1 Introduction

The problem of determining if a function can be written as the composition of two “smaller” functions
f(z) = g(h(z)) has been of interest for a long time. Until now, work has focused on the univariate,
polynomial version of this problem: When can the polynomial f(z) be written as g(h(z)), where
both g(z) and h(z) are polynomials? The original work in the symbolic computation community
was presented in 1976 [2], but the algorithms, which in the worst case required exponential time,
were not published until 1985 [3]. This was soon followed by the work of Kozen and Landau [11] who
provided a polynomial time algorithm for decomposition of polynomials over fields of characteristic
zero, which did not require factorization of polynomials. Some additional improvements and analysis
of the positive characteristic case where then presented by von zur Gathen [23, 21, 22]. A number
of other papers have since been published on different extensions and variations of this problem [1,
7,5, 4].

All of these results deal with polynomial decomposition. The generalization to rational functions,
which has significantly wider applicability, appears to be a far harder problem. Notice that in the
polynomial case, the degree of g and A must divide the degree of f. This limits the number of
different polynomials that must be considered and even allows one to solve the problem by looking
for solutions of non-linear algebraic equations (admittedly in exponential time). When f, g and h
are rational functions, there is no immediately obvious bound on the degrees of the numerators of
g and A, since the numerator and denominator of g(h(z)) could have a common factor. In fact, no
such common factor can arise, as we prove below.

Furthermore, we demonstrate that in the rational function case, g and A can be determined from
f in polynomial time. This algorithm is valid even if the charactertistic of the field is positive,
which for the polynomial case is not a completely resolved problem. One other difference between
our approach and other approaches, is that in this paper we obtain a decomposition over the field
of definition of f(z). Thus we may fail to find rational function decompositions that exist over
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algebraic extensions. Such issues do not arise for the corresponding problem of polynomials over a
field of characteristic zero, but do for polynomials over fields of finite characteristic.

Section 2 provides some general background material. In Section 3 we present the new algo-
rithms for rational function decomposition. Finally, we comment on previous work in and give some
conclusions in Section 4.

2 Preliminaries

Let f(z) be a rational function in z with coefficients in a field k. We extend the notion of degree of a
polynomial by defining the degree of f(z), denoted by deg f, to be the maximum of the polynomial
degrees of the (relatively prime) numerator and denominator of f. The degree of the field k(z) over
k(f(z)) is the degree of f, if f is a polynomial. This remains true even if f is a rational function,
as shown by the following proposition.

Proposition 1 Let k(z) be an eztension of the field k(f(z)) where f(z) is a rational function of
degree n. Then [k(z):k(f(z))] = n.

Proof: Denote the numerator of f(z) by p(z) and the denominator by g(z). We can instead consider
the isomorphic fields k(y) = k(f(z)) and

k(y)[z]/(p(z) - ya(2)) = k(2).

P(z,y) = p(z) - yq(z) is primitive as a polynomial in y since p(z) and g(z) are relatively prime.
Since it is linear in y it is irreducible. Therefore, the degree of z over the field k(y) is

deg, P(z,y) = max(deg p, degq) = deg f.

g

Let f(z) = g(h(z)) be a rational function decomposition over a field k. The following proposition
provides bounds on the degrees of g(z) and h(z) in terms of the degree of f(z). In principle, this
result gives an algorithm for rational function decomposition, albeit an exponential time algorithm.

Proposition 2 Assume f(z), g(z) and h(z) are elements of k(z) such that f(z) = g(h(z)). Then

deg f = (deg g) - (deg h)
Proof:

Consider the fields shown in Figure 1. The degrees of the extensions are [k(z):k(h(z))] = deg A,
(k(z): k(f(z))] = deg f and [k(y) : k(g(y))] = degyg. k(h(z)) is an algebraic extension of k(f(z))
inside k(z). Thus,

deg f = [k(z): k(f(2))]
= [k(z): k(h(2))] - [k(h(z)): k(f(2))]
= [k(z): k(h(z))] - [k(y): k(g(v))]
= (degh) - (degy),
using Proposition 1. O
A function that is the ratio of to linear polynomials is called a fractional linear function, viz.

A(z) = (az + b)/(cz + d).



k(z)

k(h(z)) ~=— k(y)

E(f(2)) ~=— k(g(y))

" Figure 1: Fields involved in decomposition

Fractional linear functions have degree 1. If two fields k(fi(z)) and k(f2(z)) are isomorphic then
there exist rational functions such that

fi(z) = Ri(f2(z))
fa(z) = Ra(f1(2)) = Ra(Ru(f2(2)))

By Proposition 2 (deg R;) - (deg R2) = 1 and Ry and R; must be fractional linear functions.
We say that two rational functions are linearly equivalent if there exists fractional linear functions

A1 and Az such that
f(z) = Mi(g(r2(2)))-

Two decompositions (polynomial or rational function)

f=g910920::-09m
=hyohzo---0h,

are said to be equivalent if m = n and g¢; is linearly equivalent to A;.
The link between field structure and function decomposition comes from Luroth’s theorem, which
was proven by Liroth [15] for ¥ = C and by Steinitz in general [18].

Proposition 3 (Liiroth) If k ¢ K C k(z) then K = k(g(z)) where g(z) is a rational function in
r over k.

An elementary proof of Liiroth’s theorem may be found in van der Waerden [20]. An effective
proof appears in Weber [24] §124, and in English in Schinzel [17)].

The key insight in studying functional decomposition is the following corollary of Liiroth’s the-
orem.

Proposition 4 Let k be an arbitrary field and f(z) a rational function over k. There is a one to one
correspondence between the lattice of subfields between k(z) and k(f(z)) and the rational function
decompositions of f(z) up to equivalence.

Proof: If f(z) has a nontrivial decomposition f(z) = g(h(z)), then k(h(z)) will be an intermediate
field between k(z) and k(f(z)). Conversely, if K is field intermediate between k(z) and k(f(z))
then it must be of the form k(h(z)), where h(z) is a rational function in z. k(h(z)) is canonically
isomorphic to k(y) as shown in Figure 1, where pi(y) — h(z). k(f(z)) is intermediate between



k(y) = k(h(z)) and k, so by Liiroth’s theorem, there is a rational function g(y) such that k(f(z)) =
k(g(y)). Thus f(z) is linearly equivalent to g(h(z)). a

The following two propositions follow from Proposition 2 and are quite useful.

Propeosition 5 Let k be an arbitrary field and g1 and g, relatively prime elements of k[z]. Then
for all polynomials h(z) € k[z], g1(h(z)) and ga(h(z)) are relatively prime.

Proof: Without loss of generality assume that degg;, > degg. Define g(z) to be the ratio of g;(z)
and g2(z). Since g1 and g, are relatively prime and degg; > deg g2, deg g(z) = degg;. Let

91(h(2)) _ fi(2)
g2(h(z))  fa(z)’

f(z) = g(h(z)) =
where f; and f; are relatively prime. Thus

deg fi(z) < deggi(h(z)) = (degg;) - (deg h),

where equality holds if and only if g;(h(z)) and g2(h(z)) are relatively prime. Furthermore, deg f; >
deg f2 so deg f = deg f1. By Proposition 2

deg f(z) = (deg g) - (deg h) = (deg g1) - (deg h)

so deg fi(z) = (deg g1) - (deg k) and g;(h(z)) and gz2(h(z)) are relatively prime. g

The argument of previous proposition applies equally when h(z) is a rational function. In this
case, it is best to view g, and g, as bivariate homogeneous functions of the same degree, which gives
the following result.

Proposition 6 Let g, and g2 be relatively prime, homogeneous polynomials in two variables. If hy
and hy are also relatively prime polynomials, then g1(h1, h2) and g2(h1, h2) are also relatively prime.

Notice that the requirement that g; and g2 be homogeneous is necessary as the following example

shows:
alz,y)y=z+1

gz, y)=y—2 gi(h1,hg) =t +1
hi(t) =t g2(h1,ha) =2 -1
ha(t) =t + 1

As a consequence of Proposition 6, rational function decomposition can be viewed as a coupled
polynomial decomposition problem, viz.

fl(zv y) = 91(’31(31 y), hﬁ(z$ y)))
f2(zv y) b gﬁ(hl(zv y)v h?(:’ y))’

where f;, g; and h; are homogeneous polynomials and the pairs {f1, f2}, {91, 92} and {hy, h2} have
the same degree.

3 Rational Function Decomposition

The bounds of Proposition 2 provide significant insight into rational function decomposition. In
particular, if the degree of f(z) is prime, then it has no non-trivial decomposition. A simple, expo-
nential time algorithm for determining a decomposition can be constructed by using undetermined



coefficients. Assume that deg f = rs and we are looking for a decomposition f(z) = g(h(z)), where
degg = r and deg h = s. We can write g and h in terms undetermined coefficients, e.g.

gn(z) _  goz"+q1z" "' 4---+g,
9d(z) ~ gr412" + @r422" " o+ g2rgr

9(z) =

There are 2r + 2 undetermined coefficients in g(z) and 2s + 2 in h(z). By Proposition 6, we can
treat the numerator and denominator of f(z) independently. Equating the coefficients of z* in the
following equations gives a system of 2rs + 2 algebraic equations in the g; and h;.

foz™ 4o+ fru
= gohn(2)" + -+ +grha(z)"
fret12™ + o+ f2rs41
= gr+1hn(2)" + - + 92, 41ha(z)"

(1)

Any decomposition of f(z) is a solution to this system of equations. Conversely, any solution to this
system for which deg g = r and degh = s gives a decomposition of f(z). However, this approach is
not very efficient. Nonetheless, it does demonstrate the existence of an algorithm.

The efficient techniques that have been developed all tend to be divided into two phases, com-
puting h(z) and then given h(z) computing g(z). (The hard part is finding h(z).) We discuss the
phases out of order for simplicity. Determining g from f and h is discussed in Section 3.1, while the
determination of h is discussed in Section 3.2.

3.1 Determining g from f and h

The most direct way to obtain g(z) such that f(z) = g(h(z)), when f and h are known is to explicitly
solve the linear equations for the coefficients of g(z) that arise from (1). This approach is discussed
in detail by Dickerson [5, 4] as “computing the left composition factor.” In this section we present
a simple analytic technique that relies on reversion of power series and is valid when the coefficient
field has characteristic 0.

Let A; be a fractional linear function such that f = X; o f has a zero at 0. Define 4 and X
similarly. If f = § o h then

f(2) = (A7 o gon)oh(z),

and g(z) = (A;l 0 g o Ay)(z). So without loss of generality we can assume f(0) = A(0) = 0.
h(z) has a power series expansion of the form

h(z) = htz‘ + h¢+1zt+l + .-
Using standard techniques [10] we can obtain a power series in ¢ for z in t = h(z)
2= h7(t) = Wt/ + hpt? 4

Replacing z by this power series in the power series for f(z) we get a power series in t. If there
are any fractional powers then there does not exist a “left composition factor.” Compute the first
2r terms of the power series expansion of f(h~!(z)) at 0. The (r,r) Padé approximate [16] to this
power series is the only possible candidate for g(z). This power series technique may be easier to
program than Dickerson’s technique, and using fast power series techniques [12] it might have better
asymptotic complexity.



k(z) Ela]/(f(a)-t)=F
k(h(z)) E[B)/(h(B) - )
k(f(z)) ——— k() =E

Figure 2: Field Structure

3.2 Determination of h

For rational function decomposition, we determine h(z) by explicitly determining a subfield of k(z)
and then use a constructive version of Liroth’s theorem to compute a generator for the subfield.
The tower of fields we will be working with is shown in Figure 2. Note that the fields on the same
horizontal line in Figure 2 are isomorphic. By Proposition 3 every subfield of F is of the form
k(h(z)) and there exists a rational function g such that g(h(z)) = f(z), since k(f(z)) lies between
k(y) = k(h(z)) and k. Thus every non-trivial subfield of F yields a non-trivial decomposition of
f(z)-

To illustrate our procedure consider the following example:

2+1 2+1

fz) = (22-2)°(;2+2)
_ _22*+622+5 _ fa(2)
T ozt 4+6z24+7  faz)’

where f, and f; are relatively prime. We want to find an intermediate field between k(z) and
k(f(z)). Our first step is to convert these fields to a more conventional form. If £ = k(t) = k(f(z))
and E[a] = k(z) then a satisfies the minimal polynomial

f(t,2) = fa(2) = tfs(Z) = (t +2)Z* + (6t +6)Z% + Tt + 5.
This polynomial’s factorization over E[a] is
f(t,2) = (Z - a)(Z + a)((t +2)Z° + (t + 2)a” + 6(t + 1)). (2)

Over a proper subfield of E[a], f(t, Z) will not factor so much. In particular, over a subfield it
cannot have a linear factor. Given (2), the only possible factors of f(t, Z) over the subfield E[3] are
Z —a?® and ((t +2)Z2 + (t + 2)a® + 6(t + 1)). Thus E[B] must contain the coefficients of these two
polynomials. If E[d] is the smallest subfield of E[a] for which f(t, Z) has such a factorization, then
it must be generated by the coefficients of these two polynomials. In this case we can assume that
B = a3, whose minimal polynomial is

h(t,Z) = (t +2)Z2% + (6t + 6)Z + Tt + 5. (3)

To convert E[3] back to the form k(f(z)) we observe that the elements of E[3] are rational
functions in z over k by Liroth’s theorem. When t is replaced by f(z), (3) must have linear factors,



viz.

- 2
A(f(2),2) = (2 - 2%) (z - Z; I:)

which leads to the intermediate fields k(z?) and k((3z? + 4)/(2z2 + 3)). These two fields are
isomorphic by the fractional linear map z — (3z +4)/(2z + 3). Using the k(z?) as the intermediate
field, we have h(z) = z2, and thus the irreducible decomposition:

2z + 622 +5 222+ 6z+5
—_ = - oz
4+ 62247 z24+6z+4+7

The original decomposition is equivalent to this one since
2i+1 (z + 1) 7
= or
242 z+2
22+1 ( 2z2+6z+5) (—2z+1
22-2 \ z2+6z+7/)°\z-1 )

This basic approach is applicable to the general problem except for deciding which factors of
f(t, Z) should be recombined to generate a factorization over a subfield of Efa]. We could try all
possible combinations of factors of f(¢, Z) until we find one that yields a proper subfield of E[a].
However, in the worst case this would require an exponential number of trials. Instead, we use a
version of Landau and Miller’s algorithm BLOCKS in [14] to find a non-trivial block, which will
generate a proper subfield of E[a]. As pointed out by Kozen and Landau [11], this algorithm only
requires that the extension Ea]/E be separable. Kozen and Landau may need to examine as many
as O(n'°3") non-trivial blocks to find a decomposition. However, in our case, any non-trivial block
will give a rational function decomposition. These techniques allow us to decide which factors of
f(t, Z) should be recombined in polynomial time.

Furthermore, observe that Trager’s polynomial time reduction of factorization over algebraic
extensions [19], which was used by Landau to show that factoring over algebraic number fields is
polynomial time [13] is applicable here also, so the factorization of f(t, Z) over the function field
E[a] can be done in polynomial time.

The coefficients of such a factorization generate the intermediate field E[(]. Since we are seek-
ing any intermediate field, a single coefficient that is not in E suffices. The minimal polynomial
of for that coefficient can be determined using resultants and square free decompositions to give
E[B)/(ps(t, B)). h(z) is then deduced from a linear factor of ps(f(z), Z), which need only be fac-
tored over k. (Factoring bivariate polynomials is polynomial time by Kaltofen [9] )

It is worth commenting on the practicality of this algorithm. Its dominant cost is the factorization
of f(t, Z) over k(t)[a], which is about as costly as factoring a polynomial of degree (deg f)?. Given
the practical difficulties of factoring polynomials of degree greater than about 100, it seems that it

will be very difficult to determine the decomposition of f(z) if the degree of f(z) is greater than
about 10.

3.3 Characteristic p case

Determining any decomposition, as opposed to determining a decomposition with a particular degree
pattern over a field of characteristic p is only slightly more difficult than the characteristic 0 case,
using the technique of Section 3.2. Assume that chark = p and f(z) is a rational function over k.
The decomposition of f(z) may no longer be unique, but Proposition 4 shows that there is still a one
to one correspondence between the inequivalent decompositions of f(::) and the fields intermediate
between k(z) and k(f(z)).



k(z)
Ey = k(zf - 2) \

= k(:P+l)

<

Eo = k(f(2))
Figure 3: Field Structure for f(z) = zP +P" — gP*+1 _ gp’+p 4 zp+1

Referring to Figure 2, let f(t, Z) be the (irreducible) minimal polynomial of a over E. If f(t, Z)
is separable, then E[a] is separable over E and a subfield can be computed using the techniques of
the previous section. If f(t,Z) is inseparable then it can be written as

f(i,Z) = f(t,Z”),

for some positive value of u. Furthermore, f is separable over E. Clearly, the field E’[a”"] lies
between E[a] and E and thus a linear factor of f(f(z), Z) will give a decomposition factor of f(z).
Since E[a?” ] is separable over E, the techniques of the previous section can be used to find additional
right decomposition factors. Left decompositions factors can be found from the fields E[a?'], which
lie between E[a] and E[a?”] for 1 < i < u.

It is worth noting that even the pathological example suggested by Dorey and Whaples [6]

fle) = 2P0 (22 +2) 0 (22 - 2),
= (28" — 2P Pl — 2P 4 £) 0 2P,

= gP HP7 _ pP7HL _ ppl4p | el
is can be handled straightforwardly, since the derived polynomial
F — 70°+p? _ zp’+p _ zP°+1 p+1 _
ft,2)=2 Z Z +2Z

is separable. The fields associated with the two decompositions of f(z) are shown in Figure 3.

In the case of polynomial decomposition, notice that f(t, Z) is inseparable if and only if f(z) is
a rational function of z?. Thus the distinction made by von zur Gathen [21, 22] between “tame”
and “wild” might more appropriately be made on whether or not f(z) is a rational function in z?.

Note that this approach only finds some decompasition of f(z). It cannot find a prescribed one.
In particular, if one is looking for a decomposition f(z) = g(h(z)) where p|deg g then the extension
k(z)/k(f(z)) may be inseparable and we would thus have no algorithm for finding intermediate
fields. This problem is raised in [22].



4 Conclusions

The technique is used to find the h(z) in Section 3.2 is reminiscent of the technique proposed by
Kozen and Landau [11] for decomposition over arbitrary fields. However, they studied intermediate
fields between k(a)/(f(a)) and k. While there is an intermediate field between k(a) and k whenever
f(z) is decomposable, the existence of an intermediate field does not guarantee a decomposition. By
using intermediate fields between fields k(t)[a]/(f(a)—t) and k(t), we avoid much of the complexity
of their approach since any such intermediate field does lead to decomposition of f(z).

It is tempting to conjecture that Propositions 5 and 6 can be generalized to more variables, but
the straightforward generalization is not true, as pointed out in Section 2. It would be interesting
to know in what way it can be generalized.

This work has benefited from discussions with Barry Trager and Dexter Kozen. Susan Landau’s
comments on an earlier version of this paper where quite helpful. The diagrams in this paper were
typeset using Paul Taylor’s commutative diagram macros for KTgX.
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