
Figure S3.1. Heatmap of 214 genes differentially expressed following injection with LPS.  Scale is 
log2-fold change, with lower expression in purple and higher expression in dark orange.   

 

  



Figure S3.2. GC edge between period and takeout.  Windows in which a significant Granger Causal 
relationship is established are colored in blue and are contained in a dashed blue box marking the 
plot area, non-significant windows are grey below the plot.   

 

Figure S3.3. GC edge between Smvt and takeout. Windows in which a significant Granger Causal 
relationship is established are colored in blue and are contained in a dashed blue box marking the 
plot area, non-significant windows are grey below the plot.   

 

  



Figure S3.4. GC filtered network. The network was pruned to only the edges with at least three 
consecutive windows of GC significance, have a negative GC relationship, and excludes genes 
identified with JTK_Cycle. 

 

  



Figure S3.5. GC edge between Claspin and UGP. Windows in which a significant Granger Causal 
relationship is established are colored in blue and are contained in a dashed blue box marking the 
plot area, non-significant windows are grey below the plot.   

 

Figure S3.6. GC edge between LpR2 and fbp. Windows in which a significant Granger Causal 
relationship is established are colored in blue and are contained in a dashed blue box marking the 
plot area, non-significant windows are grey below the plot.   

 

 

Figure S3.7. Down-regulated pathway corresponding to ‘mitotic DNA replication checkpoint’ 

  



Figure S4.1 - Taxa relative abundance frequencies - Stacked bar plots and box plots depicting 
relative abundance frequencies of the top ten most abundant taxa for each of five taxonomic levels. 
Relative abundance frequencies are plotted for taxa levels from both the non-rarefied and the 
rarefied datasets. 
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Figure S4.2 - Correlation plot between non-rarefied and rarefied taxa. Heatmap depicting the 
correlations between non-rarefied (NonR) and rarefied (R) taxa show that the same taxa from both 
non-rarefied and rarefied datasets are strongly correlated, followed by taxa belonging to the same 
clade. 

 

 
  



Figure S4.3 - Proportion variance estimates for kinship and cage for all OTUs. Proportion of 
variance for each taxon that can be explained by additive effects (heritability) using a kinship or 
Genomic Relationship Matrix (GRM) (green), cage effects (orange), and unexplained residual effects 
(blue). Taxa marked with a red asterisk have statistically suggestive QTL hits (adj. p-value < 0.1).  

 

 

  



Figure S4.4 - IPA network for Bacillales QTL - Genes circled in purple are all part of the lipid 
metabolism pathway. Genes colored in gray belong to our dataset whereas un-colored genes are 
other closely associated genes added by IPA. Refer to Tables S4.7A for a list of these associated 
genes from our dataset. 

 

  



Supplemental Material 

Variation of gut microbiota in rarefied data 
Samples were rarefied down to 17,410 sequences, which was the number of 

sequences in the sample with the least number of sequences. After keeping only the 
taxa present in at least 50% of samples in the rarefied dataset, we ended up with 7 phyla, 
9 classes, 11 orders, 20 families, and 27 genera. Similar to the non-rarefied data, the 
most abundant taxa at the phylum level were Firmicutes (average relative abundance = 
48.65%) and Bacteroidetes (46.39%) (Figure S1). The top 8 most abundant genera are 
present in at least 99% of the samples. The two most abundant genera were an 
unidentified genus within Bacteroidales family S24-7 (average relative abundance = 
43.87%, ranging from 1% to 88%) and another unidentified genus within Clostridiales 
(32.35%, ranging from 4% to 78%) (Figure S1). 

From our rarefied taxa, the class Mollicutes was shown to be the most highly 
heritable at 49% with a p-value of 0.012. All other rarefied taxa classified as statistically 
suggestive fall within the class of Mollicutes (unidentified genus in order RF39, and 
genus Anaeroplasma), suggesting a strong heritability pattern for Mollicutes. 

Lack of effect of data rarefaction in our analysis 
When dealing with uneven sequence counts across samples, microbiome studies 

commonly use rarefaction as a data normalization approach, consisting of randomly 
selecting from each sample an equal number of sequences (GOODRICH et al. 2014). This 
number is usually equal to the total sequence count of the sample with the smallest 
number of sequences in the dataset. It has been argued, however, that rarefaction is not 
an ideal approach when dealing with uneven sequence counts (MCMURDIE AND 
HOLMES 2014). One of the major disadvantages of this method is valuable data is being 
discarded. This is especially apparent when normalization attempts to treat differentially 
abundant taxa in an equal manner (WEISS et al. 2017). As an alternative to rarefaction, 
we decided to run our analysis on non-rarefied data, while using sequence counts per 
sample as a covariate. This alternative approach should increase power by retaining the 
full data set (MCMURDIE AND HOLMES 2014). 

In order to check whether our non-rarefied dataset would give different results 
from using rarefaction, we estimated heritability and ran QTL mapping analysis in 
parallel on rarefied data and non-rarefied data. Samples were rarefied down to 17,410 
sequences, which was the minimum number of reads sequenced per sample. After 
keeping only the taxa present in at least 50% of samples in the rarefied dataset, we ended 
up with 7 phyla, 9 classes, 11 orders, 20 families, and 27 genera. The most predominant 
taxa and their abundances in the rarefied dataset were extremely similar to that of the 
original non-rarefied dataset. The most abundant taxa at the phylum level were 
Firmicutes (average relative abundance = 48.65%) and Bacteroidetes (46.39%) (Figure 



S1). The top 8 most abundant genera are present in at least 99% of the samples. The 
two most abundant genera were an unidentified genus within Bacteroidales family S24-
7 (average relative abundance = 43.87%, ranging from 1% to 88%) and another 
unidentified genus within Clostridiales (32.35%, ranging from 4% to 78%) (Figure S1). 

From our rarefied taxa, the class Mollicutes was shown to be the most highly 
heritable at 49% with a p-value of 0.012. All other rarefied taxa classified as statistically 
suggestive fall within the class of Mollicutes (unidentified genus in order RF39, and 
genus Anaeroplasma), suggesting a strong heritability pattern for Mollicutes. 

The strong similarity between the non-rarefied and rarefied datasets is also 
reflected in the high Pearson correlation in the relative common taxa abundances across 
the two, revealing that the same taxa from both non-rarefied and rarefied datasets 
always group closer together than with other taxa, followed by taxa belonging to the 
same clade (Figure S2). 

A concern with performing microbiome analysis is that the standard data 
processing method of rarefaction of counts causes notable losses of data and loss of 
power leading to missed associations (MCMURDIE AND HOLMES 2014). We evaluated 
the impact of rarefaction on microbial abundances by clustering rarefied and non-
rarefied taxa together by correlation of frequency of counts within each taxonomic 
level. The majority of the rarefied taxa correlated with their non-rarefied counterparts 
(Figure S2). Regardless of this similarity, we conducted all analysis in parallel for non-
rarefied and rarefied datasets. Looking at the significantly associated QTLs within 
various taxa from non-rarefied and rarefied datasets, we notice some differences in the 
significance of the QTLs and the chromosome in which they reside (Table S2A-B). 
While several microbial taxa associations with QTLs were consistent across non-
rarefied and rarefied datasets, there were some instances of statistically significant 
associations being found in only one of the datasets. 
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