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Abstract

Time series models are often constructed by combining nonstationary effects such as trends
with stochastic processes that are believed to be stationary. Although stationarity of the un-
derlying process is typically crucial to ensure desirable properties or even validity of statistical
estimators, there are numerous time series models for which this stationarity is not yet proven.
One of the most general methods for proving stationarity is via the use of drift conditions;
however, this method assumes ϕ-irreducibility, which is violated by the important class of
count-valued observation-driven models. We provide a formal justification for the use of drift
conditions on count-valued observation-driven models, and demonstrate by proving for the
first time stationarity and ergodicity of several models. These include the class of Generalized
Autoregressive Moving Average models, which contains a number of important count-valued
and nonlinear models as special cases.

Keywords: ergodicity; drift conditions; stationary; irreducibility; autoregressive moving
average model.

1 Introduction

Stationarity is a fundamental concept in time series modeling, capturing the idea that the
future is expected to behave like the past; this assumption is inherent in any attempt to forecast
the future. Many time series models are created by combining nonstationary effects such as
trends, covariate effects, and seasonality with a stochastic process that is known or believed
to be stationary. Alternatively, they can be defined by partial sums or other transformations
of a stationary process. The properties of statistical estimators for particular models are then
established via the relationship to the stationary process; this includes consistency of parameter
estimators and of standard error estimators (Brockwell and Davis 1991, Chap. 7-8).

However, (strict) stationarity can be nontrivial to establish, and many time series models
currently in use are based on processes for which it has not been proven. Strict stationarity
(henceforth, “stationarity”) of a stochastic process {Xn}n∈Z means that the distribution of the
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random vector (Xn, Xn+1 . . . , Xn+j) does not depend on n, for any j ≥ 0 (Billingsley 1995,
p.494). Sometimes weak stationarity (constant, finite first and second moments of the process
{Xn}n∈Z) is proven instead, or simulations are used to argue for stationarity.

One approach to establishing strict stationarity and ergodicity (defined as in Billingsley
1995, p.494) is via application of Lyapunov function methods (also known as drift conditions)
to a Markov chain that is related to the time series model. Such a strong statement of
stationarity is quite useful, since it immediately implies consistent estimation of the mean and
lagged covariances of the process, and more generally the expectation of any integrable function
(Billingsley 1995, p.495). However, Lyapunov function methods assume ϕ-irreducibility, which
is violated by count-valued observation-driven time series models. Such models are important
since (due to the simplicity of evaluating the likelihood function) they are typically the best
option for modeling very long count-valued time series. We provide a formal justification for the
use of drift conditions on count-valued observation-driven models. In particular, we introduce
small random innovations to the process that induce ϕ-irreducibility, and we prove the validity
of obtaining stationarity and ergodicity results for the perturbed instead of original process.
Our results apply to the entire class of observation-driven models. A similar perturbation
method for a specific example is used in Fokianos et al. (2009); our results for our perturbation
approach are much more general, and our justification for analyzing the perturbed process is
unrelated to that of Fokianos et al. (2009).

We demonstrate our approach by proving for the first time stationarity and ergodicity of
several important models, including Generalized Autoregressive Moving Average (GARMA)
models (Benjamin et al., 2003). GARMA models generalize autoregressive moving average
models to exponential-family distributions, naturally handling count- and positive-valued data
among others. They can also be seen as an extension of generalized linear models to time series
data. The numerous applications of these models include predicting numbers of births (Léon
and Tsai, 1998), modeling poliomyelitis cases (Benjamin et al., 2003), and predicting valley
fever incidence (Talamantes et al., 2007). The main stationarity result that currently exists
for GARMA models is weak stationarity in the case of an identity link function; unfortunately
this excludes the most popular of the count-valued models (Benjamin et al., 2003). Zeger and
Qaqish (1988) have also used a connection to branching processes to show stationarity and
ergodicity for a special case of the purely autoregressive Poisson log-link GARMA model. The
stationarity of particular models related to Poisson GARMA has also been addressed by Davis
et al. (2003) (log link case) and Ferland et al. (2006) (linear link case).

Lyapunov function methods have been previously applied to prove stationarity and ergod-
icity for a variety of real-valued time series models, including for SETAR models by Chan and
Tong (1985), for multivariate ARMA models by Bougerol and Picard (1992), for threshold
AR-ARCH models by Cline and Pu (2004), and for integrated GARCH models by Liu (2009).
Most of these papers use the Lyapunov exponent, which can give a sufficient and necessary
condition for stationarity (Bougerol and Picard, 1992; Cline and Pu, 2004; Liu, 2009); how-
ever, this condition has a complex form that can be difficult to reduce to simple ranges on the
parameter values. We instead take the constructive approach used, e.g., in Chan and Tong
(1985), which is much more straightforward to understand and apply. It gives sufficient but
not necessary conditions for stationarity; however, these conditions often have a much simpler
form than those given by the Lyapunov exponent.

In Section 2 we describe Lyapunov function methods and give our justification for using
these methods on count-valued time series models. In Section 3 we illustrate by application to
a specific linear count-valued model, and in Section 4 we use our method to prove stationarity
for the class of GARMA models.
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2 Drift Conditions for Observation-Driven Models

For a real-valued process {Yn}n∈N, denote Yn:m = (Yn, Yn+1, . . . , Ym) where n ≤ m. An
observation-driven time series model for {Yn}n∈N has the form:

Yn|Y0:n−1
ind∼ ψν(µn) (1)

µn = hθ,n(Y0:n−1) (2)

for some function hθ,n parameterized by θ and some density function ψν (typically with respect
to counting or Lebesgue measure) that can depend on both time-invariant parameters ν and the
time-dependent quantities µn (Zeger and Qaqish, 1988; Davis et al., 2003; Ferland et al., 2006).
Observation-driven models are desirable because the likelihood function for the parameter
vector (θ, ν) can be evaluated explicitly. The alternative class of parameter-driven models
(Cox, 1981; Zeger, 1988), by contrast, incorporates latent random innovations which typically
make explicit evaluation of the likelihood function impossible, so that one must resort to
approximate inference or computationally intensive Monte Carlo integration over the latent
process (Chan and Ledolter, 1995; Durbin and Koopman, 2000; Jung et al., 2006). These
methods do not scale well to very long time series, so observation-driven models are typically
the best option in this case.

Observation-driven models are usually constructed via a Markov-p structure for µn, mean-
ing that for n ≥ p

µn = gθ(Yn−p:n−1, µn−p:n−1) (3)

for some function gθ and for fixed initial values µ0:p−1. This structure implies that the vector
µn−p:n−1 forms the state of a Markov chain indexed by n. In this case it is sometimes possible
to prove stationarity and ergodicity of {Yn}n∈N by first showing these properties for the mul-
tivariate Markov chain {µn−p:n−1}n≥p, then “lifting” the results back to the time series model
{Yn}n∈N. In particular, showing that {µn−p:n−1}n≥p is ϕ-irreducible, aperiodic and positive
Harris recurrent (defined below) implies that it has a unique stationary distribution π, and
that if µ0:p−1 ∼ π then {µn−p:n−1}n≥p is a stationary and ergodic process.

That {Yn}n∈N is also stationary and ergodic is seen as follows. Conditional on {µn}n∈N,
the Yn are independent across n and each Yn has a distribution that is a function of only
µn:n+p (since Yn ∼ ψν(µn) and since the values µn+1:n+p depend on Yn). Therefore there is a
deterministic function f such that one can simulate {Yn} conditional on {µn} by: (a) generating
an i.i.d. sequence of Uniform(0, 1) random variables Un, and (b) setting Yn = f(µn:n+p, Un).
The multivariate process {(µn−p:n−1, Un)}n≥p is stationary and ergodic, and so Thm. 36.4 of
Billingsley (1995) shows that its transformation {Yn} is also stationary and ergodic.

Next we describe the use of drift conditions to show stationarity and ergodicity of ϕ-
irreducible processes. For a general Markov chain X = {Xn}n∈N on state space S with
σ-algebra F define Tn(x,A) = Pr(Xn ∈ A|X0 = x) for A ∈ F to be the n-step transition
probability starting from state X0 = x. The appropriate notion of irreducibility when dealing
with a general state space is that of ϕ-irreducibility, since general state space Markov chains
may never visit the same point twice.

Definition 1. A Markov chain X is ϕ-irreducible if there exists a nontrivial measure ϕ on F
such that, whenever ϕ(A) > 0, Tn(x,A) > 0 for some n = n(x,A) ≥ 1, for all x ∈ S.

The notion of aperiodicity in general state space chains is the same as that seen in countable
state space chains, namely that one cannot decompose the state space into a finite partition of
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sets where the chain moves successively from one set to the next in sequence, with probability
one. For a more precise definition, see Meyn and Tweedie (1993), Sec. 5.4.

We need one more definition before we can present drift conditions.

Definition 2. A set A ∈ F is called a small set if there exists an m ≥ 1, a nontrivial measure
ν on F , and a λ > 0 such that for all x ∈ A and all C ∈ F , Tm(x,C) ≥ λν(C).

Small sets are a fundamental tool in the analysis of general state space Markov chains because,
among other things, they allow one to apply regenerative arguments to the analysis of a chain’s
long-run behavior. Regenerative theory is indeed the fundamental tool behind the following
result, which is a special case of Theorem 14.0.1 in Meyn and Tweedie (1993). Let Ex(·) denote
the expectation under the probability Px(·) induced on the path space of the chain when the
initial state X0 is deterministically x.

Theorem 1. (Drift Conditions): Suppose that X = {Xn}n∈N is ϕ-irreducible on S. Let
A ⊂ S be small, and suppose that there exist b ∈ (0,∞), ε > 0, and a function V : S → [0,∞)
such that for all x ∈ S,

ExV (X1) ≤ V (x)− ε+ b1{x∈A}. (4)

Then X is positive Harris recurrent.

The function V is called a Lyapunov function or energy function. The condition (4) is
known as a drift condition, in that for x /∈ A, the expected energy V drifts towards zero by at
least ε. The indicator function in (4) asserts that from a state x ∈ A, any energy increase is
bounded (in expectation).

Positive Harris recurrent chains possess a unique stationary probability distribution π. If
X0 is distributed according to π then the chain X is a stationary process. If the chain is also
aperiodic then X is ergodic, in which case if the chain is initialized according to some other
distribution, then the distribution of Xn will converge to π as n→∞.

Hence, the drift condition (4), together with aperiodicity, establishes ergodicity. A stronger
form of ergodicity, called geometric ergodicity, arises if (4) is replaced by the condition

ExV (X1) ≤ βV (x) + b1{x∈A} (5)

for some β ∈ (0, 1) and some V : S → [1,∞) (note the change in the range of V ). Indeed, (5)
implies (4). Either of these criteria are sufficient for our purposes.

A problem can occur, however, when we attempt to apply this method for proving sta-
tionarity to an observation-driven time series model given by (1) and (3): the Markov chain
{µn−p:n−1}n≥p may not be ϕ-irreducible. This occurs, for instance, whenever Yn can only take
a countable set of values and the state space of µn−p:n−1 is Rp. Then, given a particular initial
value µ0:p−1 the set of possible values for µn is countable. In fact, the set of states that are
reachable by the Markov chain {µn−p:n−1}n≥p from a fixed starting state is also countable,
and distinct initial values can have distinct sets of reachable locations. For a simpler exam-
ple of a Markov chain with the same property, consider the stochastic recursion defined by
Xn = [Xn−1 + Yn] mod 1 where {Yn}n≥1 are i.i.d. discrete random variables on the rationals
and x mod 1 is the fractional part of x. If X0 is rational, then so is Xn for all n ≥ 1, while
if X0 is irrational then so is Xn for all n ≥ 1. Also, the set of states that are reachable from
any fixed X0 is countable. Chains with these kinds of properties have been studied (Borovkov,
1998), but require much more technical care and model-specific arguments than the method
we present here.
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We will show that one can instead prove stationarity of a slightly perturbed model (the
perturbations are used only for purposes of analysis, not when applying the model). We do
this by returning to the most general framework (1) and (2), and replacing hθ,n with a function
of two inputs:

µ(σ)
n = hθ,n(Y0:n−1, σZ0:n−1) (6)

where the Zi
iid∼ φ are random perturbations having density function φ (typically with re-

spect to Lebesgue measure), σ > 0 is a scale factor associated with the perturbation, and
hθ,n(·, σZ0:n−1) is a continuous function of Z0:n−1 such that hθ,n(Y0:n−1, 0) = hθ,n(Y0:n−1) for
any Y0:n−1. When the perturbed model is constructed to be ϕ-irreducible, one can then apply
drift conditions to prove its stationarity.

We will show that there is no practical impact of proving stationarity for the perturbed
rather than the original model because, loosely speaking, the likelihood of the parameter vector
η = (θ, ν) calculated using (6) converges to the likelihood calculated using (2) as σ → 0. More
precisely, the joint density of the observations Y = Y0:N and first N perturbations Z = Z0:N−1,
conditional on the parameter vector η and the perturbation scale σ is

f(Y, Z|η, σ) = f(Z|η, σ)× f(Y |Z, η, σ)

=

[
N−1∏
n=0

φ(Zn)

]
N∏

n=0

ψν(Yn;µn(σZ))

where µn(σZ) is the value of µ(σ)
n induced by the perturbation vector σZ through (6), with

µ0(σZ) = µ0 being a fixed initial value. The likelihood function for the parameter vector η
implied by the perturbed model is the marginal density of Y integrating over Z, i.e.,

Lσ(η) = f(Y |η, σ) = E

[
N∏

n=0

ψν(Yn;µn(σZ))
∣∣∣Y ]

.

Here we have placed a subscript σ on the likelihood function to emphasize its dependence on
σ. Let the likelihood function without the perturbations be denoted by L, so that

L(η) =
N∏

n=0

ψν(Yn;µn(0)).

Theorem 2. Under regularity conditions (a) & (b) below, the likelihood function Lσ based on
the perturbed model (6) converges uniformly on any compact set K to the likelihood function
L based on the original model (2), i.e.,

sup
η∈K

|Lσ(η)− L(η)| σ→0−→ 0

for any fixed sequence of observations Y = Y0:N . So if L is continuous in η and has a finite
number of local maxima and a unique global maximum on K, the maximum-likelihood estimate
of η based on Lσ converges to that based on L. Also, Bayesian inferences based on Lσ converge
to those based on L, in the sense that the posterior probability of any measurable set A using
likelihood Lσ (and restricting to a compact set) converges to that using L.

Regularity Conditions:
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(a) For any fixed y the function ψν(y;µ) is bounded and Lipschitz continuous in µ, uniformly
in η ∈ K.

(b) For each n, µn(σZ) is Lipschitz in some bounded neighborhood of zero, uniformly in
η ∈ K.

Assumption (a) holds, e.g., for ψν(y;µ) equal to a Poisson or binomial density with mean µ, or
a negative binomial density with mean µ and precision parameter ν. As we will see for several
models, µn(σZ) can easily be constructed to satisfy (b).

Proof. Fixing Y0:N and letting Z = Z0:N−1 be the perturbations,

sup
η∈K

|Lσ(η)− L(η)| = sup
η∈K

∣∣∣∣∣E
N∏

n=0

ψν(Yn;µn(σZ))−
N∏

n=0

ψν(Yn;µn(0))

∣∣∣∣∣
≤ sup

η∈K
E

∣∣∣∣∣
N∏

n=0

ψν(Yn;µn(σZ))−
N∏

n=0

ψν(Yn;µn(0))

∣∣∣∣∣
≤E sup

η∈K

∣∣∣∣∣
N∏

n=0

ψν(Yn;µn(σZ))−
N∏

n=0

ψν(Yn;µn(0))

∣∣∣∣∣
=E sup

η∈K

∣∣∣∣∣
N∏

n=0

βn(σZ)−
N∏

n=0

βn(0)

∣∣∣∣∣ (7)

where βn(·) = ψν(Yn;µn(·)). We will show that the supremum inside the expectation in (7)
converges to 0 almost surely (in Z) as σ → 0; then bounded convergence implies that the
expectation (7) itself converges to 0 as σ → 0, proving Thm. 2.

By assumption the function ψν(y;µ) is Lipschitz continuous in µ, and µn(·) is Lipschitz
continuous in some bounded neighborhood C of 0, uniformly in η ∈ K. In other words, there
exists a finite constant Ln such that, for any z, z′ ∈ C,

sup
η∈K

|µn(z)− µn(z′)| ≤ Ln‖z − z′‖

for each n = 0, 1, . . . , N . Thus, the composition βn(·) = ψν(Yn, µn(·)) is Lipschitz continuous
on C, uniformly in η ∈ K, for each n = 0, 1, . . . , N .

Finally, we apply the usual telescoping-sum argument to conclude that the function
∏N

n=0 βn(·)
is Lipschitz in z ∈ C, uniformly in η ∈ K. For any z, z′ ∈ C,∣∣∣∣∣

N∏
n=0

βn(z)−
N∏

n=0

βn(z′)

∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

k=0

N−k∏
i=0

βi(z)
N∏

j=N−k+1

βj(z′)−
N−k−1∏

i=0

βi(z)
N∏

j=N−k

βj(z′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑

k=0

(βN−k(z)− βN−k(z′))
N−k−1∏

i=0

βi(z)
N∏

j=N−k+1

βj(z′)

∣∣∣∣∣∣
≤

N∑
k=0

 ∏
n6=N−k

sup
µ
ψν(Yn;µ)

 |βN−k(z)− βN−k(z′)|.

By regularity condition (a),

[ ∏
n6=N−k

supµ ψν(Yn;µ)

]
is bounded uniformly in η ∈ K for each

k. The fact that βn(·) is Lipschitz uniformly in η ∈ K for each n = 0, 1, . . . , N then ensures
that

∏N
n=0 βn(·) is Lipschitz on C, uniformly in η ∈ K as desired.
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3 A Poisson Threshold Model

Our first example is a Poisson threshold model with identity link function that we have found
useful in our own applications (Matteson et al., 2010). The model is defined as

Yn|Yn−1, µn−1 ∼ Poisson(µn)
µn = ω + αYn−1 + βµn−1 + (γYn−1 + ηµn−1)1{Yn−1 /∈(L,U)}

where the threshold boundaries satisfy 0 < L < U <∞. To ensure positivity of µn we assume
ω, α, β > 0, (α+ γ) > 0, and (β+ η) > 0. Additionally we take η ≤ 0 and γ ≥ 0, so that when
Yn−1 is outside the range (L,U) the mean process µn is more adaptive, i.e. puts more weight
on Yn−1 and less on µn−1.

We will show that {Yn}n∈N is stationarity and ergodic under the restriction (α+β+γ+η) <
1. This can be proven via extension of results in Fokianos et al. (2009) for a non-threshold
linear model. However, a much simpler proof is as follows, where Xn = µn. First, incorporate
perturbations Zn

iid∼ Uniform(0, 1) as in Theorem 2:

µn = ω + αYn−1 + βµn−1 + (γYn−1 + ηµn−1)1{Yn−1 /∈(L,U)} + σZn−1.

The regularity conditions for Theorem 2 hold since ψν is the Poisson density and µn is linear
in Z0:n−1 with bounded coefficients.

Take the state space of the Markov chain X = {Xn}n∈N to be S = [ ω
1−β−η ,∞). Define

A = [ ω
1−β−η ,

ω
1−β−η +M ] for any M > 0, and define m to be the smallest positive integer such

that M(β + η)m−1 < σ/2. Then

inf
x∈A

Pr(Y0 = Y1 = . . . = Ym−2 = 0|X0 = x) > 0 and

Pr
(
σ(Z0 + Z1 + . . .+ Zm−2) <

σ

2
−M(β + η)m−1

)
> 0.

Therefore infx∈A T
m−1(x,B) > 0, where B = [ ω

1−β−η ,
ω

1−β−η + σ
2 ] and where T is the transition

kernel of the Markov chain X. Taking ν = Unif( ω
1−β−η + σ

2 ,
ω

1−β−η + σ) in Definition 2 then
establishes A as a small set. A similar argument can be used to show ϕ-irreducibility and
aperiodicity.

Taking the energy function V (x) = x,

ExV (X1) = (α+ β)V (x) + γEx[Y01{Y0 /∈(L,U)}] + ηxPx[Y0 /∈ (L,U)] + (ω + σ/2)
≤ (α+ β + γ)V (x) + ηx− ηxPx[Y0 ∈ (L,U)] + (ω + σ/2).

In particular, ExV (X1) is bounded for x ∈ A. Also, as x→∞ we have xPx[Y0 ∈ (L,U)] → 0,
so for sufficiently large M , x > M implies that −ηxPx[Y0 ∈ (L,U)] ≤ σ

2 . Thus for x > M ,

ExV (X1) ≤ (α+ β + γ + η)V (x) + (ω + σ) ≤ νV (x)

for some |ν| < 1 and for M large enough. So ExV (X1) has geometric drift for x 6∈ A.
Although the range of V is [0,∞) here, we can easily replace V by V ∗(x) = x + 1 to get the
range [1,∞). So the chain X is geometrically ergodic, and thus stationary for an appropriate
initial distribution. As shown in Section 2, this implies that the time series model {Yn}n∈N is
also stationary and ergodic.
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4 Generalized Autoregressive Moving Average Mod-

els

Generalized Autoregressive Moving Average (GARMA) models are a generalization of autore-
gressive moving average models to exponential-family distributions, allowing direct treatment
of positive and count-valued data, among others. GARMA models were stated in their most
general form by Benjamin et al. (2003), based on earlier work by Zeger and Qaqish (1988) and
Li (1994). Showing stationarity for GARMA models is harder than for the linear models that
have been the subject of most previous studies (Bougerol and Picard, 1992; Ferland et al.,
2006; Fokianos et al., 2009), since a small change in the transformed mean can correspond to
a very large change on the scale of the observations, causing instability.

We write GARMA models in the following very general form:

Yn|Dn
ind∼ ψν(µn) (8)

g(µn) = W ′
nβ +

p∑
j=1

ρj [g(Y ∗n−j)−W ′
n−jβ] +

q∑
j=1

θj [g(Y ∗n−j)− g(µn−j)] (9)

for some real-valued link function g, where Y ∗n is some modification of Yn that maps it to the
domain of g, where Wn are the covariates at time n, and where

Dn = (Wn−p, . . . ,Wn, Yn−max{p,q}, . . . , Yn−1, µn−q, . . . , µn−1)

are the present covariates and the relevant past information (Benjamin et al., 2003). The
second and third terms of the model (9) are the autoregressive and moving-average terms,
respectively. This model is more general than the class of models developed in Benjamin et al.
(2003) because we do not assume that ψν is in the exponential family. However, we do assume
that E(Yn|Dn) = µn, and we assume a bound on the (2 + δ) moment of Yn in terms of |µn|,
for some δ > 0. We will see that our conditions are satisfied by many standard choices such
as the normal, Poisson, and binomial GARMA models.

We handle three separate cases:

Case 1: ψν(µ) is defined for any µ ∈ R. In this case the domain of g is R and we take Y ∗n = Yn.

Case 2: ψν(µ) is defined for only µ ∈ R+ (or µ on any one-sided open interval by analogy). In
this case the domain of g is R+ and we take Y ∗n = max{Yn, c} for some c > 0.

Case 3: ψν(µ) is defined for only µ ∈ (0, a) where a > 0 (or any bounded open interval by
analogy). In this case the domain of g is (0, a) and we take Y ∗n = min [max(Yn, c), (a− c)]
for some c ∈ (0, a/2).

Valid link functions g are bijective and monotonic (WLOG, increasing). Choices for Case
2 include the log link, which is the most commonly used, and the link

g(µ) = log (eαµ − 1) /α (10)

which has the property g(µ) ≈ µ for large µ. Benjamin et al. (2003) also suggest an unmodified
identity link function g(µ) = µ for Case 2; however, this requires strong restrictions on the
parameters in order to guarantee that µn ≥ 0, so we do not address this or other cases of non-
surjective link functions. Examples of valid link functions for Cases 1 and 3 are the identity
and logit functions, respectively.
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Since the covariates are time-dependent, the model for {Yn}n∈N is in general nonstationary,
and interest is in proving stationarity in the absence of covariates (i.e. for the case Wn = 1).
For simplicity we prove the case p = 1 and q = 1 here; the extension to p > 1 and q > 1 is
sketched at the end of Sec. 4.1. Let ρ = ρ1 and θ = θ1, and denote the intercept by γ, yielding
the perturbed model:

g(µn) = γ + ρ[g(Y ∗n−1)− γ] + θ[g(Y ∗n−1)− g(µn−1)] + σZn−1 (11)

where Zn
iid∼ N(0, 1), for any σ > 0.

For this model, we have the following stationarity results:

Theorem 3. The process {Yn}n∈N specified by the GARMA model (8) and (11) is an ergodic
Markov chain and thus stationary for an appropriate initial distribution for µ0, provided that:

• E(Yn|µn) = µn

• (2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative constants
d1, d2 such that

E
[
|Yn − µn|2+δ

∣∣∣µn

]
≤ d1|µn|r + d2.

• g is bijective, increasing, and

Case 1: g : R 7→ R is concave on R+ and convex on R−, and |ρ| < 1
Case 2: g : R+ 7→ R is concave on R+, and |ρ|, |θ| < 1
Case 3: |θ| < 1; no additional conditions on g : (0, a) 7→ R

In fact we show the stronger condition of geometric ergodicity of the {µn}n∈N process. This
implies geometric ergodicity of the joint {(Yn, µn)}n∈N process, by applying Prop. 1 of Meitz
and Saikkonen (2008).

The following popular models are special cases of Theorem 3:

Corollary 4. Suppose that conditional on µn, Yn is normally distributed with mean µn and
fixed variance τ2 > b that is restricted from below by a known constant b > 0. Then the
GARMA model is ergodic and thus stationary for an appropriate initial distribution for µ0,
provided that |ρ| < 1 and the link function is bijective, increasing, concave on R+, and convex
on R−. For instance, this is satisfied by the identity link or the symmetric power link

g(µ) =

{
µα µ ≥ 0
−|µ|α µ < 0.

for α ∈ (0, 1).

The lower bound on τ2 ensures that the regularity conditions for Theorem 2 are satisfied.

Proof. A normal random variable X with mean µ and variance τ2 satisfies

E(X − µ)4 = 3τ4.

So in our case we can take δ = 2 and r = 0. Theorem 2 applies here, shown as follows. The
normal density ψν satisfies regularity condition (a) when τ2 > b. Also, Xn = g(µn) is linear in
Z0:n−1 and g−1(·) is Lipschitz on any compact set (due to the concavity/convexity restrictions
on g), implying that µn = g−1(Xn) is Lipschitz in Z0:n−1, uniformly on any compact subset of
the parameter space (γ, ρ, θ) ∈ R3.
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The classical ARMA model with p, q = 1 is an instance of Corollary 4 with identity link
function. In this case the parameter restriction |ρ| < 1 is well-known to be necessary and
sufficient for stationarity.

Corollary 5. Suppose that conditional on µn, Yn is Poisson distributed with mean µn. Then
the GARMA model is ergodic and thus stationary for an appropriate initial distribution for
µ0, provided that |ρ|, |θ| < 1 and the link function g is bijective, increasing, and concave. This
is satisfied, for instance, by the log link and the modified identity link (10).

Proof. If X is Poisson with mean µ then

E(X − λ)4 = 3λ2 + λ ≤ 4λ2 + 1,

where the inequality can be seen by considering the cases λ ≤ 1 and λ > 1 separately. Thus
we can take δ = 2 and r = 2. Theorem 2 applies here, by verifying the regularity conditions
as for Corr. 4.

Corollary 6. Suppose that conditional on µn, Yn is binomially distributed with mean µn

and fixed number of trials k. Then the GARMA model is ergodic and thus stationary for an
appropriate initial distribution for µ0, provided that |θ| < 1, g is bijective (e.g. the logit link),
and g−1 is Lipschitz on any compact set.

The additional condition on g−1 ensures that Theorem 2 applies. This condition is satisfied
for the logit and probit link functions, and in the case where g is differentiable holds as long
as the derivative of g is nowhere zero.

Proof. The 2 + δ moment condition holds by taking δ = 0.5 and r = 0:

E
[
|Yn − µn|2.5

]
≤ k2.5.

Theorem 2 applies here, by verifying the regularity conditions as for Corr. 4. Unlike the case of
Corr. 4, g−1 is not automatically Lipschitz on any compact set, which is why Corr. 6 explicitly
makes this assumption.

4.1 Proof of Theorem 3

Define Xn = g(µn); we will prove Theorem 3 by showing that the Markov chain X = {Xn}n∈N
with transition kernel T on state space R is ϕ-irreducible, aperiodic, and positive Harris
recurrent with a geometric drift condition. Aperiodicity and ϕ-irreducibility are immediate
since the Markov transition kernel has a (normal mixture) density that is positive on the whole
real line.

Next, define the set A = [−M,M ] for some constant M > 0 to be chosen later; we will
show that A is small, taking m = 1 and ν to be the uniform distribution on A in Definition 2.
Let x = X0 and write µ = g−1(x). For any y > 0 Markov’s inequality then gives

Px(|Y0 − µ| > y) ≤ Ex|Y0 − µ|2+δ

y2+δ
≤ d1|µ|r + d2

y2+δ
. (12)

In particular, for y = [4(d1|µ|r + d2)]1/(2+δ), Px(|Y0 − µ| > y) ≤ 1/4. Then for any x ∈ A,

Px(Y0 ∈ [a1(M), a2(M)]) > 3/4 for

a1(M) = g−1(−M)− [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]1/(2+δ)

a2(M) = g−1(M) + [4(d1 max{|g−1(−M)|, |g−1(M)|}r + d2)]1/(2+δ).
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Then with probability at least 3/4,

X1 − σZ0 ≥ min{b(a1(M)), b(a2(M))} − |θ|M and
X1 − σZ0 ≤ max{b(a1(M)), b(a2(M))}+ |θ|M where

b(a) = (ρ+ θ)g(a∗) + (1− ρ)γ

where a∗ is the operator ∗ applied to a (e.g. a∗ = max{a, c} for Case 2). Then it is easy to see
that ∃λ > 0 such that T (x, ·) ≥ λν(·) for all x ∈ A.

Next we use the small set A to prove a drift condition. Taking the energy function V (x) =
|x|, we have the following results. First we give the drift condition for x ∈ A:

Proposition 7. Cases 1-3: There is some constant K(M) <∞ such that ExV (X1) ≤ K(M)
for all x ∈ A.

Then we give the drift condition for x /∈ A, handling the cases x < −M and x > M separately:

Proposition 8. Cases 2-3: There is some constant K2 <∞ such that ExV (X1) ≤ |θ|V (x)+
K2 for all x < −M .
Case 1: For any ε ∈ (0, 1) there is some constant K2 < ∞ such that for M large enough,
ExV (X1) ≤ (|ρ|+ ε)V (x) +K2 for all x < −M .

Proposition 9. Cases 1-2: For any ε ∈ (0, 1) there is some constant K3 <∞ such that for
M large enough, ExV (X1) ≤ (|ρ|+ ε)V (x) +K3 for all x > M .
Case 3: There is some constant K3 <∞ such that ExV (X1) ≤ |θ|V (x) +K3 for all x > M .

Propositions 8 and 9 give the overall drift condition for x 6∈ A as follows. Consider Case 2;
the other two cases are analogous. Take ε = (1− |ρ|)/2, define η = max{|θ|, |ρ|+ ε} < 1, and
choose M large enough to satisfy Prop. 9. Then for any x 6∈ A we have

ExV (X1) ≤ ηV (x) + max{K2,K3}

≤ η + 1
2

V (x)

for M large enough, establishing geometric ergodicity (although the range of V is [0,∞), we
can easily replace V with V ∗(x) = |x|+ 1 to get the range [1,∞)).

These results have the following intuition for Case 2: Prop. 8 shows that for very negative
Xn−1, |θ| controls the rate of drift, while Prop. 9 shows that for large positive Xn−1, |ρ|
controls the rate of drift. The former result is due to the fact that for very negative values of
Xn−1 the autoregressive term in (11) is a constant, ρ(g(c) − γ), so the moving-average term
dominates. The latter result is due to the fact that for large positive Xn−1, the distribution of
Yn−1 concentrates around µn−1, so that the moving-average term θ[g(Y ∗n−1)− g(µn−1)] in (11)
is negligible and the autoregressive term dominates.

Extension to the cases p > 1 and q > 1 can be achieved by showing geometric ergodicity
of the multivariate Markov chain with state vector µ(n−max{p,q}+1):n. Again this is done by
finding a small set and energy function such that a drift condition holds, subject to appropriate
restrictions on the parameters (ρ1, . . . , ρp) and (θ1, . . . , θq).
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4.2 Proof of Prop. 7, Case 1

Recall that µ = g−1(x), and assume WLOG that g(0) = 0, since replacing g(y) with h(y) =
g(y)− g(0) simply changes the value of γ. Due to the fact that g is concave on R+ and convex
on R−, there are constants a0, a1 ≥ 0 such that |g(y)| ≤ a0 + a1|y| for all y. Using these facts,
equation (11), and the triangle inequality, we can bound ExV (X1) as follows, where di denote
bounded (in µ) constants for each i ≥ 3:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y0) + θ(g(Y0)− x) + σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ|Ex|g(Y0)|+ |θ|Ex|g(Y0)− x| (13)
≤ d3 + (|ρ|+ |θ|)a1Ex|Y0|+ |θ||x|.

By the triangle and Jensen’s inequalities,

Ex|Y0| = Ex|µ+ Y0 − µ|
≤ |µ|+ Ex|Y0 − µ|

≤ |µ|+
[
Ex|Y0 − µ|2+δ

]1/(2+δ)

≤ |µ|+ (d1|µ|r + d2)1/(2+δ). (14)

So supx∈[−M,M ]ExV (X1) <∞, proving Prop. 7.

4.3 Proof of Prop.s 8 and 9, Case 1

We will prove Prop. 9 for Case 1; Prop. 8 for Case 1 then holds by symmetry. We will show
that for large x, the autoregressive part of the GARMA model dominates and the moving-
average portion of the model is negligible. In the bound (13), the autoregressive part of the
model is captured by |ρ|Ex|g(Y0)|, while the moving-average part corresponds to the term
|θ|Ex|g(Y0)− x|. Since g(0) = 0 and g is monotonic increasing, for all x large enough

Ex|g(Y0)| = Ex[g(Y0)1Y0>0]− Ex[g(Y0)1Y0<0]
= Exg(Y01Y0>0)− Exg(Y01Y0<0)
≤ g(Ex[Y01Y0>0])− g(Ex[Y01Y0<0])
= g(ExY0 − Ex[Y01Y0<0])− g(Ex[Y01Y0<0]) (15)

by Jensen’s inequality. Now, µ = g−1(x) > 0 for x > 0, so using (12)

−Ex[Y01Y0<0] =
∫ ∞

0
Px(Y0 < −u) du

≤
∫ ∞

0
Px(|Y0 − µ| > u+ µ) du

≤
∫ ∞

0

d1µ
r + d2

(u+ µ)2+δ
du

=
d1µ

r + d2

(1 + δ)µ1+δ
→ 0 (16)

as x→∞. Thus, from (15), for any given ε > 0, there exists M > 0 so that for x > M ,

Ex|g(Y0)| ≤ g(ExY0 + ε) + ε ≤ g(ExY0) + g(ε) + ε = x+ d4 (17)
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where the second inequality is due to concavity of g on R+.
Next we show that the term Ex|g(Y0) − x| in (13) is “small” relative to the linear (in x)

term:

Proposition 10. There is some constant d13 such that

Ex|g(Y0)− x| ≤ d13x
r/(2+δ)

for all x large enough.

Prop. 10 is proven in the Appendix. Combining it with (13) and (17), we have that for all x
large enough,

ExV (X1) ≤ d14 + |ρ|x+ |θ|d13x
r/(2+δ)

≤ d14 + (|ρ|+ ε)x

proving Prop. 9.

4.4 Proof of Prop. 7 and Prop. 8, Case 2

Assume WLOG that g(c) = 0, since replacing g(y) with h(y) = g(y)− g(c) simply changes the
value of γ. Since g(c) = 0, g(Y ∗0 ) ≥ 0 is nonnegative for any Y ∗0 . Also, due to the concavity of
g, there is some a1 > 0 such that g(y) ≤ a1y for all y ∈ R+. Using these facts, equation (11),
and the triangle inequality, we can bound ExV (X1) as follows:

ExV (X1) = Ex|(1− ρ)γ + ρg(Y ∗0 ) + θ(g(Y ∗0 )− x) + σZ0|
≤ (1− ρ)|γ|+

√
2σ2/π + |ρ|Ex[g(Y ∗0 )] + |θ|Ex|g(Y ∗0 )− x| (18)

= d15 + |ρ|Px(Y0 < c)g(c) + |ρ|Ex[g(Y0)1Y0≥c] +
|θ|Px(Y0 < c)|g(c)− x|+ |θ|Ex[|g(Y0)− x|1Y0≥c]

≤ d15 + (|ρ|+ |θ|)Ex[g(Y0)1Y0≥c] +
|θ|Px(Y0 < c)|g(c)− x|+ |θ|Px(Y0 ≥ c)|x|

≤ d15 + (|ρ|+ |θ|)a1Ex[Y01Y0≥c] + |θ||x|

In the same way that we obtained (14) for Case 1, we have the following bound for Case 2:

Ex[Y01Y0≥c] ≤ Ex|Y0| ≤ µ+ (d1µ
r + d2)1/(2+δ)

≤ d16 + d17µ
r/(2+δ)

where µ = g−1(x), implying that

ExV (X1) ≤ d18 + d19µ+ |θ| |x|.

This is sufficient to get a uniform bound on ExV (X1) for x ∈ [−M,M ], proving Prop. 7. It also
proves Prop. 8 by showing that for x < −M , ExV (X1) ≤ d20+|θ| |x|, since µ = g−1(x) ≤ g−1(0)
on this set.
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4.5 Proof of Prop. 9, Case 2

Using Jensen’s inequality and the fact that Px(Y0 < c) x→∞−→ 0, for all x large enough

Ex[g(Y ∗0 )] ≤ g(ExY
∗
0 ) = g(Ex[Y01Y0≥c] + cPx(Y0 < c))

= g(Ex[Y0]− Ex[Y01Y0<c] + cPx(Y0 < c)).

Using a similar argument to (16) above, we see that the last two terms in the argument of g
converge to 0 as x→∞. Hence, for any ε > 0 we can find M > 0 so that, for all x > M ,

Ex[g(Y ∗0 )] ≤ g(g−1(x) + ε) ≤ x+ d21ε,

where d21 is the slope of a subgradient of g at g−1(M).
Combining this with (18), there exists M > 0 such that for x > M ,

ExV (X1) ≤ d22 + |ρ|V (x) + |θ|Ex|g(Y ∗0 )− x|.

It remains to show that the final term in this expression is small relative to the linear (in V (x))
term as x→∞. This follows in almost identical fashion to the proof of this result in Case 1.
We omit the details.

4.6 Proof of Prop.s 7-9, Case 3

Assume WLOG that g(c) = 0. Since g(Y ∗0 ) ∈ [g(c), g(a− c)],

ExV (X1) = Ex|(1− ρ)γ + (ρ+ θ)g(Y ∗0 )− θx+ σZ0|

≤ (1− ρ)|γ|+
√

2σ2/π + |ρ+ θ|Ex |g(Y ∗0 )|+ |θ||x|
≤ d23 + |ρ+ θ| g(a− c) + |θ||x|.

Propositions 7, 8, and 9 follow immediately.
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Appendix: Proof of Prop. 10

By (16),

Ex|g(Y0)− x| = Ex|g(Y01Y0>0)− x+ g(Y01Y0<0)|
≤ Ex|g(Y01Y0>0)− x|+ Ex|g(Y01Y0<0)|
≤ Ex|g(Y01Y0>0)− x|+ a0 + a1Ex[|Y0|1Y0<0]
≤ Ex|g(Y01Y0>0)− x|+ d5

for x > M .
Using (12), for any fixed ε ∈ (0, 1) and x > M ,

Ex

[
|g(Y01Y0>0)− x|1Y0≤(1−ε)µ

]
(19)

≤ xPx(Y0 ≤ (1− ε)µ)
≤ xPx(|Y0 − µ| > εµ)

≤ x(d1µ
r + d2)

ε2+δµ2+δ

≤ d6x

µ2+δ−r
.

Recall that for y ≥ 0, a0 + a1y ≥ g(y), so that a0 + a1g
−1(y) ≥ y. Hence µ = g−1(x) ≥

(x− a0)/a1. So (19) is bounded by

d7x

(x− a0)2+δ−r

which converges to 0 as x→∞ and is therefore bounded by d8 say for x > M . It only remains
to show that

Ex|g(Y01{Y0>0})− x|1{Y0>(1−ε)µ} = Ex|g(Y0)− x|1{Y0>(1−ε)µ}

is “small.”
Recall that g is concave on R+ and so has a subgradient at (1 − ε)µ, i.e. there exist

b0(x), b1(x) such that g(y) ≤ b0(x)+ b1(x)y for y > 0, with equality at y = (1− ε)µ. The slope
of the chord from (0, 0) to ((1− ε)µ, g((1− ε)µ)) is greater than or equal to b1(x), so

b1(x)(1− ε)µ ≤ g((1− ε)µ) ≤ g(µ) = x. (20)
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Furthermore, g is concave so b1(x) is bounded for x > M . We now have

Ex|g(Y0)− x|1{Y0>(1−ε)µ} ≤ b1(x)Ex|Y0 − µ|1{Y0>(1−ε)µ}

≤ b1(x)Ex|Y0 − µ|

≤ b1(x)
[
Ex|Y0 − µ|2+δ

]1/(2+δ)
(Jensen)

≤ b1(x)(d1µ
r + d2)1/(2+δ)

≤ b1(x)(d9µ
r/(2+δ) + d10) (triangle inequality)

= d9b1(x)µr/(2+δ) + d10b1(x)

≤ d9xµ
r/(2+δ)

(1− ε)µ
+ d11 (from (20))

≤ d12xµ
−(1−r/(2+δ))

≤ d12x

(
x− a0

a1

)−(1−r/(2+δ))

≤ d13x
r/(2+δ).

proving the result.
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