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Abstract

In this paper we consider the worst case ratio between the capacity of min-cuts and the value
of max-flow for multicommodity flow problems. We improve the best known bounds for the min-
cut max-flow ratio for multicommodity flows in undirected graphs, by replacing the O(log D) in
the bound by O(log k), where D denotes the sum of all demands, and &k denotes the number of
commodities. In essence we prove that up to constant factors the worst min-cut max-flow ratios
appear in problems where demands are integral and polynomial in the number of commodities.

Klein, Rao, Agrawal, and Ravi have previously proved that if the demands and the capac-
ities are integral, then the min-cut max-flow ratio in general undirected graphs is bounded by
O(log C'log D), where C denotes the sum of all the capacities. Tragoudas has improved this
bound to O(lognlog D), where n is the number of nodes in the network. Garg, Vazirani and
Yannakakis further improved this to O(log klog D). Klein, Plotkin and Rao have proved that
for planar networks, the ratio is O(log D).

Our result improves the bound for general networks to O(log2 k) and the bound for planar
networks to O(log k). In both cases our result implies the first non-trivial bound that is inde-
pendent of the magnitude of the numbers involved. The method presented in this paper can be
used to give polynomial time approximation algorithms to the minimum cuts in the network up
to the above factors.
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1 Introduction

The multicommodity flow problem involves simultaneously shipping several different commodities
from their respective sources to their sinks in a single network so that the total amount of flow going
through each edge does not exceed its capacity. Each commodity has an associated demand, which
is the amount of the commodity that we wish to ship.

Given a multicommodity flow problem, one often wants to know if there is a feasible flow, i.e.
a flow which both satisfies the demands and obeys the capacity constraints. In order to prove that
such flow does not exist, it is sufficient to exhibit a cut whose capacity is below the sum of the
demands that are separated by the cut. The min-cut max-flow theorem for the single-commodity
flow problem [3] states that the non-existence of such a “bad” cut proves that a feasible flow does
exist. In contrast to this, a multicommodity flow problem can be infeasible even if the cut condition
is satisfied. The simplest such example is where the network is K, 5 with unit-capacity edges and
unit demand between every pair of nodes not connected by an edge.

A natural question to ask is how large a safety margin do we need, i.e. how large should be the
minimum ratio (over all cuts) of the capacity of the cut to the sum of the demands that are separated
by this cut, in order to ensure existence of a feasible flow. In the next section we will formally define
the max-flow and min-cut problems for multicommodity flows, and we will see that the minimum
required safety margin is exactly the maximum (over all multicommodity flow problems) of the
min-cut max-flow ratio.

A related problem is to consider a multicommodity flow problem, and to search either for a
feasible flow, or for a cut whose ratio is below the above mentioned safety margin. This leads to an
algorithm that finds an approxzimately minimum cut. Approximately minimum cut computation is a
basic step for construction of approximation algorithms for a variety of NP-complete problems [9, 7].
However, in these applications, the required min-cut is for the unit-demand case.

Previous studies of min-cut max-flow relationships in multicommodity flow problems concen-
trated on finding special classes of problems for which exact min-cut max-flow theorem holds (see for
example, [11, 10]). Leighton and Rao were the first to prove bounds on the min-cut max-flow ratio
for multicommodity flow problems in general graphs. In their pioneering work [9] they considered
multicommodity flow problems in general graphs, where there is one unit of demand between every
pair of nodes. We will refer to this case as a uniform-demand multicommodity flow problem. They
proved that the min-cut max-flow ratio in this case is at most O(logn). Alternatively, this means
that there exists a safety margin factor bounded by O(logn), such that in order to prove existence of
a feasible solution in the uniform-demand case, it is sufficient to show that the capacity of every cut
exceeds the demand across the cut by at least this factor. This result holds both for directed and
undirected networks. Leighton and Rao have also shown that O(logn) ratio is the best possible.
They also provide a polynomial time O(logn)-approximation algorithm to the min-cut problem.
The algorithm first solves the corresponding uniform-demand multicommodity flow problem (and
its linear programming dual) and uses the solution to find an approximately minimum cut.

Klein, Rao, Agrawal, and Ravi [7] were the first to prove a bound on the min-cut max-flow
ratio in general undirected multicommodity flow networks. They proved that this ratio is bounded



by O(logC'log D), where C' and D denote the sum of all the capacities and the sum of all the
demands, respectively, assuming that both capacities and demands are integral. Tragoudas [14, 13]
has improved the bound to O(lognlog D), and Garg, Vazirani and Yannakakis[4] have further
improved it to O(logklog D). Klein, Plotkin and Rao [5] have shown that the ratio in planar
graphs is bounded by O(log D), and in the planar uniform-demand case by O(1). Observe that
using the (single commodity) max-flow min-cut theorem k times we get that the ratio is at most k,
and therefore the above bounds are weak for the case where the demands are very large.

We show that in order to find an approximate minimum cut, it is sufficient to look for such cuts
in several transformed problems, each of which has integral demands whose sum D is bounded by a
small-degree polynomial in &, the number of commodities in the original problem. Using the results
of [9, 7, 14, 4, 5] mentioned above, we show that the min-cut max-flow ratio for general multicom-
modity flow problems is bounded by O(log” k), and for the planar case by O(log k). Moreover, our
results can be used to find approximately minimum cuts. We say that a minimum cut algorithm
is a p-approzimation algorithm if it is guaranteed to find a cut whose value is at most p times the
optimal value. We show that there exists a polynomial time O(log2 k)-approximation algorithm for
finding the min-cut in general networks and a polynomial time O (log k)-approximation algorithm in
planar networks. These are the first such bounds that are independent of the size of the demands
and do not require any integrality assumptions.

It is interesting to note that much less is known about the min-cut max-flow ratio for directed
multicommodity flow problems. Leighton and Rao proved a polylogarithmic bound for the special
case of uniform demands, implying a polylogarithmic approximation algorithm for the feedback arc-
set problem, Seymour [12] improved the later bound. Polylogarithmic bounds for min-cut max-flow
ratios for symmetric directed multicommodity flow (where the flow from source to sink has to be
equal to the flow from sink back to the source) with arbitrary demands were shown in [6] and, later,
in [2]. It is an interesting open problem to extend the results for general undirected multicommodity
flows to the general (non-symmetric) directed case.

2 Definitions and Notation

An instance of the multicommodity flow problem consists of an undirected graph G = (V, F), a non-
negative capacity u(vw) for every edge vw € F, and a specification of k& commodities, numbered 1
through k, where the specification for commodity 7 consists of a source-sink pair s;,t; € V and a
non-negative demand d;. We will denote the number of nodes by n, and the number of edges by m.

A flow f; of commodity ¢ in G from node s; to node ¢; is defined as a collection of paths from
s; to t;, with associated real values. Let P; denote a collection of paths from s; to t; in (7, and let
fi(P) be a nonnegative value for every P in P;. The value of the flow thus defined is Y~ pcp. fi(P),
which is the total flow delivered from s; to t;. The amount of flow of commodity ¢ through an edge
vw is given by

filvw) = Z{fZ(P) : P €P; and vw € P}.



A feasible multicommodity flow f in G consists of a flow f; from s; to t; of value d; for each
commodity 1 < 7 < k. We require that f(vw) < u(vw) for every edge vw € F, where we use
f(vw) =325, fi(vw) to denote the total amount of flow on edge vaw.

A natural maximization version of the problem is to determine the maximum percentage z* such
that at least z* percent of each demand can be shipped without violating the capacity constraints.
We will refer to this problem, also known as the concurrent flow problem, as the maz-flow problem
for multicommodity flows. It is equivalent to the problem of determining the minimum ratio A*
such that 100% of each one of the demands can be shipped in the network with capacities A\*u(e).
We will refer to A* as the congestion of the network. Clearly, A*z* = 1.

Given a subset U of the nodes, let the capacity of the corresponding cut be defined by:

uw(U) = Z u(vw).

UEU,wEU

Similarly, define the demand across the cut (U, U):

dauy= > d.

i:|{s;,ti}0U|=1

If there exists a feasible flow satisfying demands zd;, then we must have that z times the demand
across any cut is at most as much as the capacity of the cut, zd(U) > w(U). This motivates the
definition of the min-ratio cut, or min-cut, for short:

= min u(U)
vev d(U)

*

By the above, the min-cut value S* is at least as big as the max-flow value z*. Clearly, the
maximum (over a class of multicommodity flow problems) of the min-cut max-flow ratio is exactly
the minimum required safety margin necessary to imply the existence of a feasible flow. Formally,
the result in [9] means that for the uniform-demand case, S*/z* = O(logn); combination of the
results in [7], [14], and [4] mean that, in general, S*/z* = O(logklog D); the results in [5] mean
that in planar graphs, S*/z* = O(log D), and in the planar uniform-demand case S*/z* = O(1),
where D denotes the sum of all demands assuming that demands are integral. In the next section
we show that S*/2* = O(log” k) in general networks and O(log k) in planar ones without assuming
integrality of the demands.

3 Min-Ratio Cuts in Networks with Large Demands

In this section we prove the main result of this paper, that up to a small constant factor the worst
min-cut max-flow ratio is obtained on graphs with integer demands where D, the sum of all demands,
is bounded by a small-degree polynomial in k. Since we are looking only for approximately minimum
cuts, it is natural to round both demands and capacities. However, note that with traditional



rounding techniques it seems hard to handle the case when the ranges of the different demands and
the different capacities are both large. One cannot a priori know whether a cut with large demand
and large capacity or one with small demand and small capacity is more congested. In particular,
we cannot disregard even the smallest capacity edges.

Our main proof technique is as follows. We separate the demands into groups, each consisting
of commodities of roughly comparable demand. The traditional rounding technique shows that the
min-cut max-flow ratio in a problem induced by the demands in a single group depends only on log k&
instead of log D. The main result is that both the min-cut and the max-flow in the whole network are
within a small constant factor of the corresponding values in one of the groups. This will imply that
the min-cut and the max-flow are within the claimed O(log” k) factor (or O(log k) factor in planar
graphs) in the whole network. Moreover, this also implies that one can find an approximation to
within the above factors to the min-cut in the whole network by finding such approximately minimal
cuts in each of the groups.

Let dnin and dna., denote the minimum and maximum non-zero demand. A simple rounding
technique shows that log D in the results about the min-cut max-flow ratio listed in the introduction
can be replaced by logﬁ where D = >; di/dmin; this new bound holds without assuming that the
demands are integral.

Lemma 3.1 In a multicommodity flow problem in general graphs S*/z* = O(logf)log k). In planar
graphs S*/z* = O(log D). There exists a polynomial time O(log k log D)-approximation algorithm for
finding the min-cut in general networks and an O(log D)-approximation algorithm in planar networks.

Proof: Round all demands up to integer multiples of d.,;,. Rounding up cannot increase z*. The
demand of a commodity increases by at most a factor of 2, and therefore S* decreases by at most a
factor of 2. Let S’ and 2’ denote the min-cut and the max-flow values in the rounded problem. The
rounded problem, when demands are scaled by a factor of d;,, has integer demands that sum to at
most D + k < 2D. Using the theorem of Klein, Rao, Agrawal, and Ravi [7], we have the following
chain of inequalities:

< 28
< O(2'log klog(2D))
< O(z*logklog D).

S*

Similarly, using the theorem of Klein, Plotkin and Rao [5] we get that 5*/z* = O(log f)) in planar
graphs. This proves the claimed bounds on the min-cut max-flow ratio. To get the polynomial time
approximation algorithms we use the approximation algorithms in [7, 5] on the rounded network,
and note that the capacity/demand ratio of a cut is not changed by more than a factor of 2 by
rounding. |

Corollary 3.2 If diax/dmin = O(k) in a multicommodity flow problem, then S*/z* = O(log2 k) for
general networks, and S*/z* = O(log k) for planar networks.



Now consider a multicommodity flow problem with demands that are of greatly differing sizes.
Divide the commodities into groups, such that the first group J; consists of commodities that
have demand between d;, and 4kd.;,; the ¢th group @); consists of commodities with demands
between (4k)'~'dpin and (4k)'dmin. Let z7, A7, and S} denote the max-flow value, the minimum
congestion, and the min-cut, respectively, in the multicommodity flow problem where we consider
only commodities in @;. Recall that A} = 1/zF. Clearly, max; A} < A*, and min; S} > S*. The
following two theorems will imply our main result.

Theorem 3.3 In the multicommodity flow problem with the decomposition defined above, min; S} <
2.255*.

Proof: Let the set U C V define the cut that achieves ratio S, i.e. the most congested cut in the
whole network. Let d;(U) denote the demand in group j across the cut defined by U, and let i be
the maximum index such that d;(U) is non-zero. The total demand across cut U can be written as:

dU) = di(U)+d;i(U) + ) d;(U)
Jj<i—1
5
< Zdi(U) +d;i_1(U),
where the inequality follows from the fact that d;(U) is non-zero, and that the demand of any

commodity in group ¢ is at least 4 times the sum of all the demands in groups j < 2 — 1. This
inequality on d(U) implies the following chain of inequalities on S*.

w _ul)
> T Ao
S u(U)
— (5/4)d;(U) + di—1 (U)
4 . wlU) wU)
X A TIL

4
> 9 min(S;, S7_,).
This proves the theorem. |

Observe that Theorem 3.3, Corollary 3.2, and the known approximation algorithms for the min-
imum cut problem are enough to give polynomial time approximation algorithms for the minimum
cut problem with the improved performance guarantee.

Corollary 3.4 There exists a polynomial time O(log2 k)-approximation algorithm for the minimum cut
in undirected networks, and an O(log k)-approximation algorithm for planar networks.

Remark: Notice that in order to find a cut that is within the above O(log” k) (or O(log k) for planar
graphs) factor to the min-cut, we have to find such approximately minimum cuts in the problems
defined by each of the commodity groups. The most time consuming part of the approximation



algorithms [7, 4, 5] in both cases is approximately solving the corresponding multicommodity flow
problem (and its linear programming dual). The currently known fastest approximation algorithms
for the multicommodity flow problem ([8] for general graphs and [1] for the case when the flow paths
are very short), run in time proportional to the number of commodities. Therefore, the time required
to find approximate optimal flows for each of the subproblems defined by the different groups of
demands @); for 2 = 1,2, ..., is the same as approximately solving the original multicommodity flow
problem alone.

Theorem 3.5 In a multicommodity flow problem with the decomposition defined above, A* < 4 max; Af.

Before we turn to the proof of this theorem we consider its implications. Theorem 3.5 implies
the main claim of this paper.

Corollary 3.6 In a general multicommodity flow problem S*/z* = O(log2 k), and in planar networks

S*/z* = O(log k).

Proof: Theorem 3.5 implies that z* > (1/4) minz}. Together with the trivial inequality S* <
min; S} this gives the following chain of inequalities:

S* < minS;
< O(log”k) - min 2}
< O(log’k) - 2.

In planar graphs the O(log” k) factor can be replaced by O(logk). |

To prove Theorem 3.5 we first consider the following lemma.

Lemma 3.7 Consider two multicommodity flow problems defined over the same graph with the same
capacities, where the first problem has to ship commaodities in group ) and the second problem has to
ship commodities in group )’. Assume there exist feasible multicommodity flows for the first and the
second problems. If every commodity in group ()’ has demand at least 4 times the total demand of
all the commaodities in (), then there exists a feasible flow that simultaneously satisfies the demands of
commodities in () and at least half of each of the demands of the commodities in (’.

Proof: Let f and f’' denote the feasible flows of the problems associated with the commodities in
groups @ and @', respectively. It is no loss of generality to assume that both of the flows f and
f', and the capacities u are rational. Multiplying up with the common denominator, we can further
assume without loss of generality that f, f’, and u are integral. We will regard an edge e with
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Figure 2: Rerouting flow of one set of commodities using the paths of the other set.

capacity u(e) as a collection of u(e) parallel edges, and the flows f and f’ as collections of edge-
disjoint simple paths in the network. Notice that nothing prevents a flow path of a commodity in
() from using the same edge as some flow path of a commodity in ¢)’. We will call such situation a
collision. The idea of the proof is to delete a small number of flow paths of commodities in )" and
reroute the flow paths of the commodities in ) in order to eliminate all collisions. We will eliminate
collisions one at a time, giving a pseudopolynomial algorithm for rerouting. (Note, however, that
the flow, whose existence is proved by this lemma, can be constructed without referring to this
proof, by running a multicommodity flow algorithm.)

We will first show how to eliminate collisions with a single commodity j € @’. On each flow path
of commodity j, we will note the first collision and denote the set of these “first collision edges”
by F};. Consider a flow path P of some commodity in () that uses more than 2 edges of F}, i.e.
|PNF;| > 2 (see Figure 1). Let e; be the first edge in P that is also in F} and let e, be the last such
edge, where the order is according to the appearance of these edges in P. Delete all edges between
e; and e, from P. Although instead of a single path P we now have two half-paths P, and P, we



will still consider them as a single entity and will retain the ordering of the edges as in the original

P.

Deleting edges from some flow path P of a commodity in  changes F}, by exposing new
collisions as the first ones on some flow paths of commodity j (see Figure 1). However, the number
of collisions is decreasing, and hence after a finite number of such changes the set F}; will contain
at most two collision edges on each of the flow paths of the commodities in . Now delete all the
flow paths of commodity j that cause collisions. Clearly, this eliminates all the collisions caused by
commodity 7. Every flow path of a commodity in () is first on at most 2 flow paths of commodity
7, and therefore the total flow carried by the flow paths of commodity j that were removed is at
most twice the total flow of all the commodities in ). The assumptions in the claim of the lemma
imply that this amount does not exceed d;/2, and hence the remaining flow paths of j carry at least
d;/2 flow, i.e. satisfying at least half of the demand.

Some of the flow paths of commodities in () were broken into two halves by the above procedure.
It remains to show how to reconnect these paths without causing any new collisions. Consider a
flow path P of a commodity in ). The remaining part of P consists of two half paths P, and
P, (see Figure 2). By construction, the last edge of P, (marked as e; on the figure) was the first
collision edge on a flow path P of commodity j. Similarly, the first edge in P, (marked e5) is the
first collision edge on another flow path P of commodity j. (Dashed line marks the part of P that
was deleted as we have described above.) We will use the part of the path P! for i = 1,2 between
the source of commodity j and e; to connect the loose ends of P, and P,. This will not create
new collisions since e; and e; were the first collisions on the paths P/ and Pj, and the paths of the
commodities in () are edge-disjoint.

Observe that if ' contains more than one commodity, the above process of flow rerouting can
be repeated for each commodity. |

Proof of Theorem 3.5: Let A\ = max; Al. First we consider all of the commodities in @,
with even ¢. For every such group J;, we have a multicommodity flow f; satisfying the capacity
constraints Au(e) on every edge e. We claim that there exists a multicommodity flow f..e, that
satisfies the capacity constraints Au(e) on every edge e, and satisfies at least half of the demand of
every commodity in groups ¢); for even 1.

We prove the above claim by induction on the number of even-indexed groups. The claim is
obviously true for 1 = 2. To prove that the required flow exists for some 7 > 2, apply Lemma 3.7
for commodity groups @@ = Qs U ... UQ;_s, and @' = @;. Inductively, assume that there exists a
flow f that satisfies at least half of the demand of each commodity in (. Lemma 3.7 applied to f
and f; implies that there exists a flow that satisfies all the demands that were satisfied by f and at
least half of each one of the demands of the commodities in @Q’.

Applying the same argument for the sets @); for odd i, we conclude that there exist flows foyen
and f,qq such that together they satisfy at least half of each demand. Moreover, both f..., and f,q4,
separately, satisfy capacity constraints Au(e). Therefore, there exists a flow f that satisfies all of
the demands and satisfies capacity constraints 4Au(e). |
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