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CHAPTER 1

INTRODUCTION AND SUMMARY

The purpose of this study is to dcvelop a method of estimation
leading to asymptotically efficient estimators.

An important theory is that of Maximum Likelihood which goes
back to the 1920's and is due to R. A. Fisher. Its program can success-
fully be applied in the so-called "regular' case when competing
estimators are limited to be asymptotically normally distributed.

To overcome this quite restrictive set of conditions, Weiss and
Wolfowitz have recently introduced the concept of "Generalized Maximum
Likelihood Estimator'' and '"Maximum Probability Estimator'. Under some
conditions the Maximum Probability Estimator, properly normalized, enjoys
the asymptotic property of having the maximum probability of concentra-
tion around the true value of the unknown parameter.

In Chapter II, we show that for a given class of problems
(including as a subclass the "regular" case), possessing some strong
regularity conditions, the maximum likelihood estimator is asymptotically
efficient.

In Chapter I1I, we apply our previous results to the problem of
estimation for processes which can be described as Markov chains. This
problem has been studied by a large number of people and it would be
difficult to exhibit here a complete list of authors deserving credits.
However, one of the most significant works is probably that of

P. Billingsley (See [4] and [5]). 1In those two publications, the author



derives large sample properties (consistency and asymptotic normality)
of the maximum likelihood estimator, when the underlying stochastic
process is a time homogeneous, ergodic Markov process, falling in one
of 3 classes:

{1) discrete time, discrete state space (Markov chain)

(2) discrete time, continuous state space

(3) continuous time, discrete state space,

In the subsequent study we essentially consider two additional problems:

(1) that of asymptotic efficiency

(2) that of estimation for non-homogeneous Markov chains,

This last question has previously beer studied by a few people (see for
example Anderson and Goodman [1], Gold [14]). In particular these
authors make statistical inference for a class of finite, non-homogeneous
Markov chains based on a large number of observations taken at times
t=0,1, ....., T. Consequently this approach fits in the "regular”
case which we are not interested in.

Our approach allows only one observation at a time t = 0, 1,...,T°
and asymptotic results are derived by letting T go to infinity.

In the first part of Chapter IV, we deal with parametric
statistical estimation problems with respect to some discrete time -
continuous space stochastic processes. Such questions are of fundamental
interest in the econometric field and many researchers have devoted
their time to this area. See for example the works by:

(1) Mann and Wald [22]

(2) The Cowles Commission for Research in Economics - and in

particular:



- monograph 10: Statistical Inference in Dynamic Economic

Models. Edited by T. C. Koopmans (1950) John Wiley

monograph 14: Studies in Econometrics Methods. Edited by
W. C. Hood and T. C. Koopmans (1953) John Wiley,

(3) T. W. Anderson and H. Rubin

Estimation of the parameters of a single equation in a
complete system of stochastic equations. Annals of Math.
Statistics, Vol. 20 (1949) pp 46-63.

- The asymptotic properties of estimates of the parameters
of a single equation in a complete systen of stochastic
equations. Annals of Math. Statistics, Vol. 21 (1950)

pp 570-582.

In his book on econometrics Tintner [29] suggested looking at
forms of functional relationships more complicated than that of
stochastic difference equations. In particular he proposed to describe
economic systems in terms of stochastic differential equations.

In the second part of Chapter IV we shall look at the estimation
problem, which arises in connection with this suggestion, and we shall
approach the estimation problem from a uniform point of view, using
our basic theorem 2.7 of Chapter II.

Finally in Chapter V we consider the case of continuous time,
completely discontinuous Markov processes and Markov renewal processes.

P. Billinsgley has considered in his monograph [4] the problem
of analysing statistically a Markov process {X(t) , 0 <t w} in
which the time parameter is continuous. He focusses attention on

processes of the completely discontipuous type and showed that under



certain conditions the maximum likelihood estimator of some unknown
parameter (possibly a vector) is consistent and asymptotically normally
distributed,

We shall show that in the case of a finite state, time continuous
Markov process of the jump type, and under the same conditions given by
Billingsley, the maximum likelihood estimator of some unknown parameter
is asymptotically efficient.

One can generalize the previous results by looking at a Markov
renewal process. In their paper, (see [23]) Moore and Pyke study the
large sample properties of a non-parsmetric estimator of the transition
distributions of a Markov renewal procoss with finitely many states.

In the second part of this chapter, we shall study the problem
of parametric estimation for such a process and in particular we shall
show that under suitable conditions the maximum likelihood estimator

of some unknown parameter is asymptotically efficient.



CHAPTER 11

ASYMPTOTIC EQUIVALENCE OF THE MAXIMUM LIKELIHOOD

ESTIMATOR AND OF THE MAXIMUM PROBABILITY ESTIMATOR

2.1 Notation

We shall use the following notation, mainly borrowed from [32].
For each positive integer n Ilet:
- X(n) be the finite vector of observations

- Kn(xle) be the density (L measure) of X(n), when ©

(an m-vector) is the value of the (unknown to the

statistician) parameter. 6 lies in © the parameter space.
- a(X(n)) be the maximum likelihood estimator (MLE) of @
- d(X(n)) be the maximum probability estimator (MPE) of ©

with respect to a measurable region R in m-space.

2.2 Consistency of the Maximum Probability Estimator.

2.2.1 One parameter case

A MPE will be a value of d that maximizes

d+r(n)
/ Kn(xle)de = 7 (x,d) , say where {r(n)} >0 as n~> =
d-r(n) n



Theorem 2.1

Assume:

(1) The likelihood function can be written in the form:

o1

Kn(xle) =

X f(xi-l’xile) ©h(Xg, e, X))

n

where

- Kn(x|e)e Le for almost every X

are finite vectors of observations

*i-10%
- hn(xo,---, xn) is independent of 6 .

The above format offers the advantage of including:

(i) the independent, identically distributed case i.e.:

Kn(xte) = .

[ ==

f(x,l0)
1 1

(ii) the case where {xi} follows a Markov process 1i.e.:

n
Kn(xie) = izl f(xi-l,xile)

(iii) However it is still more general and will allow us to study- -~

other statistical problems, such as those met in econometrics,
where often it is assumed that conditionally on a set of
exogenous variables, the endogenous variables follow a

Markov process.

[EE————



(2) For almost all £ and n g(g,n}8) = Log f(£,n|6) has continuous

derivatives throughout © , up to the third order.

3
(3) Let G(g,n) = swp |3z g(£.n]e)
BeN

where N 1is some neighborhood of 8y - the true value of 6 .

Then we assume:

o

. -1 ) . Sas
lim n Z — g(x, ,X.18,) =0 (in probability)
o i=1 20 i-1771'70
R 2
lim n ‘z —5 g(xi_l,xileg) = - k(8 <0 (in probability)
n->e i=1 96

n
lim n~} ) G(x;_15%;) = M  {(in probability)
1> jz=1

o
Then d(xo,xl,----,xn) is a consistent estimator of 60 .

Proof:

YA
(5) _§% (x,d) = Kn(xld + r(n)) - Kn(xid - r(n)) (for almost every X )}

solving for Bn the MPE, we let

9Z N
(1) (&) = 0 <> K (xld « xm) = K (x[d - r(n)

taking Log on both sides, we get



n n
(15) [ Lo £0x pox;[d » xm) = T tog £0x;_ 1% |4 - (o))

by assumption (2) we can expand Log £(*) in a Taylor's series in some
neighborhood N around 8y -

(20)Log f(xi_l,xila + r(n)) = Log f(xi_l,xi[eo)

+ @ xx(m) - 8y * 53 Log £(x;_1,x;]6g)

@+ r(n) - 90)2 \2
+ 5 ) Log f(xi_l,xi{eo)
38
ad & r(m) - 90)3
+ 57 ©6(x;_1.%) o] <1

Collecting terms, (15) becomes, after multiplication by §THT%T§T

1% 9 y 1 B2
(25) H.-Z 35 Log f(xi_l,xileo) + d - BO)H».Z —5 Log f(xi_l,xiieo)
i=1 i=1 56
2 n
Cr A o2, Io(m)y . 1 _
P G -0 e ] - 3 TG0y 1) = 0
i=1
15 9
(30) let B0 == 121 35 Log f(xi_l,xileo)
1 B P
B, == ) —— Log f(x, ,,x.|0,)
1 S
n ;o ae2 i-1°71'70
,
By =5 I 64 po%)
i=1

by assumption (3) we have :



(35) lim B0 =0 (in probability)
n-»e
lin B = - K% (o) (in probability)
n-re
lim B2 =M (in probability)
n->o

Let & and ¢ be given arbitrarily small positive numbeTs, then for

n > no(s,é,{r(n)})

T
™

P(IByl 2 52y <

1
P(Blz‘-é—k)<-3-e

]
™

P(|B,] > 2M) <

rz(n) < 362

1

2 1.2
Let S = {x||By] <8, B <-5k, B, < 2M)

then feollowing Cramer's arsument (see [6] np 502-503)

P(S) > 1 - ¢ as socn 8 10 > M,

For d=¢6_+ & the expression in (25) assumes the values

1 2
(40) BO 2 Blé t 3 aBz - 26

. 262} < 52(1 + 2M)

1f §< %-kzl(l + 2M) the sign of (40) depends only on the second

term. So that



10.

SZD BZn
3 (x,eo +8) < 0 and —53 (x,eo -6) >0

which irply by assumption (2), that with probability greater than

1-¢, iﬁn - 80|< § as soon as n > no(e,é,{r(n)}) .

Remark 1: The same argument goes through, with minor changes in the

algebra, when taking the MPE wir.t. a non-symmetric region 1.e.

d+r2(n)
Z (x,d) = K_(x]e) de
n d[rl(n) n
where 1 (n) = [k(n)]'1 T Ty i=1,2

Ther= remains to show that gn is a local maximum. For this

YA
purpose, we shall study the function —3% (x,d) in a neighborhood
N' of d
n
2
(41) 32 ) Zn | - aZn 3Kn( e ()
n (x,d) * K {(x{d-r(n))-—=(x,d) + —=(xjd-r(n
B -53~(x,d) ) ad2 n ad ad
d d- B 2
pd Ky Gl () [K_(x}d-r(n))]
‘ BZn 2
—(X,d) 372
3 od 77 _ n
3d K_(x[d-r(n)) - 2 (X’En)/Kn(x‘Bn“r(n))
n a=q 3d
n
32

It is seen from (41) that ~5%‘(x,d) is decreasing over N' iff so

are.
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32 azn i 3Zn

(x,4) —(x,4d) - (x,d)
7 5d % s 6D |
CEETm) L K EETm) ’mdugkl*g#x-rn)zyﬁxw)

K (x]d + r(n))
Yn(xld)= Log Ca - T@)

By (25) we have

(42)

) Y 2

1 n 1%
=5y 33 9 - H’.Zl el £0x;_1%;199)

n
1
+ a(d- 8)) ;- izl Glx;_q5%;)

which shows that with prebability going to one

1 BY

2n - r(n) . Bd (x,

Y = P (89)

lim
b § e

It follows that with probability going to one, there is at most one

solution of (10) with lﬁn-- 601 < & and any such solution is a local

maximum of Zn(x,d) .

2.2.2 Multi-parameter case

A MPE will be a value of d that maximizes

..... i xn(xle)de = Zn(x,d) , say
d.tr.(m) a_-r_(n)



12.
where {r;(m)} >0 as n=>~* i=1,2,...,m

and d

1]

(dl:”'sd )

e = (613..'98 )

Theorem 2.2

Assume
(1) The likelihood function can be written in the form:
Kn(xia) =

n

-

151 f(xi_l,xi!e) C B (Xge e Xp)

where

-Kn(xle) el for almost every X

- X, are finite vectors of observations

1-1’xi
- hn(xﬂ""’xh) is independent of 6 .

(2) For almost all £ and n g(g,nle) = Log f(g,n|6) has continuous

partial derivatives throughout © , up to the third order

3% (£,n]6)
58 36 36
u v w

where N is some neighborhood of 80 , the true value of 6 .

(3) Let G(&,n) = sup
geN




Then we assume:

- limn~! Z e g(x;_1,%; !60) =0

n--w i=1
n 2
. -1 3
- lima"" ] 36,96, g(x;_1.%;180) = o,

n->e i=1

where {cuv} is a positive definite matrix

- lim n~ ZG(x pX) = M
i 1—1
Then H(XO,xl,...

Of 60 = (601,902,"00,60m)

Proof

37 d +1, (n) d 2t (n)

(45) m%(x,d) = f e f v (x[d) + 1 (), 8y,enl8)

dz-rz(n) dm~rm(n)

(in probabxllf ’)
u = 1 2

(in probability)

(in probability)

.,xn) = (31,32,...,3m) is a consistent estimator

13,

- Kn(x!d1 - rl(n), 62,...,8m)} de .
solving for the MPE we let:
SZn H
(50) = (&) = 0 i=1,...,n
i
1 & d 2
et sn={e: _i-ri(n)ie < +r.(n); i=2,...m



we now show that (50) implies that there exists a point (Eé,---,éﬁ) e S
such that

(55) Kn(x£31 + 1 m),5,,...,0) = Kn(x§31 - 10,8000, 8)

m m

First we claim that there exist 2 pointé Ml,Mz € S such that:

8 \,
Kn(x{ 1t rl(n),Ml) > Kn(x}dl - rl(n),Ml)

and Kn(x}al + 7 (m),M) < xn(xlﬁl - T (m),M,) *

This is clear from the fact that otherwise, the value of the integral in
(45) could certainly not be zero when the region over which we compute

it, is S .

Let the coordinates of M1 and M2 be respectively (621,"'9 ml) and
(8522777 8pp)
Let

zsxn(xtal,t) = Kn[x|31 + 1 (n),0,0 * T8y, = 857),enn, 8y * t(e_, - 0,)]

Ky [X|& - 170D ,05, + 20y = 0p7)5ees8yy + T(0pp ~6py)]

ml
where t ¢ [0,1]

clearly AKX (x{HI,O) >0 , &K (x[ﬁ ,1) < 0
n n 1
For almost every x,Kn(xle) is a continuous function of & , and
N
AKn(xfdl,t) is a continuous function of t . All conditions of the

fixed-point theorem hold and the result claimed above follows.

* QObviously the case where Kn(xlal + 1,(n),M) = Kn(xlal - ry(m),M) for
all M e S offers no difficulty.
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The proof of Theorem 2.2 consists showing that (gl’gé""’éﬁ) converges
in probability to (601,-~-,80m) .

Since I@i - Bi} <2r;(n) @ = 2,-+.,m) , the result just claimed implies
that as n + o , E(X(n)) > 60 in probability.

Expanding Log f(-) in a Taylor's series in some neighborhood of 80 ,

we get:

(60) Log f(x,

1_1,x1131 + rl(n),ez,...,em) = Log f(xi-l’xi‘eo)

3

+ (31 + rl{n) - 901)53I Log f(xi_l,xileo)
. - )
+ I (85 - egy) 55, Log £0x; 4% [8p)
=2 3
@ xr,m - 901)2 2
¥
+ 5 . 39}2 Log f(xi_l,xileo)
m (0. - 6,:) 2
J 0j~ 3
+ ] 7 5 Log £(x;_1.%;19))
m _ 32
+ -Xz (31 * rl(n) - 601)(85 - eoj) —3—61——5—6—;" Log f(xi_l,xileo)
J‘._'.
o mo_ 3
+ -3"!" {(31 * rl(n) - 901) + jzz(ej - er)} G(xi-l’xi) la‘ f_ 1

Collecting terms (55) becomes:



16.
(65) ,
n n
-1 3 . -1 3
n Z —— Log f(x;_ X 18,) + (3 - 0,,)n Z —5Log £(x; _ ,x.}e )
i=1 361 i-1°71'70 1 01 i=1 8612 i-1°7i'7p
% _ 1 n 32
+ (6, - 6,.)n ——— Log f(x; .,X.|8,)
je2 1 0) jo1 99798, i-1°71'70
& ey mo 2
+ 3’3‘ {[( 1 + rl(n] - 601) + JZZ (ej e 603)]
¥ G ¥ G
*;[( l*r]‘(n)"eOl) + jzzcej"eoj)] " {( 1‘1'1(1'1)-901) + jzz(ej'eoj)]

n
-1 _
21 G(xi_l,xi) = 0

m
— 2, .
+ [(d)-r m)-eg;) + LGt )

Let Q1(31’§é"'°’§§) be the left hand side of (65), then the fact that
!55 - ﬁjl 5_2rj(n) and assumption (3) imply that for n sufficiently

large

P[‘Qi(al,az,"',am)l< e i=1,"-",m] >1- § for any €,§ positive

numbers. It can then be proved in the same way as in Theorem 2.1 of [4]

pp 10-13, that the MPE is a consistent estimator.

Remark 2: As states in Remark 1, the same result holds if the region

over which we are integrating is not symmetric.
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2.3 Asymptotic Distribution of the Maximum Probability Estimator and

its Equivalence with that of the Maximum Likelihood Estimator.

2.3.1 One parameter case

Theorem 2.3

Assume the same conditions given in Theorem 2.1, plus:
(4 5% g(£,n|8) has moments of order 2 + & for some positive

number § .
(5) For any 6 ¢ 0 , there exists a neighbortiood N of & such that for

all xi—l

sup
wEFN

(6)  Let Fy,Fy,-

L
| i1/

... be a rnondecreasing sequence of Borel fields

af(xi_l,xi‘ﬁ)
36

E

such that

a -
E [’B_-e. g(xi"'l’xi ‘ej)'lpi—l] = { w.p.l i= 1,...,n
then we suppose that:

. -1 % 3 2 2
- limn ) El(55 g(xi_l,xi!eo)) [ F_ 1= K(8) >0
n-re i=1

(in probability)

and



18.

. _-1-§/2 T 246
s umn 2y 2 x0T

F. 1] = 0 (in probability)
n+e i=1 =

Then (fg(a(x"--.,x Y -~ 8,) & N(O,l- ) as n - o
e n 0 k2

LY
Proof Let dn be the solution of (10). From (25) we obtain:

70
. 1y .3 o rz(n} e
= 1 35 e(xi_p-xileg) + RICHRES
/m(d -e.) = v i=1 Vyn i=1
n 0 n 2 o
1 3 1
- n 121 -7 g(x;_ oxglogr 35 (@-0g) ] G(xj_p.%3)

it follows from Theorem 2.1 that the denominator of the R. H. S. of (70)

converges in probability to + k2 .

Since we use on the L. H. S. of (70) the normalizing factor /m o,
this implies that r(n) is of order 1/ /n  and consequently that the
second term in the numerator goes to zero in probability.

Conditions (2) and (5) make possible to show that the partial sums

9
-5'6 g(x*l_13x1l e)

e~

i=1

form a martingale - so that we can now apply Billingsley's Theorem 9.1

{see [4] pp 52-61).

L no,k®) as n+w

# o~ 3

1 3
:/;_:_ 4 'é‘é— g(xi—l’xi‘eﬂ)

From this, it follows that, as n - « Jﬁ'(ﬁn - 84) % N(O, 30
k
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Corollary 2.3.1

Under the same conditions required for Theorem 2.3, we have,

denoting by d(xo,xl,""xn) aM. L. E. of 8o -
ce,Xx ) - 8.) L N(O 1 ) as n -+
) 0 ,;7
(2) Vﬁ(ﬁ(x0,~--,xn) - H(XO,"',XH)) - 0 in probability a5 n + =

Procf: (1) This is a straightforward extension of Billingsley's results

3K
[4] since the 1lkelihood equation 532 (x,d) = 0 does not involve

hn(xon e :xn)

(2) from (70} we have:

(70)
T O . N S
. ,.; 75 8% _10% 19 7 1 05 %
V/ﬁ‘(d _90) - \/l;_d - 2 ’\/;1 .,."'1
.,_1i ri’ i g(x XIO)_}.‘.E;’C%'-Q); G{x 2. )
nL 862 1-12% 1Y n Z2'n 004, i-1°7%

if d is the maximum likelihood estimator of eo we have the similar
13

exprecsicn (see [4] page 11).

1 2 3
—= L 35 80x_15%5}9)
Vﬁta -8,.) = . {5- i=1 -
n 0 1 n 32 oy - n
- H.izl g;f g(xi-l’xileo) - (dn-60) 421 G(xi-l’xi)
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from assumption (3) of Theorem 2.1, (70) and (72) it follows that

~ V)
vﬁtdn -d)~>0 in probebility, as n > =

2.3.2 Multi-parameter case, 8 = (8;,-:+,8)

It is a straightforward generalization of the one dimensional
case and we shall merely state the results.
Theorem 2.4

Assume the same conditions given in Theorem 2.2, plus:

(4) -2 g(g,n|e) has moments of order 2+6(8§>0) u=1,2,--.,m
a ‘

(5) for any ¢ ¢ 0 , there exists a neighborhood N of & such that

for all X, _

i-1
h!
j 3f(x, _1-%;10)
E Sup 30 xl*l < @ u = 1, ,m
(BSN u
(6] Let FO’Fl"" be a non decreasing sequence of Borel fields such
that
a = = .
E [aeu g(xk_l,xk|e)l| Fr.1] = 0 w.p.l K=1,--,



21,

then we suppose that:

n

S | ) d -
IR ¢ CWENDIEE o (CAPRLADII LW RO

11->co k=1 u A

(in probability) u,v = 1,...,m
and
2+8

. -1-§/2 o ﬂ 3
- lim n } B ||z sl , X, | 8) F =0

e o1 50, £V%-1""k k-1

(in probability) u= 1,-:-,m
Then (d(xy,-+-,x) - o) En,a7le)) as n o=

Corollary 2.4.1

Under the same conditions required for Theorem 2.4, we have:
1) /acd(s L -1
(1) vn(d(x ""’xh) - 60) 3 N(0,o0 (65)) as n->w

(2) Vaté(xna"',?h) - 3(10,"',xh)) + 0 in probability as n + =

2.4 Asymptotic Efficiency of the Maximum Likelihood Estimator for a

Certain Class of Zroblems

First, we shall recall a very useful result due to P. Billingsley

(see [4] pp 52-61).
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Theorem 2.5

Let up,u be random variables with moments of order 2 + §,

SYRREE

§ >0 and let F be a nondecreasing sequence of Borel Fields

0°Froo

such that

(1) E [unl‘Fn-I] =0 w.p.l n=1,2,....

. -1 3 2 2
(2) limn kzl Elu, tlpk_l] =8 >0 w.p.l

n-+w

n

. -1-86 8
and limn 1-8/2 z E [luk!2+ lle_l] =0 w.p.l
n-w k=1
n
Then n /2 )y w &‘N(O,Bz) as n*°

k=1

Remark 3: The result just stated still holds if the limits in condition

(2) hold in probability.

Corollary 2.5.1

Assume the u‘'s depend on some parameter 6 = (61,-",6m)

8 € © , and that for all 90 € @ , there exists a positive number r(eo)
such that the limits in condition (2) of Theorem 2.5 hold uniformly for

all © such that -|6 - 60; <T.
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-1/2 % L 2
Then n Z u, N(0,8°(6)) holds uniformly as n + = for 18 -80[ <T.
k=1

Proof In order to establish the result just claimed, we mereiy need to
follow Billingsley's proof of Theorem 2.5 and make sure that the relevant
limiting statements hold uniformly for |e - 60{ <T.

These steps do not involve any new idea, so that we shall only sketch

where they occur,

1. Lemna 9.2 of [4] pp 53-55 does not involve any limiting argument
and therefore hold for all 6 ¢ 0 .
2. In order that the conclusion of Lemma 9.3 of [4] pp 55-58 holds

uniformly for |e¢ - 80) < r we assume the following:
2 2 2 2

2
= R i = e e
let 9, Ekan "‘n-l] s Sy o * *o.
. 2
for t > 0 let m, = min {n:sn >t} ,
248 248
and Ya = E[‘Unl !;Fn—ll
T2

then we suppose: (a) lim ) o (6) = =

n»eo k=1

n
® 1mn 172y #E o
N-rco k=1

both holding in probability and uniformly for |6 - eol <r
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(c) sup mt(e)/t is stochastically bounded* for
t

le - 60{ <r
-2-8 § 248
(d) lim s DR <1 in probability and uniformly
nre M el K

for e - eol <r .

3. Finally the proof of Theorem 9.1 itself (see [4] pp 58-61)
assuming (a) 1lim s 2/n = 62(6)
e I

n
®) 1imn %2 3 yi*s = 0

nro k=1

both statements true in probability and uniformly for le - 90! <r

Then it can be shown that:

lim m_(9)/t = 872 (6)

-0

n
lim snz'6 ) y§+6 <1
N~ k=1

both limits true in probability and uniformly for |6 - 6,] <

which in turn imply the conclusion of the corollary.

Next, we recall the basic result given in [32] by Weiss and Wolfowitz:

* For definition see [12] page 247.



25.

Theorem 2.6
Let {Zn} be a maximum probability estimator, which satisfies the

following conditions for some sequence

k(n) = (ky(m),-++,k ()) (0= 1,2,-++)

where ki(n) >® as no+® i=1,...,,m
and for any h > 0 .

As n - « we have:

(1) Lim Plk(n)(z -0) ¢ R|8] = B, say, uniformly for all 6 € H where

H= {o]|km) (o - 90)3 <h}*, 8,¢€0

(2) as n > o and M+ « we have

Lim P[]k(n)(zn - 8)] < M|e]

]

1 wuniformly for all & in some
neighborhoed of 80 .
Let {Tn} be any estimator such that, as n » « |

Lim {P[k(n)(Tn - 8) e R|8] - PIk(n) (T - 8,) € Rleo]} =0

uniformly for all 6 e H .

Then 8 > lim P[k(n)(T, - 6,) € R|8]

We now turn to an important result which will frequently be used

in the sequel.

* If v=(v),--+,v) then |v| stands for max vyl -
1
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Theorem %;Z

Assume the same conditions (1) - (6) given in Theorem 2.4, but
now all limits are reached uniformly for |g - 60' < r for some positive

number 1 .

(7) o,,(8) is a continuous function of 8,6 e0  U,v = 1,--+,m

Then The maximum likelihood estimator of e0 is asymptotically

efficient.
Proof
1 Conditions (1) - (6) , with the additional restriction of uniform

convergence imply that

Vﬁtén - 9) ¥ N(O,c-l(e)) uniformly for |6 - eol <r as n >

The proof of the statement just made, is not at all involved. For sake
of conciseness, we shall give the argument for the one-parameter case.

Recall that we have by (70}

n n
70 1 r(n)
R e i
S —;. 5 2 1o
- ;{ kzl ';'e—— g(Yk__.;,x ! J oy ‘2“‘ (2}1 8) 2 C(Xl RE xk)

. by Corollary 2.5.1 we have



n
3
:é.kil 55 0% 1% |®) EN@,o°() as n s uniformly for

le - 90! i

- the second term in the numerator does not depend on ¢

27.

- the first term in the denominator converges uniformly (by assumption) to

o*(6) for [0 - g] <

- finally, the second term in the denominator converges uniformly to zero,

since all assumptions needed for consistency hold uniformly for

lo - 8y <.

By the same argument it can be shown that, as n » o

%H(&n -6) &‘N(O,U—l(G)) uniformly for |o - 80] <r

1
-zm

)
2. Let £(z]6) = (2m 2 [lc’l(e)ll'l/zexpi—'% z'{o(e)}z}

where z is an m-vector

and o(6)

in

(Ouv) u,v=1,".m

Let R1 be a compact set in m-space such that

{ £(z|8p)dz > 1 - 1=

1

e > 0 arbitrarily small

Let S(e) = max |f(x|e) - f(x|e,)|
XSRI

Since the correlation matrix is assumed to be a3 continuous function of

so is S{e)

>
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Let v=[ dz
we choose a number r', (0 < r' <7r) small enough so that
< - '
S(8) < g5 for le eol <r

Let Ry be a set in m-space

- suppose R, &R

3 1

(75) then £ |£(z]e) - f(z]ey)|dz <7 V! <%

3

- suppose R3 ﬂRl = ¢

[ f(z|e)dz > 1 - 2c

1
Ry

(80) > [ |£(z]0) - £(z|8y) |dz < :};.
R
3

finally (75) and (80) together imply that for all R

r{ £(z]0) - £(z]6y) [dz < 35 for |e - gy| <’
3

Now, by part 1 of the proof, we know that for all 6 such that

le - 60[ <T' <71 there exists n, such that n > n, implies

(85) [Pk)(Z, - ) e Rlo ] - [ flz]o)dz’| <15
R
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'
(90) |PIk(m)(Z, - o) & Rle] - PIK(n)(Z, - o)) e Rlgyl| =
}P{k(n)czn - 0) € Rl6] - [ £(z[0)dz
R
—P[k(n)(zn - 90) € R(eo] + é f(z]eo)dz
€ e . 4de
+ { £(z|0)dz - [ f(z]e)dz|s 7+ 7+ 17
R .
. h
let n, = {min n: k(n) > = } < =
T
then for n > max (nO,nl) , condition (1) of Theorem 2.6 is satisfied.
Similarly it is seen that condition (2) is also satisfied,
Since we have seen that the MPE and MLE of 6 are uniformly
asymntotically equivalent for le - eol < r . This concludes the proof.

2.5 The Impact of the Invariance Property of the Method of Maximum

Likelihood Estimation on the Efficiency of a Class of Estimators.

let 8 be an m-vector of unknown parameters and let g(-) be an
invertible mapping from m-space to m-space. The invariance property is

that if en is a MLE of 6 , then g(@n) ijs a MLE of g(6) . Now if

g(-) is a mapping from m-space to m'-space, (m' < m) , Zehna [34]

and Berk [3] both propose to use g(en) as a MLE of g(8) . Zehna
?roposes to use g(én) since, if with g(®) one associates the largest of

the likelihoods of those &' such that g(o') = g(6) , this **induced



30.

likelihood function'" is maximized at g(gn) . (g(én) could actually be
a minimum (see [9] pp 70-71)) Berk proposes to use g(én) since, if one
simply adjoins to g(9) another function h{6) so that the mapping

f > {g(@), h 6)]
is 1 -1, then [gcén), h(6 )] is the MIE of [g(0),h(e)] .

The addition of h(8) is only aimed at preserving the status of g(en)

as a MLE.

Corollary 2.7.1

Consider the mapping
(91,...,9m) — {wl(el,...,gm),...,¢m'(91,...,em)}

from m-space to m'-space (m' < m)

(1) If m' = m assume the mapping is 1 - 1 |

If m' <m assume there exist functions
wm,+1(61,"‘,Bm),-°-,¢m(61,--~,6m) such that the mapping

6 = (61:”',831) <=> ¢ o= [wl(el’”"em)’.“’wm(el’“.’em)] is 1-1

(2} Moreover we assume that:

+ the conditions given in Theorem 2.7 hold and that

36 826 339
i ! i

Bwj ? awjawk ’ awjawkawl

exist and are continuous throughout

6 i,j,k,1=1,---,m
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Then {w(en)} is an asymptotically efficient estimator of y(9)

Proof

Let i;;(xlw)

H
L= R

1 Flx % 9) b (x50 oux)

and E(xi_l,xi]¢) Log ?(xi_l,xi}w)

It is clear that:

— 2 .
g , 3 g , 3 g
3wj awjawk awjawkawl

are linear functions of 3%& i=1,-..,m and partial derivatives
’ i

of higher order. For example:

- m a8.
98 y 3g . _J
3l jo1 %85 By
08, )
(where the partial derivatives such as gﬁl are not random variables).
i

We see that w(en) is a maximum likelihood estimator in its own

rights, and that all assumptions of Theorem 2.7 are fulfilled and
accorlingly enjoys the property given in the concluding statement of

Theorem 2.7.

Finally it seems reasonable to consider that in the case m'< m ,

'{wl(en),~-°,¢m,(6n)} is a vector of asymptotically efficient estimators

of (¥ (8),++,u, (83} .



CHAPTER III

APPLICATIONS TO THE ESTIMATION PROBLEM FOR

MARKOV CHAINS

3.1 Estimation of parameters for strongly ergodic, irreducible,

non-homogeneous, finite Markov chains.

Consider a non-homogeneous Markov chain with N states (N < «)

and with successive transition matrices Pl,Pz,---

n
tet H = I P, , P, = (P

i)

where P§k may depend on ¢ = (el,o--,em) a vector of unknown parameters,

we are willing to estimate.

Assume the chain is ergodic in the strong sense (see [16], 1i7j,
[20]).

let S = 1lim H then hg?) > 7. as n »+ o independently of i
e P ij j

Since the hig)'sare finite in number (for each n ), there exists 1N,

such that n > ng > ]Hn - S| < (£) where (£) is an N x N matrix of

e's > o arbitririly small.

Given any initial distribution a = (al,---,aﬂ) , the absolute

probability vector is

or for the ith component

- 32 -
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N N
am - Y a n ()
i j=1 J Ji
N
(n) - ™ - am
Z a, h(n) 7.] < e as soonas n>n
j=1 J it — 0
Lemma 3.1

Let Pn be the nth transition matrix of an N x N non-homogeneous,

strongly ergodic finite Markov chain.

n
Let Hn = I P, , m= lim a - Hn for all initial distributions
i=1 n>o
a
Let Yt = f(Xt,Xt+1) be a bounded function of the random variables
Xeo Xiq (i.e.: !Yt] <M for some fixed M)

Then Cov (Y t+n) +0 as n» o,

Proof for all n > nj(e) {a(n) n| <e

E[Y.Y

Yeaney] = EIEOLY

t+n +1"Xt t+1}]

E[Yt{E{Yt+n+1llxt,xt+1]})



but ]E{Ytﬂwli}(“l] - E{thﬂ][ <2-¢ M
LYY, ) = E[Y(E[Y_ .1+ €3] ferl <2 ¢ .M
= E[Y,] - E[Yt+n+1} +e' E[Y ]
finally iE[Yth+n+1] - E[Y.] - E[th”]l <2-¢-M*M

which can be made as small as desired.

34.

Remark 4: It is clear that if f£(.) is a function only of Xt , then

the same conclusion holds.

Corollarv 3,1

Proof

Assume the same conditions given in Lemma 3.1.

Then the weak law of large numbers apply and we obtain

n Y,-E[Y,]
lim ) ——= =0 (in probability)
n->w 1=1 n

We choose n, such that ]cov{Yt,Y

o )| <e for n 3_n0(e)

t+n

n n
var [ § Yi] )

Var [y 1+2 § ) Cov (¥;,Y)
i=1 i=1 1 J

1<i<j<n
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1 B nM2+2n-n0(e)-M2+nze
var [n .z Y.l < 5
i=1 n

n
and clearly 1lim Var [n"1 ) Y;1 =0
n-»® i=1

the result follows from Tchebycheff's inequality (see [21]).

Theorem 3.1

Using the same notations as before, we assume:

(1) S(8) = lim Hn(e) holds uniformly for |o - eol < r for some positive

N0

number T,-:: . and that n(e) , the limiting probability vector is a

continuous vector function of 6,6 ¢ 0,

(2) for all 1i, j, k, P§;) has continuous partiel derivatives w.r.t. 6 ,

up to the third order.

. s
Letting g§;) = Log P;;)(e) we assume that for all (j,k) pairs

(j, k= 1,2,-++-,N) and for any u,V,w :(u,v,w = 1,-++,m) , the sequences

0] 62D 33,(1)
ik RTIRY _dk L5 22,0
86u * 138 09 2 26 36 998 22

u vj u’ v w

are uniformly bounded in some neighborhood of 80 s



36.

. 3 (1)
3
(3) let Ggi) = sup Y RTIED
8eN (8,) u v v
e 0
where Ne(eo) is some neighborhood of 6 > then we assume that:
n {2 (i) ‘

.o -1 g - - (k)
limn™ ] EBlggEme (opxplodllxg_ g = ko= - 000
ne i=1 u v

1§ e
and 1lim n Z E[G (xi_l,xi)Hxi-l = k] =M

N>

exist, for k

i=1

«+,N Moreover, the first limit holds uniformly

for |6 - 60] < r and is continuous in 6 ,
(4) £for any 6 ¢ O there exists a neighborhood N1 of & such that for
all i,j,k
(i) .
! apP ; '
Eisup «—%%Lé—l X, 1‘ <w u=l1, s
gteN u 1= i
i 1 !
- 2_(i)
! 7P (e
E 'sup v J X, <> u,v=1, .
e e 36, 98 i-1
< £Nl u v
. 3
- PN S5 BN LA
(5) let Guv(e) = (TTl,"':'ﬂ'N) (AUV » ’AU.V )

then (Guv

(8)) is a positive definite (N x N) matrix.



Then the maximum likelihood estimator of 8 is:
(1) consistent

(2) asymptotically normally distributed, i.e.:

e, - 6 L N(o,c‘l(eo)) as n >

o)
where 0(60) = (cuV(BO))

(3) asymptotically efficient .

Proof

We simply verify that all conditions, required for Theorem 2.7
to hold,are fulfilled:

n

(a) clearly the likelihood function L(€) = T Pgi)(el
i=1

fits in the general format proposed

n
Kn{xfe} = ;il f(xi_l,xile) . hn(xo,"',xn)

and by assumption (2), L(8) eLe

(b) By assumption (1) and (2) we can apply Corollary 3.1

an M BRI P CY )
lim n (x; _1:X:|0g) = lim n E (x; ,,%X. |8
Nsoo izl 36y i-1"71170 Noo igl | 9%y i-1"731170

(in probability)

37,
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o (1)
ut E9E_L : = it
bu i‘ae (xi_l,xljeo) 0 w.p.1 so that the condition

=5 (xi-l,xileo) = 0 (in probability)

is satisfied for 6 = 90

Now since the limit in assumption (1) holds uniformly for

lo - eagi. r , this implies that both Lemma 3.1 and Corollary 3.1 hold
uniformly over the same range of 6 , and so does the above limit.

(¢) rTepeating the same argument it is now clear that

n

3 -1 (i) . .o . 2 e T
- LmaTh §OGTT0xg puxg) = (mpttam) o (Mgt MY
n->o i=1
(in probability)
1 % 325 1)
- lim n~ (X, ,,X.]6) = - o._(8) (in probability)
oo i=1 asuaev i-1°71 uv

. . . . i
where cuv(e) is continuous in 6 since all ﬂi‘s and Aiv)'s are

NS T PG agH) |
R - L1 e CARRE N DI el CISILA DALY S
=00 i=1 u v

(in probability)

which follows from the previous line and assumption (4) which implies



32 (1)

E 56,36 CTIETE N O] LS

-
b (1) (i)

g ., 9g :

=" El.aeu (xi-l’xiie) %0 (xi_l,xile)tgxi_l

= 0 (in probability)

n (k) 2+8
- lim n~1-8/2 Yy E 9 P
k-1
k=1

9L
55— (X.10%)
o u

which follows from (2).

All limits holding uniformly for |6 - SO[ < r , this concludes

the proof.
Exaggle:
2 2
1 - cosp * cos™n cos n * cosf
et P =
n 2 2
“sin6 - cos'n 1 - sinf6 « cos' n ¢

. m .
where 6 1is an unknown parameter (0 < 8 < 5 ) , which we want to
estimate.

We now expand Pn in terms of its eigenvalues (see [2] pp 24-28)
which are solutions of
1AL - 7] = 0

where I is the (2 x 2) identity matrix,

This gives us:

A=l Aén) =1 - cos’n - (sin & + cos 8)

and clearly !Agn)} <1, for all n .



Pn can now be rewritten as:

40.

sing cosé cos8 ~-C0S6
sinf+cos9 sinb+cosd sinb+cos6 sin6+cosoH
i !
P = : ; + )\(n) ;
n - } 2 {
\\ sin® cos® / -sind sind
- sin6+cosd® sinb+cosso .$1n6+Cco0sO sinB+cosb /

or in snort

Pn = Q1 + Aén)Qz , where we observe
Ql'Q2=Q2'Q1=O

Clearly the observations just

n .
Q + I Agl) - Q
i=1

=

H

n 2

(1)

n
Let us look at lim T k2

nee  j=1

1 < sin6 + cos® <

that Q" =0, @ Q=0 .,

made imply:

2

Given any § > 0 , arbitrarily small we can choose a positive

integer N , large enough, and a small positive number ¢ such that for

n .
n>MN, (1-2¢) <8. Wenow pick

@i-=

2, .
cos 1 > e at least N times

we have:

1,--

ny positive integer so that

-,no) » So that for n > n,
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n
= 1 |1 - cos%i(siné + cosf)| < & for all 6 .
i=1

Therefore the limiting distribution is:

[ sine cos9
\sine+cose $in6+coso

(r,(0),7,(8)) =

and the limit is reached uniformly for all o .
Next, it can be verified that assumption (2) holds.
Our next point is to show that (3) holds. For that purpose we need

the following fact:

If f(coszx) is a continuous, bounded function of x ,

(0 < x <2m) then

n

. -1 2. .
limn z f(cos‘x) exists
n-ro i=1

Proof

As an immediate consequence of the continuity of f£(+) on [0,27] ,
we know that this function is uniformly continuous on the same set.
Given €, > 0 , arbitratily small we can find € > 0 suth that

}f(coszx) - f(cosz(x +8))] < £,

for all x on the real line and § such that 0 <é < e

We now show that there exist 2 positive integers no,ko such that

0 < ng - 2kO w1 < gf2
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This is shown by contradiction: let n = 0,1,--. and put the

points MO’Ml’”' on a circle such that

P
MiMi+1 = 1 rad (mod. 27) ,
Ny
and M(') , MY,*** such that
MiMi = -;-:- (mod. 2m)

Let S, = {rlo <MP < e/2 , (mod. 2m) }
then clearlywe have for some 1 , Mi €S.,j <i , since the circle is

J

finite in length. This implies that Mi-j € SO . Here, we simply have
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Let an upper bound of f(-) be M

0
*
2nJ . M . .
let K = o where J 1is chosen so that K > — 5 €7 0 arbitrarily
2
small

~

Then we have:

nOK
2n - /2 f-nOK - e 27 < 29

2n

pick N > 2 integer such that for the first time, we have

* [x] is the largest integer less or equal to X
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NnOK

2“’8/2'€'<N.n0'x'\21:]’2“<2ﬁ"€'/2

by the inequality 0 < €' < /2 this implies that

ny KN+1)
2w

2 - g/2< nO(KN+1) - ] « 27 < 27

-

This, we shall call a "correction of n_ rad.”

— I
“;“~ﬁﬁ

P \
-~ 1
OoP n. + K - N rad. (mod. 2p)
1 0

0 5 = Mg K+ N+ng, rad. {(mod. 27)

i

Suppose we have been through Z cycles (a cycle being defined as

a rotation of n, - K rad.), Y of which requiring a correction of n, rad.
nok ,

let 2 f(cos™n) = nOKu
n=1

Let u' be the average for the Z cycles
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(Z - Y)nOK(u + el) + YnO(K(u + el) + M)
z - Y)nOK + Yn (K + 1)

Max '
ol
Ingkln + g7) + Y M ZnK{u+ ;) + YnoM

<
ZnOK + Yno — ZnoK

N =<
=i =
A
=
+
[y}
+

= + +
U 61

and by a symmetric argument we get
't .
lut - uf <oy v ey

where &t 82 can be made as small as desired for any Z positive
integer. Also it is clear that for Z large enough, we still have by - ul
as small as wanted, when adding a fraction of a cycle, Q.E.D.

1f f(coszx) depends continuously on a parameter 6 , then it is

clear that the limit of

1 % 2
n"" ) f(cos"n) = u(e)
i=1
holds uniformly for all & . Also it should be obvious that u{e) is
continuous in 6 . Consequently, assumption (3) of Theorem 3.1, is
fulfilled, and it is readily seen that so are assumptions (4), (5).
We conclude that the maximum likelihood estimator of 6 has the

properties of consistency, asymptotic normality, and asymptotic efficiency.
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3.2 On Ergodicity of Random Markovian Matrices and Application to

Estimation Problems

Let us consider a finite (N x N) Markov chain, in which P

the transition matrix is a random matrix, i.e.:

N
P.. 1is a random variable such that 2 P..=1
1] je1 M

th

Letting P(n) = (ng)) be the n transition matrix.

We assume that:

(1) The Pg?)'s may be either dependent or independent for all

i,j =1, ,N

(2) (Pg?)) and (Pg?)) are 2 sets of independent random variables

for n#nm

Let H = p() _ p@ . . p(

then the study of Hn , as n - « arises naturally. We show next that for

a particular class of random Markovian matrices, a solution is obtained.

Theorem 3.2

Assume:

(1) for any two outcones P(l) and P(J) we have

p) | ,0) L o) | L)
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(2) P has N distinct characteristic roots with probability 1
(3) P is aperiodic with positive probability.

Then the probability limit-of Hn , 48 n > « , exists.

Proof A random Markovian matrix of order N , with N distinct

characteristic roots may be written for every outcome as.

1) _ (1) (i) i)y , ... @G, @
A N T * A A

- assumptions (1) and (2) imply (see [16] page 74) that we have

Aéi) = Aéj) = A (say)

t
o]

At A A A A kK #j

- the A's are of course random variables and }Ail <1 with

probability one. Also Ao = 1 w.p.l

- the A's matrices are constant.

- assumption (2) implies that there is only one root AO = 1 for each
outcome.

. Since P is by (3) aperiodic with positive probability, !kil ,
(i =1,---,N - 1) , is less than one with some probability greater

than zero. (See [18] page 101)
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So that

n .
i Agj) + 0, (in probability) as n + = i=1,---,N-1
j=1

and finally Hn + A, (in probability) as n »> = Q.E.D.

0

As a consequence of this, we can show, by the same argument used

in the case of non-homogeneous finite Markov chains, that if Xn is

the state of the process at stage n , and if we let
Y= £(X), |[£X )] <M<

then Cov (Yt’ Y. })»~0 as n-eo

t+n
noY; - E[Y;] . .
Z 5 0 (in probability) as n » «
i=1

Suppose the Pij’s are a set of random variables depending on a
finite number of unknown parameters, 6 = (8 ,---,6 ) , that we are
1’ m

willing to estimate. In this respect, we have the following results.

Theorem 3.3

Assume:

(1) P lim Hn = H , (say) exists, uniformly for Je - goi < r , for

o
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some positive number r , all rows of H being identicaily (wl,...,ﬂN) s

where ni(e) is a continuous function of 8 ,6 ¢ ©® , i= 1,'""",N

(2) the Markov chain {E(P§?))} - where the (i,j)th component is taken

n)

j - enjoys the properties (2) to (7) given

to be the expectation of P§

in Theorem 3.1.

Then the maximum likelihood estimator of 8 is

(1) consistent
(2) asymptotically normally distributed when properly normalized

{3) asymptotically efficient.

Proof
At each stage i , we observe the state of the process Ti , but

we dc not obseyve the outcome of the Pij's .

Assume we take n successive observations. To estimzte 6 we want to

maximize:

e ey e p() 1
E {Pg_rl,'rz, R I P G S P AR
{Pij s}

- [ i) 1. ok (D (2)
- E's}{r’ e mge] - pilied. @i e -
i

ce[r e, @), e, e, el

i

-

J
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* B {P[Tlﬂ(Pg)),TO,e}] . P{TZH(pj(j)),Tl’e} L

. p{TnH(Pi(rj‘)),Tn;l,aj}

* %k

]
=3

) 0 ‘
el E{p{Tk”(Pij )s Tk-l’sj}

With this approach we are now back to the conditions of Theorem 3.1, and

this concludes the proof.

Example :

1 - 6Y 8Y
Let P = be the one step transition matrix
Y 1-Y

6 € (0,1) , where Y is a random variable with uniform density on
(0,1).
We now look for the characteristic roots of P . So that we must

solve the determinantal equation

* by the Markov property.

** by the independence of (P§?)) , (Pi?)) m#n and conditional
independence of the Ti's.



we get A' =1

A"

"

1-Y(1+8)

Expanding P in terms of its characteristic roots we have

/1 0 6 - B
1+080 1+8 1 +9 1+0
P= + [1-Y( +8)]
1 8 -1 1
1+ 8 1+8 \1 + B 1+ 8

or in short

Pi-:Pl i=1,2
P=P,+ NP, with
pipj = 0 i#j
(1 ., ) -
ptt e oo™ o p s (many L P
1 i=1 i 2

A" is clearly a random variable with |A"| <1 . 1It is easily seen
that for |e - 6,/ <r , for some r >0
n

lim I Af =0 (in probability), uniformly.
nre i=1 1



and finally
p(l) . p(z) . . p(n) > Pl (in probability), as n » « , i,
1 8
1+096 1 +8
H =
1 8
1+ 1+0

when observing n successive transitions, one would only record the

Nij's which constitute a set of sufficient statistics.

2N12

The MLE of 8 is
+ N

N

11 12

3.3 Estimation of Parameters for a Finite, Homogeneous Markov Chain

3.3.1 Consider the Markov chain with transition matrix
/Pn’ SVIRRERE > Py
Pa1e
P = y i
Pyqsnenennnnns » Py
N
with the restrictions 7§ P, =1, (i=1,--,N)
j=1 Y
>0, (i,j = 1,""",N)

P..
1]

52.

€.
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then P is irreducible, and we know (see [24], chapter 2), that the
chain has a unique stationary distribution, coinciding with the limiting

distribution I = (nl,---,n , where I is the solution of:

N

I = 1P
(200) N
] omo=1
i=1 *
The vector of unknown parameters we are trying to estimate is
8= (PysPops Py No1oPor Py e Py N d)
Assume eo is the true value of the unknown parameter, then it is
clear that

. o(n) N
lim Pij (60) = 1.(s
N>

To show that the convergence is uniform for all i,j over some

neighborhood of B, Wwe follow an argument given by Doob (see [8] page 173).

For 6 = 80 , there is an integer u(eo) and a set

£ .
J(eo) of Nl(eo) , (1 f-Nl(SO) < N), values of j , such

that
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Min PO - 8(8p) >0, (0 <8(8) < 39
l<i<i * 0" =N
...l...’ d

jed

Moreover we have

n) (n/v) -1
(205) Pis (8) - nj(eﬂ) < (1- N, +8)

Consider now a neighborhood of ¢, such that Pij(e) > 0 , for

0
all 6 ¢ N, = {6: le- 8y| < r} . Then obviously v=1, Ny =N

0 .
and from (205) we can conclude that the convergence is uniform.
Consequently, Lemma 3.1 and Corollary 3.1, given in the section on non-
homogeneous Markov chains, apply.

Looking at the assumptions of Theorem 3.1, we see that all of them

arec readily fuifilled.

In the case under consideration it is clear that a set of sufficient

statistics is the matrix (nij) called by Billingsley, (see [5]),

transition count, and that the maximum likelihood estimator of Pij is
- n..
= el
ij N
J on,,
j=1 Y

Next, we consider the estimation of the 1's and claim that the

MLE of Hi is



where n =

} ey 2

)
n; .
i=1 j=i *J

In fact by the invariance property of the MLE the Hi's are

solution of the following system of equations:

P PN
(210) (Hl:' ’HN) = (Hlﬁ""nN) )
Pa1 T P
N .
(2200 ) m =1
i=1
N
- ) n5
” _ jzl
let Hi = 5
then it is easily checked that
Pll P1N
(225) (mp, -, = (g,0e,0) | ' + on)
P cevs P

55.
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N 2
(230) Y mo=1

[
(0]
ot
forox
!
=y
]
ta]
-
s
ol
[¢]
.-
e
L]
Q
=]
~~
[
Pt
(=}
N
-
~~
™
N
(]
p——
-
VY
N
N
(¥}
A
'
—
N
(73]
[e]
v
=
[¢]
9]
(0]
Fad

/ .
(235)  (xp5mee,2) =(Xp50 " 5%) \ : . + 6(n)

(240)

H~12
H
[t
[

from (235) and (240) it is clear that X; is of oxrder n"l, (i=1,"",N)

A

so that ny -0, > 0 as n >« , in probability

~

Jﬁtﬁi - ﬁi) -0 as n ~» o , in probability.
This leads us to the following conclusion:

Theorem 3.4 N

Assume P to be the transition matrix of a finite irreducible

Markov chain, where the Pi{'s, (Pij >0 ; i,j = 1,+++,N; are all unknown.
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“ n, .
Then (1)* Pij = —ﬁm—il- is a consistent estimator of Pij

n..
=1

(2)* Vﬁtﬁij - Pij) is asymptotically normally distributed

(3) Pij is an asymptotically efficient estimator of Pij .

N
- ) n
- Lo i) ‘ .
4 n, = l—~5-~ is a consistent estimator of [P the stationary

transition probability.

A

- /Etﬁi - Hi) is asymptotically normally distributed.

- ni is an asymptotically efficient estimator of Hi**.

3.3.2 Consider a finite, irreducible Markov chain where Pij is now

assumed to be a function of 6 = (61,-'-,6m) , a finite vector

of unknown parameters. Any Pij may be known, or function of one

unknown parameter (example: Pij = Gij) or else functicn of
, M

several unknown parameters (example: Pij = cos (I ei)) .
i=1

* Results stated by Billingsley in [5] .

i
not 1 -1 . However, it can be verified that the following mapping
fulfills the mild conditions of Corollary 2.7.1

** It should be pointed out, here, that the mapping (Pij) - (I,) is

=1

[
i

= 1,--+,N

Hl i +++,N-1
<wP N
— l’tno’N_l p.. {]:
13

>
2,-+-,N
1,--+,N-1

[
nde
[
tonds
i
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We next show that under mild conditions, the MLE of © enjoys

some desirable large sample properties.

Theorem 3.5

Let D= {(i,j): Pij(e) > 0 , independently of © € 0}

then we assume that:

(1) each Pij(a) has continuous partial derivatives of third order

throughout ©

(2) moreover the (d x m) matrix
9P, . 1
=55, (e)} (1,) €D w= 1,00,
u

(d being the number of elements in D ) , has rank m throughout © .
For each 6 ¢ © , there is only one ergodic set.

Then the maximum likelihood estimator of 6 = (61,"‘,em) , has the
following characteristics:

(1) én is consistent

(2) vﬁ}gn - 8y) is asymptotically normally distributed

(3 en is asymptotically efficient.

The proof will be easy, since it is enough to make sure that the

assumptions (1) - (5) of Theorem 3.1 are satisfied.
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- by the ergodicity assumption on P , we know that

P(n)(e ) >0 (8.,) as n=»w
ij vo j 0 )

If we follow once more Doob's argument, previously summarized,

we see that since the Pij's are finite in number, we can find a
positive number r such that for |6 - 60! <t , N8y,

v(eo), 6(60) will work independently of 6 . Therefore (205)

holds for all ¢ satisfying [6 - 60| <1 , and the convergence is
uniform for this set of values of © .

- condition (1), here, is equivalent to condition (2) of Theorem 3.1,
since we are now considering an homogeneous Markov chain and that

the Pij(s)'s are finite in number.

- for the same reason, conditions (3) and (4) of Theorem 3.1 are

automatically fulfilled as condition (1) of Theorem 3.4, holds.

- finally, we see, following Billingsley's argument (see [4i

pp 23-24) that condition (2) of Theorem 3.5 implies that {cuv(e)}

is a positive definite matrix. Q.E.D.

Remark 5: Instead of deriving Theorem 3.5 as a special case of Theorem 3.1,
we could have simply followed Billingsley's proof, adding to it the
uniformity argument. However, we believe that this approach offers some

more generality.
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If we are interested estimating the steady state probabilities

Hi's, (i=1,-+-,N}) , we proceed as follows:

(1) suppose m > N - 1 and that in the case of strict inequality, there

exist functions of ©

w(8),"+,v (8)
such that the mapping

(61,‘°',9m) <=> (nl,"',HN_l,VNs”':vm)

be 1 -1 . Then under the mild conditions of Corollary 2.7.1, the MLE

of (Hl""’HN-l) s (Hl,---,HN_l) , which is obtained by solving

enjoys the properties of

- consistency
- asymptotic normality, when properly normalized

- asymptotic efficiency

(2) Suppose now m <N - 1 , then we can estimate simultaneously any

m out of the (N - 1) Hi's . Any such subset enjoys the same properties

just given above. The estimators of the remaining Hi's are immediately

determined.
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3.4 Estimation of Parameters for Denumerable, Irreducible, Persistent

Non-null Markov Chains

Let us consider a denumerable, ergodic Markov chain, whose Pij's

depend on a finite vector of unknown parameters 6 = (61,'°',6m)

Billingsley, in his monograph (see [4]), has proved that under a certain
) is

set of conditions, the maximum likelihood estimator of 0 = (61,"‘6m

consistent and asymptotically normally distributed, when properly
normalized. We shall try here to explain the difficulties met when question-
ing whether the MLE of 6 is asymptotically efficient or not.

It is clearly seen that here, our likelihood function fits into the

general format of Theorem 2.7. Also under some regularity conditions

. (8)

g; j

ij = Log Pi

will have derivatives as required. However the remaining assumptions of
Theorem 2.7 are not easily checked and this is where a more careful

examination is needed. For example, we have to see whether

L -1 D 22050%10)
imn 30
n->e i=1 u

holds uniformly for [e - 6,| < , for some positive r

We recall that heve, we are dealing with infinite dimensional
vectors and consequently the results of Lemma 3.1 and Corollary 3.1 do not

hold any longer. We also recall that in the finite, homogeneous case, we
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used a result on the geometric ergodicity of a Markov chain. We shall

next indicate some results in the same direction.

(1) D. G. Kendall, (see [19]),has proved that if a Markov chain is
irreducible and aperiodic, and if for some state i , there exists finite

. - .. . . s matrix
numbers Mll, fig such that M113- 0 , 0<p.. <1 and the

- "ii
elements ng) satisfy the inequalities
- (n) | n
(243) Pii’ M| £Mifiy

then for each transition i - j , there exist finite numbers Mij’ pij

(1)
(250) lpij -l

the chain is then said to be geometrically ergodic.

(2) Later on, Vere-Jones (see [30]) investigated the possibility of
asserting inequalities such as (245), (250) in which the convergence
parameters pij may be replaced by a single parameter independent of i
and j

A way to study {Pg?)} n=1,2,""" , is to consider generating

functions such as

n) n

1308 = Z p(J

n-.

for all 1, j
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This is by no means easy, and in fact, does not help getting at the
Mij's, which we know little about. In particular, we would like to find

whether {Mij} is a bounded double sequence or not. The former case

would allow us to proceed forward, as in Lemma 3.1 and its Corrolary.

3.5 A Word on Multiple Markov Chains

Up to now, we have considered statistical estimation for the case

of first order Markov chain. Here, we briefly indicate how this can

th

be generalized to multiple Markov chains. Let {xn} be a t order

Markov chain with transition probabilities

P . = P[x_ =
31277808 n

a

at+1”xn-t = 1’.'.’ n-1

Problems involving multiple Markov chain are easily reduced to
problems about simple ones by a simple device (see [8] page 89 and 185).
Here we quote Billingsley (see [5] page 29):

"Consider the process {ym; m=1,2,-*} where

Yp = (xm’xm+1""’xm+t—1) , then {ym} ijs a first order Markov chain.
If xn can only take a finite number of possible values (say N), then

the state space of the chain defined by {ym} consists of NU different

tuples. The transition probabilities being

(a, "»a) (By.m e,y

0 otherwise "
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Example: Assume {xn} is a 2nd order Markov chain, with 2 possible

states.
tableau:

/ (1 (2)
(1D P11 1- Pll
(12) P12 1-7P,,
(21 le 1 - 921
(22) P22 1- P22

We now use the

The transition probabilities can be gathered in the following

device given by Billingsley and get:

/ /’ (11) (12) (21) (22)
an | ey 1P, 0 0
(12) 0 0 PIZ 1 - Plz ¥
P =
(21) Py 1-7P,, 0 0 }
N 0 0 Py 1-p), /

I1f the Pij’s are unknown,

the question of their estimation

arises naturally and in general it should be clear how to proceed from

here, using our previous results.

For the above example, we simply call upon Theorem 3.4.



CHAPTER IV

APPLICATION TO THE ESTIMATION PROBLEM IN THE FIELD OF ECONOMETRICS

4,1 Estimation of unknown parameters in a single equation

4.1.1 Linear regression with stochastic regressors.

Let us consider the following mathematical model

-— T. - FEE IR
(255) Yt = B xt + e, t = 0,1,
where (1) Xt = (th""’ th)T is a stationary stochastic process.
(2) gl = (8y,°**,8,) is a vector of unknown parameters.

(3 {et} is a sequence of independent, identically distributed

random variables with

_ 2, _ 2
E[et] =0, E[et} =0

{unknown) .
(4) the two sets of random variables {Xt} and {et} are

independent.
Then it is known that under mild conditions on the {Xt} process,

the least-squares estimators of 8 and 02 are consistent. (See [15]

chapter 6). If in addition, the distribution of ¢_ is known, then in

t
some cases, we can derive optimal asymptotic properties of the maximum

likelihood estimator.
- 65 -
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Iheorem 4.1

Consider the model given in (255); in addition to conditions

(1) - (4) we assume that:

2
(5) € is normally distributed N(0,c0 ) .

(6) there exist numbers c¢,p,§, (¢ >0, 0 <P <1,8§>0) such that

u v i
Cov (th, Xt+i,k) <c - P
jok = 1,:04s
i=20,1,---

£
<
}

=1,2,3,4,4 + &

Then the maximum likelihood estimator is

(1) consistent
(2) asymptotically normally distributed

(3} asymptotically efficient.

The proof is easy and we shall only sketch the main ideas. At each

T
t=1,2,-..,n we observe Xt = (th,---,xts) and Yt . Let

8= (8,7 " ,Bg,0°)

Wi

(61,'°',es+1) the likelihood function is:

(260) P [X; = x;] « PolY; = yy|X) = x;] - <o

. pe(xn = xnlxi =%, Y, =y;3i=1,00.,m - 1]
= = = = = —1
P Y, = v | X =x, i=1,-0m5 Yo=yg j=1,00m - 1]
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P[Xn = xn‘xl =X, 1= 1,+.,n - 1] . Pe[Yn = yn]xn = xn}
n
= P[X1 = XI] . _§ P[Xi = xing = xj, j=1,+0-,i - 1]
i=2
n
PY-=.X.=X. = ! =
izl 6[ i = Vi l¥y ;] where P [Y. = y,{X; x; ]
[ )]
_ - T _ 1 174" i)
=P leg =y -8 x5l = = o exp L' 2( o J

Therefore the Log likelihood function Zn is given by

n
(265) z = Log P[X; = x;]1+ _E Log P[X; = x,|X; = x, j = 1,-+.,i - 1]

1]

i=2 J J
n
+ ] log Poly; = y;[% = %]
i=1
3z n alog P [Y. = y.|X, = x.]
(270 335 = ® P 1 kK=1,+,s+1
k i=1 k
oLog Pe[Y = yilx. = x,]
Such expressions as ) = : and derivatives of
k

higher order, will involve polynomial in y.,x. at most of degree 2 ,
P i*% g

so that by our assumption (6), we can see that for example
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slog PolY; = y;|X; = x;1  alog PolY; X, 0 = x;,.]
(275) Cov 56 s 5%
k k! i
is less than c'pt . c' >0

Moreover we assumed that the {Xt} process is stationary and by

the assumption (3), we see that the {Yt} process is itself stationary.
We readily see that the weak law of large number is applicable
and it is a routine matter to verify that the set of conditions of

Theorem 2.7 holds. Q.E.D.

4.1.2 Autoregressive process

Let us consider a stochastic process where the following type of

relationship holds.

(300) Y. = o, + 0, + 0+ Y + €

Assume that the disturbance € satisfies another autoregressive

process of the qth order, i.e.:

(310) €y = YqEp *t T * YSE +u

where {ut} is a sequence of independent, identically distributed

random variables with
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(315) Elu] =0 , E[ui] = o

Then it is seen that (300) can be transformed by means of successive
substitutions into a third autoregressive process where tuz disturbance

is temporally independent. By (300) we have:
(320) Et.=Y _-a_aY . - tesee Y

substituting (320) into (310) for i = 1,...,q , then into (300) we can

express Yt as:

=<S s e
(330) Yt 0 + 61Yt-1 + + 6p+th-P—q + ut

Assume the distribution of u, depends on r unknown parameters
(Aq,eee-e A.) . We, then, have a total of (p + q + r + 1) unknown

parameters that we wish to estimate.

et 8 = (61""’ep+q+r+1) = (60?.."5p+q’ll"'°’lr)

Assume we are given Yl,u-,Yp+q s then we observe

Y Lo LY
p+q+l p+g+n

The likelihood function is:
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(340)  Pol¥ 001 = Ypegqerl¥s = Vi »

[ Y
i

1,>:, p+q]

TPV g2 T Vpaqe2l¥i =Yy i =2 e 1] e

-P

-
pobe
]

n,rt,p+q+n- 1]

oprqin = Yprgen!i

which can also be written as

using (330)

(350) Polu 1=V aer = 80 = Spug¥sl

....p{

6 ]

up+q+n = yp+q+n - 60 Tttt 6p+qyn
We now focus attention on the conditions of Theorem 2.7. Clearly,
we are dealing here with a multiple-Markov process and accorcingly (340)
fits into ths geneval format proposed in Cicpter II.
We now turn to the problem of the existence of various limits as
our number of observations increases. Assume that all roots of equation

(360) in P , are less thean 1 , in absolute value.

p+q _ p+q-1 _ ... - =
(360) o 8,0 6p+q 0

Also, we surpose that the {Yt} process has been going on, for a

long time. Then, following Mann and Wald's argument (see [22]) we have:
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(370)  Cov(y,,y, ) =% T T i ep.py)
ov ’ ) =0 V.V, p. -psp
t’ t+i 351 kE1 9 kY5 pk/ PPk
where v 5 J=1,°-.,p+q , are constants depending on 61""’5p+q .

H

Py j=1,0--,p+ q , are the roots of equation (360)

Let 90 be the true value of the parameter (60 € 8) . Then

whatever €y > 0 , arbitrarily small, we can find N so that i >N
!
implies COV(Yt’Yt+i) < 17 when 6 = 80 .

Also it is clear that Cov (Yt’Yt+i) is a continuous function of

pj(j =1,"*+, p+q) , 2nd 02 . Looking at the left hand side of (360),

we have a polynomial in p of degree p +q . As such, it is a contin-

uous function of p . For all , we can find a small positive

1
number €y » SO that if we perturb any 61 by an amount less than €y

in absolute value, any root p will change by less than 81/17 . This

leads us to the conclusion that there exists a positive number r , such
that for all |6 - 6)| <=

|Cov (Y,.Y )| <eassoonas i> N

t+i

Once more, if we follow Mann and Wald's argument it can be proved

that for any positive, fixed integers m,n
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m, n .
Cov (Yt’Yt+i) + 0 uniformly for |6 - eol < r(m,n)

r(m,n) > 0 as i~
Another question of interest concerns the distribution of Yt

as t gets large. Assume {ut} is a sequence of independent,

identically distributed random variables such that
Efud =0, E[f] =y <=
t » Bl T M

k

Mann and Wald argue that Yt can be expressed as¥

(380) Y, = ¢,(t)

+

§,()ey + o+ b (D)e,

Prq 8y
{390} whezxe ¢0(t) = 121 WPy * —-~§:a——~
1- 3 8,
=1 7
p*q _;
6. (t) = I Aor 1+l 0<i=<t
1 k=1
6,(t) = 1
“i’Ai are constants.

* here, we assume ey # pj for i # j , however the result carries

over if equation {360) has some multiple roots.



(400)

(410)

. . k]
and finally lim E ﬁvt - E[Y,D) | -

independent random variables and as such, we know that under mild

conditions the limiting distribution of Yt will be normal with

Then E[Y,] = ¢,(t)

%
lim E[Y_] = rer
Tt -0 1 - z 5.
j=1’
t
k k
E{Yt - ¢0(t)] = uk ..Z [(bl(t)}
i=1
=y E P%q A t-i+l
Kys1 451 39
t
p*iq 1- Qj
U AP, r——
k . 31l -
j=1 J ] DJ

-0

Looking once more at (380) we see that Yt is a sum of

mean

P*q /1
A.p. -p.
™ jzl 5037 (1=p3)

73.
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p+q
Uz z A
j=1

and variance p./{1-p.
JpJ/( DJ)

(see for example [33] pp 257-258, [13] pp 202-203, and [6] pp 215-218)
It should now be sufficiently clear, how one would proceed to
check whether the assumptions of Theorem 2.7 hold, given the distribution

functicn of the disturbance {st} .

Here we could slightly specialize those conditions, but without
really getting them simpler. Consequently, we shall skip that step and °

instead concentrate on the case where u, is normally distributed

N(O,cz) , which nevertheless is a very important particular case.

Theorem 4.2

Let {Yt} be a stochastic process satisfying

eS8t et T Shagltpg T e

where {ut} is a sequence of independent, normally distributed random

variables N(O,cz)

Assume that all roots of (360) are less than one in sbsolute value.

Then the maximum likelihood estimator of
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is: (1) consistent*
(2) asymptotically normally distributed*

(3) asymptotically efficient

Proof: The log-likelihood function is:

2
B y_)
- %. 0 5 P'IJ_ . nrog 027

then using our standard notation

g(xi_l,xije) = Log f(xi-l’xile)

where 5 (yP+q+i’¥P+q+i-1’.‘.’yi)

2
?g(xi-l’xi’e) - . £+(yp+q+i - 60 = e = 6p+in)
Y] a 3
o
2
9 g(xi_lsxl*e) Bg(xi_l,xi!e)
5 R 53 and other derivatives of interest

ac 0

are easily computed, It is particularly interesting to notice that the

above expressions are at most quadratic functions of the observations

* results given by Mann and Wald in [22] .
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and accordingly the covariance of any two such expressions goes to zero
as the time log increases and the weak law of large numbers is applicable.

From (380) it is seen that for any t , Yt is normally

distributed and the reader should be convinced that the limiting of Yt

is

2 ptq
N{0,c Z Ajpj/(l-pj)) and that the convergence is uniform
-

J
for | - eyl <2 , 1 >0 .

Appealing to Theorem 2.7 it is clear that the whole set of

assumptions is fulfilled and this concludes the proof.
4.,1.3 We now turn to a more general situation where '{Yt} is given by

(430) Y,

f
Q
+
Q2
e
o+
1

L
+
Q
e
+
™
>4
+
)

where € = Yp€ep *

We shall assume (1) {ut} to be a sequence of independent

identically distributed random variables with zero mean.

(2) the {Xt} process to be independent of the

sequence {ut} and to be looked at, as a set of exogenous random

variables.

T

By = (Bypr 7" "sByg)
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By successive substitutions (430) can be written as:

T
t = %0 Y9 Y * Opeqit-p-q ¥

is= 2,'--,q+1

T T
with 85 = -v 318

» T -
By " X+ 8yt X

4 e

t-1

Assume the distribution of u_ depends on r unknown parameters

t

(gt "oy

unknown parameters., Denote them by:

e - 6 .. wes K 2 ase s
(o "+ %eqr P11 o Prse Baro B oo
Suppose we are given XO,XI,"',Xq,Yl_p,"‘
(Xq+1,Yq+1) 3 (xq+stq+2):“', (xq+nsyq+n)
The likelihood function is:
(450) pe[xq+1 = xq+1!x0 = X, ,xq = xq}
’ Pe(Yq+1 = yq+1txi = xi’ i=0, » 1+q; Y
) Pe[xq+n - xq+n‘xi =X, 1 E 0,77",qn-1]
. PO[Yq+n = yq+nixi = xi’ i=0,.-c,9%n; Y, =

} . Then, in the total we have p + q + (q+1) s + v + 1

., =1-p,-d]
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We now point out the fact that

PelX ,; 1% = X0

q+i 00 " Xgeic1 T Xgei-1]

does not depend on ¢ . Consequently the derivative of the log-
likelihood function with respect to some unknown parameter will not involve
such expression. Dropping the subscript ¢ of pe[xj|~~-} we recognize
that the likelihood function fits into our general format.

We now turn to study the conditions under which we can -guarantee

that the liimits in Theorem 2.7 exist. Let us look at the {Yt} process
at t >« . In most econometrics publications, people assume that
{Yt} is a stationary stochastic process and do not analyze under which

conditions this istrue. They have in fact a good reason for doing so,
since this problem is very difficult to answer.
Let us state what are the assumptions which are most of the time

justifiable on operational ground in the econometric field.

(460) (1) {Xt} is a second-order stationary process such that

[cov(x,,X,, )| <c o

ALY
- O

o 0

0=

(2) all roots of the polynomial below are less than one in

absolute value

P s Pl s o
1 p+q
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- T T| s s0 . .
(470) Let Vt = 81 . Xt + 52 Xt—l + + 8q+1 Xt-q * ut

then (440) can be rewritten as

= 7 “e
(480) Yt 60 + 61\t-1 * + 5p+th_p_q + vt

where obviously {Vt} is not a sequence of independent random variables.

Using Mann and Wald's argument Yt can be expressed as:
(490) Yt = ¢0(t) + ¢1(t)V1 o 4 ¢t(t)Vt

Although we know that the dependence of Yt and Yers is going

to wear off rapidly as i increases, no sufficiently general result

allows us to draw a conclusion on the limiting distribution of Yt .

For some literature on the theory of limiting distribution for dependent
random variables we refer the reader to a paper by R. J. Serfling.

(See [28]) If in addition to (460) we assume that E{Xt] and

k 4 - X
E[tht+i} are known for all positive k,z,i then one can compute all
moments of Yt . However the existence of

. k
lim E[Yt]

£t

for all positive integers k will not in general be sufficient to insure

that the limiting distribution of Yt as t goes to infinity, exists.
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see for example [6] page 176, [13] pp 73-74, [12] page 224 and footnote.
Finally we reach the conclusion that stationarity (or asymptotic

stationarity) of the {Yt} process must be part of our assumptions.

Next, we are concerned with the degree of time dependence of such

random variables as

ag(xi_l,xi]e) ag(xi_l,xile)
and

aeu BGV

We have discussed a similar question in the previous paragraph, where no
exogenous variable appeared in the Yt process. We now state a

result similar to that of Theorem 4.2,

Theorem 4.3

Let {Yt} be a stochastic process (t = 0,1,--++) satisfying

Yo =8+ 81 " * Shuqltpg
+ B+ X+ . BT - X +u
1 t q+l t-q t

where
(1 {ut} is a sequence of independent, normally distributed random

variable N(O,cz)
(2) {Xt} is a stationary stochastic process independent of {ut}, and

there exist numbers ¢,p,8 (0 <c, 0 <p<1,8>0), such that
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®.

i .
e, Xin 2o e K,j = 1,2,3,4,4 +

}Cov(x

i=0,1,"°""

and for every mth and nth component

(3) {Yt} is stationary*,
Then the maximum likelihood estimator is:

(1) consistent
(2) asymptotically normally distributed

(3) asymptotically efficient

The proof is easy and follows that of Theorem 4.2.

4.2 Estimation of Unknown Parameters in a Complete System of Linear

Equations

4,2.1 System of linear autoregressive stochastic difference equations

Let us consider the following mathematical model of a multivariate

stochastic process

— LR B 4 T
Yo = Mep Yoo Yo
(500) AlYt * A2Yt~1 oot AP+1Yt-p ¥ AO =t t=20,1,--
where: Y SA are M vectors; A, ,A,,**°*,A _are M x M matrices.
0 1’72 p+l

* It can be seen that thls last assumption implies that the second part
of (460) is true.
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Assume that the disturbance vector € satisfies another

autoregressive process:

(510) e, = Flet-l + r2€t-2 + oveee * qut_q +u

where rl,rz,o--,rq are M x-M matrices and {ut} is a sequence of

independent, identically distributed multivariate random variables with

0
E{ut] = . ) E[utiutj} = 013 1,3 = 1, ,M
1y
Ty 2
or E[uu] = zu

By successive substitutions (500) can be rewritten as:

2

A = 1

(520) AlYt+AY et 4+ 0 t

2 t-1 Ap+q+1Yt_p;q *

is a M vector.

v e

1? s Ap+q+1 are M x M matrices;

A AO

pssume the distribution of u, depends on 1r unknown parameters
(A.,""".A) . Moreover, we suppose that all diagonal elements of By

: A
are equal to one (this is not a restriction). Each Ai(i = 0,...,p+tq+1),

contains a number of unknown parameters that we wish to estimate

jointly with (Al,..., Ar) .
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Furthermore we shall assume that:

(1) 4, is non-singular

(525) 1

(2) the system in (520) is identified (see [15] chapter 7)

-

then premultiplying (520) by A" we get
(530} Yt = Ho + HlYt-l + et 4 Hp+th-p—q v,
where: HO is an M vector

Hl,"-, np+q are M x M matrices

{vt} is a sequence of independent, identically distributed

multivariate random variables such that

(540) v_ = A" u E[v,] = 0

T
E[Vtvt] =

¥
>
Jock
e
r—
[+
(a3
[~
o)
Yred
Py
=g
oy
Sew

1
[>d
ot
0~
“
P
g
[
b
.t
-3
i
e
4

The hypothesis of identification allows us to estimate indifferently
the set of unknown parameters of the structural form (520) or that of

the reduced form (530). We shall concentrate on the last one.
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In the next Theorem, we shall assume that u, is a multivariate
normal random variable. Although we lose here some generality, this
last assumption is generally accepted in parametric estimation in the

econometric field.

Theorem 4.4
Let Yt be a multivariate stochastic process satisfying (500),

where the disturbances are generated by another autoregressive process
(510).

We assume that:
(1) {ut} is a sequence of independent, multivariate normal random
variables with

0\
Efu.] = : Elu uT] =y
t . ? tt
0 u

(2) the conditions in (525) hold

pra+1l -k
550 3) let 6,. = 8. .
(550)  (3) let &,(p) kzl ijKP
where 6 is the (1 j)th component of
ik ’ By

we, then, assume that all roots of the equation

(555) 11856311 =0

are smaller than 1 in absolute value
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Then the maximum likelihood estimator of ¢ , the vector of unknown
parameters of the reduced form (or equivalently - the MLE of vy, the

vector of unknown parameters of the structural form) is:

(1) consistent
{2) asymptotically normally distributed

(3) asymptotically efficient

Prcof; given Y .Y we observe Y

1? 2"' > p+q P"'Cl"‘l’“"Yp'*q*'n’

¢he likelihood function is:

ptq+n
(560) i

PIY, =y | Y =Yy, :"",Y =y 1
tep+q+1 gt t ti t-1 t-1 t-p-q t-p-q

p+q+n
T o 1 P /“;L”' P i' %(yt’no‘nl " Yee1 T U Tt Yeepeq?
t=p+q+1 (VZT) detq € p+q p-q

A "1. - P R . T
Q ry - T g Yt-p-q’ )

The Yt process falls clearly in the class of Markov processes.

As in the single equation case we show next that the limiting distribution

of Yt exists.

th

Let Yti be the i~ component of Yt i=1,---

u,.” be the jth

component of u
tj P

t
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then following oncemore Mann and Wald's argument Yti can be expressed

as:

t M

570 . = b, . . .
(570) Ytl ¢l(t) + tzl jzl ¢13T(t)u13

ot 4 e t *

(575) with (1) @i(t) = A}.Al‘ipl + +)\v A\)ip\) + Ci

where the p; are the solution of equation (555),v being the total

number of roots. The Aji's and Aj’s are constants.

_ t-1 +1 t-t+l
13708 = 255840 ot AR,

(580) 2 ¢

the kij's are constants.

By a result due to Cramer and Wold (see [7]) we know that for

any t Yt is a multivariate normal random variable. From (570) we
have E[Yti] = ¢; (1)

and lim E[Yti] =cy follows from (575).

00

It should also be clear that due tc condition (555)

1im Cov(Y

T+

i’ V3

exists and is finite.

* for sake of simplicity we assume that all roots of equation (555) are
distinct. The results carry over in the general case.
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Next, we indicate why the dependence of Yti and Yt+k,m
goes to zero as the lag k increases.
t+k M
(590) Cov(Y;»Yy y o } = Cov Z Z¢ (t)u. ) Z¢m (t+k)u_,
=1 j=1 =1 =1
using the fact that u, is independent of ut+j(j¢ 0) , we get
) i
Cov(Y_..,Y ) = Cov ¢ (t)u - ¢ (t+k)u
ti’ t+k,m =1 j= =1 1 oy =1 @ T8
P
= ¢, . (t) o . (t+k)o,
=1 j=1 =1 ijt mét j&
Without going into further details, using (580), it should be
felt that Cov(Y t+k ) will approach zero geometrically fast as
k increases. A similar result holds for Cov(Y f+k m) for fixed

positive integers e and f . Furthermore, using an analogous
argument to that of the single equation case, we could show that the

above limits are reached uniformly for |6 - eoj < r , for some positive

r . 8, being the true value of the vector of unknown parameters. The

remaining of the proof is believed to be a routine matter.
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4.2.2. e now generalize the results of section 4.2.1 to the case

where exogenous variables are included.

Consider the following model of a multivariate stochastic process

Y = (Y

t tl""’YtM)

(600) Ay « Y, + Ay - Y. o+ rew A oY

where - Xt is a K-variate stochastic process, to be considered as

representing a set of exogenous variables Xt = (th,"',xtk)T

- Al,Az,""Ap+lare M x M matrices
- Ao,et are M vectors

- Bl is an M x k matrix.

Assume the disturbance vector is generated by the autoregressive

process given in (510). Then by successive substitutions (600) can be

rewritten as:

(610) A, - Y_ + --

17 e " hpeqe1 T Yep-q * B0 T Bpegs2 t Xp e

+

Ap+2q+2 T t-q t

Moreover if we suppose that
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(1) Al is non-singular
(2) the system in (610) is identified

then (610) is equivalent to

(620) Yt = HO + Hl' Yt~1 + cee 4 np+q . Yt~p-q + Hp+q+l t

¥ Hp+2q+1 ' xt-q Ve

Theorem 4.5
Let Yt be a multivariate stationary process generated by (600)

and (510) where:

(1) {ut} is a sequence of independent, normally distributed multivariate
random variables N(O, Zu)

2) {Xt} is a stationary stochastic process independent of {ut} , and
there exist numbers c¢,p,6 (¢ >0, 0 <p < 1,8 > 0), such that

ko J

i .
. = §
t,m’xt+i,n) Lc & k,j 1,2,3,4 +

i=o0,1,2,-""

Cov(X

th

and for every m and nth component

(3) condition (615) holds.

Then the maximum likelihood estimator of 6 , the vector of unknown
parameters of the reduced form (620) (or equivalently ¢ , the vector of

unknown parameters of the structural form) is:
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{1) consistent
(2) asymptotically normally distributed

(3) asymptotically efficient

The proof follows the same arguments presented in earlier theorems

and will be omitted.

4.3 A Word on the Problem of Non-stationarity

All along this chapter we have seen that a crucial assumption
(although not a necessary one) was the stationarity of the stochastic
process under consideration. For example, in section 4.1.1, we
considered the following model:

Yt=8- Xt-o-g t =0,1,-.

t 3

assuming (1) {et} to be a sequence of independent, normally distributed,
2 .
N{0,06") , random variables
(2) {xt} to be a stationary stochastic process, independent

of {et}
tken we showed that, under some other mild conditions on the {Xt}
process, the maximum likelihood estimator of (e,qz) has desirable
asymptotic properties,

Consider now the modified model
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where (1) {et} is a sequence of independent, identically distributed

N(O,az) random variables
(2) Xt can be written as
X.=X +a-t where *t is a stationary stochastic process

t t

and o is an unknown constant.

{Xt} and {st} are independent sequences. At each t = 0,1,.--

we observe (xt’Yt) , and we wish to estimate (a,s,oz) , assuming the
distribution of yt unknown.

It is clear that we are now dealing with a non-parametric
statistical problem and although there exists methods of estimation for
that particular situation, this type of question does not fit into our

framework.

4.4 Linear Stochastic Differential Equation of the First Order

Let X(t) be a one dimensional stochastic process with

X2 <=

%(2) its derivative: (in the mean square) which we assume to exist.*

Assume X(t) satisfies the following relationship:

(700) X (t) + aX(t) = Z(t).+.b

* for definition of differentiability of a regular process, see [24]
chapter 1.
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where: (1) a and b are constants
(2) Z(t) 1is a stationary Wiener process such that
var [Z(t) - Z(s)]= czlt - sl
for any t,s .
Based upon observations of X(t) taken at time t = 0,1,2,--.
we are now Considering the problem of estimating the unknown parameter
6 = (ab,0%) . It is known (see [2] pp 156-164, [10]) that (700)

has the unique solution:

-a(ty ;) -a(ty 7Y

t
i+l b
(710) X(t;, ;) = x;¢ + { e day(v) + 3

i

where - Y(t) 1is the (mean square) differential of the Z(t) process

- X(t) = X3 is the initial condition.
i

Since the observations are equally spaced in time, we have

Y - -a
(7265 X(t; ;) = xe

~az N b
i 5 e dY(z; + —

a

[

Finally we see that conditionally on X(ti) =X the

distribution of X(ti+1) is found to be normal with

b
mean: x.e =+ o
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Moreover, if we assume a > 0 , then from (710} it follows

that X(t) is asymptotically stationary, and its limiting distribution

2
. b o
is N(g s 559

From (710) we see that the discrete process {X(ti)} i=20,1,-""

is a Markov process since the only piece of information used at tia1

is the observed value of X(ti)

The likelihood function is:

(730) L

u
o=t

vl
pr—y
b

|

>
<

L]
]H
P B
N
R
[\
[+
3
'
N} b
Q

We see that the Log-likelihood function Zn is a polynomial in

o aZn .. and other

n
' —_— .o
the x;'s at most of degree 2 . So are a0

derivatives of interest.
From (710) we compute Cov(X(t),X(u)) , (u < t)

-a(t-u)

(740) Cov(X(t),X(u))= e + Var(X(u))

Assuming the process has reached its equilibrium we get

~N

(750)  Cov(X(t),X(u)) = Lo ~2(t-W

>a which goes uniformly to zero, for

le - GOI <r , as {t-u) increases, and for some positive number T .
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Obviously this result holds for Cov(Xe(t),Xf(u)) , where e,f,
are positive integers no greater than some constant.

We finally end up with the following result:

Theorem 4.6

Consider a regular stochastic process X(t) satisfying

X(t) + aX(t) = Z(t) + b

Where: (1) a > 0 and b are constants
. . 2
(2) z(t) is a Wiener process with diffusion coefficient o
Then based on observations of the X(t) process taken at time t = 0,1,-

the maximum likelihood estimator of g is:

(1) consistent
(2) asymptotically normally distributed

(3) asymptotically efficient

Remark 6:

(1) The conclusion dces not change if the observations are not equally

spaced in time. Under the additional restriction that

cov(x(e),xfw) > o

geometrically fast as - the number of observation in the interval
(t,u) increases and where e,f, = 1,2,3,4 + & (for some positive

number 6 ) , uniformly for |6 - eoi < r . A sufficient condition



which will guarantee that the above restriction holds is: ti—l - ti > B

where A is a fixed positive number.

(2) 1If instead of observing X(t), t =0,1,--., we observe the sequence

W(t) = X(t) + e(t) , where the ¢e(t) are independent, normally

distributed random variables N(O,sz) , the asymptotic properties of

2 .
' = (a,b,0 ,sz) are the same as those given above for o .

4.5 Linear Stochastic Differential Equation of Order r > 1

As in the previous case, we consider X(t) , a regular stochastic

process such that

ax(r)  &x(e) afx(t)

> s -
de at? at®

exist (in the mean square)

Assume X(t) satisfies the equation:

-1
a™x(t) at X (e) dx(t) _
. T S *oeestanyTqr T arX(t) MRS B z(t)

(760)

where Z(t) is defined as before.

Let Al""’xr be the roots of

(765) AT+ 3 A 4 eo. +a =20

. . . st
Then it is known (see the same references as in the 1 order case)

that (760) has the unique solution:



Al(t-u) A (t-u) ot
(770)  X(t) = A (u)e + e+ A(u)e + [ g(t-v)dY(v)
' u

where (1) Y(t) is the (mean square) differential of Z(t)
(2) Al(u),-’-,Ar(u) are determined from the values of X(t) ,

N T e 105)
=

e ,dtr at t=u

(3) g(t) is the solution of

r r-1
a"g(t) ety _
(775) act v a2y dtr"l + oree + arg(t) 0

r-1 r-2
< r-gﬁ) 4 g ifz) + +a ,8(0) =1
dt dt
=0 =0
250t ar-3
,__ﬁgijl . al.,~_5iﬁl 4 e+ a - g(0)=0
att” 4T3 r-2
t=0 =0
g(0) =0

If in addition, we assume the real part of Ai to be negative,

then it is easyto see that X(t) is asymptotically stationary.

96.
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Suppose that we observe the vector

r-1
- ( dX(t) d” TX(t)
V(tl) - z‘X(ti)> dt ] E] dtr__l
t=t. t=t.
i i
at t0 < t1 < t2 < 't < tn , with ti - ti-l >45>0 . From (770),

{(775) we see that V(ti) , i=0,1,---,n , is a Markov process. HNore
precisely, conditionally on V(ti—l) = Vi-l’v(ti) is distributed as a

multivariate normal random variable.
One would not have any trouble writing in details the likelihood

function and proving

Theorem 4.7
In the problem outlined above, the maximum likelihood estimator

of the unknown parameter 6 = (al,-~-,ar*1,02) is:

{1} consistent
(2) asymptotically normally distributed

(3) asymptotically efficient

Remark 7: We used the fact that at each ti , i=20,1,---,n , one
observes the random vector V(ti} . Although this might be possible in

prhysics, where X(t) could be the location of an object, affected by

axee) g a?x (1)

dt dtz ?

some random noise, its velocity and acceleration
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respectively, in econometrics one would only expect to record the value

= e . = . . )’
of X(t) for t tO’ 1’ ’tn . Based on X(tl) X the AJ(tl) s

are now random variables, whose steady state distributions depend on

xo,x1,~--,xi . So that the likelihood function can now be written as:

o
@
gp—
P
N
1
b
<
Ho
i

x;, 1=0,1) « ---

%, , i=0,++,n-1}

s
e
=
=]
n
>
-
]
[

The X(t) process alone is not Markovian and the problem of

estimation in this situation does not fit into out framework.

4.6 Generalization to System of Stochastic Differential Equations

Let us now consider a system of stochastic differential equations:

d*x(v)

(790) A
att

0 4+ s ece 4 ArX(t) + B = Z(t)

where X(t) =(X1(t),""Xm(t))T

AO,-'-Ar are m x m matrices

B is a m-vector

Z(t) is an m-dimensional Wiener process.

Under suitable conditions on the Ai's, i=0,"*,r . (790) has

a unique and asymptotically stationary solution.
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If for to,tl,"-,tn with ti - ti—l > A > 0 one observes
ax(t) aT 2y 1) . .
X() , =3¢ » s =3 , then we are in a situation analogous
dt

to that of Theorem 4.7 and the maximum likelihood estimator of the vector
of unknown parameters will enjoy desirable properties. However, if at

each ti , we only observe X(ti) then, for the same reasons as those

stated in the remark following Theorem 4.7, our approach is inadequate.



CHAPTER V

APPLICATION TO THE ESTIMATION PROBLEM OF CONTINUOUS TIME,

COMPLETELY DISCONTINUOUS MARKOV AND MARKOV RENEWAL PROCESSES

5.1 Estimation in a Continuous Time, Jump Type Markov Process

let §=1,2,...,N be the state space of the process. We now

borrow notation from part II of [4].
Let ¥ [t,i,A] = P [X(s+t) ¢ Aj] X(s) = i] for each 8 ¢ 0

where @ = (el,~~-:er) is a vector of unknown parameters; 0 1is the

parameter space. Also the process is supposed to be time-homogeneous.

Assume:

(800) lim P [t,i,i] = 1 for all 6 ¢ ©
30

Condition 1 :

Each sample function is a right continuous step function. The
limit (800) holds for all i so that there exist functions

q(i,e) and q(i,j,e) (i # j) , satisfying (810)

. lim (1 - Pe[t:i)i])/t = q(i:e)
: -0

j
(Sloﬁ, lim P [t,i,j]/t = q(i,j,8) (G #7J)
: 20

for all 6 and i , g(i,8) > O

- 100 -
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the successive states of the system and

Let us denote Z},Zz,----
PysPysere the successive sojourn times. So that we have
)((t'::)=Z1 if 0;‘!:1(;)1
(830) .
X(t) =z, if o) * tepap st ¥ Pp
nz_l

(840) Let wv(t) = max {k:p1 + e <t}

x
From the general theory of discontinuous Markov processes, it

follows that

{(Zn,on) ; n=1,2,---1}

is a Markov process with the following transition probabilities:

(850) Pe[2n+1 =z p TSP <TH dr}]zn =z]-=
qa(z_,z _,0) -q(z_ 4,08) - T
n’ n+l’ n+l
q(zg,e) q(zn+1,6)e dr
q(z_,z  .,8)
’ _ n’ n+l
{860) Let f(zn,zn+l,8) = q(zn,e)

then the densities of the transition probabilities can be written as:
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—q(zn"*’l,e) r

(870) F(zn,z ,r,8) = £(z_,z

n+l n n+1’e) ’ q(Zn-»l’e)

Following Billingsley, we shall take the function.

v(t)-1
(880) L. (6) = kzl [Log £(zy,2,,,,0) + Log a(zy,1,8) = oy ;1 ° a(zy, >8]

as the Log-likelihood function of 6 , given the observation
{X(1) 5 0<t<t}

As pointed out in [4], the sample {X(t) ; 0 < 1 < t} from the
original process contains a little more information than does the sample

{z o) 5 ko= 0,1,--.,v(t)} from the imbedded process. However,

asymptotic results are not affected by ignoring this extra information.

Condition 2:

The set D of (i,j) such that q(i,j,0)> 0 is independent of
6 and the functions gq(i,j,e) have continuous third order partial

derivatives throughout ¢ . Let d be the number of elements in D

Then the (d x r) matrix a(i.j.e) (i,3) e D has rank r for
86u i <u i.r

all g e o0 .
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Condition 3:
The Markov process {Zn} , n=1,2,--" is an irreducible Markov
chain with state space 1,2,...,N and transition matrix
@) = [20.i.8)
ij a(i,e)
Lemma 5.1

Let Yt = f(Zt, Z be a function of the random variables

4177417 %)

Zt,Z“l,pt+1 and of the unknown parameter o .

2
Assume E[YtII Zt] <« for all g ¢ g and Zt
Then under conditions 1 - 3:

(1) Cov (Y_,Y, .) >0 as i+ o , uniformly for ]e - 90{ <€ where

t? i
8o is the true value of g . ¢ is some positive number.
-1t N
2 1'm Y = E Y = 3 L= . }
@ niw ? igl 1 Z e[ t“zt il I Ag» (say) uniformly for

le = éoi < € , where (Hl,"',n is the steady state distribution of

N)

2t

vit) ‘
(3) 1im v(t)~! i £(2,,2 ) =A, (in probability)

3P 56
oo i=1 t+1°7t+1

and the limit is reached umniformly for |6 - 60’ <e.
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Proof

(1) - by Condition {3), it does make sense to consider the statistical

equilibrium of the Z, process

by Condition (2), the Pij(e)’s are continuous functions of 6 so

that appealing once more to Doob's argument (see [8] pp 172-174):

(n) - - 4 = 1 o
Pij (6) = Pe[zt+n = jl] z, =il » Hj as n -
Moreover the convergence is geometrically fast and uniform for

le - 85| < ¢ for some positive number e (the same argument was
used in Chapter 1IT1)

now, following the proof ot Lemma 3.1, it is easy to conclude that

1im Cov(Yt,Y ) =0

0

t+i

-

uniformly for all |e - eol <€ . The only minor change is that
here, we do not assume Yt to be bounded but instead assume Yt

has a finite variance (for all Zt) and therefore a finite mean.

From the first part of the lemma and the weak law of large numbers,

conclusion (2) follows immediately. The uniformity of the convergence

being implied by

(i) the uniformity of the convergence in conclusion (1)

(ii) the assumption that E[Yillzt} <=, for all 2z,
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(3) Let w, = E{ptllzt = i] , then from part 2 of this lemma, we

have:

n
lim n~} y oy = M. * u. =p , say (u <  (in probability)
L Lo

Using the fact (proved by Billingsley in [4]) that

lim X%El = 1 (in probability),
t-»
we see that y(t) » = in probability
as t »> =

and the conclusion follows readily from part 2.
Q.E.D.

Letting G(Zn’zn+l’r’e) = Log F(Zn’zn+1’r’e) , Billingsley

showed that under conditions (1) - (3)

1
) 3 lvﬁt) 3G
(890) plim t wm— (2,2, 1:Pp .15 9)
o N I S S L 3
[t/w) |
3G =
T ke %y L LU

where [%] is the largest integer less or equal to % . So that (890)
allows us to apply the central limit theorem for martingales to a random
sum. We are therefore back to the case treated in Chapter II, where we
considered the problem of getting the asymptotic distribution of a non-

random sum.
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Theorem 5.1

Let us consider a completely discontinuous, time continuous,
time homogeneous Markov process with finite state space, depending on
some unknown parameter o .

Then under conditions (1) - (2) - (3) the maximum likelihood estimator

of o is:

(1) consistent*
(2) asymptotically normally distributed, when properly
normalized*

(3) asymptotically efficient

The proof of the third part of the conclusion is based upon
Theorem 2.7 and Lemma 5.1. It is fairly easy to see that the conditions,

under which Lemma 5.1 holds, are fulfilled by the expressions involved

N v(t)
in Theorem 2,7 |where Z is now replaced by 2 , and therefore
k=1 k=1
that the various limits are reached uniformly for |6 - eol < e . The

conclusion follows.

Remark 7:
(1) For the same reason that the one given in Chapter III on the
geometric ergodicity of denumerable Markov chains, our approach does

not allow us to conclude that under some conditions on the process, the

* results given by Billingsley in [4].
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maximum likelihood estimator of some unknown parameter is asymptotically

efficient,

(2) It is particularly interesting to see that in general the maximum
likelihood equations will be easily handled and this is the purpose

of the following example to illustrate the calculations involved.

ExamEle:

Let us consider the statistical analysis of the model described
on pp 416-418 of [11].

We consider a set of m identical automatic machines which are
attended by r repairmen (r <m) . If a machine breaks down, it is
serviced at once unless no repairman is available, in which case it
joins a waiting line.

Under reasonable assumptions:

(1) the length of time, during which any machine is in a working state,

. N . . 1
has an exponential distribution, with mean T o

(2) the time required for servicing any machine is taken as a random

variable with an exponential distribution and mean %~ .

We say that the system is in state i at time t if i machines
are not working. Thus the state space is X = {0,1,...,m} . Billingsley
[4] has shown that the general log-likelihood function can be, in the

finite state case, reduced to

(900) L.(0) = % [t;;Log a(,5,0) - v; * q(i,j,0)]
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where: - tij is the number of direct jumps from i to j in the

sample function

-y is the total amount of time the system was in state 1 ,

up to time t .

- D is the set of (i,j) such that q(i,j,8) > 0

in this example we have:

6 = (A,u)
(q(i,i+1,0) = (m-i)2 i=0,1,,m1
(910) <q(i,i-1,e) = iy i=1,0,r
;q(i,i—l,e) = Ty i=1r+1,--.,m

From (900) and (910) we get:

(920) L () = .2 [t

o
O
g
~
=}
i
[
L
>
1

Yi (m-1) A]

T
+ z [t. ;-7 Log iu - vy, - iy]

i=1 11
m
+ i=g+1 [ti,i—lLog Ty - ryiu]
+ 9L aL

taking —3§ {6) and ~3§ (6) and setting them equal to zero we get:
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m-1
t. .
; i iZO i,i+1
t mil
v, (m-1)
i=0 !
(930)
m
- 1zlti,i-1
* 3 ;
iy. + T Y.
i=1 1 j=r+l *

It is easy to check that for this example conditions (1) - (3

hold and accordingly, that (it,;t) is an asymptotically efficient

estimator of (A,u) as t > =

5.2 Estimation in a Markov Renewal Process

Let us briefly recall the definition of a Markov renewal process
with m(< ») states. For more details, we refer the reader to Pike's

papers [25] and [26]. One is given:
(1) a matrix of transition distributions (Qij) where Qij is a mass

function defined on (-», + «) satisfying Qij(x) =0 for x <0 and
)
Q..(x) = 1 1<i<m
j=1 M

(2) an m-tuple of initial propabilities (Pl,---,pm) which satisfies

m
p; 20 and z p, =1
J j=1 7
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Consider any two-dimensional Markov process {(Jn,Xn); n > 0}
defined on a probability space that satisfies XO = 0 (a.s), P[JO = k] = Py

and

P[Jn = K, Xn < X HJO’J]"”.’Jn-]_’xl’. X l] = QJ (x) (a.s)

for all x e (- =,+ ») and 1 <k < m.

n
Let N(t) =sup fn>0: ] X <t}
i=0
Nj(t) be the number of times J, = j for 1 <k < N(t)
Nij(t) be the number of times Jk = i and Jk+1 = j for

1<k <N(t) -1
then the stochastic process { Nl(t),"’,Nm(t)z; t >0} is called a

Markov renewal process determined by the initial probabilities and matrix

of transition distributions.

Let pij = Qij(m) and P = (Pij) an m x m matrix
m
H.(t) = ) Q.. (%)
i j=1 ij

Assume the m2 functions Qij(t) depend on an unknown parameter

6 = (81,'--,er) . We want to find conditions under which the maximum

likelihood estimator of p has desirable asymptotic properties.
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Condition (1) : We assume throughout that the Markov renewal process is

irreducible, positive recurrent for all 6 ¢ 6 . In view of Theorem 5.1
of [25] it is necessary and sufficient that for ail 6 ¢ 0 :

(i) P be a positive recurrent Markov chain

(ii) n, =T tdH . (t) <= for 1<j<m
J 0 J - -

Condition (2) : We shall assume that the Qij(t[e) are differentiable

wer.t t for all 6 ¢ 0 . Although we can derive the same results in
the discrete or mixed case, this will make the study easier. The extension

to the two other cases is immediate.

aQij

5T (tle) (t > 0)

Let qij(t[e) =

then for any i , the set of j and t for which qij(tle) > 0 does not
depend on 6 . For any i,j,t, the functions qij(tle) have continuous

third order partial derivatives throughout
let g(i,j,x|e) = Log qij(xle)

Then we suppose that there exists an ¢ - neighborhood of 8o (the true

value of the parameter) such that for any u,v,w,i
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2
CICHp
(2) E sup | zpoe— (x]0)] <=
6eN (90) u’v
£
a3
(3) Let G(i.,j) =  sup (i,3,x|8)
BeN (90) 96,,36,,98
€
. .2
then E[G(i,j)] <=
. . 4+ 8
[2g(i,j,x]e) .
(4 E{ o <« forall 8 e N_(8)
and for some & > 0
2 | 12
9 gli,j,x|®) ©
(5)E aeu BGV < for all 8 ¢ Ne(ﬁo)

7
3g(i,j,x|e8) . ag(i,j,x[e) |
36 36 |

u v i

(6) Let O'uv(e) = E

where the expectation is taken under the assumption that the distribution

of state i has reached its equilibrium.
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then - Guv(e) is assumed to be continuous in Ng(eo)

- o{8) = {ouv(e)} is assumed to be non-singular,

Remark 8 : It is clear that the assumptions we need here are far more
stringent than those needed in the Markovian case. This is due to the
fact that in the former case, the sojourn time in any state has an
exponential distribution and that here we are looking for a larger family
of distributions.

Assume we observe the process on ({0,t) , then the likelihood

function is:

B0, (00 7 955,00 Uiy M)
N(E)
1-H, (t - % X.)
IN(L) i=1 ¢

As we did in the first part of this chapter, we shall take as

Log-likelihood function the following truncated expression Lt(e)

N(t)

(950) L.(8) = ) q
i=1

(x.) ,

1-1,1 i

and as noted in the former case, asymptotic results will not be affected.
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Theorem 5.2

Let us consider a Markov renewal process with finitely many states,

Jdepending on some unknown parameter ¢ .
Then under Conditions 1 and 2, the maximum likelihood estimator of g is:

(1) consistent

(2) asymptotically normally distributed, when properly normalized

(3) asymptotically efficient.

Proof: Under condition (1), we know from a result given by Pyke and

Schaufele (see [27]) that:
N(t) » » w.p.l as t >+

this fact and condition (2) enable us to apply lemma 5.1 and typically

we conclude for instance that:

N(t)
. -1 3g .. . -
lim N(t) == (i, ,] ) = 0O in probability
t>e0 kZl 38\1 k? k+1,xkl ’
and uniformly for |6 - 6,] < ¢ .

The conclusion follows from Theorem 2.7.

Remark 9: The denumerable state space case offers even more difficulty
than in the Markoviaii case, since there does not seem to be any simple
necessary and sufficient condition for the positivity of the process.

(See {26] pp 1240-1241)



115.

Example of a Maximum Likelihood Estimation for a

Markov Renewal Process

Let us consider a Markov renewal process where the transitions

distributions Qij(-) can be expressed as:

(960) Q;;(t) = Pyy * H(0)

where Hi(t) P [sojourn time in state i < t]

“A.X o, o.-1
te *a, 'x'

1 .
] dx t>0 i=1,.-..,m
0 r(ai) -

fl

(O < pij <1 s Ai >0 s ai >0 > i: j = 1:""m)

Assume that the quantities pij’xi’ai (i=1,...,m; j=1,-++ ,m-1)

are not functionally dependent, then we wish to estimate

6 = (P P

11’P12,‘ . s 1’m_1,P2m, v ’Pm,m_l’xl" . ,}\m,al,o e ,am)

2 . .
an {(m + 2m - 2) dimensional parameter*,

* There is no change in the approach if a subset of the (m2+230
components is known. The only additional requirement is that (Pi.)
must be irreducible. J
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The truncated likelihood function may be written as:
m m Nij(t) Ni(t)-éi

(965) 1m 1 P, b, (x,,)
i=1 j=1 1 k=1 1Tk

. t . . . .
where: X;p 1s the length of the k h sojourn time in state 1

-1 if we are in state i at time t

{0  otherwise

By the assumption of the functional independence, the problem of
maximizing the expression in (965) can be reduced to two separate

maximum likelihood problems:

m m N, ,(t)

(D max n §n p.Y
0<P,. <1 ji=1j=1 %I
ij
A.X Q. a, -1
o Ni(t)-si e 1 1k)\i lxik i
(2) max il il o) =
)\i,a > 0 i=1 k=1 i

The answer to (1) was given in Chapter III for a fixed total

number of observations., Here we simply have:

- ) Nij(t)
ij Ni(t)+6i
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the answer to (2) is equally easy

Ni(t)+si
Let Tli(t) = 2 Xik i=1,...,m
k=1
Ni(t)+6i
T,; (1) = g=1 Log X, i=1,--+,m

Then it is known that {Tli’TZi; i=1,...,m} are sufficient statistics

for this problem.
Now it is easy to derive that (ai,Ai) is a solution of the system

5L u®
o Ni(B)+;
1
/
A
- T,.(t)
1 drio) 2i _ L
Log )\i - da ) + m—- = 0 i 1, ,m

r(o;) —_—
1

Finally it can be verified that conditions (1) and (2) are
fulfilled, so that the maximum likeélihood estimator of 6 is asymptotically

efficient,.
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Errata

Page and line For Substitute
v, £. 12 from bottom A work A word
3, 2.3 from bottom 0<t = 0 <t <e
13, 2. 3 frem top = Oy = - O
19, 2. 5 from bottom G(xk—l,xi) G(Xi-l’xi)
29, 2. 9 from top . This , this
54, &. 1 from top Min Min
I<ig 1<i<N
68, &. 1 from top Cov( ]Cov(
70, 2. 5 from top ~50 - 5p+qy1 -60—.~-—&p+qy1
76, 2. 4 from ton limiting of limiting distribution of
78, 2. 9 from top at t > = as t -
81, 2. 2 from bettonm +A0 = + AO = €.
102, 2. 2 from top the function. the function

102, 2. 2 from bottom q(i,j.o 9q(i,3,9)
“""“‘aeu' 38,
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