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Onsite wastewater treatment systems service more than 1 in 5 households in 

the U.S. In spite of their prevalence, the subsurface soil-dispersal component of these 

systems (e.g. septic tank leach fields) is understudied in terms of its air and water 

quality impacts. Treatment performance of these systems is seldom monitored, 

particularly with regards to greenhouse gas (GHG) emissions such as methane (CH4), 

nitrous oxide (N2O), and carbon dioxide (CO2). Additionally, microbial controls on 

GHG cycling in these soil-based treatment systems are poorly understood. This work 

aimed to elucidate the link between atmospheric GHG emissions from leach field and 

control lawns, and distribution and activity of microbial populations directly involved 

in GHG cycling. In particular, we examined the effect of soil volumetric water content 

(VWC), both by sustained flooding and a precipitation event, on surface GHG fluxes, 

subsurface production, and distribution and activity of GHG cycling microbial 

populations in leach field and control lawns. Functional genes for production and 

consumption of CH4 (mcrA and pmoA, respectively) and N2O (cnorB and nosZ, 

respectively) were used to quantify in situ presence and activity of these key GHG 

cycling populations. In the first study, leach field and control lawn GHG emissions, 

soil VWC, and microbial community presence and distribution (with a focus on CH4 

cycling populations) were measured at nine sites in central New York. Results from 

this study suggested microbial communities did not differ between control and leach 

field lawns except under flooded conditions. High soil VWC drove CH4 emissions and 



 

gene abundances of mcrA and pmoA but was not a significant driver of N2O fluxes or 

biomarker genes. In the second study we aimed to explore the relationship between 

flooding and GHG cycling in leach field soils. Leach field soil columns were 

constructed in lab to monitor performance of these systems under either well-

maintained or failing-by-flooding conditions. The columns were compared in their 

surface CH4 flux, subsurface CH4 production, distribution, presence, and activity of 

microbial communities involved in CH4 cycling, and nutrient (nitrogen and 

phosphorus) and chemical oxygen demand (COD) removal. Results indicated flooding 

significantly increases CH4 production in leach field soils and decreases both COD 

removal and diversity of soil microbial communities. The final study examined the 

effect of rainfall on GHG fluxes and subsurface profiles in soils above an active leach 

field system. GHG measurements were coupled to quantification of biomarker 

abundances for CH4 and N2O cycling populations. This study revealed that all GHG 

fluxes increase after a rain event but trends vary by compound. Additionally, transcript 

abundances were not reliable indicators of increases in atmospheric GHG fluxes after 

a rain event.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background on soil-based onsite wastewater treatment 

Septic systems are a common form of onsite wastewater treatment used by 

more than 1 in 5 homes in the U.S. (US EPA, 2012). These systems are popular in 

rural and peri-urban areas due to low operating and maintenance costs. They provide a 

practical and cost-effective alternative for rural homes that would otherwise require 

extensive and costly sewer system construction to connect remote homes to 

centralized wastewater treatment plants. Under optimal siting and operating 

conditions, septic systems also can provide public health and environmental benefits 

comparable to those provided by the more energy intensive wastewater treatment 

plants (US EPA, 2002). 

Septic systems have two main components: the septic tank and the subsurface 

soil-dispersal system also known as the leach field. In the septic tank, solids settle out 

and anaerobic microbial processes reduce organic carbon and nutrient loads, such as 

nitrogen (N), from the waste stream creating greenhouse gases (GHG) in the process. 

Effluent from the septic tank is then discharged in soils through leach field laterals 

installed subsurface in well-drained soils. Leach fields take advantage of native soil 

microbial communities to further treat septic effluent before it comes in contact with 

the ground water table (or surface water sources). Together the two components of 

septic systems, the tank and the leach field, provide physical and microbial (both 

aerobic and anaerobic) treatment ultimately reducing nitrogen (N), phosphorus (P), 

and carbon (C) loads from waste streams by leveraging soils, and the native soil 

microbial communities therein, surrounding leach field laterals. 
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However, despite their prevalence, treatment performance and efficiency of 

septic systems go largely unmonitored, especially in comparison to centralized 

treatment plants, which are required to regularly monitor and document performance. 

Hence, little is known about septic systems’ impacts on both air and water quality. 

These systems are estimated to be responsible for approximately 65% of domestic 

wastewater GHG emissions, but account for only 25% of treatment (US EPA, 2012). 

In particular, the soil dispersal system for the septic tank effluent (i.e. leach field) has 

been understudied in terms of both air and water quality impacts. Additionally, the 

ability of associated soil microbial communities to control nutrient and GHG cycling 

in leach field systems is poorly characterized. 

Greenhouse gases such as methane (CH4), carbon dioxide (CO2), and nitrous 

oxide (NO2) are produced by microorganisms in the anaerobic environment of the 

septic tank, but the fate of GHGs produced in the tank are poorly understood. Both 

CH4 and N2O are potent greenhouse gases with global warming potentials (GWP) of 

21 and 310 times that of CO2 over a 100-year timespan (US EPA, 2012). Previous 

studies have quantified greenhouse gas emissions from different components of septic 

systems including the leach field (Diaz-Valbuena et al., 2011; Truhlar et al., 2016). 

Truhlar et al. (2016) found that the septic roof vent accounted for the majority of 

greenhouse gas emissions from septiuc systems; however, leach fields accounted for 

almost 19% of the total greenhouse gas emissions septic systems, mostly from N2O 

fluxes. Indeed, leach field soils were found to be a signficant source of N2O but not 

CH4 or CO2 as compared to control soils. Additionally, Truhlar et al. (2016) observed 

a one-to-one relationship between CO2 emissions from the roof vent and leach field 

soils whereas CH4 and N2O emissions were greater from the roof vent as compare to 

leach field soils. These results suggest significant GHG mitigation, specifically of CH4 

and N2O, may be occuring in soils above leach fields with GHG cycling 
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microorgansims consuming these GHG before they can reach the surface. This 

dissertation aims to examine whether abundance and activity of key microbial 

communities involved in greenhouse gas cycling corresponds to observed greenhouse 

gas fluxes from leach field soils, in particular the effect of soil volumetric water 

content (VWC) on these processes was studied. 

1.2 Soil microbial communities controlling greenhouse gas cycling 

Microbial communities in soils above leach field systems have the potential to 

contribute significantly to GHG cycling. In fact, soil microbial communities are 

thought to be responsible for approximately 70% of N2O production and 80% of CH4 

consumption in soils (and around 5% of atmospheric CH4 consumption) (Conrad, 

1996; Conrad and Rothfuss, 1991). However, these estimates of microbial GHG 

production and consumption do not reflect the dynamic nature of GHG cycling 

processes, which vary temporally. Additionally, producers and consumers of GHGs in 

soils are likely differentially impacted by environmental conditions such as soil VWC. 

Thus, quantifying the presence and activity of these key soil microbial populations 

responsible for GHG cycling is essential to a better understanding of GHG emissions 

from soil systems and particularly soils impacted by leach field systems (Figure 1.1). 
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 Microbial methane production and consumption are well-studied processes. 

Methanogenesis is the anaerobic process by which methanogens convert organic 

substrates and/or hydrogen and carbon dioxide to methane (Figure 1.2). Methyl 

coenzyme-M reductase (MCR) catalyzes the final reduction step of the 

methanogenesis pathway, ultimately releasing methane (Thauer, 1998). The gene 

encoding for the α-subunit of MCR (mcrA) is unique to methanogens, with the 

exception of anaerobic methane oxidizing (ANME) archaea, and is found in all known 

methanogens both aceticlastic and hydrogenotrophic (Lambie et al., 2015; Luton et al., 

2002; Steinberg and Regan, 2008). Because the mcrA gene is highly conserved, 

correlates strongly with phylogeny based on 16S rRNA sequences, and is directly 

involved in methane production, it is a suitable biomarker for methanogen presence 

and activity in environmental samples (Luton et al., 2002). mcrA has been used to link 

CH4 emissions to methanogen activity in a variety of soil environments including peat 

bogs, landfills, and rice paddies (Freitag and Prosser, 2009; Lee et al., 2014; Luton et 

al., 2002; Ma et al., 2012).  

Figure 1.1. Greenhouse gas cycling in soils above leach field systems. Relevant 
biomarker genes used in this work are shown in italics. 
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 Similarly, all aerobic methane oxidizing bacteria (MOB) contain methane 

monooxygenase (MMO), which catalyzes methane conversion to methanol in the first 

step of methane oxidation to carbon dioxide (Conrad, 2007). Two forms of MMO 

exist in aerobic methanotrophs, the particulate membrane bound, pMMO, and the 

soluble version, sMMO, located in the cytoplasm (Figure 1.3) (Murrell et al., 2000). 

The majority of MOB contain the pMMO version, which is also found in the more 

recently discovered nitrite-dependent anaerobic methanotrophs of the NC10 phylum. 

Some methanotrophs contain both pMMO and sMMO, while only a handful contain 

just the soluble form (Semrau et al., 1995, 2010). Thus, due to its near ubiquity in 

methanotrophs, the pmoA gene, encoding the α-subunit of pMMO, has been used as a 

functional biomarker gene for methanotrophs in soils as varied as peat bogs, fens, rice 

paddies, and forest soils (Cheema et al., 2015; Freitag et al., 2010; Kolb et al., 2003; 
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mthyl-SCoM to methane. Figure adapted from Lambie et al. (2015). 
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Seo et al., 2013). 

 Recent discoveries of anaerobic oxidation of methane (AOM) have 

complicated the picture of biomarkers for the microbial CH4 cycle. Where previously 

the methane cycle was thought to be controlled by two populations, aerobic 

methanotrophs and anaerobic methanogens, newer findings have elucidated the 

presence and activity of two phylogenetically distinct groups of AOM-performing 

microorganism: nitrite-dependent anaerobic methane oxidizing bacteria (n-damo) of 

the NC10 phylum and anaerobic methane oxidizing (ANME) archaea (Figure 1.4). N-

damo bacteria couple methane oxidation to nitrite reduction by creating molecular O2 

intracellularly (Ettwig et al., 2012; Welte et al., 2016). Interestingly, these bacteria use 

the same pmoA gene as aerobic methanotrophs, thus the same gene can be used to 

quantify both aerobic and anaerobic bacterial methanotrophs, provided that qPCR 

assays are designed to specifically distinguish aerobic pmoA sequences from n-damo 

pmoA sequences. Indeed, n-damo populations have pmoA sequences distinct from 

typical aerobic methanotrophs’ and have been found in freshwater sediments, rice 

paddy soils, and wastewater (Haroon et al., 2013; Hu et al., 2015; Luesken et al., 

2011; Shen et al., 2015). ANME archaea are proposed to do AOM using a reverse 
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Figure 1.3. Methane oxidation pathway of aerobic methanotrophs showing 
both versions of methane monooxygenase (pMMO and sMMO) responsible 
for the first oxidation step of methane to methanol. Figure adapted from 
Murrell et al. (2000). 
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methanogenesis pathway and are thought to couple methane oxidation to a variety of 

electron acceptors including sulfate, nitrate, and metals such as iron and manganese 

(Beal et al., 2009; Haroon et al., 2013; Oni and Friedrich, 2017; Orphan et al., 2001). 

‘Candidatus Methanoperedens nitroreducens’ is a nitrate-dependent AOM archaea of 

the ANME-2D clade, that have recently been found in environments such as 

freshwater sediments and paddy soils where traditionally methane production is high 

and oxygen availability is low, as well as in enrichment cultures with NC10 type 

organisms (Ettwig et al., 2009; Haroon et al., 2013; Vaksmaa et al., 2016; Weber et 

al., 2017). These two distinct groups of anaerobic methanotrophs have the potential 

contribute significantly to CH4 cycling, particularly in oxygen-limited environments, 

and have not previously been studied in leach field soils or other lawn-covered soil 

systems. 
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While our understanding of the CH4 cycle has evolved with recent discoveries 

of AOM microbial populations, the complexity of the denitrification cycle has long 

been known. Complete denitrification involves several steps to reduce nitrate (NO3
-) 

to nitrogen gas (N2). These sequential reduction steps are catalyzed by the enzymes 

nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase (Nor), and nitrous 

oxide reductase (Nos) (Figure 1.5) (Philippot, 2002; Shapleigh, 2006). However, the 

majority of denitrifiers contain only a subset of the denitrification genes required for 

complete denitrification and thus partial or incomplete biological denitrification is 

prevalent and can result in significant N2O emissions (Henry et al., 2006; Sanford et 

al., 2012). The key enzymes involved in N2O production and consumption are Nor and 

Nos, respectively. Previous studies have used these functional genes cnorB and nosZ 

to explore the relationship between denitrifier presence and/or activity and N2O 

emissions in paddy soils (Seo et al., 2013). However, the genetic diversity found in 

both Nor and Nos enzymes complicates the use of qPCR assays to monitor the 

denitrification pathway. Nor has two distinct versions, cNor (cytochrome C as the 

electron donor) and qNor (quinol electron donor). cNor is specific to denitrifying 

bacteria whereas qNor is found in some denitrifier strains but has also been found in 

non-denitrifying populations that use the enzyme to detoxify nitric oxide. Thus cnorB, 

a gene encoding for the cNor enzyme, is favored for use as a biomarker for N2O 

production (Braker and Tiedje, 2003; Dandie et al., 2007). NosZ has many atypical 

variants which cannot all be captured by one primer set, thus the use of any one primer 

set potentially leads to underestimation of denitrifiers capable of reducing N2O. 

However the typical nosZ gene has previously been used to quantify N2O consuming 

populations in soils with some success (Henry et al., 2006; Sanford et al., 2012; Seo et 

al., 2013). 



 

24 

 

 

 

1.3 Overview of research chapters 

The overall aim of this dissertation was to broaden our understanding of the 

impacts of onsite soil-based wastewater treatment, specifically septic leach field 

systems, on air and water quality and examining how those impacts are dynamically 

controlled by the presence and activity of soil microbial communities involved in 

greenhouse gas and nutrient cycling in soils above leach field laterals. This 

dissertation is arranged in three research chapters (Chapters 2 through 4) with a focus 

on understanding the interplay between soil VWC, soil microbial populations’ 

abundance and activity, and greenhouse gas cycling in septic leach field systems. 

The first chapter presents a field study of 9 septic leach field systems in central 

New York. The goal of the study was to quantify the presence, abundance, and 

distribution of soil microbial populations involved in greenhouse gas cycling. The 

study also aimed to elucidate drivers of GHG fluxes from leach field systems as well 

as drivers of biomarker gene abundances for key genes involved in GHG cycling using 

linear mixed effects models. Finally, the soil microbial community was profiled using 

high-throughput sequencing technology on 16S rRNA, mcrA, and pmoA amplicon 

libraries to examine the broader soil microbial populations associated with leach field 

systems as well as to examine methane cycling microbial populations more closely.  

The second chapter presents a laboratory study, using soil columns, 

constructed from excavated soil from an active leach field to do controlled studies. 

Figure 1.5. Enzymes involved in bacterial denitrification of nitrate to nitrogen gas. 
Figure adapted from Shapleigh (2006). 
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The goal of these studies was to examine how a leach field system failing due to 

flooding compares to a functioning, well-maintained system in four key ways: surface 

CH4 emissions; subsurface CH4 concentration profiles; presence, distribution, and 

activity of microbial populations with a focus on those involved in CH4 cycling; 

effectiveness of nutrient (N and P) and chemical oxygen demand (COD) removal. 

Methane surface flux and subsurface measurements were taken and coupled with soil 

DNA and RNA extractions to explore the link between measured CH4 production at 

depth and the present and active CH4 cycling populations. Illumina sequencing of 

DNA and cDNA were further used to examine how soil VWC affected the soil 

microbial community diversity in the flooded system as compared to the well-

maintained system. 

The third chapter presents a field-based study to examine how a leach field soil 

system responds to a precipitation event in terms of greenhouse gas (CH4, CO2, and 

N2O) emissions and subsurface gas concentrations. The leach field system was 

monitored for 4 weeks prior to the rain event to quantify the baseline greenhouse gas 

emissions and subsurface GHG profile of the system. Subsequent to baseline 

measurements, a rain event was simulated over both leach field and control lawns. 

CH4, CO2, and N2O fluxes and subsurface concentrations were measured before and 

after the simulated precipitation event and coupled to soil samples for DNA and RNA 

analyses. Key biomarker genes for the production and consumption of CH4 and N2O 

were used to quantify relevant microbial populations using qPCR. RNA was reverse 

transcribed (RT) and subjected to qPCR (RT-qPCR) to monitor gene expression 

trends. Together, the objective of these studies was to use cross-scales tools to 

understand microbial controls on greenhouse gas cycling in soils. Additionally, 

elucidating the dynamic responses of soil microbial populations, and thus GHG fluxes, 

to changes in soil VWC was a key goal of this work.
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CHAPTER 2 

 

METHANE AND NITROUS OXIDE CYCLING MICROBIAL COMMUNITIES IN 

SOILS ABOVE SEPTIC LEACH FIELDS: ABUNDANCES WITH DEPTH AND 

CORRELATIONS WITH NET SURFACE EMISSIONS1 

Abstract 

Onsite septic systems use soil microbial communities to treat wastewater, in 

the process creating potent greenhouse gases (GHGs): methane (CH4) and nitrous 

oxide (N2O). Subsurface soil dispersal systems of septic tank overflow, known as 

leach fields, are an important part of wastewater treatment and have the potential to 

contribute significantly to GHG cycling. This study aimed to characterize soil 

microbial communities associated with leach field systems and quantify the abundance 

and distribution of microbial populations involved in CH4 and N2O cycling. 

Functional genes were used to target populations producing and consuming GHGs, 

specifically methyl coenzyme M reductase (mcrA) and particulate methane 

monooxygenase (pmoA) for CH4 and nitric oxide reductase (cnorB) and nitrous oxide 

reductase (nosZ) for N2O. All biomarker genes were found in all soil samples 

regardless of treatment (leach field, sand filter, or control) or depth (surface or 

subsurface). In general, biomarker genes were more abundant in surface soils than 

subsurface soils suggesting the majority of GHG cycling is occurring in near-surface 

soils. Ratios of production to consumption gene abundances showed a positive 

relationship with CH4 emissions (mcrA:pmoA, p < 0.001) but not with N2O emission 

(cnorB:nosZ, p > 0.05). Of the three measured soil parameters (volumetric water 

content (VWC), temperature, and conductivity), only VWC was significantly 

                                                
1 Fernández-Baca, C.P., Truhlar, A.M., Omar, A.-E.H., Rahm, B.G., Walter, M.T., Richardson, R.E., 
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correlated to a biomarker gene, mcrA (p = 0.0398), but not pmoA or either of the N2O 

cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing 

results revealed soil VWC, CH4 flux and N2O flux together explained 64% of the 

microbial community diversity between samples. Sequencing of mcrA and pmoA 

amplicon libraries revealed treatment had little affect on diversity of CH4 cycling 

organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of 

whether or not they are associated with a leach field system.  
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2.1 Introduction 

Septic systems account for approximately 25% of U.S. wastewater treatment 

however they are estimated to be responsible for almost 65% of domestic wastewater 

greenhouse gas (GHG) emissions (US EPA, 2012). Septic systems typically consist of 

two parts: the septic tank and the subsurface soil dispersal system hereafter referred to 

as the leach field. Some newer systems have an additional sand filter between the tank 

and the leach field to improve discharged water quality (USEPA, 2002). Both the 

septic tank and leach field portions of the system use microbial communities to 

degrade complex organics in wastewater and mineralize nutrients. Together they 

provide both physical (i.e., solids settling and collection) and microbial (anaerobic and 

aerobic) treatments to effectively reduce organic carbon (C), nitrogen (N) and 

phosphorus (P) loads. 

As a consequence of transforming C and N, microorganisms can produce the 

potent greenhouse gases methane (CH4) and nitrous oxide (N2O) with global warming 

potentials (GWP) of 20 and 200 times that of CO2 over a 25-year time span, 

respectively. Still, only a handful of studies have quantified GHG emissions from 

septic systems (Diaz-Valbuena et al., 2011; IPCC, 2006; Kinnicutt et al., 1919; 

Leverenz et al., 2010; Winneberger, 1983). Greenhouse gases from these systems 

escape primarily through the roof vent, however a portion of these gases can be 

released through supersaturated septic tank effluent or be produced subsurface in soils 

surrounding leach field laterals. Truhlar et al. (2016) provided the first measurements 

of GHG emissions from two key septic system outlets: the roof vent and leach field 

soils. They found that CO2 emissions from the roof vent and soils above leach fields 

were comparable. In contrast, CH4 and N2O emissions were significantly greater from 

the roof vent as compared to the leach field. The discrepancy between roof vent and 
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leach field emissions suggests that microbial GHG cycling in soils above leach fields 

is, in part, responsible for mitigating CH4 and N2O emissions from leach field systems. 

This study aims to examine whether the abundance of key GHG cycling microbial 

populations in leach field soils correlates to measured CH4 and N2O emissions from 

these systems. 

For microbial CH4 production and aerobic consumption, biomarker selection is 

relatively straightforward. In methanogens, the α-subunit of the methyl-coenzyme M 

reductase (mcrA) enzyme, involved in the final step of methanogenesis, is well 

conserved across all known methanogens with the exception of anaerobic methane 

oxidizing (ANME) archaea (Friedrich, 2005; Luton et al., 2002; Steinberg and Regan, 

2009). Similarly, all aerobic methane-oxidizing bacteria (MOB) contain the enzyme 

methane monooxygenase (MMO). MMO catalyzes the first step in CH4 oxidation and 

the particulate form (pMMO) of the enzyme is found in the majority of cultivated 

methanotrophs (Dedysh et al., 2003; Semrau et al., 1995, 2010). The pmoA gene, 

encoding the α-subunit of pMMO, has near universal presence in both aerobic and 

nitrite-reducing bacterial methanotrophs and has been used as a biomarker for their 

presence and activity (Freitag and Prosser, 2009; Lee et al., 2014; Seo et al., 2013; 

Tate, 2015). 

Recent discoveries of anaerobic methanotrophs make the CH4 cycle more 

complex than previously thought. Nitrite-dependent anaerobic methane oxidizing (n-

damo) bacteria of the NC10 phylum and anaerobic methane oxidizing (ANME) 

archaea - are phylogenetically diverse groups that have the potential to contribute 

significantly to CH4 mitigation globally. N-damo processes are carried out by 

Candidatus Methylomirabilis oxyfera–like bacteria, which couple methane oxidation 

to nitrite reduction. These bacteria have previously been identified and quantified by 

targeting their pmoA or 16S rRNA gene (Ettwig et al., 2009; Luesken et al., 2011). 
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ANME-2D archaea are thought to couple methane oxidation to nitrate reduction in a 

reverse methanogenesis pathway and can be studied using the same mcrA gene used to 

for methanogens (Ettwig et al., 2010; Hallam et al., 2004; Haroon et al., 2013; Wu et 

al., 2011). Both types of anaerobic methanotrophs have been found across a wide 

variety of soil systems and may be well suited for the leach field soil environment 

(Beal et al., 2009; Hui et al., 2017; Meng et al., 2016; Orphan et al., 2001; Shen et al., 

2015, 2016; Vaksmaa et al., 2016; Wang et al., 2012; Weber et al., 2017).  

The N2O cycle is more complex than the CH4 cycle and represents only a 

portion of the full denitrification pathway. Denitrification is the sequential reduction 

of nitrate to dinitrogen (N2) gas. Each reduction step is catalyzed by one of four 

enzymes: nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase (Nor), 

and nitrous oxide reductase (Nos). Many denitrifying bacteria lack the genes encoding 

for Nos making partial or incomplete biological denitrification a significant source of 

N2O (Henry et al., 2006; Sanford et al., 2012). Quantifying the microbial populations 

directly involved in production (Nor) and consumption (Nos) of N2O is therefore key 

to understanding N2O cycling in soils (Levy-Booth et al., 2014). Two types of 

bacterial nitric oxide reductases exist: cNor (cytochrome c electron donor) and qNor 

(quinol electron donor) (Braker and Tiedje, 2003; Dandie et al., 2007). cNor is specific 

to denitrifier populations and the cnorB gene has previously been used as a biomarker 

for N2O production (Braker and Tiedje, 2003; Hendriks et al., 2000). For N2O 

consumption, the nosZ gene has proven to be a suitable biomarker (Henry et al., 2006; 

Levy-Booth et al., 2014).  

Studying the microbial populations involved in GHG cycling is essential to 

gaining greater insight into the factors controlling GHG emissions from soil systems. 

This study provides the first examination of presence, abundance, distribution, and 

characterization of GHG cycling microbial populations associated with septic system 
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leach field soils. We quantified four functional gene biomarkers involved in GHG 

production and consumption in leach field systems: mcrA and pmoA for CH4 and 

cnorB and nosZ for N2O. Statistical models were used to investigate whether treatment 

type or measured soil environmental parameters control the abundance of these GHG 

cycling microbes. Additional statistical models were created to examine the 

relationship between functional gene abundances and net GHG fluxes from leach field 

soils. Furthermore, we examined microbial community composition in these soils by 

sequencing and analyzing 16S rRNA, mcrA, and pmoA amplicon libraries. 

2.2 Materials and methods 

2.2.1 Site descriptions 

Nine homes in central New York using septic systems for onsite wastewater 

treatment volunteered to participate in this study. The characteristics for 8 of the 9 

sites are summarized in Truhlar et al. (2016). Site 9, which was previously omitted due 

to a saturated leach field system, is included in this study and had a leach field area of 

168 ft2. Gas flux measurements, soil samples, and other relevant environmental 

parameters were taken between June and August of 2014. Three soil treatments were 

examined: leach field, sand filter and control soils. Control soils were selected on 

nearby lawn approximately 15 to 12 feet upslope from the leach field and/or sand filter 

soils. Seven of the sites had leach field and control soils, one of these seven sites had 

an additional sand filter between the leach field and control. Two sites had only sand 

filter and control soils. 

 

2.2.2 Flux measurements and analysis 

Gas flux measurement methods were previously reported in Truhlar et al. 

(2016). Briefly, triplicate static gas flux chambers were used to measure soil gas fluxes 
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based on a method by Molodovskaya et al. (2011). Headspace gases were sampled at 

0, 10, 20 and 30 minutes. Gas analyses were performed via gas chromatography, using 

a flame ionization detector for CH4 and an electron capture detector for N2O (Model 

6890N GC/ECD, Agilent Technologies Inc.). Gas fluxes were calculated by fitting a 

linear regression to gas concentration data and dividing the slope of the line by the soil 

surface area of the chamber for a per meter squared gas flux. 

 

2.2.3 Environmental parameters 

Conductivity, volumetric water content (VWC) and soil temperature were all 

measured in triplicate immediately adjacent to the static gas flux chambers over a soil 

depth of 0-4 inches as previously reported in Truhlar et al. (2016). 

  

2.2.4 Soil sampling 

Soil samples were taken at each of the 9 locations from all treatment types 

found at that site (i.e. leach field, sand filter, and control). Samples were taken 

adjacent to the static flux chambers with a 1-inch diameter sterilized soil corer. 

Between samples the soil corer was cleaned with deionized water and ethanol. Soil 

cores were taken to a depth of 8 inches and grouped into two depth ranges: 0 to 4 

inches (for surface samples) or 4 to 8 inches (for subsurface samples). Samples were 

immediately stored in sterile 50 ml centrifuge tubes and placed on ice before returning 

to lab where samples were stored at -20°C until DNA extraction. 

 

2.2.5 DNA extraction 

Soil samples were homogenized manually using a sterile spatula. Soil was then 

subsampled from the homogenized mixture into sterile 2 ml centrifuge tubes. DNA 

was extracted within 24 hours of sampling using the PowerSoil DNA Isolation kit 
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(MoBio Laboratories, Carlsbad, CA). For all soil samples, approximately 0.25 g of 

wet soil were placed in a 2 ml centrifuge tube and 0.5 g of 0.1 mm Zirconia-Silicate 

beads (BioSpec Products, Bartlesville, OK) were added. PowerBead solution was 

pipetted out of the manufacturer’s microcentrifuge tubes and added to the soil/bead 

mixture. Following this brief modification, the extraction was carried out according to 

manufacturer’s instructions. A comparison of DNA yields from both the 

manufacturer’s method and the modified method was done and it was determined that 

DNA yields were higher using the modified extraction method (data not shown). DNA 

was quantified using the Quant-iT PicoGreen dsDNA assay (Molecular Probes, 

Eugene, OR) on a Tecan Infinite Fluorimeter and quality was checked with a 

NanoDrop spectrophotometer (Nanodrop ND-1000, ThermoScientific, Waltham, 

MA). DNA was stored at -20°C until further analysis. 

 

2.2.6 Quantitative PCR 

2.2.6.1 Primer selection and standard curves 

 Quantification of microbial communities involved in GHG cycling was 

assessed via quantitative PCR (qPCR) targeting biomarker genes mcrA, pmoA, nosZ, 

and cnorB. Previously published degenerate primers mlasF/mcrA-rev were used for 

quantifying mcrA gene copies in soil samples (Luton et al., 2002; Steinberg and 

Regan, 2008). pmoA was quantified to target aerobic methanotrophs using the primer 

set A189F/mb661R (Costello and Lidstrom, 1999). This primer set has been shown to 

recover a greater diversity of methanotrophs than other pmoA-targeted primer sets 

while not amplifying the homologous ammonia monooxygenase (amoA) gene (Bourne 

et al., 2001). 

To quantify denitrifier populations involved directly in production and 

destruction of N2O we selected genes encoding for the Nor and Nos enzymes. For 
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Nor, the cnorB2F/cnorB6R primer set was used to target the cnorB gene, encoding the 

cytochrome b-subunit of cNor (Braker and Tiedje, 2003; Hendriks et al., 2000). The 

nosaZ1F/nosZ1R primer set was selected to quantify denitrifying microbial 

populations responsible for the final reduction of N2O to N2 (Henry et al., 2006). 

Atypical versions of the nosZ gene were not quantified but endpoint PCR was used to 

examine their presence (see section 2.7 Atypical nosZ denitrifiers and anaerobic 

methanotroph 16S rRNA analyses). All degenerate primers used for quantification of 

the selected biomarkers are listed in Table 2.1. 

Table 2.1. Primers used for qPCR assays for each biomarker gene. 

Target 

Microbial 

Community 

Gene Primer 

Primer 

Length 

(bp) 

Sequence (5'-3') 

Amplicon 

Length 

(bp) a 

Reference(s) 

Methanogens mcrA mlasF 23 GGTGGTGTMGGDTTCACMCART

A 

490 Steinberg & 

Regan, 2009; 

Luton et al., 2002 mcrA 

rev 

24 CGTTCATBGCGTAGTTVGGRTAG

T 

Methanotrophs pmoA A189F 18 GGNGACTGGGACTTCTGG 508 Costello & 

Lidstrom, 1999 mb661R 19 CCGGMGCAACGTCYTTACC 

Denitrifiers cnorB cnorB2F 19 GACAAGNNNTACTGGTGGT 390 Braker & Tiedje, 

2003 cnorB6R 18 GAANCCCCANACNCCNGC 

nosZ nosZ1F  21 WCSYTGTTCMTCGACAGCCAG  259 Henry et al., 

2006 nosZ1R  23 ATGTCGATCARCTGVKCRTTYTC 

a Amplicon length based on pure cultures used for standards 

  
Primers used to create long amplicon standards were designed in this study to 
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target gene sequences from available pure cultures using the PrimerQuest tool from 

IDT (Table 2.2) available at the IDT website (https://www.idtdna.com/PrimerQuest/) 

(Rozen and Skaletsky, 2000). The gene fragments span the target qPCR amplicon 

region with an additional 50 bp or longer region on either end of the target sequence. 

Standards were diluted 10-fold from 106 copies µl-1 to 102 copies µl-1 for each target 

gene.  

 
Table 2.2. Pure cultures and associated primers used to create qPCR standards. All 
primers were designed using the PrimerQuest tool from IDT (Rozen and Skaletsky, 
2000). 

Gene Organism Name Primer 

Primer 

Length 

(bp) 

Sequence (5'-3') 

Amplicon 

Length 

(bp) 

Reference 

mcrA Methanosarcina 

acetovirans str C2A 

Forward 20 TCCAGACAAGCCGTGTATCC 729 This study 

Reverse 20 TCCTTGGCTCTGCGAAGTTG 

pmoA Methylomicrobium 

album BG8 

Forward 22 CGCACGTTTGACTGGTTAATTT 729 This study 

Reverse 20 TAGGTGGCTTGGGTAAATGC 

norB Paracoccus 

denitrificans PD122 

Forward 17 TGCTGATGGGCCTTTGG 542 This study 

Reverse 18 GCCATAGAAGGCCAGGTG 

nosZ Paracoccus 

denitrificans PD122 

Forward 20 CCTGTTCACCCGCTATATCC 706 This study 

Reverse 18 AACAAGGTGCGGGTCTAC 

 

2.2.6.2 qPCR assay conditions 

All qPCR reactions were run in triplicate using a total reaction volume of 25 

µl. Each reaction was comprised of 12.5 µl of 2X iQ SYBR Green Supermix (Bio-

Rad, US), 17.5 pmol of primer, and 3 µl of template DNA (with concentrations diluted 
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to between 3 and 10 ng µl-1). Thermal cycling was conducted on an iCycler IQ (Bio-

Rad) using protocols previously reported for the chosen primer sets (Braker and 

Tiedje, 2003; Costello and Lidstrom, 1999; Henry et al., 2006; Steinberg and Regan, 

2009). Quantification analyses were carried out using both Data Analysis for Real-

Time PCR (DART PCR) which inherently accounts for inhibition of qPCR in samples 

as well as Ct values reported via the Bio-Rad iCycler IQ software (Peirson et al., 

2003). The two methods showed agreement thus Ct–based results are reported here. 

Melt curve analyses were conducted on all products to check for nonspecific 

amplification. Confirmation of a subset of qPCR products was done by Sanger 

sequencing at the Cornell University Biotechnology Resource Center. 

 

2.2.7 Atypical nosZ denitrifiers and anaerobic methanotroph 16S rRNA analyses 

To provide a more complete picture of the N2O and CH4 cycling community, 

samples were analyzed via PCR amplification and gel electrophoresis for 

presence/absence of ‘atypical’ nosZ containing denitrifiers and nitrite-dependent 

anaerobic methane oxidizing (n-damo) bacteria. ‘Atypical’ denitrifier and n-damo 

functional gene variants have previously been found in soil environments and are 

likely present across many soil types including leach field soils (Luesken et al., 2011; 

Sanford et al., 2012). 

Many denitrifiers have an ‘atypical’ nosZ gene variant that is not captured by 

‘typical’ nosZ gene primers (Sanford et al., 2012). To target these denitrifiers, atypical 

nosZ primers were designed using sequence alignments in ClustalW for 9 

representative denitrifier groups identified by Sanford et al. (2012) (Sanford et al., 

2012; Thompson et al., 1994). We chose to assay for 8 of the 9 groups, eliminating 

primer set 8 from analysis which targeted hyperthermophiles not likely to be found in 

our soil systems. Primer sequences for target denitrifier groups and annealing 
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temperatures for primer sets can be found in SI Table 2.1. 

The p2f/p2r primer set was used to assay soil samples from all 9 sites for 

presence/absence of Methylomirabilis oxyfera–like bacteria (Ettwig et al., 2009). 

Primer sequences and annealing temperatures used for PCR reactions can be found in 

SI Table 2.1. A plasmid containing the 16S rRNA gene insert of n-damo like bacteria 

was used as a positive control (Vaksmaa et al., 2016). All PCR reactions had a total 

reaction volume of 25 µl and had the same reaction mixture used for qPCR with the 

exception that GoTaq Hot Start Polymerase (Promega) was used in place of 2X iQ 

SYBR Green Supermix. All PCR products were run on a 1% agarose gel and imaged 

for analysis. 

 

2.2.8 Amplicon library sequencing 

16S rRNA gene amplicon libraries targeting the V3-V4 region were created 

from extracted DNA pools using the universal primers S-D-Bact-0341-b-S-17/ S-D-

Bact-0785-a-A-21 from Klindworth et al. (2013). The 25 µl PCR reaction mixture was 

composed of 12.5 µl of KAPA HiFi Master Mix (KAPA Biosystems, US), 5 µl of 25 

pmol of primer, and 2.5 µl of template DNA. mcrA and pmoA amplicon libraries were 

amplified using the qPCR primers (Error! Reference source not found.). Amplicon 

concentrations were measured using a Qubit High sensitivity assay (Life 

Technologies, Carlsbad, CA, USA) prior to sequencing. Samples were sent for 

barcoding, pooling, and paired-end sequencing (2 × 250 bp) using the MiSeq platform 

(Illumina, San Diego, CA, USA) at the Cornell University Biotechnology Resource 

Center.  

 

2.2.9 Microbial community analysis 

Analysis of 16S rRNA sequencing reads was performed using the QIIME 
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(v1.9.1) platform (Caporaso et al., 2010). Paired-end reads were merged and quality 

filtered using default settings. Closed-reference operational taxonomic unit (OTU) 

picking was conducted against the Greengenes reference database v13.8 (August 

2013) (McDonald et al., 2012). Clustering was used to group sequences into OTUs at 

97% identity using the default uclust method (Edgar, 2010). RDP classifier was used 

to assign taxonomy for representative sequences of each OTU (Wang et al., 2007). 

Alpha diversity analysis was measured using Chao1 and Shannon diversity indices 

(Shannon, 1948; Wilkins et al., 2015). Beta diversity was calculated using the 

weighted UniFrac method in QIIME (Lozupone and Knight, 2005).  

Downstream analyses of 16S rRNA data including ordinations were performed 

with R version 3.3.3 in the phyloseq (version 1.19.1) and vegan (version 2.4-4) 

packages (McMurdie et al., 2013; Oksanen et al., 2017; R Core Team, 2013). Principal 

Coordinate Analysis (PCoA) and constrained Distance-Based Redundancy Analysis 

(dbRDA) plots were generated in the vegan package of R using the capscale function 

based on the weighted UniFrac distance matrix. The bioenv function in vegan was 

used to determine which measured parameters (VWC, temperature, conductivity, CH4 

flux, N2O flux) best explained the observed beta diversity. Variance Inflation Factors 

(VIF) were evaluated for the constraining parameters to determine if constraints were 

redundant (VIF score >10). Parameters with high VIF scores were eliminated from the 

analysis in an iterative process until all parameters were non-redundant (VIF < 5). All 

selected parameters were tested for significance (p < 0.01 based on ANOVA).  

Additional analyses were conducted in R to assess the statistical significance of 

categorical variables in determining variation in microbial communities. Permutational 

multivariate analysis of variance using distance matrices (ADONIS) was used to 

analyze three variables based on 2000 permutations: depth (surface, subsurface), 

treatment (leach field, sand filter, control), and site (1 through 9).  
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mcrA and pmoA amplicon libraries were analyzed separately using the 

Burrows-Wheeler Aligner (BWA). BWA-MEM was used to pair and align reads to 

reference libraries of mcrA and pmoA sequences downloaded from the FunGene 

database (Fish et al., 2013; Li, 2013). The mcrA and pmoA databases were created 

using sequences from FunGene that had full taxonomic lineages. Reference sequence 

databases consisted of 943 and 931 sequences, for mcrA and pmoA respectively. After 

alignment, Samtools was used to count and merge files of individual samples into a 

summary file used for further analyses (Li et al., 2009). Taxonomy files were created 

using the UniProt Retrieve/ID mapping tool and manually assigned to each reference 

sequence (Pundir et al., 2016). Reads were normalized to relative abundance by 

dividing the reads assigned per family by the total number of assigned reads per 

sample. 

 

2.2.10 Statistical analyses 

All statistical analyses were performed with R (R Core Team, 2013). Linear 

mixed effects models (LME) were performed following the method of Truhlar et al. 

(2016), however each model was fit with the additional biomarker data sets. Statistical 

models were used to examine what drives GHG cycling gene abundances in leach 

field soils. Maximal models for GHG cycling gene abundances were created for each 

biomarker gene using site as the random variable and abundance of ‘partner’ genes 

(e.g mcrA with pmoA or nosZ with cnorB) or ratio of production:consumption gene 

abundance (e.g. mcrA:pmoA and cnorB:nosZ), treatment (i.e. control, leach field, sand 

filter) and measured soil parameters (i.e. conductivity, VWC, temperature) as fixed 

effects. The ratio of production:consumption gene abundances was considered in 

models under the assumption that higher ratios (e.g. greater gene abundance of GHG 

producers as compared to GHG consumers) would correlate to higher GHG fluxes 
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compared to locations with lower production:consumption gene abundance ratios. 

Additional LME models were created for methane or nitrous oxide gas fluxes 

to answer the question of what drives GHG fluxes from leach field soil systems. 

Maximal models were created using site as the random variable, with biomarker gene 

abundances or ratios of production:consumption biomarker gene abundances, 

treatment, and measured soil parameters as fixed effects. 

All two-way interactions were examined, and minimal models were reached by 

sequentially removing non-significant fixed effects. Variance inflation factors were 

calculated for model parameters to determine if there was redundancy. Parameters 

with VIF scores greater than 10 were eliminated successively until all parameters in 

the model had VIF scores below 5. High correlation was observed between VWC and 

conductivity measurements in our data set (VIF >10). To avoid issues with co-

linearity in the LME models, conductivity was excluded from analysis. Normality and 

residual analyses were carried out for each analysis and both assumptions were 

satisfied for each model created.  

2.3. Results 

2.3.1 Abundance of GHG cycling genes in leach field soils 

All four functional genes mcrA, pmoA, cnorB, and nosZ were present in all 

samples regardless of treatment type or depth (Figure 2.1). No treatment effect is 

apparent for any of the biomarker genes. Surface soil mcrA gene abundances were 

more variable across sites and treatment types (1.48×105 – 1.05×109 copies g-1 wet 

soil) than surface soil pmoA (8.03×105 – 5.6×107 copies g-1 wet soil), cnorB (8.96×106 

– 1.69×108 copies g-1 wet soil), and nosZ (3.10×105 – 2.33×107 copies g-1 wet soil) 

gene abundances. The majority of sites and treatment types had higher surface gene 

abundances of pmoA than mcrA. Notably, site 9 leach field soil had an almost 20-fold 
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difference between mcrA and pmoA surface soil gene abundances with 1.05×109 and 

5.6×107 copies g-1 wet soil, respectively. Surface mcrA gene abundance at this site was 

also the highest observed for any of the biomarker genes at any site, treatment type, or 

depth sampled in this study. cnorB gene copies were higher than nosZ, pmoA, and 

mcrA at each site and treatment with the exception of site 9 mcrA. Gene abundances of 

cnorB did not fall below 9×106 copies g-1 wet soil in surface soils or below 2.2×106 

copies g-1 wet soil in subsurface soils. nosZ was lower in abundance than cnorB at any 

given site and treatment type. 

Figure 2.1. Surface soil gene abundances in copies per gram soil for mcrA (A), pmoA 
(B), cnorB (C), and nosZ (D) by treatment type (Control, Leach Field, and Sand Filter) 
for sites 1 through 9. 

Generally, all four biomarker gene abundances were higher in surface soil than 

in subsurface soil regardless of treatment type (Figure 2.2). T-tests between surface 

and subsurface gene abundances confirmed this finding for pmoA (p = 0.032), cnorB 

(p = 0.00064), and nosZ (p = 0.0015) but not mcrA (p = 0.42). Several locations had 

greater mcrA gene abundances in subsurface samples as compared to surface samples, 

however the majority of locations had greater surface gene abundances of mcrA. 
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 Figure 2.2. Comparison of log10 gene abundances for surface samples and subsurface 
samples by site of mcrA (circle), pmoA (cross), cnorB (triangle), and nosZ (square). 
Dotted line indicates a 1-to-1 relationship. The majority of sites had greater biomarker 
gene abundances in the surface sample. 

 

2.3.2 Modeling of GHG cycling gene abundances 

LME models were fit for each biomarker gene to determine the effect of 

‘partner’ (e.g. mcrA for pmoA and vice versa) gene abundance and measured soil 

parameters (VWC, conductivity, and temperature) on the modeled biomarker’s gene 

abundance (Figure 2.3). VWC had a significant effect on the abundance of mcrA (p = 

0.0398) but not pmoA. mcrA and pmoA gene abundances were positively correlated 

with each other (p < 0.0001). No minimal model was created for cnorB or nosZ gene 

abundances as they were not significantly affected by treatment, measured soil 
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parameters, or the presence of a ‘partner’ gene. 

 The production:consumption gene ratio for CH4 showed a significant 

relationship to VWC (p = 0.0005). Interestingly, there was a significant effect on the 

ratio of mcrA:pmoA by the leach field treatment (p = 0.0935) at a 90% confidence 

interval. No significant effect of any variable for the cnorB:nosZ ratios was found 

(Table 2.3). 

 
Table 2.3. Results for LME models of biomarker gene abundances using site as the 
random effect. Individual biomarker genes were modeled using the ‘partner’ gene (e.g. 
mcrA modeled by pmoA), treatment, and soil parameters as effectors. Models for ratios 
of production to consumption gene abundances (e.g. mcrA:pmoA) with environmental 
parameters as effectors are also shown. Only models with at least one significant 
effect are presented. No significant effects were found for N2O cycling genes. N.A. 
indicates the effector was not part of the model. 

Biomarker LME 

Biomarker 

Gene 
'Partner' Biomarker VWC 

mcrA 
t = 5.32,                                    

p < 0.0001 

t = 2.24,         

p =  0.0398 

pmoA 
t = 7.90,                                    

p < 0.0001 
N.A. 

LME with Biomarker Ratio 

Biomarker 

Ratio 

Treatment 
VWC 

Leach Field Sand Filter 

 mcrA:pmoA 
 t = 1.79,            

p = 0.0935* 

 t = 0.793,             

p = 0.44*  

t = 4.39,        

p = 0.0005 

Indicates not significant at a 95% confidence interval. 
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2.3.3 Biomarker abundances as drivers of GHG fluxes from leach field soils 

Quantified biomarker gene abundances and measured GHG fluxes were used 

to examine whether there is a correlation between biomarker abundance and GHG 

emissions from leach field soils. First we compared GHG fluxes versus the ratio of 

production:consumption genes for each CH4 and N2O. Then we created statistical 

models for GHG fluxes using biomarker gene abundance and soil VWC. Additional 

statistical models were used to examine the effect of the ratio of 

production:consumption gene abundance on measured GHG fluxes.  

Leach field CH4 and N2O flux measurements were previously reported by 

Truhlar et al. (2016) for 8 of the 9 sites in this study. Site 9 measurements are an 

additional dataset presented here. Average CH4 gas fluxes (mg m-2 day-1) at each site 

showed no clear relationship with the ratio of mcrA to pmoA surface gene abundances 

below a ratio of 10 (Figure 2.3). Methane fluxes at sites 1 through 8 varied from -4.60 

mg CH4 m-2 day-1 to 38.2 mg CH4 m-2 day-1, representing a range of net CH4 

producing, and consuming soils. Ratios of mcrA:pmoA gene abundance in surface soils 

ranged from 0.0174 to 6.01 for sites 1 through 8 with the majority of samples (79%) 

having a ratio below 1. The mcrA:pmoA ratio of site 9’s leach field soil was 18.7 - 3 

times greater than the next highest ratio. Site 9 also had the highest CH4 emissions of 

any site and treatment type, 260 mg CH4 m-2 day-1. 
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Figure 2.3. CH4 fluxes (mg m-2 day-1) versus ratio of mcrA:pmoA gene abundances by 
treatment. Treatments are indicated by shape and color: Control (black circle), Leach 
Field (grey triangle), Sand Filter (light grey square). Inset shows data excluding site 9. 
The dotted line indicates zero net CH4 emissions. 

Average N2O gas fluxes measured over the sampling period showed no 

relationship to the ratio of cnorB:nosZ surface gene abundances (Figure 2.4). All soils 

were net producers of N2O, with fluxes from 0.146 mg N2O m-2 day-1 to 14.9 mg N2O 

m-2 day-1. Surface cnorB:nosZ gene ratios ranged from 1.84 up to 93.3 and had a wider 

range of values than those of mcrA:pmoA. However, cnorB:nosZ ratios never went 

below 1 due to consistently greater cnorB gene abundances as compared to the 

‘typical’ nosZ abundances quantified in this study. Unlike Site 9’s leach field where 

the highest mcrA:pmoA gene abundance occurred at the location with the highest CH4 

emissions, the highest cnorB:nosZ ratio did not correspond to elevated N2O emissions.  

 



 

52 

Figure 2.4. N2O flux (mg m-2 day-1) versus ratio of cnorB:nosZ gene abundances. 
Treatments are indicated by shape and color: Control (black circle), Leach Field (grey 
triangle), Sand Filter (light grey square). The dotted line indicates no net N2O 
emissions. 

To characterize the impact of the GHG cycling microbial community on GHG 

emissions, CH4 and N2O fluxes were modeled using functional gene abundances and 

VWC. The LME model results in Table 2.4 suggest that CH4 fluxes were significantly 

positively affected by the abundance of mcrA (p < 0.0001) and pmoA (p = 0.026) as 

well as soil VWC (p = 0.0106). LME results additionally confirmed the ratio of 

mcrA:pmoA showed a significant positive relationship to CH4 emissions (p < 0.0001) 

and a significant positive relationship to soil VWC (p = 0.05). However, there was no 

significant relationship between gene abundance of the N cycling biomarker genes to 

N2O emissions at a 95% confidence interval.  
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Table 2.4. Results of LME models for CH4 emissions using site as the random effect. 
Fluxes were modeled using fixed effects of either biomarker gene abundances or the 
ratio of production:consumption gene abundances and soil environmental parameters. 
Only significant effectors are shown. No significant effects were found for N2O 
fluxes. 

Gas LME with Biomarkers 

Gas mcrA pmoA VWC 

CH4 
t = 23.1,           

p < 0.0001 

t = 2.71,           

p = 0.0257 

t = 3.00,           

p = 0.0106 

Gas LME with Biomarker Ratio 

Gas Ratio mcrA:pmoA VWC 

CH4 
t = 6.079,                                     

p < 0.0001 

 t = 2.184,        

p = 0.050 

2.3.4 Characterizing functional microbial communities in leach field soils 

To gain a more complete understanding of the microbial communities in leach 

field soils we screened samples for presence/absence of atypical nosZ denitrifiers and 

anaerobic methanotrophs and performed high throughput sequencing on 16S rRNA, 

mcrA, and pmoA amplicon libraries. Determining presence or absence of atypical 

denitrifiers and anaerobic methanotrophs informs whether these populations should be 

further studied in soil systems in the future; while 16S rRNA and functional gene 

sequencing allows for a more in-depth look at microorganisms specifically involved in 

CH4 cycling. 16S rRNA sequencing data was analyzed using principal coordinate and 

distance-based redundancy analyses to determine what drives microbial community 

diversity in leach field soils. Sequencing of the functional genes mcrA and pmoA was 

further used to examine the specific CH4 populations of interest in this study and was 

compared to results from the 16S rRNA dataset. 
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2.3.4.1 Presence of atypical nosZ denitrifiers and anaerobic methanotrophs  

Gel electrophoresis of PCR products suggests that denitrifiers with atypical 

nosZ sequences as well as anaerobic methane oxidizers are present in soils regardless 

of treatment. PCR products using the nosZa9 primers targeting denitrifiers in the 

Deltaproteobacteria class were found in all but 3 samples (SI Figure 2.1). Sanger 

sequencing done on a subset of the products confirmed amplicons were from atypical 

nosZ genes belonging to Anaeromyxobacter-like organisms. BLAST results of 

trimmed sample sequences showed between 85 and 90% sequence identity to 

Anaeromyxobacter species. The remaining 7 primer sets for atypical nosZ genes were 

tested with samples pooled by treatment (e.g. leach field, sand filter, and control soils). 

However only the nosZa7 primer set, designed to target bacteria from the Chloroflexi 

phylum, resulted in a PCR product of the correct size. The 6 atypical nosZ primer sets 

with no or nonspecific products belonged to several different groups of denitrifiers 

including those in the phyla Bacteriodetes, Firmicutes, and Alpha- and Beta- 

proteobacteria (SI Figure 2.2). 

 Results for primers specific to the 16S rRNA gene of M. oxyfera–like bacteria 

were mixed. Multiple bands were observed for most samples (SI Figure 2.3), however 

eight of the sites (a mix of leach field, sand filter, and control soils) had a PCR product 

of the correct size and Sanger sequencing confirmed the presence of NC10-like 

bacteria in these soils (GenBank Accession Number: MG970710). 

 

2.3.4.2 16S rRNA and functional gene amplicon sequencing 

After filtering out low quality sequences from the 16S rRNA dataset a total of 

1,047,582 sequences were obtained. Assigned reads per sample ranged from 2,502 to 

78,141 with a mean of 18,243 reads and a median read length of 444 bp. Singleton 

OTUs were removed resulting in the 22,656 unique OTUs used to calculate beta 
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diversity.  

A 2D principal coordinate analysis (PCoA) on the weighted UniFrac distance 

matrix (Figure 2.5A) was used to describe the variation in microbial communities of 

sites 1 through 9. Constrained Distance-Based Redundancy Analysis (dbRDA) (Figure 

2.5B) identified CH4 flux, N2O flux, and VWC as the parameters that best explained 

the variation in microbial community composition. The first two axes of the 

unconstrained plot (PC1 15.0% and PC2 12.1%) explain 27.1% of the phylogenetic 

variation in microbial communities (Figure 2.5A). The constrained ordination using 

CH4 flux, VWC, and N2O flux as explanatory variables explains approximately 64% 

(first axis 10.4% and second axis 6.96%) of the variation observed in the first two axes 

of the unconstrained PCoA plot (Figure 2.5B). Both soil VWC and CH4 flux appear to 

strongly drive variations in microbial communities, while N2O has a lesser effect. 

 
Figure 2.5. Microbial community structure in 9 septic system soils showing all 
treatment types (control (circle), leach field (triangle), and sand filter (square)) and 
depths (surface and subsurface). PCoA plot based on the pairwise weighted UniFrac 
distance matrix (A). Constrained dbRDA of soil microbial communities with 
environmental parameters CH4 flux, VWC, and N2O flux best explaining variation in 
microbial community structure (B). 
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ADONIS results based on 16S rRNA sequencing indicate that depth, 

treatment, and site all significantly affected microbial community composition, 

however depth and treatment did not explain a substantial portion of the variation 

(depth (R2 = 0.040, p < 0.001), treatment (R2 = 0.044, p < 0.001)). Site was a stronger 

explanatory variable (R2 = 0.37, p < 0.01) than either depth or treatment.  

Alpha diversity indices Chao1 and Shannon showed that within treatment 

microbial diversity was similar across the three treatments (SI Table 2.2). Chao1 

values for control (9491) and sand filter (9922) soils were most similar with leach 

field having a lower value (7965). Shannon values showed a similar trend as the 

Chao1 indices with alpha diversity being the lowest in the leach field (7.18) and higher 

in control and sand filter soils (7.32 and 7.30, respectively). 

Phylogenetic trees were constructed based on a subset of 16S rRNA gene 

sequences for microbial groups involved in CH4 cycling (Figure 2.6 and Figure 2.7). 

The Euryarchaeota tree was constructed from all 126 sequences assigned to that 

phylum and shows that 16S rRNA reads belonging to methanogens from the 

Methanosaetaceae and Methanomassiliicoccaceae (predicted) families were found 

across all treatments while Methanobacteriaceae was found in leach field and sand 

filter but not control soils. Site 9 had a greater fraction of overall 16S rRNA reads 

assigned to methanogen species than any other site. Interestingly, site 9 leach field was 

also the only location with reads mapping to ANME-2D type microorganisms. 

ANME-2D are known to couple anaerobic methane oxidation to a variety of electron 

acceptors including nitrate and recently have been discovered in flooded soil systems 

(Vaksmaa et al., 2016; Weber et al., 2017). The relatively low abundance values 

observed for archaea in the 16S rRNA tree are likely due to the low recovery of 

archaeal sequences (64.6% recovery) as compared to bacterial sequences (94.5% 

recovery) by the selected primers (Klindworth et al., 2013). Future work attempting to 
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characterize total bacterial and archaeal populations should select universal primers 

with greater recovery of archaeal sequences. 

Figure 2.6. Phylogenetic tree based on 16S rRNA reads for families within the 
Euryarchaeota phylum. Read abundance is indicated by the size of the marker, and 
treatment is shown by shape: control (black circle), leach field (dark grey triangle), 
and sand filter (light grey square). Tree tips are labeled at the family level. Brackets 
([]) indicate a predicted family. Blank tips indicate taxonomic information was not 
available at the family level from the Greengenes database. 

16S rRNA sequencing data showed that aerobic methanotrophs including both 

Type I (Methylococcaceae) and Type II (Methylocystaceae and Methylobacteriaceae) 

as well as NC10 affiliated anaerobic methanotrophs (Methylomirabiliaceae) were 

present across all treatment types (Figure 2.7). A total of 1,072 sequences 

(approximately 0.1% of all sequences) mapped to one of these methanotrophs groups. 
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Methylococcaceae appear to dominate in leach field soils and the majority of OTUs 

were Methylomonas-type organisms (>85%) with a few Methylosarcina reads (<10%) 

and the rest being unassigned at the genus level.  

Figure 2.7. Phylogenetic tree based on 16S rRNA sequence reads of aerobic 
methanotrophs of the Gamma- and Alpha-proteobacteria as well as anaerobic 
methanotrophs of the NC10 phylum. Read abundance is indicated by the size of the 
marker, and treatment is shown by shape: control (black circle), leach field (dark grey 
triangle), and sand filter (light grey square). Tree tips are labeled at the family level. 
Blank tips indicate taxonomic information was not available at the family level from 
the Greengenes database. 

Illumina sequencing of mcrA and pmoA libraries showed that treatment had 

little to no effect on the community composition of CH4 cycling microorganisms 

(Figure 2.8 and SI Figure 2.4 and 2.5). Notably, the read depth of mcrA was 
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significantly greater than that of pmoA with mean mapped reads per sample of 13,745 

for mcrA but only 16 for pmoA (total mapped reads across all samples were 1,268,909 

and 1,523, respectively), making mcrA results overall more informative than pmoA 

results. It is unclear why fewer sequences were obtained for pmoA, however it may be 

attributed to unequal sample pooling (with a greater proportion of the sample going to 

mcrA and 16S rRNA libraries) as well as reference sequence database limitations, 

which excluded reference sequences with missing genus level taxonomic information 

potentially leading to high numbers of poor and/or failed alignments. 

Relative abundances of mcrA reads did not differ between treatments at the 

family level. Methanogen families found in the 16S rRNA gene libraries were also 

found in the mcrA libraries including Methanosaetaceae, Methanobacteriaceae, and 

Methanomassiliicoccaceae (Figure 2.8). mcrA reads of the ANME-2D anaerobic 

methanotroph Candidatus Methanoperedeceae were found across all treatments; this 

result differed from the 16S rRNA sequencing results which detected ANME-2D 

sequences only in site 9 leach field soils. 

pmoA sequencing results were limited with very few reads obtained overall 

resulting in detection of only three methanotroph groups: Methylococcaceae, 

Methylocystaceae, and candidate division NC10 (SI Figure 2.4). No reads were 

assigned to Methanobacteriaceae type methanotrophs, which were observed in the 

16S rRNA libraries. At the genus level, pmoA reads confirmed the dominance of 

Methylomonas-type methanotrophs in leach field soils as compared to control or sand 

filter soils (SI Figure 2.5). Anaerobic methanotrophs of the NC10 phylum were found 

in both leach field and control soils but not sand filter soils in the pmoA libraries, this 

differed from 16S rRNA results that showed NC10 reads were present across all 

treatments (SI Figure 2.4).  
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Figure 2.8. Relative abundance of mcrA reads assigned at the family level grouped by 
treatment. All 1,268,909 mcrA reads obtained from all 84 samples (control: n = 40, 
leach field: n = 30, sand filter: n=14). 

2.4 Discussion 

Understanding the ecology of microorganisms involved in GHG cycling is key 

to a better understanding of factors controlling GHG emissions from soil systems. 

Previous studies have used biomarker genes to explore the relationship between 

presence of key organisms involved in GHG cycling and net methane and nitrous 

oxide fluxes in soils across diverse environments (Billings and Tiemann, 2014; Dandie 

et al., 2008; Freitag et al., 2010; Lee et al., 2014). However, no previous study has 

coupled quantification of GHG cycling biomarkers to net CH4 and N2O fluxes in leach 

field soils using statistical models. Likewise, population and depth distributions of 

methanogens, methanotrophs and denitrifiers as well as high throughput sequencing 

characterization of microbial communities has not been previously studied in leach 

field soil systems. 
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2.4.1 Quantification of functional biomarkers in leach field soils 

Presence of the functional genes mcrA, pmoA, cnorB, and nosZ was found in 

all sites, regardless of treatment type (leach field, sand filter, or control) or depth 

(surface or subsurface). Biomarker gene quantities were in typical ranges to those 

found in other soil systems, ranging from agricultural soils to peat bogs (Braker and 

Tiedje, 2003; Dandie et al., 2007; Freitag et al., 2010; Henry et al., 2006; Seo et al., 

2013). In general, surface soils had greater biomarker gene abundances when 

compared to subsurface soils. A study by Seo et al. (2013) similarly showed greater 

abundance of pmoA, mcrA, and nosZ in rice paddy surface soils (< 10 cm) as 

compared to deeper soils (> 10 cm) suggesting the majority of GHG cycling is 

occurring in surface soil (Seo et al., 2013). Higher pmoA gene abundances are 

expected in aerobic surface soil environments favorable for methanotrophs, however 

the same trend was observed for mcrA gene abundances at the majority of sites 

suggesting methanogens are likewise more abundant in surface soils. Angel et al. 

(2012) showed that methanogens such as the Methanosarcina and Methanocella 

genera are robust to oxygen exposure; thus, the negative impact of oxygen on 

methanogen abundance may be outweighed by the benefit of access to elevated 

organic carbon in surface soils (Angel et al., 2012).  

 

2.4.2 Modeling functional biomarker quantity in leach field soils 

Soil properties, such as volumetric water content (VWC), are known to 

influence the structure of native microbial communities. Previous studies have shown 

a positive relationship between increased soil VWC and mcrA gene abundances 

(Christiansen et al., 2016; Ma et al., 2012). The same trend was observed in this study 

at site 9 where the highest abundance of mcrA gene copies occurred concomitantly 
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with the highest observed soil VWC (77.3 v/v). mcrA gene abundances at this site 

were more similar to those of traditionally flooded anaerobic environments such as 

rice paddies and peat bogs, likely due to anaerobic conditions created by a failing 

leach field system (Freitag et al., 2010; Ma et al., 2012). LME models confirmed the 

positive correlation between mcrA gene copies and soil VWC (p = 0.0398). However, 

gene abundances of pmoA were not significantly correlated with VWC and neither of 

the denitrifier genes showed a significant relationship with soil VWC. Average soil 

temperature over the sampling period (which ranged from 19.3 to 23.5 °C) did not 

significantly affect the abundance of any biomarker genes. Temperature has 

previously been shown to affect nosZ abundance, however this relationship was not 

significant in our study likely due to the limited temperature range (Jung et al., 2011). 

Methanotrophs have been found to reside in close proximity to methanogens 

and a positive correlation between pmoA and mcrA gene abundances has been shown 

in other studies (Freitag et al., 2010; Lee et al., 2014). LME model results indicate a 

similar relationship is seen in our study, where the abundance of pmoA was 

significantly positively correlated with the abundance of mcrA and vise versa (p < 

0.0001). Methanotrophs are thought to consume the majority of microbially produced 

methane, up to 80% globally, thus the co-occurrence of these populations suggests a 

potential for significant CH4 mitigation from leach field and other soils (Cai et al., 

2016; Conrad, 2009; Le Mer and Roger, 2001; Thauer et al., 2008). 

 

2.4.3 Drivers of GHG fluxes from leach field soils 

Eight of the 9 sites in this study were either net consumers or low rate emitters 

of methane. These 8 sites all had mcrA:pmoA ratios below 10, and all but two 

treatments from these sites had ratios below 1. Thus, at the majority of sites, 

methanotroph populations were greater than methanogen populations and were able to 
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keep pace with any methanogen activity. With the exception of site 9, this holds true 

even in cases where mcrA abundances are greater than pmoA abundances. Substantial 

methane production was measured at site 9, the only location where the mcrA:pmoA 

ratio exceeded 10. This suggests there may be a ‘threshold’ ratio above which 

methanotrophs are no longer capable of matching the activity of methanogens, 

resulting in net CH4 emissions. LME models show that CH4 fluxes are significantly 

positively correlated with the ratio of mcrA:pmoA gene abundances (p < 0.0001) and 

with soil VWC (p = 0.05). The relationship between CH4 fluxes and soil VWC has 

been observed in a number of studies including one by McPhillips et al. (2016) which 

found high soil VWC was correlated with higher CH4 fluxes from roadside ditches as 

compared to drier nearby lawns (Christiansen et al., 2016; McPhillips et al., 2016). 

Further studies on gene to transcript ratios for these key functional genes could clarify 

whether biomarker abundances in combination with soil VWC can be used to 

accurately predict GHG flux potential. 

Although we found a significant relationship between CH4 cycling genes and 

CH4 emissions, we were unable to find a similar relationship for N2O. Several studies 

have attempted to describe the relationship between abundance of N2O cycling genes 

and N2O emissions with mixed results (Angnes et al., 2013; Billings and Tiemann, 

2014; Dandie et al., 2008). We found that ratios of cnorB:nosZ did not significantly 

correlate with N2O emissions, however all soils were net producing and had 

cnorB:nosZ ratios greater than one. A study by Angnes et al. (2013) found a ratio of 

(cnorB + qnorB)/ nosZ greater than or equal to 100 was indicative of N2O emission 

potential (Angnes et al., 2013). However, the cnorB:nosZ ratios in this study were all 

below 100 and the single observed ratio greater than 80 did not correspond to elevated 

N2O flux. The lack of strong correlation in this and previous studies may be due, at 

least in part, to limitations of selecting primers that amplify only a subset of the 
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diversity found in N cycling genes. Indeed, we quantified cnorB but not qnorB as the 

latter has been observed in nondenitrifer bacteria strains, while the former is specific 

to denitrifiers (Dandie et al., 2007; Jung et al., 2011). Other studies have omitted nor 

completely, choosing to quantify the presence or activity of preceding denitrification 

steps (e.g. nitrate- and nitrite-reductase genes, nar and nir) (Cuhel et al., 2010; Hallin 

et al., 2009; Seo et al., 2013). Additionally, quantifying the ‘typical’ version of the 

nosZ gene to the exclusion of the diverse ‘atypical’ versions likely led to 

underestimation of denitrifier populations capable of consuming N2O.  

 

2.4.4 Presence of anaerobic methanotrophs and atypical denitrifiers 

While our study focused specifically on aerobic methanotrophs, the relatively 

recent discovery of anaerobic methane oxidizing bacteria and archaea drove us to 

explore whether these populations were present in leach field soils. Both n-damo and 

ANME-2D can couple methane cycling to nitrogen cycling making them important 

potential players in soil GHG cycling. PCR products confirmed the presence of 16S 

rRNA gene sequences of M. oxyfera–like bacteria in 8 of 9 sites. 16S rRNA Illumina 

sequencing supported this finding with 16% of all methanotroph reads (e.g. Type I, 

Type II, and NC10) mapping to the Candidatus Methylomirabilis genus. This 

indicates potential for methane oxidation coupled to nitrite reduction in grassland soils 

regardless of the presence of a leach field.  

ANME-2D have been discovered in soil environments from fresh water 

sediments to paddy soils (Raghoebarsing et al., 2006; Vaksmaa et al., 2016). Although 

we did not assay samples to determine presence of ANME groups, high-throughput 

sequencing of 16S rRNA libraries revealed that ANME-2D archaea were present in 

soils from leach field site 9, albeit at relatively low abundance with only 4 reads out of 

more than 14,000 mapping to ANME archaea. This was the only site with completely 
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saturated soils similar to conditions where ANME-2D methanotrophs have previously 

been found (Vaksmaa et al., 2016). mcrA amplicon library analysis supported the 

finding of ANME-2D archaea with reads mapping to Candidatus 

Methanoperedenaceae in 68 of the 84 samples across all treatment types. Candidatus 

Methanoperedens is thought to couple nitrate reduction to methane oxidation and 

despite the low read counts in this study, this ANME group has the potential to 

contribute significantly to methane oxidation in soils (Haroon et al., 2013). Based on 

these results, we suggest quantification of anaerobic methane oxidizers (including 

ANME-2D and n-damo) in septic leach field soils as they may contribute significantly 

to methane oxidation particularly in poorly-drained and/or fertilized soils. 

Quantification of these populations would allow for improved statistical modeling of 

CH4 fluxes based on functional gene abundances ultimately leading to a better 

understanding of the carbon cycle. 

Atypical denitrifying populations were also found in our soil samples. Both 

Anaeromyxobacter and Chloroflexi type organisms containing atypical nosZ genes 

were found across all treatments. 16S rRNA data confirmed the presence of these 

microorganisms with all samples having reads map to the Chloroflexi phylum and 

75% of samples having reads map to Anaeromyxobacter type organisms. Based on 

these preliminary data, we suggest that qPCR of atypical nosZ genes in soil is needed 

to accurately capture a relationship between N2O emissions and functional gene 

abundance. 

 

2.4.5 16S rRNA and functional gene characterization of GHG cycling microbial 

communities 

Constrained dbRDA ordination of the 16S rRNA gene amplicon libraries 

indicated that while treatment was not a significant driver of community composition, 
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soil VWC, CH4 flux, and N2O flux collectively explained 64% of the variation in the 

observed beta diversity (i.e. dissimilarity between samples). Site 9’s leach field was 

unique in terms of CH4 production and VWC and this influenced the dbRDA results, 

which highlighted site 9 leach field samples as the most dissimilar. This site also drove 

many of the relationships found in LME analyses for the CH4 cycling biomarkers 

mcrA and pmoA. However, the N2O cycling biomarkers, cnorB and nosZ gene copies 

were not significantly different at Site 9 as compared to the other 8 sites and N2O 

emissions at this site were highest in control not leach field soils (0.232 vs. 0.007 mg 

m-2 d-1). The dbRDA and LME model results indicate that VWC is a strong driver for 

CH4 cycling microorganisms but not necessarily N2O cycling populations.  

dbRDA results suggest that both CH4 and N2O fluxes significantly affect 

diversity of microbial communities present in the 9 sites (p < 0.001). Although we did 

not observe a significant relationship between selected N2O biomarker gene 

abundances and net N2O emissions in LME models, it is not surprising that N2O 

fluxes explain some of the variation in soil microbial communities. Additionally, 16S 

rRNA gene amplicon analysis showed that location (i.e. site) was a significant 

explanatory variable for microbial diversity (p < 0.001). Although we did not analyze 

soil samples for pH, organic C, fixed N, or other nutrients, it is likely that sites have 

different soil characteristics that would significantly affect the composition of 

microbial populations.  

High-throughput sequencing of mcrA and pmoA libraries was further used to 

characterize microbial populations controlling CH4 cycling in septic leach field soils. 

Results for pmoA amplicon libraries were limited, with a mean of 16 reads per sample 

mapping to reference sequences (ranging from 0 to 362 assigned reads per sample). 

Although pmoA read depth was shallow, results indicate both Type I and Type II 

methanotrophs are present across all treatment types with Type II methanotrophs 
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being a greater proportion of reads in leach field soils as compared to control soils. 

Type II methanotrophs are regarded as low-affinity and more tolerant to low oxygen 

levels (Chowdhury and Dick, 2013; Knief, 2015). 16S rRNA sequencing results 

support this finding with Type II methanotrophs more abundant in the leach field 

treatment. Both 16S rRNA and pmoA sequencing indicated Type II Methylomonas 

were more abundant in leach field soils as compared to either control or sand filter 

soils. mcrA reads revealed no difference in methanogen community composition by 

treatment. Two families, Methanosarinaceae and Methanobacteriaceae, represented a 

majority of the mcrA reads. 

The functional gene toolkit used in this study can be applied to other systems 

where GHG cycling is important to examine the abundance of microbial populations 

directly involved in GHG production and destruction. Quantifying transcripts of these 

biomarker genes in situ to look at activity of these communities over time and 

compared to net fluxes can help shed light on how the balance between the activity of 

organisms producing and consuming GHGs is ultimately reflected in GHG fluxes. 

Although we found that the presence of a leach field system had little impact on the 

overall structure of soil microbial communities, the site with a flooded leach field did 

show a markedly different community structure from other sites. Thus, we suggest 

proper installation and maintenance of leach fields in well-drained soils is essential to 

reducing greenhouse gas emissions from these systems. 

2.5 Conclusions 

Nine near-surface soils above septic leach field systems were studied to 

understand microbial presence, abundance, and diversity. Leach field soils resembled 

control lawn soils, suggesting that the leach field pipes are far enough below surface to 

have little impact on the near surface GHG cycling community. Populations harboring 
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mcrA, pmoA cnorB, and typical nosZ genes are more abundant in surface soils (0 - 4 

inches) than subsurface soils (4 - 8 inches). VWC was a major driver of microbial 

community structure as well as GHG fluxes in this study, however due to the limited 

temperature range of this study it is unclear whether temperature could likewise be a 

significant driver of community structure. Atypical methanotrophs (n-damo and 

ANME-2D) and nitrous oxide (Anaeromyxobacter and Chloroflexi) consuming 

populations are present in near surface soils and need to be further studied to 

understand their relative contribution to GHG consumption. 
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SI Table 2.1. Primer sequences and length, amplicon size, and annealing temperatures for 
genes of ‘atypical’ methanotrophs and denitrifiers. Denitrifier groups based on Sanford et 
al., 2012. 
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SI Figure 2.1. PCR reaction results for the nosZa9 primer set shows products for all 
but 3 samples and the negative control (LF = Leach Field, SF = Sand Filter, C = 
Control, - = negative control, + = positive control). A subset of samples were 
sequenced to confirm the product as related to Anaeromyxobacter-like nosZ genes.  

 

 
SI Figure 2.2. PCR reaction results for 'atypical' nosZ primer sets nosZa1, nosZa2, 
nosZa3, nosZa4, nosZa5, nosZa6, and nosZa7 for pooled samples (LF = Leach Field, 
SF = Sand Filter, Con = Control, - = negative control, + = positive control). Only 
primer set nosZa7 had a product of the correct size indicating the presence of 
denitrifiers from the Chloroflexi phylum. 

 
 

 
SI Figure 2.3. PCR reaction results for primer set p2f/p2r targeting the 16S rRNA gene 
of anaerobic methanotrophs from the NC10 phylum. Multiple banding and nonspecific 
products were seen for most samples. Products of the correct size were submitted for 
sequencing and confirmed the presence of Methylomirabilis-like bacteria in leach field 
soils. 
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SI Table 2.2. Alpha diversity as measured by Chao1 and Shannon indices, based on 
total reads and number of OTUs shown. 

Samples Total 
reads OTUs Chao Shannon 

Leach Field 326,499 6,941 7965 7.19 
Sand Filter 191,212 4,475 9922 7.30 

Control 529,871 11,240 9491 7.32 
 
 

 
SI Figure 2.4. Relative abundance of pmoA reads assigned at the family level by 
treatment. 
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SI Figure 2.5. Relative abundance of pmoA reads at the genus level, grouped by 
treatment. 
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CHAPTER 3 

 

MICROBIAL COMMUNITIES CONTROLLING METHANE AND NUTRIENT 

CYCLING IN LEACH FIELD SOILS  

Abstract 
Septic systems inherently rely on microbial communities in the septic tank and 

leach field to attenuate pollution from household sewage. Operating conditions of 

septic leach field systems, especially the degree of water saturation, are likely to 

impact microbial biogeochemical cycling, including carbon (C), nitrogen (N), and 

phosphorus (P), as well as greenhouse gas (GHG) emissions to the atmosphere. To 

study the impact of flooding on microbial methane (CH4) and nutrient cycling, two 

leach field soil columns were constructed. One system was operated as designed and 

the other was operated in both flooded and well-maintained conditions. CH4 emissions 

were significantly higher in flooded soils (with means between 0.047 and 0.33 g CH4 

m-2 d-1) as compared to well-drained soils (means between -0.0025 and 0.004 g CH4 

m-2 d-1). Subsurface CH4 profiles were also elevated under flooded conditions and 

peaked near the wastewater inlet. Gene abundances of mcrA, a biomarker for 

methanogens, were also greatest near the wastewater inlet. In contrast, gene 

abundances of pmoA, a biomarker for methanotrophs, were greatest in surface soils at 

the interface of CH4 produced subsurface and atmospheric oxygen. 16S rRNA, mcrA, 

and pmoA amplicon library sequencing revealed microbial community structure in the 

soil columns differed from that of the original soils and was driven largely by CH4 

fluxes and soil VWC. Additionally, active microbial populations differed from those 

present at the gene level. Flooding did not appear to affect N or P removals in the soil 
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columns (between 75 and 99% removal). COD removal was variable throughout the 

experiment, and was negatively impacted by flooding. Our study shows septic system 

leach field soils are dynamic environments where CH4 and nutrients are actively 

cycled by microbial populations. Our results suggest proper siting, installation, and 

routine maintenance of leach field systems is key to reducing the overall impact of 

these systems on water and air quality.
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3.1 Introduction 

The World Health Organization (WHO) estimates 1 in 6 people globally rely 

on septic systems to treat domestic wastewater on-site (WHO, 2017). Inexpensive 

solutions for on-site wastewater treatment (OWTS), such as septic systems, are 

popular in low-resource areas where they account for 56% of on-site improved 

sanitation in urban settings and 38% in rural settings (WHO, 2017). Decentralized 

systems are also prevalent in the U.S. and Europe where approximately 25% of U.S. 

and 26% of European households rely on septic systems (US EPA, 2012; Williams et 

al., 2012). Septic systems can achieve treatment levels comparable to larger, energy-

intensive wastewater treatment plants while maintaining many of the same public 

health and environmental benefits (USEPA, 2002). Despite the popularity of these 

low-cost OWTSs, little is known about their impact on the environment. Specifically, 

how failing septic leach field systems impact both air and water quality is poorly 

understood. 

Because septic systems require infrequent service and are inconspicuous by 

nature, failures can remain unnoticed and un-repaired. Failing systems causing ground 

and/or surface water contamination can be difficult to identify and diagnose. Few 

permitting agencies in the U.S. and Europe conduct inspections of systems after 

installation (Withers et al., 2014). Consequently, the number of failing septic systems 

in the U.S. and Europe is unknown and even less data on system failures is available 

for low-resource countries. Currently, there are no requirements for states in the U.S. 

to collect data on septic system failures and those that do create their own definition of 

“failure,” ranging from “sewage back-up” to “surface and/or ground water 
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contamination” (USEPA, 2002). Many leach field systems fail by flooding due to 

improper installation in locations with poorly-draining soils, steep slopes, or high 

ground water tables (USEPA, 2002). Several studies have examined septic systems’ 

impact on groundwater; however, to our knowledge no previous work has compared 

the air and water quality impacts of a failing system to those of a well-maintained 

system (Cogger and Carlile, 1984; Katz et al., 2011; Richards et al., 2016; Withers et 

al., 2014). 

In terms of greenhouse gas (GHG) emissions, well-maintained septic systems 

have been estimated to release between 0.22 and 0.27 tonne CO2-equivalents (CO2e) 

capita-1 year-1 to the environment, with leach field emissions representing roughly 

20% of those emissions (Diaz-Valbuena et al., 2011; Truhlar et al., 2016). The 

percentage of failing systems in the U.S. could range anywhere from 0.5% to 70% by 

state, based on a USEPA (2002) report, while in Europe estimates based on watershed 

surveys suggest failures are as high as 70% (Withers et al., 2014). If systems fail at the 

high end of these estimates, their contributions to GHG emissions as well as their 

impacts on groundwater could be significantly greater than previously thought.  

Leach field systems rely on soil microbial communities to remove nutrients 

from septic effluent and as a consequence serve to prevent eutrophication of down 

gradient waterways. Additionally, these communities may be responsible for 

significant mitigation of GHG emissions (mainly in the form of methane (CH4) and 

nitrous oxide (N2O)) from septic systems. Microorganisms involved in CH4 

production (methanogens) and consumption (methanotrophs) can be studied using the 

functional genes mcrA and pmoA, respectively, and have previously been shown to 
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correlate with CH4 emission patterns from soil systems (Freitag et al., 2010; Lee et al., 

2014). Flooded leach field soils likely support microbial communities distinct from 

those of a well-maintained system, which may lead to significant differences in 

observed CH4 emissions.  

As we attempt to better evaluate OWTSs, it is important to determine how 

‘failing’ systems impact air and water quality. The objective of this study was to 

compare two lab-scale septic leach field soil columns, under either well-maintained or 

flooded operation, in four categories: (1) measured surface CH4 fluxes; (2) measured 

subsurface CH4 concentration profiles, (3) distribution and activity of key microbial 

populations with a particular focus on those involved in CH4 cycling; (4) measured 

effectiveness at removing nutrients from wastewater (organic C, N, P). 

3.2 Methods 

3.2.1 Soil column construction 
Two soil columns were designed to meet the minimum spacing requirements 

specified in the New York State Department of Health and Bureau of Water Supply 

Protection's Onsite Wastewater Treatment Systems Design Manual (2012) (Figure 

3.1). Soil columns were constructed in August 2015 from a 1.2 m section of PVC pipe 

(Schedule 80, 8 cm ID) filled with soil excavated from an operational leach field 

system (Site 7 in Fernández-Baca et al. (2018) and Truhlar et al. (2016)). The leach 

field system had well-draining soils and had been operational for 10 years with no 

history of flooding and no observed biomat at the time of excavation. Representative 

samples were taken for soils above and below the leach field lateral and submitted to 

Cornell Nutrient Analysis Laboratory (CNAL) for analysis. Soils were relatively dry 
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loam/silt loam with circumneutral pH and bulk densities of 1.19 and 1.39 g ml-1 for 

above and below the lateral, respectively (SI Table 3.1). The top 24 cm of soil were 

collected intact from above the existing leach field system. Approximately 5 cm of 

gravel was then back-filled into the column before inserting the dosing system. The 

wastewater dosing structure, hereafter referred to as the inlet, was constructed from a 

2.5-cm ID PVC pipe with 0.64 cm holes drilled 5 cm apart. The structure was inserted 

through a pre-dilled hole in the soil column and caulked to prevent leaks. An 

additional 15 cm of gravel was added to mimic the construction of an in-field leach 

field system. To ensure the soil column microbial communities were acclimated to 

receiving septic tank effluent, they were back-filled with soil excavated from below 

the laterals of the operational system.  

Rhizon pore water samplers (Rhizosphere, Cat. No. 19.21.23F) were inserted 

at approximately 7.6, 23, 46, 71, and 100 cm below the soil surface (Figure 3.1). Soil 

volumetric water content (VWC) was continuously monitored with EC-5 Soil 

Moisture Sensors (Decagon Devices, Cat. No. 40593) inserted at 15 cm and 64 cm 

below the soil surface (above and below the inlet, respectively) using the Em-50 5-

channel data logger for data collection (Decagon Devices, Cat. No. 40800).  

3.2.2 Soil column operation 
Soil columns were dosed with a synthetic wastewater mix (SI Table 3.2) 

adapted from Aiyuk and Verstraete (2004) to achieve a waste stream chemically 

comparable to septic tank effluent based on reported effluent characteristics in Cooper 

et al. (2015). The synthetic wastewater did not have large particulate matter but had 

total suspended solids (TSS) of approximately 200 mg l-1. Low TSS is expected in 
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settled water leaving the septic tank and Cooper et al. (2015) reported TSS values 

between 18 and 89 mg l-1 for septic effluent. Although the synthetic wastewater has 

higher TSS the particle size distribution is likely more homogenous than authentic 

effluent with lower mean particle sizes leading to greater infiltration in the soil 

columns. Wastewater was sparged with N2 for 1 hour and stored in a sealed, 

collapsible 10 L carboy under an N2 headspace at 4°C in the dark, immediately 

adjacent to the soil columns which were held at temperature (25°C) throughout the 

experiment. 

Both soil columns received wastewater through the inlet using computer 

controlled peristaltic pumps and were operated as either flooded or well-maintained 

systems (Figure 3.1). Experimental columns were operated from August 2015 until 

August 2016 (13 months) and were dosed 6 times daily for a total of 103.5 ml d-1 

(approximately 24.4 l m-2 d-1) representing a daily COD load of 62.1 mg COD d-1. The 

systems were operated within the dosing range of typical leach field systems specified 

by New York State, which range from 18.3 to 48.9 l m-2 d-1 (NYS Depart. of Health, 

2012). Peristaltic pumps were used to pump out effluent via a 1.3 cm hole drilled at 

the bottom of the column fitted with a push-to-connect and collected in 1 l Nalgene 

bottles.  

In the first phase of monitoring referred to hereafter as Phase I (February 2016 

to August 2016), Column A was operated under continuously flooded conditions 

while Column B was well-maintained. This was achieved by dosing wastewater until 

there was visible pooling at the soil surface in both columns at which point the effluent 

pump was turned on for Column B only to drain the system until VWC in the shallow 
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sensor registered ‘dry’ soils (0.1 m3
 m-3). In Phase II, starting August 2016, the water 

table in Column B was increased to mimic the flooded conditions in Column A by 

continuously pumping wastewater into Column B until flooding was observed at the 

soil surface. Both columns were remained flooded for 6 months. In Phase III, starting 

February 2017, Column B was drained over a period of several months returning to a 

well-maintained state.  

 

Figure 3.1. Experimental lab column set-up constructed using soil from an active leach 
field system. Figure shows flooded vs. well-maintained operation and depths of pore 
water samplers, soil moisture sensors, and distribution (inlet) pipe. Soil columns were 
dosed with synthetic wastewater by peristaltic pumps. Effluent wastewater was 
pumped out from the base of the soil columns and into 1 l Nalgene bottles. 

3.2.3. Surface methane flux measurements 
Soil flux measurements were taken following a modified field flux chamber 

method established by Molodovskaya et al. (2011). Briefly, PVC caps fitted to the soil 

columns’ were adapted to hold a septum for gas sampling as well as a 23-gauge needle 
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to provide headspace venting. After caps were placed over each column, 5 ml 

headspace gas samples were taken through the septa every 10 minutes for 30 minutes 

and injected into pre-sealed 9 ml vials. Gas samples were analyzed within 12 hours via 

gas chromatography, using a flame ionization detector (Hewlett-Packard 5890 Series) 

and a 2.4 m long 3/10 cm-ID 60/80 Carbopack B column (Supelco). Gas fluxes were 

determined by fitting a linear regression to CH4 concentrations over time, the 

regression slope was taken as the rate of gas flux and was then divided by the soil 

column surface area for a per m2 flux rate. Boxplots used to visualize flux data define 

the inter quartile range (IQR) as between 25% and 75% of data. Outliers were defined 

as measurements less than or greater than 1.5 times the IQR and were not included in 

testing significance as they likely represent ebullition events. T-tests were used test 

significance of observed differences in CH4 emissions between operation phases for 

each column using a 95% confidence interval.  

3.2.4 Influent, effluent, and pore water sampling 
Influent, effluent, and pore water samples were taken biweekly. Influent was 

sampled by switching the position of a 3-way valve leading to each inlet to allow 

sample collection in 15 ml centrifuge tubes. Fresh effluent samples were collected 

directly from the 1 l Nalgene bottles. 10 ml pore water samples were collected via the 

installed samplers at each depth (Figure 3.1). All water samples were filtered and 

stored at 4°C for later nutrient analysis.  

Pore water dissolved CH4 concentrations were measured immediately after 

sampling by injecting 5 ml of sample into a pre-sealed 9 ml vial, shaking for 5 

minutes, and sampling the headspace for GC-FID analysis. Dissolved CH4 
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concentrations were back-calculated using Henry’s Constant for CH4 partitioning in 

water at room temperature (25°C). All water samples were analyzed for ammonium 

(NH4
+), nitrate/nitrite (NO3

- and NO2
-), soluble reactive phosphorus (PO4

3-), and 

chemical oxygen demand (COD). Nutrient concentrations were determined using 

published colorimetric assays modified for a Tecan Infinite M200 Pro microplate 

reader: ammonium (Bower and Holm-Hansen, 1980); nitrate/nitrite (Miranda et al., 

2001); SRP (APHA, 2012). Influent and effluent samples were analyzed for COD 

removal using the CHEMetrics kit (Cat. No. K-7365). All samples were analyzed in 

duplicate and monthly averages were calculated for each column influent and effluent. 

3.2.5 Soil sampling, nucleic acid extractions, and qPCR 
Soils were sampled three times throughout the experiment within a 3 cm 

vertical distance of each pore water sampler. A flame-sterilized drill bit was used to 

drill through the PVC to take soil samples with a sterile 0.3 cm diameter corer 

approximately 6 cm long. After sampling, the hole was flushed with N2 gas to displace 

ambient oxygen and sealed with a rubber stopper then caulked to ensure a water and 

air-tight seal. Soil samples were manually homogenized and subsampled for duplicate 

nucleic acid extractions and gravimetric dry weight determination. Dry weight 

determination was used to estimate the dry weight per wet weight of each soil sample 

used in extractions and was done by drying approximately 1g soil samples at 105°C 

(±1°C) for 24 h. 

Nucleic acids were extracted using the RNeasy PowerSoil Total RNA kit and 

RNeasy PowerSoil DNA Elution kit (Qiagen). Approximately 2 g of soil were 

extracted following the manufacturer’s protocol. All samples were spiked with 4 µl of 
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1×109 copies µl-1 of luciferase RNA (Promega) as an internal control prior to cell lysis. 

DNA was quantified using the Quant-iT PicoGreen dsDNA assay (Molecular Probes, 

Eugene, OR) and quality checked with a NanoDrop spectrophotometer (Nanodrop 

ND-1000, ThermoScientific, Waltham, MA). 

Following RNA isolation, the RQ1 RNase-free DNase kit (Promega) was used 

to remove contaminating DNA following manufacturer’s instructions. RNA 

concentrations were measured using the Quant-it RNA assay kit (Invitrogen). cDNA 

was synthesized from the DNase-treated RNA using the Advanced iScript cDNA 

synthesis kit (Bio-Rad) according to manufacturer’s instructions. 

QPCR reactions were run in triplicate using a total reaction volume of 25 µl. 

Each reaction was comprised of 2X iQ SYBR Green Supermix (Bio-Rad), 17.5 pmol 

of primer, and 3 µl of template DNA (with diluted concentrations of approximately 10 

ng µl-1). Thermal cycling was conducted on an iCycler IQ (Bio-Rad) following 

published protocols for the selected primers for mcrA, pmoA, and 16S rRNA genes (SI 

Table 3.3) (Costello and Lidstrom, 1999; Ferris et al., 1996; Luton et al., 2002; 

Steinberg and Regan, 2009). Quantification analysis was done using Ct values from 

the iCycler IQ software. Melt curve analyses were conducted on all products and a 

subset of samples was sent for Sanger sequencing to confirm amplification of target 

genes (data not shown). 

3.2.6 Illumina sequencing of 16S rRNA, mcrA and pmoA libraries  
Duplicate DNA samples from each column at the 7.6-cm depth from two 

sampling dates were selected for high throughput sequencing community analysis. 

Gene amplicon libraries for mcrA and pmoA were created using the qPCR primers 
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with added adapters for Illumina sequencing compatibility. 16S rRNA amplicon 

libraries were created by amplifying the hypervariable V3-V4 region using the 

universal primers S-D-Bact-0341-b-S-17/ S-D-Bact-0785-a-A-21 (Klindworth et al., 

2013). DNA samples from the original leach field and control soils at the same depth 

were also sequenced for comparison to the soil column communities. Additionally, 

duplicate cDNA samples from each column at the 7.6-cm depth were sequenced to 

examine the active microbial populations in the soil columns. The Qubit dsDNA High 

Sensitivity assay (Life Technologies, Carlsbad, CA, USA) was used to measure 

amplicon concentrations for a randomly sampled subset of reactions. Samples were 

submitted to Cornell University Biotechnology Resource Center for barcoding, 

pooling, and paired-end (2×250 bp) sequencing on the MiSeq platform (Illumina, San 

Diego, CA, USA). 

3.2.7 Analyses of 16S rRNA, mcrA, and pmoA amplicon libraries 
Resulting 16S rRNA, mcrA, and pmoA sequencing data was processed as 

described in Fernández-Baca et al. (2018). 16S rRNA sequencing data was analyzed 

using QIIME (v 1.9.1) and the Greengenes reference database v 13.8 (August 2013). 

Functional gene sequence analyses were done with BWA-MEM and a curated 

reference database from FunGene (Caporaso et al., 2010; Fernández-Baca et al., 2018; 

Fish et al., 2013; Li, 2013; McDonald et al., 2012). Alpha diversity was measured 

using both Chao1 and Shannon diversity indices (Shannon, 1948; Wilkins et al., 

2015). Principal Coordinate Analysis (PCoA) and constrained Distance-Based 

Redundancy Analysis (dbRDA) plots were created with R version 3.3.3 using the 

phyloseq (version 1.19.1) and vegan (version 2.4-4) packages and the weighted 
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UniFrac distance matrix. Variance inflation factors were checked for dbRDA 

constraining parameters (VIF < 5) and for significance (p < 0.01 based on ANOVA)  

3.3 Results  

3.3.1 Soil volumetric water content 
Soil VWC was monitored throughout the sampling period above and below the 

inlet (Figure 3.2). From August 2015 to February 2016, the start-up phase, VWC was 

monitored until measurements stabilized and during this time no other samples were 

taken. Phase I began after measurements stabilized, during this phase Column A was 

flooded and VWC was maintained at or above 0.26 m3 m-3 (mean of 0.326 and 0.294 

m3 m-3 at 15 cm and 64 cm below the surface, respectively). Column A remained 

flooded for the duration of the experiment through all phases of operation. In contrast, 

Column B shallow (15 cm depth) soils were dry (mean of 0.114 m3 m-3) during Phase I 

and deep soils (64 cm depth) were saturated (mean of 0.316 m3 m-3). In Phase II, 

Column B mean VWC increased to 0.30 m3 m-3 in both shallow and deep soils 

confirming flooded conditions. Column B was drained over several months in Phase 

III. After March 2017 there were occasional spikes in the shallow sensor for Column 

B indicating intermittent flooding. However after mid June, the VWC sensors showed 

Column B had consistently drier soils (means of 0.169 and 0.146 m3 m-3 for shallow 

and deep soil, respectively). 
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Figure 3.2. Soil volumetric water content (m3 m-3) measured continuously above the 
inlet (15 cm below the surface) and below the inlet (64 cm below the surface) in both 
soil columns. Vertical lines indicate phases of operation. 

3.3.2 Atmospheric CH4 flux measurements 
CH4 surface fluxes varied over the two-year operation period (Figure 3.3). During 

Phase 1, Column A had significantly higher methane fluxes than B (p = 0.036, Figure 

3.3a). In Phase II, both columns had similar methane emissions (p > 0.05, Figure 

3.3b). In the final phase of operation, CH4 fluxes again diverged with Column A 

emitting significantly more CH4 than Column B (p = 0.012, Error! Reference source 

not found.c) but at a lower mean rate than before. Over the course of operation, the 

total CH4 emissions ranged in Column A from a mean of 0.11 g CH4 m-2 d-1 in Phase 1 

to a mean of 0.20 g CH4 m-2 d-1 in Phase II, dropping to 0.047 g CH4 m-2 d-1 in the 

final phase. There were no significant differences between fluxes from Column A over 
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time. In Column B, Phase I and III had average methane emissions close to zero 

(means fluxes of 0.004 and -0.0025 g CH4 m-2 d-1), while during Phase II there was a 

significant increase in mean methane emissions to 0.33 g CH4 m-2 d-1 (p = 0.046, 

Figure 3.3a and Figure 3.3b).  

 

Figure 3.3. Boxplots of flux measurements for three different periods of operation, a) 
Phase I Column A flooded, Column B well-maintained (n = 10); b) Phase II both 
columns flooded (n = 16); c) Phase III Column A flooded, Column B drained (n = 11). 
Significant differences are shown at a 95% confidence interval. Inter-quartile range 
(IQR) defined between 25% and 75% of data, median shown by black bar. Upper and 
lower whiskers indicate the highest and lowest data point within 1.5 times the IQR. 

3.3.3 Subsurface CH4 concentration profiles 
CH4 depth profiles of the two soil columns evolved over the course of the 

experiment (Figure 3.4). During Phase I, subsurface CH4 concentrations ranged from 

atmospheric to a peak of 15.8 mg l-1 in Column A and 0.637 mg l-1 in Column B 

(Figure 3.4a). During Phase II in Column B, average monthly methane concentrations 

46 cm below the surface increased steadily from 1.87 to 9.28 mg l-1, while in Column 

A peak subsurface CH4 concentrations ranged from 5.18 to 17.5 mg l-1 in the same 

time period (Figure 3.4b). In Phase III, Column B was drained and methane 

concentrations above the inlet dropped over time to atmospheric, while below the inlet 

p < 0.05p < 0.05

a) b) c)
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peak methane concentrations remained high with observed concentrations between 1.3 

and 12.3 mg l-1 from March to August 2017 (Figure 3.4c). 

 

Figure 3.4. Mean monthly methane depth profiles for Column A and B, a) Phase I 
Column A flooded, Column B well-maintained; b) Phase II Column A flooded, 
Column B flooding; c) Phase III Column A flooded, Column B drained. 

3.3.4 mcrA, pmoA, and 16S rRNA gene and transcript abundances 
Gene abundances of 16S rRNA, mcrA, and pmoA varied across sampling dates 

and with depth (Figure 3.5). mcrA gene copies were highest near the wastewater inlet 

in both columns with abundances up to 7.11×107 and 2.07×107 mcrA copies g-1 dry 

weight soil (soildw) for Column A and B, respectively. The lowest mcrA gene 

abundances were observed in surface soil samples (0 and 8 cm). In contrast, the 

highest observed pmoA gene abundances occurred in surface samples (up to 1.99×108 

and 5.80×107 copies g-1 soildw for Column A and B, respectively) and decreased with 

depth. 16S rRNA gene copies followed a similar pattern, with greater abundances near 

the surface and decreasing with depth.  

 

a b c
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Figure 3.5. Gene copies of 16S rRNA, mcrA, and pmoA per gram of dry soil on three 
sampling dates for Column A (solid line) and Column B (dashed line). Error bars 
indicate the standard error between duplicate extractions and triplicate qPCR 
reactions. 

Transcript abundances of mcrA and pmoA were used to estimate the activity of 

CH4 cycling microorganisms, while 16S rRNA transcript quantification was used to 

estimate baseline microbial activity (Figure 3.6). Both 16S rRNA and pmoA transcript 

abundances showed similar trends to gene abundances, where the highest observed 

transcript levels were found in near-surface soils and decreased with depth. Results for 

mcrA showed methanogen activity was not necessarily restricted to soils surrounding 

the inlet, but occurred throughout the soil column depth.  
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Figure 3.6. Transcript abundances over depth of 16S rRNA, mcrA, and pmoA per 
gram soildw for Column A (solid line) and Column B (dashed line) on three sampling 
dates. Error bars indicate the standard error between duplicate extractions and 
triplicate qPCR reactions. 

Ratios of mcrA to pmoA gene abundances were compared to mean monthly 

subsurface concentrations of CH4 in both soil columns for each of the three sampling 

dates (SI Figure 3.1). A significant positive relationship between log10(mcrA:pmoA 

gene abundances) and log10(mean monthly CH4 concentrations mg l-1) was found for 

one sampling date in Column B (r2 = 0.829, p = 0.0318). Weak positive correlations 

were observed for all other sampling dates (r2 ranging from 0.23 to 0.65 and p-values 

between 0.110 and 0.414). Additionally, weak positive relationships were observed 

between CH4 concentrations and ratios of mcrA:pmoA transcript abundances, however 

again these correlations were not significant at a 95% confidence interval (SI Figure 

3.2).  



 

102 

3.3.5 16S rRNA, mcrA, and pmoA amplicon library sequencing 
16S rRNA sequencing data was quality filtered and low quality sequences were 

removed resulting in a total of 105,113 reads. Mean assigned reads per sample for 

DNA was 12,502 (ranging from 6,706 to 17,672) and for cDNA was 6,838 (ranging 

from 21 to 14,422) with a median read length of 444 bp. Singleton OTUs were 

removed resulting in 17,492 unique OTUs.  

PCoA and constrained dbRDA plots were created to visualize variations in 

microbial community structure at the DNA level (Figure 3.7). PCoA revealed samples 

clustered together based on treatment (i.e. Column A, B, and original soil). The 

dbRDA constraining parameters, surface CH4 flux and soil VWC, explained 

approximately 79% of the variation observed in the unconstrained plot (PC1 = 22.7% 

and PC2 = 11.2%). An additional PCoA plot was used to examine differences in 

community diversity between gene and transcript libraries (SI Figure 3.3), which 

revealed the microbial communities in the columns, diverged even more at the 

transcript level. 
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Figure 3.7. PCoA (a) and dbRDA (b) constrained by CH4 fluxes and soil VWC. Both 
analyses were based on the weighted UniFrac distance matrix of 16S rRNA 
sequencing data for DNA samples. 

Functional gene sequencing of mcrA and pmoA amplicon libraries was further 

used to study CH4 cycling populations. Sequencing results for mcrA and pmoA 

amplicon libraries were varied, with more total reads assigned for mcrA (87,979) than 

for pmoA (853). Mean mapped reads per sample was 12,242 for mcrA and 420 for 

pmoA samples.  

Methanogen diversity in the experimental columns and original soils was 

studied using the mcrA amplicon libraries at the family and genus level (Figure 3.8a 

and SI Figure 3.4a). Relative abundance of Methanosaetaceae increased in Column A 

(39% of reads) as compared to Column B (14% of reads) and the original soils (12.1% 

and 17.4% for leach and control soils, respectively).  

Methanotroph populations were examined using the functional gene pmoA at 

both the family and genus level (Figure 3.8b and SI Figure 3.4b). Methylococcaceae 

and Methylocystaceae, Type I and Type II methanotroph families, respectively, 

dominated both soil columns and original soils with Column A having a relatively 

greater number of reads associated with Methylocystaceae (54% of reads mapped to 

a	 b	
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this family) as compared to Column B and original soils (less than 15% of mapped 

reads per sample). A large fraction of reads from Column B (30%) and the original 

leach field soils (16%) were assigned to candidate division NC10 phylum organisms, 

which are thought to couple methane oxidation to nitrite reduction (Luesken et al., 

2011). In the 16S rRNA sequencing data, loss of methanotroph diversity in Column A 

is evident at the genus level, where Type II Methylocystis and Methylobacter make up 

more than 80% of the assigned reads and the Type I methanotroph Methylomicrobium 

has disappeared (SI Figure 3.5).

 

Figure 3.8. Functional gene sequencing results for a) mcrA and b) pmoA amplicon 
libraries. Relative abundances for Column A, Column B and original soils (leach field 
and control) are shown at the family level. Total number of assigned reads was higher 
for mcrA (78,258) compared to pmoA (853). 

Chao1 and the Shannon diversity values calculated from the 16S rRNA 

sequencing data, indicate that the original soils had the greatest observed diversity 

with Chao1 values of 8787 and 9559 and Shannon values of 7.55 and 7.59 for original 

control and leach field soils, respectively. Column B had a Chao1 value of 8239 and 

Shannon index of 7.37, while Column A had the lowest calculated diversity (5371 and 

a) b)
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6.74, for Chao1 and Shannon, respectively). 

3.3.6 Nutrient and COD removal 
Influent and effluent concentrations of NH4

+, PO4
3-, and COD were compared 

for flooded and well-maintained soil columns (Figure 3.9). Removal for both NH4
+ 

and PO4
3- appears to be unaffected by flooding. However, NH4

+ removal did decline 

during Column B’s transition period from flooded to well-maintained conditions. 

Nitrate and nitrite were produced at low levels in both columns and ranged from 0 to 

15 mg l-1 as N. COD removal was variable, but higher in Column B (75% removal) 

prior to flooding as compared to Column A (25% removal) and declined after 

flooding. Nutrient concentrations were also measured with depth (data not shown) and 

peak concentrations for NH4
+, PO4

3-, and nitrate and nitrite were observed near the 

inlet decreasing with depth. 
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Figure 3.9. Influent (solid line) and effluent (dashed line) concentrations of (a) NH4-N 
and effluent concentrations of NO3-N+NO2-N (dotted line), (b) PO4-P, (c) COD for 
Column A and B, with vertical lines marking the three phases of operation. 

3.4 Discussion 

3.4.1 CH4 cycling in leach field soil columns 
CH4 emissions from Column B during ‘well-maintained’ operation (Phases I 

and III) were comparable to well-maintained leach field systems measured in central 

New York which range from low rate net CH4 consuming (-0.004 g CH4 m-2 d-1) to net 
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emitting sites (0.005 g CH4 m-2 d-1) (Truhlar et al., 2016). Under flooded conditions, 

the soil columns exhibited increased CH4 emissions compared to non-flooded 

conditions and had emissions similar to those observed in flooded leach field soils 

measured in summer of 2014 (mean 0.26 g CH4 m-2 d-1) (Fernández-Baca et al., 2018). 

Ebullition events observed during the flooded phases of operation had peak rates of 

1.45 and 1.71 g CH4 m-2 d-1 for Column A and B, respectively, and were comparable 

to emissions from traditionally flooded soils such as rice paddies (0.24 to 1.44 g CH4 

m-2 d-1) and peat bogs (0.21 to 0.4 g CH4 m-2 d-1), indicating GHG emissions from 

leach fields could be significantly higher than previously thought (Deppe et al., 2010; 

Freitag et al., 2010; Lee et al., 2014). 

Subsurface CH4 profiles evolved over time with changes in soil VWC. In 

Phase I, Column B accumulated low amounts of CH4 at depth. In contrast, Column A 

had CH4 concentrations between 5 to 20 mg CH4 l-1. During Phase II, the two columns 

exhibited similar CH4 depth profiles with peak concentrations occurring near the inlet 

and decreasing both above and below. Subsurface CH4 concentrations in rice paddy 

and pasture soils have previously been shown to peak below surface (between 8 and 

40 cm deep) and decrease with depth. This pattern may be attributed to a combination 

of upward diffusion and low or no production of CH4 in deeper mineral soils 

(Chamberlain et al., 2016; Lee et al., 2015; Vaksmaa et al., 2017). Similarly in the 

experimental columns a combination of diffusion and microbial CH4 oxidation likely 

explain the low CH4 concentration in shallow soils.  

High soil VWC has been correlated to increased CH4 emissions in soil 

environments as varied as pastures, roadside storm water ditches, and bogs 
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(Chamberlain et al., 2016; Deppe et al., 2010; McPhillips et al., 2016). Truhlar et al. 

(2016) estimated the leach field of well-maintained systems in central New York had a 

mean CH4 flux of 0.0196 g m-2 d-1, this study suggests a flooded system could have 

peak emissions 100 times greater. Thus, proper installation and continued maintenance 

of septic system leach fields is essential to reducing net GHG emissions from these 

systems. 

3.4.2 CH4 cycling community composition 
Methanogens and methanotrophs were present throughout both soil columns 

but had distinct depth profiles. Methanogens were more abundant near the wastewater 

inlet as indicated by greater mcrA gene copies and less abundant both above and 

below. Although Angel et al. (2012) showed that certain methanogen species are 

robust to oxygen exposure, we found that our lowest mcrA gene abundances were 

observed at the surface (0 - 2.5 cm depth). However, at the transcript level we found 

that methanogens were active in near-surface soils as suggested by the 1.5 to 2 fold 

higher mcrA transcript levels observed in surface soils as compared to deeper soils 

(below 23 cm). 

In contrast, methanotroph populations were more abundant near-surface, and 

became less abundant with depth. Lee et al. (2015) and Reim et al. (2012) observed 

similar profiles in flooded rice paddy soils where methanotroph abundances were 

highest in near-surface soil at the interface of oxygen-methane gradients. As O2 

availability decreases, aerobic methanotroph populations also declined, even as CH4 

concentrations increased, suggesting that soil methanotroph populations are driven 

largely by O2 availability. Oxygen concentrations were measured several times during 
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Phase II in this study (data not shown) and were found to be below detection 

(dissolved oxygen detection limit was 0.025 mg O2 l-1) below the 8 cm depth. Thus, 

decreasing O2 concentrations between the 8 and 23 cm depths may be responsible for 

the decline in methanotroph populations with depth. 

mcrA and pmoA gene abundances have previously been correlated to CH4 

production potential in rice paddies and peat bogs (Freitag et al., 2010; Ma et al., 

2013, 2012). We explored similar biomarker abundance to CH4 emission relationships 

in the leach field soil columns using log10 of mcrA:pmoA gene or transcript 

abundances and mean monthly CH4 concentrations at each sampling depth (SI Figure 

3.1 and 3.2). Moderately strong correlations were found (between r2 of 0.230 and 

0.829) indicating a positive relationship between the biomarker gene ratio and CH4 

concentrations, however the observed relationship was only significant for samples 

from January 2017 in Column B (r2 = 0.829, p = 0.0318). This relationship appears to 

be driven in large part by mcrA gene abundances, which alone was significantly 

correlated to CH4 concentrations for the January 2017 sampling date (r2 = 0.810, p = 

0.0386), whereas pmoA gene abundances showed no significant correlations for any 

date. The link between biomarker abundances and CH4 potential may be obscured by 

differences in pore water and soil sample volumes. Soil samples were taken over a 

relatively small volume (approximately 0.23 cm2) while pore water samplers pulled 

from a larger volume of soil, potentially integrating small volumes of high activity 

with larger volumes of low activity. 

3.4.3 Microbial community composition in leach field soils 
16S rRNA, mcrA, and pmoA libraries were analyzed to characterize the 
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microbial community structure in leach field soils with an emphasis on examining 

populations controlling CH4 cycling. The 16S rRNA libraries revealed that 

communities from the experimental leach field soil columns had diverged from those 

of the original soils at the DNA level. This variation was explained, in part, by soil 

VWC and CH4 emissions of the soil columns (Figure 3.7). Soil microbial communities 

from original control and leach field soils were more similar to each other than either 

Column A or B at the gene level. At the transcript level, greater divergence in 

community structure was observed, indicating that active microbial populations differ 

from those present at the gene level (SI Figure 3.3). Krause et al. (2010) observed a 

similar disparity between total and active microbial populations when examining 

methanotroph populations via pmoA gene and transcript abundances in flooded rice 

paddy soils.  

pmoA amplicon libraries revealed two aerobic methanotroph families were 

present across all samples: Methylocystaceae and Methylococcaceae. 

Methylococcaceae represented the majority of reads in all soil samples with the 

exception of Column A where it accounted for 45.9% of reads. This was in contrast to 

results from 16S rRNA libraries (SI Figure 3.5), which suggested that 

Methylocystaceae was dominant across all samples (greater than 85% of reads in all 

samples). Loss of methanotroph diversity in Column A observed in the pmoA 

amplicon libraries was supported by 16S rRNA sequencing results; however family 

and genus level assignments differed considerably between the two datasets. A 

majority of the16S rRNA reads aligned to Type II methanotrophs (greater than 75% of 

reads) while in the pmoA library the majority of reads were Type I methanotrophs and 
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had a low relative abundance of Type II methanotrophs (less than 18.0% in all samples 

except Column A which had 54.1% of reads assigned to Type II). Lee et al. (2014) 

similarly found that taxonomic affiliations based on pmoA libraries differed from those 

based on the 16S rRNA libraries that could be attributed to primer biases or 

incomplete gene sequence information in reference databases. 

mcrA amplicon libraries revealed Methanosaetaceae, Methanosarcinaceae, 

Methanobacteriaceae, and Methanomassillicoccaceae families combined represented 

the majority of reads (approximately 43%) across all soil samples. These families as 

well as Methanoregulaceae, Methanocellaceae and Methanospirillaceae, have 

previously been found in soil environments such as rice paddies and wetlands 

suggesting leach field soils have similar methanogen profiles to other high VWC soils 

(Bridgham et al., 2013). Interestingly, mcrA libraries revealed the presence of the 

anaerobic methanotrophic archaea Candidatus Methanoperedenceae (ANME-2d 

clade), thought to couple methane oxidation to nitrate reduction, in low abundance 

across all samples (Haroon et al., 2013). Column A had the most distinct methanogen 

profile with a loss of many of the low abundance genera observed in Column B and 

the original soils and an increase in the relative abundance of Methanosaeta relative to 

other genera. The decrease in methanogen diversity observed in Column A parallels 

that found in the pmoA and 16S rRNA libraries and is supported by statistical diversity 

indices Chao1 and Shannon. Due to primer biases against archaeal sequences, reads 

were sparse for the Euryachaeaota phylum (21 total mapped reads) in the16S rRNA 

amplicon library and precluded comparisons between mcrA and 16S rRNA sequencing 

datasets. 
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The use of synthetic wastewater in this study likely impacted the soil microbial 

community structure. In addition to having readily available C sources such as acetate, 

there were no large particles that would be more resistant to microbial attack and 

could reduce effluent infiltration into soil. Additionally, authentic septic effluent could 

introduce high numbers of methanogens and, to a lesser degree, methanotrophs to 

leach field soils. The probable presence of anaerobic methanotrophs in septic tank 

effluent should also not be disregarded. Thus, in situ leach field systems would have a 

constant input of methane-cycling populations not mimicked in the study system. 

However, in situ systems likely reach a ‘steady-state’ in terms of microbial 

populations that do not fluctuate substantially over time unless there is a significant 

disturbance such as a change in soil VWC. The findings in this study reflect a system 

that has been substantially disturbed from ‘steady-state.’ 

3.4.4 Nitrogen, phosphorus, and COD removal 
Septic systems can impact ground and surface water by leaching high loads of 

nutrients (N and P), COD, and pathogens (Richards et al., 2016; USEPA, 2002). In 

this study, the soil columns were able to remove N and P effectively despite flooding. 

Both NH4
+ and PO4

3- were removed at greater than 75% efficiency during all 

operational phases. High N and P removals have previously been reported in well-

maintained leach field systems but had not previously been measured in flooded 

system (Gill et al., 2009; Pell, et al. 1990). In this study P is likely retained by 

complexation with aluminum (Al) or iron (Fe) oxides. Sequences of Acidovorax sp. 

and Thiobacillus sp.,which can both oxidize iron anaerobically coupled to nitrate 

reduction, were found in the soil columns indicating potential for Fe-oxidation 
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creating minerals available for P sorption (Carlson et al., 2013). 

16S rRNA amplicon sequencing also revealed the presence of nitrifier, 

denitrifier and ammonia oxidizing microorganisms, indicating full or partial 

denitrification may be responsible for the high NH4
+ removals observed. Reads 

assigned to nitrifier genera including Nitrospira sp. were found in both columns with 

relative abundances of 0.4% and 0.8% for Column A and B, respectively. Well-known 

denitrifier genera including Pseudomonas, Bradyrhizobium, and Rhodanobacter, as 

well as ‘atypical’ denitrifers’ including Anaeromyxobacter sp., sequences were also 

found albeit at a low relative abundances (less than 0.1% in both experimental 

columns) (Ma et al., 2008; Sanford et al., 2012).  

COD removal was impacted by flooding, suggesting flooded leach fields could 

introduce high COD loads to nearby ground water. Furthermore, although both N and 

P had high removals in this study, further work should be done to better understand 

the biogeochemical cycling occurring in these systems, as previous studies suggested 

septic systems can contribute significantly to ground water contamination of N and P 

(Bunnell et al., 1999; Cooper et al., 2015; Withers et al., 2014). Thus, proper 

installation of leach field systems with sufficient spacing between laterals and the 

local ground water table is critical to maintaining high removal efficiencies without 

impacting nearby ground and/or surface water. 

3.5 Conclusions 
Two lab-scale leach field soil columns were constructed to study how flooding 

impacts CH4 and nutrient cycling in these systems. CH4 fluxes and subsurface 

concentrations increased under failing-by-flooding conditions indicating soil VWC is 
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a major driver of CH4 production in leach field soils. mcrA gene copies were greatest 

near the wastewater inlet, in contrast, pmoA gene abundances were greatest in surface 

soils. Soil column microbial community structure shifted significantly from the 

original leach field soils at the DNA level and was explained by CH4 emissions and 

soil VWC. Active microbial populations differed from populations at the gene level, 

suggesting analysis of both gene and transcripts is important to understanding 

microbial community and CH4 cycling dynamics. Flooding did not appear to affect 

nutrient removals, however did negatively impact COD removal. Based on these 

results, we suggest proper maintenance of leach field systems to avoid flooding, is 

essential to mitigating their methane emissions and reducing their impact on water 

quality. 
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Chapter 3: Supplemental Information 
SI Table 3.1. Soil characteristics for excavated soil used to fill experimental soil columns. 

Soil 
Column 
Location 

Soil 
Sample 
Depth 

Texture 
(Calculated
/Estimated) 

Particle Size 
Distribution Bulk 

Density 
(g ml-1) 

Soil 
Moisture 

% 

NH4-N 
(mg kg-1) 

NO3 
(mg kg-1) pH 

Total 
N 

(%) 

Total 
C 

(%) Sand Silt Clay 

Above 
lateral 

0 - 10 
in 

Fine Silt 
Loam/         

Silt Loam 
55.5 36.2 8.4 1.39 0.98 3.01 2.65 7.6 0.10 1.2 

Below 
lateral 

Below 
22 in* 

Loam/      
Silt Loam 41.3 45.9 12.7 1.19 1.08 4.12 2.73 6.8 0.13 1.4 

*Soil was collected below the lateral in the active leach field. 

 

 

SI Table 3.2. Synthetic wastewater recipe adapted from Aiyuk & Verstraete (2004). 

 

 

Component Amount*(mg*L.1)

Urea 1600
NH4Cl 200
Na.acetate1⋅ 3H2O 2250
Peptone 300
MgHPO4 ⋅ 3H2O 500
K2HPO4 ⋅ 3H2O 400
FeSO4 ⋅ 7H2O 100
CaCl2 100

Starch 2100
Milk1powder 2000
Dried1yeast 900
Vegatable1oil 500

Cr(NO3)3 ⋅ 9H2O 15
CuCl2 ⋅ 2H2O 10
MnSO4 ⋅ H2O 2
NiSO4 ⋅ 6H2O 5
PbCl2 2
ZnCl2 5

Chemical)compounds

Food)ingredients

Trace)metals
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SI Table 3.3. Primers used to amplify mcrA and pmoA in qPCR assays (Costello and 
Lidstrom, 1999; Ferris et al., 1996; Luton et al., 2002; Steinberg and Regan, 2009). 
Amplicon length is based on the pure culture used to create qPCR standards. 

Target 

Microbial 

Community 

Gene Primer 

Primer 

Length 

(bp) 

Sequence (5'-3') 

Amplicon 

Length 

(bp) a 

Reference(s) 

Methanogens mcrA mlasF 23 GGTGGTGTMGGDTTCACMCARTA 

490 

Steinberg & 

Regan, 2009; 

Luton et al., 2002 

mcrA rev 24 CGTTCATBGCGTAGTTVGGRTAGT 

Methanotrophs pmoA A189F 18 GGNGACTGGGACTTCTGG 
508 

Costello & 

Lidstrom, 1999 mb661R 19 CCGGMGCAACGTCYTTACC 

General 

Bacterial 

16S 

rRNA 

1055F 16 ATGGYTGTCGTCAGCT 
337 Ferris et al., 1996 

1392R 15 ACGGGCGGTGTGTAC 
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SI Figure 3.1. Measure CH4 concentrations versus the ratio of mcrA to pmoA gene 
abundances by sampling date for Column A and B. 

r2 = 0.645
p = 0.102 

r2 = 0.554
p = 0.149 

r2 = 0.23 
p = 0.414 

r2 = 0.829
p = 0.0318

r2 = 0.58 
p = 0.134  

r2 = 0.255 
p = 0.386
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SI Figure 3.2. Ratio of mcrA to pmoA transcript abundances vs measured CH4 depth 
concentrations. 

 

SI Figure 3.3. PCoA based on weighted UniFrac distance matrix of 16S rRNA 
sequencing data; DNA samples (circles), cDNA samples (triangles) and treatment 
(original control and leach field soils and experimental Columns A and B). 

r2	=	0.228	
p	=	0.416	

r2	=	0.0533	
p	=	0.709	

r2	=	0.379	
p	=	0.269	

r2	=	0.00027	
p	=	0.979	

r2	=	0.0744	
p	=	0.657	

r2	=	0.074	
p	=	0.658	
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SI Figure 3.4. Functional gene sequencing results for a) mcrA and b) pmoA amplicon 
libraries. Relative abundances for Column A, Column B and original soils (leach field 
and control) are shown at the genus level. Genus level reads are shown if their abundance 
is greater than 1% of reads by sample. 

 

 

a) b)

SI Figure 3.5. 16S rRNA Amplicon library sequencing results for methanotroph groups 
including the bacterial families bacterial families Methylococcaceae, Methylocystaceae, 
and Methylobacteriaceae and the NC10 phylum (546 total reads across all samples). a) 
16S rRNA methanotroph relative abundance with reads assigned at the family level and, 
b) reads assigned at the genus level. 
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CHAPTER 4 

 

VARIED TRENDS IN CH4, N2O, AND CO2 FLUXES STIMULATED BY RAIN 

EVENTS IN WELL-DRAINED SOILS ABOVE LEACH FIELDS 

Abstract 

Septic systems are a common form of onsite wastewater treatment for rural 

households in the U.S. Notwithstanding their prevalence, treatment performance is 

seldom monitored onsite, and little is known about leach field system greenhouse gas 

(GHG) emissions and microbial cycling. This study aimed to measure a leach field 

soil system’s response to a rapid increase in soil volumetric water content (VWC) 

from a rain event. Methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) 

emissions and subsurface concentrations in leach field soils were monitored for 4 

weeks prior to a wetting event. Following baseline measurements, a rain event was 

simulated and GHG fluxes and subsurface concentrations were measured in leach field 

and control lawns for 3 hours after wetting. GHG cycling microbial communities were 

likewise monitored before and after rain using the functional genes mcrA and pmoA 

for CH4 cycling and cnorB and nosZ for N2O cycling. Baseline GHG fluxes and 

subsurface measurements showed no significant differences between control and leach 

field soils. However, following the rain event, GHGs were significantly greater from 

leach field soils for CO2 (p = 0.017) and N2O (p = 0.035), but not for CH4 (p > 0.05). 

Microbial populations did not change significantly over the rain event experiment at 

the DNA level, but shifts were seen at the transcript level for CH4 cycling biomarkers 

with relatively greater increases in transcript abundances for production genes (mcrA) 

as compared to consumption genes (pmoA). These results indicate that GHG emissions 

caused by a rain event can be significantly higher than previously reported emissions 
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from leach field systems. Furthermore, GHG emission trends differ across the three 

measured gases in terms of timing and intensity of fluxes to the atmosphere. 
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4.1 Introduction 
More than 1 in 5 homes in the U.S. rely on septic systems for onsite 

wastewater treatment (US EPA, 2012). Despite their prevalence, these systems have 

been understudied in terms of their treatment effectiveness and impacts on water and 

air quality, particularly with respect to greenhouse gas (GHG) emissions. Additionally, 

the associated microbial communities controlling GHG cycling in these systems are 

poorly understood, specifically their response to rapid changes in soil volumetric 

water content (VWC). Only a few studies have attempted to measure GHG emissions 

from the soil dispersal component (i.e. leach field) of septic systems (Diaz-Valbuena 

et al., 2011; Truhlar et al., 2016). Leach fields introduce high concentrations of 

organic carbon and nutrients, such as nitrogen (N) and phosphorus (P), to the 

subsurface which can stimulate native soil microbial populations to cycle nutrients and 

in the process create and cycle greenhouse gases such as methane (CH4), nitrous oxide 

(N2O), and carbon dioxide (CO2). 

A study by Truhlar et al. (2016) found that greenhouse gas emissions from 

leach field systems accounted for approximately 19% of the total GHG emissions 

from well-functioning septic tank systems (total emissions were estimated to be 0.27 

tonne CO2-equivalents (CO2e) capita-1 year-1). However, differences in soil GHG 

emissions between leach field and control treatments were significant only for N2O 

fluxes and not for CH4 or CO2 fluxes. Truhlar et al. also measured roof vent emissions 

from septic systems and found that roof vent and leach field soil emissions were 

similar for CO2 but were significantly greater in the roof vent compared to leach field 

soils for both CH4 and N2O. The discrepancy between roof vent and leach field 
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emissions for these two potent greenhouse gases suggests there may be significant 

microbial cycling of CH4 and N2O in soils above leach field systems. 

Previous work has found that soil volumetric water content (VWC) is a 

significant driver of GHG emissions from leach field and other terrestrial systems (e.g. 

peat bogs and rice paddies) particularly for CH4 (Fernández-Baca et al., 2018b; 

Kotiaho et al., 2010; Lee et al., 2014; S. C. Whalen, 2010). Likewise, a study by 

Fernández-Baca et al. (2018b) found soil VWC was correlated to gene abundances of 

biomarkers for CH4 cycling in leach field soils including mcrA, a gene encoding the α-

subunit of methyl coenzyme M reductase found in all known methanogens and 

involved in the final step of methane production, and pmoA, a gene encoding a subunit 

of the particulate version of methane monooxygenase (pMMO) found in the vast 

majority of known aerobic methanotrophs which is responsible for the first step of 

methane oxidation (Colin Murrell and Radajewski, 2000; Steinberg and Regan, 2009). 

Although sustained increases in soil VWC have been shown to increase CH4 

emissions in a variety of environments from leach field to pasture and forest soils, the 

response of soils to an instantaneous increase in VWC from a wetting event has not 

been explored in leach field soils (Chamberlain et al., 2016; Christiansen et al., 2016; 

Fernández-Baca et al., 2018b). Well-drained and upland soils are thought to be net 

CH4 sinks, responsible for consuming up to 80% CH4 produced in subsurface soils, 

however their response to a wetting event could change the CH4 flux dynamics of 

these soils transforming them from net sinks to net sources (Wilson et al., 2016).  

Similarly, increases in N2O emissions can be driven by increases in soil VWC 

particularly in soils that are characteristically dry such as grasslands (Davidson, 1992; 
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Smith et al., 2003; Wilson et al., 2016). While temperature is known to be a strong 

driver of N2O emissions, due to stimulation of microbial respiration leading to a 

reduction of available O2, an increase in soil VWC has been shown to have a similar 

effect, particularly in wetted soils (Kim et al., 2012; Smith et al., 2003). Because leach 

field soils already have higher N2O fluxes to the atmosphere than control soils, their 

N2O response to a rain event could be significant (Truhlar et al., 2016). The N2O cycle 

is particularly complicated at the microbial scale as there are several denitrification 

steps preceding the production and consumption of N2O. Full denitrification of nitrate 

(NO3
-) to nitrogen gas (N2) is dependent on the sequential reduction of nitrate to 

nitrite, nitric oxide, nitrous oxide and finally N2 by the enzymes nitrate reductase 

(Nar), nitrite reductase (Nir), nitric oxide reductase (Nor), and nitrous oxide reductase 

(Nos), respectively. The functional genes cnorB and nosZ (encoding for the enzymes 

Nor and Nos, respectively) have been used to quantify the microbial populations 

directly involved in the cycling of N2O in environmental soil samples and have 

previously been used for target denitrifying populations found in leach field soils 

(Braker and Tiedje, 2003; Dandie et al., 2008; Fernández-Baca et al., 2018b; Henry et 

al., 2006). 

 Diaz-Valbuena et al. (2011) measured dissolved gas concentrations from septic 

tank effluent and found that concentrations ranged from 0.0 to 3.6 mg l-1 for CH4 and 

0.6 to 12 mg l-1 for CO2. They were unable to detect any dissolved N2O but did not 

report detection limits for dissolved N2O measurements, thus any N2O in the septic 

effluent may have been just below their quantification limit. Despite these potential 

subsurface inputs of dissolved CH4 and CO2 in the leach field Diaz-Valbuena et al. 
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(2011) found negligible atmospheric emissions of CH4 and CO2 from leach field soils 

under ideal operating conditions (i.e. not flooded). This suggests soil microbial 

populations may be mitigating emissions of leachate CH4 by cycling the subsurface 

inputs of dissolved CH4 and CO2 from leach field systems. Moreover, native soil 

microbial communities may be stimulated to produce CH4 and N2O in anaerobic soil 

niches from subsurface nutrient inputs of septic effluent, which have high 

concentrations of both carbon and nitrogen (Cooper et al., 2015). In situ, subsurface 

measurements of key greenhouse gases have not previously been measured in leach 

field soils, thus the potential for microbial communities to be cycling gases subsurface 

is unknown. Coupling surface fluxes and subsurface measurements of GHG 

concentrations is valuable to understanding the dynamic soil microbial cycling of 

these gases in soils. 

The aim of this study was to examine the dynamic GHG flux and microbial 

response in leach field soils and control soils to an instantaneous increase in soil water 

content due to a simulated precipitation event. To this aim, we measured surface 

greenhouse gas emissions in leach field and control soils before and after a significant 

rain event. Furthermore, we aimed to characterize the subsurface profile in situ of 

leach field soils and control lawn soils. In addition to GHG measurements, we 

quantified CH4 and N2O cycling functional gene and transcript abundances to examine 

the temporal relationship between measured GHG emissions and key populations 

controlling GHG cycling in these systems after a rain event.  
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4.2 Materials and Methods 

4.2.1 Study site description 
The study site is located in central New York and has previously been 

characterized (Site 7 in Truhlar et al. (2016) and Fernández-Baca et al. (2018b)). The 

study site has unfertilized, well-draining, grass-covered soils that are characteristically 

dry. Control lawn soils are defined as soils roughly 6 m upslope from the leach field 

system. All measurements were taken between August and September of 2017. 

4.2.2 Surface soil gas flux measurements 
Surface gas fluxes of CH4, CO2, and N2O were measured using a modified 

field chamber method as previously described in Molodovskaya et al. (2011) and 

Fernández-Baca et al., (2018b). Ten-ml samples were stored in pre-sealed 9-ml vials 

which were flushed twice with N2 to remove residual atmospheric gases and evacuated 

to approximately -0.74 atm. Gas samples were measured every 10 minutes for 30 

minutes from the flux chambers and analyzed via gas chromatograph equipped with a 

flame ionization detector for CH4 and CO2, a thermal conductivity detector for O2, and 

an electron capture detector for N2O (Shimadzu, Model Number GC2010). Gas fluxes 

were calculated by fitting a linear regression to chamber gas concentrations and taking 

the slope of the line divided by the chamber soil surface area. 

4.2.3 Subsurface soil gas probe installation and measurements 
Four stainless steel soil gas vapor probes (AMS Part No. 211.00) were 

installed in each leach field and control lawns for a total of 8 probes. Probes were 

installed using a 1 in diameter soil corer to create a hole; after the probe was placed at 

the desired depth the hole was backfilled with native soil. Probes were spaced a 
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minimum of 6 m apart and installed at two depths (0.2 m and 0.5 m) below the surface 

with the 0.5 m depth representing the location closer to the leach field laterals (which 

were sited approximately 1 m below the surface) and the 0.2 m depth representing 

‘near-surface’ soils (Error! Reference source not found.). Tubing cut to the exact 

length for each depth was used to connect probes to a 3-way stopcock with luer lock 

connectors used for sampling. Stopcocks were kept in the closed position until 

sampling. Prior to taking a gas sample, the tubing was evacuated by using a syringe to 

pull the holdup volume of gas contained in the tubing and discarding it. The sample 

was then taken by pulling a 35 ml gas volume using a sterile syringe. Samples were 

stored in 20 ml pre-sealed, evacuated vials. Samples were analyzed for CH4, CO2, and 

N2O using the same gas chromatograph method described above for flux 

measurements (Fernández-Baca et al., 2018b; Molodovskaya et al., 2011). 

 

Figure 4.1. Cross-sectional view of soil gas vapor probe subsurface locations with 
respect to existing location of leach field laterals (not shown to scale). Flux 
measurements were taken immediately adjacent to subsurface measurements. The 
experimental setup was identical in control soils. 

4.2.4 Baseline gas flux and depth measurements 
Background gas flux and subsurface gas measurements were taken for the 4 
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weeks prior to the simulated rain event to establish ‘baseline’ GHG emissions and 

subsurface production at the site. Surface gas flux measurements were taken adjacent 

to each of the soil gas vapor probe locations for 4 measurements per leach field and 

control on each sampling date. Subsurface gas concentrations were measured through 

each of the installed soil gas vapor probes for 2 measurements at 0.2 m and 2 

measurements at 0.5 m per treatment for each sampling date. 

4.2.5 Rain event study 
The simulated rain event took place over 6 hours in one afternoon. Six 

infiltration rings made of 0.3 m diameter PVC pipe with beveled edges were installed 

approximately 3 m apart to a depth of 5 cm in soils (Figure 4.1). Surface gas fluxes 

and depth measurements were taken immediately prior to the rain event in triplicate in 

each leach field and control soils (Figure 4.1). Following these ‘dry’ measurements, a 

rain event was simulated at two of the infiltration rings in each leach field and control 

soils, while one infiltration ring, situated between the two wetted sites, remained dry. 

The precipitation event was created by adding 3.75 l of well water to two of the 

infiltration rings per treatment (leach field or control), the approximate equivalent of a 

5 cm rain event, resulting in a brief period of pooled water at the soil surface, before 

water percolated down into soil. 

Flux and subsurface gas measurements were taken within the infiltration ring 

immediately after pooled water permeated the soil (e.g. no visible pooled water on the 

soil surface) approximately 30 minutes after the rain event and twice more at 1.5 h and 

3 h after the wetting event. 
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Figure 4.1. Experimental set-up for rain event with three flux chamber locations per 
treatment and all 8-soil gas vapor probe locations shown (not drawn to scale). 
Subsurface leach field lateral locations are shown with dotted outlines. Soil gas vapor 
probe depths are the same for leach field and control: Probe 1 – 0.2 m; Probe 2 – 0.5 
m, Probe 3 – 0.2 m, and Probe 4 – 0.5 m. 

4.2.6 Soil temperature and volumetric water content measurements 
Soil temperature and volumetric water content (VWC) were measured 

periodically throughout the experiment within the infiltration ring area. Soil 

temperature was monitored using a 10 cm digital temperature probe, immediately 

adjacent to flux chambers within the infiltration rings. VWC was measured using two 

EC-5 Soil Moisture Sensors (Decagon Devices, Cat. No. 40593) inserted vertically 

into soil. Data was logged using the Em-50 5-channel data logger (Decagon Devices, 

Cat. No. 40800).  

4.2.7 Soil Sampling 
Soils were sampled immediately adjacent to the flux chamber within the 

infiltration ring prior to the rain event and twice more at 1.5 h and 3 h after the rain 
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event. One soil sample was taken per treatment and time point to avoid significantly 

altering the soil environment. Samples were taken using a 2.54-cm diameter soil corer 

that was rinsed with deionized water and ethanol and flame sterilized between 

samples. Soil samples were taken at a 0 to 10 cm depth and stored in 50 ml centrifuge 

tubes which were placed on ice before returning to lab where soils were flash-frozen 

in liquid N2 and stored at -80°C until extraction. Soil from adjacent lawn was used to 

refill core holes to reduce gas exchange between subsurface soils and the atmosphere. 

Previously sampled soils were avoided for the next sampling time point. 

4.2.8 Nucleic acid extractions and qPCR assays 
Soil samples were homogenized using a sterile spatula prior to subsampling for 

duplicate extractions and gravimetric dry weight determination. Gravimetric dry 

weight determination was done using a pre-weighed tin with approximately 2 g soil, 

subsampled from each soil core. Soils were placed on a pre-weighed tin and 

reweighed. Samples were dried in an oven at 105°C (±1°C) for 24 h. Soil was 

removed from the oven and cooled in a desiccator to room temperature before 

weighing. The ratio of soil dry weight to wet weight was used to estimate the dry 

weight of soil samples used for DNA and RNA extractions. 

DNA and RNA were extracted from approximately 2 g soil samples using the 

RNeasy PowerSoil Total RNA kit and the RNeasy PowerSoil DNA Elution kit 

(Qiagen) following manufacturer instructions. DNA concentrations were quantified 

using the Quant-iT PicoGreen dsDNA assay (Molecular Probes, Eugene, OR) and 

quality checked using a NanoDrop spectrophotometer (NanoDrop ND-1000, Thermo 

Scientific, Waltham, MA). 
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RNA was DNase treated to remove contaminating DNA using the RQ1 RNase-

free DNase kit (Promega) following manufacturer’s instructions. RNA was quantified 

using the Quant-it RNA assay kit (Invitrogen). The Advanced iScript cDNA synthesis 

kit (Bio-Rad) was used to synthesize cDNA from the DNase treated RNA, according 

to manufacturer’s instructions. 

Quantitative PCR assays were performed for all 4 biomarkers (mcrA, pmoA, 

cnorB, and nosZ) in triplicate for both DNA and cDNA using degenerate primers as 

previously reported in Fernández-Baca et al. (2018b) (Bourne et al., 2001; Braker and 

Tiedje, 2003; Ferris et al., 1996; Henry et al., 2006; Steinberg and Regan, 2008) The 

qPCR reaction mixture was composed of 1X SsoAdvanced Universal SYBR Green 

Supermix, 17.5 pmol of each primer, and 3 µl of diluted template DNA (to achieve 

concentrations of approximately 10 ng µl-1) to a total reaction volume of 25 µl. 

Thermal cycling and quantification were done using the iCycler IQ (Bio-Rad) with 

standard dilution curves as previously described in Fernández-Baca et al. (2018). 

Published thermal cycling protocols were used for selected primer sets (Bourne et al., 

2001; Braker and Tiedje, 2003; Ferris et al., 1996; Henry et al., 2006; Steinberg and 

Regan, 2008). Ct values calculated in the iCycler IQ software were used for 

quantification. Melt curve analyses were conducted on all reactions to ensure 

specificity and confirmation of a subset of samples by Sanger sequencing at the 

Cornell University Biotechnology Resource Center showed amplification of target 

genes. 



 

140 

4.3 Results 

4.3.2 Baseline greenhouse gas flux measurements 
Prior to the rain event study, surface gas flux and subsurface concentrations 

were measured to determine baseline greenhouse gas levels in both control and leach 

field soils. Baseline measurements were taken once a week for 4 weeks prior to the 

simulated rain event study. CH4, CO2, and N2O fluxes varied over the 4-week 

measurement period prior to the rain event study (Figure 4.2). CH4 fluxes were similar 

between leach field (mean -0.0013 ± 0.0018 g CH4 m-2 d-1) and control soils (mean -

0.012 ± 0.025 g CH4 m-2 d-1), with net emissions for both close to zero over the 4-

week period. In contrast, net production of N2O was observed in both treatments 

(mean 0.006 ± 0.001 g N2O m-2 d-1 and 0.0003 ± 0.0002 g N2O m-2 d-1 over the 4 

weeks) with the exception of week 4 in which control and leach field soils were 

marginally net consuming (-0.002 g N2O m-2 d-1 and -0.00003 g N2O m-2 d-1 for 

control and leach field soils, respectively). As expected, CO2 fluxes were net positive 

in both control and leach field soils for all dates, ranging from a maximum average 

flux of 39.4 g CO2 m-2 d-1 and 22.4 g CO2 m-2 d-1 in week 1 leach field and control 

soils, respectively, down to a minimum average flux of 14.7 g CO2 m-2 d-1
 and 13.4 g 

CO2 m-2 d-1 in week 4 leach field and control soils, respectively. These results show a 

clear decrease in CO2 emissions over time from week 1 to week 4 in both control and 

leach field soils (p = 0.004 and 0.0067 for control and leach field soils, respectively) 

indicating a decrease in net primary production as summer ends. Leach field fluxes 

were not significantly different from control soil fluxes for any of the gases during the 

4-week period.  
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Figure 4.2. Surface CH4, N2O, and CO2 gas fluxes in g m-2 d-1 for the 4-week baseline 
measurement period prior to the simulated rain event in both control and leach field 
soils (n = 4 for each treatment and week). Boxplots show the inter-quartile range 
(IQR) from quartile 1 at 25% to quartile 3 at 75%. The horizontal black line within the 
box indicates the median. Upper and lower whiskers indicate the highest and lowest 
data point within 1.5 times the IQR. 
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4.3.3 Baseline subsurface gas measurements 
Subsurface soil gas concentrations of CH4, CO2, and N2O were measured over 

a 4-week baseline period leading up to the rain event study at depths of 0.2 m and 0.5 

m (Figure 4.3). In both leach field and control soils the 0.2 m deep CH4 concentrations 

were close to atmospheric (mean concentrations over the 4-week period were 1.72 and 

2.17 ppm, respectively) while deeper samples were generally below atmospheric 

(mean CH4 concentrations of 1.39 and 1.29 ppm, respectively). However, differences 

between the two depths were not significant for CH4 in any of the individual weeks at 

a 95% confidence interval, likely due to the low sample size (n = 2 for each depth, 

treatment, and sample date) and spread in the replicate samples. O2 and N2 had similar 

depth profiles to CH4 with atmospheric concentrations in the shallower samples and 

lower mean concentrations (below atmospheric) in deeper samples (SI Figure 4.1). In 

contrast, N2O had higher mean concentrations in the deeper 0.5 m samples (means, 

1.58 and 1.06 ppm for control and leach field soils, respectively) as compared to the 

shallower 0.2 m samples (means, 0.88 ppm for control and 0.67 ppm for leach field). 

However, the observed difference in N2O concentrations between the 0.2 m and 0.5 m 

depths was only significant in week 3 leach field soils (p = 0.0037). CO2 had a similar 

pattern to N2O, with 0.5 m samples having mean concentrations of 36,920 ppm and 

20,004 ppm in control and leach field soils, respectively, as compared to the shallower 

samples with mean concentrations of 8,324 and 9,477 for control and leach field soils, 

respectively. Differences in CO2 concentrations at depth were only significant for 

week 2 (p = 0.023) and week 3 (p = 0.045) in the control soils and week 3 (p = 0.039) 

in leach field soils. 
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Figure 4.3. Subsurface concentrations of CH4, N2O, and CO2 at 0.2 m and 0.5 m 
below the soil surface for both leach field and control soils over four weeks prior to 
simulated rain event (n = 2 for each sample date, treatment, and depth). Significant 
differences between depths at a 95% confidence interval are indicated with double 
asterisks (**), significance at a 90% confidence interval are shown with one asterisk 
(*). Boxplots show the inter-quartile range (IQR) from quartile 1 at 25% to quartile 3 
at 75%. The horizontal black line within the box indicates the median. Upper and 
lower whiskers indicate the highest and lowest data point within 1.5 times the IQR. 

*	

*	

*	

*	

**	

**	

**	 **	



 

144 

4.3.4 Preliminary rain event data (2016) 
A trial simulated rain event was conducted a year prior to this study to 

determine the optimal rainfall volume to stimulate CH4 fluxes. The same experimental 

set-up described previously, using installed infiltration rings and gas flux chambers, 

was used for the trial run, however no subsurface soil gas vapor probes were installed. 

Three different simulated rainfall events of increasing intensity were created in three 

infiltration rings installed over the leach field. Rain events of approximately 1.25, 5, 

and 10 cm of rain were tested. One location representing ‘dry’ soil conditions received 

0 in of rain and had an average soil VWC of 0.06 m3 m-3. Gas fluxes were measured 

40 minutes after the rain event and again 1.5 hour after the rain event at each of three 

wetted locations as well as the dry site.  

Elevated CH4 emissions were observed at both the 40-min and 1.5 h 

measurements for each of the wetted locations as compared to the dry site. Soil VWC 

likewise increased with increasing rainfall volumes with averages of 0.272, 0.268, and 

0.202 m3 m-3 for 1.25, 5, and 10 cm of rain, respectively. A linear relationship was 

observed between inches of rain and measured gas fluxes at both 40 minutes and 1.5 

hours (R2 = 0.994 and 0.999, respectively) (SI Figure 4.2 and 4.3). Based on these 

preliminary data we chose to use a rain event of approximately 5 cm, which is within 

the range of heavy rainfall events observed in central New York. 

4.3.5 Rain event simulation 

4.3.5.1 Soil volumetric water content and temperature 
Soil VWC and temperature changed over the course of the rain event study 

(Figure 4.4). Soil VWC was highest in the wetted soils and dried over time but did not 
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return to ‘dry’ leach field soil conditions (approximately 0.065 m3 m-3) before the end 

of the experiment. Mean soil VWC for wetted sites over the course of the experiment 

were similar for control (0.228 ± 0.04 m3 m-3) and leach field (0.204 ± 0.09 m3 m-3) 

soils. Leach field soils had slightly higher VWC than control soils in the non-wetted 

soils 0.065 ± 0.003 m3 m-3 and 0.045 ± 0.002 m3 m-3, respectively. 

Soil temperatures ranged from 23.9 to 26.6°C throughout the experiment 

(Figure 4.4). Wetted plots were slightly cooler than the corresponding dry plots with 

mean temperatures of 24.3°C and 24.8°C for wetted leach field and control soils 

respectively; whereas dry plots had on average warmer soils with means of 25.2°C and 

25.9°C for leach field and control soils, respectively. 



 

146 

 

Figure 4.4. Soil volumetric water content (VWC) (leach field: triangles, control: 
circles) and temperature (leach field: solid lines, control: dotted lines) measured within 
the infiltration ring immediately following the rain event, approximately 10 cm below 
ground. Legend indicates treatment and wet or dry conditions: control soils wet (C-
W), control soils dry (C-D), leach field wet (LF-W), and leach field dry (LF-D); 
triplicate measurements were taken at each time point. 

4.3.5.2 Rain event gas flux measurements 
Surface CH4, N2O and CO2 gas flux measurements were taken immediately 

prior to the rain event and were taken again 0.5, 1.5 and 3 h after the rain event (Figure 

4.5). An initial increase in soil CH4 emissions was observed from both leach field 

(mean, 0.017 g m-2 d-1) and control (mean, 0.014 g m-2 d-1) treatments as compared to 

the dry soils (means, 0.00059 and -0.00076 g m-2 d-1 for leach field and control soils, 

respectively) but the pulse subsided by the 1.5 h mark. This emissions increase was 

significant in the leach field soils (p = 0.026) but not in control soils (p = 0.095). N2O 

emissions spiked at the 0.5 h mark in wet leach field soils compared to dry soils (p = 

0.0006) and continued to rise over time after the rain event. Control soils saw a 
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delayed increase in N2O emissions, which were comparable to dry control soil 

emissions until 3 h after the rain event when they increased significantly (p = 0.038). 

An immediate, significant increase in CO2 emissions was measured in both control 

and leach field soils (p < 0.0001 for both at the 0.5 h mark), with higher emissions 

observed in leach field soils. CO2 emissions decreased slowly after the 0.5 h post rain 

time point in both treatments, but were still higher in the leach field as compared to the 

control soils at the 3 h mark (control soil mean of 17.2 g m-2 d-1 compared to a mean 

of 24.9 g m-2 d-1 for leach field soils). 

In general, leach field and control soils had comparable emissions before and 

after the rain event. N2O fluxes were higher from leach field soils as compared to 

control soils at the 0.5 h and 1.5 h measurements with p-values of 0.035 and 0.036, 

respectively. The only other measurement that was significantly higher in leach field 

soils as compared to control soils was CO2 3 h post rain (p = 0.017). 
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Figure 4.5. Boxplots of CH4, N2O, and CO2 flux measurements before and after the 
rain event in leach field and control soils. Dry (n = 3), 0.5 h 1.5 h, and 3 h Post Rain (n 
= 2). Lowercase letters represent significant differences (p < 0.05) between sampling 
times. Boxplots show the inter-quartile range (IQR) from quartile 1 at 25% to quartile 
3 at 75%. The horizontal black line within the box indicates the median. Upper and 
lower whiskers indicate the highest and lowest data point within 1.5 times the IQR. 

 

4.3.5.3 Rain event subsurface gas concentrations 
Subsurface CH4, N2O and CO2 concentrations were taken immediately before 

the rain event and were measured again 0.5, 1.5 and 3 h post rain in both control and 
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time point, in leach field soils this corresponded to probes 1 (0.2 m) and 3 (0.2 m) and 

in control soils probes 2 (0.5 m) and 3 (0.2 m) (Figure 4.1). All eight probes were 

sampled before rain and 3 h after rain.  

Prior to rain, the subsurface measurements from control and leach field soils 

showed similar CH4 patterns with ‘hot moment’ of high CH4 concentrations observed 

in samples from probe 3 at the 0.2 m depth (approximately 150 ppm in both 

treatments). CH4 concentrations in these ‘hot moment’ (probe 3 in both leach field and 

control) were uncharacteristically high compared to baseline measurements (highest 

observed measurement during baseline monitoring, in Figure 4.3 was approximately 

2.5 ppm). Due to these measurement discrepancies, results described hereafter exclude 

probe 3 in leach field and control soils which both showed atypical CH4 

concentrations (SI Figure 4.4 shows subsurface GHG measurements removing “hot 

moments” observed in leach field and control probe 3). At the 0.5 h mark, all 

measured probes in both leach field and control soils showed an increase in subsurface 

CH4 concentrations (greater than 20 ppm in all probes) as compared to before rain 

soils which were less than 5 ppm in all probes. Subsurface CH4 concentrations 

dropped over time after the initial increase at 0.5 h post rain, and fell below 7 ppm in 

leach field soils and below 5 ppm in control soils at both depths. 

Subsurface N2O concentrations also showed a ‘hot moment’ in leach field 

probe 3 in the before rain measurement. Excluding this atypical probe, we observed a 

drop in below ground N2O concentrations in both treatments at all depths (less than 

0.378 ppm in all probes) 0.5 h after rain as compared to before rain measurements. 

N2O concentrations increased again at the 3 h post rain sample in leach field (1.49 
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ppm in wetted 0.2 m probe and mean of 2.7 ppm in 0.5 m dry probes) and control 

(0.26 and 0.46 ppm for dry and wet 0.2 m depths, and 3.82 ppm and 2.46 ppm for dry 

and wet 0.5 m depths) soils. In general, higher N2O concentrations were observed in 

deeper samples across all time points, regardless of wetting, as was seen with baseline 

measurements.  

CO2 subsurface concentrations at 0.2 m did not appear to vary over time with 

wetting. The subsurface concentrations were similar to baseline measurements in 

terms of magnitude for both control and leach field. In samples taken prior to the rain 

event, CO2 subsurface concentrations were higher in the 0.5 m samples in control 

(mean, 28,561 ppm) and leach field (mean, 10,366 ppm) as compared to the 0.2 m 

control (mean, 5,374 ppm) and leach field (mean, 5,625 ppm) samples. A similar trend 

was observed 3 h post rain, where 0.5 m samples had higher CO2 concentrations in 

control soils (24,255 ppm for dry soils and 34,433 ppm for wet soils) and leach field 

soils (mean, 10,450 ppm for dry soils) as compared to the 0.2 m control (mean, 8,101 

ppm) and leach field (mean, 7,682 ppm) samples. Thirty minutes after rain, the 0.5 m 

depth concentration appeared to drop (to below 10,000 ppm) in control soils, however 

due to lack of replication in subsurface (0.5 m) samples, statistical analyses could not 

be carried out to determine significance of this pattern. 



 

151 

 

Figure 4.6. Subsurface CH4, N2O and CO2 concentrations before rain, 0.5 h, 1.5 h, and 
3 h post rain event at 0.2 m (solid line) and 0.5 m (dotted line) in control (C) and leach 
field (LF) soils. Wetted (W) and dry (D) probes are shown for each treatment. 

4.3.5.4 CH4 and N2O cycling genes and transcript abundances  
Gene abundances for key biomarker genes involved in CH4 cycling (mcrA and 

pmoA) and N2O cycling (cnorB and nosZ) as well as general Bacterial populations 

were similar across both treatments (Figure 4.7). Small variations were seen over time 

but were not significant for any individual biomarker between treatments or sampling 

times (p > 0.05 for all). Any variations observed likely reflect the inherent 

heterogeneity of soils as well as variability in extraction and qPCR efficiencies.  
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Figure 4.7. Gene abundances in a) control and b) leach field sites in dry soils, 1.5 h 
and 3 h after rain event for general bacterial 16S rRNA, mcrA, pmoA, cnorB, and 
“typical” nosZ. Error bars represent errors associated with duplicate DNA extractions 
and triplicate qPCR reactions.  

Transcript ratios of production to consumption genes for CH4 and N2O showed 

variation with time (Figure 4.8). mcrA:pmoA transcript ratios increased in both control 

and leach field soils 1.5 h post rain compared to the dry soils (p = 0.025 for control 

and p = 0.055 for leach field soils). This mcrA:pmoA ratio increase lagged behind the 

elevated CH4 fluxes we observed at 30 min However soil samples were not taken at 30 

min post rain thus elevated transcript ratios may have also occurred at this time point 

but were not captured in this study. mcrA:pmoA transcript ratios decreased again at 3 h 

post rain and were similar to those observed in the dry soils. Soil samples were not 

taken 0.5 h post rain, thus any relationship between the elevated CH4 emissions 

observed and transcript abundance ratios of CH4 cycling genes at the 30 min mark 

could not be examined. Transcript abundances for individual biomarkers and ratios of 

a)	 b)	
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transcript to gene abundances showed no clear patterns over time (SI Figure 4.5 for 

absolute transcript abundances per gram dry soil and SI Figure 4.6 for ratios of 

transcript to gene abundances).  

cnorB:nosZ transcript ratios decreased from the dry soils to the 1.5 and 3 h post 

rain samples in both leach field and control, though not significant (Figure 4.8). 

Surprisingly, a decrease of cnorB transcripts (the biomarker for N2O production) 

relative to nosZ corresponded to elevated N2O emissions in both the control and leach 

field soils at 1.5 and 3 h post wetting event. 

 

Figure 4.8. Ratios of transcript abundances for a) CH4 cycling genes (mcrA:pmoA) and 
N2O cycling genes (cnorB:nosZ) for dry soils and 1.5 and 3 h after rain event. Error 
bars represent errors associated with duplicate DNA and RNA extractions and 
triplicate qPCR reactions for each extract. 

a)	

b)	
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4.4 Discussion 
Studying the surface greenhouse gas flux and subsurface depth profiles of 

leach field systems is important to understanding how these soil-based wastewater 

treatment systems respond to an instantaneous increase in soil VWC in terms of GHG 

production and cycling. Additionally, quantifying the microbial populations 

responsible for greenhouse gas cycling is key to a better understanding of their role in 

greenhouse gas mitigation. The temporal link between a precipitation event, GHG 

emissions, and the expression of functional genes responsible for GHG cycling is 

poorly understood, and has not been studied in leach field soils. 

4.4.1 Baseline gas flux and subsurface concentrations 
Surface gas flux and subsurface concentrations of greenhouse gases vary over 

time in both leach field and control lawn soils. Truhlar et al. (2016) previously found 

that N2O emissions were significantly higher in leach field as compared to control 

soils (p < 0.001), however, in this study, over the course of the 4-week baseline 

measurements we did not find significant differences between leach field and control 

soils for N2O for any given week. Likewise, no significant differences were observed 

for either CH4 or CO2 between leach field and control soils for any given week. 

However, when all dates were considered together, CO2 was significantly greater in 

leach field soils compared to control soils (p = 0.023) but again there were no 

significant differences observed for CH4 (p = 0.77) and N2O (p = 0.33). Additionally, 

all values we observed for average fluxes from the leach field (CH4: -0.0013 g m-2 d-1, 

CO2: 25.5 g m-2 d-1, and N2O: 0.0059 g m-2 d-1) were comparable to those previously 

reported by Truhlar et al. (2016) for this site in summer of 2014 (CH4: -0.0031 g m-2 d-
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1, CO2: 9.1 g m-2 d-1; and N2O: 0.00096 g m-2 d-1) which were all taken during 

typically ‘dry’ days (average VWC of 14.3 m3 m-3 for leach field and 10.6 m3 m-3 for 

control soils for summer 2014). Control soils likewise had similar flux measurements 

between the two studies. 

We expected leach field soils to have higher subsurface concentrations of CH4, 

N2O, and CO2 at the 0.5 m depth as compared to control soils due to subsurface inputs 

of septic effluent in the leach field. We measured dissolved gases in the liquid of the 

septic tank and found high dissolved gas concentrations for CH4 (87.3 ± 24 mg l-1), 

N2O (0.21 ± 0.02 mg l-1), and CO2 (277 ± 89 mg l-1). Thus, we expected to see higher 

subsurface GHG concentrations in situ at the 0.5 m depth than at the 0.2 m depth in 

the leach field, and higher subsurface GHG concentrations in the leach field compared 

to control soils. However, only one week showed significant differences in subsurface 

gas concentrations between leach field and control soils at the 0.5 m depth where the 

control had CO2 concentrations higher than the leach field (p = 0.022). When all 

weeks were considered together, control soils had higher subsurface concentrations of 

CH4 at the 0.2 m depth than at the 0.5 m depth (p = 0.034) and higher subsurface 

concentrations of N2O and CO2 at the 0.5 m depth than at the 0.2 m depth (p = 0.014 

and p < 0.0001, respectively). These results were counter to our hypothesis that 

subsurface concentrations would be higher in leach field soils. It is possible that 

elevated subsurface concentrations of these GHG may be found even deeper than 0.5 

m depth we sampled in this study, closer to the leach field laterals where wastewater is 

percolating into the soil. (Fernández-Baca et al., under review, 2018a) used lab-scale 

leach field soil columns to examine CH4 concentrations and CH4 cycling populations 
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with depth. Their results indicate that peak CH4 emissions were observed in the area 

immediately surrounding the leach field laterals, and decreased in near-surface soils to 

down to atmospheric concentrations. It is likely we are seeing a similar pattern with 

our in situ measurements of subsurface CH4. 

Furthermore, any dissolved gases released subsurface in the leach field may be 

consumed quickly by the soil microbial communities found above the leach field 

laterals which are likely primed for leachate inputs. Fernández-Baca et al. (under 

review, 2018a) found that CH4 cycling communities were present throughout the soil 

depth profile in leach field soil columns, including methanotrophic populations who 

can readily consume any CH4 introduced subsurface. Additionally, evidence for the 

presence of anaerobic methanotrophs of the NC10 phylum and ANME-2D, thought to 

couple methane oxidation to nitrite and nitrate reduction, respectively, was found via 

Illumina sequencing of 16S rRNA in both leach field and control soils (Ettwig et al., 

2010; Fernández-Baca et al., 2018b; Haroon et al., 2013). Thus, CH4 consuming 

populations, both aerobic and anaerobic, likely have the potential to actively mitigate 

subsurface inputs of CH4 in leach field soils. Overall, the baseline measurements 

revealed that under typical ‘dry’ soil conditions, these leach field and lawn covered 

soils are net consumers of atmospheric CH4 and net producers of N2O and CO2 and 

any subsurface inputs of dissolved GHGs can be cycled by existing soil microbial 

communities. 
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4.4.2 Precipitation driven trends in greenhouse gas emissions and subsurface 

concentrations from leach field and lawn-covered soils 

4.4.2.1 CH4 emissions 
Previous studies have shown that CH4 emissions are driven by sustained high 

soil VWC in leach field and subtropical pasture soils (Chamberlain et al., 2016; 

Fernández-Baca et al., 2018b). In this study, CH4 emissions from an instantaneous 

increase in soil VWC were examined. CH4 emissions resulting from the simulated 

precipitation event were immediate in both control and leach field soils. We observed 

this same trend with previous tests of precipitation events on leach field soils (SI 

Figure 4.2 and 4.3) which showed linear increases in CH4 fluxes with increasing 

amounts of rainfall both 30 min and 1.5 h after precipitation. Significant increases in 

CH4 emissions were observed from the leach field at the 30 min mark (p = 0.026) but 

not from control soils (p = 0.095). After 30 minutes, neither treatment had CH4 

emissions distinguishable from ‘dry’ soils. Mean CH4 emissions from the leach field 

increased almost 30-fold in the 30 minutes after rain compared to ‘dry’ soils.  

Gas push-pull tests (GPPT) conducted in situ in these soils (both control lawn 

and leach field) revealed that CH4 cycling populations have a limited capacity for CH4 

oxidation (SI Figure 4.7, experimental description in Appendix). Under typical ‘dry’ 

conditions, methanotroph populations are able to keep pace with methanogen activity, 

resulting in net methane sinks in the soils examined herein. However, a sudden pulse 

of high CH4 concentrations overwhelms the native methanotroph populations, who are 

unable to consume these substantial subsurface CH4 inputs. Thus, although there 

appears to be significant CH4 mitigation in leach field and control soils, methanotroph 
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populations are not infinitely capable of consuming CH4, likely resulting in the 

significant pulse of CH4 measured after the simulated rain e vent. 

Before rain measurements of subsurface concentrations of CH4 were much 

higher in two of the 0.2 m probes, probe 3 in both leach field control soil, as compared 

to the replicate 0.2 m probes and the 0.5 m samples. Thirty minutes post rain, 

concentrations of CH4 increased in three of the measured probes compared to the same 

probes pre-rain, however this increase in subsurface CH4 production subsided by the 

1.5 h mark and continued to decrease at the 3 h time point. These results suggest that 

CH4 production is occurring even at relatively shallow depths in the soil profile. 

Chamberlain et al. (2016) found that CH4 was produced subsurface in flooded pasture 

soils at 0 to 0.1 m below the surface, even shallower depths than examined in this 

study. They found that an increase in subsurface CH4 concentrations due to flooding 

occurred concomitantly with an increase in surface CH4 emissions and suggested that 

near-surface production of CH4, not deeper CH4 production, was responsible for CH4 

emissions observed at the surface. Our results support this finding, while subsurface 

concentrations of CH4 were relatively low, we did observe increases in subsurface 

CH4 concentrations as well as increased CH4 emissions from both leach field and 

control soils 30 min after wetting. These observed increases in CH4 surface emissions 

and subsurface production may be explained by enhanced soil microbial activity of 

methanogens, which thrive under anaerobic conditions caused by high soil VWC 

which in turn can suppress aerobic methanotrophy (Kim et al., 2012; Thauer, 1998). 

4.4.2.2 N2O emissions 
 Davidson (1992) found that there was an immediate response of N2O 
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production (within minutes) in rewetted grass-covered soils. They found N2O emission 

rates after a wetting event were two to five times greater than those observed from dry 

soil and emissions increased immediately after wetting then remained elevated up to 

25 hours post wetting event. Likewise, we observed an immediate increase in N2O 

emissions from leach field soils which had a mean value of -0.0001 g m-2 d-1 before 

wetting that increased to a mean of 0.0025 g m-2 d-1 30 minutes after the rain event. In 

contrast, control soils saw a delayed increase in N2O emissions with fluxes 

indistinguishable from dry soils until 3 hours post rain event. 

The immediate pulse of N2O seen from leach field may be explained by 

physical displacement of subsurface N2O. However, concentrations of subsurface N2O 

decreased, in both leach field and control soils at the 30 min mark but surface fluxes 

only increased in leach field soils. Delay in N2O emissions from control soils may be 

due to the lag time associated with the microbial processes of reducing NO3
- to N2O. 

However, mechanisms controlling N2O emissions in soils, likely a combination of 

physical mechanisms and microbial activity, are poorly understood and should be 

further studied in soil systems (Kim et al., 2012). 

4.4.2.3 CO2 emissions 
Before wetting, CO2 emissions from dry soils in this study (means, 6.24 g m-2 

d-1 for control and 8.30 g m-2 d-1 for leach field) were higher than those observed in 

other lawn soils in central New York (2.42 g m-2 d-1) and Boston, MA (3.1 g m-2 d-1) 

(Decina et al., 2016; McPhillips et al., 2016). However, they were comparable to 

observed CO2 fluxes from lawns in Melbourne, Australia, which ranged from 4 g m-2 

d-1 for unfertilized lawns up to 12.8 g m-2 d-1 for fertilized lawns. Our CO2 flux 
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measurements of ‘dry’ leach field soils were also comparable to previous 

measurements by Truhlar et al. (2016) for leach field soils, which ranged from 4.26 g 

m-2 d-1 up to 18.3 g m-2 d-1. They also found control soils to have higher mean CO2 

emissions compared to leach field soils (mean, 11.6 g m-2 d-1 for controls and 17.7 g 

m-2 d-1 for leach field). 

In soil microcosms, increased CO2 fluxes have previously been correlated to 

increases in soil VWC due to a precipitation event (Smart and Peñuelas, 2005). In this 

study, there was an immediate and sustained increase in CO2 emissions from both 

control and leach field soils following the simulated rain event. Smart and Peñuelas 

(2005) found that this sustained increase in CO2 emissions after a significant rain 

event (approximately 2 in) lasted 36 hours but decreased over time. Although in this 

study measurements were only taken up to 3 hours post rain event, we did observe 

CO2 emissions decreasing over time from means of 24.0 and 32.4 g m-2 d-1 for control 

and leach field soils at 30 minutes post rain decreasing to means of 17.2 g m-2 d-1
 for 

control and 24.9 g m-2 d-1
 for leach field 3 hours post rain. Both temperature and soil 

moisture have previously been shown to be controlling factors for soil respiration, in 

our study temperature did not change significantly over the course of the experiment, 

thus we suggest soil VWC is driving the increase in CO2 emissions (Kim et al., 2012; 

Livesley et al., 2010). 

A portion of the observed CO2 fluxes 30 min after wetting may also be caused 

by physical displacement of subsurface gases. Subsurface measurements of CO2 

before the rain event were consistent with baseline measurements, where deeper 0.5 m 

samples had higher CO2 concentrations than the 0.2 m samples in both control and 
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leach field soils. CO2 concentrations before the rain event were higher in control soils 

(mean >28,000 ppm) compared to leach field soils (mean, 10,336 ppm) at the 0.5 m 

depth, but were similar at the 0.2 m depth (means, 5,374 ppm and 5,626 ppm for 

control and leach field soils, respectively). This pattern was again observed 3 h after 

the rain event, however the 0.2 m depth had elevated concentrations of CO2 compared 

to before rain control soils regardless of wetting. In leach field soils, probe 1 (0.2 m 

depth) CO2 concentrations increased 3 h post rain compared to before rain; however, 

leach field probe 3 (0.2 m depth) in the leach field soils decreased 3 h post rain. 

Observed increases in belowground concentrations of CO2 at the 0.2 m depth 

may be due to a combination of increased microbial activity creating higher soil 

respiration in situ and/or increases in water filled pore space that consequently slows 

CO2 diffusion through the soil matrix (Liu et al., 2017; Smart and Peñuelas, 2005). 

Smart and Peñuelas (2005) suggested observed delays in CO2 diffusion in their wetted 

soil microcosms were caused by increased water filled pore space, leading to a build-

up of subsurface CO2 after a wetting event. However, it is also well known that 

increases in soil VWC can directly impact soil microbial respiration increasing 

microbial activity, particularly in characteristically dry soils (Kim et al., 2012; Liu et 

al., 2017). Thus, we suggest the increases in subsurface CO2 observed in this study 

may be due to diffusion limitations caused by increases in soil VWC, an increase in 

near-surface respiration, or a combination of the two. 

4.4.2.4 Presence and activity of greenhouse gas cycling organisms 
Biomarker gene abundances for CH4 and N2O cycling organisms did not 

change over the course of the simulated rain event. Gene abundances of mcrA and 
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pmoA, biomarkers for CH4 production and consumption, respectively, and nosZ and 

cnorB, production and consumption biomarkers for N2O, were not significantly 

different between the two treatments or between sampling time points. Gene 

abundances of mcrA (mean, 1.68×106 ± 9.77×105 copies gdw-1 for leach field and 

2.71×106 ± 1.49×106 copies gdw-1 for control) and pmoA (mean, 7.06×106
 ± 3.47×106 

copies gdw-1 for leach field and 5.96×106 ± 2.42×106 copies gdw-1 for control) were 

similar to those observed at this site in Fernández-Baca et al. (2018b) in surface soils 

(0 to 10 cm) with means of 3.55×106 and 5.94×105 mcrA copies g-1 soil for control and 

leach field soils and 5.18×106 and 2.85×106 pmoA copies g-1 soil for control and leach 

field soils, respectively. In both studies, pmoA gene abundances were always higher 

than mcrA gene abundances within every sample. In general, cnorB gene abundances 

were higher than the other GHG cycling biomarker genes (mcrA, pmoA, and nosZ) 

quantified in this study and were similar to previously reported cnorB abundances in 

leach field soils (Fernández-Baca et al., 2018b). nosZ gene abundances were the 

lowest with means of 1.31×106
 ± 2.03×105 copies gdw-1 in leach field soils and 

9.39×105
 ± 1.21×105 copies gdw-1 in control soils. The presence of these biomarker 

genes in the 0 to 10 cm depth of soils indicates that considerable GHG cycling can 

occur at shallow depths in lawn soils, whether or not they are associated with a leach 

field system. 

Transcript ratios of production to consumption biomarker genes for CH4 

(mcrA:pmoA) and N2O (cnorB:nosZ) were examined under the hypothesis that after a 

wetting event, increased soil VWC would lead to anaerobic conditions in soil 

ultimately resulting in elevated transcript levels for CH4 and N2O production genes. 
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Prior to the precipitation event, the transcript ratios of mcrA:pmoA were below 2 for 

both control and leach field soils. Post rain event, this ratio increased to greater than 9 

for both treatments. This increase was significant for control soils (p = 0.025) and 

marginally significant for leach field soils (p = 0.055) at the 1.5 h mark, however the 

mcrA to pmoA transcript ratio dropped below 2 again at the 3 h mark. Because soils 

were not sampled at the 0.5 h mark when a significant pulse of CH4 occurred in the 

leach field, an even greater increase in the transcript ratios of mcrA to pmoA may have 

been missed. Future studies attempting to capture the dynamic relationship between 

soil VWC, GHG emissions, and transcript abundances of key functional genes, will 

require more immediate and frequent sampling post wetting event.  

Transcript ratios for cnorB:nosZ were greater than 1 prior to the rain event and 

decreased to 0.77 and 0.63 for control and leach field soils, respectively. The ratio 

remained below 1 even 3 h post rain. Significant differences were not found for the 

N2O cycling genes (p > 0.05) for the different sampling times. In contrast to the 

methane cycling biomarkers (mcrA and pmoA), the complexity of the N2O cycle 

makes it difficult to capture all of the denitrification genes that are involved in N2O 

production and consumption. There are many atypical versions of the nosZ gene which 

are not captured by the primers used in this study (Sanford et al., 2012). Additionally, 

cNor (which uses cytochrome c as the electron donor) and qNor (quinol electron 

donor) are two different forms of the Nor enzyme that could both contribute to N2O 

production (Braker and Tiedje, 2003). In this study we chose to quantify cnorB as our 

biomarker for N2O production because it is specific to denitrifying strains while qnorB 

has been found in non-denitrifying bacteria. However, excluding qnorB may have led 
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to an underestimation of the denitrifying population capable of producing N2O and 

thus an incomplete picture of the denitrifying community in leach field soils. Further 

studies attempting to elucidate the activity of key microbial populations involved in 

N2O cycling would benefit from targeting a more diverse set of functional genes for 

the N2O cycle. 

The heterogeneity of soils adds another complication in capturing the response 

of soil microorganisms to a rain event. In this study, one core was taken per treatment 

and time point to avoid substantially disturbing the soil system. The infiltration area 

was relatively small (less than 1 m2) and was mostly covered by the gas flux 

chambers, thus leaving a small area from which to take soil cores. Additionally, 

although core holes were replaced with soil from adjacent lawn, the sampling likely 

introduced air into the soil environment and allowed for some gas exchange between 

the subsurface soils and the atmosphere. Future studies would benefit from sampling 

multiple cores over a larger infiltration area to get a more representative soil sample as 

well as to avoid disturbing the activity of soil microbes by introducing air to the 

subsurface environment. 

4.5 Conclusions 
This study provides the first surface fluxes and coupled subsurface measurements 

of methane, carbon dioxide, and nitrous oxide from leach field soils after a significant 

simulated rain event. We found that both leach field and control lawns were either 

weak sinks or weak sources of CH4 during baseline measurements, but became net 

sources by the first time point (30 min) post rain event. Likewise, leach field lawns 

were weak net emitters of N2O but became strong net producers immediately after a 
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rain event, whereas the control soil N2O pulse was not seen until 3 hours post rain 

event. All lawns were net emitters of CO2, which increased in both treatments after 

wetting. Subsurface GHG trends for leach field and control soils were similar during 

baseline measurements. Thirty minutes after the wetting event, an increase in 

subsurface CH4 production at both depths was observed which decreased over time. In 

contrast, N2O subsurface concentrations decreased after wetting and returned to pre-

rain concentrations by the 3 h post rain time point. Subsurface CO2 concentrations 

were likewise similar before rain and 3 h post rain. Biomarker abundances for CH4 

and N2O cycling genes were consistent over the course of the precipitation 

experiment. Transcript abundance ratios of production to consumption genes were 

higher in the wetted soils 1.5 h post rain as compared to dry soils (p < 0.05) for CH4, 

however the opposite trend was observed for N2O cycling genes. Three hours after the 

rain event, both mcrA:pmoA and cnorB:nosZ transcript ratios were below 2 in leach 

field and control soils. Our results suggest further studies on the link between 

instantaneous increases in soil VWC, atmospheric GHG fluxes, subsurface production 

of GHG, and activation of GHG cycling microbial communities are needed to 

understand the dynamic response of soil systems to precipitation events. These results 

suggest that under typical ‘dry’ conditions, microbial communities are capable of 

mitigating GHGs entering through, or produced near, subsurface leach field laterals. In 

contrast, during rain events leach field soils, and control lawn soils alike, become net 

greenhouse gas producers; however timing and subsurface trends of produced 

greenhouse gases differ by the compound. 
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Chapter 4: Supplemental Information 

SI Figure 4.1.  

SI Figure 4.6. Baseline (4-week) O2 (top) and N2 (bottom) subsurface measurements at 0.2 
m and 0.5 m below surface for control and leach field soils (n = 2 per treatment and depth 
per week). Boxplots show the inter-quartile range (IQR) from quartile 1 at 25% to 
quartile 3 at 75%. The horizontal black line within the box indicates the median. Upper 
and lower whiskers indicate the highest and lowest data point within 1.5 times the IQR. 
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SI Figure 4.2. Preliminary study of CH4 flux measure 40 minutes after rain event 
versus inches of rain. 

 

SI Figure 4.3. Preliminary study of CH4 flux measure 1.5 hours after rain event versus 
inches of rain. 
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SI Figure 4.4. Subsurface greenhouse gas measurements in leach field and control 
soils at 0.2 m and 0.5 m below ground, removing ‘hot moment’ samples of methane 
and nitrous oxide for probe 3 in both leach field and control soils. 
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SI Figure 4.5. Transcript abundances of key functional genes involved in CH4 and 
N2O cycling recovered from control and leach field soils before and after a rain event. 

 
SI Figure 4.6. Transcript to gene abundance ratios for biomarker genes involved in 
CH4 (mcrA and pmoA) and N2O (cnorB and nosZ) cycling. 
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SI Figure 4.7. Gas push-pull test (GPPT) results from leach field (top) and control 
(bottom) soils for 0.5 m depth showing log10 concentrations of “pulled” CH4 
concentrations (C) over injected CH4 concentration (Co) over time. Day 1 gas mix 
included CH4 and Day 2 gas mix included CH4 and methane oxidation inhibitor 
acetylene (C2H2). No difference was observed in CH4 oxidation between Day 1 and 
Day2 in either treatment, likely due to overwhelming the system with high 
concentrations of CH4. 
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CHAPTER 5 

 

CONCLUSIONS 

 

This dissertation examined the relationship between greenhouse gas (GHG) 

emissions and the soil microbial communities controlling their cycling in grass-

covered leach field soils and corresponding control soils. This work expands on the 

growing literature studying controls on greenhouse gas cycling and associated 

microbial communities in soil systems. The results found herein have implications for 

furthering our knowledge of not just septic leach field soil microbial communities and 

greenhouse gas dynamics but for lawn and urban soils in general, which are 

understudied systems. 

5.1 Quantifying greenhouse gas emissions from lawn and leach field soils 

This work includes some of the first measurements of greenhouse gas 

emissions from leach field and lawn soils. Specifically, measurements of greenhouse 

gas fluxes from leach field and control lawns in situ over a summer (Chapter 2) and 

before and after a rain event (Chapter 4), as well as lab studies of methane emissions 

from leach field soil columns, operated in the lab under different volumetric water 

content regimes (Chapter 3). The goal of these studies was to understand the 

production and consumption of greenhouse gas emissions, namely CH4, N2O, and 

CO2, from leach field soils impacted by subsurface septic effluent inputs, and the 

dynamics of abundance and activity of CH4 and N2O cycling organisms. 

 The field measurements presented here suggest leach field soils do not differ 

from control soils in terms of greenhouse gas emissions under normal operating 

conditions, with the exception of N2O, which had higher emissions from leach field 
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soils as compared to control lawns. Under high soil VWC conditions, elevated GHG 

emissions were observed regardless of whether the VWC increase was due to 

sustained flooding or a rain event. Chapter 2 results indicated that sustained flooding 

in one site (Site 9) strongly drove higher CH4 emissions in that system. In contrast, the 

other 8 sites, which were not flooded, were either low rate net emitters or net 

consumers of CH4. Accounting for VWC differences, no difference in CH4 emissions 

was observed between treatments. The results from this first chapter led us to explore 

the relationship between sustained failure by flooding in leach field systems and their 

potential net GHG impacts, which may be higher than previously quantified in well-

maintained systems. 

 In Chapter 3 we studied the relationship between soil VWC and CH4 

subsurface production and surface emissions using lab-scale leach field soil columns. 

Two leach field soil column systems were operated in either a failing-by-flooding 

mode or a well-maintained mode (i.e. not flooded, where the water table was 

maintained well below the leach field lateral). As hypothesized, the leach field soil 

column operated under continuously flooded conditions had higher CH4 surface 

emissions as compared to the column under proper operating conditions. Subsurface 

production of CH4 was likewise higher in the flooded systems. Peak subsurface CH4 

concentrations, under both flooded and non-flooded conditions, occurred near the 

wastewater inlet and decreased above and below the inlet. Surprisingly, both well-

maintained and flooded leach field soil conditions resulted in high removals of 

nutrients (e.g. nitrogen and phosphorus). In contrast, COD removal was variable and 

was negatively impacted by flooding. Thus, the impact of flooded leach field systems 

may be greater for air quality than water quality. Nevertheless, flooding is likely 

negatively impacting ground water due to low COD removals. 

 In the final chapter, we further explored the dynamic relationship between an 
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increase in soil VWC and both surface and subsurface GHG production in leach field 

soils in situ by simulating a heavy rain event to rapidly increase soil VWC. The study 

consisted of two parts: first, baseline GHG surface flux and subsurface measurements 

during a one-month period and second, a simulated 2-in precipitation event with 

subsequent monitoring of surface and subsurface GHG production coupled to 

quantification of GHG cycling microbial populations’ presence and activity. In the 

first part, careful monitoring of leach field and control lawn soils for both subsurface 

and surface GHG production was done to understand conditions prior to a 

precipitation event. Baseline monitoring of both surface and subsurface GHG profiles 

confirmed there was no significant difference between leach field and control soils. 

After the simulated rain event, differences were observed in GHG flux patterns with 

emissions of CH4 and CO2 increasing immediately in both control and leach field soils 

while N2O pulsed immediately in leach field soils but was delayed in control soils. 

Subsurface concentrations between leach field and control soils were similar before 

and after the precipitation event. Before wetting, subsurface trends were similar to 

baseline measurements, with higher concentrations of CH4 measured in near-surface 

soils (0.2 m) as compared to deeper soils (0.5 m), and CO2 and N2O having opposite 

trends. Thirty minutes after rain, CH4 subsurface concentrations appeared to increase, 

before dropping down to pre-rain concentrations 3 hours post rain. In contrast, 

subsurface N2O concentrations appeared to decrease immediately after rain. CO2 

trends post rain showed the deeper samples decrease in concentration while shallow 

(0.2 m) concentrations increase.  

Together these three studies indicate that sustained flooding (i.e. continuous 

high soil VWC) is different from instantaneous ‘flooding’ from a rain event, in terms 

of GHG emissions to the atmosphere. The CH4, CO2, and N2O flux measurements 

herein reveal that the three greenhouse gases studied have differential temporal 
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responses to changes in soil VWC. Sustained flooding resulted in elevated CH4 

emissions, but did not necessarily result in elevated N2O or CO2 emissions. In 

contrast, an instantaneous increase in soil VWC, due to a rain event, resulted in 

elevated emissions of all greenhouse gases measured, albeit with different temporal 

trends post-precipitation. The findings from these studies suggest previous 

measurements of GHG emissions from leach field and control lawn systems may 

underestimate the net GHG production from these soils, particularly if systems have 

high soil VWC due to flooding or experiencing heavy rain events. 

5.3 Advancing the understanding of soil microbial communities controlling CH4 

and N2O cycling in soils 

Microbial communities are complex and heterogeneous in soils. They 

encompass a large number of genera that carry out diverse processes including cycling 

of greenhouse gases and nutrients. Notwithstanding their importance in GHG cycling, 

soil microbial communities have not previously been examined in leach field soil 

systems. This dissertation aimed to increase knowledge of GHG cycling microbial 

populations in soils with a particular focus on those soils above leach field systems. In 

Chapters 2 and 4, we provide the first measurements of biomarker gene abundances 

for microbial populations involved in GHG cycling in leach field soils. Chapters 2 and 

3, explored depth distributions of key GHG cycling microbial populations, and 

employed high-throughput sequencing techniques to analyze microbial community 

structure in leach field and lawn soils. Transcript abundances of key populations 

involved in GHG cycling were quantified in Chapters 3 and 4 in an effort to develop a 

correlation between activity of these key populations and measured GHG emissions 

and/or subsurface concentrations. The objective of these three chapters was to expand 

our current knowledge of soil microbial communities involved in GHG cycling with a 
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particular focus on how these communities respond to changes in soil volumetric 

water content. 

Although previous literature has shown that soil VWC can be a major driver of 

CH4 emissions and activity of methanogens and methanotrophs in peat bogs and rice 

paddy systems, the impact of flooding on microbial communities in leach field soils 

had not previously been studied (Freitag et al., 2010; Ma et al., 2013, 2012). Chapter 2 

aimed to address this using Illumina sequencing of 16S rRNA and functional gene 

amplicon libraries of mcrA and pmoA. High-throughput sequencing allowed us to 

explore microbial community diversity in soils under different treatments (i.e. leach 

field, control, and sand filter soils). 16S rRNA amplicon libraries revealed that soil 

VWC was a strong driver of microbial community diversity in leach field soils. Soil 

microbial community composition was also driven by CH4 emissions and N2O 

emissions to a lesser extent. qPCR quantification of microbial populations using 

functional genes involved in CH4 cycling (mcrA and pmoA, respectively) and N2O 

cycling (cnorB and nosZ, respectively) revealed that abundances of all GHG cycling 

genes were higher in situ in near-surface soils. Additionally, soil VWC was strongly 

correlated with higher gene abundances of both methane cycle biomarkers (mcrA and 

pmoA) but not the N2O cycling genes (cnorB or nosZ). This result suggests much of 

the GHG cycling, and therefore measured GHG emissions from soils, is a result of 

activation of microbial populations residing in near-surface soils. Furthermore, 

sustained high soil VWC was found to be a driver of CH4 emissions and CH4 cycling 

gene abundances but not of N2O emissions or N2O cycling genes. 

 In Chapter 3, we explored GHG cycling microbial communities in-depth using 

leach field soil columns constructed in the lab. Quantification of CH4 cycling 

populations with depth revealed that methanogens and methanotrophs reside 

throughout the profile but have maximum populations in distinct niches within the soil 
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profile. Methanogens were found in greater abundance near the wastewater inlet 

where septic effluent enters the soil column subsurface. In contrast, methanotrophs 

were found in greater abundance near the soil surface. Transcript abundances for mcrA 

and pmoA did not reveal a strong association with measured CH4 concentrations in the 

soil profile, but did follow a similar pattern to gene abundances with depth. High-

throughput sequencing of 16S rRNA, mcrA, and pmoA libraries indicated that 

significant shifts in microbial community diversity occurred due to prolonged 

increases in soil VWC. Additionally, long term flooding significantly reduced 

microbial community diversity in the failing leach field soil column in contrast to the 

well-maintained column. Sequencing of cDNA samples revealed that active soil 

microbial populations were distinct from those at the DNA level. These results expand 

our limited knowledge of soil microbial communities in leach field soils and the 

distinct depth profiles of different microbial populations involved in CH4 cycling. 

 In the third chapter, we again quantified abundances of key functional genes 

involved in CH4 and N2O cycling from leach field soils. In addition to gene 

quantification, we also measured transcript abundances of these biomarker genes to 

capture the relationship between a precipitation event, measured GHG emissions, and 

activity of populations controlling GHG cycling. As in Chapter 2, gene abundances of 

biomarkers for GHG cycling microorganisms did not vary between leach field and 

control lawns. Moreover, abundances did not change before and after a simulated rain 

event. However, we did see changes in transcript abundance ratios for production to 

consumption genes of CH4 (mcrA:pmoA) and N2O (cnorB:nosZ) cycling before and 

after rain. While the production-to-consumption gene transcript abundance ratio for 

CH4 increased after rain, the ratio decreased for N2O. These seemingly contradictory 

results for N2O may be due to primer selection. We quantified cnorB as opposed to, 

and excluding, qnorB, thus the findings reported here may underestimate the 
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denitrifier population capable of N2O production. To clarify results, either more 

primer sets could be used for qPCR to capture the diversity found in N2O cycling 

genes, or metatranscriptomes could be used to reduce bias from functional gene 

specific primer sets. 

 This dissertation as a whole aimed to understand the relationship between 

microbial communities responsible for GHG cycling of CH4 and N2O and measured 

GHG emissions in response to different soil VWC conditions. Ultimately, we found 

the soil microbial community structure and diversity was driven by soil VWC 

particularly under prolonged saturated conditions. In addition, we found that gene 

abundances of microbial populations involved in greenhouse gas cycling were higher 

in surface soils, but were found throughout the soil depth in column studies. 

Furthermore, this work revealed that microbial activity, as measured via gene 

transcript abundance, although ultimately not predictive of GHG production or 

consumption, was impacted by instantaneous changes in soil VWC. 

5.3 Limitations 

 Key findings in the presented studies are not without their limitations, which 

are discussed here to describe obstacles encountered that may provide insight for 

future work. Limitations included primer selection biases, workflow issues for RNA 

extractions and amplification, and lack of adequate number of replicates for soil 

samples particularly for soil nucleic acid analyses. 

 Primer biases are inherent in any PCR based method, and our studies relied on 

primers for both quantification and creation of amplicon libraries. For qPCR-based 

quantification we chose to use degenerate primers to target functional genes involved 

in CH4 and N2O cycling. While the mcrA and pmoA primers chosen targeted the well-

conserved genes of MCR in methanogens and pMMO in aerobic methanotrophs, the 
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primers also captured anaerobic methanotroph sequences. Thus, results of mcrA 

amplification were not necessarily limited to methanogens but may also include 

ANME-2D type reverse-methanogenesis organisms. Likewise for pmoA, non-specific 

amplification of the homologous amoA gene found in ammonia-oxidizing bacteria, 

and/or amplification of anaerobic nitrite-utilizing methanotrophs could lead to 

overestimation of the aerobic methanotroph population found in soils (Bourne et al., 

2001; Luesken et al., 2011). Similarly, the chosen primers for nosZ and cnorB 

amplification were not all encompassing. nosZ in particular has many relatively 

recently discovered atypical forms that cannot be captured with one set of primers 

(Sanford et al., 2012). Indeed, almost a dozen primer sets would be needed to capture 

the full diversity of nosZ (Hegarty, 2013). For the nitric oxide reductase enzyme, the 

two forms, qNor and cNor, complicate the ability to quantify this step accurately. Our 

studies focused on measuring the latter because of its specificity to denitrifier strains, 

however this also could lead to underestimation of nitric oxide reducing populations 

(Braker and Tiedje, 2003). Lastly, the 16S rRNA sequencing primers we selected 

resulted in biased amplification. The chosen primers were partial to Bacterial 

sequences and biased against Archaeal sequences, thus microbial community analyses 

based on the 16S rRNA amplicon libraries were weighted heavily to Bacterial 

sequences (Klindworth et al., 2013). Future work focused on recovering accurate 

relative abundances of Bacterial and Archaeal populations would require selecting 

and/or designing primers that are likely to capture greater diversity in the soil 

microbial community. 

 The second major obstacle for these studies was the workflow for mRNA 

extraction, reverse transcription, and quantification. This challenge also relates to the 

third main limitation, which was the limited size and number of soil samples that 

could be collected and processed for nucleic acids. This finite number of samples, 
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combined with the inherent variability across replicate measurements, may have 

obscured relationships between observed GHG emissions and presence and activity of 

GHG cycling populations. One of the main challenges in the mRNA workflow was the 

amount of soil required to be able to quantify the relatively low abundance of 

transcripts for key functional genes of interest in our studies. In lab, we tested multiple 

extraction methods to recover high quality mRNA from soils while at the same time 

attempting to minimize the amount of soil required for duplicate extractions of DNA 

and RNA to avoid substantially disrupting the study system. Reverse transcription and 

quantification steps were also complicated by the low abundance of gene transcripts 

we were targeting, thus requiring larger soil samples for extraction. Moreover, there is 

inherent difficulty in achieving representative soil samples, even with multiple, 

sizeable samples, due to the heterogeneity of soils, which can lead to small niches of 

high activity and other areas of relatively low activity. Thus, future work would 

benefit from increasing the number and size of samples taken per treatment or time 

point to better capture a complete picture of the soil microbial community. Another 

potential solution to this obstacle of soil heterogeneity would be to increase the 

number of samples extracted and subsequently pool the extracts to achieve an overall 

more representative sample. Additionally, batch studies where soils can be incubated 

under controlled conditions in replicates would create a simpler study system in which 

the full soil sample could be extracted for DNA and RNA analyses, thus avoiding the 

issue of soil heterogeneity all-together. 

 Future studies should work to further resolve the vertical and temporal 

responses of soil microbial communities responsible for GHG cycling to changes in 

soil VWC. Specifically, quantifying the vertical distribution and activity of these key 

GHG cycling populations coupled to measurements of GHG depth profiles would lead 

to a more complete understanding of net GHG movement and ultimately emissions to 
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the atmosphere. Elucidating the differential responses of microbial populations 

responsible for producing and consuming greenhouse gases to changes in soil VWC is 

key to a better overall understanding of greenhouse gas production from soil systems. 

5.4 Future Directions 

 These studies provide original conclusions about greenhouse gas fluxes from 

leach field and lawn soils as well as insights into microbial community structure and 

diversity in near-surface soils in general. Nevertheless, further studies in this study 

area can be done to add to the growing body of work on soil microbiomes, in 

particular those controlling greenhouse gas emissions in soil systems. Future work in 

this vein can take a variety of different avenues including quantification of pathogen 

removal efficiency in leach field systems, GHG emissions modeling in leach field and 

lawn soils, controlled batch incubation studies of leach field soils and 

metatranscriptomics of leach field and lawn soil microbial communities. 

 Our leach field column study did not address the question of efficiency of 

pathogen removal in leach field systems. Limitations due to the difficulty and safety-

risk of using real domestic wastewater in the lab deterred us from exploring this area 

of study, however it is important to understand the ability of leach field systems to 

effectively treat and remove potential pathogens before effluent comes into contact 

with ground and/or surface water. Thus, we suggest future work to quantify leach field 

systems’ efficacy in removing fecal indicator bacteria as well as viral, bacterial, and 

protozoal pathogens is a key research area that has not been well studied and should be 

further explored. In particular, elucidating how failing systems fair in terms of 

pathogen treatment as compared to well-maintained systems is essential to 

understanding septic systems’ overall impact on public health. 

 Modeling GHG emissions and microbial activity in leach field and other lawn 



187 

187 

systems could build on findings in this body of work. In these studies, we report data 

for presence and activity of key microbial populations involved in greenhouse gas 

cycling. These values, along with other measured soil properties (e.g. soil VWC), 

could be used to generate models for GHG emissions from lawn-covered soil systems. 

Additionally, batch studies aimed at exploring the relationship between soil VWC and 

microbial presence and activity of key populations involved in GHG cycling would be 

valuable for informing GHG flux models of lawn-covered soil systems. Climate 

models would benefit from a clearer understanding of the link between presence and 

abundance of GHG cycling populations and measured GHG fluxes from these soil 

systems. In our studies, we observed a correlation between elevated CH4 emissions 

and abundance of CH4 cycling biomarker genes, however there was no clear 

relationship between transcripts of the same biomarker genes and CH4 fluxes. 

Therefore, exploring the presence and activity of soil microbial populations in soils 

and their net GHG fluxes would help to improve GHG emission estimates from soil 

systems. Developing these correlations between microbial presence and activity and 

measured GHG fluxes to the atmosphere is essential for informing future global GHG 

models. 

 Soil metatranscriptomics would be an interesting next step in these studies and 

would lead to a better fundamental understanding of GHG cycling microbial 

community dynamics. While we were able to quantify the presence and activity of a 

portion of the GHG cycling community, metatranscriptomes would help elucidate the 

activity of populations we were not able to target with our limited primer sets. 

Populations that we did not quantify in our studies (e.g. atypical nosZ and qnorB for 

N2O or pmoA and mcrA of anaerobic methanotroph populations for CH4) could be 

revealed through metatranscriptomes and indeed could help to link activity of GHG 

cycling microbial communities to measured GHG production in soils.  
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This work has set the foundation for exploring leach field and lawn-covered 

soil microbial community responses to changes in soil volumetric water content and 

how these changes are ultimately reflected in greenhouse gas production in soils. Our 

studies focused on increasing the body of work in leach field and lawn-covered soils, 

however future studies in other soil environments (e.g. landfill soils, urban landscapes, 

etc.) would allow for a more complete picture of soil GHG cycling. Ultimately, 

changes in global climate patterns may increase precipitation and flooding events, 

which would impact the activity of GHG and nutrient cycling microbial populations. 

Therefore, studying how these soil microbial communities are affected by changing 

environmental conditions is critical to our understanding of dynamic GHG cycling in 

soils.
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APPENDIX 
 

A gas push-pull test (GPPT) was conducted in leach field and control soils to quantify 

microbial methane oxidation in situ using the soil gas vapor probes described in 

Chapter 4. The following is a brief description of the experiment and data not 

presented in Chapter 4 Supplemental Information. 

 

Experimental set-up 

The gas-push-pull tests consisted of a two-day back-to-back experiment using one soil 

gas vapor probe in each the leach field and control soils. On the first day, a mix of 

gases (including CH4 and tracer gases SF6 and He) was pumped subsurface into soil 

via the soil gas vapor probes in both leach field and control soils at a depth of 0.5 m. 

Immediately after the full volume of gas mixture was delivered, the pump was turned 

off and discrete samples were pulled and via the soil gas vapor probe stored in pre-

sealed, evacuated vials for next-day GC analyses (using the same GC method as 

described in Chapter 4). On the second day, the same gas mixture was pumped into the 

soil again via the soil gas vapor probes, however the gas mixture additionally 

contained acetylene (C2H2), a methanotrophic inhibitor. Samples were again pulled 

and stored in vials for analysis via GC. Differences between the day 1 and day 2 CH4 

concentrations over time indicate if any changes occurred in CH4 oxidation rates 

(presented in Chapter 4 Supplemental Information). 

 

 
 
 
 

 


