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The practice of rounding statistical results to two decimal places is one of a large 

number of heuristics followed in the social sciences. In evaluating this heuristic, the 

authors conducted simulations to investigate the precision of simple correlations. They 

considered a true correlation of .15 and ran simulations in which the sample sizes were 

60, 100, 200, 500, 1,000, 10,000, and 100,000. They then looked at the digits in the 

correlations’ first, second, and third decimal places to determine their reproducibility. 

They conclude that when n<500, the habit of reporting a result to two decimal places 

seems unwarranted, and it never makes sense to report the third digit after the decimal 

place unless one has a sample size larger than 100,000. Similar results were found with 

rhos of .30, .50, and .70. The results offer an important qualification to what is 

otherwise a misleading practice. 

 

It has happened to us before, but recently it occurred again. This time, however, after years of 

wondering, we decided to delve a little deeper. We were running a standard set of Pearson product–

moment correlations on a fresh data set to check for possible relationships among our study variables. 

We had complete data on 161 respondents and were particularly interested in the correlation between 

a specific predictor–outcome pair x and y, both assumed to be random and normally distributed 

variables. Running a standard software program, the correlation equalled .1547 (p>.05, two-tailed). This 

result left us puzzled, in that we had previously calculated the correlation between another predictor– 

outcome pair with the result that the correlation equalled .1552 (p=.05, two-tailed). On one hand, it 

thus seemed that whereas the first predictor–outcome pair was significantly correlated (p=.05), the 

other was not (p>.05), at least as judged by conventional standards (Sauley & Bedeian, 1989). On the 

other hand, was it possible that we would be actually more accurate in interpreting our results if we 

simply reported both correlations as equaling .15 and, thus, as significant? 

In pondering these contrasting results, we came to wonder about the precision of our statistical 

methods and, in particular, Pearson’s r. The Publication Manual of the American Psychological 



Association (American Psychological Association, 2001) advises authors to ‘‘express numerical values in 

the number of decimal places that the precision of measurement justifies’’ (p. 159), but it also 

recommends ‘‘in general, it is better to round to two decimal places’’ (p. 129). Common practice seems 

to follow the latter recommendation. Indeed, the Academy of Management (2007) style guide explicitly 

states, ‘‘Report only two decimal places for all statistics’’ (p. 473). Rounding to two decimal places is one 

of a large number of heuristics that are followed in the social sciences, often without question as to its 

logic or appropriateness (Vandenberg, 2006). We report correlations to two decimals, much like we 

accept an alpha of .05 as an appropriate cutoff for statistical significance, require coefficient alpha 

reliabilities of .70 and higher as evidence of internal consistency, report goodness-of-fit indices greater 

than .90 as evidence of well-fitting structural equation models, and look for eigenvalues greater than 

1.00 in determining the number of factors for rotation and interpretation when conducting exploratory 

factor analyses (Lance, Butts, & Michels, 2006). Whereas we realize that the practice of reporting results 

to two decimal places may not appear at first blush to be of consequence, we suggest that on deeper 

reflection its appropriateness merits no less scrutiny. Indeed, one might even see the irony in that all of 

the preceding heuristics are reported to two decimal places. Many of us have, no doubt, had the 

experience of reviewing papers for journals and from students that report correlations to three, and 

even four, decimal places. It is commonly accepted that two decimal places are enough, but what 

‘‘higher authority’’ underlies this conventional wisdom? 

Significant Digits and Confidence Intervals 

In the physical sciences, rules for determining the appropriate number of significant digits in a 

calculation are a standard topic discussed in introductory textbooks (e.g., Nowlin, 2006-2007). As 

explained in such discussions, the significance of a digit has to do with whether it represents a true 

measurement. It is also typically noted that whereas no measurements are exact, responsible reporting 

requires presenting results in a manner such that the smallest placeholder that can vary conveys a 

meaningful value. Yet in the organizational sciences, this issue seems rarely considered. Instead, results 

are reported to two decimal places because, well, it seems that this is just the way it is done. If a study 

reports a correlation between two variables of .15, one would hope that the 5 is not simply a random 

number. Stated directly, each number reported as a measurement should not degrade the precision of a 

result.i
 The 5 should, in some meaningful way, be more likely to represent a true measurement than any 

other trailing digit, such as 4 or 6. 



Concern over the precision of correlations presented as point estimates has led some 

methodologists to recommend the use of confidence intervals, which provide a range of plausible 

parameter values and, thus, are viewed as more informative (Zou, 2007). For a given investigation, 

confidence intervals reveal both the magnitude and the precision of an estimated effect. More 

important, with respect to the use of simple correlations, confidence intervals also provide a basis for 

establishing the accuracy and, thus, appropriateness of trailing digits. Indeed, a confidence interval can 

be used as a significance test, in that if it does not include the null value (usually zero), a sample 

correlation is said to be statistically significant. 

On the basis of our original example, we computed a traditional 95% confidence interval (i.e., 

1.96 sp, and again we realize we just arbitrarily reported using two significant digits) for a true 

correlation of .15 (with an n from our original example of 161).  

Given r =15 and n =161, Prob(-.007 to .315) = .95 

The high degree of uncertainty suggested by the width of this confidence interval provides a 

formal expression of probable sample error, in that, as with other sample statistics, the standard error 

of a correlation coefficient is inversely related to sample size. A reduction in a confidence interval is, 

thus, possible by increasing sample size. This said, however, because any further reduction varies as 1
√𝑛� ,  

obtaining smaller intervals for a given confidence level can require a dramatic increase in the number of 

participants necessary to enhance the power of appropriate statistical tests (Klugh, 1986, p. 188). 

A Simulation 

The issue at hand, however, is not that a correlation is ‘‘just’’ not quite significant at p<:05. With 

any statistical test, there will be thresholds for which some values fall barely to one side or the other. Of 

greater importance, and often unconsidered, is the meaning and precision of the trailing digits 

associated with a point estimate. Does the 5 in the .15 of our example mean anything, or is it simply a 

random number? 

In pursuing this line of thought, we conducted a simulation to investigate the precision of 

Pearson correlations. We wrote a computer program that generated two values (X and Y), based on a 

true relationship of .15. The procedure for the simulation was as follows: X was generated first as a 

random normally distributed number with a mean of 0 and standard deviation of 1. Y was then created 

as [(. 15) × X + �(1 −. 152) × error], where error was an independent random normally distributed 

number (M=0, SD=1). The process was repeated for the various sample sizes, and the entire process was 

repeated to obtain 10,000 correlations for each sample size condition. Simulations were conducted for 



sample sizes of 60, 100, 200, 500, 1,000, 10,000, and 100,000. After estimating the correlations to four 

decimal places, we then looked at the digits in the correlations’ first, second, and third decimal places to 

determine their reproducibility. Table 1 presents results examining the digit patterns for the observed 

correlations, without any rounding. In contrast, Table 2 presents the distribution of digits after rounding; 

in each set of three columns, the first column reports the distribution of digits had we rounded the 

separate correlations to a single decimal place, the second column had we rounded each correlation to 

two decimal places, and the third column had we rounded each correlation to three decimal places. 

For both tables, we tested whether the digits in each distribution appeared random. That is, we 

used a chi-square test to determine whether the distribution of the frequency of digits for each 

distribution was significantly different than what would be expected due to chance if the distribution 

were uniform. If we were unable to conclude that a distribution was not uniform, such that the 

probability of occurrence was the same for each digit, this would suggest that the decimal place 

occupied by the digit conveys no information. We also examined each distribution to determine 

whether the ‘‘correct’’ digit was the modal response. 

Referring to Table 2, when n=60 and n=100, the second decimal place is an imprecise estimate 

of the true value 5. Although a chi-square test reveals that the distributions of digits in the second 

decimal place are not random (i.e., we reject the null hypothesis that the distribution of digits comes 

from a uniform distribution at p<:001), the mode does not peak at the anticipated (i.e., ‘‘correct’’) 

number. That is, when the true correlation is .15, instead of 5 being the most common digit, the most 

common digit is 2 when n=60 and 1 when n=100: Stated differently, the second digit was precise (i.e., 5) 

only 10.47% of the time, whereas we would expect it to be precise 10% of the time, if only by chance 

(additionally, the observed frequency of 5 being observed was not greater than we would expect due to 

chance, based on a t test, at p=:13). When the correlation is reported to three decimal places, the third 

digit is essentially random (a chi-square test does not reject the null hypothesis that the third digit 

comes from a uniform distribution, at p=0:55). 

Without rounding (see Table 1), when the sample size is 200, 500, or 1,000, the first digit is 

correctly identified as 1 more than 50% of the time. It is, however, only when n=1,000 (or greater) that 

the distribution of the second digit is nonrandom and most commonly correctly identified as 5. The third 

digit, however, remains essentially random with (Table 2) or without (Table 1) rounding. Even when 

n=10,000, we cannot reject the null hypothesis that the distribution of digits in the third decimal place is 

uniform (p=:658 when not rounding and p=:071 when rounding). 



In our simulation, it is only when n=100,000 that we truly have precision to two decimal places 

and some confidence in the third. The first digit was correct 100% of the time (see Table 1), and the 

second digit had a true value (5) 96% of the time when reduced to two digits (see Table 2). Finally, with 

a sample size of 100,000, a test of the distribution of digits in the third decimal place did reject the null 

hypothesis that the distribution of digits was uniform when both rounded and not rounded (both 

ps<:001) and the modal response was the correct value of 0. 

Additional simulations were run, repeating the procedures described above, but for rhos of .30, 

.50, and .70. We ran these simulations to see whether there were notable differences in precision when 

using higher rhos, because higher rhos should have less variance in their observed correlations (Zho, 

2007). The results (available on request), however, present largely the same pattern. For both r=.30 and 

r=.50, the second digit of the correlation is random or does not have the appropriate modal response 

until the sample size is 500 or greater; for r=.70, the second digit is not accurate until the sample size is 

100 or greater. For all three additional simulations, the third digit appears random until n=100,000. A 

summary of the necessary sample sizes from our simulations to achieve precision in each respective 

decimal place is reported in Table 3. 



 



 



Precision Fallacy 

The lesson that seems evident from these results is to avoid overinterpreting data by reporting 

more decimal places than the data will support. Good (1968) has observed that 692 Organizational 

Research Methods ‘‘inexperienced statisticians often overestimate the degree of precision and 

objectivity that can be attained’’ in data analysis (p. 293). He referred to this tendency as the precision 

fallacy, wherein ‘‘when we know a machine or formal system . . . can produce an exact answer to a 

question, we are tempted to provide an answer and inquire no further’’ (p. 293). McCall and Bobko 

(1990) labeled this pseudoprecision (p. 389). They viewed such ‘‘precision’’ as a contextual effect and 

wondered what impact the computation of results to, say, six decimal places would have on researchers’ 

tendency to overinterpret data. In this connection, Cohen (1990) has advised that despite there being 

‘‘computer programs that report by default four, five, or even more decimal places for all numerical 

results,’’ as social scientists (in contrast to atomic scientists), we should know better because, as 

demonstrated in the present analysis, ‘‘these superfluous decimal places are no better than random 

numbers’’ (p. 1305). 

 
The tendency of social scientists to fall victim to the precision fallacy and overinterpret their 

data may, in part, be attributed to the fact that as Tukey (1969) has noted, philosophers tell us that data 

analysis should be ‘‘unequivocal and without error’’ (p. 85). Because absolute precision is unattainable 

in statistical analysis, however, there is nearly always the need to balance accepted method with 

judgment. Experience has shown that ‘‘there is no royal road to statistical induction, that the informed 

judgment of the investigator is the crucial element in the interpretation of data’’ (Cohen, 1990, p. 1305). 

Our opening example highlights this point by illustrating how, other things being equal, declaring the 

calculated value from a statistical test to be significant can be a somewhat arbitrary decision. 



In this respect, given that the Publication Manual of the American Psychological Association 

(American Psychological Association, 2001) recommends that ‘‘in general, it is better to round to two 

decimal places’’ (p. 129), our results offer an important qualification to what is otherwise a misleading 

guideline. When n is less than 500, the habit of reporting a result to two decimal places seems 

unwarranted; the second digit appears, according to our results, random. Concomitantly, it never makes 

sense, unless one has a sample size greater than 100,000, to report results beyond the first two leading 

digits. Readers who object to ‘‘throwing away’’ decimals might bear in mind Cohen’s (1990) conclusion 

that beyond being useless, uncertain digits are actually worse than random numbers, in that ‘‘the clutter 

they create . . . serves to distract the eye and mind from the necessary comparisons among meaningful 

leading digits.’’ To this, Cohen (1990) added, in such situations, ‘‘less is indeed more’’ (p. 1305). We 

suspect, however, that all too often researchers are readily mislead into thinking that ‘‘more is more’’ in 

their search for stars (i.e., asterisks indicating significance) in the decimal dust of their data. 
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i . To be ‘‘not random,’’ we mean that the 5 in the correlation .15 should convey more information than had we 
simply selected a random digit from 0 to 9. As explained anon, to represent this idea we examined the distribution 
of the frequency of digits for various correlations and tested to determine whether we could reject the null 
hypothesis that the distribution was uniform (i.e., that the likelihood of any single digit in the distribution was 
equally probable). Where we could not reject this hypothesis (at p<:05), we concluded that the decimal place 
occupied by a digit conveyed no information.  


