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The current state of robotics relies largely on hand designed morphologies

and controllers. This paradigm of robotics is well suited for controlled and

static environments like warehouses or factory floors, but this type of robot of-

ten fails to extrapolate to autonomous behaviors in unpredictable and dynamic

environments. In contrast, biological animals have evolved to seamlessly inter-

act with the uncertainty of the real world. They accomplish this feat, in part,

through specialized and complex morphologies that employ compliant materi-

als. In this work, I explore the interactions of autonomous embodied agents’

brains and bodies with each other, and with the outside environment, through

the evolution of soft robot morphologies and controllers. These interactions are

first explored by evolving robots that perform complex and effective behaviors

without high-level controllers in order to demonstrate the potential of morpho-

logical computation in compliant bodies. The study of morphological computa-

tion is further explored by also demonstrating effective behavior in tasks which

are unapproachable with traditional rigid body robots (like squeezing and fold-

ing oneself). The focus on morphologically-driven behaviors is extended by

evolving soft robots with neural-esque spiking muscles and demonstrating the

optimization of physically embodied information pathways, exemplify the con-

tinuum between morphologies and controllers in embodied systems. I then turn

to the simultaneous optimization of complex morphologies and high-level con-



trollers, using the theory of embodied cognition to hypothesize that the spe-

cialization of morphologies and controllers to one another has been hindering

the evolution of complex embodied machines. Results here demonstrate that

a proposed algorithm for “morphological innovation protection”, which tem-

porarily reduces selection pressure on newly mutated morphologies to enable

readaptation of the coupled brain-body systems, produces significantly more

fit robots and allows for their sustained optimization over evolutionary time.

Generalizing the above methods, the design automation techniques employed

here also are applied to problems outside of soft robots – demonstrating the op-

timization of object topologies towards a desired mechanical resonance. I hope

that the work described in this dissertation will help to inform the automated

design of embodied machines, like robots, for engineering applications, while

also contributing to the fundamental and general understanding of embodied

intelligent agents, and their evolution in natural systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Animals are able to effortlessly interact with the world around them, compen-

sating for dynamic environments and unpredictable events like rugged and un-

stable terrain or other agents. In contrast, the current state of robotics largely

consists of machines that are limited to performing repetitive tasks in static and

highly controlled environments, like factories or warehouses. The goal of this

work is to help understand some of the similarities and differences between bio-

logical and artificial agents (both their intrinsic properties and the optimization

processes that would allow such properties to come about), and to propose a

series of methods which would help allow us to create artificial machines that

interact with the world as seamlessly as biological organisms do.

Biological organisms have many advantages over robots that could poten-

tially account for the differences in their abilities. Of these, the complexity and

size of the brains of many animals (humans especially) is often emphasized as

the cause of their increased intelligence [296, 305, 236]. The emphasis on the

brain (rather than the body) as the source of intelligent behavior has been long

held, and is often traced to Cartesian dualism – in which Descartes argues that

the mind and body are distinct, and that the mind alone can exhibit thought

(with or without its body) [224, 242, 77]. This idea is further formalized in phi-

losophy as the mind-body problem [30].

The focus on the brain as the primary source of intelligent behavior and cog-
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nition also appears in the study of artificial intelligence, and can be traced back

to connectionism (the idea that intelligence is an emergent property arising from

the combination of many simple compenents like neurons) [90, 120] and per-

haps even more so from computationalism (the focus on symbolic reasoning

and computational programs run on internal mental representations) [231, 100].

However, an alternate hypothesis also exists for the nature and function of

cognition in embodied agents. The theory and study of embodied artificial in-

telligence emphasizes the role that the body plays in shaping the function, ef-

ficiency, and thought processes of intelligent agents [26, 27, 276, 121, 3, 49, 221,

219]. Considering (and optimizing for) the role of the body in intelligent be-

havior is especially relevant for the study of robots – as we desire machines

that physically interact with their environments in a seamless manner. Insights

gained into intelligent behavior also hold promise to better inform our under-

standing of the function and evolutionary design of the great diversity and effi-

ciency of body plans found in the natural world.

The benefits of embodiment can take effect in many forms. In the case of

morphological computation [222, 220], the organization of the body may al-

low for coordinated and sophisticated behavior with little or no neural input,

as is demonstrated by passive walking robots [59]. Compliant bodies can help

to simplify sensorimotor pathways – acting as a high-pass filter for smoothing

and integrating sensory information over time, or working as an underactuated

muscle to reduce the degrees of freedom necessary for motor commands [219].

It’s also been argued that the complex physical interactions of a body with the

environment can serve as the source of non-linear bases for reservoir comput-

ing [119].
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This focus on the role of embodiment also emphasizes more low-level and

instinctual “animalistic” behaviors, such as walking and locomotion, where

physical interactions between the body and the environment are rich and ap-

parent. As the goal of this work is to understand and design autonomous in-

teractions with uncertain environments, the compromise of focusing solely on

low-level behaviors is an acceptable one. Since animals are arguably far more

proficient than machines at these tasks, there is still much to be learned in this

restricted domain. Though it should be noted that the overarching concepts of

embodied cognition, and the morphological influence on learning can also be

applied to higher-level tasks as well [27, 306, 3, 219, 255, 22].

I am far from the first to focus on animalistic behavior as the foundation of

artificial intelligence. These animal inspired robots, or – as Wilson called them

– animats have long been studied [307, 198, 281], as they provide a simple and

straightforward toybox for the design of autonomous embodied agents.

This idea of a smooth continuum of forms, brain, and behaviors from simple

animals all the way up to humans is supported by the observation of highly con-

served regularities in the development and evolution of both brains and bodies

across many species [95, 50, 33, 233], providing even more confidence that this

foray into low-level animalistic behavior will lead to insights that may eventu-

ally scale up to human-level behavior.

This work also focuses largely around the idea of automated design. The

elegance of an algorithmically designed agent comes ultimately from the evolu-

tionary and developmental design of biological organisms. Though the practi-

cal application of automated design should not be understated.
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There do exist rare instances of engineered robots with the ability to over-

come unpredictable environments – the most notable of these exceptions is the

Boston Dynamics Big Dog [234]. However, this robot took tens of millions of

dollars and years of manpower to meticulously research and design. For al-

most all applications, such an investment would prohibit the construction of

such a robot. The ability to design a machine that is specialized for any given

environment in a matter of minutes or hours rather than years may open many

potential doors for the robot design at smaller scales. The ever increasing acces-

sibility of high performance cloud computing [145] and additive manufacturing

(e.g. in-home or for-hire 3D-printing services [191, 180, 308, 235]) have resulted

in significant reduction in costs for specialized design and manufacturing, mak-

ing such endeavors economical at small scales.

The added efficiency of design automation also comes from the differences

in the inspiration for these bio-inspired robots. For traditional biologically in-

spired robots (e.g. [295, 143, 234, 158, 111, 310]), inspiration is drawn from an

existing biological organism. This approach has the benefits of existing proof-

of-concepts and piggybacking on millions of years worth of evolutionary de-

sign. However it comes at the cost of having to understand and reverse engi-

neer all the relevant details of a biological organism (including understanding

it fully enough to determine which details are not relevant) and recreating sim-

ilar effects in a different artificial substrate. This painstaking task must also be

replicated for each unique paring of robot design and biological organism.

In contrast to this, the design automation tools in this work draws inspi-

ration from the design algorithm of evolution itself. While understanding and

replicating this algorithm is still a large challenge (and the subject of many ongo-
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ing works – including this one), the resulting design tools can then be applied to

create a wide variety of robots for a wide variety of tasks and environments with

little to no additional investments. There robots produced via these tools also

have the benefit of being optimized for their specific tasks and environments –

reducing the risk of specific behaviors or forms not translating well from natural

to man-made environments and tasks, while also allowing for the optimization

towards new and unique tasks which biological evolution has never previously

encountered.

Thus the focus on automated design specifically thereby addresses a current

need in the market of engineered machines. The lack of cheap and distributed

robotic design tools is currently the limiting factor for an industry and practice

that has seen the barriers of entry come down with the recent popularity of

distributed manufacturing and cloud computing. I feel that the design tools

demonstrated in this work represent the potential for completing the loop of

distributed and in-home design and manufacture of embodied machines (and

other engineered objects).

Finally, I hope that the study of the evolution of embodied machines may

also feed knowledge from computer science and engineering back into the bi-

ological sciences – including evolutionary biology, psychology, neuroscience,

anatomy and physiology, and many more.

I draw motivation from a fascination with the evolutionary process itself.

The idea that a “blind watchmaker” [72] would be able to create the diver-

sity, complexity, and efficiency of the plants and animals that we see on earth

today seems completely unintuitive and awe-inspiring. Despite the potential

for catastrophic environmental shocks [251] or mass extinctions from invasive
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species takeover [51], despite the cut-throat battle taking place between the

genes in our own DNA [73], despite the unlikelihood of finding beneficial mu-

tations through random genome transcription errors [300, 40], and despite the

physical world’s preference for entropy and chaos [32] life not only finds a way

to survive – but it prospers, grows, and complexifies over time.

While it may be impossible to study many parallel controlled and indepen-

dent replications of biological evolution, and highly unethical to mutate the

bodies or brains of living animals to study its effects on their cognition and

development, these tasks are straightforward to do in the simulation of evolv-

ing and developing embodied agents. It is my hope that these artificial agents

can serve as a controlled toybox for asking these theoretical bioloigcal questions

(e.g. [89, 174, 57]).

1.2 Background

The study of shape and form in biological organisms has long been a fascina-

tion for researchers. This dissertation coincides with the centennial of the first

edition of Thompson’s pioneering work in mathematical biology On Growth and

Form [287]. Computer scientists have attempted to replicate biological forms as

far back as Turing’s explorations into The Chemical Basis of Morphogenesis [294].

The understanding of the evolutionary design of these forms in nature was

widely introduced by Darwin’s work On the Origin of Species [70], and this un-

derstanding has been complemented by additional facets since then [260, 109,

266, 159, 110, 300, 33, 73]. The conceptual framework for a computational in-

stantiation of this idea again dates back to Turing’s “genetical or evolutionary
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search” [292]. The early implementations of a number of variants upon this idea

is credited to a wide array of pioneering works [16, 102, 4, 101, 238, 252], and

the popularization of genetic algorithms is often credited to Holland [131].

The use of these evolutionary and genetic algorithms to automate the design

of robots (deemed Evolutionary Robotics) is credited to a burst of activity in the

early 90’s [177, 99, 118]. Thought the tendency of the field, including these early

pioneers, is to only design controllers for hand-specified robot body plans [209,

23].

The first popular instance of extending the ideas of evolutionary robots to in-

clude the shape and form of a robot (optimizing its body plan, sensor, and motor

placements) was Sim’s Evolved Virtual Creatures [263, 264]. While this work was

outstanding for its time, the methods employed have not scaled well with the

increase of computing power, and many in the field still consider the original

results from this pioneering work – now decades old – to be the pinnacle for the

evolutionary design of morphologies and controllers in evolutionary robotics,

as the scale of evolved morphologies have not obviously increased since this

early work [105, 23].

Despite the lack of complexification in the evolved morphologies of embod-

ied machines, in the decades since Sims’ work there has continued to be tremen-

dous achievements in the evolution and understanding of evolved morpholo-

gies in the field – often coming at the interfaces of other engineering disciplines.

For example, Lipson and Pollack demonstrated the first example of the au-

tomated design and construction of a real-world physical robot through the

combined use of morphological design and 3D-printing [181]. The L-Systems
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employed by Hornby and Pollack to evolve virtual creature morphologies [139]

were employed to design the real-world physical structure of an X-band an-

tenna for the NASA Space Technology 5 spacecraft [182].

Pfeifer et al. review the implications of embodiment on both low-level and

high-level behaviors, such as self-stabilization and “how the body shapes the

way we think” [224, 219, 223]. Bongard shows how morphological change can

accelerate learning and lead to more robust behaviors [22].

Doursat et al. review a subset of evolutionary robotics deemed “mor-

phogenetic engineering” [83, 84]. This subfield consists of self-assembling,

swarming, developmental, grammar generating morphologies. Developmen-

tal robotics are particularly relevant to the creation of complex morphologies

in this work [150, 67, 147, 82, 68] (though – due to computational limitations

– the genetic encoding employed here relies on “exploiting regularity without

development” [274]).

It should also be noted that the term “embodied evolution” is often used

to specify the use of the real world as a simulator for a population of evolving

robots – such as in [303, 302] – rather than to refer to the optimization of the

morphology of a robot (either in simulation or reality), as I employ (and focus

this review on) for this work.

The focus on morphological computation from complex morphologies in

this work is also complemented by the presence and optimization of complex

materials. This work employs soft robots in particular, as their compliance and

(theoretically) infinite degrees of freedom enable rich non-linear physical inter-

actions with the environment. While the prior work on the evolution of mor-
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phologies and controllers for soft robotics is limited [241, 240], recent interest in

soft robotics has resulted in a number of fully-hand-designed soft morphologies

and controllers [258, 167, 259, 157, 213, 288, 17].

1.3 Contributions

This work serves as a contribution to the field of embodied artificial intelligence

by exploring the automated design of morphology-driven behaviors and ex-

amining the role of morphological computation in these optimized agents. It

also explores how morphologically-driven behaviors can be combined with tra-

ditional high-level neural controllers, and explores the distinction between the

two regimes of robotic control – attempting to blur the line between the two and

further expose the false dichotomy of “body” and “brain”. The content behind

these arguments are laid out over the following chapters:

• Chapter 2 introduces the problem and methods for the evolution of

soft robot morphologies – demonstrating the extreme of minimal con-

trol and maximal morphological computation. It does so by evolving

“embodiment-driven behaviors” which result solely from the placement

of various passive soft tissue and oscillating muscle cells – showing the

extent of effective and realistic-appearing behaviors in the absence of a

high-level controller.

• Chapter 3 notes that the task optimized for above (locomotion over flat

ground) is one that can be effectively solved by soft robots, but that it is

not a task that necessarily relies on the complex interactions of the robots’

material properties and the environment to perform. This chapter em-
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ploys the methods introduced in Chapter 2 for a task specific to soft robots,

demonstrating that one of the potential advantages of soft compliant robot

bodies is their ability to contort their bodies and squeeze through small

openings – a task which is not possible for rigid body robots.

• Chapter 4 extends the notion of morphological computation by further

blurring the distinction between high-level information processing and

embodiment-driven behaviors in these soft robots. This chapter incorpo-

rates low-level computation into the morphology of the robots by allow-

ing explicit information passing (in the form of “electrical impulses”) be-

tween neighboring cells, as well as non-linear action-potentials (“neuron-

like spikes”) within the muscle cells of the robot. The potential to perform

computations similar to those found in a neural network, and to dictate

how sensorimotor information and commands are sent to different parts

of the robot’s body seeks to mimic the function of high-level control using

only the low-level morphology of the robot.

• Chapter 5 attempts to incorporate the optimization of higher-level dis-

tributed controllers in addition to the morphological design demonstrated

above. This chapter points out some of the potential problems that pre-

vent traditional evolutionary algorithms from solving the coupled co-

optimization problem of evolving both the controller and morphology of

an embodied agent – and empirically demonstrates the lack of sustained

optimization in this type of system. Specifically, I hypothesize that the spe-

cialization of the morphology and the controller of an agent to each other

creates a fragile coupled system. This specialization means that any muta-

tion to the morphology or controller of an agent (even those which would

be beneficial in the long run) break the tight coupling between these two
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subcomponents and result in an immediate detriment to fitness – which

results in that mutation being discarded from the evolving population.

• Chapter 6 addresses the co-optimization of robot morphologies and con-

trollers, by proposing an algorithm which explicitly accounts for the prob-

lems and hypothesized underlying causes proposed in the Chapter 5.

Specifically, I address the problem of discarding mutations that break the

specialization of controllers to their accompanying morphologies and lead

to short term fitness drops. I address this problem by proposing a diver-

sity maintenance mechanism that allows newly mutated morphologies the

opportunity to readapt to their new morphologies. I demonstrate that this

method leads to more efficient and sustained optimization. This finding

provides confidence in both the presence of the previously hypothesized

issues, and our ability to confront them – opening the door for effective

co-optimization of morphology and control in embodied artificial agents.

• Chapter 7 provides an example of the application of the above method for

morphological design to a problem of structural engineering, suggesting

the potential for wider generalization of the techniques developed here for

tasks outside of robot locomotion. Specifically, we address the problem

of resonant frequency tuning in object design – a highly non-linear and

unintuitive design problem. I demonstrate the ability to optimize the first

ten resonant frequencies of a simulated fixed-free beam by evolving the

placement of stiff and soft materials in its construction (a problem that is

nearly impossible to solve by hand), and note how the optimization of

mechanical resonance of an object may help engineer better objects for

structural robustness or energy harvesting applications.
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• Chapter 8 exemplifies an additional example application of morphological

design – this time showcasing the design of artwork or consumer prod-

ucts. This chapter also demonstrates the use of human-in-the-loop selec-

tion mechanisms, and alternative user interface methods like eyetracking

– showcasing the extension of the above design techniques to domains in

which specifying a set of objective evaluation criteria a priori is not possi-

ble.

1.4 Format of the Following Chapters

The results of this dissertation are organized around seven papers submitted

to peer-reviewed conferences and journals (Chapters 2 through 8). These re-

sults are presented in their entirely, and in the order which best represents how

they fit into the goals and progression of the automated design of embodied

machines – which is not necessarily the order in which they were originally

published. Chapter 9 then provides a discussion on the cohesive argument sup-

ported by these individual works. That chapter also points the reader towards

additional readings in the form of seven other papers which were published

alongside the main argument during the course of this dissertation – often in

collaboration with others – to complement and support the results included

here.
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CHAPTER 2

DESIGN AUTOMATION OF EMBODIMENT-DRIVEN

BEHAVIORS IN SOFT ROBOTS

Abstract of Chapter 1

In 1994 Karl Sims showed that computational evolution can produce interesting

morphologies that resemble natural organisms. Despite nearly two decades of

work since, evolved morphologies are not obviously more complex or natural,

and the field seems to have hit a complexity ceiling. One hypothesis for the lack

of increased complexity is that most work, including Sims’, evolves morpholo-

gies composed of rigid elements, such as solid cubes and cylinders, limiting the

design space. A second hypothesis is that the encodings of previous work have

been overly regular, not allowing complex regularities with variation. Here we

test both hypotheses by evolving soft robots with multiple materials and a powerful

generative encoding called a compositional pattern-producing network (CPPN).

Robots are selected for locomotion speed. We find that CPPNs evolve faster

robots than a direct encoding and that the CPPN morphologies appear more

natural. We also find that locomotion performance increases as more materials

are added, that diversity of form and behavior can be increased with different

cost functions without stifling performance, and that organisms can be evolved

at different levels of resolution. These findings suggest the ability of generative

soft-voxel systems to scale towards evolving a large diversity of complex, nat-

ural, multi-material creatures. Our results suggest that future work that com-

1Appeared as: Cheney, N., MacCurdy, R., Clune, J., & Lipson, H. (2013). Unshackling Evo-
lution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In
Proceedings of the 15th annual Conference on Genetic and Evolutionary Computation (pp. 167-
174). ACM.
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bines the evolution of CPPN-encoded soft, multi-material robots with modern

diversity-encouraging techniques could finally enable the creation of creatures

far more complex and interesting than those produced by Sims nearly twenty

years ago.

2.1 Introduction

In 1994, Karl Sims’ evolved virtual creatures showed the potential of evolution-

ary algorithms to produce natural, complex morphologies and behaviors [263].

One might assume that nearly 20 years of improvements in computational

speed and evolutionary algorithms would produce far more impressive organ-

isms, yet the creatures evolved in the field of artificial life today are not obvi-

ously more complex, natural, or intelligent. Fig. 2.2 demonstrates an example

of similar complexity in robots evolved 17 years apart.

Figure 2.1: An example of a natural looking morphology and behav-
ior evolved by combining a generative encoding with voxel-
resolution soft, actuatable materials. The soft robot gallops
from left to right across the image with a dog-like gait.

One hypothesis for why there has not been a clear increase in evolved com-

plexity is that most studies follow Sims in evolving morphologies with a limited

set of rigid elements [171, 7, 6, 134, 181]. Nature, in contrast, composes organ-

isms with a vast array of different materials, from soft tissue to hard bone, and
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Figure 2.2: (left) The scale and resolution of robots evolved by Sims in 1994
[263]. (middle) The scale and resolution at which evolutionary
robotics commonly occurs today (from Lehman and Stanley,
2011 [171]). (right) The scale and resolution of robot fabrication
techniques (from Lipson and Pollack, 2000 [181]).

uses these materials to create sub-components of arbitrary shapes. The abil-

ity to construct morphologies with heterogeneous materials enables nature to

produce more complex, agile, high-performing bodies [290]. An open question

is whether computational evolution will produce more natural, complex forms

if it is able to create organisms out of many material types. Here we test that

hypothesis by evolving morphologies composed of voxels of different materi-

als. They can be hard or soft, analogous to bone or soft tissue, and inert or

expandable, analogous to supportive tissue or muscle. Contiguous patches of

homogeneous voxels can be thought of as different tissue structures.

Another hypothesis is that the encodings used in previous work limited

the design space. Direct encodings lack the regularity and evolvability nec-

essary to consistently produce regular morphologies and coordinated behav-

iors [56, 53, 273, 134], and overly regular indirect encodings constrict the design

space by disallowing complex regularities with variation [134, 271, 273]. We

test this hypothesis by evolving morphologies with the CPPN-NEAT encod-

ing [271], which has been shown to create complex regularities such as sym-
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metry and repetition, both with and without variation (Fig. 2.3). CPPN-NEAT

has shown these abilities in 2D images [253] and 3D objects [54] and morpholo-

gies [7]. To test the impact of the CPPN encoding, we compare it to a direct

encoding.

Overall, we find that evolution does utilize additional materials made avail-

able to it; their availability led to a significant amount of diverse, interesting,

complex morphologies and locomotion behaviors without hindering perfor-

mance. Furthermore, the generative encoding produced regular patterns of

voxel ‘tissue’, leading to fast, effective locomotion. In contrast, the direct en-

coding produced no phenotypic regularity and led to poor performance.

Because it is notoriously difficult to quantify attributes such as “impressive-

ness” and “complexity”, we make no effort to do so here. Instead, we attempt to

visually represent the interesting diversity of morphologies and behaviors that

evolved once evolution was provided with more materials and a sophisticated

encoding. We also demonstrate the ability for this system to scale to higher res-

olutions and greater material diversity without hindering performance. Finally,

we investigate the effects of different fitness functions, revealing that evolution

with this encoding and material palette can create different bodies and behav-

iors in response to different environmental and selective pressures.

2.2 Background

There are many Evolutionary Robotics papers with rigid-body robots [208].

However, few attempts have been made to evolve robots composed of soft ma-

terials [241], and most of those attempts are limited to only a few components.
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This paucity is due largely to the computational costs of simulating flexible ma-

terials and because many genetic encodings do not scale to large parameter

spaces [21, 147].

Figure 2.3: (left) Examples of high resolution, complex, natural-looking
images evolved with CPPN-NEAT that contain symmetry, rep-
etition, and interesting variation [253]. (right) Examples of
CPPN-encoded 3D shapes with these same properties [54]).

The CPPN encoding abstracts how developmental biology builds natural

complexity, and has been shown to produce complex, natural-appearing images

and objects (Fig. 2.3) [253, 54, 271]. Auerbach and Bongard used this generative

encoding to evolve robotic structures at finer resolutions than previous work.

The systems evolved demonstrated the ability to take advantage of geometric

coordinates to inform the evolution of complex bodies. However, this work was

limited to rigid building blocks which were actuated by a large number of hinge

joints [9, 7, 6], or had no actuation at all [5].

Rigid structures limit the ability of robots to interact with their environ-

ments, especially when compared to the complex movements of structures in
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biology composed of muscle and connective tissue. These structures, called

muscular hydrostats, often display incredible flexibility and strength; examples

from biology include octopus arms or elephant trunks [290]. While soft robots

can be designed that provide outstanding mobility, strength and reliability, the

design process is complicated by multiple competing and difficult-to-define ob-

jectives [290]. Evolutionary algorithms excel at such problems, but have his-

torically not been able to scale to larger robotic designs. To demonstrate that

evolution can design complex, soft-bodied robots, Hiller and Lipson created a

soft-voxel simulator (called VoxCad) [122]. They showed a preliminary result

that CPPNs can produce interesting locomotion morphologies, and that such

designs can transfer to the real world (Fig. 2.4) [124]. However, this work did

Figure 2.4: A time-series example of a fabricated soft robot, which actuates
with cyclic 20% volumetric actuation in a pressure chamber
[124]. This proof-of-concept shows that evolved, soft-bodied
robots can be physically realized. Current work is investigat-
ing soft robot actuation outside of a pressure chamber.
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not take advantage of the NEAT algorithm, with its historical markings, spe-

ciation, crossover, and complexification over time - which have been shown to

greatly improve the search process [275]. Additionally, these preliminary results

consisted of only three trials per treatment. Here we conduct a more in-depth

exploration of the capabilities of CPPNs when evolving soft robots in VoxCad.

2.3 Methods

2.3.1 CPPN-NEAT

CPPN-NEAT has been repeatedly described in detail [271, 56, 54, 104], so we

only briefly summarize it here. A compositional pattern-producing network

(CPPN) is similar to a neural network, but its nodes contain multiple math

functions (in this paper: sine, sigmoid, Gaussian, and linear). CPPNs evolve

according to the NEAT algorithm [271]. The CPPN produces geometric output

patterns that are built up from the functions of these nodes. Because the nodes

have regular mathematical functions, the output patterns tend to be regular (e.g.

a Gaussian function can create symmetry and a sine function can create repeti-

tion). In this paper, each voxel has an x, y, and z coordinate that is input into the

network, along with the voxel’s distance from center (d). One output of the net-

work specifies whether any material is present, while the maximum value of the

4 remaining output nodes (each representing an individual material) specifies

the type of material present at that location (Fig. 2.5). This method of separat-

ing the presence of a phenotypic component and its parameters into separate

CPPN outputs has been shown to improve performance [299]. Robots can be
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produced at any desired resolution. If there are multiple disconnected patches,

only the most central patch is considered when producing the robot morphol-

ogy.

2.3.2 VoxCad

Fitness evaluations are performed in the VoxCad soft-body simulator, which is

described in detail in Hiller and Lipson 2012 [125]. The simulator efficiently

models the statics, dynamics, and non-linear deformation of heterogeneous soft

bodies. It also provides support for volumetric actuation of individual voxels

(analogous to expanding and contracting muscles) or passive materials of vary-

ing stiffness (much like soft support tissue or rigid bone). For visualization,

we display each voxel, although a smooth surface mesh could be added via the

Marching Cubes algorithm [184, 54].

2.3.3 Materials

Following [123], there are two types of voxels: those that expand and contract at

a pre-specified frequency, and passive voxels with no intrinsic actuation, which

are either soft or hard. We expand upon [123] to include multiple phases of ac-

tuation. Unless otherwise noted, four materials are used: Green voxels undergo

periodic volumetric actuations of 20%. Light blue voxels are soft and passive,

having no intrinsic actuation, with their deformation caused solely by nearby

voxels. Red voxels behave similarly to green ones, but with counter-phase ac-

tuations. Dark blue voxels are also passive, but are more stiff and resistant to
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deformation than light blue voxels. In treatments with less than 4 materials,

voxels are added in the order above (e.g. two material treatments consist of

green and light blue voxels).

Figure 2.5: A CPPN is iteratively queried for each voxel within a bound-
ing area and produces output values as a function of the coor-
dinates of that voxel. These outputs determine the presence of
voxels and their material properties to specify a soft robot.
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Figure 2.6: CPPN-NEAT-encoded soft robots can scale to any resolution.
Pictured here are soft robots sampled at voxel resolutions of
5 × 5 × 5 (top-left), 10 × 10 × 10 (top-right), and 20 × 20 × 20
(bottom).
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2.3.4 GAlib

The direct encoding is from GAlib–fully described in [301]–a popular off-the-

shelf genetic algorithm library from MIT. In the direct encoding genome, each

voxel has its own independent values representing its presence and material

outputs. The first value is binary, indicating whether a voxel at that position

exists. If the voxel exists, the highest of the material property values determines

the type of voxel. Thus, a 10 × 10 × 10 (“103”) voxel soft robot with 4 possible

materials would have a genome size of 103 × 5 = 5000 values.

2.3.5 Experimental Details

Treatments consist of 35 runs, each with a population size of 30, evolved for 1000

generations. Unless otherwise noted, fitness is the difference in the center of

mass of the soft robot between initialization and the end of 10 actuation cycles.

If any fitness penalties are assessed, they consist of multiplying the above fitness

metric by: 1− penalty metric
maximum penalty metric . For example, if the penalty metric is the number

of voxels, an organism with 400 non-empty voxels out of a possible 1000 would

have its displacement multiplied by 1 − 400
1000 = 0.6 to produce its final fitness

value. Other CPPN-NEAT parameters are the same as in Clune and Lipson

2011 [54].
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2.4 Results

Quantitative and qualitative analyses reveal that evolution in this system is able

to produce effective and interesting locomoting soft robots at different voxel

resolutions and using different materials. We also discover that imposing dif-

ferent environmental challenges in the form of penalty functions provides an

increased diversity of forms, suggesting the capability to adapt to various selec-

tive pressures.

Videos of soft robot locomotion are available at http://tinyurl.com/

EvolvingSoftRobots. So the reader may verify our subjective, qualitative

assessments, we have permanently archived all evolved organisms, data, source

code, and parameter settings at the Dryad Digital Repository.

2.4.1 Direct vs. Generative Encoding

The CPPN-NEAT generative encoding far outperforms the direct encoding (Fig-

ure 2.8), which is consistent with previous findings [56, 53]. The most stark

difference is in the regularity of the voxel distributions (compare Figs. 2.1, 2.6,

2.12, 2.13 to Fig. 2.7). CPPN-NEAT soft robots consist of homogeneous patches

of materials akin to tissues (e.g. one large patch of muscle, another patch of

bone, etc.). The direct encoding, on the other hand, seems to randomly assign a

material to each voxel. These homogeneous tissue structures are beneficial be-

cause similar types of voxels can work in a coordinated fashion to achieve the

locomotion objective. For example, all the voxels in one large section of green

voxels will expand at the same time, functioning as muscle tissue. This global
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Figure 2.7: A representative example of a soft robot evolved with a direct
encoding. Note the lack of regularity and organization: there
are few contiguous, homogeneous patches of one type of voxel.
Instead, the organism appears to be composed of randomly
distributed voxels . The resolution is the default 103.

coordination leads to jumping, bounding, stepping, and many other behaviors.

In the direct encoding, each voxel works independently from–and often at odds

with–its neighboring voxels, preventing coordinated behaviors. Instead, final

organisms appear visually similar to those at initialization, and performance

barely improves across generations (Figure 2.8).

Another reason for the success of the CPPN-NEAT encoding is one of the key
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properties of the NEAT algorithm: it starts with CPPN networks that produce

simple geometric voxel patterns and complexifies those patterns over time [271].

2.4.2 Penalty Functions

To explore performance under different selective or environmental pressures,

we tested four different penalty regimes. All four require the soft robot to move

as far as possible, but have different restrictions. In one environment, the soft

robots are penalized for their number of voxels, similar to an animal having to

work harder to carry more weight. In another, the soft robots are penalized for

their amount of actuatable material, analogous to the cost of expending energy

to contract muscles. In a third treatment, a penalty is assessed for the number of

connections (adjoining faces between voxels), akin to animals that live in warm

environments and overheat if their surface area is small in comparison to their

volume. Finally, there is also the baseline treatment in which no penalties are

assessed.

While a cost for actuated voxels does perform significantly worse than a

setup with no cost (p = 1.9 × 10−5 comparing final fitness values), all treat-

ments tend to perform similarly over evolutionary time (Fig. 2.9). This rough

equivalence suggests that the system has the ability to adapt to different cost re-

quirements without major reductions in performance. However, drastically dif-

ferent types of body-plans and behaviors evolved for the different fitness func-

tions. There are differences in the proportions of each material found in evolved

organisms, indicating that evolution utilizes different material distributions to

fine tune morphologies to various environments (Fig. 2.10). For example, when
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no penalty cost is assessed, more voxels are present (p < 2 × 10−13). When there

is a cost for the number of actuated voxels, but not for support tissue, evolution

uses more of these inert support materials (p < 0.02).

More revealing are the differences in behaviors. Fig. 2.11 categorizes loco-

motion strategies into several broad classes, and shows that different task re-

quirements favor different classes of these behaviors. To limit subjectivity in

the categorization process, we made clear category definitions, as is common in

observational biology, and provide an online archive of all organisms for reader

evaluation (see Sec. 7.4).

Fig. 2.12 displays the common locomotion strategies and Fig. 2.11 shows

how frequently they evolved. They are described in order of appearance in

Fig. 2.12. The L-Walker is named after the “L” shape its rectangular body forms,

and is distinguished by its blocky form and hinge-like pivot point in the bend

of the L. The Incher is named after its inchworm like behavior, in which it pulls

its back leg up to its front legs by arching its back, then stretches out to flatten

itself and reach its front legs forward. Its morphology is distinguished by its

sharp spine and diagonal separation between actuatable materials. The Push-

Pull is a fairly wide class of behaviors and is tied together by the soft robot’s

powerful push with its (often large) hind leg to propel itself forward, which is

usually coupled with a twisting or tipping of its front limb/head to pull itself

forward between pushes. The head shape and thinner neck region are surpris-

ingly common features. Next, the Jitter (or Bouncer) moves by bouncing its

(often large) back section up and down, which pushes the creature forward. It

is distinguished by its long body and is often composed mainly of a single ac-

tuatable material. The Jumper is similar in that it is often comprised of a single
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actuatable material, but locomotes in an upright position, springing up into the

air and using its weight to angle its jumping and falling in a controlled fashion

to move forward. The Wings is distinguished by its unique vertical axis of ro-

tation. It brings its arms (or wings) in front of it, then pushes them down and

out to the sides, propelling its body forward with each flapping-like motion.

Fig. 2.13 demonstrates other, less-common behaviors that evolved.

These example locomotion strategies display the system’s ability to produce

a diverse set of morphologies and behaviors, which likely stems from its access

to multiple types of materials. Our results suggest that with even more materi-

als, computational evolution could produce even more sophisticated morpholo-

gies and behaviors. Note that different behaviors show up more frequently for

different task settings (Fig. 2.11), suggesting the ability of the system to fine tune

to adapt to different selective pressures.

2.4.3 Material Types

To meet its full potential, this system must scale to arbitrarily large numbers

of materials and resolutions. We first explore its ability to compose soft robots

out of a range of materials by separately evolving soft robots with increasing

numbers of materials (in the order outlined in Sec. 2.3.3). Adding a second,

and then a third, material significantly improved performance (Fig. 2.14, p <

2 × 10−6), and adding a further hard, inert material did not significantly hurt

performance (Fig. 2.14, p = 0.68). This improved performance suggests that

CPPN-NEAT is capable of taking advantage of the increase in morphological

and behavioral options. This result is interesting, as one might have expected a

28



drop in performance associated with the need to search in a higher dimensional

space and coordinate more materials.

2.4.4 Resolution

This system also is capable of scaling to higher resolution renderings of soft

robots, involving increasing numbers of voxels. Fig. 2.6 shows example mor-

phologies evolved at each resolution. The generative encoding tended to per-

form roughly the same regardless of resolution, although the computational ex-

pense of simulating large numbers of voxels prevented a rigorous investigation

of the effect of resolution on performance. Faster computers will enable such

research and the evolution of higher-resolution soft robots.
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Figure 2.8: The best individuals from 35 independent runs with a direct
or generative encoding. Note how the generative encoding
sees large improvements early in evolution, while it is explor-
ing new locomotion types. It then settles on specific types
and gradually improves coordination, timing, etc., to exploit a
given strategy. The direct encoding is unable to produce glob-
ally coordinated behavior to develop new locomotion strate-
gies, resulting in very minor improvements as it exploits its
initial random forms. Here, and in all figures, thick lines are
medians ±95% bootstrapped confidence intervals.
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Figure 2.9: Performance is mostly unaffected by different selection pres-
sures (i.e. fitness functions).
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Figure 2.10: The amount of each material that evolved for different cost
functions, revealing the system’s ability to adapt material
distributions to different environments. For example, with-
out a cost, evolution used more voxels to produce actuation
(p < 2 × 10−13). With a cost for actuated voxels, evolution
tends to use more inert support tissue (p < 0.02).
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Figure 2.11: Common behaviors evolved under different cost functions,
summed across all runs. These behaviors are described in
Sec. 2.4.2 and visualized in Fig. 2.12. Some behaviors occur
more frequently under certain selective regimes. For exam-
ple, the L-Walker is more common without a voxel cost, while
Jitter, Jumper, and Wings do not evolve in any of the no cost
runs.
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Figure 2.12: Time series of common soft robot behaviors as they move
from left to right across the image. From top to bottom, we
refer to them as L-Walker, Incher, Push-Pull, Jitter, Jumper,
and Wings. Fig. 2.11 reports how frequently they evolved.
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Figure 2.13: Time series of other evolved strategies. (top) Opposite leg
stepping creates a traditional animal walk or trot. (middle)
A trunk-like appendage on the front of the robot helps to pull
it forward. (bottom) A trot, quite reminiscent of a galloping
horse, demonstrates the inclusion of stiff material to create
bone-like support in longer appendages.
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Figure 2.14: The number of materials also affects performance. With only
one, only simple behaviors like Jumping or Bouncing are pos-
sible, so performance peaks early and fails to discover new
gaits over time. Upon adding a second material, more com-
plex jumping and L-Walker behavior develops. When a sec-
ond actuatable material is added, most behavior strategies
from Fig. 2.12 become possible. Adding a stiff support ma-
terial broadens the range of possible gaits, but is only rarely
taken advantage of (such as in the bottom gallop of Fig. 2.13)
and thus has a minimal impact on overall performance. These
observational assessments may be verified, as all evolved or-
ganisms are available online (Sec. 7.4)

2.5 Discussion

The results show that life-like, complex, interesting morphologies and behav-

iors are possible when we expand the design space of evolutionary robotics
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to include soft materials that behave similarly to organic tissue or muscle, and

search that design space with a powerful generative encoding like CPPN-NEAT.

Our preliminary experiments suggest that soft robotics at the voxel resolution

will someday provide complex and breathtaking demonstrations of lifelike ar-

tificial forms. Soft robotics will also showcase the ability of evolutionary design

because human intuitions and engineering fare poorly in such entangled, non-

linear design spaces.

We challenged multiple scientists to design fast, locomoting soft robots by

hand, using the same resolution and materials. While the sample size is not

sufficient to report hard data, all participants (both those with and without en-

gineering backgrounds) were unable to produce organisms that scored higher

than the evolved creatures. Participants noted the surprising difficulty of pro-

ducing efficient walkers with these four materials. This preliminary experiment

supports the claim that systems like the CPPN-NEAT generative encoding will

increasingly highlight the effectiveness of automated design relative to a human

designer.

This work shows that the presence of soft materials alone is not sufficient to

provide interesting and efficient locomotion, as soft robots created from the di-

rect encoding performed poorly. Our results are consistent with work evolving

rigid-body robots that shows that generative encodings outperform direct en-

codings for evolutionary robotics [139, 161, 56, 53]. Unfortunately, there have

been few attempts to evolve robot morphologies with CPPN-NEAT [5], and

there is no consensus in the field of a proper measurement of “complexity”,

“interestingness”, or “natural” appearance, so we cannot directly compare our

soft robots to their rigid-body counterparts. However, we hope that the reader
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will agree about the potential of evolved soft robots upon viewing the creatures

in action [http://tinyurl.com/EvolvingSoftRobots].

2.6 Future Work

The ability to evolve complex and intricate forms lends itself naturally to other

questions in the field. Auerbach and Bongard have explored the relationship

between environment and morphology with rigid robots in highly regular en-

vironments [7]. Because our system allows more flexibility in robot morphol-

ogy and behavior, it may shed additional, or different, light on the relation-

ship between morphology, behavior, and the environment. Preliminary results

demonstrate the ability of this system to produce morphologies well suited for

obstacles in their environments (Fig. 2.15).

While our research produced an impressive array of diverse forms, it did

use a target-based fitness objective, which can hinder search [312]. Switching

to modern techniques for explicitly generating diversity, such as the MOLE al-

gorithm by Mouret and Clune [202, 55] or algorithms by Lehman and Stanley

[171], has the potential to create an incredibly complex and diverse set of mor-

phologies and behaviors.

Additionally, we are currently pursuing methods to minimize the need for

expensive simulations and to evolve specific material properties instead of hav-

ing a predefined palette of materials. These avenues are expected to allow in-

creased complexity and diversity in future studies.

The HyperNEAT algorithm [272], which utilizes CPPNs, has been shown

38



Figure 2.15: An example of a soft robot that has evolved “teeth” to hook
onto the obstacle rings in its environment and propel itself
across them.

to be effective for evolving artificial neural network controllers for robots

[56, 169, 53]. The same encoding from this work could thus co-evolve robot con-

trollers and soft robot morphologies. Bongard and Pfeifer have argued that such

body-brain co-evolution is critical toward progress in evolutionary robotics and

artificial intelligence [219].

Soft robots have shown promise in multiple areas of robotics, such as grip-

ping [128] or human-robot interaction [245]. The scale-invariant encoding and

soft actuation from this work has potential in these other areas of soft robotics

as well.

In order to compare different approaches, the field would benefit from gen-

eral, accepted definitions and quantitative measures of complexity, impressive-
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ness, and naturalness. Such metrics will enable more quantitative analyses in

future work.

2.7 Conclusion

In this work we investigate the difficult-to-address question of why we as a field

have failed to substantially improve upon the work of Karl Sims nearly two

decades ago. We show that combining a powerful generative encoding based

on principles of developmental biology with soft, biologically-inspired mate-

rials produces a diverse array of interesting morphologies and behaviors. The

evolved organisms are qualitatively different from those evolved in previous re-

search with more traditional rigid materials and either direct, or overly regular,

encodings. The CPPN-NEAT encoding produces complex, life-like organisms

with properties seen in natural organisms, such as symmetry and repetition,

with and without variation. Further, it adapts to increased resolutions, num-

bers of available materials, and different environmental pressures by tailoring

designs to different selective pressures without substantial performance degra-

dation. Our results suggest that investigating soft robotics and modern gener-

ative encodings may offer a path towards eventually producing the next gen-

eration of impressive, computationally evolved creatures to fill artificial worlds

and showcase the power of evolutionary algorithms.
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CHAPTER 3

ENCOURAGING DIVERSE MORPHOLOGICALLY-DRIVEN

BEHAVIORS WITH UNIQUE ENVIRONMENTS

Abstract of Chapter 1

Soft robots have become increasingly popular in recent years – and justifiably so.

Their compliant structures and (theoretically) infinite degrees of freedom allow

them to undertake tasks which would be impossible for their rigid body coun-

terparts, such as conforming to uneven surfaces, efficiently distributing stress,

and passing through small apertures. Previous work in the automated deign

of soft robots has shown examples of these squishy creatures performing tradi-

tional robotic task like locomoting over flat ground. However, designing soft

robots for traditional robotic tasks fails to fully utilize their unique advantages.

In this work, we present the first example of a soft robot evolutionarily designed

for reaching or squeezing through a small aperture – a task naturally suited

to its type of morphology. We optimize these creatures with the CPPN-NEAT

evolutionary algorithm, introducing a novel implementation of the algorithm

which includes multi-objective optimization while retaining its speciation fea-

ture for diversity maintenance. We show that more compliant and deformable

soft robots perform more effectively at this task than their less flexible counter-

parts. This work serves mainly as a proof of concept, but we hope that it helps

to open the door for the better matching of tasks with appropriate morphologies

in robotic design in the future.

1Appeared as: Cheney, N., Bongard, J., & Lipson, H. (2015). Evolving Soft Robots in Tight
Spaces. In Proceedings of the 2015 annual Conference on Genetic and Evolutionary Computa-
tion (pp. 935-942). ACM.
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3.1 Introduction

Recent interest and developments in the study of soft robotics [31, 48, 189, 258,

277, 278, 289] have pointed towards a number of potential benefits of using soft

material in the design of artificial creatures.

Recent work has also demonstrated the use of evolutionary computation to

design effective soft robot bodies [43, 124, 197, 240]. Such an approach holds the

potential for significant impact, since the extreme nonlinearities and degrees

of freedom apparent in soft robots make their design unintuitive, compared to

traditional rigid body robots. The design automation inherent in evolutionary

computation removes the prerequisite of an intuitive understanding of these

systems for their effective design.

In reviewing the “lessons from biology” that soft robots should inherit, Kim

et al. note that “Soft materials are essential to the mechanical design of ani-

mals. . . These soft components provide numerous advantages, helping animals

negotiate and adapt to changing, complex environments. They conform to sur-

faces, distribute stress over a larger volume, and increase contact time, thereby

lowering the maximum impact force. Soft materials also lend themselves to

highly flexible and deformable structures, providing additional functional ad-

vantages to animals, such as enabling entrance into small apertures for shelter

or hunting. . . all of them can squeeze through gaps smaller than their uncon-

strained body. These are important lessons for building soft robots” [157].

However, up to this point, there has been no attempt to demonstrate the abil-

ity of these artificially evolved robots to perform the tasks which their biological

counterparts have been evolved for. This is especially important, as Kim et al.
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Figure 3.1: (counter-clockwise rotating-viewpoint time series starting from top
left). An evolved soft robot reaches through a hole in the side
of a cage surrounding it. The width of this aperture is smaller
than any of the dimensions of this creature – thus a robot of
the same size without a soft body would not be able to squeeze
through it.
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make explicit the intuitive notion that “Ultimately it is probably the ecological

niche that determines the evolutionary tendency to be stiff or soft” [157].

This work attempts to provide the first demonstration of an evolved crea-

ture for an explicitly “soft-body-oriented” task, by evolving creatures for the

task of “entrance into small apertures.” In this work, a soft robot bounded by a

11 × 11 × 11 maximum size is placed within a cage of a 15 × 15 footprint, with

height 11. The cage has holes in each side of its sides with a diameter of 10. This

aperture may be more restrictive than it first appears, as a square of side length

11 has an area of 121, while a circle of diameter 10 has an area of 78.5 (just

65% of the maximum potential face area of the robot). We evolve soft robots

to reach or squeeze through this aperture using the CPPN-NEAT evolutionary

algorithm, and demonstrate a variety of effective, creative, and entertaining be-

haviors (such as Fig. 3.1).

We hypothesize that softer, more deformable, robots will have an easier time

accomplishing these tasks. At either extreme, one could imagine that a (max-

imum size of 113) robot that is a rigid solid would be physically unable to fit

through a hole of diameter 10, while a creature composed of that volume of ex-

tremely soft material (liquid at the pure extreme) would easily flow through the

aperture. Of course, neither of these robots are likely to take on the structure of

a lattice of voxels, as our soft robots do (a rigid robot would be likely to include

joints, while a flowing liquid would require the free movement of particles), nor

would our soft body physics simulator be equipped to handle either of these

cases. Thus, we approach this investigation by comparing the ability of more or

less compliant soft robots to move through this aperture, and leave the reader

to extrapolate to these extreme cases.
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Secondarily, this work also demonstrates an example of multi-objective

NEAT with speciation. While this is not the focus of the paper, and thus we do

not provide comparisons to other examples of multi-objective NEAT without

speciation, it is a novel implementation and may be of interest to those hoping

to explore added diversity maintenance within multi-objective optimization.

3.2 Background

The notion of soft robots being good at squeezing though small openings has

been approached previously by hand designed robots. Sheperd et al. created

a molded silicon robot which was able to squeeze under a barrier with a 2cm

clearance (the maximum dimensions of the robot were 13.6cm × 5.9cm × 0.6cm)

[258]. However, the design of the robot’s morphology was created by hand, and

the robot was controlled manually via tethered pneumatic actuation.

Various examples of evolved soft robots have also been demonstrated

[43, 124, 197, 240], however they all focused on the task of locomotion over

flat ground. While not to say that soft robots do not hold any advantages for

locomotion over a smooth planar surface, the advantages of such an approach

are not as inherently apparent as a task in which rigid body robots are unable to

perform – such as navigating through an aperture smaller than the robot’s body.
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3.3 Methods

The source code (including a configuration file with parameter values) can be

found at: http://git.io/vfSLV

3.3.1 Simulated Task Environment

In this work (and consistent with [43, 124, 197]), these soft robots are simulated

in the soft-body physics simulator VoxCad [127]. Approximating an array of

soft voxels as lattice of points connected by simulated beams, this physics en-

gine is capable of efficiently modeling soft bodies, while maintaining physical

and quantitative realism. VoxCad creates actuation within these soft robots by

employing a sinusoidally varying global temperature. All passive cells (such as

the blue support tissue or gold cage voxels) are unaffected by this temperature

and remain a constant volume. Active muscle cells (two types: green and red)

vary in size as this temperature changes. They do so out of phase to one another,

with the green cells contracting then expanding, and the red cells expanding

then contracting. The variation in size due to these temperature changes results

in a 14% linear contraction/expansion from their baseline size, which results in

approximately a 48% volumetric change. Each individual’s evaluation period

lasted for 20 of these actuation cycles.

New to this study, each soft robot is placed within a cage at the beginning

of each simulation for fitness evaluation. The cage has dimensions 15 × 15 × 11,

leaving a one voxel gap between in the x and y directions between the edge of

the cage and the 11×11×11 maximum size of the evolved creature. The top is left
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open for ease of viewing – and no evolved creatures manage to fully escape out

of the top of the cage. The cage is simulated to be perfectly rigid and immobile,

as well as indestructible – forcing the robot to contort itself and travel through

one of the openings in the side of the cage. Each side has an opening which is

approximately (rounded to the nearest voxel) a circle of diameter 10 – thus in

the 15×11 side face of the cage, there is one voxel above the opening, two voxels

to one side of it, and three voxels to the other. This produces a circular opening

of area 78.5 (before being discretized to the nearest voxel), which represents

about 65% of the area of a full 11× 11 face of a soft robot (it’s maximum, but not

guaranteed size).

A modification to the default operation of VoxCad was necessary to ensure

that collisions detection between the cage and the robot ensured the robot was

never able to accidentally pass through a part of the cage other than the open-

ing. This modification caused collisions to be calculated between every voxel at

every time step (as opposed to just surface voxels in VoxCad’s default settings).

The expense of this technique varies with the surface area to volume ratio of

the evolved creatures, but it could result in as much as a six-fold slow down in

simulation speed.

3.3.2 Fitness Metrics

At the end of an individual’s 20 action cycle evaluation period, one of two met-

rics were taken to summarize its behavioral outcome. In one configuration, the

single farthest voxel from the center of the cage was recorded, and that voxel’s

position was returned to give the creature’s “maximum reach” score. This fit-
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ness criteria incentivized the robots to stretch as far out of the cage as possible –

and while leaving the cage entirely is one way to maximize this score, it was not

necessary to successfully attain a successful reach (e.g. for object manipulation)

outside of the cage boundaries.

To incentivize creatures to entirely leave the cage (important for locomotion

rather than object manipulation), trials of an alternative configuration were con-

ducted where the behavioral fitness score of an individual was total number of

voxels the robot was able to move outside of the cage by the end of the trial.

The total number of voxels (rather than the proportion of the creature’s mass)

was used at a method or further incentivize evolution to create large creatures

(as robots small enough to walk out of the cage without having to contort and

squeeze themselves through the aperture are less interesting for thus study).

In both cases, creatures were also incentivized along a second objective – to

maximize their size (Sec. 3.3.4. This metric was defined simply as the number

of voxels from which a creature was composed. However, one could certainly

imagine alternative size metrics (such as the diameter or maximal inter-voxel

distance of the creature).

3.3.3 CPPN-NEAT

Consistent with [43, 197], we allow the soft robots to optimize their topology

using the CPPN-NEAT evolutionary algorithm [5, 271].

The CPPN encoding represents the voxel phenotype as a network. This net-

work takes a voxel’s relative coordinates as inputs, and transforms this infor-
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Figure 3.2: A sketch of the genotype to phenotype decoding. For each
voxel in the potential design space, the relative coordinates val-
ues are taken and input into the network genotype. The mate-
rial of each voxel is assigned based on the output of the net-
work for that location. After each voxel has been individually
queried for its material properties, the external environment (a
cage surrounding the creature – Sec. 3.3.1) is put in place for
the fitness evaluation.
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mation into a material selection for that particular voxel. This transformation

takes place by querying each potential voxel (discretized cell in the 11 × 11 × 11

grid of the design space) with the same genotype network.

To query a voxel, the input layer of this network consists of four nodes, en-

coding the relative (-1 to 1) Cartesian coordinates (x, y, z) and polar radius (r)

of that voxel. The network is updated through a series of hidden nodes, and

produces real valued numbers for the three output nodes. Then a threshold (all

thresholds occur at zero) on the first output node determines whether that po-

tential voxel space contains a solid voxel or is empty space. If there is a voxel, a

threshold on the second output determines whether the voxel is a passive sup-

port tissue or an active muscle. If the voxel is a muscle cell, the final output

node determines which of the two out-of-phase muscle types the cell belongs

to.

Thus, similarities in coordinate values for nearby voxels produce gradual

changes in the expression of output values (i.e. morphogens) that determine

cell fate. This produces global structure in the resulting creatures. Further reg-

ularities are produced through the varying activation functions at each hidden

node. For example, a node which contains a Gaussian activation function would

create a symmetric pattern along the gradient of that node’s input values. Simi-

larly, a node with a sinusoidal activation function would create repetition along

its input gradient. As these transformations are applied one on top of another,

complex shapes quickly emerge [253].

A sketch of this genotype to phenotype decoding is provided in Fig. 3.2.

The authors also note that this study is not directly in regards to the encoding

employed, and will not explore the comparison of CPPN-NEAT to alternative
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encodings.

3.3.4 Multi-Objective NEAT

While the design flexibility afforded to the CPPN encoding creates a variety

of complex forms, it also allows for the evolved creatures to simply produce

topologies which would be smaller than the existing aperture, meaning that

there would be no need for them to squeeze through a tight opening, and the

resulting behavior would not be as interesting. To incentivize large forms which

still squeeze through the smaller aperture, we created a multi-objective imple-

mentation of the NEAT algorithm. With this implementation, we are able to

reward creatures for being large and also for squeezing though the aperture.

While various implementations of multi-objective NEAT have appeared re-

cently [172, 297, 250], we believe that our implantation happens to be the only

one which does not require the removal of the NEAT speciation (noted as one

of the key features of the NEAT algorithm [275]). Instead of removing specia-

tion and replacing it with a different diversity metric, or considering the added

diversity inherent in multi-objective search to be sufficient on its own, our im-

plementation performs a Pareto ranking of individuals within each species. We

then perform the traditional tournament selection based on this ranking.

It is also noteworthy to mention that other implementation decisions were

made to provide a bias towards the behavioral objective (squeezing through

the narrow aperture) above the static objective (being larger in size). This im-

plementation decision was made following the assumption that producing new

individuals who were able to move farther (but were smaller) was a more dif-
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ficult task than producing new individuals who were larger (but not able to

move as effectively). This stems from the observation that any individual who

adds one or more additional voxel to an existing fit phenotype would fulfill the

later category, while not all individuals who were smaller (and likely a very

small subset of them, who happened to be coordinated enough to improve their

movement and behavior) would prove to be Pareto optimal in the former sce-

nario. This intentional bias was instantiated by favoring locomotion behavior

over size when comparing two individuals on the same Pareto front, and also

by using the behavioral objective as the single objective required for NEAT’s

fitness sharing between species.

We should make explicit that this implementation of mulit-objective NEAT

is not the focus of this paper. Thus no claims or comparisons relative to other

implementations are presented, nor will the results section of this paper provide

any quantitative support for any of the implementation decisions made above.

Future work is needed to investigate multi-objective speciation in a variety of

task scenarios, in order to make claims of its suitability and potential advantages

or disadvantages within them.

3.3.5 Run Champions

Since this work relies on multi-objective optimization, the best resulting crea-

tures from each of the 30 independent runs will fall along a Pareto front (on

behavioral performance and size). While this variety is generally beneficial, it

makes comparison between trials and treatments more difficult. In order to sim-

plify the comparison, we provide a more specific definition of the optimal robot
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we seek to create.

Consistent with our preference for behavioral outcomes over size outcomes

(Sec. 3.3.4), we seek to optimize along the single objective of behavioral perfor-

mance (reaching or moving). However, moving through an aperture becomes

trivial if the size of the robot is less than that of the aperture, so we place a strict

size constraint on the robots we consider for run champions. This constraint

relates not to the volume of the evolved robots, but deals explicitly with a 2D

slice of the robot – which must fit through the 2D aperture of the cage.

In an effort to ensure that the evolved morphologies actually do have a full

11 × 11 face (and thus have to deform or compress themselves to “squeeze”

through the aperture on the side of the cage. In all comparisons below, we con-

sider only robots who have at least one 2D slice that spans the maximum 11

voxel width (at some point along the face) in both directions. Those robots who

do not have at least one slice (along the Cartesian coordinate axes) that meets

this criteria are thrown out and not considered in the analysis below. While we

realize that this is only a proxy, and not an exact match, for the criteria of need-

ing to constrict oneself to squeeze through the cage aperture, we believe it to

be a good first pass approximation – and informal visual inspection of evolved

topologies supports this belief.

At the end of each run, the evolved robot which meets this size criteria

threshold and demonstrates the farthest movement (or reaching) performance,

is considered to be the best individual (the “champion”) of that run. It is worth

noting that this thresholding process does not take place during the actual opti-

mization, but simply performed in post hoc analysis.
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3.3.6 Statistical Analysis

Any statistical values reported below come from the Mann-Whitney U test,

since normality of the distributions cannot be assumed. Since the distributions

are unknown (and in an effort to help inform the skew of the distributions) both

mean and median values are reported.

3.4 Results

Since this work serves only as a first-pass proof of concept and demonstration

of soft robots evolved to reach or squeeze through a small aperture, we primar-

ily seek to demonstrate that is possible to successfully evolve soft robots for this

task. For the case of reaching as far as possible outside of the cage, the best

evolved robots of each run are able to reach an average length of 15.69 voxels

(1.43 times their original body length of 11) outside of the cage (standard devi-

ation: 3.21 voxels, median: 15.18). The fact that their farthest point is more than

one original body length form the outside edge of the cage should not be an

indication that these creatures frequently were able to completely exit the cage

in the allotted time, as often they would unfold and spread out (e.g. Fig 3.3) to

reach a significant distance while still remaining partially inside the cage.

In response to selection for the total number of voxels outside of the cage, the

best of each run in the baseline conditions were able to move a mean of 140.30

voxels outside of their enclosure (median: 120.50). These results showed a great

deal of variation (standard deviation: 98.77 voxels), with the most fit creature

(on the movement objective) able to move 611 (of its 1130 voxels) out of the
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Figure 3.3: (counter-clockwise side-view time series starting from top left) This
creature, evolved for reaching, writhes back and forth in an
effort to unroll itself and produce a long “arm” which reaches
out from its cage.
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cage in the allotted time. The most fit creature of the run champions on the size

objective was able to fill all 1331 of its voxels, but only move 60 of them out of

the cage.

Perhaps a more compelling case for the ability to design squishy creatures

who are able to navigate through their enclosures is the visual inspection of the

resulting evolved soft robots. We believe that the diversity of forms and strate-

gies, the effectiveness of these creatures towards their behavioral goals, as well

as the clear necessity and use of physical deformation presented in the following

examples, more strongly supports the existence of effective and successful evo-

lutionary design than the values cited above. Here are a couple more examples

of this:

The top of each cage is intentionally left open – not for creatures to climb out

of, but for viewing purposes. Fig. 3.4 shows how this view of a reaching robot

clearly demonstrates an example of a creature which spans the entire frame of

the cage, yet is able to deform itself and fold its body in upon itself to pro-

vide additional reaching opportunities. While this creatures would be able to fit

through the aperture in its deformed state, it was simply incentivized for reach-

ing distance – and one of its “supports” in the upright starting position provides

an excellent “arm” for effortlessly reaching out through the aperture.

The case of a robot squeezing its entire body through the aperture is demon-

strated in Fig. 3.5, as this creature comes from a trial in which the entire mass

of the robot had to be moved (instead of simply considering its farthest reach-

ing voxel). This example clearly demonstrates a creature squeezing itself and

using its pliability to fit through an aperture smaller than the width of its body.

The frames of the time series in which the robot is moving through the aperture
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clearly show the sides of the robot curled and folded back in upon themselves,

creating a narrow enough girth to fit through the opening. This would not be

possible without the deformability of the soft materials. To our knowledge, this

creature represents the first evolved robot to fit though an opening smaller than

the width of its body.

3.4.1 Soft/Stiffness Comparison

We find it intuitive, and take for granted, that rigid body robots of equal size

and shape would be not able to navigate through the openings of the cages

presented here. This conjecture may not be more clearly demonstrated than in

the case of Fig. 3.1. This creature fills up nearly the entire potential voxel space

(leaving just a thin strip of empty voxels separating its front and back segments)

and spans the full 11 voxels wide on each face. However one may attempt to

turn or twist this robot, it would not be physically possible to fit it through one

of the apertures without deforming the creature. Despite this, the time series

of this creature clearly and simply demonstrates how it is able to deform itself,

folding and twisting the flat face of its front half to squeeze it through the tight

aperture and reach out of its cage.

However, the implementation of a completely rigid robot in this context (a

voxel array with no explicit joints) makes little sense. Thus a fair comparison

cannot be made between fully rigid and soft – so our comparison will be be-

tween two soft robots of varying stiffness. The above result provides the stiff(er)

creatures, which have a Young’s modulus (measuring tensile elasticity) of 10

megapascals (MPa). We also test a treatment which employs muscle and tissues
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Figure 3.4: (counter-clockwise top-view time series starting from top left) This
evolved soft robot demonstrates a pure reaching behavior,
where the majority of its body stays within the cage, but a ded-
icated arm reaches out through the aperture. This robot also
exemplifies a highly deformable structure. In its starting con-
figuration, its thin frame spans the entire inside of the cage,
yet once it is given the chance to deform, it folds in upon itself
to produce an entangled and complex morphology. Unlike its
initial configuration (which a rigid body robot would have to
stay in), the deformed morphology allows enough flexibility to
position itself next a hole in the cage and reach out through it.
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that are an order of magnitude more elastic (Young’s modulus of 1 MPa). For

contextual grounding, this is approximately the range of values corresponding

to the least elastic and the most elastic silicone rubbers. The more elastic (i.e.

softer) robots are able to move, on average, 174.43 voxels outside of the cage

(standard deviation: 69.18, median: 155.50). According to the Mann Whitney U

test, this is a significant increase from the stiffer treatment (with mean of 140.30,

standard deviation: 98.77, median: 120.50), with a one-sided p-value of 0.0002.

Additionally, the softer treatment also scores better on the second objective

for total voxel size. The softer robots (mean: 905.08, standard deviation: 266.20,

median: 971.63 voxels) were significantly larger than the stiffer robots (mean:

718.74, standard deviation: 306.13, median: 612.26 voxels), with a one-sided p-

value of 0.0107. Presumably this made it more difficult for them to fit through

the opening (though both treatments were subjected to the post hoc size thresh-

olding noted above, so neither one should be able to do so effortlessly).

This suggests that, at least for intermediate stiffnesses, softer robots are more

effective at squeezing through a small aperture.

3.4.2 Number of Materials

A surprising result from Figs. 3.1, 3.3, and 3.4 is that the creatures commonly

appear to be made out of only a single material. This is unlike previously pub-

lished results [43], where a figure is presented to demonstrate the variety and

consistency of the material compositions for locomotion over flat ground.

Fig. 3.5, which shows a creature rewarded for moving its entire body through
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the aperture, does exemplify multiple materials. Perhaps one might assume that

this task is more closely related to locomotion over flat ground, and thus more

likely to match the previous result of mult-material evolved soft robots noted

previously for that task.

However, the statistical data does not support this assumption. Run champi-

ons on the reaching task have, on average, 1.23 different materials (the median

number of materials is 1 for all tasks). In comparison, run champions from the

movement task tended to have even less material diversity, with an average

value of 1.20 materials per individual. Not surprisingly, there is no statistically

significant difference between material composition of robots evolved for the

two different tasks (p = 0.76).

An analysis of the the entire population (not just run champions) shows av-

erage number of different materials per individual of 1.36 and 1.37 (of reaching

and movement, respectively). While the difference is not statistically significant

(p = 0.19, 0.09), the fact that the run champions have a mean towards a lower

level of material diversity – compared to a randomly drawn individual dur-

ing the optimization process – may suggest that this task actually incentivizes

creatures to be of a single material to effectively and efficiently solve both the

reaching and traveling tasks.

3.4.3 Voxel Penalty

Also in slight disagreement with previously work in this area [43], is the notion

that larger creatures with more voxels are less able to move around. Cheney

et al. show a weak tie between robots composed of more voxels and more dis-
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Figure 3.5: (counter-clockwise top-view time series starting from top left)
This example of a multi-material soft robot squeezes entirely
through the aperture to escape the cage – as it is rewarded
for the movements of all its voxels. Notice in the lower three
frames how the creature’s body is clearly wider than the open-
ing of the aperture, yet it is able to squeeze and roll/fold it-
self up to fit through the tight opening. This is a prime exam-
ple of the abilities afforded by the deformable bodies of soft
robots. (Note: To fully escape the enclosure, this creature re-
quired more than the allotted 20 actuation cycles, and was thus
only able to do so in post hoc analysis.)
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tance traveled across flat ground. However in this scenario, more voxels lead

to worse performance metrics. This relationship is true of the reaching task

(slope = −11.99, r2 = 0.70) as well as the movement task (slope = −5.26, r2 =

0.51). This relationship is not surprising, as larger creatures have the obvious

disadvantage of struggling to fit through the narrow aperture. It is interesting

to note that the movement task in this work is more closely related to the task of

locomotion over flat ground (than is reaching), perhaps helping to explain why

larger sized robots correlate less strongly with negative behavioral outcomes in

the movement task.

3.5 Discussion

The results presented above clearly exemplify soft robots evolved to reach or

squeeze through apertures smaller than their own body, and are the first of their

kind to do so. We find the pictorial representations of these behaviors to be more

clarifying and convincing than the accompanying statistics, and are amazed at

the power of this evolutionary process to design creatures which achieve these

tasks in such creative and unintuitive ways.

The case of primarily single material creatures is slightly puzzling if one ap-

proaches the results expecting similar robots to those which tend to be evolved

for locomotion on flat ground. But a couple potential causes for the single mate-

rial beasts may be suggested. For the case of the reaching task, only the farthest

(and not the average) distance was incentivized. A long arm which contains

muscles of both types would have a part of the arm contract as the rest of it

extended (and vise versa) – potentially leading to hindered reaching abilities.
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Since the two muscle types contract with opposite sinusoidal actuations, and

only the reach at the last time step was recorded for fitness purposes, the mate-

rial composition of the robot was originally assumed not to affect its behavior

– as the simulations stopping point was chosen to come at the end of a temper-

ature cycle, where both muscle groups were supposed to be their original size

(and the same size as the support tissue). However, due to non-zero simulation

time steps, it is unlikely that this stopping point occurred when the voxels were

all exactly the same volume.

The case of single materials in creatures incentivized for movement follows

a similar logic of opposing muscle groups. These creatures were implicitly re-

warded for contracting as tightly as possible in order to squeeze their entire

body through one of the apertures. Once part way through the aperture, ex-

panding again is not a significant problem, since the soft body will simply de-

form around the edge of the opening. Thus, creatures with a continuous mus-

cle type are afforded the advantage of being able to constrict themselves more

compactly, with relatively little penalty for ballooning to a much larger size af-

terward.

The opposing selection pressures towards single material creatures in this

work and towards multi-material composition in previous results [43] suggest

that squeezing through an aperture and locomotion over flat ground require

different muscle contraction patterns. Additionally, the fact that these creatures

require more than 20 actuation cycles to produce a behavior which has them

entirely exit their cage suggests that there is room for significant gains in effi-

ciency. We believe that this points towards the potential (and perhaps necessity)

of a closed loop controller for this task. The feedback of sensory information
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(regarding position in or out of the enclosure, as well as normal force applied

against/from the structure) certainly hold the potential to encourage specific

pulling/pushing motions, which would effectively and efficiently squeeze the

soft robot through the opening. Furthermore, once the creature escaped the en-

closure, and the tactile feedback from the cage is no longer apparent, it would

be free to employ a movement pattern specifically tailored towards locomotion

over flat ground.

It is also unclear to what extent these traditional locomotion behaviors are

incentivized in the results above. One may imagine that a creature (once it has

unfolded to lay on the ground, as in Fig. 3.3) would benefit from the ability

to move along the surface, as doing so would push its farthest voxel further

away from the cage and also pull its back end further out of the cage (the se-

lected behaviors in both the treatments). However, one may also imagine that

such a significant amount of selection pressure involves navigating around the

cage, that any morphology alteration which benefits locomotion at the cost of

additional interference with the structure would results in poor fitness. This is

especially true when one considers the relatively short evaluation time of 20 ac-

tuation cycles (relative in comparison to the time it must take for a creature to

fully escape the cage, given by the fact that creatures here do not tend to do so).

In such a short period, the robots may not be on the ground (and at the edge of

the an opening) long enough to make significant gains by crawling out of it –

even if they happen to evolve the ability to do so. Extended trials of 100 actua-

tion cycles were performed for some of the run champions to explore this idea,

but no significant improvements were noted. This is not especially surprising,

given that these creatures had little (or no) selection pressure to evolve behav-

iors which would continue to be effective past the end of their evaluation peri-
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ods. To ensure that this is the case, the creatures would need to be evolved with

100 actuation cycle lifetimes for the entire optimization process (a treatment not

possible with our current implementation and the limitations imposed by our

Advanced Supercomputing Division).

3.6 Future Work

As this serves primarily as a demonstration and proof of concept, there is much

future work left to be done.

This work included a number of implementation decisions which should be

explored in a rigorous manner. The size of the cage, size of the aperture, shape

of the aperture, shape of the cage, size of the contractions/expansions, rate of

contractions, number of materials, stiffness of materials, length of evaluations,

and many additional parameters of the evolutionary algorithm itself were all set

arbitrarily or based on previously published parameter values [43]. A rigorous

exploration into this parameter space would likely lead to greater information

and understanding of the system.

Another improvement to this system would be the implementation of a more

sophisticated controller than VoxCad’s global temperature. This could take the

form of a high-level neural network controller, as is common in the field, or the

form of low level morphological computation, as was previously implemented

in this system [38]. While the deformability of soft robots plays a crucial part

in the ability of biological creatures to fit through small openings, so too does

their control – an aspect currently missing from the initial implementation of

this system.
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Additionally, the implementation of multi-objective NEAT with speciation

was not compared to prior multi-objective implementations of NEAT without

it. Such a comparison would need to be made if one desired to make any claim

of efficiency or desirability for this implementation.

A natural next step for future work, and perhaps the most exciting and open-

ended avenue of future work, is to investigate the evolution of other behaviors

which soft robots are particularly well suited for. These could include the afore-

mentioned conformation to surfaces or shock absorption, or could take the form

of higher-level behaviors relating to the brain-body interactions rather than the

body-environment interactions in these brain-body-environment systems. The

intersection of body shape, material, control, and environment are rarely stud-

ied in conjunction – yet each of these aspects plays a significant role in the be-

havior of an embodied system, and are desired in future work.

3.7 Conclusion

This work presents the first case of a soft robot evolved to perform a task specif-

ically suited for soft robots. Specifically, this entailed designing creatures to

reach or squeeze through a small opening – a task explicitly noted in the lit-

erature as one which soft robots are advantageous for. The interpretation of a

“small” opening was one in which an equally sized and fully rigid robot would

be unable to pass though, further supporting the claim that this task is one for

which soft robots are better suited than rigid robots – and thus represents a task

for which soft robots should be explicitly designed for. It was found that softer

robots were better suited for this task than their (slightly) more rigid counter-

66



parts. In optimizing these robots, we also demonstrate a novel implementation

of multi-objective NEAT, which relaxes the previous requirement of the removal

of diversity maintenance through speciation. While this work serves primarily

as an existence proof for evolved squishy robots squeezing through tight spaces,

we believe this work also serves as a statement that soft robots should be de-

signed for the tasks in which they excel, and thus we hope that this work opens

up a host of questions and future possibilities along this avenue.
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CHAPTER 4

INCORPORATING NEURAL INFORMATION PROCESSING

IN MORPHOLOGY-DRIVEN BEHAVIORS

Abstract of Chapter 1

The embodied cognition paradigm emphasizes that both bodies and brains

combine to produce complex behaviors, in contrast to the traditional view that

the only seat of intelligence is the brain. Despite recent excitement about em-

bodied cognition, brains and bodies remain thought of, and implemented as,

two separate entities that merely interface with one another to carry out their

respective roles. Previous research co-evolving bodies and brains has simulated

the physics of bodies that collect sensory information and pass that informa-

tion on to disembodied neural networks, which then processes that information

and return motor commands. Biological animals, in contrast, produce behavior

through physically embedded control structures and a complex and continuous

interplay between neural and mechanical forces. In addition to the electrical

pulses flowing through the physical wiring of the nervous system, the heart el-

egantly combines control with actuation, as the physical properties of the tissue

itself (or defects therein) determine the actuation of the organ. Inspired by these

phenomena from cardiac electrophysiology (the study of the electrical proper-

ties of heart tissue), we introduce electrophysiological robots, whose behavior is

dictated by electrical signals flowing though the tissue cells of soft robots. Here

we describe these robots and how they are evolved. Videos and images of these

1Appeared as: Cheney, N., Clune, J., & Lipson, H. (2014). Evolved Electrophysiological Soft
Robots. In the Proceedings of the International Conference on the Synthesis and Simulation of
Living Systems (Vol. 14, pp. 222-229).
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robots reveal lifelike behaviors despite the added challenge of having physically

embedded control structures. We also provide an initial experimental investiga-

tion into the impact of different implementation decisions, such as alternatives

for sensing, actuation, and locations of central pattern generators. Overall, this

paper provides a first step towards removing the chasm between bodies and

brains to encourage further research into physically realistic embodied cogni-

tion.

4.1 Introduction and Background

The fields of evolutionary robotics and artificial life have seen a great deal of

emphasis on embodied cognition in recent years [[43, 23, 239, 7, 124, 171, 9, 5,

223, 138, 181]]. There is even a paradigm called embodied cognition, which ar-

gues that the specifics of the embodiment (such as the morphology) are vital

parts of the resulting behavior of the system: It argues that the co-evolutionary

connection between body and brain is more deeply intertwined than the body

simply acting as a minimal physical interface between the brain and the envi-

ronment [[219]].

Recent work in evolutionary robotics has shown that complex behaviors can

arise when co-evolving bodies and brains. At one end of the spectrum, [5]

demonstrated the evolution of physical structures that had no joints or actua-

tors, and evolved to cover the largest distance in a controlled fall due to gravity.

While that work exemplifies the evolution of behavior emerging from morphol-

ogy alone, it does not co-evolve any actuation or control. [9] then evolved the

placement of CPG controlled rotational joints between cellular spheres, thus co-
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evolving morphology and control.

[43] evolved locomoting soft robots made of multiple different materials:

two passive voxels of differing rigidity and two actuated voxel types that ex-

panded cyclically via out-of-phase central pattern generators (CPGs). While

this work added a variety of soft materials and a new type of actuation, the

pairing of muscle types directly to a CPG again reflected a focus on evolving

morphology rather than sophisticated neural control.

Many examples in the literature include the co-evolution of a robot mor-

phology with an artificial neural network controller [[263, 181, 138, 171]]. These

studies (and many more like them) involve what might be called “ghost” net-

works: artificial neural networks that provide control to the body, yet do not

have any physical embodiment in the system they control. The state of input

nodes to these networks is often set by sensors in the robot and output nodes

typically signify behavioral outcomes in the actuators, but the computation is

done supernaturally, disjoint from the body itself.

In the age of 3D printing, it is a realistic goal for robots to physically walk

out of a printer. It is thus worthwhile to consider designing robots that can

be physically realized: i.e., those whose controllers are accounted for by being

physically woven into the design of the robot.

While the brains of animals are often a separate module within their bodies,

animals also have central and peripheral nervous systems extending through-

out their bodies. An extreme example of this is the octopus, which has as much

as 90% of its neurons existing outside of its central nervous system [[316]]. The

distributed and physical layout of the nervous system over space may con-
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Figure 4.1: Current flowing through an evolved creature. The legend for
voltage within each cell (colors) is given in Fig. 4.3.

tribute significantly to neural processing, as the delays and branching in axons

(the basis for nerves) are suggested to serve computational functions [[254]].

Despite the prevalence of embodied, distributed circuitry in nearly all of an-

imal life, the idea of an embodied nervous system has been absent from the

field of evolutionary robotics. The sub-field called Evolvable Hardware evolves

physical circuits for computer chips [[98]], but such work has not been ap-

plied to evolving the circuitry of artificial life organisms. We are unaware of

work with virtual creatures that have physically embodied control systems (e.g.

where neural circuitry physically runs throughout the body of the creature). We

present the first such work in this paper.

We propose a very basic model of electrical signal propagation throughout

the body of an evolved creature. This embodied controller is based on elec-

trophysiology (specifically at large scales, such as cardiac electrophysiology,

Fig. 4.2). Electrophysiology is the study of the electrical properties of biological

cells and tissues [[129]]. In this model, electrical pulses from a single central-

ized sinusoidal pacemaker (analogous to the sinoatrial node – the pacemaker in

the heart [[28]]) are propagated through the electrically conductive tissue of the

creature. The location and patterning of this conductive tissue is described by
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an evolved Compositional Pattern Producing Network (CPPN) genome. Evolu-

tion controls the shape of the body and the electrical pathways within it, which

both combine to determine the robot’s behavior.

The model involves conductive tissue cells that collect voltage from neigh-

boring cells, causing an action potential (spike) if the collected voltage exceeds

the cell’s firing threshold (Fig. 4.3). Once this threshold is crossed, the cell depo-

larizes, causing a voltage spike that excites neighboring cells. This voltage spike

is followed by a refractory period, during which the cell is temporarily unable

to be re-excited.

This model allows for the propagation of information through the body of

the creature in the form of electrical signals. The structure of this flow is pro-

duced entirely by the topology of the creature and the state of each cell’s direct

neighbors. In this sense, the model can be seen as a form of distributed informa-

tion processing. One could draw similarities between this model and a 3D-grid

of neurons, where each neuron receives inputs from, and has outputs to, its im-

mediate neighbors. In this analogy, we are evolving where neurons should exist

in the grid, what type of material the neuron is housed in, as well as the material

type, if any, of grid locations that do not contain neurons.

The placement of material, which is under evolutionary control, directly de-

termines the resultant behavior of the organism. Cells that actuate will contract

and expand as they depolarize (much like the contraction of cardiac muscles),

leading to the locomotion behavior of the creature. In order to control the signal

flow throughout the creature, insulator cells are allowed, which are unable to

accept and pass on the signal. Evolution can also choose not to fill a voxel with

material. The morphology of the simulated robot and tissue type at each cell is
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Figure 4.2: An example of complex electrical wave propagation in cardiac
modeling [[93]].

determined by a CPPN genome.

This model examines the evolution of embodied cognition at a more detailed

level of implementation than is typical in the literature – with embodied con-

trol circuitry resulting directly from the morphology of the individual creature.

While this study only covers the classic problem of locomotion, it is a step to-

wards truly physically embodied robots.
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4.2 Methods

4.2.1 CPPN-NEAT

The evolutionary algorithm employed in this study is CPPN-NEAT. This algo-

rithm has been previously described in detail [271, 274, 5, 43], so it is only briefly

described here.

A Compositional Pattern Producing Network (CPPN) [[271]] is variation of

an Artificial Neural Network (ANN) [[196, 98]] where each node can have one of

many mathematical functions as an activation function (e.g. sine, cosine, Gaus-

sian, sigmoid, linear, square, or positive square root) instead of being limited

to a sigmoid activation function. In CPPN-NEAT, a design space is discretized

into individual locations (in this case a 3D space is discretized into a 10× 10× 10

grid of voxels, for 1000 total voxels). The CPPN is queried once per voxel to

determine the phenotypic state at that location (in this case, whether a voxel is

present and, if so, the material type). The inputs to the CPPN network for each

location are different: specifically, they include one input node for each dimen-

sion of the space (here, reporting the x, y, and z values of that location), as well

an input that reports the distance (d) from the center to the location. The net-

work also features output nodes for each material property. There are three in

this study: one node specifies if a voxel exists at the queried location, the sec-

ond decides if the material at that location is conductive, and the third decides

whether or not the material is an actuated muscle (the latter two only matter if

the voxel is present).
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Figure 4.3: (top) A depiction of an action potential. Notice how the volt-
age is below the threshold until a stimulus event (such as a
pacemaker or neighboring cell spike) pushes the voltage to the
threshold value. Once this threshold is met, a voltage spike
occurs via a process called depolarization. The cell excites its
immediate neighbors during this process. Following the ac-
tion potential, the cell enters a fixed length refractory period,
during which it is physically unable to produce a new action
potential. Finally, the cell returns to its resting state, able to
start the process again when a new stimulus arrives. (bottom)
These phases of the action potential cycle are mapped to the
color code used to visualize the soft robots in Figs. 4.1, 4.4, and
4.5. Image licensed via Creative Commons.
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4.2.2 Conductive VoxCad

Fitness is evaluated in the VoxCad soft body simulator [[127]]. Its dynamics

have previously allowed the evolution of complex and lifelike behaviors in soft

robots, as it can simulate muscle contractions [[43]]. Further details about Vox-

Cad can be found in [125].

This work adds electrophysiology to VoxCad by adding a simple action-

potential model, acting on the scale of a single voxel (analogous to a cell). Each

voxel has an immediate membrane potential level (the difference between the

electric potential inside and outside the cell), as well as a threshold membrane

potential level. In an action-potential model (Fig. 4.3), a cell’s resting potential

is below that of the threshold potential. When the membrane potential reaches

its threshold value, the cell depolarizes, causing a spike in the cell’s membrane

potential and voltage.

Following the depolarization, the cell hyperpolarizes, dropping the voltage

and membrane potential below their original values, as the cell enters a refrac-

tory period. During this refractory period, the cell is unable to be depolarized

again. In biological cells, the refractory period also consists of a relative refrac-

tory period when the cell is able to be depolarized, but only by unusually high

voltage levels. For simplicity, we ignore this aspect in our model, and consider

only the absolute refractory period, during which depolarization is disallowed.

This refractory period means that the current is unable to flow backwards to-

wards recently depolarize cells, causing the unidirectional propagation of action

potentials in a wave across the cells.

A cell’s action potential (starting with the beginning of the depolarization
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phase in Fig. 4.3) triggers a sinusoidal expansion/contraction of that cell with a

maximum amplitude of 39% linear expansion per voxel side.

A given cell may transmit current to any other cell that it is physically touch-

ing. In 3D, this rule means that up to 26 neighboring voxels (the “Moore neigh-

borhood”) can be activated by a single voxel. The threshold potential of each

cell is set such that it will be excited if, and only if, at least one of its neighboring

cells undergoes an action potential that causes that cell’s voltage to spike. The

time it takes a cell to excite its neighbor is half of its depolarization period. This

delay in excitation means that the electric signal does not instantly activate all

contiguously connected cells, but rather spreads outwards in a wave-like pat-

tern of muscle actuation.

Cells may be of any of the following types: empty, conductive muscles, in-

sulating muscles, conductive passive tissue, insulating passive tissue, or a pace-

maker cell. Near the center point of the discretized 10 × 10 × 10 design space,

a lone pacemaker is placed (cell number 555 out of 1000). Analogous to the

sinoatrial node in cardiac electrophysiology, this pacemaker node serves as the

source of electric stimulation for the entire system. Insulating cells are similar

to the cells explained above, except that they are unable to accept current from

neighboring cells and thus never reach their threshold potential or produce an

action potential.

In this model, the refractory period lasts 5 times as long as the depolarization

period. This means that at least 5 voxels must separate the leading edges of two

serial action potential waves. Since the pacemaker is placed in the center of the

10 × 10 × 10 space, approximately one wave of action potentials would exist at

any given time in a setup with a uniform cube of entirely conductive material –
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where a wave of action potentials would propagate uninterrupted, with a new

one starting around the time the first reaches the outer edge of the space. We

chose this setup to encourage the evolution of static gaits, which can be more

robust and transferable to reality than dynamic gaits [[18]].

The length of the expansion/contraction period of each node is set equal to

the refractory period, such that each cell is guaranteed to be fully returned to its

original size before its next actuation cycle begins.

4.2.3 Task and Fitness Evaluation

Following [43], we evolve these electrophysiological robots for locomotion over

flat ground. This simple task and environment make fitness evaluation easy.

Despite its simplicity, the task is a classic problem in the field, and has been

repeatedly shown to produce an array of complex morphologies and interesting

behaviors [[43, 53, 56, 10, 171]].

Each creature is simulated for 20 times the length of an expan-

sion/contraction cycle. Its displacement between the starting coordinates and

the creature’s final center of mass (in the xy plane) is recorded. In an effort to

discourage designs that might excite as many cells as possible, and to encour-

age designs with sparse spindles of connectivity (similar to the peripheral ner-

vous system), the distance traveled is multiplied by 1 − (# of conductive cells)
1000 . Thus the

fitness function incentivizes minimizing the amount of conductive tissue and

maximizing the distance traveled. While a multi-objective technique may be

ideal in finding the optimal tradeoff between these goals, we follow previous

CPPN-NEAT research in using this single, multi-part fitness function [[43, 8]].
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4.2.4 Experimental Parameters

Unless otherwise noted, each treatment described below consists of 48 indepen-

dent runs (with identical initial conditions across treatments). Each run consists

of a population size of 30 individuals evolved for 1000 generations. Unless oth-

erwise noted, all other parameters are consistent with [43].

4.2.5 Statistical Reporting

Because the data are not normally distributed, all plots show median fitness

(thick, center lines) bracketed by two thin lines that represent 95% bootstrapped

confidence intervals of the median [[268]]. For the same reason, all p-values are

generated with the non-parametric Mann-Whitney-Wilcoxon Rank Sum test,

which does not assume normality. Reported p-values compare the distance

traveled by the top organism for each of the 48 runs at the final (1000th) gen-

eration. Plots report distance traveled, not adjusted fitness (which penalized for

the number of conducting voxels as explained previously).

4.3 Results

Since this is the first study of evolved electrophysiological robots, there are

many unanswered questions regarding the design and implementation of such

a system. Many arbitrary design choices were made during the initial imple-

mentation. Here, we examine the impact of some of these choices.

As with many explorations in evolved virtual organisms, one of the main
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Figure 4.4: An action potential wave propagating across a mostly homo-
geneous surface. (left, single robot): The robot has a large patch
of continuous conductive muscle on its back. In this pre-
simulation state, cell colors signify the following: orange cells
are conductive, blue cells are non-conductive; dark colors (blue
or orange) signify muscle cells, while lighter colors (blue or or-
ange) signify non-actuatable cell tissue; the red cell at the bot-
tom is the robot’s pacemaker cell. (right, 3 × 4 grid of robots):
A progression over time (left to right, top to bottom) shows
the wave-like propagation of the action potential phases (color
meanings are described in Fig. 4.3). Note how the action poten-
tial emerges from the center, stimulated by the wave propagat-
ing out through the conductive tissue from the pacemaker be-
low it. Following the light blue depolarization, the yellow and
red phases show the longer lag of the refractory period, follow-
ing in exactly the same pattern made by the leading edge of the
action potential wave. As the wave fully passes, the cells return
to their dark resting state and are thus able to spike again with
a new action potential when the next wave comes.
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Figure 4.5: A more complex electrophysiological robot. (left robot): Con-
trary to Fig. 4.4, this creature shows complex patterning of
the orange conductive tissue within the insulating blue tis-
sue. (right three robots): As they unfold over time (left to right),
the action potential waves in this robot produce a highly frac-
tured, counter-intuitive actuation pattern that involves electri-
cal signals flowing through long, sparse connective corridors
and around corners (an explanation of the colors is provided
in Figs. 4.3 and 4.4). The result is an interesting and unex-
pected behavioral pattern wherein the creature mashes and
spins the left side of its body, which is separated from the
larger, right side of its body by a large, oddly shaped inter-
nal cavity. Despite this bizarre behavior, it effectively loco-
motes. This behavior and others can be viewed on Youtube
at: http://goo.gl/CvJp4l.

goals is complex, natural-appearing behavior. However, there are no satisfac-

tory metrics for the “naturalness” or complexity of evolved behaviors. For this

reason, we must rely on our qualitative, subjective assessments. A video of the

evolved behaviors can be seen on the “Cornell Creative Machines Lab” Youtube

channel, or found directly at this link: http://goo.gl/CvJp4l. We believe

the behaviors are interesting, complex, and lifelike – at least as much as in [43]

– despite the added challenges of evolving physically embedded control.

We observed that physically instantiated control circuitry can produce both

predictable and chaotic behaviors. Fig. 4.4 shows a simple wave of action poten-

tials propagating outwards from the center of the creature, with little interrup-

tion. Fig. 4.5 reveals the evolution of unpredictable physical dynamics that still
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Figure 4.6: The effect of the placement of the central pattern generator
(CPG) on the evolved speed. In one treatment, the CPG is
placed at the top corner of the 10 × 10 × 10 design space (voxel
999). This treatment performs slightly, but significantly (p =

3.43 × 10−4), better than another treatment that places the CPG
at the center of the top plane of the bounding box (voxel 955).
Outperforming both of these (p < 4.91 × 10−11) is the baseline
treatment in which the CPG is always placed as close to the
center of the bounding box as possible.

produce functional behavior. Notice the multiple “inputs” to a potential self-

sustaining circular pathway. Fig. 4.1 demonstrates a circular actuation pattern

of intermediate complexity, due more so to changes in the robot’s shape than to

material differences within it. We now turn to more quantitative analyses.
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Figure 4.7: The effect of faster pacemakers (CPGs). It is not surprising that
a faster CPG (80 beats per second) travels farther when evalu-
ated for longer, or when compared to a slower CPG (p < 10−16).
However, when the the comparison is made according to dis-
tance per beat (half time/full speed against half speed/full
time – both producing a total of 20 beats) there is no differ-
ence in their performance at Generation 1000 (p-value = 0.51),
suggesting that CPG speed does not greatly affect evolved lo-
comotion speed.

4.3.1 Pacemaker Placement

The placement for the pacemaker was an arbitrary decision made during the

design of this new system. In an effort to mimic the midline location of the cen-

tral nervous system in biology, the pacemaker was placed in the middle of the

design space from which the creature was built. Thus action potential waves

83



could propagate out equally in all directions and were not biased in any par-

ticular direction of travel. In order to test the effect of this arbitrary choice, a

treatment was also performed where the pacemaker was located at the center

voxel of the roof of the 10 × 10 × 10 design space – voxel number 955 (where in-

dices increase from the bottom, left hand, nearest corner), as well as a treatment

that placed the pacemaker in the top right corner – voxel 999.

As shown in Fig 4.6, the placement of this pacemaker significantly affects

performance. While a central location (baseline treatment) shows significant

advantages compared to the top-center and top-corner pacemaker locations

(p = 4.91 × 10−11 and 7.16 × 10−16, respectively), a statistically significant dif-

ference is also demonstrated between the two less-different treatments: the top-

center location outperformed the top-corner location (p = 3.43 × 10−4). These

results show that the pacemaker location can have a clear effect on the evolved

behaviors. Future work shall place the exact location under evolutionary opti-

mization.

4.3.2 Speed of Pacemaker

Another implementation decision was the low-frequency pacemaker to allow

for static gaits. The increased stability and robustness of static gaits is appeal-

ing, and this may allow better transferability to physical robots [18]. However,

animals often employ dynamic gaits when there is an incentive for speed (as

there is here). The tradeoff between these two is not known in this system. To

examine this tradeoff, we compared three different treatments. First, the base-

line treatment includes a pacemaker with the relatively slow pace of 40 beats
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per second (BPS). Since the baseline evaluation period is half a second, this re-

sults in 20 electrical pulses from the pacemaker per trial. A second treatment

explores the increased potential for dynamic gaits at the maximum pacemaker

speed of 80 BPS (the limit is due to the fixed length of the refractory period). In

this faster treatment, each individual cell contracts at the same rate as before,

but the pacemaker is now exciting cells as soon as their refractory period ends,

instead of waiting (the length of an additional actuation cycle) before sending

another pulse into the system. This system uses twice the amount of energy,

producing 40 action potential waves in the same half second. In a third treat-

ment, the faster paced (80 BPS) pacemaker is evaluated for half its normal time

length, resulting in 20 beats per evaluation. This treatment allows a fair com-

parison of pacemakers in terms of distance traveled per “beat”, rather than per

unit time.

Unsurprisingly, the faster pacemaker evaluated for the full half second out-

performs both the slower pacemaker evaluated for the same time period and the

faster pacemaker evaluated for the shorter evaluation time (p < 10−16 for both,

Fig. 4.7). Interestingly, the frequency of the pacemaker has no significant effect

on the distance traveled (p = 0.51 at generation 1000), suggesting that any dis-

parity between the faster and slower gaits was not realized in simulation (with

the number of beats held constant). Testing this result in the transfer to physical

robots is a subject for future work.
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Figure 4.8: The performance of touch sensors vs. central pattern genera-
tors. The touch sensor treatment produces an expected number
of beats with the upper bound set by the faster (80 beat/sec)
CPG. Despite early evolvability leading to a statistically sig-
nificant advantage in the first 150 generations, in later genera-
tions the touch sensor setup is unable to produce creatures that
travel as far as the faster CPG setup (p = 1.27 × 10−7 at Gen.
1000). Artificially throttled, the slow CPG is unable to compete
with either (p < 10−16).

4.3.3 Touch Sensors

Another implementation decision was the use of pacemakers as the primary

drivers of the system. While pacemakers, also known as central pattern gen-

erators, are biologically motivated [[142]], we could instead ask evolution to

generate its own cadence. To provide an alternative to the pacemaker, we tested
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Figure 4.9: Unlike the regularly occurring actuation cycles of [43], the elec-
trophysiological actuations in this paper do not have a neces-
sary order: either expansion or contraction can occur first. It
turns out that performance is significantly higher when mus-
cles contract first and then expand, rather than vice versa (p =

1.94 × 10−3).

a treatment with touch sensors in lieu of a steady internal signal.

The touch sensors, like the pacemaker, are capable of producing an elec-

trical signal. However, they do so in response to contact with the ground,

rather than in a regular rhythm. In this treatment, all conductive cells have

this touch-sensing ability and produce an action potential when in contact with

the ground if not in the refractory period. Thus waves of action potentials prop-

agate outwards from the touch sensors only when they are both in contact with
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the ground and fully recovered from their prior depolarization.

Thus, the upper bound on the number of action potentials that the touch

sensors could produce is that of an 80 BPS pacemaker (the 80 BPS pacemaker

fires again as soon as exiting the refractory period, where the touch sensors

do so only if also touching the ground at that time – the slower 40 BPS pace-

maker waits the length of one cycle before firing again). To reach this upper

bound, touch sensors would have to be touching the ground exactly at the time

when they completed their refractory period, and thus it is likely that this ceiling

would not be reached in all cases. For a comparison, Fig. 4.8 shows the median

distance traveled over evolutionary time plotted against that of the slower pace-

maker (40 BPS) and the faster pacemaker (80 BPS) described above, and eval-

uated for the baseline half-second evaluation time. It is not surprising that the

slower pacemaker falls behind the pack here, as it is handicapped by a throttle

on its only source of action potentials compared to the faster pacemaker and the

touch sensors (p < 10−16). The tighter race is between the touch sensor and the

faster pacemaker. In the early stages (< 150 generations), the robots with touch

sensors significantly outperform robots with a pacemaker. However, in the later

stages of evolutionary optimization, the touch sensor treatment shows modest

gains compared to the continued innovation of the pacemaker treatment, with

the pacemaker treatment significantly outperforming it at the end of the run

(p = 1.27 × 10−7). The relatively low level of improvement in the touch sensor

treatment in the later stages of evolution may suggest the premature conver-

gence on local optima. The multiple points of origin for action potential waves,

and thus wave collisions, may have also had an effect. An additional issue that

could have hindered performance in this treatment is the upward propagation

of signals from touch sensors on the ground, versus outwards expanding waves
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from the center of the organism.

4.3.4 Expansion/Contraction Cycle

In the soft robot evolution system described by [43], regular, quickly repeating,

and coupled out-of-phase sinusoidal action cycles defined the expansion and

contraction of cells. In this model, which does not feature the same compli-

mentary muscle types, the question of actuation cycle is not entirely clear. In

an attempt to explore this, here we test the effectiveness of contraction-then-

expansion phase cycles against expansion-then-contraction cycles (Fig. 4.9).

These treatments take place on the baseline (slow) pacemaker setup, as to not al-

low continuous and quickly repeating expansion/contraction cycles, but rather

to have a break between actuations. Despite the same number of beats (and

thus the same amount of overall expansion and contraction) in both setups, the

contraction-then-expansion setup performs significantly better (p = 1.94×10−3).

While the reason for this difference is not entirely clear, it may be due, in

part, to a larger continuous expansion period from the trough of the sine

wave to its peak (continuous expansion from minimum to maximum size)

in the contraction-then-expansion treatment. In contrast, the expansion-then-

contraction setup includes a full-cycle length pause in the middle of its expan-

sionary period. This explanation would suggest that more locomotion tends to

come from pushing than pulling, which is in line with our observations from

viewing videos of the evolved behaviors.
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4.4 Discussion

This work reduces the separation between bodies and brains in research into

embodied cognition. We did so by embedding the control systems into the phys-

ical simulation of the robot’s morphology. Perhaps most interesting about this

work is that the complex and interesting behaviors are the direct result of the

morphology of the creatures, as the control is woven directly into the structure

of the organisms. In this work the size of the creatures was limited for compu-

tational reasons, but in future work we plan to explore larger design spaces. We

also plan to test different ways of implementing electrophysiological robots and

to challenge them to perform more difficult tasks.

4.5 Conclusion

We have introduced electrophysiological robots, which are inspired by the elec-

trical properties of cardiac tissue. The behavior of these robots is governed by

electrical signals flowing though the evolved cells of soft robots. We described

these robots and how they are evolved, including the evolution of interesting be-

haviors, despite the added challenge of physically embedded control structures.

We also provided an initial experimental investigation into different implemen-

tation decisions, such as alternatives for sensing, actuation, and central pattern

generator locations. We believe that this paper provides a first step towards re-

moving the gulf between brains and bodies to encourage further research into

physically realistic embodied cognition.
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CHAPTER 5

ON THE DIFFICULTY OF CO-OPTIMIZING MORPHOLOGY

AND CONTROL IN EVOLVED VIRTUAL CREATURES

Abstract of Chapter 1

The field of evolved virtual creatures has been suspiciously stagnant in terms of

complexification of evolved agents since its inception over two decades ago.

Many researchers have proposed algorithmic improvements, but none have

taken hold and greatly propelled the scalability of early works. This paper sug-

gests a more fundamental problem with co-evolving both the morphology and

control of virtual creatures simultaneously – one cemented in the theory of em-

bodied cognition. We reproduce and explore in greater detail a previous find-

ing in the literature: premature convergence of the morphology (compared to

the convergence point of optimizing controllers), and discuss how this finding

fits as a symptom of the proposed problem. We hope that this improved un-

derstanding of the fundamental problem domain will open the door for further

scalability of evolved agents, and note that early findings from our future work

point in that direction.

5.1 Introduction

In 1994, Karl Sims’ seminal work on “Evolving Virtual Creatures” [263] cre-

ated a field of study by that name. This work featured simulated creatures that
1Appeared as: Cheney, N., Bongard, J., SunSpiral, V., & Lipson, H. (2016). On the Difficulty

of Co-Optimizing Morphology and Control in Evolved Virtual Creatures. In the Proceedings of
the International Conference on the Synthesis and Simulation of Living Systems (pp. 226-234).
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were able to optimize both their physical layout and their behavioral control

strategies for such tasks as terrestrial locomotion, swimming, phototaxis, and

competition [264].

The potential applications of virtual creatures extends beyond their initial

contribution to computer graphics and animation, serving as a testbed for the

co-optimization of brain-body systems in robotics. With the challenges of con-

tinually modifying the morphology of physical robots during the optimization

process, the field of Evolutionary Robotics often turns to virtual creatures to

optimize morphologies (and their associated controllers) before physical robots

are manufactured from the optimized designs [185, 103, 181, 210, 83, 23].

However, in the two decade lifetime of this field, there have been notable

struggles in optimizing creatures, with a very limited ability to extend beyond

Sims’ initial works [105] – despite significant increases in computing power.

Many researchers have suggested hypotheses for the cause of this standstill,

such as deficiencies in the search algorithms [135, 171, 203] or genetic encod-

ings [137, 24]. It has also been suggested that the environments/tasks chosen

are not complex (or morphologically dependent) enough to necessitate opti-

mization of both the morphology and controller [10, 39]. But since we have

yet to clearly surpass Sims’ work, each of these hypotheses must be approached

with some skepticism.

This work takes note of the particular difficulty in optimizing morphol-

ogy [149] and sets out with the intent of proposing a new hypothesis for the

field’s current roadblock. Our hypothesis, unlike many before it, does not rely

on more powerful or astute search algorithms to laboriously make our way

through the rugged and harsh search space which make optimization of vir-
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tual creatures so difficult. Rather, we intend to use our understanding of the

behavior of virtual creatures, specifically the theory of embodied cognition, to

suggest a fundamental issue in the way that we frame the problem of optimiza-

tion of virtual creatures – which in turn causes the search landscapes to present

such an unpleasant terrain.

The theory of embodied cognition suggests that a fundamental part of the

cognitive control process of an individual is being situated [306]. It suggests

that the dynamic interactions between a reactive agent and the environment,

through sensory-motor feedback loops, are an important driver of behavior [27],

as opposed to cognitivism – the hypothesis that the central functions of mind

can be accounted for in terms of the manipulation of symbols according to ex-

plicit rules [3].

This line of reasoning puts an extra emphasis on the morphology of an in-

dividual, as it acts as the lens and modulator for all physical communication

between that individual’s internal controller and the outside environment [219].

This work outlines the specific hypothesis that the body’s importance, afforded

to it by its role as the connection between internal desires for action and the ex-

ternal consequences of them (as well as external events and the internal sensory

observations of them), is understated. Without a well established and properly

functioning communication channel, the sensory information and motor com-

mands of an individual are ineffective.

From this supposition, we can create a testable hypothesis about the value

of the established morphological communication channel. Specifically, control

optimization on an existing morphology can be more effective than morpho-

logical optimization on a fixed controller – as the latter does not maintain an
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established communication framework from the controller to the environment

(through the morphology). This results in a system which effectively causes

large, unintended variations in the behavior of the controller, as its physical in-

terface is constantly being scrambled while optimization seeks to improve the

physical shape of the body.

In comparing each of these hypothetical situations to the current state of

evolved virtual creatures, we will conclude by discussing a possible connection

between this theory of embodied cognition and the lack of effective optimiza-

tion. Our hope is that such evidence will shed additional light on (at least one

of) the problem(s) facing our field, and arm us with the information to help

tackle it in future works.

5.2 Background

The literature on failed attempts to co-optimize the morphology and control of

virtual creatures is sparse. This may be due in part to the bias against publish-

ing negative results (both in submission and acceptance of such findings) [92].

However, informal conversation with members of the field acknowledge the

lack of progress. We note the difficulty of optimizing morphologies in our own

virtual creatures [181, 24, 38, 39] (and unpublished works), but find ourselves

grasping for an understanding of why this may be the case.

One clear and concise description of this very problem is expressed in [149],

where they note:

It can also be observed how during the first 100 generations of the
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evolutionary run, morphological changes occurred very frequently.

At generation 125, the overall morphology of the best individual al-

ready resembles the best final individual found in the generation

1386 (although its fitness is only 5.07, compared to the 11.15 of the

latter). The following generations bring multiple small changes to

the morphology of adult form and almost no changes to the larval

form. Both stages, however, undergo continuous modifications of

their controllers, and it is these alterations that contribute the most to

the improvements in fitness. This pattern was also observed in other

evolutionary runs: the final morphology would emerge in the first

few hundreds of generations and the remainder of the run would

be spent on small tweaks to the bodies and optimization of con-

trollers. (emphasis added)

This notion of premature convergence of morphology is not a stand alone

case. At times this premature convergence can be incorrectly interpreted as a

positive trait, noted as diversity of results (despite the lack of explicit diversity

maintenance), as in [43].

In the remainder of this work we set out to reproduce the symptoms de-

scribed in [149], where morphology converges prior to control. We seek to

further examine and characterize this phenomenon, and describe a theoretical

framework which may help to explain its cause.
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5.3 Methods

Similarly to [149], we employ soft robots as our instantiation of evolved virtual

creatures. We use 3D voxel-based soft robots, following from [43], but replace

their discrete muscle types and synchronized contractions with voxels which

allow individualized phase offsets, consistent with the controllers used in [149].

This allows for behaviors such as propagating waves, which were not possible

in [43] (but were achieved in [149] and [38]). A global frequency of oscillations

is also optimized.

5.3.1 Dual-Network CPPN

We genetically encode the soft robot phenotypes as a network, inspired by the

CPPN-NEAT [271], the algorithm employed by both [43] and [149] (though the

later cleverly employs the CPPN alongside development, rather than as an al-

ternative to it). However, this work differs from those two by optimizing two

separate networks, one containing only the outputs associated with the physi-

cal structure and material placement (“morphology”) of the creatures, while the

second network produces only the outputs used to determine the actuation of

the muscle voxels (“control”). This allows us to very clearly make variations to

either the morphology or the controller, without affecting the genotype of the

other2.

To translate the CPPN genotype to a soft robot phenotype, for each indi-

vidual voxel in our 7 × 7 × 7 discretized design space, the “presence” output

of the morphology network is queried. If the output value (which all span the
2both source code and resulting data are available upon request
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range [−1, 1]) is positive, a voxel is placed there and the “material type” output

is queried. If the “material type” output is positive as well, then a the voxel is

an active “muscle” cell, otherwise, that voxel is a passive “tissue” cell.

For each active muscle cell, the control network is queried, and the floating

point value of the “phaseOffset” output (again from [−1, 1]) is assigned as the

relative phase offset of that muscle cell (where 0 is exactly in phase with a global

clock, −1 and 1 are synchronized a full phase ahead or behind it, and −0.5 and

0.5 are perfectly out of sync with it). Finally, the frequency of this global “clock”

oscillator is set using the mean value of the “frequency” output across all voxels

(including those not currently expressed in the phenotype). In order to easily

allow the full range of possible frequencies to be expressed after averaging, a

mean value of −0.5 or lower corresponds to the minimal frequency of 5Hz, while

a mean value of 0.5 or higher corresponds to the maximal frequency of 10Hz

(with linear scaling between them), despite the continued [−1, 1] range of each

individual “frequency” output node. The optimization of the global oscillation

speed is intended to allow the muscle actuations to resonate with the natural

frequency of a given morphology.

We should note that this encoding does allow for morphological changes

to affect the expressed control (as the addition or removal of muscle cells will

allow more or less of the underlying phase offset pattern to be expressed in the

phenotype). Due to the integrated and embodied nature of control, we believe

that such an effect would happen with various definitions of “morphology” and

“control” – such as a robot with 6 legs expressing a different number of joint

control outputs than a 4 legged robot in the rigid body paradigm. This concept

of morphology determining the expression of control may be less about this
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specific implementation and instead a more general consequence of embodied

cognition in a situated creature [219].

5.3.2 Physics Simulation in VoxCad

Consistent with [43], we employ the open-source soft-body simulator Vox-

Cad [127] as the physics engine which determines the fitness of each creature’s

phenotype. In order to normalize the number of actuations per muscle cell

across creatures with different actuation frequencies, each individual is eval-

uated for exactly 20 actuation cycles (following a passive initialization period

in which it is allowed to settle on the ground in a relaxed pose – intended to

discourage passive falling strategies rather than active locomotion behaviors).

This means that two creatures with different actuation frequencies will be simu-

lated for different lengths of time. Following the termination of the simulation,

the displacement of the creature’s center-of-mass along the positive x axis is re-

turned to the evolutionary algorithm. All other parameters regarding VoxCad

simulation are taken from [43].

5.3.3 Evolutionary Algorithm

The optimization of these soft robots takes the form of an evolutionary algo-

rithm. The genotype is a directed acyclic graph, represented in memory as a

tree to allow an implementation similar to that of genetic programming. Fol-

lowing from CPPNs [271], each node in the graph sums its weighted inputs and

feeds them through a series of nodes with geometric activation functions (here:
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sigmoid, sine, absolute value, negative absolute value, square, square root, or

negative square root) to arrive at each of its output value(s). The inputs to this

network are Cartesian (x, y, z) and polar (r) coordinates of the voxel in question,

along with a bias node. The outputs are interpreted as described above.

Variation and selection follow a (µ/ρ + λ) scheme of (50/25 + 25). Variations

may be: the addition/removal of a node to a network, addition/removal of an

edge between existing nodes, mutation of the weight associated with an edge,

or mutation of a node’s activation function. Each of these variations occurred

with equal probability, and each variation occurs to only one network of the

phenotype, each with equal probability. Crossover was not considered in this

work. Variations to the genotype were only considered valid if they resulted in a

phenotypic change in the resulting soft robot. Variations were also disallowed if

they resulted in creatures who occupied less than 10% of the available voxels, or

employed less than 5% of the available voxels as actuated muscle cells. Selection

was rank-based with elitism.

5.3.4 Statistical Reporting

All experimental data below represent the mean values of 30 independent

runs lasting for 5000 generations each. P-values are calculated using a Mann-

Whitney rank-sum test, as we cannot assume normality of fitness values. Con-

fidence intervals were plotted using bootstrapping of 10,000 samples at the 95%

confidence level. Significance values are marked with the following convention:

ns for p > 0.05, * for p ≤ 0.05, ** for p ≤ 0.01, and *** for p ≤ 0.001.
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5.4 Results

First and foremost, we set out to replicate and examine the results founds in

[149], where “the final morphology would emerge in the first few hundreds of

generations and the remainder of the run would be spent on small tweaks to the

bodies and optimization of controllers.”

By visually inspecting the resulting creatures we find that this implementa-

tion appears able to reproduce the phenomenon. Fig. 5.1 shows the optimization

over time of the 10 best performing trials. Notice how conserved the morpholo-

gies appear to be over time, with the gross morphology generally emerging at

or before the 100 generation mark (middle column). While only the top 10 trials

are shown for sake of space, this theme applies generally to all the runs.

It is also interesting to note that the top two final-fitness-achieving runs were

the only two to undergo a morphological change between generations 1000 and

5000 (the last two columns). This suggests that creatures to which search imme-

diately converges upon are not optimal, and that better performing solutions

may not be that far away in phenotypic space (inferred from the similarities be-

tween the top two rows at generations 1000 and 5000), yet such creatures appear

to be difficult for this search process to find (inferred by the lack of occurrence

before generation 1000 in the top two runs, and at all in the next 8 runs). The

idea that each run converges to a local, rather than global, optimum is also evi-

dent by the fact that the set of final creatures differ from one another, rather than

converging to the same form.

This visualization serves as an initial indication that the effect of early con-

vergence is apparent in our setup, as it was in [149]. However, it does not
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Figure 5.1: Evolved morphologies at various stages in optimization (voxel
color from red to green indicates phase offset of controllers).
Each row represents one of the top 10 run (out of 30, order by
final fitness). Each column represents a point in time during
optimization. Note that morphologies generally lock in before
gen 100, often on simple forms.
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Figure 5.2: Fitness impact of freezing morphology at various points in op-
timization. Both morphology and control are optimized up to
the freezing point. After it, only control variations are consid-
ered for the reminder of the trial. The p-values (and signifi-
cance markers) reported compare the resulting fitness to that
achieved with co-optimization of both morphology and con-
trol for the full 5000 generations. Note that morphologies opti-
mized for 25 or more generations show no significant fitness
difference, compared to those optimized for all 5000 (noted
above in bold).

demonstrate that the effect of stagnation is more prominently featured by mor-

phology than controllers, or characterize just how detrimental such an effect

may be. These two questions are both approached quantitatively in Figs. 5.2

and 5.3.
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Figure 5.3: Fitness impact of freezing control at various points in optimiza-
tion. Note that controllers with less than 250 generations of op-
timization (but full morphological optimization) show no sig-
nificant difference with those optimized for all 5000 gens, sug-
gesting that control mutations continue to provide fitness ben-
efits further into optimization than the morphology variations,
which cease to be beneficial to final fitness values much ear-
lier (cf. figure 2, generation 25 – please note the different x-axis
compared to that Figure).

To quantify how early the morphology converges and how detrimental this

may be towards the optimization of virtual creatures, we artificially freeze the

morphology after a given amount of time, and only allow control variations to

occur after this point. If the resulting fitness value does not show a significant

change following a morphology freeze at a given time (compared to optimiz-

ing both the morphology and control for the entire optimization process), we
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can be confident that the morphology did not significantly contribute to fitness

improvements after that point in optimization time.

Fig. 5.2 shows the fitness impact of morphology freezes at various times dur-

ing optimization, and its significance compared to co-optimization of morphol-

ogy and control for the entire 5000 generations. We see that full optimization

does not show a significant improvement in fitness compared to morphologies

optimized for 25 generations or more (at the 95% confidence level, as p ≥ 0.0604

for all freezing points ≥ 25 gens). This means that the morphological variations

after generation 25 do not significantly contribute to the fitness of the resulting

creatures, suggesting that morphology converges to (near) final forms by gener-

ation 25. The visual inspection of these creatures in Fig. 5.1 does not contradict

such a suggestion.

This does not mean that optimization as a whole is converged at this point.

Fitness improvements from the control optimization occurring after the final

gross morphology is fixed are noted in [149]. We also see this effect here,

with the fitness resulting from control optimization after morphology freezing

(26.520) significantly outperforming (p < 0.001) the fitness value at the time of

freezing (21.157).

Fig. 5.3 shows the impact of the converse treatment, in which the creature’s

controllers are frozen at a given point in time and only morphological variations

are allowed thereafter. This treatment show that significant differences in result-

ing fitness values occur for at least 100 generations (at the 95% confidence level,

as p < 0.001 for all freezing points ≤ 100), but not more than 250 generations

(p ≥ 0.0565 for all freezing points ≥ 250). The lack of significant difference past

250 generations also points to early convergence of controllers to (near) final
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levels early in optimization.

However, the significant drop in fitness from control freezing (at times past

those when morphological change stops contributing to final fitness values)

suggests that this example of virtual creature evolution creates earlier conver-

gence for morphologies than it does for controllers.

This picture is further reinforced when we examine the time of convergence

to a final morphology and controller in each run. On average, the convergence

to the final (best of run) morphology occurs at generation 558. In comparison

the mutation which leads to the best-ever controller occurs significantly later

(p < 0.001) at generation 2926. Widening our view from only the final successful

variations, and considering all individuals who were the top fitness performers

at some point during optimization, we see the same story, with controller muta-

tions leading to top performers continuing significantly later than those created

by morphological mutations (mean of gen 750 vs. gen 158, p < 0.001). The next

section will discuss a potential cause for such an effect.

5.5 Discussion

The above results suggest that, in this instance of virtual creatures co-evolving

morphology and control, we run into a problem of premature convergence,

which is especially pronounced with regard to the morphology of the creature.

Premature convergence alone could point to issues in any number of aspects of

optimization (diversity maintenance, genetic encoding, etc.). However the dif-

ference between optimization effectiveness of morphology and control draws

our attention towards the theory of embodied cognition.
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Let’s revisit the concept of the morphology as the interface between the con-

trol architecture and its effect on the environment. This suggests that modifica-

tions to an agent’s morphology will not only change the shape of its body, but

also change the way in which its control architecture affects the environment,

since the commands sent by that controller will now be interpreted differently

– as it affects the actuators of a different body layout. Thus mutations to the

morphology of a creature will have the effect of also “scrambling” its controller

(causing variation in it) as well.

Contrary to the chain reaction effect of morphological mutations, variations

which occur to the controller do not affect any part of the morphology’s relation-

ship with the outside environment. While the control signals which the body

is receiving may change, these new commands are still executed in the same

framework and “language” as previous commands were. The organization and

path of information from controller through morphology to environment causes

variations in the morphology to propagate upstream, while variations to the

controller do not propagate downstream.

This feature of embodied cognition has the effect of creating larger (and ar-

guably more unpredictable) behavioral changes to similar sized variations in

genotypic space. This effect would lead to a more rugged fitness landscape in

the space of morphologies (for a given controller) than exists in the fitness land-

scape of controllers (for a given morphology). We would then predict that a

more rugged landscape would lead to more local optima and less efficient opti-

mization with quicker convergence to sub-optimal solutions than in less rugged

landscape [154]. This is consistent with what we have experienced thus far with

the optimization of morphology converging prior to control.

106



5.5.1 Potential Causes and Limitations

There are undoubtedly features of this experimental setup which may cause us

to overstate (or understate) the importance of embodied cognition compared

to other instances. Firstly, this setup employs soft robots, which are notori-

ously compliant and adaptive to a wider variety of environmental conditions

than their rigid body counterparts [290]. Given that adaptability of this robot-

environment interface (in our case to unexpected perturbations in control sig-

nals), it’s possible that soft robots dampen this effect. In the extreme, one may

conjecture that the soft robot paradigm is so compliant that almost any morphol-

ogy can adequately move along flat ground. If this is the case, then it would not

be surprising that freezing the morphology on an arbitrary shape has little effect

on the resulting fitness value. As soft robots are relatively new to the literature,

this may explain why this effect has been unnoticed previously.

In order to further explore this facet, we produced an alternative fitness func-

tion which explicitly selects for shape (adding a term to minimize the number of

actuated voxels or “energy”). In the extreme this would produce creatures with

minimal muscle cells, though since actuated cells directly contribute to loco-

motion ability, a complex trade-off creates an incentive for specialized energy-

efficient morphologies. Another way incentivize to specialized morphologies

would be to evaluate the robot in a more complex (and morphologically depen-

dent) task environment than flat ground.

Performing the same “freezing” tests on creatures evolved under the alter-

native fitness criteria, we see that that freezing morphology continues to show

a non-significant effect on fitness at times when control freezing produces a sig-

nificant fitness drop (e.g. gen 50). Fig 5.4 visually shows the continued con-
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(a) Generation 50:

(b) Generation 5000:

Figure 5.4: Stagnation shown in the top 10 morphologies under the dis-
tance/energy fitness treatment. Note the similarity in gross
morphologies from gen 50 (top) to gen 5000 (bottom). The top
performing creature shows the largest change between these
points, with the new morphology arriving from a mutation at
gen 53. Also note the variance and complexity in forms, com-
pared to Fig. 5.1, suggesting the added morphological depen-
dence of this fitness function.

vergence to final gross morphologies (with morphologies at gen 50 generally

mirroring those found at gen 5000), as well as the added morphological depen-

dence of the task – as the morphologies demonstrated here visually appear more

complex than the more fully occupied shapes in Fig. 5.1.

In this treatment, we also see the final controllers appearing significantly
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later (gen 2968) than the final moprhologies (gen 419, p < 0.001). This is also

seen in the average best-so-far individuals, with those produced by control mu-

tations continuing to appear significantly later on average (gen 709) than those

produced by morphological variations (gen 119, p < 0.001). This data suggests

that while the original task was not as “morphologically dependent” as others,

the findings still hold in a scenario which puts more of an emphasis on morpho-

logical optimization.

A second aspect which may contribute to this effect is the size of the search

space. These runs use robots of size 7×7×7. As each of these voxels can have one

of three states (empty, actuated, or passive) which results in 3343 = 4.5∗10163 dis-

tinct morphological phenotypes. It’s possible that the difficulty in searching the

morphology space is due in part to its size. This could explain why this effect

was not seen sooner (as previous work in evolutionary robots heavily favors

legged morphologies with low degrees of freedom). This phenotype is indi-

rectly encoded, but generative in different ways than previous work evolving

morphology [263, 171].

In attempting to reproduce the work from [149], we optimize phase offset

and frequency for an oscillating actuation as the control parameters. These

values are encoded by floating point numbers, and thereby create a continu-

ous (theoretically infinite; limited in practice only by machine precision) search

space for control. The concept of discrete physical cells creating a morphology

and real valued control parameters (such as neuronal synapse weights) fits bi-

ologically – but the differing search spaces give us pause from an optimization

perspective.

To create a similar scenario where the size of the controller search space was
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smaller than that of the morphology, we borrow the two distinct “muscle type”

system from [43]. This allows just two offset control states (implemented by

rounding the continuous phase offset values) to create a search space of size

2343 = 1.8 ∗ 10103 (smaller than the morphology space). In this set of trials, we

see the above effect disappear, and morphology no longer appears to be more

difficult to optimize than “control”. Here, the final morphological innovation of

each run, on average, occurs at generation 665, while control innovation contin-

ues only to gen 795 – an insignificant difference (p = 0.149). Similarly, the point

at which freezing morphology causes a non-significant difference in resulting

fitness values no longer occurs before that of controller freezing.

However in this scenario, the line between “morphology” and “control” be-

comes very blurry. In practice, a two-oscillator-actuation system can be viewed

as the placement of cells of these two types (a “morphological” concept) more so

than the fitting of phase offset parameters to a predefined placement of muscles

(a “control” concept). Thus one could easily argue that the two discrete-phase-

offset system from [43] should be considered to be entirely morphological opti-

mization, with little to no control to be optimized (as is argued in that paper),

and thus immune from our embodied cognition argument.

This is representative of a larger “problem” of this CPPN oscillating actu-

ation setup: that there may not be a clean distinction between “morphology”

and “control” to be made, and such divides may be arbitrary labeling. In our

example, one could argue that the output node denoting if a cell is actuated or

passive should belong in the “morphology” CPPN, as it denoted the placement

of different types of cells (“muscles” or “tissues”). But another person could

argue equally well that this output belongs in the “control” CPPN, since it does
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not change the actual shape or stiffness of the creature, and only informs where

actuations do or do not occur.

The point here is that virtual creatures are situated and embodied, and thus

ideas like embodied cognition or morphological computation [220] suggest that

there isn’t a clear cut distinction or dualism between two separate pieces (the

body and the brain), but rather a single integrated and embodied agent. There-

fore we need to consider the tight coupling and interdependencies of the “mor-

phology” and “control” and consider holistic effects whenever we attempt to

modify a single part of the system.

5.5.2 Future Work

The results shown in this work are specific only to this instance and experi-

mental setup. Thus, many more instances of this approach (separating mor-

phology from control and freezing each to measure their independent impact

on fitness) would need to be attempted on different experimental setups to ex-

trapolate from this single instance. This should ideally include different: mor-

phological encodings (such as the generative block encodings used by [263];

control architectures (perhaps complexifying to neural nets rather than simpli-

fying to discrete oscillations as we did in our follow up tests – or employing

closed-loop control, which may help controllers to adapt to new morphologies);

evolutionary algorithms (especially those with a strong emphasis on diversity);

tasks (increasing environmental complexity); and/or scales (as increased scales

of a cellular creature closer approximate a “continuous” morphology – which

comes with both benefits and costs).
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Regarding the distinction between “morphology” and “control”, this work

necessarily chooses a logical splitting point between the two: representing

CPPN outputs that dictate placement of voxels as “morphology” and outputs

that dictate voxel size changes as “control”. But this distinction is far from black

and white. Future work should explore various groupings of outputs into the

categories of “morphology” and “control” (or any grouping names), and exam-

ine the effect that such distinctions produce on these results.

The central issue to this paper can be viewed as a problem stemming from

the dynamic coupling of control on morphology, with different morphologies

creating hills and valleys in the fitness landscape of controllers. As in any multi-

modal landscape, diversity maintenance during search is crucial. This includes

diversity coming from crossover (omitted here), or from any existing diversity

maintenance method. However, informed by this paper, we would be wise

to notice that since hills and valleys of this landscape may be caused by the

morphology and onto the controller, diversity maintenance would do best to

focus on protection of diversity within morphologies if it were to encourage the

morphological variations (despite their adverse effects on control).

The most important future work would involve potential solutions to this

problem. Initial results regarding future work already suggest that our under-

standing of embodied cognition, and the finding of especially poor mutation

success for morphological variations, can inform improved search methods.

Specifically, results employing a multi-timescale model, in which morpholog-

ical mutations are given time to re-adapt their controllers to their new situated

forms (and thus conform themselves to their new morphological “communica-

tion channels”, thereby “unscrambling” the detrimental effects of the morpho-
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logical mutation) before the value of these morphological variations are evalu-

ated, shows an improved ability for optimization of virtual creatures compared

to traditional methods. This is exactly the type of diversity maintenance that

focuses on protecting innovations to the morphology specifically.

Ideally, further algorithmic improvements will occur from embracing the

fundamental theory of embodied cognition, but the positive initial results noted

here provide conformation that it’s possible and that the understanding gained

from this current work may contribute to future improvements.

5.6 Conclusion

We have examined a specific example of co-evolving morphology and control

in virtual creatures. In this example, morphology prematurely converges: con-

verging quicker than control, showing lack of fitness benefits after as little as 25

of the 5000 generations, and with “optimal” final morphologies emerging sig-

nificantly sooner than final controllers. We have suggested a theoretical basis,

founded in the concept of embodied cognition, that could explain such a obsta-

cle and is consistent with the results we present. While there is plenty of work

still to be done to solidify this theory, we conclude by suggesting future work

based from our newly proposed understanding, and note its striking potential

in early initial results. We hope this work will help to explain the difficulty we

face in scaling the complexity of evolved virtual creatures, and will help inspire

(combined with other efforts) a solution to our current stagnation.
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CHAPTER 6

SCALABLE CO-OPTIMIZATION OF

MORPHOLOGY AND CONTROL IN EMBODIED MACHINES

Abstract of Chapter 1

Evolution sculpts both the body plans and nervous systems of agents together

over time. In contrast, in AI and robotics, a robot’s body plan is usually de-

signed by hand, and control policies are then optimized for that fixed design.

The task of simultaneously co-optimizing the morphology and controller of an

embodied robot has remained a challenge – as evidenced by the little improve-

ment upon early techniques over the decades since their introduction. Embod-

ied cognition posits that behavior arises from a close coupling between body

plan and sensorimotor control, which suggests why co-optimizing these two

subsystems is so difficult: most evolutionary changes to morphology tend to

adversely impact sensorimotor control, leading to an overall decrease in behav-

ioral performance. Here, we further examine this hypothesis and demonstrate

a technique for “morphological innovation protection”, which reduces selection

pressure on recently morphologically-changed individuals, thus enabling evo-

lution some time to “readapt” to the new morphology with subsequent control

policy mutations. This treatment tends to yield individuals that are significantly

more fit than those that existed before the morphological change and increases

evolvability. We also show the potential for this method to avoid local optima

and show fitness increases further into optimization, as well as the potential

for convergence to similar highly fit morphologies across widely varying ini-

1To appear as: Cheney, N., Bongard, J., SunSpiral, V., & Lipson, H. (in review). Scalable
Co-Optimization of Morphology and Control in Embodied Machines
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tial conditions. While this technique is admittedly only the first of many steps

that must be taken to achieve scalable optimization of embodied machines, we

hope that theoretical insight into the cause of evolutionary stagnation in cur-

rent methods will help to enable the automation of robot design and behavioral

training.

6.1 Introduction and Background

Designing agile, autonomous machines has been a long-standing challenge in

the field of robotics [223]. Animals, including humans, have served as ex-

amples of inspiration for many researchers, who meticulously and painstak-

ingly attempt to reverse engineer the biological organisms that navigate even

the most dynamic, rugged, and unpredictable environments with relative

ease [45, 234, 311]. However, another competing approach is the use of evolu-

tionary algorithms to search for robotic designs and behaviors without presup-

posing what those designs and behaviors may be. These methods often take in-

spiration from evolution itself, rather than the exact specifications of any given

organism produced by it.

The use of an evolutionary algorithm for automated design comes with

many benefits: It removes the costly endeavour of determining which traits of a

given organism are specific to its biological niche, and which are useful design

features that can provide the same beneficial functions, if instantiated in a ma-

chine. It can yield machines that do not resemble any animals currently found

on earth [166], as it allows for machines that are specialized for behaviors and

environments that differ from those of the model organism. Additionally, the
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optimization process can serve as a controlled and repeatable test-bed for the

study of evolutionary and developmental theory [173, 174, 22].

However the approach of bio-inspired optimization also presents challenges

that have yet to be overcome, causing the scale and complexity of evolved robots

and virtual agents to pale in comparison to their biological counterparts. It is

unclear what aspects of (or omissions from) current evolutionary algorithms

are preventing robotic optimization to scale the way that biological evolution

has demonstrated.

The generalization of design automation to include both the optimization of

robot neural controllers and body plans has proven to be problematic [105, 40].

While recent successes have demonstrated the potential of effective optimiza-

tion for the control policies of agents with fixed morphologies [106, 66, 175] or

– to a lesser extent – the optimization of morphologies (body plans) for agents

with minimal and fixed control policies [58, 43, 10], the co-optimization of the

two has seen very limited success [40].

The optimization of the shape and general morphology of a robot is of great

importance to the goal of autonomous robotics, as biological animals appear to

rely heavily on the adaptation of their body plans to effectively interact with the

natural world. This is seen in the adaptation of specialized physical traits on an

evolutionary time-scale (like the specialized beak shape and size of Darwin’s

Finches [69, 164]). It is also seen through experience-dependent growth over

an animal’s lifetime (such as Wolff’s Law [309] or Davis’ Law [71], the body’s

response to stress and loading on bone and soft tissues, respectively).

Other reasons to evolve robot body plans include the phenomena of embod-
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ied cognition (the way in which the presence and organization of perceptual and

motor systems impact the frames and processing of higher level cognitive func-

tions [306, 3, 267]) or morphological computation (where certain higher level

cognitive functions, like preprocessing, are subsumed and solved by the orga-

nization of the body [222, 220, 119]). Creating body plans by hand that exploit

these properties is extremely difficult to do because they are non-intuitive. Thus,

enabling evolutionary methods to discover such morphologies is desirable.

The inability to perform robot optimization at scale, and specifically that

traditional evolutionary robotics methods tend to become trapped in local op-

tima, has been experienced and noted informally by many researchers involved

with robot optimization, yet published rarely. Thus the lack of publication is

presumably because the field lacks incentives for the publication of negative

results [79, 92], rather than a lack of negative results in unpublished works.

Joachimczak et al. [148] provide an anecdotal example of premature conver-

gence in the co-optimization of robot brain and body plan (Fig. 19 of that paper).

Cheney et al. [40] further analyze the phenomenon of premature convergence

in embodied machines and suggest that traditional evolutionary algorithms are

hindered in this setting primarily in their ability to perform continued optimiza-

tion on the morphology of the robot. They hypothesized that the premature

convergence may be due to an effect of embodied cognition, in which an in-

dividual’s body plan and brain have an incentive to specialize their behaviors

to complement one another. This specialization makes improvements to either

subsystem difficult without complementary changes in the other (a highly un-

likely event given current algorithms) and thus results in an embodied agent

which is fragile with respect to design perturbations.
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6.1.1 On the Dichotomy Between Brain and Body Plan

It should be noted that the dichotomy between “brain” and “body plan” is cer-

tainly a false one, as computation is known to occur at various levels throughout

an entire organism [15]. Indeed, our rationale for the algorithm proposed below

will rely heavily on the notion that an agent’s morphology and control are not

independent, and the explicit separation of “brain” and “body plan” merely

draws attention to the difficulties that occur when we frame optimization with

this dichotomy.

We want to make clear from the start, that this algorithm is only an im-

provement on the current (and clearly incomplete) methods for the evolution

of embodied machines – and is not intended to be the end-all solution. The

end goal, from our current prospective, involves complex mechanisms for in-

terwoven morphogenesis and neurogenesis, which adaptively and continually

mold a complete agent from a combination of genetically-encoded patterns and

experience-dependent mechanisms, much the way that biological organisms are

formed. In these biological agents the distinction between “brain” and “body

plan” is blurred, and organisms are genetically encoded as a single “embodied

agents”. But until we have the understanding and engineering ability to opti-

mize robots with complex embodiment and controllers in such a way, let the

algorithm proposed here serve as a short term solution to just some of the many

unsolved problems in the field of evolutionary robotics [23].
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6.1.2 Evolving Robot Body Plans and Nervous Systems

Attempts to solve this problem of fully-automated robot evolution are fre-

quently traced back to the work of Sims [263]. This work introduced the use

of evolutionary algorithms to produce goal-directed behaviors and morpholo-

gies simultaneously. Despite the advance this work represented, the evolved

robots tended to be composed of a relatively small number of components (ac-

tual values not published, but figures show a mean of 6.042 objects per robot,

and each segment typically controlled by a few neurons). It has been suggested

that in the decades since this time increases in computational power following

Moore’s Law [248] should have vastly increased the scale and complexity of

robots evolved using Sims’ and similar methods [43]. Yet vast increases in scale

have not been the case empirically, as evolved robots reported in [105, 23] fail to

exhibit any significant increase in size or complexity.

A wide range of hypotheses for the lack of scalability have been proposed.

Some focused on a lack of efficient evolutionary search algorithms [135, 171, 203]

or genetic encodings [138, 24, 43], while others pointed to a lack of incentives

for complexity in the simple tasks and environments of previous work [10, 39].

Yet attempts to evolve robots using methods designed to overcome these chal-

lenges have yet to obviously surpass Sims’ work in terms of complexity and

scale. This work investigates a different hypotheses, first suggested in [40], that

considers the way in which an agent’s brain and body plan interact during the

optimization process.

This work is related to co-evolutionary methods (such as [162, 264, 52, 80,

156, 212]) in that there are multiple components being evolved. These classi-

cal co-evolutionary systems (like predator-prey) typically call for two separate
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populations being evolved as generalists against one another. However, for the

case of brain-body co-optimization in evolutionary robotics, it is often desir-

able to have the body and brain of a robot specialized to one another, and de-

veloped simultaneously from a single genome, and in a single population (as

in [263, 181, 138, 9, 24] – and as is the case in natural systems). This combined

brain-body genome causes particular optimization issues which we hypothe-

size below.

6.1.3 The Interdependency of Body and Brain

Specifically, we investigate the notion that the specialization of brain and body

plan to one another during evolution creates a fragile co-dependent system that

is not easily amenable to change. The specialization of each subcomponent to

the other creates local optima in the search space and premature convergence to

suboptimal designs. In this paper, we explore a direct solution to the problem

of fragile coupled systems: explicitly readapting one subsystem (e.g. the body

plan or the brain) after each evolutionary perturbation to the other. The pro-

posed method differs from a traditional evolutionary algorithm, which evalu-

ates the fitness of a newly proposed variation immediately (i.e. with no readap-

tation), and uses only this valuation of fitness to determine the long term poten-

tial of that variation.

Consider a hypothetical, partly-evolved robot with a partially optimized

body plan (for example a quadrupedal form) and a partially optimized con-

troller (for example the legs swing forward and back through the sagittal plane).

Suppose that this controller has co-adapted to the morphology during evolution
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such that for each step forward, the robot contracts a muscle near its hip with

enough force to swing one of its anterior legs forward with just enough force to

land in front of the body and successfully take a step. Consider further a vari-

ation of this morphology proposed by an evolutionary algorithm in which the

new robot possesses longer legs but the controller has not changed.

If this machine were being evolved for rapid locomotion, having longer legs

and being able to take longer strides would be beneficial and this variation

should be more successful than the original design. However, during evalu-

ation of this new robot, the original controller applies the same amount of force

to the now longer leg, failing to move it, and thus frustrating the robot’s ability

to walk in a coordinated fashion. Current evolutionary methods would treat

this robot as the recipient of a detrimental mutation and remove it from the

population.

In this example, a mutation to one subsystem (the body plan) could be bene-

ficial to the robot’s descendants, but since the immediate impact of the change is

detrimental, the mutated robot suffers a decrease in fitness and does not survive

to produce offspring. If all such variations are considered to be detrimental and

rejected (regardless of their long term potential), then the evolutionary algo-

rithm has prematurely converged to a local optima in the search space because

there appear to be no better alternatives in the immediate neighborhood of the

current design.

However, the newly proposed morphology would have resulted in a robot

which outperformed its predecessor, if coupled with a controller suited to that

morphology. We can determine that the newly proposed morphology is supe-

rior by suppressing mutations to that body plan and allowing readaptation of
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its controller to properly coordinate behavior.

Herein lies the foundation for our proposed algorithm: readapt each con-

troller until the new proposed morphology is more fit than its predecessor.

6.2 Methods

6.2.1 Controller Readaptation

The most obvious method for modeling controller readaptation would be to

protect any lineage that has recently experienced a mutation to the body plan by

allowing it to undergo several generations of evolutionary change restricted to

the control subsystem. If any member of the lineage achieves higher fitness than

the pre-mutation ancestor during that time period, the descendant is retained.

Otherwise, the new morphological variant dies out.

However, it is unclear how to set the time period for this protection a priori.

Surely the amount of time a controller takes to readapt to a new morphology

depends on many specific features of the complexity, genetic encoding, desired

behavior, and current ability level of the robot (which changes over optimiza-

tion time). Determining the correct value of this parameter would require a full

parameter sweep over various values of readaptation time for each new combi-

nation of brain, body, and environment. If our goal is simply to optimize a robot,

then searching for this value in each unique optimization scenario is intractable.
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6.2.2 Proposed Method: Morphological Innovation Protection

In response to the unintuitive nature of the optimal value for readaptation

length, our proposed approach is free of this parameter. Descendants of robots

that experience morphological mutations are retained in the population and

the number of generations that have elapsed since that mutation occurred are

tracked (referred to as the “age” of the morphology). If two individuals are

found in the population such that the latter robot exhibits better performance on

the desired task and has experienced fewer generations since a morphological

mutation than the former robot, the former robot is removed from the popula-

tion. In effect, the latter robot has exhibited an ability to not only recover from

its ancestor’s morphological mutation but improve upon it (and others in the

population). The concept of tracking age using it as an optimization objective

are borrowed from [135, 249]. The major difference here being that the age refers

to the length of time that a subsystem of the agent (e.g. the morphology) has re-

mained unvaried, rather than (the original definition of) the total time since a

random individual was introduced to the population.

This procedure has the effect of “protecting” new morphologies with poorly

adapted controllers, and thus we will henceforth refer to this procedure as

“morphological innovation protection.” This protection is a form a diversity

maintenance, though reduced selection pressure for newly mutated morpholo-

gies. Various other methods exist for encouraging diversity (e.g. fitness shar-

ing, crowding, random restart parallel hillclimbers [107], novelty [171], speci-

ation [275]), however age was chosen for its simplicity of implementation, it’s

parallels to multi-timescale learning in biology, and because it helps to avoid

the cost of extended control re-optimization for non-promising morphologies
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– since the the age-pareto optimization allows comparisons between all new

“child” morphologies that have had equal readaptation time, even if they are

not yet fully readapted (rather than making comparisons only after a set amount

of readaptation).

6.2.3 Evolutionary Algorithm

All optimization is performed by a population-based Evolutionary Algorithm,

inspired by the popular algorithm NEAT (NeuroEvolution of Augmenting

Topologies) [275] (importantly without speciation). All trials follow a (µ, λ)-

Evolutionary Strategy [20] with µ = 25 parents and λ = 25 mutants for a popu-

lation size of 50. Trials last for 5000 generations. Crossover was not considered

in this work. Mutation had a 50% chance of creating a variation to either the

morphology or the controller of a given robot, but not both. Other ratios of

morphology:controller mutations were considered (1:99, 20:80, 50:50, 80:20, and

99:1), but none showed a significant effect on resolving the premature conver-

gence and resulting fitness in preliminary trials without innovation protection.

6.2.4 Genetic Encoding for Soft Robot Morphologies

The soft robot morphologies are encoded with a Compositional Pattern Produc-

ing Network (CPPN) [271], consistent with prior work on soft robot evolution

in [40] and [43]. The CPPN encoding produces the cell fate of each voxel in the

robot through a type of neural network that takes each cell’s geometric location

(x, y, z Cartesian coordinates and r radial polar coordinate) and outputs a vari-
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ety of “morphogens” (in this work, there is one to determine whether a cell is

present in that location and one to determine whether a present voxel should

be a muscle or a passive tissue cell). Since nearby voxels tend to have similar

coordinate inputs, they also tend to produce similar outputs from the network

– creating continuous muscle patches. However, CPPNs produce particularly

interesting geometric patterns, as the activation functions at each node can take

on a variety of functions (here: sigmoid, sine, absolute value, negative absolute value,

square, negative square, square root, and negative square root). These functions tend

to produce regular patterns and features across the coordinate inputs (for exam-

ple: an absolute value node with an x input would produce left-right symmetry,

or a sine node with a y input would produce front-to-back repetition).

This network is optimized to produce high performing morphologies by iter-

ating through various proposed perturbations to it. These include the addition

or removal of a node, or edge to the network, as well as the mutation of the

weight of any edge or the activation function at each node.

As the CPPN is an indirect and generative encoding, the genotype (neural

network) is independent of the scale of the phenotype (soft robot being built),

since the network is a continuous function that is discretized only to be queried

once per voxel. This means that the optimized network is scale free, and can

be applied to build robots with any number of voxels (i.e. any resolution or

overall size) – which is limited only by available physical resources (for real

world robots) or computation resources (in the case of simulated robots here).
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6.2.5 Types of Controllers and their Genetic Encoding

In order to control the robots (determine when to contract each muscle cell –

and with what speed and force), two different controller strategies were con-

sidered for different experimental treatments: a simpler open-loop oscillatory

controller, and a more complex closed-loop neural network controller. For each

of these control strategies, a unique controller was optimized for each muscle

cell in the robot’s morphology. However, since each parameter in the controller

is also optimized by a CPPN (a separate CPPN from the one which produces

the robot morphology) – which is a scale free encoding, the number of unique

controllers being optimized is not substantially more costly than optimizing a

single global controller. All controllers output a value between −1 and 1 at each

time step, which corresponds to a linear change in each dimension of a muscle

cell (±14% of its original length, or ±48% of its original volume). Passive tis-

sue cells remain at their original size (though they also deform based on their

intrinsic compliance).

The encoding of the morphology and the controller of the robot into two sep-

arate CPPN networks emphasizes the false dichotomy of robot brains and body

plans. However, this explicit separation allows us to make changes specific and

isolated to either the brain or the body. This is necessary for the proposed algo-

rithm, as controller readaptation requires iterating through controller changes

without affecting the morphology.
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Open-Loop Controllers

Open-loop controllers take as input a global sinusoidal oscillator, but no sen-

sory information from the environment. In this scenario, two parameters are

optimized. One is the phase offset between each individual cell’s muscle oscil-

lations and that of the global clock (which acts as a central pattern generator,

or CPG) – the second is the frequency of this global clock (since CPPNs don’t

currently enable global parameters, this is done by averaging the local values

for each individual cell to produce a single global value). While this encod-

ing is simple and straightforward, it has the ability to produce complex behav-

iors, such as multiple patches of muscle groups that are in sync, counter-sync,

or any real valued phase offset from each other. It also has the ability to pro-

duce gradually varying sweeps of phase offset, resulting in propagating waves

of excitation across large muscle groups. Furthermore, the optimization of the

global frequency is able to produce oscillation speeds which are fine tuned to

the properties of individual morphologies (such as optimizing to maximize the

resonance of soft tissues in appendages).

Closed-Loop Controllers

Closed-loop neural network controllers also use this global clock as input (now

with a fixed frequency of 10Hz), but additionally include sensory information

in the form of touch sensors in all cells (which output 1 when in contact with

the ground, and 0 otherwise), two localized proprioceptive sensor modalities –

one which returns that cell’s muscle output at the previous time step, and one

that returns the average muscle contraction of neighboring cells (those in direct

contact with the cell in question) – as well as a bias node. These five inputs are
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fed to a two-node hidden layer with recurrent connections, before being passed

to the single output node (that dictates current muscle contraction levels for that

cell). In all, this network contains 16 edges, each of which have one parameter to

determine the presence/absence of that connection [299] and one to determine

the weight of that synapse (discretized to either -1 or 1 for their excitatory or

inhibitory connections) – resulting in 32 binary free parameters (or 32 output

nodes for the controller CPPN) in this setting.

6.2.6 Physics Simulation for Evaluation

Once the morphology and controller for a given robot are specified, the fitness

(locomotion speed) of that robot is determined by constructing and simulating

that robot in the VoxCad soft-body physics simulator [127]. Simulations last for

20 actuation cycles (which may be a variable amount of time, depending on the

length of the globally optimized frequency – though this method of normalizing

for the number of “steps” taken leads to a more fair comparison than normal-

izing by the amount of time per simulation). In the case of closed-loop control

the number of oscillations refer to cycles of the CPG input node, which may or

may not correspond to cycling of the actual muscle contractions. Following the

evaluation, the total displacement for the center of mass of the robot is returned

to the evolutionary algorithm as the individual’s fitness.
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6.2.7 Soft Robot Resolution

As the CPPN genetic encoding is a continuous function, it may be discretized

into a phenotype at any resolution (i.e. number of voxels), and in practice this

resolution is only limited by computational resources (as more elements are

more computationally expensive to simulate). In the default lower-resolution

treatment, this discretization occurs over a 5×5×5 space. The higher-resolution

robots use phenotypes created at a 10×10×10 resolution. Note that the distance

values are noted in absolute number of voxels, and voxels are held at a constant

size regardless of resolution – one centimeter in our simulations, so higher fit-

ness values tend to be produced by phenotypes of higher resolution, as more

muscle mass is available to those individuals.

6.2.8 Morphological Innovation Protection

In our newly proposed method we set the “morphological age” to zero for each

new “child” that was the result of a morphological mutation to a current in-

dividual in the population. This means that for an individual to have a large

value in their age objective, that individual must have been the result of a large

number of successive controller mutations. This setup thus allows a simple

comparison method for individuals who have had similar amounts of controller

(re)adaptation to their current morphologies – as a dominated individual would

have to have been out-competed in fitness ability by a morphology that is paired

with a controller that is less-well adapted to it. This diversity maintenance

mechanism encourages the exploration of new peaks in the rugged landscape

of brain-body plans – with the implicit assumption that unique morphologies
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correspond to peaks in this landscape.

The method of age resets corresponding to morphological mutations to ex-

isting individuals differs from the prior technique (e.g. [135, 249]) of inserting

completely random individuals, as it allows the improvement in the fitness lev-

els of age-zero individuals over time. In the case of traditional age-fitness opti-

mization, age-zero individuals are drawn from the same distribution of fitness

values for random genotypes regardless of when they are created. However, in

the case of morphological innovation protection, age-zero individuals are not

random and inherit many of the properties of their parents – meaning that they

show higher fitness values over time. To demonstrate this empirically, we per-

formed linear regression on the age-zero individuals from Fig. 6.2 (containing

morphological innovation protection), which showed a significant (p < 0.001)

increase in fitness over time (from 18.715 at generation 0 to 22.916 at generation

5000; r2 = 0.211). This confirms a major difference between our proposed tech-

nique and the standard approach of age-based diversity maintenance through

the introduction of random individuals.

6.2.9 Controller Innovation Protection

The procedure for controller innovation is similar to that of morphological in-

novation protection in all regards, except that the “protection age” is only reset

to zero when a child results from a mutation to the controller (rather than a

mutation to the morphology). This means that individuals with large values

for the protection age objective are those who have had the same controller for

a large amount of time and have thus made many attempts at morphological
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(re)adaptations to that controller.

6.2.10 Morphological Change Threshold

In treatments with the minimum morphological change parameter, an individ-

ual’s “morphological age” is only set to zero if a morphological change occurs

that affects at least the proportion of voxels dictated by the threshold. This pro-

portion is relative to the total possible number of voxels (1000 or 125 in the

experiments above), rather than the number of voxels present in any particular

robot (to help minimize the number of small and non-functional morphological

changes for robots composed of few voxels).

6.2.11 Statistical Analysis

All treatments were performed for 30 independent trials, with random seeds

consistent between treatments. All plots show mean values averaged across the

most fit individual of 30 trials for each condition with shaded areas represent-

ing 95% bootstrapped confidence intervals of this average, and all p-values are

generated by a Wilcoxon Rank-Sum Test [304].
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6.3 Results

6.3.1 The Effect of Morphological Innovation Protection on Fit-

ness

For the task of locomotion ability (a standard task in evolutionary robotics [23]),

we optimize robots for the maximum distance they travel with 20 oscillations

of their muscles (this distance is measured in voxel lengths – corresponding to

one centimeter in our simulation). We first optimize the robots using the tradi-

tional method of “greedy” fitness evaluations for our selection criteria (where

immediate locomotion ability determines survival in the population of candi-

date morphologies). In this setup, the traditional method produces robots with

an average fitness of 21.717 voxels (with 95% bootstrapped confidence (CI) in-

terval of 19.457 to 22.426 voxels).

Additionally, we optimized robots in the same task and environment setup,

but this time using “morphological innovation protection” for our selection

method – in which individuals can only be out-competed by those with equal

or lesser amounts of controller (re)adaptation to their current morphologies.

The treatment with morphological innovation protection produces significantly

more effective robots (p = 6.067 ∗ 10−6), with a mean distance travelled of 31.953

voxels (and 95% CI of 28.157 to 36.511 voxels).

The increase in fitness shows that morphological innovation protection is a

more effective way of optimizing robots, yet it does not conclusively demon-

strate that the intuition of [40] is correct, as that work demonstrated the asym-

metric difficulty in optimizing the morphology of a robot (as compared to op-
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timizing its controller) and drew the hypotheses that this was due to the fact

that the morphology encapsulated the controller (acting as a translator between

the “cognitive” functions and the outside environment). While the above ex-

periment does help to support the intuition that the controller must readapt to

a new “morphological language” [40], it also introduces confounding features,

such as the added population diversity afforded by “protection” and the added

dimensionality of the search space from its this protection age – moving search

from a single-objective to multi-objective optimization problem.

To tease apart the influence of these two confounds from the hypothesized

mechanism, we present a treatment where the controllers of the robot undergo

an equivalent protection to which the morphologies did in the above experi-

ment. In this treatment, individuals can only be out competed by others whose

morphologies have had equal or lesser amounts of readaptation to their newly

mutated controllers – deemed “controller innovation protection”. This con-

dition provides the potential advantages of multi-dimensional search and the

added diversity (from reduced selection pressure [11]) of a protection mecha-

nism. Yet it does not rely on the idea of a broken “morphological language”

proposed by [40], which suggests the key role of the body as the interface be-

tween the brain and the environment (and thus the need to explicitly protect it).

Under the condition of “controller innovation protection”, the robots are able

to locomote 22.049 voxels on average (95% CI of 20.726 to 22.641 voxels), which

fails to show a significant improvement over the single-objective case of no pro-

tection (p = 0.240), and performs significantly worse (p = 1.211 ∗ 10−4) than the

protection of morphological innovations.
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Figure 6.1: The fitness impact (distance travelled, in voxels) over optimiza-
tion time (in generations) for various types of brain/body plan
protection mechanisms. Values plotted represent the mean
value of 30 independent trials, with 95% bootstrapped con-
fidence intervals denoted by colorized regions. Note that at
the end of optimization time (5000 generations), the “morpho-
logical innovation protection” (readapting controllers to new
morphologies before evaluating their long term potential) sig-
nificantly outperform all other treatments (p < 0.001), while
the “controller innovation protection” does not perform signif-
icantly better (p = 0.240) than the case with no protection. This
suggests that the added efficacy of protecting morphological
innovations goes beyond the effects of an added dimension to
the search space, and further suggests an fundamental asym-
metry between the morphology and controller while optimiz-
ing an embodied robot.
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Since morphological innovation protection and controller innovation protec-

tion both have the added dimension of “protection age”, the fact that they differ

significantly from each other (and that controller innovation protection does not

show significant improvements over the baseline case of no innovation protec-

tion) suggests that the fitness benefits of the morphological innovation protec-

tion are due to more than simply the added dimensionality of the search space

and the added population diversity from reduced selection pressure. Such a

result supports the idea of an asymmetry between morphological and control

optimization, and demonstrates that the most effective solution to embodied

robotic optimization includes the protection of morphological innovations.

The full comparison of these fitness values over optimization time are shown

in Fig. 6.1. The visual inspection of these evolutionary trajectories demonstrate

a typical logarithmic fitness improvement over the first 1000 generations or so,

but then show a stagnation for the traditional optimization procedure without

innovation protection, while the fitness values of the treatment with morpho-

logical innovation protection contrast these results by demonstrating sustained

improvement further into the optimization period. The mean fitness values of

the treatment without protection show no significant improvement (p = 0.085)

from generation 1000 to 5000 (with average fitness values of 20.988 and 21.717

voxels, respectively). Contrary to this, the treatment which includes morpho-

logical innovation protection shows a significant improvement over this time,

improving significantly (p = 0.013) from 25.925 at generation 1000 to 31.953

voxels at generation 5000.

Somewhat interestingly, the improvement in the controller innovation pro-

tection treatment is also significant (p = 0.017) over the same period of time,
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through upon visual inspection this appears to be due to tight confidence in-

terval bands more so than drastic fitness changes as the value improves from a

mean of 21.385 to 22.049 voxels.

Additionally, the rapid improvement in the controller innovation protection

and no protection cases during the first 1000 generations does not contradict the

hypotheses of a fragile “morphological language”, as the coupling and depen-

dency of the morphology and controller through this language would take time

to be originally established – and would not introduce fragility into the system

until it was established.

6.3.2 The Effect of Morphological Innovation Protection on

Population Stagnation

The early stagnation of traditional evolutionary robotics without protection is

indicated by the flatline in fitness value in Fig. 6.1, and suggests the prevalence

of local optima in this space. The treatments which feature innovation protec-

tion of some sort appear to stave off stagnation to a greater degree, with visually

noticeable results and significantly higher fitness values resulting from trials

with morphological innovation protection. However, these averaged statistics

provide little mechanistic insight into why and how protection is able to over-

come the local optima.

Perhaps more telling than the average locomotion ability at the end of op-

timization time is the examination of the optimization process within each in-

dividual run. Figs. 6.2 and 6.3 represent typical runs, and help to give an intu-
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ition of the optimization process. In these figures, each colored line represents a

unique morphology, plotted by its locomotion ability over optimization time.

Note that these runs outlast the 5000 generation total from Fig 6.1 – as all

trials were optimized for 5 days of walltime, before being truncated for compar-

isons with other runs. Some trials reached as far as 10,000 generations, while

the minimum number completed was 5014 generations, thus 5000 generations

was chosen as the cut off for comparisons of treatment averages – but figures

for single trials show their full length.

The first thing to note is the continued improvement in performance of the

most fit individual over optimization time in the case of morphological innova-

tion protection (Fig. 6.2) – which is consistent with the trend seen on average

in Fig. 6.1. This is not seen in the case without innovation protection (Fig. 6.3),

where the best individual was found well before generation 2000 – and by gen-

eration 1000, fitness has reached 99.6% of its final value.

Consistent with the above observation, we also see that the most fit indi-

vidual in Fig 6.2 changes rapidly, continually turning over in the trial with

morphological innovation protection. As each color in the figure represents a

unique morphology, we also see that a wide variety of different morphologies

hold the title of “best-so-far”. On average, runs with morphological innovation

protection 24.179 unique morphologies are the best-so-far at some point in opti-

mization, where the runs without protection show significantly (p = 1.555∗10−6)

less turnover, with just 10.115 unique robot body plans doing so.

The question of how the reduced selection pressure of morphological in-

novation protection may help to improve overall fitness and continued opti-
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Figure 6.2: A single optimization trial featuring morphological innovation
protection. Each unique morphology is represented by a ran-
dom color. Note the continual improvement in the locomotion
ability over optimization time, and the continual turnover in
morphology of the top performing individuals. The pop out in
this figure highlights an example of an “overtake” where the
new child morphology (in red) initially performs worse than
its parent morphology (in teal), only to outperform that previ-
ous morphology after successive control optimization to both
the parent and child. In traditional greedy methods this initial
drop in performance would signify a poor solution and thus
remove the child morphology from the population – leading to
stagnation. The example in the pop-out supports the idea that
the continued improvement in the morphological innovation
protection treatment is due in part to the ability to properly rec-
ognize the long(er) term potential of initially detrimental mu-
tations and allow for such overtake events.
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Figure 6.3: A single optimization trial with the same initial conditions as
Fig. 6.2, but without any innovation protection. Again, each
unique color represents a unique morphology. Note the early
improvement in locomotion ability during the initialization pe-
riod (the first couple hundred generations), but the stagnation
which occurs immediately afterwards. Also note the preva-
lence of colored dots filling the space underneath the best per-
forming individual, which represent new morphologies which
initially performed worse than the current best individual and
were thus rejected and thrown out of the population (as op-
posed to those individuals which were protected and even-
tually led to “overtakes” in Fig. 6.2). This treatment – where
morphology and controllers are attempted to be optimized si-
multaneously and without innovation protection – represents
the currently employed method in the field of evolutionary
robotics [23].
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mization may be best demonstrated in the pop out box for Fig. 6.2. Here we

see the current best morphology, in teal. This morphology was unable to im-

prove on itself for some time, as we see its fitness value (y-xais) flatlining. This

“parent” morphology has a “child”, a new proposed variation of its morphol-

ogy, highlighted in red. As the original fitness value of this morphology (its

leftmost point, as the x-axis represents optimization time) falls below its par-

ent, this individual empirically shows worse performance than its parent – and

thus would not be considered as a viable solution in a traditional evolutionary

method. However, since this new morphology does not have a controller that is

well adapted to it (as the controller is specialized for the previous morphology,

in teal), we should not expect it to outperform its parent. Thus morphological

innovation protection keeps this individual in consideration as one which could

hold long term potential, but does not show immediate promise.

Indeed, we see that after a number of controller optimization iterations later

(occurring in equal amounts to both the parent and child during this interme-

diate period), the child morphology (in red) overtakes the parent morphology

(in teal) – achieving higher fitness and demonstrating that it did indeed hold a

better long term potential than its parent, despite the immediate drop in fitness.

As the fitness of the parent (which has had more time to specialize its controller

to its morphology) is outperformed by the child (which has had less time to fine

tune its controller to its morphology), we assume that the parent is unlikely to

be the most promising robot body plan in the long run, and thus remove it from

the population.

We see this trend of “overtakes” – where children start out with worse fit-

ness than their parents, but eventually outperform them – continuing through-
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out this run (as the blue overtakes the red, and the green overtakes the blue in

the pop out of Fig. 6.2). Unsurprisingly, we see morphological overtakes signifi-

cantly (p ≤ 6.939∗10−10) more often in runs that explicitly protect morphological

innovations (an average of 76.714 overtakes in the first 5000 generations) than

without any innovation protection (where there are only 1.432 overtakes) and

the case with controller innovation protection (where there are just 1.333 mor-

phological overtakes on average).

Interestingly, there is not a significant difference (p = 0.533) between the

number of total controller overtakes in the controller innovation protection

treatment (where a “child” is a robot with a new controller variation, that

readapts its morphology to catch back up to its “parent” controller – which

happens 74.542 times on average) and the number of morphology overtakes

in the morphological innovation protection treatment. Combined with the find-

ing in Fig. 6.1 that morphological innovation protection outperforms the other

two treatments, this suggests a greater potential for the relative importance of

morphological overtakes over controller overtakes – and again reinforces the

asymmetry between morphologies and controllers from an optimization per-

spective.

6.3.3 The Effects of Morphological Innovation Protection on

the Progression of Morphologies over Evolutionary Time

In the above example, we saw continued improvement throughout the length

of optimization and search covering a larger number of unique morphologies.

This suggests that evolution with morphological innovation protection is better
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Figure 6.4: The progression of morphologies over evolutionary time with
morphological innovation protection. Rows represent the
top 10 (out of 30) performing runs at generation 5000, while
columns represent snapshots of the morphology at various
points during the optimization process. Note how some of the
runs converge upon the same morphology (a front and back
legged robot), despite starting from varying initial conditions.
The color of the morphologies represent their fitness values.
Note the progression from cooler to warmer colors over opti-
mization time, as fitness values increase.
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Figure 6.5: The progression of morphologies over evolutionary time with
no innovation protection. Rows represent the top 10 perform-
ing runs in this treatment, while columns represents the pro-
gression of optimization over evolutionary time. The color of
the morphologies represent their fitness values, and share the
same color mapping from fitness to color as Fig 6.4. Note how
neither the improvement in fitness (color), nor the change in
morphologies occurs over evolutionary time, as the final mor-
phologies found at generation 5000 closely resemble the state
of their run as early as generation 50 – just 1% of the way into
optimization time.
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able to escape local optima and find more optimal solutions.

The improved optimization efficiency of morphological innovation protec-

tion is further supported upon visual inspection of the trajectory of morpholog-

ical innovations over evolutionary time. Fig. 6.4 shows the current best individ-

ual at various points over evolutionary time for each of the top 10 runs in the

treatment with morphological innovation protection. Note how the fitness val-

ues of the robots increase over time (from left to right, and indicated by the color

of each robot). Also note how the final morphology of some robots (e.g. runs

24, 27, 18, 11, and 16) result in identical morphologies, despite starting from

a range of starting morphologies and not finding this convergent morphology

until hundreds or thousands of generations into the optimization process.

In contrast to the sustained turnover of morphologies shown above, Fig. 6.5

shows the snapshots of the 10 best runs in the treatment without innovation pro-

tection. Notice how the colors of the robots tend to show little change over the

evolutionary process, mirroring the stagnation shown in Fig. 6.1. While conver-

gence of the final morphologies is present here as well, the gross morphologies

found here (variants of the a full cube with no appendages) are found early

on in the search. These morphologies are often provided in the random initial

morphologies at generation 0 (an artifact of this genetic encoding’s tendency to

start with simple shapes and complexify them over time), or found early on in

search (by generation 10). In this treatment, gross morphological changes tend

to be absent after generation 50 (just 1% into the full 5000 generations).

The differences between Figs. 6.4 and 6.5 suggests that the traditional

method without morphological innovation protection tends to converge pre-

maturely to morphologies that are present early on in the evolutionary search.
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While the inclusion of morphological innovation protection may allow search

to escape local optima and converge to “more global” optima. Since the com-

mon final morphology found in runs 24, 27, 18, 11, and 16 of Fig. 6.4 is not the

best found in that treatment (as it is outperformed by run 19), it is obviously

not the global optima. But the fact that a diversity of random initial conditions

converged to this final morphology (and that the converged upon morphology

is more fit than those initial conditions) suggests that morphological innovation

protection is better able to search over a larger basin than treatments without it

(i.e. are less sensitive to initial conditions and can better escape local optima).

The convergence of morphologies across varied initial conditions is even further

pronounced, and more visually impressive, in Fig. 6.10 below.

6.3.4 Generalization to More Complex Implementations

The results above demonstrate the effectiveness of the proposed algorithm on

one specific instance of the optimization of embodied machines. However, the

wide application of this algorithm also requires the demonstration of its effec-

tiveness as the complexity of these machines scales up.

To explore the question of scale, we apply morphological innovation pro-

tection to the evolution of robots with higher resolution morphologies (up to

103 = 1000 voxels) and also those with closed-loop neural network controllers.

These both represent more complex instantiations than the lower resolution

morphologies (53 = 125 voxels) and open-loop phase-offset controllers em-

ployed in the previous experiments.

In this particular robot morphology and encoding, the increased number of
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Figure 6.6: The resulting average fitness value of the best individual at
generation 5000 across 30 independent trials for various val-
ues of the minimum change threshold. These runs employed
the more complex closed-loop neural networks controllers and
higher resolution morphologies. The line in green represents
the minimum morphological change for an “age reset” in the
case of morphological innovation protection – resulting in the
highest fitness performance when only changes of more than
40% of the potential voxels in a robot were mutated triggered a
morphological age reset. The blue line represent the case of the
minimum threshold for controller changes in the case of con-
troller innovation protection. Here, the optimal value of the
threshold parameter (triggering an age reset only when at least
5% of the potential synapses in a given robot are mutated) did
not show significant improvement over the case with no mini-
mum controller change threshold (p = 0.237). Thus minimum
controller change thresholds were not considered in this work.

voxel cells that make up each robot allows for greater expressiveness and finer

details in its morphology. However this also presents a challenge for the above

146



Figure 6.7: The mean fitness over evolutionary time of the best individ-
ual for 30 independent runs in the most complex setting tested
here – with closed-loop neural network controllers and high-
resolution morphologies. The average performance of evo-
lution with morphological innovation protection with a 40%
threshold outperforms all other treatments shown here (mean
fitness of 13.909, all p ≤ 1.949 ∗ 1007). Interestingly, without the
threshold, the treatment with morphological innovation pro-
tection (mean fitness of 17.019), controller innovation protec-
tion (fitness of 16.914), or no protection do not show any sig-
nificant difference (all p ≥ 0.0668).

algorithm. As the total number of voxel cells increase, the effect of changing a

single voxel (the minimum morphological variation) is reduced. In the extreme,

the concept of readapting controllers since the last “morphological change” is

less straightforward – as increasingly small changes can modify minor details

of the morphology without affecting its overall function.
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To help address the problem of non-functional morphology changes, we in-

troduce a parameter to represent the minimum percentage of voxels that must

be varied in order to qualify as a “gross morphological change”. It is important

to note that this parameter is specific to the voxel-based soft robot implemen-

tation employed in this work – and thus the optimal setting of this parameter

is not of great importance for its generalization outside of this soft robot en-

coding. But the general concept of a threshold for the minimum morphological

change is a universal concept that could be applied to any robot instantiation,

as necessary.

In the case of robots with neural network controllers and higher resolution

morphologies, we find that resetting the “morphological innovation protection

age” of an individual only after a mutation that changes more than 40% of their

voxels produces optimal results. The 40% value was found via a parameter

sweep, shown in Fig. 6.6. Interestingly, the benefit of controller innovation pro-

tection falls as the threshold for “controller innovation protection age” increases

(showing optimal performance with small or no thresholds), so we ignore the

threshold for minimum controller change here.

The increased efficacy of morphological innovation protection with this

threshold is reinforced by viewing the fitness traces over time in Fig. 6.7, which

show a significant improvement in fitness values at the end of optimization time

over both the case without morphological protection (p = 6.780 ∗ 10−7) and with

morphological protection without a threshold (p = 5.225∗10−9). Figs. 6.8 and 6.9

visually present the progression of morphologies over evolutionary time. Note

how the presences of morphological innovation protection with this threshold

enables new – more efficient – morphologies to be found even thousands of
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Figure 6.8: The progression of morphologies over evolutionary time in the
setting with closed-loop neural network controllers and high-
resolution morphologies and evolution with morphological in-
novation protection with a 40% threshold. The rows represent
the top 10 (of 30) independent trials, while the columns repre-
sent the progression over evolutionary time. Color represent
the fitness values of the robot (their locomotion speed), with
warmer values depicting more fit individuals. Note the contin-
ued increases in fitness and change in morphologies late into
optimization time. Also note that while exact convergence isn’t
as clear as other other experimental setups, many independent
runs find the strategy of flat sheet morphologies which fall to
lay flat on the ground and undulate to locomote.
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Figure 6.9: The progression of morphologies over evolutionary time in
the setting with closed-loop neural network controllers and
high-resolution morphologies and traditional evolution with-
out morphological innovation protection. The rows represent
the top 10 independent trials, while the columns represent the
progression over evolutionary time. Color represent the fitness
values of the robot, with the fitness to color mapping matching
that of Fig. 6.8. Note that final fitness values and morpholo-
gies at the end of optimization time (gen. 5000) rarely change
the state of their runs just 1% of the way into this optimiza-
tion length (gen. 50). This suggest that the search space has
many local optima, as there is one nearby each of the random
starting conditions – and that traditional evolutionary robotics
methods (without innovation protection) are unable to escape
these local optima, cause premature convergence to subopti-
mal morphologies.
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generations into optimization time.

6.3.5 The Potential for Convergence Across Initial Conditions

The case of high resolution soft robots with the phase offset controllers (in

Figs. 6.10 and 6.11) is perhaps even more interesting, as they show extreme con-

vergence of morphologies across varying initial conditions. Similarly to above,

we find the optimal threshold value with a parameter sweep, this time result-

ing in an optimal value of 20%. That the threshold in this scenario differs from

the optimal 40% value in the case above is interesting to note, as it suggests

that the optimal threshold value for minimum morphological changes may be

dependent on both the implementation of the morphology and that of the con-

troller. The differences in threshold values for different controllers makes intu-

itive sense, as some controllers (like the open-loop distributed phase offset os-

cillating controller) may be more robust to changes in morphologies than other

(like the closed-loop neural network controllers), and thus better able to gener-

alize across closely related morphologies.

The 20% threshold value again shows a significant improvement over the

treatment with no morphological innovation protection (p = 1.208∗10−5), shown

in Fig. 6.12. Though interestingly, the morphological change threshold does not

provide a significant fitness improvement over morphological innovation pro-

tection with no threshold in this setting (p = 0.156). Also note, in Fig. 6.12, how

the fitness curves for this thresholded value appear to flatten out later in op-

timization, as fitness gains slow down. The explanation for this may come in

Fig. 6.10, where most of the runs depicted have converged to the same gross
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Figure 6.10: The progression of morphologies over evolutionary time in
the setting with open-loop phase-offset controllers and high-
resolution morphologies and evolution with morphological
innovation protection with a 20% threshold. The rows rep-
resent the top 10 (of 30) independent trials, while the columns
represent the progression over evolutionary time. Color rep-
resent the fitness values of the robot (their locomotion speed),
with warmer values depicting more fit individuals. Note the
convergence of all 10 of these runs to the same morphology at
the end of optimization time (and many of the these runs find
this gross morphology by generation 500). This convergence
occurs despite a variety of different initial conditions across
these trials.
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Figure 6.11: The progression of morphologies over evolutionary time in
the setting with open-loop phase-offset controllers and high-
resolution morphologies and evolution without morpholog-
ical innovation protection. The rows represent the top 10 in-
dependent trials, while the columns represent the progression
over evolutionary time. Color represent the fitness values of
each robot, and is consistent with that in Figs. 6.10. Note the
lack of high fitness values and lack of morphological change,
with most runs finding their final morphology by generation
50.

153



morphology by generation 500, and only make fitness improvements from con-

troller changes thereafter.

The ability of evolution to converge to the same high-performing morphol-

ogy across many independent trials, despite starting from different initial con-

ditions suggests that (in this particular soft robot implementation) the inclusion

of thresholded morphological innovation protection is able to escape the local

optima around these starting conditions and find “more global” optima in this

search space. The lack of this convergence in Fig. 6.8 (the case of closed-loop

neural network controllers) may suggest a differently structured search space

or simply the inefficiency of the algorithm to find such optima in the allotted

time with a more complex controller to optimize.

In the case without any protection, search stagnates quickly and again ap-

pears unable to escape the local optima near its initial conditions (Fig. 6.11).

Interestingly, the low resolution soft robot implementation employed for the

primary experiments above does not benefit from the inclusion of a threshold.

Fig. 6.13 shows the fitness traces over time for this soft robot implementation,

with no significant improvement shown for a 20% threshold in this setting. As

the only difference between this instance and Fig. 6.12 is the resolution of the

robot, it is likely the case that non-functional morphological changes are less

prevalent when the robot is composed of fewer and discrete subcomponents.

The inclusion of a threshold for the minimum morphological change ap-

pears to hold potential for the generalization and efficiency of this proposed

algorithm. Though the complete characterization and understanding of this

parameter in the soft robot implementation used here, as well as other robot
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Figure 6.12: The mean fitness over evolutionary time of the best indi-
vidual for 30 independent runs with open-loop phase-offset
controllers and high-resolution (10 × 10 × 10) morphologies.
The average performance of evolution with morphological
innovation protection with a 20% threshold (mean fitness of
53.334) outperforms the trials without any innovation protec-
tion (mean fitness of 35.559, p = 1.208∗10−5) or with controller
innovation protection (mean fitness of 38.632, p = 3.274∗10−4).
However having the optimal 20% threshold for minimum
morphological changes still does not significantly outperform
the case with no threshold at generation 5000 (mean fitness of
47.335, p = 0.156). The usage of morphological innovation
protection with no threshold does significantly outperform
both the no protection and controller innovation protection
treatments though (both p ≤ 2.436 ∗ 10−3).
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Figure 6.13: The mean fitness values over optimization time for the lower-
resolution (5 × 5 × 5) robots with open-loop phase offset con-
trollers. This figures is identical to Fig. 6.1, plus the inclu-
sion of a treatment with morphological innovation protection
and a 20% minimum morphological change threshold. This
threshold does not show significantly higher fitness (32.519)
than the case of morphological innovation protection without
a threshold (31.425, p = 0.859). This differs from the case of
high-resolution robots and open-loop phase offset controllers
in Fig. 6.12, suggesting that the resolution of the morphology
may be related to the benefits of a threshold.
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implementations, is required in future work.

6.4 Discussion

The above results demonstrate a new method for entire robot (brain and body

plan) evolution that is more scalable in terms of continued optimization for

longer periods of time, and better resulting fitness than the traditional evolu-

tionary method (without innovation protection). This method for “morpholog-

ical innovation protection” helps prevent premature convergence to the many

local optima which appear to be present in the rugged search space of robot

morphologies and controllers [40].

The hypothesis from [40] that the fragile co-optimization of brain and body

plan caused by specialization of one sub-component to the other is consistent

with the findings above. This work also reveals that there is an asymmetry be-

tween the brain and body plan: protecting innovations to the morphology leads

to more effective optimization that protecting innovations to the controller.

The benefits of the temporarily reduced selection pressure provided by mor-

phological innovation protection suggests that the long-term potential and im-

mediate fitness impact of a morphological mutation are not always correlated.

Thus, we require a form of diversity maintenance, such as innovation protec-

tion, which helps evolution to rate proposed solutions based on long-term po-

tential rather than on immediate fitness impact. As was shown here, this pro-

tection can help to reduce premature convergence in the search space and stag-

nation at suboptimal values.
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We should point out that many other diversity maintenance methods al-

ready exist (such as fitness sharing [246], novelty [170], speciation [275], or bin-

ning/niching [203]). Yet we believe the proposed method here to be unique

from these other forms of diversity maintenance, as we reduce selection pres-

sure only for individuals with new morphologies (and not those with new con-

trollers) to allow them to adapt. It could be argued that this takes place also by

parallel (or random restart) hillclimbers [188] that are instantiated with a diverse

set of morphologies, or certain forms of speciation – but such methods would

not allow for the direct competition between evolving individuals, based on

their current level of controller-to-morphology specialization, and thus may not

perform as efficiently (though future work is needed to compare the proposed

method against all such competitors systematically).

We believe this to be the first example of a design automation algorithm for

robotics that considers the interdependence of neural controllers and body plans

(specifically arising from embodied cognition [219]) and to use this intuition to

propose a method to escape local optima in the fitness landscape of embodied

machines.

But despite the significant improvement to our ability to simultaneously

optimize the brain and body plan of embodied robotics, there is much work

still to be done. Firstly, the proposed method was only applied to one class of

robot. This class may actually represent the simplest form of brain-body co-

optimization because the distributed sensing, actuation, and information pro-

cessing that the cellular soft robot paradigm was designed to possess [43, 38]

helps to blur the line between physical interactions of the morphology with the

environment and information processing of a controller.
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In the case of centralized controllers and robots composed of rigid compo-

nents, topological rather than parametric changes to the cognitive architecture

would be required for control readaptation if morphological mutations add or

remove physical components. Future work should explore the effect of morpho-

logical innovation protection in such a paradigm, where there is the potential

for morphological changes to more drastically change the function of the robot

– and thus for readaptation to those morphologies to play an even more critical

role in optimization.

In these experiments, the genotype encoding of the soft robots was modular-

ized such that one part of the genome dictated the shape and material properties

of the robot and a separate part encoded the actuations in the form of volumet-

ric deformations of the voxels during behavior. In these robots (and those with

even more complex phenotypes), one can envision different splits as to what

constitutes morphology and control – and what qualifies as a “morphological

change” in this proposed algorithm. It would be of interest to investigate the

effect of various splitting points of this dichotomy on the efficacy of morpho-

logical innovation protection.

Furthermore, the very idea of the split was noted above to be a false di-

chotomy, as information processing and physical processes happen throughout

the agent. Rather than various mutation operators which affect only the geno-

types of the “brain” or the “body plan”, and phenotype mappings which take

information only from one module of the genotype, it is necessary in our artifi-

cial agents (as is the case for biological organisms) that a developmental process

with a richness of crosstalk and feedback loops be the mechanism responsible

for co-adapting the brain and body plan as they grow together.
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Engineering the optimal way to create such a developmental process, and

understanding how such processes can impede or increase evolvability in bi-

ological populations, remains an open problem. However, the method intro-

duced here may serve as one step in this direction – and provide a more effective

way to evolve the brains and body plans of embodied machines until a devel-

opmental method that enables rapid readaptation during the growth process is

available.

The biological analogs of the procedure of “protecting morphological inno-

vations” are not entirely clear, but some rough analogies can be drawn. For

example, the fact that brains learn and adapt at a much faster rate than bodies

grow fits into this paradigm, as does the even slower change of gross morpho-

logical features over evolutionary time. In this way, the readaptation of con-

troller strategies for varying body plans is built into the neuroplasticity of the

brain. The speed at which neurogenesis and morphogenesis occur is certainly

constrained by the energetic resources of each process, but herein lies a poten-

tial benefit for the automated optimization of behavior and form in machines.

The basic idea of “protection” is simply a diversity maintenance measure result-

ing in temporarily reduced selection pressure on specific individuals within an

evolving population.

One could also imagine periods of evolutionary time when an entire species

is under relatively little morphological selection pressure before an environmen-

tal shock suddenly reapplies that pressure. Also possible are periods of a single

individual’s lifetime when selection pressure varies: For example, human in-

fants may not be selected highly for their locomotion speed, as their parents

tend to physically carry and protect them while their brain and body develops.
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The work reported here could then be viewed from the perspective of

learned versus innate behaviors (exploring the benefits of neuroplasticity and

development), or used to pose questions about how a varying level of selection

pressure could help lead to more complex behaviors, such as upright walking.

We should also note that the results presented here do not explicitly show

an increase in the complexity of evolved agents with and without this method.

They do, however, show that this method allows for increases in sustained opti-

mization, leading to higher fitness values in the CPPN-based soft robot domain.

This domain is more complex in its shape (e.g. number of components) and ma-

terial properties (e.g. compliant bodies) than previous benchmarks [263, 264],

and this method has been shown to cope with the difficulties in co-optimizing

body and brain that arise in such a domain.

We do not believe that the results stated here are (at a high level) restricted to

this particular domain. The above algorithm is simple to implement (requiring

only: an age counter, a check for variations in brain and/or body for each muta-

tion, and –optionally – a criterion for the minimal gross morphological change),

and thus we believe it will be widely applicable. Future work will test this sup-

position.

Due to the recent interest in co-optimization of neural network topology and

weights [94, 199, 160], we should also note that the domain of this work – an

agent’s controller embodied within its morphology – is closely related to that

of neural network’s weights embodied within its topology. Future work will

show whether the method proposed here will show similar gains in the design

of neural network topologies.
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6.5 Conclusion

We demonstrate an example of a robot design automation algorithm that con-

siders the interdependence of neural controllers and body plans (due to the the-

ory of embodied cognition) on the optimization process. We use this intuition

to temporarily reduce selection pressure on newly mutated robot morphologies,

thus allowing the agents to readapt their controllers and better escape local op-

tima in the fitness landscape. We have shown that this technique – deemed

“morphological innovation protection” – produces evolutionary optimization

which delays premature convergence and stagnation, and results in more effi-

cient evolved robots. We showcase the ability of this technique to escape lo-

cal optima in the search space by demonstrating the convergence to a similar

morphology across many independent trials from randomly initial conditions.

While we hope that this technique will be surpassed in the future by a devel-

opmental process with feedback loops between the body and brain, we propose

the above algorithm as a short term improvement over the current techniques

for the co-optimization of morphology and control in virtual creatures.
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CHAPTER 7

APPLICATIONS OF MORPHOLOGICAL DESIGN AUTOMATION

TO ENGINEERING PROBLEMS OUTSIDE OF ROBOTICS

Abstract of Chapter 1

Natural frequency tuning is a vital engineering problem. Every structure has

natural frequencies, where vibrational loading at nearby frequencies excite the

structure. This causes the structure to resonate, oscillating until energy is dis-

sipated through friction or structural failure. Examples of fragility and distress

from vibrational loading include civil structures during earthquakes or aircraft

rotor blades. Tuning the structure’s natural frequencies away from these vi-

brations increases the structure’s robustness. Conversely, tuning towards the

frequencies caused by vibrations can channel power into energy harvesting sys-

tems. Despite its importance, natural frequency tuning is often performed ad-

hoc, by attaching external vibrational absorbers to a structure. This is usually

adequate only for the lowest (”fundamental”) resonant frequencies, yet remains

standard practice due to the unintuitive and difficult nature of the problem.

Given Evolutionary Algorithms’ (EA’s) ability to solve these types of problems,

we propose to approach this problem with the EA CPPN-NEAT to evolve multi-

material structures which resonate at multiple desired natural frequencies with-

out external damping. The EA assigns the material type of each voxel within the

discretized space of the object’s existing topology, preserving the object’s shape

and using only its material composition to shape its frequency response.

1Appeared as: Cheney, N., Ritz, E., & Lipson, H. (2014). Automated Vibrational Design
and Natural Frequency Tuning of Multi-Material Structures. In Proceedings of the 2014 annual
Conference on Genetic and Evolutionary Computation (pp. 1079-1086). ACM.
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Figure 7.1: (left) Resonant vibrations are a common source of fragility in
natural objects. Here a glass fails in the presence of an acoustic
wave at resonance. (right) On a larger scale, structural failure
through periodic loading of the Broughton Suspension Bridge
caused its collapse in 1831 due to the resonance of the solders
marching in lockstep [115].

7.1 Introduction

In engineering mechanics, the response of a structure to vibrational loads is

of acute interest and importance. Every object will exhibit some motion when

excited with any periodic load – such as vibrations. But vibrations at certain

frequencies will excite certain objects with greater intensity. The natural fre-

quencies of each object dictate the frequencies of vibrations which exhibit par-

ticularly intense responses. In many cases, this type of loading is harmful to the

system – larger responses put more stress on the structure. The energy trapped

in the structure through these oscillating motions is not efficiently dissipated

into the surrounding environment in these cases, leading to weakening or even

failure over time (Fig. 7.1).
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Large arch dams in earthquake prone areas are one example of antagonis-

tic periodic loading, where oscillations at resonance encourage cracking and

rupture through brittle concrete [1]. Wind turbine blades are another instance

of this, where rotation at a resonant frequency may cause tip deflection that

stresses the blades and lowers their effectiveness [117]. In aerospace appli-

cations, or other vehicles producing massive propulsive loads, the vibrations

caused can be particularly damaging [65].

On the other hand, some applications may benefit from increased oscilla-

tory response. Oscillations of larger magnitude contain more energy, which

are ideal for power harvesting mechanisms such as microelectromechanical

systems (MEMS) like piezoelectric microcantilevers. In this case, the lack of

energy dissipation from structures with resonant frequencies close to the fre-

quency of the vibrations enhances the efficiency of these energy harvesting sys-

tems [35, 257].

However, the process of tuning structures to have specific resonant frequen-

cies remains largely unintuitive – changes to the material properties at one point

in a structure often lead to non-linear effects on its vibrational response, both

near and far from the point of change. Thus existing methods usually change

the shape of the structure, often involving the addition of mass dampers to the

system or requiring significant structural modifications. In cases where weight

and size are at a premium, such as aerospace or remote sensing, these solutions

are unsatisfying. Additionally, many of these damping strategies are only useful

for the first (”fundamental”) resonant frequency.

In many cases, important structures must interface into a pre-existing sys-

tem, be robust (free from fragile additions), or serve aesthetic purposes. In
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existing structures the topology has often already been optimized, such as air-

foils tuned for aerodynamic efficiency. In these cases, it would be advantageous

to perform vibrational optimization of structures which preserves the overall

shape of the object while also giving it desirable vibrational properties.

Muti-material design involves the use of different material types within a

given shape to produce overall object properties outside of those available to

the given shape composed of a single material. By optimizing a structure’s vi-

brational response though multi-material design within an existing envelope,

we open new doors towards the study and implementation of vibrational opti-

mization of these fixed topology structures. Additionally, with current advances

in multi-material additive manufacturing, we now have the ability to specify the

placement and interwovenness of individual material droplets with vastly dif-

ferent properties during the manufacturing of a given structure, making such

designs physically realizable today.

In this study, we optimize the two dimensional projection of a fixed-free can-

tilevered beam, with the first ten natural frequencies optimized to reproduce a

randomly chosen resonant frequency profile. This is a particularly difficult and

unintuitive problem because the material properties at each voxel are coupled

(often non-linearly, and non-locally) with the material properties at every other

voxel to produce the vibrational response of the object as a whole. Furthermore,

this static topology responds differently to vibrations at different frequencies,

making ad-hoc tuning of more than one or two natural frequencies exception-

ally challenging.

Due to the unintuitive nature of the problem, we use evolutionary compu-

tation to traverse this design space – specifically the evolutionary algorithm
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CPPN-NEAT. We choose this because the Compositional Pattern Producing

Network (CPPN) genome provides a compact and evolvable representation of

the discretized physical design space necessary for this problem. We use this

EA to optimize the placement of two materials (stiff and soft) at each discretized

voxel of the structure’s original shape envelope. We optimize towards randomly

chosen frequency profiles (which specify the first ten natural frequencies of a

structure), and show the promise of this approach to become an automated de-

sign platform for structural vibration optimization going forward.

7.2 Background

Controlling system performance through the frequency domain is a classical

idea [144], but conventional engineering strategies have remained largely un-

changed since the early 20th century. In many cases, harmful vibrations are at-

tenuated by directing energy away from the most sensitive parts of the system,

to another auxiliary system. This is done through the addition of tuned vibra-

tional absorbers (TVA) [140, 280, 286]. However these systems come with the

tradeoff of increasing the mass and complexity of the original structure. This

typically involves augmenting the system with spring-mass element or small

cantilever with a first resonant frequency tuned to that of the undesired ex-

citation, where the undesirable energy is contained within oscillations of this

auxiliary structure until it is dissipated though friction.

This process is not only inefficient, but fails to fully explore the design space

- as the attachment location and parameters of these devices are often chosen

through intuition and physical guess-and-check iterations by the engineers, and
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are thus biased by the engineer’s assumptions and training. Additionally, the

amount of energy that can be absorbed by these types of systems is limited. As

the TVA becomes large, its own dynamics begin coupling with the original sys-

tem. This not only produces harmful vibrations within the original structures,

but also changes its resonance profile and further complicates design. Further-

more, volume constraints of the system, such as inside the fairing of a rocket in

launch, inherently restrict the size and shape of a TVA.

Some work has examined changing the system’s topology to have a desired

frequency profile without the addition of other components. Many of these

strategies optimize the placement or parameter settings of a few predetermined

basic structures, such as rods or trusses [114, 270, 75]. Duhring et al. studied the

automatic design of structures with desired natural frequencies using homoge-

nization [87]. However, this method could only optimize for a single frequency

band, trying to maximize or minimize the frequency response between a set

of frequency borders. This strategy also involved the generation of structures

with complex and unpredictable shapes, rather than optimizing the response

of an existing structure’s topology. Du and Olhoff used topological optimiza-

tion to automate the design of a voxelized plate structure with a binary material

array to minimize sound power flow [86]. However, their designs were also

constrained to the optimization of just a single frequency.

Our system expands upon these strategies by allowing us to optimize an

arbitrarily large number of natural frequencies of a structure. Additionally, any

number of material values can be used for any geometry. Since our search of the

design space is topology-preserving; the final product will still have the shape

of the original design, ensuring it will have the same functionality and maintain

168



previous topology optimization, with only natural frequencies changed.

7.3 Methods

Our method involves tuning the natural frequencies of a structure, which for

lightly damped systems well approximates the resonant frequencies (where vi-

brational energy resonates to create sustained oscillations). First, the user speci-

fies a design geometry. In many practical cases this is a pre-existing object shape,

in this study we simply use a 2D projection of a cantilever beam, fixed on one

end. Next the user produces a list of n desired natural frequencies. These fre-

quencies are again dependent on the specific application; vibration in the envi-

ronment can be found by measuring excitation loads with an accelerometer and

applying the Discrete Fourier Transform [85]. Here, we select the frequency

profile randomly (Sec. 7.3.4). Finally a selection of materials from which to con-

struct the object is necessary. These depend on the additive manufacturing capa-

bilities and supplies available to the user, and in this case is simply represented

by two idealized materials, one an order of magnitude stiffer than the other. The

structure to be optimized is meshed in a uniform voxelized grid. In this study,

the beam is discretized into a 40x10x1 set of uniform cubic voxels. Each of these

voxels is assigned a material according to the phenotype described by its asso-

ciated Compositional Pattern Producing Network (CPPN) genome (Sec. 7.3.2).

The natural frequencies of the structure are calculated (Sec. 7.3.1), and used to

determine the individual’s fitness (Sec. 7.3.3). Individuals who best minimize

the error between the calculated and desired natural frequency profile are dis-

proportionally favored to reproduce (and are subject to both genetic mutations

and crossover in this process), creating the next generation to again iterative this
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evolutionary process.

7.3.1 Approximating Natural Frequencies with FEM

Determining the harmonic behavior of an object is equivalent to solving for the

eigenvalues of the matrix representing the FEM mesh of the structure. The

shape and material of the system will govern the frequency at which each of

the n desired natural frequencies lie. There is one natural frequency per degree

of freedom of the system, but typically the number of nodes required for accu-

rate simulation far exceeds the number of natural frequencies in an engineering

range of interest. In this case of the 40x10 discretized voxels, the 400 voxels

are approximated by 1301 nodes, with 8 nodes per quadrilateral element (many

nodes are shared between adjacent elements). This is more than adequate to

approximate the first 10 natural frequencies. These are computed using a gen-

eralized conjugate residual method, to a residual error < 10−8. For this com-

putation we employ Elmer, a popular open source finite element software for

multiphysical problems, developed and maintained by the CSC - IT Center for

Science [186].

7.3.2 CPPN-NEAT Evolutionary Algorithm

CPPN-NEAT has been repeatedly described in detail [271, 56, 54, 104], so we

only briefly summarize it here. A Compositional Pattern Producing Network

(CPPN) is similar to a neural network, but its nodes contain one of multiple

mathematical functions (sine, cosine, Gaussian, sigmoid, linear, square, or pos-
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Figure 7.2: The CPPN genome iterates through each voxel in the dis-
cretized design space, placing either a soft or stiff voxel at
each location to produce the phenotype structure it encodes
(Sec. 7.3.2)

itive square root). CPPNs evolve according to the NEAT algorithm, which is

largely based on: complexification of genomes over time, speciation within the

genotypic space for diversity maintenance, and tournament selection within

species [271].

The CPPN produces a spacial output pattern that is built up from these func-

tions’ geometric transformations of the input gradients (changing values of each

input coordinate over the space). Because the nodes have regular mathematical
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functions, the output patterns tend to be regular (e.g. a Gaussian function can

create symmetry and a sine function can create repetition). In this paper, each

voxel has x, y, and z coordinates, polar coordinates (r and θ) in each of the x, y,

and z planes, and a measure of the voxel’s distance from the center of the search

space (d), which are all input in the range [−1, 1], describing the relative location

of each voxel in this geometric design space. The single output of this network

is interpreted as either a stiff material present in that voxel’s location for a value

above zero, or a soft material present for a value less than or equal to zero.

Alternate experiments were conducted with the value of the output node

([−1, 1]) representing a mixture of the stiff and soft materials with a compliance

representative of an interpolation between the maximally stiff or soft materials

at each endpoint. While the real valued compliance affords more flexibility in

the design space, the problem of physically mixing materials during the addi-

tive manufacturing process is not yet a solved problem [126].

In order to produce a structure from a CPPN, each voxel in the discretized

design space is iterated though. At each iteration through this space, the voxel’s

coordinate are input into the network, which is then undergoes it’s update func-

tion to produce an output value. The value out this output determines the type

of voxel which is placed at this location. A positive output stipulates the place-

ment of a stiff voxel (denoted by to a Young’s Modulus (E) of 10 gigapascal

(GPa), and Poisson’s ratio of 0.3), while a negative output value produces a

soft voxel at this location (resulting in a Young’s Modulus of 1 GPa, and the

same Poisson’s ratio of 0.3). After iterating through each voxel within the de-

sign space, the CPPN genome has produced a phenotypic description of the

structure, which can then be analyzed to find it’s natural frequencies, or sent to
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a 3D printer for fabrication. This iterative process is outlined in Fig. 7.2.

7.3.3 Fitness Function

The quality (fitness) of each structure’s ability to match a desired frequency pro-

file of n frequencies is described by:

1
Σn

i=1(n−i+1
n )E(i)2

Where n is the number of frequencies being optimized, and E(i) is the rela-

tive error in matching the ith frequency. The linear weighting factor n−i+1
n is to

place more weight on the primary frequencies than the later ones, which con-

tribute less significantly to the behavior of real world systems. For example: for

frequency 1 of 10, n−i+1
n = 10−1+1

10 = 1, thus the first frequency contributes to the

fitness penalty with a weight of 1. For frequency 6 of 10, this weighting factor

becomes 10−6+1
10 = 0.5, so the 6th frequency is discounted such that it’s relative

error is only counted by half of that belonging to the first frequency. Similarly,

the 10th frequency has a discount factor of 0.1, meaning that it’s relative error

contributes to the overall fitness only one tenth the amount which the error of

the 1st frequency does.

The motivation for using the weighted sum of the squared errors is simply

a standard practice to negate the sign of the error terms, and to more heavily

penalize larger deviations from the desired frequencies.
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7.3.4 Producing Random Target Frequencies

Full Full Rand. Rand. Rand. Rand.
n Soft Stiff #1 #2 #3 #4
1 0.782 1.596 1.215 1.062 1.044 1.315
2 4.666 9.549 7.994 7.279 6.858 6.613
3 11.973 24.894 18.592 16.059 17.447 19.177
4 12.220 25.087 15.594 17.749 21.404 20.691
5 22.080 45.475 30.026 29.250 33.929 38.461
6 33.513 69.209 49.484 52.985 52.274 49.015
7 35.868 74.574 51.903 59.555 55.862 58.415
8 45.964 95.121 65.639 76.686 59.337 69.871
9 59.072 122.436 84.398 79.505 77.530 97.132

10 59.598 123.911 105.121 87.085 85.164 97.485

Figure 7.3: The first 10 natural frequencies (in MHz) for beams with all soft
voxels or all stiff voxels gives the boundaries for the creation of
4 random frequency target profiles (Sec 7.3.4).

In order to optimize a structure to match a given frequency profile, such a

profile must exist within the limits of the structure’s realizable material prop-

erties. Thus to produce random frequency profiles to be used as targets for the

optimization process, we use the following:

fn =
f stiff
n + f soft

n
2 +

f stiff
n − f soft

n
2 ∗ rand(−0.5, 0.5)

For frequency number n = 1, 2, ..., 10. Where f stiff
n is the nth frequency of a beam

fully populated with maximally stiff voxels (and conversely with soft voxels

for f soft
n ). Thus the above equation produces a random number from the mid-

dle 50% of the range between these minimum and maximum frequencies. Much

like the fact that a primary frequency above or below that of the fully stiff or soft

beams is not physically realizable with the chosen materials, the frequencies at
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(or near) the edge of this allowable range necessitate beams that are (almost)

entirely filled with stiff/soft voxels, and thus may or may not be realizable in a

case where more than a single frequency is being optimized for. For this proof of

concept we conservatively constrain ourselves to the middle 50% of this range,

where we feel a balance of both materials is likely to produce a vast array of

frequency responses from the relative positions of voxels rather than the pro-

portion of voxel types themselves. Future work will experimentally examine

how optimization success drops off as these goals become less and less physi-

cally realizable with the expansion of the allowable target frequency range.

After all 10 frequencies are chosen, the values are then sorted from smallest

to largest, as natural frequencies must occur in a monotonically increasing order.

The 10 target frequencies for four random seeds are given in Fig 7.3.4, as well as

those of the beams fully populated with stiff or soft voxels.

7.3.5 Control Treatment

In order to test the validity of the evolved structures, a control method was

devised. To isolate the effects of the optimization towards natural frequency

matching structures, the control groups consist of the same 32 independent runs

of 30 CPPN genomes evolving for 1000 generations. This negates any natural

advantage that the genomic representation of the CPPN might have in this do-

main, as well as the complexification of the NEAT algorithm over time. In the

control setup, however, no preferential reproduction is afforded to those indi-

viduals who more closely match the desired frequency profile, but rather this

selection happens at random. At the end of the 1000 generations of this evolu-
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tionary drift, the resulting structure are still compared to each of the four Ran-

dom Frequency Profiles and their effectiveness is measured in the same manner

as with the experimental treatments.

7.4 Results

All treatments below consist of 32 independent runs, with populations of 30

individuals evolved for 1000 generations.

7.4.1 Statistical Measures

The data resulting from the control conditions pass the Shapiro-Wilk test for

normality [256] (with p¡0.0329 for all 10 frequencies), and thus error bars are

used to describe this data in the following plots. However, the experimental

treatments routinely fail the Shapiro-Wilk test for normality, with many of the

10 frequencies for each random frequency profile falling above the p=0.05 con-

fidence cutoff for the normality of the distribution. Given that the shape these

distributions are unknown, we employ bootstrapping to produce 95% confi-

dence intervals to graphically describe the experimental data [88]. Given that at

least one distribution for any statistical tests will be an experimental treatment,

we employ the Mann-Whitney U test, as it does not require the assumption of

normality of the data, yet performs almost as well as the student’s t-test on nor-

mally distributed data (such as the control data) [194].
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7.4.2 Statistical Data

Optimization for Random Frequency Profiles

We optimize the material makeup of our 40x10x1 voxel beam to set its natu-

ral frequencies to resonate with Random Frequency Profile #1. This is done for

32 independent trials, using a ”soft” material (Young’s Modulus(E) of 1 giga-

pascal(GPa), and Poisson’s ratio of 0.3), and a ”hard” material (Young’s Mod-

ulus of 10 GPa, and Poisson’s ratio of 0.3) as the material library. We compare

the relative error for the task of matching with Random Frequency Profile #1

with the control conditionfor each of the n = 10 desired frequencies, resulting

in 10 different p-values. A one-sided U test is employed in order to test the

hypothesis that optimized structures will produce lower errors than the control

structures. All of these 10 measures fall below the 95% confidence threshold,

as max(p-values) < 1.008 ∗ 10−5, showing statistical significance that our system

can effectively optimize all of the first 10 frequencies of this desired frequency

profile.

In order to test the sensitivity of this analysis on this randomly generated

target frequency profile, three additional desired frequency sets are randomly

produced. These each consist of n = 10 desired natural frequencies, but each of

these frequencies differs from those in Random Frequency Profile #1, so a com-

parison coupled by desired frequency (in MHz) is no longer possible. One could

imagine instead coupling by frequency number, and comparing the accuracy of

n = 1 for each of the four frequency profiles, then comparing n = 2 for all four,

and so on. However, actual frequencies between desired profiles can greatly

differ: even when comparing with the equivalent frequency number (for exam-
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ple 15.594 MHz for Random Profile #1 is the 4th desired natural frequency of

the system, which has the value 21.404 MHz for Random Profile #3 – a value

37% higher). Additionally, with the highly non-linear nature of the frequency

tuning domain, the effects of differences in other frequencies may play a major

role in the overall structural evolution strategy and influence desired frequen-

cies that do happen to be closely coupled by both n and frequency value (in

MHz). Instead, we attempt to compare ”apples-to-apples” but assessing each of

the optimized structures against control structures evolved through a random

walk. These rancom control structures are then compared to the same target

frequencies for each of the Random Frequency Profiles. As seen in Fig 7.4, each

of these four independently generated random frequency profiles show a sta-

tistically significant improvement over their associated control treatments (with

the max p-value of the Mann-Whitney U test > 1.008 ∗ 10−5).

10 Materials vs. 2 Materials

Fig. 7.5 shows the effect of intermediate materials. In this setup, we optimize

structures via the same method as in Sec. 7.4.2, where the CPPN genome spec-

ifies the material present in each voxel of the structure by again choosing from

one of two materials – either stiff (E=10 GPa) or soft (E=1 GPa). To explore the

impact of this assumption of two available materials, we compare this to an-

other treatment in which there are 10 material choices, representing materials of

intermediate compliances (between and including the endpoints of the fully stiff

and fully soft voxels as before). Materials 2-9 are assigned a Young’s Modulus

(E) of 2- 9 GPa, respectively, with a constant Poisson’s ratio of 0.3. The results

of a two-sided Mann-Whitney U test show that 8 of the 10 desired frequencies
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showed no significant difference (min(p-value) > 0.0745. The exceptions to this

rule were the frequencies of 15.594 MHz (n = 4), which had a p-value ¡ 0.029,

and 105.121 MHz (n = 10) with p-value ¡ 0.0005. In the case of the final (n = 10)

frequency of the group, the 10 material structures actually performed worse

than their 2 material counterparts. Thus, in general, we believe that using 10 in-

termediate materials does not typically produce significantly better optimized

structures than those made with just the two extreme materials.

Optimization for the First Natural Frequency

In the course of the work, we also explored other fitness function setups. Of

particular interest is the one which rewards only (or disproportionately more)

for the matching of the first natural frequency to its desired target. This is of

particular interest because the optimization of the first natural frequency alone

is considered state of the art in frequency tuning via external damping, and

we would like to show that our approach also can be compared directly to tra-

ditional approaches. In this case, the following data comes from a quadratic-

scaling fitness function. This is a variation on the fitness function described in

Sec. 7.3.3, with the n−i+1
n term squared, such that the primary natural frequency

now accounts for 100 times as much weight as the 10th natural frequency does

(as opposed to 10 times more in the linear scaling scenario above). In this sce-

nario (not plotted here), the 32 independent runs shows a mean of 0.106% error

for the primary natural frequency, with a 95% bootstrapped confidence interval

of [0.104%, 0.110%] error. One could also imagine this trend being even more

extreme should the entire weight be placed on the primary frequency.

179



0 20 40 60 80 100 120
Target Frequency (MHz)

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
tE

rr
or

Controls – No Selection Pressure
Random Frequency Profile 1
Random Frequency Profile 2
Random Frequency Profile 3
Random Frequency Profile 4

Figure 7.4: Examination of the effect of particular random frequency pro-
file targets on the resulting optimization process. Structures
are optimized to match (red stars) Random Frequency Profile
#1, (blue squares) #2, (green circles) #3, or (magenta crosses) #4.
While it is not possible to compare the responses to the same
frequencies across treatments here, since no two treatments op-
timize towards the same frequency, we can compare each Ran-
dom Profile to a control treatment (without selection pressure),
plotted as black triangles). In all 10 frequencies for all 4 runs,
the optimized structures outperform their control counterparts
against the same frequencies (with all p-values < 1.008 ∗ 10−5),
suggesting the ability of this technique to effectively evolve
structures for various frequency profiles.
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Figure 7.5: Examination of the effect of number of materials used on the
performance of optimized structures. Both data sets use the
same random seeds and target frequency (Random Frequency
Profile #1). (red stars) Optimized structures from a combination
of the maximally stiff or maximally soft voxels only (2 mate-
rials). (blue circles) Each voxel can take on one of 10 interme-
diate material properties (including the two endpoints in the
previous treatment). A two-sided Mann-Whitney U test lacks
significant at the 95% confidence level with p-values ¿ 0.0745
for all frequencies except: n = 4 (15.594 MHz) with p-value ¡
0.029, and n = 10 (105.121 MHz) with p-value ¡ 0.0005. This
suggests that for most frequencies (besides n = 4, 10) the addi-
tion of intermediate material properties often does not signif-
icantly impact the frequency matching ability of the resulting
structures.
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7.4.3 Vibrationally Optimized Beam Examples

Fig. 7.6 shows a representative sample of interesting beams evolved to match

Random Frequency Profile #1. The top end has a fixed boundary condition,

where the bottom is free; white and black voxels correspond to the soft and

stiff materials, respectively. These beams tend to feature a long vertical primary

structures (or two connected shorter beams spanning the length of the beam),

often with horizontal protrusions acting as secondary structures.

Fig. 7.7 shows beams which are stereotypical of the structures evolved in re-

sponse to Random Frequency Profile #2. These structures tend to exhibit greater

curvature, exhibiting circular patterns from the center of the beam, which pre-

sumably rely heavily on the gradients caused by the polar coordinate inputs to

the CPPNs. These structures seem more likely than Fig. 7.6 to include mate-

rial discontinuities and have multiple floating sections of continuous material

instead of a single one than spans the length of the beam.

Figs. 7.8 and 7.9 display structures optimized for the remaining target fre-

quency profiles. In Fig. 7.8, the results of optimization towards Random Fre-

quency Profile #3 display simple vertical structures, often with a repetition or

separation point along the mid-line between top and bottom halves of the struc-

tures. While in Fig. 7.9, structures evolved for Random Frequency Profile #4 dis-

play a distinct pattern of stiff material near the center of the beam, with mostly

soft voxels at the top and bottom edges of the structures. These unique struc-

tural types, recurring frequently within treatments, but rarely for treatments op-

timizing towards another random frequency profile, provide further evidence

of the algorithm’s ability to produce multi-material placements suited for spe-

cific vibrational optimization problems.
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Alternatively, Fig. 7.10 showcases the beams created from a process without

the selection pressure to optimize towards a specific frequency profile. These

structures appear more pixelated, featuring isolated single, or small groups of,

voxels. These structures tend to display very broad divisions, such as a single

fuzzy line splitting stiff and soft sides of a beam. The presence of these struc-

tures implies that the CPPN itself complexifying over time is not in itself suf-

ficient to produce the crisp lines, solid patches, and features such as symmetry

and repetition found in Figs. 7.6-7.9. But suggests that selection towards specific

frequencies, combined with the apparent vibrations benefit of such features for

these specific cases, is required to produce these motifs.
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Figure 7.6: Six examples of stereotypical structures evolved for Random
Frequency Profile #1. Black pixels represent stiff material,
while white pixels represent soft material. Optimized struc-
tures often consist of one or two large continuous regions. They
often span all or nearly all of the design space allocated in both
width and length. They also often display minor branching
structures off of this primary long-spanning structure.
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Figure 7.7: Six examples of stereotypical structures evolved for Random
Frequency Profile #2. These structures appear to favor sweep-
ing curvature in their designs, often with repeating or symmet-
ric motifs. This group is shows more use of thinly (or non-
)connected areas of stiff material than group #1.
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Figure 7.8: Typical structures evolved to match the natural frequencies of
Random Frequency Profile #3 display very simple structures
with long vertical motifs, often displaying symmetry or repeti-
tion along the midpoint of the vertical axis, where a thin strip
of stiff voxels connects the top and bottom features.
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Figure 7.9: The top six performing structures optimized for Random Fre-
quency Profile #4. This frequency profile tends to drive the
evolution of structures with stiff voxels concentrated around
the center, with near-symmetric ”wings” stretching vertically
from the primary horizontal structure.
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Figure 7.10: Six examples of stereotypical structures from the control
group that features a random walk through the genotypic
space in lieu of selection pressure towards high performing
structures. The resulting structures appear to be much nois-
ier, with many unconnected single pixels. This suggests that
the continuous shapes from the previous trials are preserved
because of their vibrational advantages.
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7.4.4 Fabricated Structures

While these structures are evolved in simulation, the optimized beams are easily

produced via additive manufacturing. Fig. 7.11 shows two optimized structures

in simulation, and their fabricated counterparts. While the simulated materials

in this study were not modeled after any real-world materials, and thus the

printed structures were not tested for their actual natural frequencies, future

and ongoing work will demonstrate both of these features.

Figure 7.11: Optimized designs printed on an Objet Connex 500. Shown
here are voxels of 0.9mm for visualization purposes, though
the resolution on this 3D printer would allow voxels as small
as 16 microns.
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7.5 Discussion

The above describes a system in which vibrational properties of an existing

topological design are optimized through the placement of soft and stiff vox-

els according to an evolved Compositional Pattern Producing Network. The

culmination of the results presented previously implies that this new system is

indeed capable of producing structures which are optimized to match a prede-

termined set of natural frequencies. Furthermore, the system is fairly robust to

the specific natural frequencies, and their relations to each other – at least within

the limited space we explored between range of frequencies existing in single

material (all stiff or all soft) beams. We compared the results of these beams to

those created from a random evolutionary walk to show the ability of the sys-

tem to optimize for many natural frequencies simultaneously, since there have

not existed previous studies which optimize as many as 10 natural frequen-

cies which we could compare our results to. Existing structural optimization

methods such as homogenization allow for the optimization of one or few fre-

quencies, but rely heavily on spatially-local gradients or properties which do

not capture the highly coupled relationships across a structure that occur when

optimizing for multiple frequencies. The employment of an evolutionary al-

gorithm helps to remove the top-down design from this difficult problem, and

the use of a CPPN genome creates correlated global mutations which evidently

is helpful in optimizing the spacial coupling which made this problem previ-

ously unsolvable. In order to compare to the state of the art single frequency

optimization, we show that our method can move an object’s natural frequency

to the order of a tenth of a percent error, without having to affect it’s existing

topology or augment it with dampers.

190



Arguably the most interesting of all, are the examples of optimized topolo-

gies in Figs. 7.6-7.9. The differences between the strategies in designing these

structures, at such a basic level that it is immediately obvious to the eye, display

the flexibility and creativity of design which evolutionary algorithms have pre-

viously made their acclaim [19]. The ability to produce structures that are inher-

ently and consistently different in their fundamental layout and design strategy,

attuned to each new scenario (as opposed to minor variations on a preexisting

paradigm) provide the hope that future work with this system will demonstrate

the ability to produce effective and realizable solutions specifically designed for

the many real-world applications of vibrational analysis.

7.6 Future Work

Given the novelty of this work, the potential for future work is nearly limit-

less. We are currently upgrading this system to produce 3D structures which in-

clude boundary conditions outside of classical beams, running experiments on

a larger number of frequencies and on a less restricted set of desired frequency

profiles, and exploring the effect of finer resolution on this design paradigm.

It is also not yet clear how the system will approach demands to push nat-

ural frequencies away from wide frequency bands, rather than pushing them

towards specific targets (though these two problems are highly related). The

fitness function employed in this work was chosen logically, though not rigor-

ously, and further experiments will take place to provide evidence of it’s effec-

tiveness in relation to others. Specifically, this applies to multi-objective fitness

functions. One could easily imagine other desirable function properties of a real
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world system, such as the minimization of deflection in a fixed-free beam, which

needs to be optimized in parallel with the structures vibrational properties.

Given the ability the system’s consistent ability to match all 10 frequencies, it

is unknown where the limits of this paradigm fall. In future work, we push this

system to failure, exploring its limitations on number of frequencies optimized.

7.7 Conclusion

In this work, we approached the tuning of an object’s natural frequencies with-

out the use of external damping or changing the shape envelope of the exist-

ing object topology. This problem is of vital engineering importance to pro-

duce parts, objects, and structures with are robust to the structural weakening

and eventual failures caused by vibrations in many domains such as civil or

aerospace engineering. The inverse case is also an important problem, where

systems that collect energy and drive oscillations of a piezoelectric beam rep-

resent a significant advance in the efficiency of energy harvesting. Despite the

difficulty of this problem, we show here that we are capable of producing struc-

tures which can optimally place their natural frequencies to match one of mul-

tiple desired resonant frequency profiles of 10 frequencies. We do so by opti-

mizing the placement of multiple materials within an existing topology with

the evolutionary algorithm CPPN-NEAT. The demonstrated ability to optimize

many frequencies simultaneously, as well as the fundamental differences in

structures optimized across multiple target frequency profiles show promise for

this technique to soon be a design automation platform for the vibrational opti-

mization of important real-world structures.

192



CHAPTER 8

APPLICATIONS OF MORPHOLOGICAL DESIGN AUTOMATION

TO ARTISTIC OPTIMIZATION

Abstract of Chapter 1

Can we design without being aware of what we want? Design tools today,

both manual and automated, require a designer to make explicit design choices.

There is, however, a potentially much larger space of interesting designs that is

left unexplored, as designers may not be able to deliberately recognize as valu-

able. Here, we introduce an implicit method that attempt to access this latent

space through subconscious interaction. We use an eye tracker to capture user

interest, and use this information to breed designs through artificial evolution.

We demonstrate a variety of 3D shapes designed without any explicit selection,

a process that we call Inadvertent Design. Results show that the process can

work effectively, and an exit survey of participants shows that they found this

technology to be enjoyable and that it can aid their ability to explore an alterna-

tive space and find novel interesting designs, while aiding their creativity. We

suggest that this technology could help tap into design talent that may be in-

accessible through explicit methods, and help leverage time lost to gaming and

entertainment.

Can we design without being aware of what we want? Design tools today,

both manual and automated, require a designer to make explicit design choices.

There is, however, a potentially much larger space of interesting designs that is

1To appear as: Cheney, N., Clune, J., Yosinski, J. & Lipson, H. (in review). Inadvertent Design:
Accessing the Subconscious Design Space Through Eye Tracking.

193



left unexplored, as designers may not be able to deliberately recognize as valu-

able. Here, we introduce an implicit method that attempt to access this latent

space through subconscious interaction. We use an eye tracker to capture user

interest, and use this information to breed designs through artificial evolution.

We demonstrate a variety of 3D shapes designed without any explicit selection,

a process that we call Inadvertent Design. Results show that the process can

work effectively, and an exit survey of participants shows that they found this

technology to be enjoyable and that it can aid their ability to explore an alterna-

tive space and find novel interesting designs, while aiding their creativity. We

suggest that this technology could help tap into design talent that may be in-

accessible through explicit methods, and help leverage time lost to gaming and

entertainment.

8.1 Introduction

Can we design without knowing what we want? Most design tools today re-

quire a designer to know what they are looking for, before they can create it:

to explicitly specify primitive shapes, constraints, goals, or preferences. There

may, however, be a much larger space of possible good designs that designers

are simply unaware of – a space that is largely inaccessible to current “explicit

design methodologies. Here, we demonstrate a method that begins to explore

the space of unconscious design preferences, one that is based on the principle

“I’ll know it when I see it.” We call this process Inadvertent Design.

This premise may not be as farfetched as it first appears. Advertising and

product recommendation rely strongly on this premise, where suggested prod-
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ucts routinely make companies enormous sums of money [229, 247, 46, 216].

Yet if the consumer had been consciously aware that they had wanted to buy a

product before it was suggested, would they not have simply purchased it on

their own? We are all aware of the presence of subconscious reactions in person-

alized marketing and product suggestions, but why isn’t there a complementary

method for personalized design?

Perhaps great design is heralded as a stroke of genius, that a great idea sud-

denly appears in the mind of a brilliant designer with no concept of where it

came from or how it got there. This makes creative design an intimidating con-

cept to approach procedurally with artificial intelligence. But this need not be

the case. Much of design is actually iterative and formulaic. One such example

on a grand scale is the great diversity and effectiveness of life on earth. Per-

haps this is why we once assumed that a brilliant creator must have hatched

the ideas for each of these creatures. Yet we now know that the life we see

around us is the outcome of a very formulaic process: the combination of heri-

table traits, genetic variations, and natural selection that we know as evolution.

We also see examples of this formula routinely used on smaller scales in animal

breeding [108, 230, 291].

Optimization algorithms that employ this recipe, deemed “evolutionary

computation”, are able to autonomously produce solutions to a problem, given

that one is able to specify a preference between potential solutions based on how

well they solve the problem [12, 13, 217]. In the use of evolutionary computa-

tion for artistic design, it is common for the user to be in-the-loop and specify

a rating of each potential solution proposed by the algorithm based on its ap-

peal – a technique called Interactive Evolution [72, 166, 262, 284]. Though in the
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Figure 8.1: A sketch of an interactive design system via eye tracking. A
webcam and gaze tracking software (stand-alone hardware or
embedded in the television, smartphone, or computer monitor)
measures the user’s fixation towards various objects on screen,
inferring the user’s preference for each one. This information is
used to produce a new set of suggested objects (shown here as
a object shapes on a black background – as provided to users
in this study, but these objects may also be embedded within
traditional media or online content) allowing the user to inad-
vertently design their own custom products from the comfort
of their own couch or desk and without any design training
and little to no conscious effort.
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case of designing for subconscious preferences we describe in the opening, a

user may not be able to specify an explicit preference for one form over another.

Their preference towards a certain design lives outside of their conscious deci-

sion making process. In order to produce design solutions which access these

subconscious preferences, one would require a method for the subconscious to

indicate a preference for one solution over another. In this work, we propose a

method to enable this: the use of eye tracking to capture the user’s preferences

and drive the process of Inadvertent Design.

Eye tracking for preference inference provides distinct advantages over tra-

ditional computer interfaces (keyboard or mouse):

(1) There is less physical effort required. A user does not have to make a

physical response (like a mouse click) to provide feedback to the system. All

feedback is inferred from simply looking at the screen. The eye movements

which are measured occur continuously, and may take place at an entirely sub-

consciously level in the absence of explicit intent.

(2) Since there is no need to physically press a button to show preference

for one design over another, this also means that there is no need for the user

to make an explicit decision in ranking the potential solutions – thus decreas-

ing the required mental load. While the user may choose to select a design

by intentionally focusing on one of the proposed designs, the system infers all

preference relations on its own and does not require the user to formally make

a decision (a task that users become worse at as the amount of information or

alternatives increases [146, 190]).

(3) Since no physical interaction or mental decision point are required, this

197



process can take place without the conscious or explicit intent of the user. Sim-

ply by looking at a screen with various alternatives, we conjecture that the sys-

tem should be able to infer their preferences between design alternatives (even

if they are within the context of a larger scene – though we do not formally test

this supposition here). In this work we do test the design abilities of users with-

out explicit design intentions, simply by sitting in front of (and looking at) a

screen. Hence we refer to this process as “Inadvertent Design”.

(4) The type of feedback related by one’s eye movements may be different

(and provide a different set of preference information) from the feedback one

consciously chooses to provide (as in the case in subconscious priming [155,

153, 193]).

(5) Eye tracking may also have an advantage over other non-haptic inter-

faces, like EEG control [205, 237], in that it is familiar and unobtrusive. Users

of all ages are already used to passively interacting with television screens for

hours on end [60, 243, 195, 298].

Based on these advantages, we foresee a great potential for the use of eye

tracking in product design. With the growing popularity of front facing cam-

eras/webcams on computers, cell phones, and televisions (and the ability to

perform eye tracking with these devices [36, 29, 244]) we see the potential

for this technology to be accessible to a large number of users. The commer-

cial/marketing application of such an approach, in which users could design

customized products inadvertently from product suggestions embedded within

regular shows, games, or commercials – only to be shown these completed de-

signs at a later time – provides additional motivation for future work beyond

the score of this paper (Fig. 8.1).

198



8.2 Background

An optimization process which mimics the main tenants of natural evolutionary

design was proposed as early as 1950 by Alan Turing [293], and became popular

with Holland’s 1975 work on Genetic Algorithms [130]. Interactive evolution is

often traced back to Dawkins’ description of “Biomorphs” in his 1986 book, The

Blind Watchmaker [72]. In 1991, Karl Sims demonstrated interactive evolution

for computer graphics, in which a human-in-the-loop algorithm allowed users

to be presented with various suggested “artworks”, and then provide their pref-

erence for one over another [261].

In fact, Sim’s work was the first to hint at the possibility for inadvertent de-

sign. This work extended the traditional computer interface of evolutionary

design to create various museum exhibits (Genetic Images starting in 1993, and

Galápagos starting in 1997). In these exhibits, multiple monitors were used to

display the potential images suggested by the algorithm, with step sensors on

the ground in front of each screen. An image’s quality (“fitness”) was judged

on the number of times the step sensor in front of it was pressed. If the viewer

might inadvertently tend to step on the sensors in front of the images they pre-

ferred because they stood in front of such images longer or more frequently, this

work could be considered the first to employ a fundamental tenant of inadver-

tent evolution: that the potential designs are competing with one another over

the scarce resource of users’ visual attention, and that natural selection weeds

out designs which fail to attract or entertain the users. Sims’ work did instructed

users to decide which images they liked the best and explicitly step on the sen-

sors in front of them (relatively small sensors, which may not have been stepped

on accidentally by everyone viewing that image), so this work fails to be truly
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“inadvertent” in it’s ability to work outside of conscious decision making. But

we must remark at its ingenuity nonetheless.

More recent work [253] has also explored the interface of these interactive

evolutionary systems though the creation of online exhibits, where users can

click through a number of images and highlight the ones they wish to select.

Such a system performs the selection in a very explicit manner, but the website

format allows for the design process to reach anyone with an internet connec-

tion. This interactive website framework was also ported to the design and fab-

rication of 3D shapes[54]. While these works clearly require explicit decisions

to be make regarding design preferences, their ability to reach a near endless

number of users through the web is a necessity for the wide use and acceptance

of an inadvertent design system.

Xu et al. also demonstrated an example of shape evolution for computer

graphics [314], though their work differs from the previous examples (and our

proposed work) as it relies on pre-segmented shapes and variation operators

on these individual segments rather than affecting pattern generators that affect

the entire shape in a bottom-up manner.

As one may imagine, these human-in-the-loop evaluations (for hundreds

or thousands of iterations) become quite time intensive, causing the user be-

come fatigued and lose attention or quit. This may lead to insufficient amounts

of time and low effort decision making being provided to the design process.

There have been numerous efforts to relieve this fatigue by predicting user pref-

erences and offloading some of this interactivity to a machine proxy or com-

putational substitute for the human user, often interweaving human evalua-

tions with those of the computer counterpart [215, 152, 112, 187, 136]. Though
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these works failed to address user fatigue in terms of effort required to pro-

vide each piece of feedback. While we know that staring at a television screen

for extended periods of time can lead to fatigue in the forms of eye strain,

headaches, dizziness, and nausea [206], this has evidentially not been a seri-

ous enough deterrent to prevent consumers from watching hours of television

each day [60, 243, 195]

The use of eye tracking relies on the concept of users’ selection preferences

correlating to their viewing (implied by Sims’ museum setups). While gaze

may not be a perfect match for user intention or preference, there is reason to

suggest that the two are highly correlated. Lohse showed that consumers spent

54% more time viewing yellow pages ads of businesses they ended up choosing,

over those they did not [183]. Pieters and Warlop found that consumers make

more saccades to their preferred products (i.e. look to them more frequently)

and fixate on them for longer [226].

Aside from attention towards preferred objects, it has been demonstrated

that novel or unexpected stimuli can also draw increased visual attention

[151, 279]. While increased attention towards a novel stimuli might seem as

though it would distract from the type of design which the user is ultimately

interested in, it has been shown that rewarding novel designs is also a viable

means for achieving desired results (and can perform better than simple goal-

directed search in some systems) [170]. It should be noted that rewarding both

goal-directed and novel designs together (as we conjecture is the case in this

system) can be more effective than either search driver alone [172]. This may be

especially true in creative optimization domains like product design.

Perhaps a fundamental question underlying the use of eye tracking regards
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the existence of subconscious preferences in decision making. It may first be

important to simply define our interpretation of the term “subconscious.” We

consider conscious behavior to be the single, rational, and purposeful behavior

in focus in one’s mind, as opposed to subconscious processes which are often

parallel, instinctual, and automatic behaviors not at the forefront of one’s at-

tention. We also note that most complex behaviors can consist of sub-routines

with both forms of attention, and may even transition between the two (such

as a driver zoned-out and on “autopilot” called into focusing explicitly on their

route once they realize they have made a wrong turn). We direct the reader to

[76] for an in-depth discussion on “the status of cognition and consciousness in

consumer behavior theory”.

A large literature exist regarding behaviors which do not “rely on delibera-

tive mental operations” [91] in consumer choice and preferences. Most notably,

studies of subconscious priming effects in psychology demonstrate altered de-

cision making from internal states or cues which users are not explicitly aware

of [155, 153, 193]. Similarly, the subconscious emotional reactions (or automatic

reactions to low level sensory stimuli) has become an important aspect of in-

dustrial and product design [211, 78, 165]. We seek to take these implicit user

preferences and employ them to drive automated design.

It should also be noted that a major tenant of this approach is the ability

to place these design tools in the hands of everyday users. This would not be

possible if each user was required to purchase an eye tracker for each input de-

vice (cell phone, computer, television) they owned. Recent work [178, 315] has

demonstrated gaze tracking using simple cameras (such as webcams) without

the need to shine infared light on the user’s eyes (as is the case with traditional

202



eye tracking). This is especially important with the prevalence of front facing

cameras on smartphones and webcams on computers and televisions.

Despite the promise of such a design interface, we are not aware of a pre-

vious attempt to implement an open-ended interactive evolutionary setup for

product shape design based on gaze tracking. The general idea for such a sys-

tem was considered by Pallez et al., though they did not implement a system

with an eye tracker capable of capturing inadvertent reactions from the user,

but rather “simulated such equipment with the help of a mouse” and explicitly

“ask[ed] the user to move the mouse to where he is looking” [214]. By defi-

nition, this rules out the possibility of inadvertent design. They also did not

suggest applying this interface to a shape design paradigm, but rather a version

of the one-max optimization problem [44], where the user must maximize the

value of 24 bits. Holmes and Zanker provide an example of an interactive evo-

lutionary setup which did employ an eye tracker [132], however the goal of this

system was simply to optimize a single parameter (the length of a fixed-area

2D rectangle) rather than performing complex shape design in an open-ended

design possibility space.

Suggestive design interfaces that provide assistance to novice users seek-

ing to create complex designs and employ neither eye tracking nor evolution-

ary computation have also been described previously. Igarashi and Hughes

provide a suggestive interface for 3D drawing which hinted at possible addi-

tional components which users may desire when creating a larger scene, but

their work allowed for only a fixed number of predetermined geometric rela-

tions (20 in their prototype), rather that open-ended complexification of entire

shapes [141]. Talton et al. created a modeling tool which would suggest a num-
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ber of high quality alternatives to a user based on designs of previous users.

However, their algorithm was designed for use on parametric design spaces,

and required many other users to provide feedback on the same parametriza-

tion system, limiting the novelty of the designs suggested [285]. Chaudhuri and

Koltun created a data-driven approach to design suggestion. This approach had

the user input a vague query shape, upon which the algorithm would search a

large database of existing related shapes to suggest additions to the original

query design. This approach allows for a novel combination of existing compo-

nents, but not the bottom-up design of those basic components and individual

features or the generation of entire shapes at once [37].

8.3 Results

To explore the concept of inadvertent design and provide a proof-of-concept

demonstration for this method of exploring a new part of the design space, we

perform an experimental treatment in which users are asked to sit in front of a

computer equipped with an eyetracker and design 3D objects based on a series

of instructions (see Methods for details). Users are randomly assigned to either

complete the task with a traditional (mouse-based) interface, or our experimen-

tal eyetracking user interface. Following their design trials, users are asked a

short survey about their experience with their randomly assigned platform.
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Figure 8.2: (top left) The final iteration of designs for a run in which the
user was directed to find a small blue oval via eye tracking in-
puts. (top right) The final iteration of a run in which the user
was directed to find a small yellow cone via traditional mouse
inputs. (bottom left) An example of a user converging to a com-
mon shape, despite not originally having it as a target before
starting an open-ended design run. Some of the designs in this
iteration are reminiscent of a computer monitor. (bottom right)
An example of a set of evolved objects demonstrating the di-
versity and variety of unfamiliar shapes that a user might en-
counter within an open-ended design run – despite not inten-
tionally directing search towards any of them.
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8.3.1 Target Shapes

Users and first given three unique target shapes to design, starting from three

random initial conditions. In analyzing the shapes designed during these trials,

we did not verify the users’ self-reported success ratings in reaching the goal

shapes. Nor did we provide our own rating of the match/complexity of the

shapes they produced. We felt that the users’ egocentric evaluations of their de-

signs (reported below) was the most pertinent valuation of their own creations

(as, in the case of individualized product design, each consumer would be the

end user of the products which he or she designs). We also did not have an

objective measure to compare the users’ designs to their prompted goals, nor

specific instances of target shapes shared by all users (since they were given a

verbal description rather than a visual template). We did visually inspect many

of the runs, with Fig. 8.2 exemplifying successful matching of the target shapes

for each input method.

8.3.2 Open-Ended Design

Each user was then tasked with an open-ended trial in which they were in-

structed to use the same interface type, but now used to simply create any sort

of shape they found interesting, rather than specific target shapes. Given that

this experiment was even more free-form, it is difficult to place ratings on the

resulting designs. As expected, the user could create a variety of novel shapes

– from simple solid objects to complex shapes and abstract mathematical art.

Fig. 8.2 demonstrates a variety of novel designs which are not reminiscent of

existing shapes, but are novel creations of this particular user. More unexpect-
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edly, this free-form design process may stumble upon existing shapes. Fig. 8.2

also shows an example of a user creating the general outline of a computer mon-

itor. The user was not instructed to focus on objects of this shape before the run

began, and iterations earlier in the run do not suggest that it was goal from

the start, but rather something that was found and exploited later in the design

process. One could think of this as a random walk through the design space en-

tering a subset of that space with shapes that were reminiscent enough for the

user to envision a computer monitor – at which time the user may have been

drawn towards this goal and purposefully switched strategies and attempted

to produce this specific object. We also do not discount any potential subcon-

scious priming effects on the user, who performed this process on a computer

monitor and sitting in room with many other computer monitors.

8.3.3 Exit Survey Results

At the end of the experiment, each user was also asked general questions about

their interaction with the system. They were asked if the system: helped them to

produce interesting shapes, helped them produce the goal shapes requested by

the prompts, provided them with novel design suggestions, aided their overall

creativity, and was generally enjoyable to use.

Fig. 8.3 shows the results of this survey. Values shown here are on a 1-5 Lik-

ert scale (with 1 meaning ”strongly disagree and 5 corresponding to ”strongly

agree”). P-values denote the difference (via Wilcoxon rank-sum test) between

the user reported values and a “neural” response of 3 on the Likert scale. For

both set of users, those who were assigned to either the mouse clicking (m)
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Figure 8.3: The mean values reported on the exit survey for users assigned
to either the mouse-clicking or eyetracking treatments (error
bars represented 95% bootstrapped confidence intervals). The
values given are on a Likert scale (with 5 corresponding to
”completely agree” and 1 corresponding to ”completely dis-
agree”) and are compared to the neural response (Likert scale
value of 3) denoted by the dashed line.

and eyetracking (e) treatments, noted that the system suggested novel design

to them (pm = 0.004, pe = 0.001). Users of the eyetracking treatment also re-

ported that the system helped them to find interesting shapes (pe = 0.047), aid

their creativity (pe = 0.017), and was enjoyable to use (pe = 0.047). Users who

were assigned to the mouse clicking interface, on average, did not report any

of these statements to be true (pm = 0.631, pm = 0.337, and pm = 0.631, respec-
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tively). Interestingly, neither group found that this interface significantly helped

them to reach the specific goals provided in the prompt (pm = 0.337, pe = 0.691),

suggesting that the positive benefits of this system may have been largely felt

during the open-ended design.

Users were also given a free response section to leave comments about their

interactions with the system. Their reviews mirrored the generally positive

feedback from the Likert scale rating. Users commented about the eye track-

ing interface: “It was really neat for the technology to be able to recognize my

shape preferences through only my eye sight. I did enjoy using it.”, “ I really

liked the experience. The eye technology tools has great potential for design,

etc. It was very easy to use.”, “I think it’s amazing how the program detects

what I am looking at and then takes it a step further by suggesting interesting

shapes. Yes, I liked using it.”, “It was very interesting, but I was not sure if it was

capturing my ideas at all times, sometimes it was right on and other times it was

a little off, but it prompted suggestions and ideas I had not thought about”, and

“ I thought the system was rather intelligent in design. It was enjoyable using it

for a short period of time, but the twenty minute task put a strain on my eyes.”.

Besides the comment on fatigue, other negative feedback on the eye tracking

setup included users who wanted more time at each iterations and were “not

ready for the next screen of shapes because I was looking around for the best

fit.”. Other users were generally confused by the hidden back-end algorithm of

the system, stating that they “don’t know what it’s doing”, or simply that they

weren’t able change the shapes as they desired and thus “didn’t really like using

the technology.” This is not surprising, as we chose not to explain the concept of

an evolutionary algorithm or any of the technical details of the back-end system

to the users during the instructional period (as we were concerned that intri-
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Figure 8.4: The results of a trial of eye-tracking-based design with the tar-
get shape of a face. This trial consisted of three separate runs
from random restarts. Note the diversity and abstract quali-
ties/interpretations of the faces produced.

cate knowledge of the underlying algorithms might interfere with the notion of

“inadvertent design”).

The mouse-click users were slightly more critical, with just two users pro-

viding only positive comments “I think it’s pretty cool! I did like using it.” and

“I thought it was interesting. I did like using it and seeing the projected shapes

that I otherwise would not have thought of.” Regarding the negative feedback

and constructive criticism, one user noted that “Often the shapes were too sim-

ilar.” Another user “didn’t particularly enjoy using it”, citing the fatigue factor

as well as the inability to retain desirable features of some of the designs that

had been previously selected. Multiple users noted that the open-ended sec-

tion was more enjoyable than the target driven trials, saying “it was more fun

towards the end” and noted that the creative open-ended section made them

“more familiar with how it works to design shapes.”
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Figure 8.5: The results of a trial of mouse-click-based design from the same
user as Fig. 8.4. This trial consisted of three separate runs from
random restarts. Despite the random restarts, note the sim-
ilarity of results produced when the user explicitly makes the
decision of which suggested designs to choose at each iteration.

8.3.4 Finding Faces

Following these user trials, we hypothesized that some forms may be innately

more attention-grabbing for the human visual system than others. In particular,

we chose to explore the use of faces as the target object. We chose faces for the

target shape for not only for their range of possible variation and interpretation,

but also because we suspect that potential users (and humans in general) may

be subconsciously primed to see faces in abstract contexts [113].

Rather than apply for additional IRB approval for human subject testing,

these later trials were performed using one of the authors (N.C.) as the user.

As a result, the following results are anecdotal and highly biased. But we still

find them to be intriguing, and to inform a potentially interesting study to be

executed on a large population of randomly chosen subjects.

First, this user was given three separate runs (from random restarts) using

the eye-tracking interface. Fig. 8.4 exemplifies the six most diverse faces found

when analyzing the user’s saved iterations post hoc. The wide variety of “cre-

ative” interpretations of a “face”, as well as the diversity of shape, size, and
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color within this interpretation should be noted.

Next, the user performed the same task with the mouse clicking interface.

The six most diverse faces from the same number of runs (three random restarts)

are shown in Fig. 8.5. Note the similarity of the designs, even between runs.

In fact, upon first seeing these images, a co-author not involved in the testing

procedure initially assumed that these designs were all created from the same

run, rather than from three distinct random starting conditions. To dig slightly

deeper into this user’s ability to show such consistent convergence across runs,

we examined the path (and the major “stepping stones” along it) from a ran-

dom starting point to the resulting designed face (Fig. 8.6). We found that con-

sistently this user found a large solid block early in the design (as the employed

evolutionary algorithm begins with simple shapes before “complexifying” them

over time). The user then was able to carve out a cavity within the center of the

block which would result in holes appearing on one or more faces. The shape,

size, and location of these holes were then modified over successive iterations to

create the faces seen in Fig. 8.5. One potential hypothesis for the differences in

outcomes between these two interface methods is discussed in the next section.

8.4 Discussion

The users’ similar evaluations from self-reported feedback regarding the abil-

ity to achieve target shapes and interesting free-form designs suggest that that

this new eye tracking user interface can achieve results similar to the estab-

lished methods that require mouse-controlled explicit user feedback (previously

shown to create complex designs in 2D shapes [253] and 3D objects [54]).
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Figure 8.6: To gain insight into the way the user from Fig. 8.5 was able to
produce similar results despite random restarts, we examine
the stepping stones (key design stages) from a plain block to
a face. All three of the mouse-driven iterations from this trial
repeated the same general strategy of producing two holes in
a solid block then modifying their size, shape, and position in
order to produce a design reminiscent of a face.

The self-reported enjoyment and creative assistance and suggestion of novel

and interesting shapes with the eyetracking interface suggest its future potential

to be employed for creative object design, specific to each individual user and

with potentially less fatigue that traditional interactive design methods. These

survey results help to demonstrate the effectiveness of this proof-of-concept im-

plementation. The written user feedback also provides a strong indication that

the eye tracking system is well accepted and is at least as user friendly as the

traditional physical interface. Given that one of the goals of this interface is to

reduce user fatigue, dissatisfaction, and drop-out, we place a premium on such

user feedback.

In both the eye tracking and mouse clicking (Fig. 8.2), users exemplified the

ability to achieve prespecified targets for simple shapes. However, the exit sur-

vey suggested that these targeted trials were not as fruitful as the free-form

creative trials. This sentiment is not particularly surprising, as it was noted

above that this is a deceptive domain, meaning that goal directed optimization

may be frustrating (or impossible for more complex targets) [313]. It is also not
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surprising that the users did not achieve significantly different results between

the mouse clicking and eye tracking interfaces, during the goal-directed portion

of the user trials as this task instructed users to specifically focus on designing

certain and very specific types of shapes – and thus acts as new interface for

traditional “explicit” design, rather than employing truly inadvertent design.

Search results in deceptive domains may also suggest that open-ended de-

sign benefits from the exploration of interesting or novel design spaces, even if

they are not moving towards a particular target [313] . While this does not nec-

essarily explain the users’ preference for open-ended design, one may or may

not choose to attribute this towards an innate desire for new and exciting de-

signs or simply to a lack of frustration at not struggling to find a target shape. It

does, however, suggest the potential for this interactive design (and especially

eye tracking design) to create interesting shapes. We believe this is achieved in

the eye-tracking-driven designs shown in Fig. 8.2.

Perhaps the most interesting result is that of the face design. It was initially

surprising that the sets of images produced by the different methods were so

dissimilar – though we can suggest possible explanations for this. Firstly, it’s

important to note that this is one anecdotal and bias case, and not necessarily

representative of all users – especially those not familiar with the system and

its underlying algorithm. We should note that the eye tracking trials took place

first and thus the user may have been more familiar with a necessary trajec-

tory required to consistently reach faces upon reaching the mouse click inter-

face (and thus possibly more able to perform their desired selections with more

accuracy). It is also possible that a noisy signal from the eye tracker (compared

to precise mouse clicks) caused undesired selection – though based on initial
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tests (see Methods) we have no reason to believe that selection errors are due

to the eyetracking hardware itself. As the mouse click trials took place after the

eyetracking trials, additional poor selections from user fatigue may have been

a confounding factor – though it is also possible that user fatigue reduced the

creativity of the later trials more so than affecting the ability to precisely choose

a desired shape.

Our hypothesized explanation for the effect seen in Figs. 8.4 and 8.5 does not

contradict these previous suggestions, but complements them by noting that the

mouse click interface also attempts to give the user more precise control over

the search path which is taken (i.e. which set of objects the user will be shown

next). By requiring that the user perform a conscious and explicit decision about

which path to take, the user may be more likely to recognize a promising “step-

ping stone” (intermediate design which they know will put them on a path

that leads to a face) from a previous run and make the risk-averse decision to

exploit it, rather than searching for a novel way to produce a (likely different-

looking) face. In contrast, the eye tracking setup is hypothesized to minimize re-

ward for reoccurring designs (as the user is presumably habituated to repeated

shapes [25], gains less information by looking at it again, and thus spends less

time doing so). Assuming the user is also risk averse (as most decision makers

tend to be in measured certain scenarios [81]), the absence of an explicit decision

point also does not force the user to make a actual decision between a known

successful path (the “stepping stone” that this user knows leads to a face) and

a novel path may or may not lead to something better. Thus we suggest that

the successful incentivization of novelty and diversity during search (and thus

the potential for success [168, 170, 171]) of the eye tracking approach may come

from its potential to employ subconscious/or inadvertent design.
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On the actual 3D designs created by this system, we should note that the

types of shapes that were created are largely dependent on the particular en-

coding we selected (CPPN-NEAT). If a different encoding was implemented

instead (as was the case in Sims [262] and Dawkins’ [72] work), this same in-

terface could potentially create very different looking designs. Considering the

idea of this system as a general purpose design framework, which could be

employed for fabricated physical products, animated character, 2D artwork, or

other potential uses: the underlying eye tracking methodology of this design

tool (the primary contribution of this paper) is independent of the underlying

design encoding, and thus independent of the particular types of shapes one

might want to create with it. Comparing different encodings or performing a

meta-optimization of the encoding via this eyetracking interface would be an

interesting direction for future work.

Additional future work should: Explore the analysis of the designed shapes

(both for their complexity and relationship to target shapes). Combine the eye-

tracking user interface with other non-haptic input devices such as EEG head-

sets to explore the potential for multi-modal effects (e.g. informing whether a

fixation on an object is due to a positive or negative reaction). Embed object

design and evaluation within larger storylines and distractors (such as media

entertainment) to explore the potential to further reduce fatigue and focus more

subconscious preferences. Also the further testing of these findings on larger

and unbiased sets of subjects, and on mainstream devices (e.g. built-in cameras

on smartphones and televisions) would help to better demonstrate the readiness

and wide applicability of this technique.
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8.5 Conclusion

We have introduced a novel design interface for open-ended interactive shape

evolution: eye tracking for inadvertent design. We believe that this paradigm

has the potential to unlock a previously unexplored design space consisting

of designs conforming to subconscious preferences. We laid out a number of

theoretical advantages of such a paradigm, based on our current knowledge

of subconscious visual phenomenon and theory within evolutionary optimiza-

tion. We showed that, in a small pilot study, this new technology does not show

any significant drop-off in self-reported achievement or satisfaction, when com-

pared to the traditional interactive evolution interface. We demonstrated ex-

amples of successful designs via this new interface for simple target-driven de-

sign, free-form design, and a combination of the two (face design). We noted

the differences, and potential advantages of the eye tracking paradigm, for an

anecdotal instance of this combination task. Finally, we suggested abundant op-

portunities for future work regarding this new paradigm of inadvertent design.

8.6 Methods

All source code is available at: https://github.com/ncheney/eyetracking

8.6.1 Evolutionary Computation

Consistent with [261, 253, 54], we employ an evolutionary algorithm to produce

the set of shapes shown to the user at each iteration. An evolutionary algo-
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Figure 8.7: A schematic of the genotype to phenotype relationship in
CPPN-NEAT, where the network is decoded into a physical ob-
ject. At each cell within the design space (black wireframe box),
the cell’s Cartesian coordinates (x, y, z) and distance from center
(d) are input into the network to produce the material and color
outputs for that cell. The resulting shape is smoothed using the
marching cubes algorithm to produce a continuous surface for
the object.

rithm is an optimization method which abstracts the main tenants of evolution-

ary processes in biology: heritable traits, genetic variations, and competition

over scarce resources. We choose this search method as it serves as a heuristic

method for non-convex problems which are unsuited for many traditional op-

timization methods [192] – such as the often-deceptive and highly-multi-modal

search spaces of shape design.

In our interactive evolutionary setup, the scarce resource which designs are

competing for is the visual attention of the user. At each iteration of the design

process, a number of suggested designs are shown on screen and the relative
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amount of time the user spends fixated on each of the proposed designs is pro-

vided as feedback to the evolutionary algorithm. The algorithm uses this infor-

mation as the reproductive “fitness” of the design, giving shapes who gather

the most looking time a disproportionately larger chance of creating a modi-

fied version of themselves as one of the designs shown to the user in the next

iteration.

The genotype which encodes the heritable traits of the designs (and varia-

tion within them) is defined by the evolutionary algorithm CPPN-NEAT [271].

This genetic encoding abstracts the concept of developmental regularity by em-

ploying geometric transformations over the gradients of the design space’s ax-

ial coordinates. The set of transformations which create a phenotype (design)

is represented as a neural network with various geometric activation functions.

The network’s functional transformation of the network’s inputs (coordinates

of a given cell) to outputs (material properties of that cell), is applied iteratively

to each cell within a discretized design area. Through this method, different ac-

tivations functions create different shape properties over the design space (such

as nodes with gaussian activation functions creating symmetry or sinusoidal ac-

tivation functions creating repetition). This process is best described visually in

Fig. 8.7.

8.6.2 User Interface and Eye Tracker

Subjects are seated directly in front of a 20 inch monitor, placed at eye level.

An Miramatrix S1 Eye Tracker is placed directly below the monitor. Miramatrix

notes the performance limits of this device as accuracy within 0.5-1.0 degrees
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of the user’s gaze direction, and a data rate of 60 Hz. Users then perform a

calibration step in which they track the position of a blue and white dot as it

moves to 9 positions across a black background screen.

Users are then briefly shown the camera feed from the eye tracker. This eye

tracker operates by shining an infrared light towards the subjects’ eyes. This

light produces strong reflections of the subjects’ pupil, as well as a corneal re-

flection (which appears as a small, sharp, glint outside of the pupil. The relative

position of these two reflections is used to triangulate the gaze direction of the

user [228]. The users are shown these camera feeds, and are able to explore the

positions and postures which move their eye outside of the camera’s capture

range. If their eye are ever outside of the camera’s range during the experiment,

the program will pause until they return to a valid position.

During the experiment, users were presented with a set of written instruc-

tions which introduced them to the system and informed them of the goal

of their particular trial. The full text of these instructions can be found at

https://goo.gl/3dURq1. At each iteration within a trial, the user is shown

15 objects (arranged in a 3 by 5 grid) against a full-screen black background.

The total amount of time the user spends looking at each grid cell is recorded.

As soon as one of the cells accumulates 1.5 seconds of looking time, the iteration

ends. At this point, the on-screen design in each cell is assigned the fitness value

equal to the total amount of looking time it collected.

In preliminary testing on the authors, objects were highlighted when the

computer believed that the user’s gaze was directed towards its cell in the 3 × 5

grid. In this small sample, no instances were found in which the object that the

user was looking towards was not the one highlighted. Thus we have no reason
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to believe that selection error played a significant role in the results below. In

order to minimize distractions, no highlighting took place during experimental

trials.

8.6.3 Goal-Directed vs. Open-Ended

Some trials feature “goal” or “target” driven optimization, where the user has

a specific object they desire to create. We contrasted this with a more free-form

and open-ended type of search where the user doesn’t have a target shape a

priori. To examine the differences between these types of search, we had each

user perform two distinct trials.

In the first trial, users were told to design specific objects assigned randomly

from a set of shape descriptors. These descriptors included size (large or small),

color (red, blue, or yellow), and shape (oval, cube, or cone). Each user was

asked to complete three such runs with three random and unique target shapes,

each time starting from a random initial set of starting shapes. The user would

end each run by quitting (pressing the ”Q” key on the keyboard), and were

instructed to do so when they felt they had completed the task and designed

their target object.

Following a short break, the user was instructed to use the same interface

method they had before, but this time to do so without trying to produce a

specific object. Instead they were given instructions to play around with the

system and see if they could produce something interesting. This open-ended

trial lasted for 20 minutes. Users again had the option to quit a run at any time,

but were simply started on a new run from a different initial configuration if
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they quit before the time period had expired.

In both of these trials, users were told to save any interesting (or successful)

sets of images by pressing the ”S” key. Doing so captured a screen shot of the

objects in the current iteration. The final set of objects from each run were auto-

matically saved whenever the user quit a run as well. In addition to the images

saved in user selected iterations, the “genomes” of all designs were saved, such

that any object could be recreated from its initial blueprints, even if the user had

not chosen to record it.

Following the design trials, users were given a brief survey asking if the sys-

tem helped them to design interesting shapes, helped them to reach their target

design goals, suggested novel shapes they would not have otherwise thought

of, or aided their creativity. They were also asked if they enjoyed using this

technology, and if they felt that they had control of what shapes appeared on

the screen – as well as basic demographic information.

8.6.4 Control Trials: Mouse Clicking

In an effort to isolate the effects of the eye tracking interface for design, we ran-

domly assigned half of the users to a control condition where they used a physi-

cal interface driven by mouse clicks. Users went through the same introductory

procedure (including eye tracking calibration) and were given instructions to

do the same general tasks, but this group of users were told to click on objects

they preferred. They advanced from one iteration to the next by left-clicking on

their preferred object (with no 1.5 second time-out). Users were able to share

fitness over multiple shapes by selecting more than one object in each iteration.
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They did this by right-clicking on as many objects as they desired to highlight

a preferred set before left-clicking on one to progress iterations. In this setup,

since only two indications of user preference were possible, all selected objects

were given maximal fitness values, while all non-selected objects were assigned

a minimal fitness value.

8.6.5 Subjects

The testing protocol for human subjects was approved by our institutional re-

view board, as Protocol #1209003270. Participants were recruited by informa-

tional fliers. Outside of the preliminary tests performed by the authors, there

were a total of 18 participants (10 male, 8 female), who were undergraduate or

graduate students in a wide variety of disciplines. Subjects were monetarily

compensated for their time. The completion of the testing procedure took half

an hour to an hour.
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CHAPTER 9

ARGUMENT

9.1 Summary of Evidence

• Chapter 2 serves as an introduction to the problem statement and meth-

ods of CPPN-based morphological design for soft robotics. As the robots

evolved in this chapter do not optimize “controllers” (simply using open-

loop oscillators with fixed amplitude, phase, and frequency), the resulting

forms represent behaviors which stem from the shape and form of the

robot’s body plan. Thus, this chapter represents an extreme case of mor-

phological computation in our voxel-based soft robot setup, laying the

groundwork to explore the gradual incorporation of control complexity

into the optimization of an embodied machine. This chapter also provides

the experimental setup which leads to the most straightforward optimiza-

tion of robot morphologies – as the added complexity of co-optimizing

controllers for these robots is not present. Since computation is unable to

be shared by – or offloaded to – a controller, this chapter also results in

arguably the most complex and interesting set of morphologies.

• Chapter 3 emphasizes the abilities specific to soft robots – noting that loco-

motion over flat ground does not explicitly require a compliant morphol-

ogy. To demonstrate the benefits of the embodiment of this soft robot plat-

form, the task of squeezing a robot’s body through a small hole is under-

taken. The aperture in this example is smaller than the width of the robot,

meaning that the robot must bend and fold itself in order to fit through

the opening. The production of robots which are able to complete this task
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provides one instance of evidence for the importance of designing robots

from soft materials, and helps to emphasize the relationship between the

need for material complexity in the robot and the challenges apparent in

that robot’s task and environment.

• Chapter 4 takes the first step towards relaxing the strict assumption of

morphology-driven behaviors by allowing the morphology to produce

embodied channels for information flow (where “electrical” impulses can

propagate sensory information or oscillations from a centralized pace-

maker throughout the morphology via physical interfaces between cells).

These “neural pathways” create an embodied peripheral nervous system,

blurring the boundaries between the optimization of the robot’s “con-

troller” and “body plan”.

• Chapter 5 introduces the optimization of “high-level” distributed con-

trollers in additional to morphological design. Here, the frequency of

muscle oscillations and the phase offset of each individual voxel are put

under evolutionary control. This work shows that when a robot’s mor-

phology and controller are co-optimized as a coupled system of two sub-

components, not only does controller optimization fail to take place, but

the morphological optimization that previously occurred in the absence

of controller optimization is also stifled. I hypothesize that the stagnation

in co-optimization is due to a specialization between subcomponents that

creates a local optima in the search space each time a controller and mor-

phology specialize to one another.

• Chapter 6 further investigates the idea of specialization between morphol-

ogy and controller in an evolving robot, and proposes an algorithm to

address the fragility in this coupled system. The proposed algorithm di-
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rectly addresses the problem of specialization by providing a “protected”

re-adaptation period for the controller each time the robot’s morphology

is mutated. This proposed method results in more effective and sustained

optimization of embodied machines, supporting the previous hypothesis

of a fragile specialization between robot “bodies” and “brains” and pro-

viding a viable solution to the problem of co-optimizing morphologies and

controllers in embodied machines.

• Chapter 7 provides an example of the generalization of CPPN/voxel-

based shape optimization by applying the same methods used for the evo-

lution of the morphologies of soft robots to the design of micro-structures

for multi-material 3D-printed objects. Specifically, we optimize the place-

ment of voxels of two different 3D-printed materials to create patterns

which have mechanical properties that differ from those of the original

materials – in our case changing the mechanical resonance of an object by

optimizing its natural frequencies towards desired frequency values. The

extrapolation of the optimization approach from earlier chapters to the de-

sign of structures outside of soft robot morphologies helps to suggest the

broader applicability of the methods developed here.

• Chapter 8 showcases another example of shape optimization outside of

the core application of soft robotics. In this instance, design automation is

applied to the production of artistic (or consumer) shapes and objects via

interactive evolution. The inclusion of user interaction during the fitness

evaluation process allows the system to optimize designs towards subjec-

tive evaluation criteria – extending the above work to include domains

where the declaration of an objective fitness function is impractical. Fur-

thermore this chapter demonstrates the novel inclusion of an eyetracker as
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the user interface for this subjective evaluation – allowing user feedback

to be provided in a way which help to minimize fatigue and increase user

enjoyment and creativity. As this interface does not require the user to

make explicit decisions, but simply infers preference from looking times

instead, it may allow this design system to capture and optimize towards

subconscious preferences as well.

9.2 Discussion

The above chapters focus around a central theme: the role of morphology in

embodied artificial intelligence. More specifically, the role of morphology in

creating complex and effective behaviors – as it supplements and compliments

higher-level controllers.

This subject is rooted in the physiological study of brains and behavior. The

supplementing of high-level control with low-level morphology-driven behav-

iors is known as morphological computation [222, 220]. Additionally, the com-

plementary nature of the body and brain – as the body helps to shape the or-

ganization, learning, and information processing of the brain – is referred to as

embodied cognition [3, 49, 221, 219]. Both of these phenomenon play a crucial

role in this study of embodied artificial intelligence, and especially in the design

of algorithms to address the optimization of behaviors in this setting.

This investigation into morphologically-driven behaviors begins with the

extreme of robots with evolved behaviors that are due entirely to their mor-

phologies – as they posses no high-level controllers and each voxel of the robot

only has access to inputs from a global open-loop oscillator. In chapter 2, the or-
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ganization of the two types of oscillating muscle types, and the soft passive tis-

sues surrounding those muscle cells determine how the robot interacts with its

environment (the physical force of gravity and the normal force of the ground)

to result in behavior.

The case of purely morphological computation presented here closely mim-

ics the purely embodied behaviors of a passive walking robot [59]. Though in

the case presented here, the robot is able to have richer interactions with its

environment due to its compliance (such as the folding and squeezing in chap-

ter 3). The use of a generative and scale-free encoding also allows for robots

of arbitrary complexity (subject to limitations on computational resources for

the physical simulation of these arbitrarily complex robots). Furthermore, these

robots are designed in an automated fashion, meaning that careful understand-

ing of the physical interactions at play, and engineering of morphologies which

precisely account for these physical interactions are not necessarily – as is the

case in hand designed walking robots.

The demonstration of purely morphologically-driven behaviors is an excel-

lent exercise in morphological computation, and provides great insight into the

causes of behavior. However, its practical use cases are limited by the fact that

morphological changes tend to take place at slower time scales than neural con-

troller changes (if morphological change is present at all in an artificial embod-

ied machine). Thus for reactionary and sensory-dependent behaviors, the in-

corporation of neural controllers is desirable to make the resulting robots more

practical for autonomous interaction with unpredictable environments.

However, the incorporation of spiking neural controllers does not necessi-

tate a dedicated high-level controller. In chapter 4, the line between high-level
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neural controllers and low-level morphological behaviors is blurred by allow-

ing information flow (through “electric” conductance and spikes) to propagate

through neighboring cells of the physical embodiment of the robot. As these

spikes convey information about oscillations from a central pattern generator,

and optionally also about touch sensors, this mechanism acts similarly to a neu-

ral network controlling sensorimotor behavior of the robot. However, instead of

nodes and edges of a dedicated neural network, this information is propagated

through the evolved conductive pathways in the muscle and tissues themselves.

The proposal of low-level embodied “neural-esque” processing helps to sup-

port the argument of [15], that intelligent and cognitive processes may occur in

a distributed fashion throughout agents with no dedicated “brain”. This work

also helps to generalize the findings of chapter 2 to include sensory informa-

tion processing for more dynamic and reactive behaviors without compromis-

ing its focus on the morphologically-embedded drivers of behaviors. Biologi-

cally, the presence of conductive pathways here shares commonalities with both

the peripheral nervous system and the growth of neural pathways in the brain

through synaptic plasticity and reorganization [283].

Relaxing the strict assumption of morphologically-driven behavior further,

I turn to the investigation of the simultaneous optimization of robot mor-

phologies and high-level controllers. High-level controllers, such as neural

networks, are powerful drivers of behavior used for robotic applications to-

day, but they tend to be optimized for fixed and simple morphologies of

agents [208, 176, 53, 227, 200, 175]. Their inclusion in the evolution of robots

is of great importance to the goal of optimizing autonomous behavior in em-

bodied machines, as the interactions between all three subcomponents of brain-
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body-environment systems can lead to cognitive systems and adaptive behav-

iors [47, 265].

However, it turns out that the optimization of morphologies and controllers

is not as straightforward as it might appear (as demonstrated in chapter 5).

Rather than sustained optimization of morphologies and controllers, we find

that the co-optimization of robotic morphology and control quickly stagnates,

falling into local optima early during the evolutionary process.

To help rationalize and explain this premature convergence, I turn to the

theory of embodied cognition. Specifically to the idea that the organization and

function of the brain is specific to the morphology it is embodied within – and

that the organization of the brain is determined in part by the learning that

occurs within this morphology.

Applying this theory to the case of morphology and controller co-

optimization, it follows that a robot controller will behave differently when

placed in a different morphology. Specifically for our interest in optimization,

a controller will not be well adapted to a morphology which is has not been

optimized within, and thus will not behave optimally. For example a controller

optimized for a quadruped morphology is unlikely to continue to produce ef-

fective behavior if the sensory information it receives and the motor commands

it produces are to/from a hexapod or biped robot morphology. Thus this con-

troller would immediately produce a low fitness value regardless if a mutation

from a quadruped body plan to either a biped or hexapod might result in a more

promising morphology in the long-run for the task at hand.

One might know that the hexapod or biped were indeed better morpholo-
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gies for the task of locomotion in a given environment by optimizing a controller

specifically to those morphologies and evaluating its fitness. Thus the solution

to the problem of evaluating the long term potential of a proposed morphologi-

cal variation is as simple as that: readapt controllers for each new morphological

change before evaluating their long term potential and performing selection on

them. This is done efficiently using the method introduced above for “mor-

phological innovation protection” and results in a temporary decrease in selec-

tion pressure on robots with newly mutated morphologies while those robots

readapt their controllers to their new morphologies.

The results demonstrated by this method (in chapter 6) show an increase

in the sustained evolution of robot morphologies and controllers, resulting in

higher fitness values than the traditional approach. This not only introduces a

methodology for co-optimizing complex morphologies with high-level neural

network controllers, but it also demonstrates the importance of understanding

the embodied nature of sensorimotor behavior on designing optimization algo-

rithms. The deep appreciation for the role of embodied cognition in creating

behavior led directly to this proposed algorithm. In fact, this proposed method

was simply apparent when considering the theory of embodied cognition and

noting the dependence of the controller on the morphology of the body. The

lack of such a method in the decades since Sims’ pioneering works on Evolved

Virtual Creatures [263, 264] demonstrates the need for a greater appreciation of

the psychological theory behind embodied artificial intelligence.
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9.3 Future Work

The study of developmental psychology [225, 96, 14, 97] might further suggest

that our reliance on genomes which encode fixed body plans and controllers

is an oversimplification that also limits our ability to evolve complex and ef-

fective robots. As part of the developmental process, the body takes shape in

response to sensory information that is either invariant or situationally depen-

dent [64, 71, 309]. The brain of an agent also learns in response to the organiza-

tion, movement, and resulting stimulation of the body [116].

The inclusion of both a plastic morphology and controller would help to alle-

viate some of the need for explicit readaptation, as proposed in “morphological

innovation protection”. The specialization and fragility would be less extreme

in a coupled system that was capable of continuous co-adaptation of each sub-

component to the other through a closed-loop developmental process (sensory

and state dependant, with complex feedback loops between the growth and

development of the body and brain). However, this level of neurogensis and

morphogenesis is far from the current state of evolutionary robotics and should

be explored in future work. Until the implementation a fully adaptive develop-

mental encoding of embodied machines exist, “morphological innovation pro-

tection” may serve as a temporary solution to this problem.

One potential solution for the problem of lifetime neural adaptation is the

use of reinforcement learning [282]. Deep reinforcement learning employs

large scale neural networks to learn sensorimotor policies from previous ac-

tions [200, 201, 179, 218]. Many animals, including humans, learn sensorimotor

coordination and action from experience – and adjust this learnt behavior as our
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bodies and tasks change over time. This biological process may share some sim-

ilarities with computational reinforcement learning algorithms [282, 2, 74, 133],

suggesting that lifetime reinforcement learning of control may pair well with

the evolutionary optimization of gross morphologies.

Additionally, development occurs in the morphology of animals as well.

This developmental process has been shown to help minimize the phenotypic

impact of genetic mutations in evolving robots [24], to allow controllers to more

efficiently solve challenging tasks by gradually adapting to changing morpholo-

gies [22], and to allow for complex morphologies to arise through interactions

of developing cells to each other and to a physical environment [147]. The evo-

lution of development (evo-devo) [232, 207, 33, 204, 34, 233] enables evolution

to guide the gradual growth and adaptation of morphologies to their environ-

ments, a feature which may allow controllers to more closely track the small

changes that occur in morphologies over a lifetime. Compared to the larger

shocks caused by mutations to static morphologies, gradually developing mor-

phologies may also help to reduce the need for explicit readaptation periods of

their associated controllers.

9.4 Additional Readings

In addition to the primary argument made above, extensions and complemen-

tary works were also carried out alongside this dissertation – often in collabora-

tion with others. These additional works are not included here, so we also refer

the reader to those original works – as they complement and enhance the core

argument of this dissertation in the following ways:
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• The exploration of the evolution of soft robot morphologies in tasks that

are well suited for soft robots in particular (an extension of Chapter 3) is

described in [62]. This work investigated the task of swimming behaviors,

a task for which we conjecture that soft robots are particularly well suited

for because the interaction of their compliant bodies and the viscosity of

the water-based environment provide the potential for rich morphological

computation. In addition to this comment on the role of environmental

complexity in morphological computation, this work helps to demonstrate

the wide applicability of the methods described in Chapter 2 to other tasks

and environments.

• The notion of morphological computation cited throughout the above

chapters is further explored in [63]. In this work, soft robots are opti-

mized yet another task – this time reaching towards a target. Evolution is

given just two materials: one that slowly grows larger and one that slowly

shrinks. We show that evolved robots composed of a soft material are able

to take advantage of rich interactions with gravity, creating a shape which

uses passive dynamics to point towards the target. This passive shape is

composed homogeneously of growing cells, maximizing the amount of

reaching the robot can do as it stretches out towards the target. In contrast

to this, robots evolved from stiffer, less compliant, materials are unable to

employ passive dynamics and must actively create arrangements of grow-

ing and shrinking to act as opposing muscle groups in order to point to-

wards the targets. This additional use of shrinking voxels is presumed to

be necessary, as their presence inherently diminishes the reaching ability

of the robot. This trend, where softer robots able to use less shrinking vox-

els and rely more on passive dynamics is repeatedly observed, providing
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evidence for a measured increase in the morphological computation of soft

robots. While this particular metric is limited in scope, the quantification

of morphological computation has been elusive, and this work provides

an excellent example of its objective measurement.

• A review and reframing of the work reported in the above further read-

ings is presented in [61]. This work frames the slow growth demon-

strated above in the context of development in plants and animals. This

work compares robot morphologies evolved across different task environ-

ments. It also introduces the use of environment-mediated growth for our

evolved soft robots, providing a strong example of the evolution of an

adaptive developmental process which is able to readapt the morphology

of a robot to perform effectively in multiple different environments. This

work represents the first example of a soft robot which changes its body

on three unique time-scales: evolution over many generations of a popula-

tion, development over an individual’s lifetime, and the rapid contraction

and expansion of muscles in real time.

• The notion of tri-time-scale morphological changes is explored in detail

in [163]. This work seeks to explore the limits of the advantages of life-

time development by introducing a minimal developmental model, in

which an “open-loop” developmental process grows (or shrinks) from an

evolved infant shape to an evolved adult shape without any sensory mod-

ulation. We found that the inclusion of even this minimal developmental

process proved advantages over an evolutionary process during which

only a fixed static shape was evolved. We hypothesize that the “parame-

ter sweep” that takes place as development changes over a variety of sizes

may produce a gradient around isolated fitness peaks in the search space –
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which are particularly helpful when the search space does not already pro-

vide straightforward gradients for evolution to follow (in the case where

it is deceptive or may include large fitness plateaus).

• The blurring of the line between morphological computation in the body

and neural process in the brain (explored in the electrically conductive and

spiking muscles in Chapter 4) is reframed in [42]. This editorial compares

the paradigm of soft robot evolution with these spiking muscles to an in-

verted cellular automata – in which the update rules are held constant and

the topology of the substrate is optimized for a given behavior, rather than

the reverse for traditional cellular automata.

• The notion of sustained, long-term evolution of morphologies and con-

trollers of autonomous agents (in Chapters 2, 5, and 6) is further ex-

plored [269]. This work seeks to create a theory about the minimal criteria

necessary for such open-ended evolution. In particular, this work investi-

gates how the strictness of survival for reproduction impacts the sustained

evolution of an agent. We find that survival criterion that are too strict dis-

courage diversity and lead to population stagnation, while survival crite-

rion that are too lenient diverge wildly to random behavior. However, at a

critical value at this phase transition, we find evidence for sustained open-

ended evolution of morphologies and controllers in autonomous agents.

9.5 Closing Remarks

This dissertation examined the role of morphology in the evolution of au-

tonomous behavior in embodied machines. This started from the extreme of
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entirely morphology-driven behaviors, and demonstrated the gradual introduc-

tion of controllers to these complex morphologies – first with low-level control,

then with the full co-optimization of morphology and high-level neural con-

trollers. This work both contributes to, and relies on, the understanding of mor-

phological computation and embodied cognition to explain and optimize the

robot behaviors seen above. While the goal of fully seamless integration of au-

tonomous robots into the unpredictable and dynamic environments of the real

world still remains a challenge, I hope that this work serves as a contribution

that helps to move the automated design of complex embodied machines in the

right direction by contributing to our understanding of intelligent and embod-

ied behaviors and their evolutionary design.
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