Verification Conditions for »-Automata and
Applications to Fairness

Nils Klarlund*

TR 90-1080
February 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Partially supported by a grant from the University of Aarhus, Denmark: NSF Grant
CCR-88-06979; and the Thanks of the Scandinavia Foundation, Inc. The author's
electronic address is klarlund@cs.cornell.edu.

Verification Conditions for w-Automata and
Applications to Fairness

Nils Klarlund!
Cornell University

Abstract We present sound and complete verification conditions
for proving that a program satisfies a specification defined by a de-
terministic Rabin automaton. Our verification conditions yield a
simple method for proving that a program terminates under gen-
eral fairness constraints. As opposed to previous approaches, our
method is syntax-independent and does not require recursive appli-
cations of proof rules. Moreover using a result by Safra, we obtain

- the first direct method for proving that a program satisfies a Biichi
automaton specification. Finally, we show that our method gener-
alizes two earlier methods.

1 Introduction

Automata on infinite strings (w-automata) provide a simple and general set-
ting for syntax-independent program specification and verification. A fun-
damental problem in this theory is to find verification methods for demon-
strating that a program satisfies a specification when both are expressed
as automata. Direct methods for solving this problem are based on invari-
ants that define a correspondence between program automaton and spec-
ification automaton [AL88,AS87,AS89,Jon87,KS89,LT87,Sis89,Var87]. For-
mulated in terms of invariants, verification conditions (also known as proof
rules or proof obligations) permit proofs to be carried out in a style similar
to Hoare’s logic [Hoa69).

In this paper, we significantly extend the scope of previous methods.
Specifically, we present verification conditions for both deterministic Rabin

'Partially supported by a grant from the University of Aarhus, Denmark; NSF grant
CCR 88-06979; and the Thanks to Scandinavia Foundation, Inc.
Author’s electronic address is klarlund@cs.cornell. edu.

1

and nondeterministic Biichi automata. Our results yield a direct method
for proving that a program terminates under general fairness constraints—
something which was previously not possible in the context of automata-
theory. The method is universally applicable as opposed to earlier syntax-
dependent methods that required recursive applications of proof rules. We
believe that our results provide a new and simple understanding of what it
means for a program to terminate under a general fairness constraint.

2 Previous Work

Alpern and Schneider [AS87,AS89] used deterministic finite-state Biichi au-
tomata as a method of specification. They obtained an indirect method of
verification for finite-state nondeterministic Biichi automata using the fact
that any such automaton can in principle be expressed as a Boolean combi-
nation of deterministic Biichi automata, although there is no known direct
conversion®. In [MP87], Manna and Pnueli gave verification conditions for
V-automata, which are expressively equivalent to Biichi automata, although
again there is no known direct conversion of a Biichi automaton into an
V-automaton. Sistla [Sis87] considered deterministic automata with accep-
tance conditions given as temporal formulas on automaton states with the
modalities F*°(f) (infinitely often f) and G*°(f) (almost always f). He
showed that sound and complete verification conditions exist for automata
that are in a special conjunctive normal form in which each conjunct is a
particularly simple disjunction.

Conjunctions of automata acceptance conditions are easy to handle when
there is a method for each conjunct: simply apply that method for each of
the conjuncts. Verification with disjunctive normal forms is more difficult,
and no direct method has to our knowledge been presented in the literature.

Other indirect methods, based on manipulations of formulas in the CTL*
temporal logic, are applicable to a variety of finite-state automata [BCM*90,
CDK89].

2A method yielding O(16™) automata each having 0(16™) states can be deduced from
[SVWST].

3 Outline of Results

The ultimate goal of this research is to extend previous techniques to
infinite-state automata with acceptance conditions in disjunctive normal
form (DNF). We present a verification method for specifications defined by
infinite-state deterministic Rabin automata, whose acceptance condition is a
restricted disjunctive normal form. Although arbitrary DNF acceptance con-
ditions are not handled, our verification conditions already have important
applications:

1. termination under general fairness constraints;
2. verification conditions for (nondeterministic) Biichi automata;

3. verification conditions for Rabin V-automata that are generalizations of
~ the V-automata in [MP87];

4. simplification of the verification conditions in [AS89] for disjunctions of
deterministic Blichi automata.

Application 2 relies on the recent elegant result by Safra [Saf88]. Application
1 has been the subject of much study [AO83,Fra86,FK84, GFMdR85,Mai89,
LPS81,SdRG89]. To our knowledge, the only other automata-theoretic ap-
proach to this area is Vardi’s paper [Var87], where abstract transformations
on recursive automata are used to obtain an indirect method for termination
under fairness. Another approach to termination under fairness is that of
explicit schedulers. This approach is also not direct as it is based on ma-
nipulations of programs [DH86,Har86]. Other earlier methods suffered from
being confined to programs with the inflexible syntax of nondeterministic
loops containing sets of guarded commands. The proof rules involved re-
cursive applications of themselves on syntactically transformed programs. It
was suspected, however, that something much simpler was going on behind
the syntax.

Our results provide an abstract and lucid automata-theoretic account of
termination under general fairness constraints. We obtain a proof method
that is simple in practice, because it depends neither on syntax nor on pro-
gram transformations. This method is an immediate consequence of our

3

main result, since general fairness constraints on nondeterministic programs
are essentially acceptance conditions for deterministic Rabin automata.

4 Technical Development

Both programs and specifications are represented by automata. In earlier
works [AS89,MP87], programs are represented as state transition systems.
Instead we represent a program as a looping automaton Ay, which is an
infinite-state nondeterministic automaton (€, Qu, QY, — 1), where & is the
alphabet of the automaton (representing events of some sort); Qy is the set
of (program) states; QY is the set of initial states; and —g C Qp x € x Qn
is the transition or rewriting relation. The sets £, Qn, Q%, —n are finite or
countable.

A run po,py,... over w = eg,e1,... is a sequence of states such that
po 1 p1 =n --- and po € QY. A partial run is a finite prefix of a run. A
word w € £¥ is accepted by Ap if there is a run of Ay over w. The language
L(Aq) is the set of all words w such that there is a run of Ay over w. A
reachable state is a state that is contained in some partial run. We assume
w.l.o.g. that program automata have no dead states (i.e. reachable states
that are not in any run have been deleted).

A specification is represented as a deterministic Rabin automata As=

(8, QE7 -3, 302, ((LO’UO)"“,(LN,UN)))’

where relation —y is deterministic® and s € Qg is the initial state. The
list ((Lo,Us),--.,(Ln,Un)) is the Rabin acceptance condition consisting of
Rabin pairs (Ly,Uy). Each x € [0..N] is the color of the Rabin pair (L,, U,).
For technical reasons, we assume w.l.o.g. that (Lo, Uy)=(0, 0).

The Rabin pair (Ly,U,) is accepting for the run s, s;,... if for all H,
there exists an ¢ > H such that s;€ L,, and there exists a K such that
for all i > K, s; ¢ U,. Intuitively, L, is a set of “good” states to be met
infinitely often and U, is a set of “bad” states to be eventually avoided. An
accepting run (of Ay) over w is a run s, sy,. .. such that there is a color x

3For each s € Qg, e € £, there is a most one s’ € Qg such that s Sy o',

4

for which (L,,U,) is accepting. The language L(Ayx) is the set of all words
w such that there is an accepting run of As, over w.

The disjunctive normal form corresponding to a Rabin acceptance condi-
tion is Vyeo.n) Ly A U,

5 Verification conditions

The verification conditions to be presented permit one to prove that L(Ap) C
L(As), where L(Ap) is a looping automaton and L(Ay) is a deterministic
Rabin automaton. When L(Ap) C L(As), we say that program automaton
An satisfies specification automaton Ay.

The verification method is based on maintaining a correspondence be-
tween program states and specification automaton states augmented with
“progress” information. In order to describe this correspondence, we need a
few definitions.

An indicator 6 is a pair (s,7), where s is a specification state and 7 is
a stack of n + 1 hypotheses (7°,...,7"), with n < N. Define size(T)=n.
The hypothesis 7¢, £ < n, has the form (x%,v?). The level of hypothesis ¢
is the number £. Color x‘€ [0..N] indicates that (L, U,:) is a candidate
for an accepting pair. Ordinal v* is the value of the progress function that
measures progress towards reaching a good state of the hypothesis at level
¢, i.e. towards a state in L,..

The notion of indicator rewriting is the key to our results:

Definition 1 (Indicator Rewriting) For indicators § = (s,7) and §' =

(s',7"),

5§56 if
(61) s>y s, and
(62) s, 7 — s,71.

Condition (61) states that the specification automaton Ay can make a tran-
sition. In condition (62), “—” denotes stack rewriting, which ensures that
“progress” is made. Stack rewriting can best be understood from the picture
in Figure 1. Formally, it is defined as:

5

o)
(x", v")

" live X =x'"
K (x*, v") 2 (X", ") s & Uyx
SELy VS €Ly VrE> Y~

dormant
k—1 (X:c—l’ VIC—].) _Z) (X , U

. X" =x"
0 (x°,v°) = (X,O’ V,O) s ¢ Uy
SELpwVsELoVy > V"0

Figure 1: Stack rewriting s,7 — s',7'.

Definition 2 (Stack Rewriting)
s,7—§,7 if Ik < min{size(r), size(r)} s.t

(11) s, v 2 & V", and

(12) VA<k: s, 2 s',‘r"\

Here, = and 2 are hypothesis rewritings. The k in the definition is called
the height of the stack rewriting. Informally, stack rewriting means that
(71) the hypothesis at level x is “alive,” i.e. the designated Rabin pair is
getting closer towards becoming an accepting pair; whereas (72) hypotheses
underneath are “dormant.” Formally,

6

Definition 3 (Live Hypothesis Rewriting)

5,06v) = 8,0,V if
(1) x=X,
(v2) s ¢ Uy, and
(v3>) se€L, VSeL, Vvv>V.
Definition 4 (Dormant Hypothesis Rewriting)

s,(x,v) 2 ¢,0,V) if (vl), (v2), and
(v3>) s€L, VvV sSe€L, vV v>V.

Under both rewritings, it is required that (v1) the color of the hypotheses
be unchanged and that (v2) the old state s be not a bad state. In addition,
live rewriting = requires that (v3 >) either one of states s or s' be good,
or that the v, ordinals measure headway towards getting to a good state;
dormant rewriting 3 requires that (v3 >) either one of states s or s' be
good, or that headway be not lost towards getting to a good state.

The correspondence between program automaton and specification au-
tomaton is expressed by an invariant relation Z(p,) that to each program
state p associates a set of indicators 6.

We are now ready to state the verification conditions. They are:

(V1) peQ} = 36: I(p,8) A Init(d)
(V2) pSup A I(pé) = 38:6568 A I(Y,H)

Here, predicate Init(6) of (V1) holds if s = s}, where § = (s,7). Condition
(V1) simply states that any initial program state has an indicator containing
the initial specification state. Condition (V2) ensures that when the program
automaton performs a move on e, then any indicator § associated with the
old state p can be rewritten to an indicator §’ associated with the new state p'.
Together, obligations (V1) and (V2) guarantee that if py > p; g --- is an
accepting run of Ay, then there is a sequence 6y =3 §; =5 - - - such that Init(6o)
holds. Thus, the verification conditions (V1) and (V2) resemble those that
are used for other automata in [AS87,AS89,KS89,MP87,Sis89,S5ta88]. As
shown next, the sequence §; = §; = -- . produces a run of Ay and ensures

that the run is accepting.

6 Soundness

Theorem 1 If 7 is an invariant satisfying (V1) and (V2), then L(Ay) C
L(Ay).

Proof Let pp = p1 <>p --- be a run of Ay. Using (V1) and (V2) we see
there are indicators 6; = (s;, ;) with

7= {(x$v), .-, (x5, vF)), where k = size(r;),

such that § =3 6; =5 ... and Init(69). Hence, as for all ¢, s; <55 s;4; (by
(61)) and s = s}, (by definition of Init), it follows that sy 23y s; Sy ---is a
run (the only one possible) of Ay over ey, ey, ... We must prove that the run
S0 g 8§ Dy --- s accepting.

By (62), for all ¢, the stack rewriting s;, 7; — $iy1, Tit1 holds; let ; be the
associated rewriting height. Let x = liminf; , ;. This limit exists since
the rewriting heights are bounded by N.

By definition of «, there is a K such that for all i > K, k; > k. Thus
by definition of stack rewriting, for all i > K, either s;, 7% > Siy1, T{4q OF
si, 78 Si+1,Ti,- Then according to (v1), there is a x such that for all
i > K, xf = x. We argue that (L,,U,) is an accepting pair for the run
S0 =% s1 =g ---. By (v2) and as k; > « for i > K, it holds for all 4 > K
that s; € U,. '

The rest of this proof demonstrates that infinitely often, s;i€L,.

For a contradiction, suppose that there is a K' > K such that for all
i > K', s;i ¢ Ly. Then, as k; > & for i > K', it follows from (v3 >) and
(v3>) that

(1) Vg 2V 2 Vg > ...
Using condition (71) of stack rewriting, we see that for infinitely many 1,
namely for all those ¢ such that stack rewriting s;,7; — s;41, 741 has height
K’

SiyTi' = Sit1, Ti’il-
Therefore, by (v3>), infinitely many “>” in (1) are strict. As the v’s are
ordinals, we have arrived at a contradiction. O

7 Completeness

In the following G = (V, E) denotes a directed graph with V and E count-
able. The graph G restricted to a set W C V is denoted G|W. An infinite
path is a set vg,vy,... of nodes in V such that for all z > 0, (vi,viy1) € E.
Note that a single node v can define an infinite path if (v,v) € E. An infinite
path is proper if it is not eventually constant, i.e. it does not contain an
infinite suffix v, v,...

Lemma 1 Let G = (V, E) be a graph with no proper infinite paths. There
is an assignment v : V. — ORD of ordinals to V such that if (v,v') € E and
v # v, then v(v) > v(v').

Proof Let G' = (V, E') be obtained from G by deleting all edges (v,v) from
E. Then there are no infinite paths in G'. Hence, E' is a well-founded rela-
tion and this implies the existence of v satisfying the lemma. O

Before stating a key lemma about colorable graphs, we need some defini-
tions. A color set assignment CS is a map V — 2%V It associates a set
of permissible colors CS(v) C [0..N] to each node v€ V. An infinite path
Vo, V1, - .. is eventually x-permissible if there is a K such that for all i > K,
X € CS(v;). A color set assignment is eventually permissible if every infinite
path is eventually x-permissible for some x. A set W C V is x-colorable if
for all ve W, x € CS(v); in that case, x is called a valid color of W. A set
is mono-colorable if it is x-colorable for some .

A coloring c of a set V is a mapping c¢: V' — [0.NJU{L}. If c(v) = L
then c does not assign a color to v, otherwise ¢(v) is the color of v. A coloring
c obeys a color set assignment CS if for all ve V, ¢(v) = L or ¢(v) € CS(v).
An infinite path vy, v, ... is eventually x-stable, where x € [0..N], if there is
a K such that for all # > K, x = c¢(v;). A coloring c is eventually stable
if every infinite path is eventually x-stable for some x. A set W C V is
mono-colored if there is x € [0..N] such that for all ve W, ¢(v) = x.

The following graph-theoretic lemma is essential to the completeness
proof.

Lemma 2 Let G = (V,E) be a graph. If CS is an eventually permissible
color set assignment, then there is an eventually stable partial coloring c :
V = [0.N]JU{L} obeying CS. Furthermore, there is an assignment v :V —
ORD of ordinals to V' and an equivalence relation R on V, congruent with
v and c, such that each equivalence class is either mono-colored or singular.
A singular class consists of one loop-free node v s.t. c(v) = L.* If (v,v')€E
then either

1. vRv' (hence, v(v) = v(v') and c(v) = c(v') # 1), or

2. v(v) > v(v').

Proof We define an operator I', which is applied trans-finitely to yield an
equivalence relation R on V and a coloring ¢ obeying CS such that each
equivalence class W of G/R is either mono-colored or singular. We will later
prove that there is no proper infinite path in G/R.

Assuming now that G/R has no infinite paths, we prove that c is even-
tually stable. Define h : G — G/R to be the natural homomorphism. Let
cr(W) be the image of ¢ under h, i.e. cg(W) = L if W is singular, and
cr(W) is the common color of nodes in W if W is mono-colored. It follows
from the assumption that for any infinite path P = v, vy, ... in G, the path
h(P) in G/R consists of a finite set of classes and the last class W of the.
path must be a mono-colored class; it could not be a singular class because
the node in such a class does not have a self-loop. Thus, the path P is even-
tually cp(W)-stable because there is a K such that for all £ > K, v, e W
and C('Uk) —'CR(h('Uk)) = CR(W)

To define an assignment v of ordinals to V', we apply Lemma 1 to G/R,
thereby obtaining an assignment v : G/R — ORD. Define v(v) = vg(h(v)).
Now, let (v,v') € E. Either vRv' or h(v) # h(v'). In the first case, W =
h(v) = h(v') is a mono-colored class. Hence, c(v) = c(v') = cg(W) # L and
v(v) = v(v') = vg(W). In the second case, (h(v),h(v')) € E/R; therefore,
v(v) = vr(h(v)) > v(v') = vr(h(v')) by Lemma 1. Hence, R and v satisfies
the properties stated in the lemma.

We now define I' and prove that G/R has no proper infinite paths. Let
F':VxV-oVxVbe

‘A node v is loop-free if (v,v) ¢ E.

10

SU{(v,v")[v',v"€R(v, (V\S)*)} where (v, x)=least(v, X)s.t.
(2) I'(S)= R (v, (V\S)>)is x-colorable

S if no such (v, x) exists
Here, the set R(v, W), where ve W CV, is {v'|v =¥, v'}, the set of nodes
in W reachable from v by a path in W;® the set W*, where W CV, is the
set {u € W |some infinite path in G|W originates in u}; the notation V|S,
where S C V x V is a relation, denotes {v €V |vSv}, the set of nodes
marked by S; and the complement of V|S, i.e. the set of unmarked nodes
{v € V|~ (vSv)}, is denoted V'\S.

In (2), we have assumed a well-ordering on V x [0..N]; it permits a new
equivalence class to be determined uniquely by the least value (v, x) defining
a mono-colorable class.

The operator I' is obviously a monotone set operator. Hence, there is
an ordinal 7y such that the set S* = I'” is a least fixed point of I'; here, I'®
abbreviates I'*(#). The nodes V|S* are the set of marked nodes of V and
the relation S* is clearly an equivalence relation on V|S*.

For reason of clarity, we omitted the definition of the coloring ¢ in
(2). When R(v,(V\S)®) is added to S, where (v,x) is the least value
such that R(v,(V\S)*®) is x-colorable, then we define c(v') = x for all
v' € R(v, (V\S)>®). In this way, v is assigned a color c(v) obeying CS(v) for
all marked v. For unmarked v, define ¢(v) = L.

In order to extend S* to all V', define the equivalence relation R on V as
vRy' if v§*v' or v = v' € V\S*. It is obvious that R is an equivalence relation
on V and that marked nodes equivalent under S* form a mono-colored class;
the other classes are of the form {v}. Each such v is loop-free. This follows
from the stronger statement that V, = (V\S*)*® is empty.

To prove that V,, is empty, we suppose for a contradiction that ug is a node
in V. The following procedure yields a sequence of nodes ug, vy, uy, vy, ...
in V.

If R(uo,Vw) is not O-colorable, then there is some v, reachable in G Voo
from g such that 0 ¢ CS(v) (perhaps vp=u,). Let u;, be a successor of
v (possibly vy itself).> A successor exists because there is an infinite path

v =}y v’ holds if there is some path vy,...,v, in G|W with vy = v,v, = v'.
®A successor of a node u is a node v such that (u,v) € E.

11

originating in each node of V. If R(u;, V,) is not 1-colorable, then there is
some node v; reachable from u; such that 1 ¢ CS(v;) (perhaps v;=u;).
Continuing in this way, we obtain either

¢ a node u; such that R(ux, Vi) is (kmod (N + 1))-colorable, or

e an infinite path containing the nodes ug, vg, u;,v1,... such that each wu;
is not (kmod (N + 1))-colorable.

The second case would contradict the assumption that CS is eventually per-
missible. Therefore, there must be a v € V, such that R(v, V) is mono-
colorable. But this contradicts that S* is a fixed point. Hence, V,, is empty.
We conclude that there is no infinite path in G through singular classes; thus
every infinite path in G/R contains infinitely many mono-colored classes.

To finish the proof, we need the following definition. For a mono-colored
class W, let (W) be the closure ordinal of W, i.e. the least ordinal o such
that W x W C I'®. The ordinal v(W), which is a successor ordinal, indicates
when the class W was marked. Note that before W was marked, W was
contained in (V'\S)*. Formally,

Claim 1 If W € G/S* and 8 < y(W), then W C (V\I'#)>,

Proof If ve W € G/S*, then ve (V\I"W)-1)® because W was added at-
step v(W). By the monotonicity of T', v € (V\I'’)* for all 8 < y(W) -1,
i.e. for all B < y(W). O

To prove that there is no proper infinite path in G/R, we assume that
Pr =Wy, V1,... is such a path with V; # V,,; for all i. We have just shown
that infinitely many V; are mono-colored. Let V; and V; (¢ < j) be mono-
colored classes such that for all k, 7 < k < j, V} is a singular class {v;} (note
that if ¢ = j + 1 then there are no such singular classes).

Now suppose for a contradiction that v; = (Vi) < v(V;) = v,. Let v; € V;,
v; € V; such that v;,vi41,...,v; is a path in G. By the claim, v; € (V\[~1)*®
because 7; — 1 < 7; < ;. By the monotonicity of I' and by assumption that
vp € V\S* for i < k < j, nodes v;y1,...,v;_; are in V\I'*~!. Thus, nodes
Vi, Vit1y .- -, Vj—1 are in (V\I~1)® because v; is in (V\['%~1)*. Hence, by
definition of I', all of V; is included in V; and we conclude that V; = V;. It

12

follows that if ¢ = j + 1, then V; = V;,;, which we assumed not to be the
case; and if 1 < j + 1, then v;y; should be in V;. This contradicts that Vi,
is a singular class. Hence, 7(V;) > v(V;).

Let t(7) be the monotone function that selects the indices of the infinite
subsequence of all mono-colored classes of V, V;,... We have that for all i,
Y(Vai)) > ¥(Viii+1))- This contradicts the well-foundedness of the ordinals.
Thus, a proper infinite path P = V;, V4, ... does not exist in G/R. a

Theorem 2 If L(An) C L(Asx), then there is an invariant T satisfying (V1)
and (V2).

Proof The invariant will be obtained from the joint graph G = (V,E).
The nodes V, also called joint states, are the jointly reachable program and
specification states. Formally,’

V= {(p)s) € Qn X Qs IEUES*, HPOHEQ(I)I s.t. p% —u-)Hp and 3% '2*2 S}.

Edges E are defined by the relation ((p, s), (¢/,s')) € Eif p Sy p' and s Sy §'.
Note that any infinite path in G starting in a joint state (p¥,s), where
P € QY defines a run of both Ay and Ay over some infinite word w. Such
a path is called a run in G. We assume that L(Ap) C L(Ag). Therefore,
every run in G defines an accepting run of Ay.

The algorithm Assign described below is used to associate an indicator
6(p, s) = (s,7(p,s)) to each joint state (p,s). The invariant is defined as

I(p,6) iff Is : 6 = 8(p, 5).

That is, the indicators associated with program state p are those associated
with joint states (p,s) of G.

Claim 2 To verify (V2) it suffices to show that

3) VY((p,s),(¥,s))€E : s, 1(p,s)— &, (¢, 5).

"For a transition relation — and a word u€&*, ¢ 5 ¢ holds if for some e there are

€0,.--,€en and qo,...,qn41 such that u = eo,...,e, and such that ¢o = ¢, goy1 = ¢’ and
q03"‘3qn+1-

13

Assign(W, X, x, k):

1. Let W = W\(Qn x L,).
Let X = [0..N]\(X + x).

2. Use Lemma 2 on G|W with color set assignment CSN X to obtain
a partial coloring ¢ : W — X + L obeying CSN X, an assignment
v of ordinals to W and a relation R on W.

3. For all v in W:

(2) Let X*(v) = x.
v(v) ifveWw
b) Let v*(v) = — .
(b) Let v%(v) { 0 ifveW\W
4. For each colored class W of (G|W)/R:
Assign(W,X + x,cr(W),k + 1)

Figure 2: The algorithm Assign.

Proof If p Sy p' and I(p,§), then by definition of Z there exists s such
6 = 6(p,s) and if &' is the state such that s =y s, then ((p, s), (¢, s')) € E.8
Then by choosing 8’ = 6(p/, '), it is clearly the case that Z(p/, ') holds and
that condition (61) of indicator rewriting is satisfied. Therefore, it suffices
to show that condition (62), i.e. s, 7(p,s) — §', 7(p/,s'), holds in order to
establish § = §'. 0

The stacks 7(p, s) are obtained by applying the algorithm Assign in Fig-
ure 2 with initial parameters (V,0,0,0). The application Assign(V,0,0,0)

8Here, we have used the assumption that A has no dead states as follows. Let u =
€o,---,€i_1 be such that there exists a partial run py 3p ...pi_; S p and such that
s S5 s (such a u exists because (p,s) is joint reachable). By the assumption that Ag
has no dead states and as program state p’ is a reachable state, state p’ is contained in
some run of Ay;. Hence, there are p;;y,... and e;4q,... such that p’ "'y piyy B ... It
follows that po = ...pi—1 e"—_fn p > p AR Di+1--- 1s a run of Ag. Hence, the word
€0y- -+ €iz1y€,€i41,... 18 In L(An). As L(An) C L(Agx), the word eq,...,€;_1,€,€41,... 15

accepted by Ay. This establishes the existence of s'.

14

and each subsequent application of Assign in Step 4 is called an invocation.
The color set assignment CS used by Assign is defined as

CS(p,s) = {x|s ¢ Uy}.

In other words, C'S(p, s) is the set of colors that can be used in an indicator
without violating the constraint (v2) of hypothesis rewriting.

The purpose of Assign(W, X, x, k) is to assign the color x and ordinals
to hypotheses at level x of W, and to assign colors from [0..N]\(X + x) and
ordinals to hypotheses at levels greater than such that rewriting of height
at least k is possible within all of W. Here, X denotes the set of colors that
have already been assigned to levels less than x.

In Step 1 of Assign, W = W\(Qq X L,) is the set of joint states in W
that are not “good” with respect to color x. X = [0..N]\(X + x) is the set
of colors that may be used to color W at higher levels. Here, the notation
X + x means X U {x}.

In Step 2, Lemma 2 is used to obtain a partial coloring ¢ of W obeying
CSN X. Here, CSN X denotes the colors in CS that are also in X , 1.e.
(CSNX)(v) = CS(v) N X.

In Step 3, the color of hypotheses at level k of v € W is defined to be x
and the ordinals assigned are those of Step 2.

Finally in Step 4, hypotheses at levels greater than « are defined for each
colored class W of (G|W)/R.

For each joint node v = (p, s), the size of the stack 7(u) is determined as
the maximal value of x for which x*(u) is assigned a value. Note that as at
level kK +1, Assign is invoked on disjoint subsets of level k, x*(u) is assigned
a value by at most one invocation of Assign. To explain the algorithm more
formally and to prove that Lemma 2 can indeed always be used in Step 2,
we need some more terminology.

We say that a subset W C V is x-tolerant if for all (p,s)eU, s ¢ U,,
and that W is x-avoiding if for all (p,s) €U, s ¢ L,. Note, that as L(Ap) C
L(Ay), for any run in G, there is a x such that every suffix of the run is
not x-avoiding and there is a suffix that is y-tolerant. A subset W C V is
X -tolerant if it is x-tolerant for each x in X. Similarly, a subset W C V is
X -avoiding if it is x-avoiding for each x in X.

15

Claim 3 For each invocation Assign(W, X, x, k), the following holds: | X| =
k; x € X; and W is (X + x)-tolerant and X -avoiding.

Proof (By induction) This is clearly true for the first invocation
Assign(V,0,0,0) because X = 0; x =0; Ly = Uy = 0; and « = 0.

When Assign(W, X + x,cr(W),k + 1) is applied from within Assign, it
may by induction hypothesis be assumed that |X| = k; x ¢ X; and that W
is (X + x)-tolerant and X-avoiding.

It follows that |X + x| = k + 1. Also, by definition of the color set as-
signment in Step 2, cg(W) ¢ X + x. Further, as W is cg(W)-tolerant by
definition of the color set assignment, it is true that W is (X + x + cg(W))-
tolerant. Finally, as W is x-avoiding (since W C W = W\(Qq X L,)), it
follows that W is (X + x)-avoiding. O

Consider an invocation Assign(W, X, x,). By Claim 3, it follows that
W defined in Step 1 of Assign is (X + x)-tolerant and (X + x)-avoiding.
Let now P be a infinite path in W. It is (X 4 x)-avoiding because W is
(X +x)-avoiding. Hence, by the assumption that every run in G is accepting,
P is accepting for a Rabin pair (L, U,/), where ' € X = [0..N]\(X +x). In
particular, P is eventually x'-permissible. Therefore, CSNX is an eventually
permissible color set assignment of W. and Lemma 2 is applicable in Step 2
of Assign.

Now to show that all stacks have height at most V, we note that if k = N,
then as | X| = k and x ¢ X (by Claim 3), X +x = [0..N]. Hence in that case,
the color set assignment of Step 2 defines for each node the set of permissible
colors to be the empty set; thus, GIW has no infinite paths and Assign is
not applied in Step 4.

We can now prove (3) of Claim 2. Assume that (v,v') € E, where v = (p, s)
and v' = (p/, §'). Let , the rewriting height, be the maximal level such that
there are W% D ... D W*; X° ..., X*; and x°,...,x" such that W° = V;
v, € W*; X = 0; x® = 0; and for all A < &, Assign(W?*, X* x*,)) is an
invocation. The number « exists, because Assign(V, 0,0, 0) is an invocation.
Also, all values W*, X* x* are unique.

From the definition of Assign it follows that for all A < «:

xX*(v) = M) = x

16

Besides,

s ¢ Ux"(v)a
because W* is x*(v)-tolerant. Thus, for A < &, (v1) and (v2) of hypothesis
rewriting are satisfied.

Furthermore, for A < k, W**! is an equivalence class of the relation R
defined over W* = W\ (Qq x L,»). Hence, as both v and v’ are in the same
equivalence class W**!1, it can be seen from Lemma 2 that A (v) = vA@).
Thus (v32) is established and it it follows that dormant hypothesis rewriting

5, (x*(v), 7 (v)) 3 ¢, 6A(V), (V)

holds for A < k. Hence, we have established (72) of stack rewriting.
Finally, to see that (71),

s, (X" (v),v"(v)) = &', (x"(v'), v*(v)),
is valid, we now only need to demonstrate that (v3>) holds, i.e. s € L, or
s'€ Lyx or v"(v) > v*(v'). So consider the case where s,s' ¢ L,«. Then
v,v' € W* = W*\(Qq x Lyx). Thus, Lemma 2 was used to assign ordinals
at level x to v and v'. Hence, either vR*v' or v*(v) > v*(v'). But if vR*v/,
then x would not have been maximal. Thus, v(v) > v(v'). m]

Observations

It follows from the completeness proof that it is not necessary to assume
that (Lo, Up) = (0,0) in the list of Rabin pairs if the list contains a pair of
the form (L,,0). Such a pair can be put at the bottom of all stacks instead
of (Lo, Uo) = (@, (0)

The formulation of hypothesis rewriting could have been made a little
more strict without loss of soundness or completeness. If the clause “s € L,
is deleted from the definition of hypothesis rewritings = and 3», the verifica-
tion conditions remain obviously sound. That they remain complete follows
from assigning ordinals to W\W in Step 3 of the algorithm according to:
Lemma 3 Let G = (V,E) be a graph, V' C V and v' : V' — ORD an
assignment of ordinals to V'. Then there is an eztension v : V — ORD of

V' such that if (u,v)€E, v ¢ V',veV, then v(u) > v(v).
17

Proof For v ¢ V', de ae v(u) =1+ sup{v'(v) |veV'}. |

Similarly, one could instead remove the clause “s’ € L,” from the defini-
tion of hypothesis rewritings.

8 Application 1: Fairness

Our technique allows automata-theoretic proofs of termination under a gen-
eral fairness constraint F' = {(¢1,%1),...,(dn,¥n)}, which is defined in
[FK84] or [Fra86, p. 112]. Each (¢y,%,), 1 < x < N, is an unfairness
condition, which consists of enabling condition ¢, and action condition Yy,
both of which are program state predicates. A computation is an infinite se-
quence of program states. A computation is unfair w.r.t. (¢,, ¥y) if enabling
condition ¢, is satisfied infinitely often and action condition 1, is satisfied
only finitely often. (Thus, a computation is fair w.r.t. (¢,,,) if enabling
condition ¢, is satisfied infinitely often implies that action condition Py is
satisfied infinitely often.) A computation is unfair if it is unfair for some
(¢x>¥y). (Thus, a fair computation is one which is fair w.r.t. each (Dxr ¥y)-)

Observe that a computation is unfair if and only if it satisfies F' viewed
as a Rabin acceptance condition.

A program Il terminates under F if every non-terminating computation
of IT is unfair, i.e. if every non-terminating computation satisfies acceptance
condition F'.

In order to prove that II terminates under F, we assume that II is given
by an initial program state p’ and a nondeterministic relation p — p/,
which denotes that an atomic action can transform the program state
from p to p’. Then II can be represented as a deterministic automaton
An = (Qu,Qu,p% —n) by letting the alphabet £ be the set of program
states @ and letting transitions be p ﬁm p', where p — p.

The specification automaton is the same as the program automaton—
except for the acceptance condition, which is F augmented with a pair
(¢¢, false) expressing the termination condition that a final state is entered:

<(¢1’ "abl), LERE) (¢na ¢n), (qbt,false)).
18

Here, it is assumed that the final state is repeated infinitely often once it
has been entered. This avoids dealing with finite computations.

Further, as program and specification automata only differ in the accep-
tance condition, it is only necessary to associate stacks and not indicators
with program states. Also, according to the observations after Theorem 2,
the termination condition can be kept at the bottom of the stack (and no
pair (0,0) is needed).

The verification conditions then become:

(V1ig) 3Ir:Z(p" 1)
(V2fr) p—9 AN I(p,7) = 37 : 7,p = 7,0 A Ip,r).

Now, Theorems 1 and 2 yield the following characterization of programs
that terminate under general fairness constraints:
Corollary 1 A program II terminates under general fairness constraint F if
and only if there is an invariant I(p,) satisfying (V1r) and (V2f). Further,
it is only necessary to associate one stack with each program state, i.e. T
needs only to be a function.
Proof To prove the second assertion, observe that joint graph G in the proof
of Theorem 2 have states of the form (p, p). a

This characterization implies that termination under general fairness can
be demonstrated by using simple assertions about stacks.

Example

Program II., shown in Figure 3 is taken from [GFMdR85] (and can also be
found in [Fra86]). It is presented in the syntax of guarded statements [Dij76].
Program II., terminates under assumption of strong fairness. This means
that for any non-terminating computation there is some guarded statement
£ that is unfairly executed, i.e. £ is infinitely often enabled but only executed
finitely many times.

An informal account of why II., terminates is as follows. In the
beginning—while z = 0 holds—if guarded statement ¢, is continuously exe-
cuted, then guarded statement ¢, will be enabled every second iteration but

19

ls: x,y:=0,0;

*x[£y: x=0 — yi=y+1
£y: x=0 A even(y) — x:=1
£.: x#0 A y#0 — y:=y-1
£5: x£0 A y#0 — skip]

{: goto 4,

Figure 3: The program II.,.

never executed, resulting in a computation that is unfair w.r.t. £,. Hence,
for a fair computation £, is eventually executed, resulting in progress for the
(literally) underlying termination hypothesis. Further, if ¢4 is continuously
executed, then guarded statement £, will be enabled infinitely often, result-
ing in an unfair computation w.r.t. .. Hence, for a fair computation £, is
executed until the loop is exited and the terminal state ¢ is entered.

The line of reasoning above is reflected in the formal argument, which is
based on the use of stack assertions. A stack assertion at label £ has the
form

{P1 —*Tl,...,Pn—-)Tn},

where the P;’s are program predicates and the 7;’s are stack descriptors.
A stack descriptor is a list of hypotheses that are functions of the program
state. A program state has the form (£, Z) where £ is the value of the program
counter (abbreviated PC) and Z is a value assignment determining the values
of the program variables. The stacks associated with a program state (¢, %)
are the values of those stack descriptors 7; evaluated at (¢, Z) for which P; is
satisfied at (¢, &).

In Figure 4, program II., is shown with stack assertions. Here, the Rabin
pair with index

b means “/ is executed unfairly,” i.e. (¢, ¥5) = ((z = 0 A even(y)), atdy),

¢ means “/, is executed unfairly,” i.e. (¢.,%:) = ((z # 0 Ay # 0),atl,),
and

20

{{((t,w+1))}

ly: x,y:=0,0;
{inv: =0 — ((t,w), (b,0)),
z=1 /\y#O —’((tay)’ (C,O))}
x[£,: x=0 — y:=y+l

£y: x=0 A even(y) — x:=1

£.: x#0 A y#0 — y:=y-1
£i: x#£0 A y#0 — skip]

{((t,0))}

¢;: goto ¢,
Figure 4: The program II., with assertions.

t means “IL; is in a terminal state,” i.e. (¢,) = (atls, false).

We will prove that the program satisfies the acceptance condition

((¢by "pb)) (¢c’ ")bc)’ (¢t) false)) ’

i.e. either the guarded statement £, or £, is executed unfairly or the program
terminates by reaching ¢;. Notice, that whether £, and £, are fairly executed
has no importance for the termination of II.,.

An operational explanation of the stack assertions in Figure 4 is a follows.
At the bottom of every stack resides the hypothesis ¢ that the program
terminates. |

Consider the statement £,. Its execution results in progress for hypothesis
t, because the ordinal of this hypothesis decreases from w + 1 to w.

However, when ¢ = 0 holds and statement £, is executed, hypothesis ¢
is only “dormant.” Instead, hypothesis b is on top of the stack to measure
progress towards fulfillment of the unfairness condition for 4.

When z becomes 1, the termination hypothesis ¢ is active and this allows
hypothesis c—that the program executes unfairly with respect to £.—to be
stacked. Thus, progress can take place for hypothesis ¢ when £, is executed.

For a more formal argument, it is assumed that the initial state of II,, is
(£sy(L,L1)), i.e. PCis £, and x and y are both undefined. For this program

21

state, the stack ((t,w +1)) is associated—thus establishing (V1z). Upon
execution of the statement at {;, the program state becomes (4, (0,0)) or
(45, (0,0)) because only the guards at £, and ¢, are satisfied. The PC is at
the loop as long as the label of the program state is £,, ¢, £, or £;. The PC
becomes ¢; when all guards are false, that is, when ¢ 20 A y = 0.

To prove (V2r), we consider each statement at a time: for every stack 7
possible according to the assertion at the statement (the precondition), there
must be a stack 7' possible according to the assertion after the statement
(the postcondition) such that 7 — 7'. In the following, values of the program
variables, hypotheses and stacks after the execution are denoted by primed
variable names.

For the statement at /;, there is only one stack possible, namely
((t,w+1)). After execution of ¢, : x,y:=0,0, the stack ((¢,w),(b,0)) is
possible, and

((t,w+1)) = ((t,w),(5,0))
with rewriting height 0. The proof of this is immediate:
0: (t,w+1) > (t,w) because "¢); = true and w + 1 > w,

where “0” denotes the level of the hypothesis rewriting. Statement ¢; is also
easy. When /; is exec d, there is only one stack possible, namely ((¢,0)).
After execution, the st < ((¢,0)) is possible. But ((¢,0)) — ((¢,0)) as

0: (¢,0) = (¢,0) because =¢; = true and ¢, = atf; holds.

For the other statements, ¢,, ¢, £. and {4, proofs are given below. The stack
To abbreviates ((t,w), (b,0)) and 73 abbreviates ((¢,y), (c,0)) from the loop
invariant.

{,: ¢ = 0 and 7, is the only possible stack. After execution of ¢;, the PC
will still be at the loop and stack 7, is possible. Then, 7, — 7, with
height 1:

1: (b,0) = (b,0) because ¢y, = —aty holds and if y is even, then
#» = (z = 0 A even(y)) holds, otherwise y is odd and ¢} = (z' =
0 A even(y')) holds because y' =y + 1 is even.

22

0: (t,w) 3 (t,w) because =9, = true.
£y: © = 0 A even(y) and 7, is the only possible stack. Two cases:

y = 0: Next PC is ¢; which allows 7{. Then, 7, — 7/ as
0: ((t,w)) = ((¢,0)) because ; = false and w > 0.

y > 0: Next PC is at loop and stack 7; is possible. Hence, 7, — 75 With
height 0:

0: (t,w) = (t,y') because =, = true and w > Yy =y.
L:: ¢ #0Ay >0 and 75 is the only possible stack. Two cases:

y = 1: Next PC is 4;. Prove that 73 — 7/ with height 0:
0: {(t,w)) = ((t,0)) because 1; = false and w > 0.

y > 1: Next PC is at loop and stack 73 is possible. Prove 753 — 75 with
height 0.

0: (t,y) = (t,y') because —4); = true and y > y=y-1.
£y: ¢ # 0Ay > 0 and 73 is only possibly stack. After transition Ty is
possible stack. Prove 73 — 75 with height 1.
1: (¢,0) > (c,1) because =, = —at, and ¢, = (z # 0 Ay # 0).
0: (t,y) EX (t,y') because ~); = true and y = ¢/'.
The termination proof in [Fra86,GFMdRS85] of the simple program II,,

is complicated, involving not only the original program, but also two trans-
formed programs.

9 Application 2: Biichi automata

A finite-state Biichi automaton A is a tuple (£,Q,Q°% —,QF), where
(£,Q,Q°% —) is a finite-state nondeterministic looping automaton. The set
QF C Q is the set of accepting states. A run gy, q1,-.-. of A over a word w is
accepting if there is a state in QF that occurs infinitely often in gy, qiy---
Using Safra’s result [Saf88], we define a direct method of verification with
finite-state Biichi automata. Safra showed how to construct a deterministic

23

Rabin automaton R(A) with O(2"°6") states and O(n) pairs given a non-
deterministic Biichi automaton with n states. When applying our method
of verification to R(A), we see that an indicator (r,7) for the (determinized)
Biichi automaton A contains a state r of R(A) and a stack 7 with guesses
of accepting pairs of R(A).

Corollary 2 The verification conditions (V1) and (V2) applied to R(A) are
sound and complete for verifying that a program satisfies a finite-state Biichi
automaton A with n states. Each indicator § contains a tree of at most n
subsets of states of A and a stack of height at most n.

Note that each indicator contains an amount of information essentially
exponential in the size of the specification automaton. This is probably
optimal because determinizations of a nondeterministic automata imply an
exponential blow-up.

10 Application 3: Rabin V-automata

A Rabin V-automaton A is defined as the deterministic Rabin automaton in
Section 4 except that the transition relation need not be deterministic and
that there may be more than one initial state. A word w € £¥ is accepted
by A iff all runs of A over w are accepting. The verification conditions (V1)
and (V2) are changed to

Viy: peQY A s€@:= 3r:I(p,s,7)
V2y: p—=np A s—zs A I(ps,7) = 35,7, 7 A I(p,s,7)

where the invariant relation Z(p, s, 7) associates a set of stacks to each (p, s).
By slightly changing the proof of Theorem 1, this formulation of the verifi-
cation conditions is seen to ensure that all runs of A over some word w are

accepting.

Theorem 3 If T is an invariant satisfying (V1y) and (V2y), then L(Ap) C
L(Ay).

24

Proof It is sufficient to prove that if eg, €1, . . . is any sequence of events such

that there is a run py = p; ... of Aq, then every run sg =3 s; 3 ... of As

is accepting. So consider atun py 3 p; 3 .--and arun s 3 s; 5 ...,
Using (V1) and (V2) we see there are stacks 7; with

7o = (0, ¥)s- -, (i, 7)), where k = size(;),

such that so, 79 = s1,71 = ---.
Now the arguments from the proof Theorem 1 can be repeated to show
that there is an accepting pair for sg = s, =5 - .. i

Theorem 4 If L(An) C L(As), then there is an invariant I satisfying (Vly)
and (V2y).

Proof As in the proof of Theorem 2, the invariant will be obtained from
the joint graph G = (V, E). If L(An) C L(Agx), then every run in G de-
fines a run of Ay and an accepting run of Ay. It follows that exactly the
same construction as in the proof Theorem 2 can be carried out. Define
I(p,s,7) iff T = 7(p, s). Details left to the reader. a
From the completeness proof, it can be seen that the invariant relation can
be restricted to be a function that associates one stack with each (p, s). The
verification conditions (V1y) and (V2y) generalize those of [MP87] which
dealt with V-automata having the acceptance condition ((L,0), (Qx,@x\U))
(so that a run is accepting if a state from L occurs infinitely often, or states
of the run are eventually contained in U).

11 Application 4: Disjunctions of Determin-
istic Biichi automata.

We present an improvement of the method by Alpern and Schneider in [AS89)
for demonstrating that a program satisfies a disjunction
D=A'V...VAPV APty ...y o APH"

of deterministic Biichi automata A* = (£, Q, q°, —, Q‘F). Automata Al,. ..,

AP are called positive automata and AP*l,..., AP*™® are called negative au-

tomata. As in [AS89] we assume that the automata have no dead states.
The disjunction D defines the language £(D), which is

25

LAY U---UL(AP)U L(APH) U ... U L(AP)

Stated in our terminology, the method in [AS89] relied on indicators each
containing a state of every A" for 1 < h < p+n together with a candidate set
C C [p+1,...,n+p] and a progress function v. The purpose of the candidate
set was to identify automata that might never again enter accepting states.

Using our main result, we here prove that it is not necessary to iden-
tify a set of such automata—pointing at one candidate is sufficient. Our
simpler verification conditions can still be written as (V1) and (V2), where
automaton Ay is taken to be a product automaton of the A"’s. Hence,
state space Qg is Q' X --- X QP and initial state ¢% is (g'°,. .., qPt0).
Transition relation —y is defined in the natural way as the product

of transition relations —!. If we define projection function II*s = s",

where s = (s!,...,s", ..., sPt ™), then the acceptance condition for Ay

is ((L,0),(Qs,UP*),...,(Qx,UP™)), where UPt* = (IIP""“)“l(QP“CF) (for
1<k<n)and L ={seQg|Ihe(l..p]s.t. H"sEQhF}. It is trivial to see
that £(Qx) = L(D).

An indicator now is a tuple (s, c,v), where s € Q%, c€ [p+1..p+n] points
to the candidate, and v is an ordinal. The predicate Init(6) is true if s = s%,
where 6 = (s,c¢,v). Indicator rewriting becomes

Definition 5 (Disjunctive Automata Indicator Rewriting) For indicators
6= (s,c,v) and &' = (¢',c,V),

§ 568 of
(61p) sz, and
(62p) (Fh:1<h<p: HhsthF)V(V > V)V(v > v Ac= ATl ¢ Q°F)
Condition (61p) is the same as VA : [I*s 5% II*s'. Condition (62p) ensures
that either some positive automaton enters an accepting state; or the variant

function decreases; or it does not increase and the candidate ¢ remains the
same and negative automaton A° is not in an accepting state.

Theorem 5 With the definition of indicator rewriting above, (V1) and (V2)
are sound and complete for proving that L(Ap) C L(D).

Proof (Soundness) Let &, 61,... be the sequence of indicators generated by
a word eg,eq,... € L(An), where §; = (s;,ci,v;). Then sg,sy,... is a run

26

of Ay and IT*sg, IT*s,,... is a run of each A over €o, €1, . . . If for infinitely
many i, (Gh:1< h<p: II*s; € Q"F), then it can be seen that some positive
machine accepts e, ey, ... Hence, in that case eg,ey,... € L(D).

Otherwise, there is a K, v and c such that for alli > K, v; = v, ¢; = ¢, and
II°s; ¢ Q°F. Hence, ey, e1,... @ L(A°) and it follows that €, €1,... € L(D).

(Completeness) Apply the completeness proof but modify it so that the
pair (L,) is always at the bottom of the stack. This can be done because
the set of “bad” states in (L, 0) is empty. Also note that we can discard all
hypotheses at levels greater than 1 and that a progress function at level 1
is not needed. This follows from the fact that for any hypothesis at level
1, all states are “good” states. For any indicator § = (s,{((0,v),(c,"))) of
the modified completenes proof, form the indicator (s, v,c). For any indica-
tor § = (s,((0,v))) of the modified completeness proof, form the indicator
(s,v,p+1). Here, p+1 could instead have been any other negative automa-
ton. Now, it is easy to see that § < & implies § % & if §,6' have been made
from 6, 8. a

12 Conclusion

Using an automata-theoretic approach, we have obtained:

e a direct verification method for Rabin-automata that generalizes meth-
ods in [AS89,MP87];

e a direct method of verification for specifications defined by Biichi au-
tomata;

e a simple method for proving termination under a general fairness con-
straint, which consists of a set of unfairness conditions. The method
employs stacks of hypotheses, with the underlying termination hypoth-
esis at the bottom. The other hypotheses each correspond to the ful-
fillment of an unfairness condition. The essence of our results is:

A program terminates under general fairness if and only if for each pro-
gram state the unfairness conditions can be ordered such that for any

27

program transition, progress towards fulfillment is made for one hypoth-

ests, while the ones below are dormant.

The ideas behind our handling of disjunctions can be extended to general

finite DNFs. We suspect, however, that our simple stack method cannot be

extended to termination under extreme fairness, which is expressible as an

infinite list of Rabin pairs.

Acknowledgments

Thanks to Dexter Kozen and Steven Mitchell for suggestions and advice.

References

[AL8S]
[AO83]
[AS87]

[AS89]

[BCM90]

[CDK89)

[DHS6]

[Dij76]
[FK84]

[Fra86]
[GFMdARSS5]

Martin Abadi and Leslie Lamport. The existence of refinement mappings. In
Proc. 2. Symp. on Logic in Computer Science. IEEE, 1988.

K.R. Apt and E.-R. Olderog. Proof rules and transformations dealing with
fairness. Science of Computer Programming, 3:65-100, 1983.

B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117-126, 1987.

B. Alpern and F.B. Schneider. Verifying temporal properties without temporal
logic. ACM Transactions on Programming Languages, 11(1):147-167, January
1989. '

J.R. Burch, E.M. Clarke, K.L McMillan, D.L. Dill, and J. Hwang. Symbolic
model checking: 10%° states and beyond. In Proc. Symp. on Logic in Computer
Science, 1990.

E. M. Clarke, I. A. Draghicescu, and R.P. Kurshan. A unified approach for
showing language containment and equivalence between various types of w-
automata. Technical report, Carnegie Mellon University, 1989.

I. Dayan and D. Harel. Fair termination with cruel schedulers. Fundamenta
Informatica, 9:1-12, 1986.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

N. Francez and D. Kozen. Generalized fair termination. In Proc. 11th POPL,
Salt Lake City. ACM, January 1984.

Nissam Francez. Fairness. Springer-Verlag, 1986.

O. Grumberg, N. Frances, J.A. Makowsky, and W.P. de Roever. A proof
rule for fair termination of guarded commands. Information and Control,
66(1/2):83-102, 1985.

28

[Har86]

[Hoa69]
[Jon87]
[KS89]

[LPS81]

[LT87]

[Mai89]

[MPS87]

[Saf88]

[SARG89]

[Sis87]

[Sis89]

[Sta88]

[SVWS87]

[Var87]

D. Harel. Effective transformations on infinite trees with applications to high
undecidability, dominos, and fairness. Journal of the ACM, 33(1):224-248,
1986.

C.AR. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576-580, October 1969.

B. Jonsson. Modular verification of asynchronous networks. In Proc. Sizth
Symp. on the Principles of Distributed Computing, pages 152-166. ACM, 1987.

N. Klarlund and F.B. Schneider. Verifying safety properties using infinite-state
automata. Technical Report TR-1036, Cornell University, 1989.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: the
ethics of concurrent termination. In Proc. 8th ICALP, LNCS 115. Springer-
Verlag, 1981.

N. Lynch and M. Tuttle. Hierarchical correctness proof for distributed algo-
rithms. In Proc. Sizth Symp. on the Principles of Distributed Computing, pages
137-151. ACM, 1987.

M.G. Main. Complete proof rules for strong fairness and strong extreme-
fairness. Technical Report CU-CS-447-89, Department of Computer Science,
University of Colorado, 1989.

Z. Manna and A. Pnueli. Specification and verification of concurrent programs
by V-automata. In Proc. Fourteenth Symp. on the Principles of Programming
Languages, pages 1-12. ACM, 1987.

S. Safra. On complexity of w-automata. In Proc. Foundations of Computer
Science. IEEE, 1988.

F.A. Stomp, W.P. de Roever, and R.T. Gerth. The u-calculus as an assertion-
language for fairness arguments. Information and Computation, 82:278-322,
1989.

A.P. Sistla. On using automata in the verification of concurrent programs.
Technical report, Computer and Intelligent Systems Laboratory, GTE Labo-
ratories Inc, 1987.

A.P. Sistla. A complete proof system for proving correctness of nondetermin-
istic safety specifications. Technical report, Computer and Intelligent Systems
Laboratory, GTE Laboratories Inc., 1989.

E. Stark. Proving entailment between conceptual state specifications. Theo-
retical Computer Science, 56:135-154, 1988.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for
Biichi automata with application to temporal logic. Theoretical Computer Sci-
ence, 49:217-237, 1987.

M. Vardi. Verification of concurrent programs: The automata-theoretic frame-
work. In Proc. Symp. on Logic in Computer Science. IEEE, 1987.

29

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

