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This doctoral dissertation concerns electronic, nanoscale systems exhibiting coher-

ence effects. Two effects are considered in detail: quantum corrections to the ensemble

average of the conductance of a network of quantum dots, and superconducting cor-

relations induced in half-metals by a nearby s-wave superconductor. In Chapter 1 the

common origin of these two effects is considered and the processes limiting quantum

coherence are discussed.

The quantum corrections to the ensemble-averaged conductance of a network of

quantum dots are calculated in Chapter 2. All leading quantum corrections to the clas-

sical conductance are obtained: weak localization, which reduces the conductance and

arises from coherent backscattering of electrons, as well as Altshuler-Aronov corrections,

which arise from theCoulomb interaction among the electrons. EmployingRandomMa-

trix theory and diagrammatic perturbation theory, we obtain the quantum corrections

not only for all magnetic fields strengths but also for all temperatures. Our results are

given in terms of contact conductances and capacitances, quantities obtainable directly

from experiment for gate-defined quantum dots in semiconductor heterostructures.

FromChapters 3 to 5 we explore superconducting correlations in half-metals, materi-

als in which only one spin species can propagate at the Fermi energy. We investigate two

potential “triplet” Andreev reflection mechanisms, which allow superconducting corre-

lations from an s-wave superconductor to extend into magnetic materials, and which

involve the rotation of a quasiparticle’s spin close to the interface.



In Chapter 3 we assume a thin ferromagnetic spacer layer at the interface between

the half-metal and the superconductor, whose magnetization is not collinear with that of

the half-metal. We find that here “triplet” Andreev reflection is suppressed close to the

Fermi energy. This is shown to be due to unitarity and particle-hole symmetry, which in

the single-channel quantum limit lead to the absence of Andreev reflection at the Fermi

energy. This absence leads to a suppression of an interface’s subgap conductance at low

bias voltage, as well as to a suppression of themagnitude of the Josephson current through

long half-metallic links.

Chapters 4 and 5 investigate domainwalls as an alternative source of “triplet” Andreev

reflection. It is shown that orientation of the domain wall with respect to the interface

matters: where an interface is invariant under translations aswell as half a rotation around

the interface normal, the same restrictions as in the single-channel limit apply. If a do-

main wall is oriented parallel to the interface these invariances are retained; where the

domain wall is perpendicular the invariances are broken, allowing for a finite Andreev

reflection amplitude at the Fermi energy. We also find that contact geometry affects the

magnitude of the Andreev reflection amplitude. If a superconductor is laterally brought

into contact with a thin half-metallic film, the Andreev reflection amplitude is enhanced

due to multiple reflections occurring in the thin film.
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CHAPTER 1

INTRODUCTION

This thesis concerns electronic systems exhibiting coherence effects in themesoscopic

regime. Physicists have over the last decades explored this intermediate scale, ranging

from the nanoscale of individual molecules and carbon nanotubes to microscopic scales

of semiconductor heterostructures where aspects of classical properties begin to become

apparent while the system still shows distinctively quantum mechanical features. Two

effects are considered: the weak localization correction to the conductance and the su-

perconducting proximity effect induced in half- metals.

In Chapter 2 we consider weak localization, a quantum coherent backscattering ef-

fect which leads to a reduction of the electrical conductance compared to the classically

expected value. We investigate its temperature and magnetic field dependence for a net-

work of quantum dots. Quantum dots are small metallic islands, created by electrostatic

confinement with gates in semiconductor heterostructures or defined by the surfaces of

metal grains. Electrons on a quantum dot ergodically and coherently explore the avail-

able phase space on a very short timescale, so that the conductance through quantum

dots is determined primarily by their contacts to leads. For this reason quantum dots are

also said to be ‘quasi-zero dimensional’. Yet while details of the scattering off boundaries

or impurities on the dot do not play a dominant role in determining the conductance,

they do give rise to small quantum corrections which are the focus of our investigation.

It was realized almost three decades ago that the phase shift an electron incurs when

scattering off impurities in solids need not imply the impossibility of coherent effects.

In fact, in an infinite one- or two-dimensional disordered metal quantum interference

effects will localize all states and reduce the conductivity to zero. While infinite samples

are insulating, finite samples may have a localization length exceeding their size so that
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they are effectively metallic. Still, precursor effects to strong localization can already be

seen in small samples. These have been dubbed “weak” localization effects, as opposed

to “strong” localization effects in larger or more disordered samples.

Weak localization effects are well understood both theoretically and experimentally

in three-dimensional as well as in quasi-one and quasi-two dimensional systems. Yet the

same cannot be said of the quasi-zero dimensional quantumdots: The observed tempera-

ture dependence of the weak localization correction is still inconclusive. Section 1.3 gives

a brief overview the current state of the field. Chapter 2 then investigates thoroughly how

quantum corrections arise in a network of quantum dots, and, more interestingly, how

they are suppressed in the presence of magnetic fields or by interactions.

In Chapters 3–5 we consider the second coherence effect: superconducting pair-

ing correlations induced in half-metals by a nearby s-wave superconductor. Andreev

reflection—the reflection of electrons into holes and vice versa at the interface of a

superconductor—provides such a mechanism. It is well understood for normal metals,

yet for half-metals and ferromagnets the situation is more involved. Half-metals in par-

ticular are magnetic materials in which only one spin species propagates at the Fermi

energy. The macroscopic wavefunction of the superconductor consists of singlet states

involving both spin directions and can thus not immediately extend into a half-metal.

Ordinary Andreev reflection of an electron incident from the half-metal will result in a

hole whose spin is anti-aligned with themajority carrier direction of the half-metal. Such

a hole cannot be reflected back into the half-metal.

Instead, to induce superconducting correlations in the half-metal, the spin has

to be rotated close to the interface [1]. Josephson currents flowing through a non-

superconducting material are a prominent consequence of superconducting correlation.

They were in fact observed for a half-metal [2], and in this thesis we investigate poten-
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tial mechanisms enabling such a “long range triplet proximity” effect. It is called ’triplet’

because it involves pairing of equal spins. In Chapter 3 we consider this problem by em-

ploying scatteringmatrices, an approachwithwhichwe show thatAndreev reflection into

half-metals is absent at the Fermi energy in the single-channel quantum limit. Chapters 4

and 5 investigate domain walls and find that depending on orientation these can give rise

to a finite Andreev reflection amplitude at the Fermi energy. The role of contact geometry

is also discussed in this context.

The following sections provide some background to the effects considered. In Sec. 1.2

we begin shedding some light on the types of processes limiting coherent effects. Sec-

tion 1.3 reflects on quantum corrections to the conductance before we motivate in Sec.

1.3.1 the RandomMatrix model employed to obtain the ensemble averaged conductance

through quantum dot networks. Section 1.4 takes a short look at the role of coherence in

superconductivity and links it to the long range triplet proximity effect in ferromagnets

and half-metals.

1.1 Coherent effects from classical paths

Quantum Mechanics allows for interference effects. Of these the double slit experiment

may be the most paradigmatic, but another equally iconic one is the Aharonov Bohm

effect. It is a propagation amplitude’s phase that depends sensitively on the path taken

and potentials experienced along it. Upon squaring the sum of amplitudes, cross terms–

involving relative phase differences–give rise to interference, see Fig. 1.1. The precession

of a spin in amagnetic field is also a type of interference effect. The relative phase between

the two components of a spinor determines a spin’s orientation. Precession in a magnetic

field is the accumulation of phase at different rates for the two components of the spinor.
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Figure 1.1: In the double slit experiment (a), the differing orbital phases along path γ1

and γ2 give rise to an interference pattern. This interference pattern’s dependence on the

magnetic flux Φ encircled by γ1 ∪ γ̄2 in (b) is the result of the Aharonov Bohm effect.

In these three examples there are only two different probability amplitudes contribut-

ing to the final sum. Effects which rely instead on a large number of contributions all con-

tributing with the same phase are often called “coherent”. It is worth considering more

closely the two coherent effects we are interested in this thesis. Both concern electrons in

an interacting Fermi sea. The current-current correlation function from which the con-

ductance is obtained, as well as the superconducting pairing correlations both involve

pairs of electron creation or annihilation operators, 1

⟨ψσ(r, t)ψ†
σ′
(r′, t′)⟩ or ⟨ψ†

σ(r, t)ψ†
σ′
(r′, t′)⟩ (1.1)

Such expectation values, taken with respect to the ground state of the system, are inter-

preted as being related to the propagation of a quasiparticle. ⟨ψσ(r, t)ψ†
σ′
(r′, t′)⟩, e.g., is

the probability amplitude for a quasiparticle created at position r′ at time t′ to be found

and annihilated at position r at time t. With Feynman taking seriously the notion that

one should sum over all possible paths γ connecting r to r′ in the given time interval, the

1The theory of course also involves quantities of which no average has been taken. Yet a mean field the-

ory, as well as a perturbative treatment by virtue ofWick’s theorem, will only involve the pairwise averaged

quantities.
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propagator is written as

⟨ψσ(r, t)ψ†
σ′
(r′, t′)⟩ =∑

γ

Aγe iSγ/ħ , (1.2)

where the so called stability amplitudeAγ weighs the contribution of an individual path

and Sγ is the action incurred along it.

The dominant contribution to the action arises from the orbital trajectory taken and

the potential landscape experienced. The orbital contribution to the phase Sγ/ħ, e.g., is

∫γ dl ⋅k. Already changes in the path only of order of the Fermi wavelength λF will change

the phase entirely. Thus even trajectories differing only by little more than a wavelength

cancel each other’s contribution in the sumover amplitudes Eq. (1.2). The only trajectories

for which such cancellations are absent are those where the action is stationary, so that a

small variation of the path does not change the action. These are the paths that contribute

to the sum. They correspond to the trajectories of classical particles. Onemay picture the

contributing paths as being contained in tubes of cross-sectional area ≈ (λ/2π)2 fitted

around the classical path [3]. The picture of propagation along a classical paths that is

herewith established is useful to intuitively understand both effects that will concern us

here.

1.1.1 Conductance

The Kubo formula gives the conductance G as an expression involving four fermionic

creation and annihilation operators. It is found to be proportional to a double sum

G ∝ ∣∑
γ

Aγe iSγ/ħ∣
2

=∑
γ

∑
δ

AγA∗δ e i(Sγ−Sδ)/ħ . (1.3)

At low bias voltage we may picture conductance in mesoscopic systems as an elastic scat-

tering process instead of a dissipative one. The conductance of a device is thus propor-

tional to the probability that an electron entering the device at the source leaves it at the
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Figure 1.2: (a) Generic off-diagonal pairing and (b) time-reversed pairing of two clas-

sical paths. The former gives rise to sample to sample variations of the conductance, the

latter gives the weak localization correction to the average conductance.

drain. The probability is obtained from a square of amplitudes, thus the above expres-

sion (1.3). The classical contribution to the conductance is the diagonal one where γ = δ.

Quantum corrections appear due to the non-diagonal contributions. In any given phase

coherent sample these do not self-average to zero but give rise to a correction to the con-

ductance of universal order of magnitude e2/h. Sign and size of the correction cannot

be predicted for a given sample. Like a speckle pattern in optics the correction depends

sensitively on the impurity configuration within the sample.

Taking the average of many samples, it is found that not all non-diagonal contribu-

tions reduce to zero. These stem from paired trajectories for which the difference of their

actions is stationary, just as it is for the diagonal pairing. Consider a path γ starting

and ending at the source contact of a mesoscopic device. Such paths contribute to the

probability of an electron to return to the source contact instead of leaving through the

drain. One finds that the pairing of γ with its time-reversed γ̄ gives rise to an additional

contribution equal in size to the diagonal, classically expected one. Such a contribution is

depicted in Fig. 1.2(b). The difference in action, Sγ−Sγ̄, is stationary. To see this, note that

the sensitive action predominantly depends on the orbital contribution ∫γ dl ⋅ k, which

simply depends on the length of the trajectory. This is the same for both path and time-
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reversed path. Static scalar potentials also contribute equally and so do the phase shifts

incurred upon scattering off impurities or boundaries. These time-reversed pairings thus

enhance the probability to return to the source contact by a factor of two compared to the

classically expected value. By unitarity the probability of transmission through the de-

vice must thus be reduced, and so is its conductance. This is the coherent backscattering

contribution giving rise to weak localization.

1.1.2 Superconducting correlations

In the case of superconducting correlations, we inquire about ⟨ψ†
σ(r, t)ψ†

σ′
(r′, t′)⟩, the

amplitude of an electron initially at position r′ at time t′ to be found at r and t as a hole. We

look for a contribution to the sum over amplitudes whose action is stationary as before.

A connection to the preceding conductance consideration is established by dividing the

path taken into two segments. In the first segment an electron propagates from position

r in the normal or half-metal to r′′ on the interface with the superconductor. At the

interface it can be converted to a hole, which occurs with some amplitude rhe . Ordinary

reflection may also occur yet does not contribute to superconducting correlations. The

second segment of the path starts at r′′ and ends at r′. The hole trajectory δ̄:r′′ → r′ is the

time-reversed of an electron trajectory δ:r′ → r′′. Since under time-reversal Aδe iSδ →

A∗
δ
e−iSδ we can write an an expression similar to Eq. (1.3) above

⟨ψ†
σ(r, t)ψ†

σ′
(r′, t′)⟩ = ∫

S∣H

dr′′ ∑
δ∶r′→r′′

A∗δ,σ′e−iSδ rheσ′σ,δγ(r′′) ∑
γ∶r→r′′

Aγ,σe iSγ , (1.4)

where we explicitly take into account the spin degree of freedom. The integral over r′′

is over the interface of the superconductor. Again the relevant contribution arises from

pairings whose overall phase is stationary. The expectation is that these are the classical

paths as depicted in Fig. 1.3.
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Figure 1.3: Classical path γ incident on a superconductor interface, where it is Andreev

reflected with amplitude rhe and follows the time-reverse of path δ.

1.2 Dephasing

There are two fundamentally different ways in which the coherent contribution to a cor-

relator may be reduced. While both change the relative phase in pairings corresponding

to stationary points, one does so in a deterministic manner. The other involves interac-

tions among the quasiparticles in the system or with the environment, interactions which

occur with certain transition amplitudes yet cannot be predicted.

1.2.1 Dephasing due to magnetic fields

For time-reversed paths relevant to the conductance the deterministic manner is realized

when a magnetic field is applied: The Aharonov-Bohm phase

∫
γ

dl ⋅ eA/ħc = πΦγ/Φ0

is proportional to the flux Φγ encircled by the path γ, where Φ0 = hc/2e is the mag-

netic flux quantum. The flux encircled depends on orientation. As paths related by time-

reversal are traced out in opposite directions, one finds opposite signs, Φγ̄ = −Φγ. Dif-

ferent paths will generically encircle different amounts of flux. Summing over all pairs
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of time-reversed paths will thus reduce the coherent contribution since they contribute

with different phase. As Φ0 is very small, in quantum dots a flux strength of only a few

Gauss is sufficient to fully suppress the coherent contribution and thus weak localization.

Similarly, magnetic fields suppress superconducting correlations of singlet type. Or-

dinary Andreev reflection returns an incoming majority electron as a minority hole.

Therefore the two amplitudes in the coherent correlator incur differing orbital phases

in the presence of a magnetic field, or generally the exchange interaction in a magnetic

material. As the difference in phase accumulated will depend on the length of a path

and paths of differing lengths contribute to the correlator, the correlator will generically

become short ranged in a magnetic system. The same mechanism limits pairing corre-

lations even in a normal metal adjacent to a superconductor. At a small energy ε away

from the Fermi energy the slight difference δk = 2є/ħvF in the wavenumbers of electrons

and holes will limit the range of the pairing correlations. As the Fermi velocity vF is large,

however, this scale is much longer than in the case of even a weak exchange field. In fact,

as temperature goes to zero, so does the typical excitation energy, resulting in infinitely

long-ranged correlations.

In both these cases the phase along a given path is always affected in the same pre-

dictable way. Yet as two paths which initially accrued the same phase now no longer do,

the overall phase from the difference in their actions Sγ − Sγ̄ no longer cancels. The re-

maining off-diagonal pairings which initially all contributed with equal phase no longer

do and the coherent effect is reduced.
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1.2.2 Dephasing due to interactions

Contrast this predictability with the influence of interactions. Similar to an electron ac-

cruing a phase shift when scattering off an impurity, electrons accrue phase shifts when

they interact and scatter off each other or off lattice excitations, i.e. phonons. In ad-

dition to the change of phase, their momentum may change and more importantly the

environment—the electromagnetic field or the lattice ions—changes its state as well. The

propagating electron becomes entangled with the environment. When squaring the sum

over propagation amplitudes to obtain the conductance, such entanglement becomes cru-

cial as the scalar product is taken over both the particle’s state as well as the state of the

environment. Non-diagonal contributions corresponding to pairs of paths along which,

e.g., a different number of photons or phonons were emitted then no longer contribute

to the coherent effect [4].

At low temperatures, phonons are no longer present and the electron-electron inter-

action becomes the dominant mechanism reducing coherence. At the low energies of

relevance to us we may neglect its effect on the momentum of the propagating particle

and the resulting changes of the trajectory and the amplitudeAγ. Instead the interaction’s

effect is well described by a scalar potential, arising from the presence of the other elec-

trons. The interaction thus only affects the action Sγ. Yet where a magnetic field always

affects a path predictably in the same way, the electron-electron interaction affects the

path only with a certain amplitude. Only the action of those terms in the final expression

for which an interaction event actually occurred—involving the emission or absorption

of a photon—will be affected. Because the likelihood of such interaction events depends

on temperature, this gives rise to a temperature dependence of the coherent correlator.

The phase accumulated by an electron emitting a photon of frequency ω will depend

on the time t′ that the photon is emitted or absorbed. As this changes the energy of the
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particle from ε to ε ± ħω, the phase accumulated along a path ending at t is changed by

±ω(t − t′). One might now be tempted to think that only where photons are emitted

or absorbed at the same time along both paths does their pairing continue to contribute

to the coherent effect. Yet this is not the case since the emission of photons of the same

energy at different times need not result in photon states which are orthogonal to each

other. This is apparent in the diagrammatic perturbation theory. While diagrammatic

rules stipulate a photon line to have both a beginning and an end—which takes care of

the orthogonality of environmental states with different numbers of photons—there are

no stipulations on where photon lines may attach. The orthogonality of states with the

same number of photons is realized via phases. Long wavelength and low energy photons

will generally not give rise to strong dependence of the phase on either position or time

and thus they are generally not orthogonal regardless of when and where emission took

place in the system [4].

The contribution of a given pair of trajectories to the correlator will thus consist of a

sum over the different numbers of photons present in the environment as well as integrals

over the different times at which a photon could have been emitted or absorbed. In this

final expression one sees that both paths may have accumulated phases due to interac-

tions. What reduces the coherent effect however, is not the variability of the individual

phases but only the variability of their relative phase. This implies in particular that a

uniform interaction which affects both paths equally does not lead to decoherence.

The effectiveness of the interaction in reducing a coherent effect will depend on the

observable calculated. For corrections to the ensemble averaged conductance, which rely

on the coherent pairing of time-reversed amplitudes , the reduction will be due to uncer-

tainty of the relative phase of the two paths. Given a probability distribution P(φ) for
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this relative phase φ the suppression of the contribution is by a factor

⟨e iφ⟩ = ∫ dφP(φ)e iφ . (1.5)

For a gaussian distribution Eq. (1.5) can easily be integrated to give a suppression expo-

nential in the variance ⟨δφ2⟩ of the relative phase [4]. The variance for a given pair of

paths (α, β) is

⟨δφ2⟩ = ⟨δϕ2
α⟩ + ⟨δϕ2

β⟩ − 2⟨∆ϕα∆ϕβ⟩. (1.6)

The last term including the covariance ensures that if, e.g., the phases always vary in the

same way, the coherent effect is not reduced. A gaussian distribution is expected for a

thermal environment, such as a heat bath of phonons or photons at high temperatures.

In this case the central limit theorem suggests that the variance grows linearly with the

length of the trajectory. The influence of interactions can thus be treated effectively in

the form of a dephasing rate.2 With this time scale, we can associate a length Lφ via the

propagation properties of the particles. Coherent effects become relevant when the size

of the sample is of the order of Lφ or smaller; larger samples exhibit self-averaging of

mesoscopic fluctuations.

Both types of effects—dephasing by interactions and dephasing due to magnetic

fields—will be considered more closely in this thesis.

2Note that the terminology is inconsistent as regards the use of “dephasing” vs. “decoherence”. While

the early work by Altshuler and Aronov [23] employs the term “dephasing” for interactions reducing phase

coherence, Akkermans andMontambaux [41] suggest to use “decoherence” instead to indicate that a transi-

tion in the environment will often have occurred. While we do believe this distinction to be of importance,

here we deliberately keep using the term dephasing interchangeably; which type is intended will be appar-

ent from the context.
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Figure 1.4: A path contributing to weak localization. Pictured in (a) as a stretchwise

classical path, and (b) as it is encountered in diagrammatic perturbation theory.

1.3 Quantum effects in conductance measurements

Landau’s concept of a Fermi liquid allows us to think of electrons as noninteracting par-

ticles despite the presence of strong Coulomb interactions. These quasiparticle states are

labeled with the same quantum numbers as free electrons. While they do scatter it can be

shown through phase space arguments that they decay only slowly in the vicinity of the

Fermi surface. Yet Landau’s Fermi liquid theory only holds for translationally invariant

systems. In the 1980s it was realized that disorder thus changes the picture: Scattering

off impurities leads to diffusive rather than ballistic motion of the quasiparticles. Most

importantly this allows for self-returning paths. As soon as such paths γ exist the proba-

bility of transmission is reduced—weak localization corrections arise through the pairing

with time reversed paths γ̄, as in Fig. 1.2. Writing this off-diagonal contribution explicitly

together with the classical diagonal pairing, we find

Pret =∑
γ

A∗γAγ +A∗γAγ̄e−i(Sγ−Sγ̄)/ħ . (1.7)

The second term enhances the return probability and thus reduces the conductance. The

pictorial analogue of this second term is shown in Fig. 1.4(a).

This contribution crucially relies on the paths remaining coherent with equal actions

Sγ = Sγ̄. The ubiquity of decoherence which upsets this equality, discussed in Sec. 1.2, is
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the reason that we need to go to small systems (L ≲ µm) and low temperatures (T ≲ 4 K)

to find coherent effects.

Assuming an average phase coherence time τφ one can obtain the corrections to the

conductivity from the fraction of trajectories that will have returned to the origin by this

time. Those which do will contribute to quantum corrections, those that don’t will not.

The resulting integral depends on dimension and gives the quantum correction in terms

of the phase coherence time τφ.

At the lowest temperatures achievable it is believed that electron-electron interactions

are the dominant interaction mechanism causing decoherence. In three dimensional as

well as in quasi-two and quasi-one dimensional systems the corresponding dephasing

rate can be calculated using diagrammatic perturbation theory. Here it is crucial to take

into account the diffusive nature of the particle’s propagation both as it directly affects a

given particle’s path as well as insofar as it changes the screening of the electron-electron

interaction. This program has been carried out with great success and can be consid-

ered experimentally confirmed.3 In testing the predictions of the theory it is crucial that

the relevant ingredients were well established or accessible in independent experiments.

Transport properties rely on the Diffusion constant which is accessible at higher tem-

peratures in a non-coherent experiment. The bare Coulomb interaction in a restricted

geometry as well as its screened propagator can be calculated from first principles, taking

into account the proper low energy behavior dominated by screening.

Taking seriously the idea that the interaction among electrons ismediated by photons,

the fluctuation-dissipation theorem for the photon field predicts the temperature depen-

dence of the dephasing rate. This was first shown by Altshuler, Aronov and Khmelnit-

3 See e.g. the review by Altshuler and Aronov [23] or the recent book by Akkermans and Montambaux

[41]. Despite some earlier controversy it is now believed to be the proper explanation for pure systems

without magnetic impurities, see e.g. [42] and [43, 44]
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skii [5], who considered the properly screened photon propagator in various dimensions

and thus obtained the temperature dependence of weak localization.

For completeness we mention that phase coherence and diffusive motion of particles

are also the ingredients leading to the Altshuler-Aronov interaction corrections to the

conductance and the density of states. These are similarly due to an enhanced interaction

vertex at small energies [6, 7]. The enhancement arises again because a particle may

return to the point of scatteringwith the samephase if the energy transfer is small enough,

thus adding coherently to the original scattering amplitude. Alternatively these effects

can be thought of as arising from scattering off Friedel oscillations around impurities [8].

Coherent quantum effects in conductance and their suppression by electron-electron

interactions are thus well understood in one and higher dimensions. The situation is less

well established in quasi-zero dimensional systems, the quantum dots mentioned earlier.

Fig. 1.5 illustrates the different dimensions for the case of a gate-defined quantum dot

in semiconductor heterostructures. In all cases the third dimension does not participate

in the dynamics, as the wavefunction in this direction factors and relevant states only

involve the lowest energy mode. In other directions the sample is either not restricted at

all [2D-case, Fig. 1.5(a)] or restricted in only one direction [1D-case, Fig. 1.5(b)]. Diffusion

is the dominant reason for a finite resistance in both cases.

In the quasi-zero dimensional case of Fig. 1.5(c) the dominant contribution to the

conductance does not arise from the diffusive propagation of the particles. While the

motion inside the gate defined region remains diffusive,4 it is now the low probability to

escape—due to the small fraction of the circumference for which this is possible—that

4Motion inside the dot may also be ballistically chaotic. This gives rise to a new timescale, the Ehrenfest

time τE, which is the time it takes the chaotic dynamics to “tear apart” a minimal uncertainty wavepacket

until its probability density is distributed evenly across the dot. In the case of diffusive quantum dots

τE → 0. Finite Ehrenfest times affect the weak localization correction, see [45–47]. We have considered its

effect on the Altshuler-Aronov correction in [48]. Throughout this thesis however we will assume τE = 0.
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(c)

(b)

(a)

Figure 1.5: Illustration of different effective dimensions implemented in a two dimen-

sional electron gas. The third dimension is not shown and forms a quantumwell in which

only the lowest energy mode is occupied. (a) Quasiparticles propagate in both directions

in the plane. (b) Gates constrain the motion to be effectively one dimensional. (c) By

forming narrow contact regions a quasi zero dimensional “quantumdot” is formedwhose

conductance is dominated by the contacts.
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dominates the conductance.

Such a quantum dot exhibits a new hierarchy of energy scales. The highest energy

scale is the Fermi energy, followed by the Thouless energy ETh = ħγ1, with γ1 the smallest

nonzero eigenvalue of the diffusion operator for the quantum dot. The smallest energy

scale is the single particle level spacing ∆. From the Thouless energy and the mean level

spacing a dimensionless quantity, the dimensionless conductance g is formed. In a diffu-

sive dot g is related to kFL and thus large for the types of quantum dots we are interested

in. It is the parameter that justifies the use of Random Matrix theory below, see Sec.

1.3.1. In addition to these single particle energy scales the Coulomb interaction among

the electrons on the dot defines an additional scale, the charging energy, which is given

in terms of the geometric capacitance C of the dot as Ec = e2/C.

Two different regimes of transport through quantum dots are usually distinguished.

‘Closed’ dots are connected to leads only by tunnel contacts. Due to interactions among

the electrons, closed dots show pronounced level structure, which is why they are some-

times referred to as “artificial atoms”. Herewe look at the opposite regime, ‘open’ quantum

dots, where the dimensionless contact conductance between lead and dot is large, such

that the levels in the dot broaden to form a continuum. One estimates that this occurs

when the total of the contacts’ conductances G ≈ e2/h. Consider the RC-time τc of the

equivalent resistive circuit in conjunction with Heisenberg’s uncertainty principle. As

levels will only be well defined as long as δE ≪ Ec the crossover is in the vicinity of

τcEc ≈ ħ, which with τc = C/G gives the condition above [9]. Where the dimension-

less contact conductance is large, the energy levels broaden to form a continuum, and

perturbation theory in e2/hG, the inverse of the dimensionless contact conductance, is

justified.

The quantum correction to the average conductance at zero temperature can easily be

17



found for a quantum dot with ballistic contacts. In this case we may think of “channels”

forming in the vicinity of the contacts, analogous to the original experiment by vanWees

which showed conductance quantization for the first time [10]. Consider then a dot with

one contact of NL and a second of NR channels. An electron’s trajectory entering the

dot through one channel will, by the chaotically ergodic nature of transport in the dot,

leave through any one of the NL +NR channels with equal probability. Weak localization

occurs because the pairing of time reversed trajectories doubles the probability to leave

the dot through the same channel that it was entered through. This enhancement of

backscattering reduces the conductance by

δG = G −Gcl = (
NLNR

NL +NR + 1
−

NLNR

NL +NR

)
e2
h
≈ −

NLNR

(NL +NR)
2

e2
h
+ O( e2

hGcl
) . (1.8)

The last expression exemplifies the expansion of the quantum corrections in terms of the

dimensionless classical conductance Gcl/(e2/h). In our treatment of networks we will be

able to treat all corrections of order one.

The magnetic field dependence [11, 12], as well as the effect of nonideal contacts [13],

can be included in this description. For the temperature dependence, however, no good

agreement between theory and experiment has been found to date. Most unfortunate

for a description is that the universal part of the interaction, the uniform charging en-

ergy, does not cause dephasing as it always affects both amplitudes in the same way. The

non-zero eigenvalues of the diffusion equation are not known and the spatially non-

homogenous part of the electromagnetic mode structure which does give rise to dephas-

ing depends both on these as well as on other non-universal details unaccessible in ex-

periment. Assuming a reasonable mode structure theory thus far predicts an intrinsic

dephasing rate proportional to T2 [14, 15], yet experiments tend to not support a pure T2

law but find regimes intermediate between linear and quadratic dependence on T [16, 17].

In Chapter 2 we investigate quantum dot networks and show that such limitations—
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parameters necessary for predictions yet unaccessable to experiments—are absent in this

case: The relevant nonhomogenous interaction constants are the capacitances and cross-

capacitances among the dots, and the relevant transport parameters are the contact con-

ductances between the individual dots. Both can be measured in gate-defined quantum

dots in two dimensional electron gases.

We obtain all quantum corrections to the conductance for such a network of quantum

dots. We find that the weak localization correction is reduced as expected in the presence

of a magnetic field, and that non-zero temperature dephases part of the weak localization

as T−1. In addition we obtain the analogue of the Altshuler-Aronov interaction correc-

tions in such a network.

Our calculation is based on Random Matrix Theory. The following Sec. 1.3.1 gives

some background on the description of quantum dots using randommatrices and eluci-

dates the analogy to ordinary perturbation theory.

1.3.1 Universal RandomMatrix model

Microscopic properties such as the position of each impurity or the precise shape of a

quantum dot are not accessible to experiment. To fully model such a system from first

principles is thus not only out of the question because of its astounding complexity but

also due to our ignorance of the parameters of the model. In higher dimensions effec-

tive quantities govern particle propagation and in turn quantum corrections as well as

interaction corrections. We do not encounter quite the same advantageous situation in

quantum dots.

While it is possible to obtain the relevant information–contact conductances–with

which to predict the quantum corrections to the conductance in the zero temperature
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noninteracting limit, the dominant universal interaction among the electrons does not

give rise to decoherence. Hence the temperature dependence of the quantum corrections

cannot be predicted accurately. Considering a network of quantum dots, instead of an

individual dot, we regain this ability as the universal interaction modes are no longer

uniform across the sample and can thus give rise to dephasing.

At low energies є < ETh, it is known that the statistics of energy levels of quantum dots

is identical to that of ensembles of large random matrices. Using supersymmetric tech-

niques, Efetov [18] has shown this for the case of disordered metal grains. More recently,

this identity has also been shown to apply to quantum dots in which the classical motion

is ballistically chaotic [19, 20]. Given this equivalence we obtain the average conductance

of the quantum dot system considered here using RandomMatrix theory.

This allows us to make use of diagrammatic rules developed to calculate ensemble

averages. For convenience we choose gaussian ensembles. These can be motivated by the

fact that a matrix element in a disordered sample will involve many contributions, hence

the central-limit theorem can be thought to apply. The ensembles are named after their

invariance properties. They follow from the physical symmetries imposed on the matrix

H, which is the analogue of the Hamiltonian matrix for a quantum mechanical system.5

1. If the system is believed to obey time reversal symmetry as well as spin rotation

symmetry, its Hamiltonian matrix should be real and symmetric: H = H∗ = HT.

2. If the system is believed to obey no symmetries, all we ask is that the Hamiltonian

matrix be hermitian: H = H†.

5For simplicity of presentation we do not include the spin degree of freedom in the following argument.

It turns out that the presence of time reversal symmetry with spin rotation symmetry broken gives rise to

a new universality class. This class is relevant in the presence of spin-orbit scattering in the absence of

magnetic fields. This situation is not considered here. For more on this case and random matrices in

quantum transport in general see the review [49].
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For the real symmetric matrices the group that leaves the symmetries of the matrices

intact is the one of orthogonal matrices O which satisfy OTO = 11. For the hermitian

matrices it is the group of unitary matrices U which satisfy U†U = 11. The distribution of

the matrix elements of H takes the same gaussian form in both cases,

P(H) =
1

V
exp(−

βN

4λ2
trH2) , (1.9)

where V is a normalization constant, M is the dimension of the matrix and λ determines

thewidth of the distribution. The corresponding ensembles are referred to as the gaussian

orthogonal ensemble (GOE) and the gaussian unitary ensemble (GUE), respectively. The

parameter β = 1 for the gaussian orthogonal ensemble whereas β = 2 for the gaussian

unitary one. The resulting spectrum in the limit M →∞ is the famousWigner semicircle

[21, 22]

ν(ε) =
M

πλ

√

1 −
ε

2λ
= ν0

√

1 −
πε

2Mν0
(1.10)

Identifying ν0 =M/λπ with the density of states at the Fermi energy in the quantum dot

fixes the remaining free parameter λ. The limit M →∞ is the limit in which the random

matrix spectrum is universal, it is the limit considered here.

Being equipped with a Hamiltonian matrix H the “wavefunctions” of the system are

vectors ψ of the same dimension. So far we have treated a closed dot. Coupling among

different dots, as well as to leads, is included by an approach reminiscent of tight bind-

ing Hamiltonians via a transmission matrix ti j between dots i and j. The trace trti jt†i j

determines a contact’s conductance gij, tr(ti jt†i j)2 its form factor fij. Similar matrices are

introduced to model coupling to the leads. The leads are assumed to be well coupled to

reservoirs such that backscattering is of no concern.

At last we need to consider the Coulomb interactions we intend to include within our

model. Given the distribution of Hamiltonian matrices, a corresponding distribution of

eigenvectors can be found. With this distribution a hierarchy of the matrix elements
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arising from the Coulomb interaction is established [9]. Yet it turns out that the bare

Coulomb interaction gives rise to divergentmatrix elements and can thus never be treated

perturbatively; it needs to be screened [23]. The solution of the resulting exercise for the

single quantum dot shows that the largest matrix element couples uniformly all charges

in a quantum dot [9]. It is

Hint =
e2
2C

n̂2 (1.11)

where C is the geometric capacitance of the dot and n̂ = ∑M
α=1 ψ̂

†
αψ̂α is the number operator

on the dot. In the case of a single dot the resulting Hamiltonian, which also includes an

exchange coupling and a Cooper channel, is known as the “universal interaction Hamil-

tonian” [9].6 Corrections to this interaction Hamiltonian in turn are expected to be small

in the dimensionless conductance as 1/g [9].

Using a renormalization group procedure it has also been shown [24] that the addi-

tion of a crosscapacitance to the model is the correct limit, in a renormalization group

sense, for the particular case of a double quantum dot. Building on these results we pos-

tulate that the most relevant interaction Hamiltonian in a network is also the one that

includes capacitive couplings of the total charges on the dots

Hint =
ND

∑
i=1, j

e2
2
n̂iC̃

−1
i j n̂ j, (1.12)

where n̂i = ∑
M i
α=1 ψ̂

†
i ,αψ̂iα is the number operator on dot i with Mi the dimension of Hi ,

ND is the number of dots in the network and C̃ is the capacitance matrix.

Equippedwith a randomHamiltonian for the dot, couplings among the different dots,

and the interaction matrix elements, the next step is the diagrammatic calculation of the

6In this work we do not consider the effect of either the exchange coupling or the Cooper channel.

Formally this is justified in the limit where the mean level spacing ∆ is smaller than the energy scale related

to the dwell time τd, the expectation value of the time until a particle escapes from the dot. The charging

energy Ec on the other hand is expected to exceed this scale. Relating this to the phase accrued by a particle

while on the dot, we see that this implies Ecτd ≫ ħ≫ ∆τd. As the dwell time is related to the dimensionless

conductance of the contacts gc as τd = ħgc/∆ we see that this requirement can be satisfied in a small dot

well coupled to leads.
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ensemble average. Techniques for this purpose have been developed, and we have ex-

tended them here to treat the case of multiple dots. This case presents some challenges

not present in the single dot case. Whereas it is possible to avoid contributions from ver-

tex corrections in single dots by choosing a convenient basis, no such procedure exists for

multiple dots. This also complicates the calculation of another ingredient of the theory,

the Hikami box, which is essential for the inclusion of self-returning paths contributing

to weak localization. Yet these challenges can be overcome; Section 2.4.2 of Chapter 2

proceeds with the calculation, and the appendix to the same Chapter contains exemplar-

ily the calculation of one contribution to the Hikami box.

1.3.2 Connection to perturbation theory

Concluding the introduction to quantum effects in conductance measurements, we es-

tablish the connection to diagrammatic perturbation theory with which the reader may

be familiar. In the diagrammatic perturbation theory of the disordered electron gas

the expansion parameter is 1/kFL, kF the Fermi wavenumber and L a linear size of the

system[25]. For the RandomMatrix expansion the large parameter is M [9, 22].

White noise disorder ⟨V(r)V(r′)⟩ = V2
0δ(r − r′) is the source of scattering among

different planewave states in the electron gas; thematrix elements of H are the “scatterers”

in the RandomMatrix calculation.

⟨HαβH
∗

δγ⟩ =
λ

M
δαδδβγ +

λ′

M
δαγδβδ , (1.13)

where λ is related to the density of states as mentioned above and λ′ = λ nonzero in the

orthogonal ensemble only. The crossover due to a weak magnetic field is implemented

choosing λ′ ∈ (0, λ); details are given in Chapter 2 and in Ref. [9]. Given the potential

difference in the two correlators, in the RMT calculation it is necessary to keep track of
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the order of the indices.

Due to this structural symmetry, the disorder average involves the same ingredients

in both cases. One establishes Dyson equations to obtain self energies and the disorder-

averaged Green’s function. Diffuson ladders describe diffusion across the system [Fig.

1.6(a) and (c)], and the cooperon contribution is the source of the weak localization cor-

rection [Fig. 1.6(b) and (d)].

One realizes that the Cooperon contribution vanishes in the unitary ensemble, e.g.,

when a magnetic field is present, and only contributes in the orthogonal case when time

reversal symmetry is not broken. The dependence of weak localization on magnetic field

is thus incorporated in the rules for diagrammatic averaging in the randommatrixmodel.

In the case of diagrammatic perturbation theory, it arises from the dependence of the free

propagator on the vector potential.

To obtain the influence of interactions and thus of temperature on the weak localiza-

tion correction we perform another diagrammatic expansion, this time in the coupling

of electrons to the electromagnetic field, which is appropriate at low temperature when

the rate of photon emission or absorption is low. The diagrams contributing in this case

are given in Fig. 1.7 as reference.

One important feature of the calculation is that the correction from photons of fre-

quency ω is proportional to coth(ω/2T) + tanh[(ε − ω)/2T], where ε is the energy of

the electron involved, measured from the Fermi energy. This second term incorporates

the Pauli principle, i.e. it adjusts for the fact that an electron can only emit a photon of

frequency ω if the new state that it would transition to is empty. The corresponding cal-

culation is given in Chapter 2. This “Pauli blocking” ensures that at T = 0 no dephasing

occurs from interactions. At high temperatures this constraint becomes unimportant.
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Figure 1.6: Diffuson contribution (a) and Cooperon contribution (b) to the diagram-

matic averages for the case of disordered metals. Diffuson (c) and Cooperon (d) as en-

countered for quantum dots modelled with the gaussian ensembles of Random Matrix

Theory.

a)

c)

b)

d)

GR
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GA Im[LR]

Im[LR]

Im[LR]

Figure 1.7: Diagrams contributing up to first order in the electron-photon coupling. (a)

Zeroth order classical result, (b) - (d) first order correction. LR is the photon’s retarded

interaction propagator, GR (GA) is the retarded (advanced) Green’s function of the elec-

tron.
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Higher order interaction corrections are thus more easily obtained, and with the help of

the fluctuation-dissipation theorem one finds that the interaction is effectively instanta-

neous. The higher temperature regime can then be solved using a Dyson equation. In

Chapter 2 we show that the regimes of applicability overlap broadly, enabling us to find

the leading quantum corrections for all temperatures.

1.4 Andreev reflection in superconductor–half-metal hybrid systems

Superconductivitywas first discovered almost a hundred years ago byKamerlingh-Onnes

in Leiden [26]. The possibility to liquefy helium had made it possible to cool materials

to very low temperatures. A simple resistance measurement of mercury revealed an as-

tounding change in its properties below 4.19K; its resistance had dropped to zero. Unbe-

knownst to the experimenter something dramatic had happened, a new coherent quan-

tum state had been created. The mercury had turned superconducting.

1.4.1 Order parameter

For decades no theorywas able to give a comprehensive description. EventuallyGinzburg

and Landau [27] posited a complex order parameter and built on the Landau theory of

phase transitions to describe this superconducting transition. A microscopic theory was

presented somewhat later by Bardeen, Cooper and Schrieffer [28]. BCS theory, as it is

now called, gives an explicit form for a grandcanonical ground state of the new system,

which at low temperatures is energetically favored over the Fermi liquid due to attractive

interactions, even if those interactions are very weak. This ground state is a coherent state

of paired electrons, of Cooper pairs. These two pictures are complementary: both intro-
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Figure 1.8: The cooperon propagator in the context of superconductivity. Here the blue

lines connecting retarded and advanced Green functions are those of the phonon medi-

ated attractive interaction.

duce and utilize a new coherent complex order parameter proportional to the pairing

amplitude.

Only a fewmonth before positing the new BCS ground state, Cooper had shown that

a Fermi liquid develops an instability towards pairing in the presence of weak attractive

interactions [29]. Pairs are formed between quasiparticles of the Landau Fermi liquid,

related to one another by time reversal symmetry. Once BCS theory was known, it was

extended to disordered but time reversal invariant systems by Anderson [30]. Evaluating

the pair propagator it was found that arbitrarily weak attractive interactions cause an

instability in the Fermi liquid at low temperatures, signalled by a zero energy divergence

of the cooperon pair propagator

⟨ψ†
p↑ψ

†
−p↓ψ−k↓ψk↑⟩. (1.14)

The dominant (diverging) contribution to this average arises from the diagram of Fig. 1.8

(see e.g. [31]).

The cooperon propagator is identical to the one we encountered before in Fig. 1.4

where it gave rise to weak localization. The difference is in the scattering mechanism. In

the case of superconductivity, two electrons scatter off each other via a phonon mediated

interaction. In the case of the conductance calculation electrons scatter off the same static

impurity. The coherence relies on time reversal symmetry here as it does there. It is

then no surprise that superconductivity and magnetism are antagonistic phenomena. A

magnetic flux will lead to dephasing of the cooperon propagator here as it does in the
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case of the conductance calculation (see Sec. 1.2). But superconductivity is more robust:

Due to the attractive interaction, energy is gained by forming pairs, whereas no such gain

is present in the conductance problem.

For weak enough fields then, superconductivity may prevail and expel magnetic

fluxes so as to be able to form Cooper pairs and let them condense. This is the essence

of the Meissner-Ochsenfeld effect, and it makes simultaneous existence of magnetic and

superconducting order difficult to achieve in the same region of space. Here we consider

instead a magnetic material brought in contact with a superconductor. In this case the

regions of different order do not compete to the same extent as they remain spatially sep-

arated. We are interested in effects originating at the interface between the two regions.

Despite the fact that Cooper pairs can be said to have a finite extension it has been very

fruitful to consider a local pairing amplitude ⟨ψ↑(r)ψ↓(r)⟩. In a mean field theory, one

then finds not only a self-consistent groundstate but is also able to determine fermionic

excitations above it. These equations were originally formulated by Bogol’ubov and pop-

ularized by de Gennes [32]. Widely known as the Bogoliubov-de Gennes equations, they

are the frameworkwithinwhichChapters 3, 4 and 5 explore superconductivity. The equa-

tions read

⎛
⎜
⎜
⎝

H ∆

∆∗ −H∗

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

u

v

⎞
⎟
⎟
⎠

= ε

⎛
⎜
⎜
⎝

u

v

⎞
⎟
⎟
⎠

(1.15)

where H is the single particle Hamiltonian and u and v can be understood as the electron

and hole components of an excitation’s wavefunction. One finds that in standard BCS

theory the order parameter ∆ is related to these components as

∆(r) = λC⟨ψ↑(r)ψ↓(r)⟩

= λC∑
ε>0

v∗(r)u(r) [1 − 2 f (ε)] , (1.16)

where we sum over all solutions of positive energy and f (ε) is the Fermi Dirac distribu-
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tion function. λC is the strength of the attractive phonon mediated interaction. Solving

these equations self-consistently reveals a gap in the quasiparticle excitation spectrum of

the superconductor [32]. No quasiparticle excitations exist unless their energy exceeds

∆.

1.4.2 Andreev reflection

Normal metals

Having discovered a gap for quasiparticle excitations it is natural to ask what fate is be-

stowed upon quasiparticles incident on the superconductor from a normal metal. They

do not have enough energy to enter the superconductor above the gap, yet at a clean and

smooth interface there is also no potential strong enough to allow for backscattering. Yet

there is another scattering process that requires very little momentum change and con-

serves energy. In this process an incident electron is scattered back as a hole. This hole

carries almost the same momentum and has the same energy. As it has opposite group

velocity it precisely traces out the path of the incoming particle. Andreev [33] first inves-

tigated this process and it is now named after him. In a modern way we may write the

reflection matrix for this process as

RA(ε) = α(ε)

⎛
⎜
⎜
⎝

0 e iϕ

e−iϕ 0

⎞
⎟
⎟
⎠

(1.17)

where the matrix structure is that of electron and hole components as in Eq. (1.15) above.

α(ε) = exp[−i arccos ε/∣∆∣] is a phase shift depending on the energy of the incoming

quasiparticle and ϕ is the phase of the superconducting order parameter ∆.

Along the same path, electrons and holes close to the Fermi energy incur phases that

are almost identical but of opposite signs. The Andreev reflection mechanism therefore
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implies the possibility of extending superconducting correlations into a normal metal,

i.e., into a material where there is no attractive interaction that would lead to the forma-

tion of Cooper pairs on its own. From the discussion in Sec. 1.1 one realizes that this effect

relies on coherence as the phases accumulated along the two paths need to cancel. With

the dispersion relation in the vicinity of the Fermi wavenumber kF

ke(ε) = kh(−ε) ≈ kF +
ε

ħvF
, (1.18)

where vF is the Fermi velocity, we find that the length over which the effect will penetrate

the normal metal is limited by the excitation energy ε, as pointed out in 1.2. The scale up

to which correlations penetrate the normal metal is given by ħvF/∣∆∣.

Kulik [34] realized that via such correlations the phases of two superconductors ad-

jacent to normal metal could be coupled through this normal metal. The most striking

consequence of this is a Josephson current flowing in equilibrium between the two su-

perconductors as soon as the phases of their order parameters differ.

Ferromagnets

In light of the mutually exclusive nature of superconductivity and magnetism it was long

thought that pairing correlations originating in ordinary s-wave superconductors would

not be able to penetrate a ferromagnet. There due to the exchange field two quasiparticles

of opposite spin have different dispersion relations, resulting in a short ranged correlator

as discussed earlier in Sec. 1.2.

Bergeret, Volkov and Efetov [1] realized that an inhomogeneity in spin space could

provide an effective twist to get around this limitation, transforming correlations of sin-

glet symmetry to ones of triplet type: The pair correlator can be presented as the sum of
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a singlet and three triplet components.

⟨ψσψσ′⟩ = (∆s + ∆t ⋅ σ)iσ2 (1.19)

While the singlet component ∆s, involving spins of both directions, will clearly be af-

fected by the exchange field, parts of the triplet component ∆t will not be as it involves

electrons with spins aligned as well. Thus “long range triplet component” superconduct-

ing correlations are induced, which decay on the same long length scale as expected for

ordinary singlet correlations in normal metal links.

Treatments of the ferromagnetic problem first considered were restricted to weak ex-

change fields, see e.g. the review [35]. They relied on the quasiclassical method and as-

sumed that the only effect of the exchange field was to change the phase accumulated by

carriers of different spin. Results obtained for weak ferromagnets were thus not general-

izable to half-metals.

Half metals

In this thesis we focus on the half-metallic case. Motivated by the observation of a Joseph-

son current through the half-metal CrO2 byKeizer et al. [2] we reexamine possiblemech-

anisms of enabling triplet Andreev reflection into half-metals. Previous work has been

numerical [36] or based on a phenomenological model of the interface using a scattering

matrix combined with quasiclassical Green functions [37–39].

In half-metallic materials only spins of one orientation propagate. The only possible

correlator is thus one that involves annihilation of equal spin excitations

⟨ψ↑(r, t)ψ↑(r, t′)⟩ (1.20)

which are bound by the Pauli principle to vanish at equal time. Considered inMatsubara

space one finds the requirement that an equal position correlator be odd in frequency.
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This is a surprise, as the normal BCS superconducting correlations are even in frequency.

Yet the frequency dependence of the correlator in the half-metal will not only depend

on the original symmetry in the superconductor, but also on phases accumulated from

propagation in the half-metal. This opens the possibility to find a symmetry different

from inside the superconductor in the half-metal.

It has been realized that as in the ferromagnetic case one crucial ingredient to obtain

Andreev reflection amplitudes at superconductor–half-metal interfaces is the complete

breaking of spin rotational symmetry [37]. The normal state scattering matrix of the

interface region may not be diagonal in spin-space.

In Chapter 3 we further investigate the possibility of Andreev reflection into a half-

metal using a scattering approach. This approach allows for a quantum-coherent treat-

ment of the system considered. Being thus able to treat the single channel quantum limit,

we find that at the Fermi energy Andreev reflection into half-metals is suppressed due to

symmetry reasons. If the scattering matrix is block-diagonal with each block containing

only one electron and one hole mode, then particle-hole symmetry together with unitar-

ity leads to the condition that the product of the Andreev reflection amplitude rhe and

the normal reflection amplitude ree is zero,

rhe(0)ree(0) = 0. (1.21)

There can thus only either be perfect Andreev reflection or perfect normal reflection.

We confirm that perfect normal reflection is the generic case. That Andreev reflection

is suppressed has consequences. We find that the subgap conductance of a half-metal–

superconductor junction depends quadratically on the bias voltage, vanishing at zero

bias. In addition the Josephson current is suppressed by a factor (ETh/∆)
2 in long junc-

tions where the Thouless energy ETh = ħvF/L is smaller than the gap ∆.

The above argument relies on unitarity. Béri showed that in the presence of dephas-
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ing, Andreev reflection may occur at the Fermi energy in a single mode setup [40]. In

systems where the scattering matrix takes a block-diagonal form due to additional sym-

metries, such as at a translationally invariant an inversion symmetric interface, finite An-

dreev reflection at the Fermi energy can also be obtained by breaking these accidental

symmetries. This alternative route to triplet Andreev reflection at the Fermi energy is

investigated in Chapter 4. Here a domain wall perpendicular to the interface breaks in-

version symmetry. In Chapter 4 we consider the extreme case of a half-metal in which

minority carriers are not even evanescently present. We find that such a domain wall

can indeed cause triplet Andreev reflection. We also identify the crucial role of geometry

for the triplet Andreev reflection into half-metals. The experiments by Keizer et al. [2]

were done in a lateral geometry with superconducting contacts deposited on top of the

half-metallic layer which in turn was evaporated onto an oxide wafer. Yet theorists so

far had modelled the contact to the half-metal as a serial geometry, where the two ma-

terials are butted against each other, since this was easier to model and did not matter

for normal-metal–superconductor hybrid systems. It turns out, however, that the lateral

geometry may give rise to multiple reflections at the superconductor interface, resulting

in an enhancement of the single Andreev reflection amplitude. It is also intuitive that it

has implications for the generic dimension of the blocks of the reflectionmatrix and thus

for the presence or absence of Andreev reflection due to symmetry constraints. In this

regard the “serial” geometry is more restrictive. Chapter 5 further investigates domain

walls as a source of Andreev reflection. Using a perturbative approach complementary

to the one in Chapter 4, we consider arbitrary orientations and allow for the evanescent

presence of minority carriers in the half-metal.
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CHAPTER 2

TEMPERATURE ANDMAGNETIC-FIELD DEPENDENCE OF THE QUANTUM

CORRECTIONS TO THE CONDUCTANCE OF A NETWORKOF QUANTUM

DOTS

2.1 Introduction

The low temperature conductivity of disordered metals or semiconductors is dominated

by the elastic scattering of electrons off impurities and defects. While the conductiv-

ity is determined by Drude-Boltzmann theory for not too low temperatures, quantum

corrections to the conductivity become important at temperatures low enough that the

electronic phase remains well defined over distances large in comparison to the elastic

mean free path [1–3]. One usually distinguishes two quantum corrections, the weak lo-

calization correction and the interaction correction [4–6]. The former is caused by the

constructive interference of electrons traveling along time-reversed paths, whereas the

interaction correction can be understood in terms of resonant scattering off Friedel os-

cillations near impurities [7, 8].

Although they are small in comparison to the Drude conductivity, the quantum cor-

rections are important because they strongly depend on temperature and an appliedmag-

netic field, whereas the Drude conductivity does not (as long as impurity scattering is the

dominant source of scattering). Theoretically, the temperature and magnetic-field de-

pendences of the corrections can be expressed in terms of the sample’s diffusion constant

(or, equivalently, the elastic mean free path), which can be obtained independently from

ameasurement of the Drude conductivity. The availability of quantitative predictions has

made a detailed comparison between theory and experiment possible [9, 10].1

1Apparent contradictions between theory and experiment [11, 12] have lead to improved understanding
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The same quantum corrections also exist for a ‘quantum dot’, a conductor coupled

to electron reservoirs via artificial constrictions (e.g., tunnel barriers or point contacts),

such that the conductance of the device is dominated by the contacts and not by scat-

tering off impurities or defects inside the sample. The latter condition is satisfied if the

product EThν of the dot’s ‘Thouless energy’ and its density of states ismuch larger than the

dimensionless conductance of the contacts connecting the dot to source and drain reser-

voirs. (The Thouless energy is the inverse of the time needed for ergodic exploration of

the quantum dot.)

In this paper we consider ‘open’ quantum dots, which have contact conductances

larger than the conductance quantum e2/h. Because transport through a quantum dot is

dominated by the contacts, it is described by the sample’s conductance, not its conduc-

tivity. The quantum corrections then pertain to the conductance after averaging over an

ensemble of quantum dots that differ, e.g., in their shape or precise impurity configura-

tion.

While the magnetic-field dependence of quantum corrections to the ensemble aver-

aged conductance is in apparent agreement with the theory [15], the situation regarding

the temperature dependence is more complicated and no good agreement has been re-

ported to date. Theoretically, the temperature dependence of the weak localization cor-

rection to the conductance of a quantum dot is described by means of a ‘dephasing rate’

γϕ. For a quantum dot, one expects

γϕ = cT2/E2
Thν, (2.1)

where T is the temperature and c is a numerical constant that depends on the dot’s size

and shape [16, 17].2 The proportionality constant c can not be measured independently,

of the role of magnetic impurities and of the sample purity required to observe the intrinsic temperature

dependence caused by electron-electron interactions alone, see Refs. [10, 13, 14] and references therein.

2Equation (2.1) was originally proposed as the dephasing rate in closed quantum dots, see Ref. [16]. It
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1

3

2

Figure 2.1: An example of a quantum dot network with ND = 3 quantum dots. The

conductance of the network is dominated by the conductances of the contacts between

the dots. We assume that all dots in the network are ‘open’, i.e., all contact conductances
are much larger than the conductance quantum e2/h.

however, which is an important difference with the case of a diffusive conductor. The

absence of a separate method to determine this constant poses a significant difficulty

when comparing theory and experiment. A second difficulty is the lack of a direct theory

of the temperature dependence of weak localization. Instead, the available theoretical

descriptions employ a phenomenological description [18–23] and match the dephasing

rate to Eq. (2.1), from which the temperature dependence of weak localization can be

obtained.

In this paper, we study the quantum corrections to the conductance in a network

of quantum dots or “quantum circuit” [24]. (See Fig. 2.1 for an example of a quantum

dot network with ND = 3 dots.) Replacing a single quantum dot by a network solves

both difficulties mentioned above: A quantum dot network allows a calculation of the

complete temperature dependence of the quantum corrections to the conductance with-

out the need of an intermediate step involving a phenomenological dephasing rate and

without parameters that can not be measured independently. The relevant parameters

has later been corrected to include effects following from the discrete spectrum. For open quantum dots

the spectrum is continuous and the original estimate is expected to be applicable.
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in a quantum dot network are the conductances and form factors of the contacts in the

network and the capacitances of the quantum dots.3

Our main result is an expression for the ensemble average of the dimensionless con-

ductance

G =
dse2
h

g , (2.2)

where ds = 1 or 2 in the absence or presence of spin degeneracy, respectively. The re-

sult becomes exact in the limit that the contact conductances are much larger than the

conductance quantum e2/h,

⟨g⟩ = gcl + δgWL + δg int,1 + δg int,2. (2.3)

Here gcl is the ‘classical’ conductance one obtains from Drude-Boltzmann theory, while

δgWL, δg int,1, and δg int,2 are three quantum corrections to gcl. Explicit expressions for

gcl and the three quantum corrections in terms of the contact conductances and the ca-

pacitances of the quantum dots in the network, as well as the precise conditions for the

validity of Eq. (2.3) will be given in Sec. 2.2 below. The correction δgWL is the weak lo-

calization correction. It is the only quantum correction that is affected by the application

of a magnetic field. The remaining two corrections arise from electron-electron inter-

actions. The first interaction correction δg int,1 represents a non-local correction to the

conductance that exists for networks of two or more quantum dots only [26–28]. It is the

counterpart of the Altshuler-Aronov correction in the theory of disordered conductors.

The second correction, δg int,2, describes the renormalization of the contact conductances

by the interactions. It is usually referred to as (dynamical) Coulomb blockade, an effect

that is well-known from the theory of transport through tunnel junctions in series with

3For quantum dots in semiconductor heterostructures that are defined by metal gates, the contact con-

ductances are set independently by gate voltages. Each contact conductance can be measured by choosing

gate voltages such that all other contacts are open, whereas the capacitances can be measured by closing off

all contacts so that the device is in the Coulomb blockade regime ( see e.g., Ref. [25], where this procedure
is used for a double quantum dot).
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a high impedance or quantum dots with tunneling contacts [29–41]. Its counterpart in

the theory of disordered conductors is the Altshuler-Aronov correction to the tunneling

density of states [42].

The fact that the temperature dependence of quantum corrections in a quantum dot

network does not depend on details of individual dots has its origin in the different form

of the relevant electron-electron interaction modes in a quantum dot network and in a

single dot. In a single quantum dot, the dominant contribution to the electron-electron

interaction is the uniform mode, the strength of which is set by the dot’s capacitance.

Apart from a possible renormalization of the contact conductances, δg int,2, the uniform

mode has no effect on the quantum correction to the dot’s conductance [38, 40, 41, 43]. In

particular, the weak localization correction δgWL is unaffected by the interaction and the

non-local interaction correction δg int,1 vanishes. Instead, electron-electron interactions

determine δgWL and δg int,1 in a single quantum dot through sub-dominant non-uniform

interactionmodes, which are known to depend on the precise sample details [16, 44]. For

a quantumdot network, on the other hand, there exist interactionmodes that are uniform

inside each dot but not across the full network. With such interaction modes, all three

interaction corrections δgWL, δg int,1, and δg int,2 are generically nonzero and temperature

dependent. Moreover, because these modes are uniform inside each quantum dot, their

properties depend on the contacts between the dots and on the dot capacitances only,

not on the precise geometry of each dot separately. It is this essential feature that makes

a quantum dot network an ideal paradigm for studying the effect of electron-electron

interactions on quantum transport in finite-size systems.

Separate aspects of the problem we address here have been considered before. Weak

localization in single quantum dots without interactions has been studied by various au-

thors [45–54], as well as the effect of the uniform interaction mode on the conductances
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of the contacts connecting the dot to the electron reservoirs [29–41]. (See Ref. [43] for

a discussion of a comparable effect involving spin-dependent interactions in the quan-

tum dot.) Also, while it is known that the uniform interaction mode has no effect on

weak localization because a spatially uniform fluctuating potential affects phases of time-

reversed trajectories in the sameway [40, 41], the uniform interactionmode can suppress

interference contributions to other observables if the quantum dot is part of an interfer-

ometer [55, 56].4

Weak localization in networks of quantumdots, but without interactions, was consid-

ered by Argaman for dots connected by ideal contacts [48, 49], and by Campagnano and

Nazarov for dots connected by arbitrary contacts [57]. Golubev and Zaikin calculated the

interaction corrections δg int,1 and δg int,2 for a linear array of quantum dots [27]. as well as

the weak localization correction for non-interacting electrons (but with a phenomeno-

logical dephasing rate) [58]. In a recent publication, the same authors also considered the

full temperature dependence of weak localization in the special case of a double quan-

tum dot (a network with ND = 2 quantum dots) with tunneling contacts [59], and re-

ported that electron-electron interactions suppress weak localization even at zero tem-

perature, a conclusion that contradicts the common wisdom that there is no dephasing

from electron-electron interactions at zero temperature [1, 3].

Weak localization and interaction corrections have also been considered for networks

of diffusive metallic wires [60, 61]. Large arrays of quantum dots connected by tunneling

contacts further appear in the study of granular metals [62]. Beloborodov and cowork-

ers considered the interaction corrections δg int,1 and δg int,2 for a granular metal [26, 63–

66], but accounted for weak localization and its temperature dependence only via a phe-

nomenological dephasing rate and a renormalized diffusion constant. A microscopic

4Y. Takane, J. Phys. Soc. Jpn. 67, 3003 (1998), claims that the uniformmode can suppress weak localiza-

tion, but his calculation failed to take into account that both trajectories involved in the weak localization

correction experience the same phase shift from the uniform interaction mode.
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theory of the temperature dependence of weak localization in granular metals was given

by Blanter et al. in the high temperature limit [67]. Our present analysis (as well as that

of Ref. [27]) is for contacts of arbitrary transparency and contains contributions to weak

localization and to the interaction correction to the conductance that are absent in a net-

workwhere all contacts are tunneling contacts. Our results agreewith the literaturewher-

ever applicable, except for the zero-temperature limit of the weak localization correction

δgWL, where we find that weak localization is unaffected by electron-electron interac-

tions, in contrast to Ref. [59].

The remainder of our paper is organized as follows. In Sec. 2.2 we introduce the

relevant parameters needed to describe the quantum dot network, formulate our main

assumptions, and present our main result, an expression for the ensemble-averaged con-

ductance and its quantum corrections. In Sec. 2.3 we motivate our result for the temper-

ature dependence of the weak localization correction using semiclassical arguments. In

Sec. 2.4 we then turn to a fully quantum mechanical calculation of the conductance and

its quantum corrections using random matrix theory. We specialize to the simplest net-

work, a double quantum dot, in Sec. 2.5 and discuss the origin of the difference between

our result and Ref. [59] for the zero-temperature limit of weak localization. We conclude

in Sec. 2.6.

2.2 Definition of the problem and main results

2.2.1 Network of quantum dots

We consider a network of ND quantum dots, coupled to two electron reservoirs. A

schematic drawing of a network is shown in Fig. 2.1. In this section we introduce the

44



relevant parameters to describe the quantum dot network and summarize our main re-

sults.

The quantumdots are connected to each other and to source and drain electron reser-

voirs via point contacts. The dots will be labeled by an index i = 1, . . . ,ND; the reservoirs

are labeled by the index a = 1, 2. The contact between dots i and j is described by its

dimensionless conductance gi j (per spin direction) and its form factor fi j. Both gi j and

fi j are defined in terms of the transmission matrix ti j of the contact,

gi j = tr ti jt†i j, fi j = tr (ti jt†i j)2. (2.4)

Form factors are related to Fano factors β often encountered in the literature via βi j =

(gi j − fi j)/gi j. The dimensionless conductances and form factors are symmetric, gi j = g ji

and fi j = f ji , i , j = 1, . . . ,ND. Spin degeneracy will be explicitly taken into account via

the parameter ds = 1, 2.

Similarly, the contacts between the ith quantum dot and reservoir a, a = 1, 2, are

described by a dimensionless conductance g′ia = g′ai and a form factor f ′ia = f ′ai , which are

related to the transmission matrix t′ia of these contacts as

g′ia = tr t′iat′†ia , f ′ia = tr (t′iat′†ia)2. (2.5)

For ballistic contacts one has f = g; for tunneling contacts one has f ≪ g. Throughout

we assume that all conductances are large,

gi j, g′ia ,≫ 1, i , j = 1, . . . ,ND, a = 1, 2. (2.6)

(One may replace this condition by the less strict requirement that each quantum dot

be well connected to one of the two reservoirs, such that the regime of strong Coulomb

blockade is avoided.) For future use, we arrange the conductances and form factors in
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ND ×ND matrices g̃ and f̃ with elements

g̃i j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
2
a=1 g′a j +∑

ND

k≠i gik i = j,

−gi j i ≠ j,
(2.7)

f̃i j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
2
a=1 f ′a j +∑

ND

k≠i fik i = j,

− fi j i ≠ j.
(2.8)

The quantum dots are assumed to be disordered or ballistic-chaotic, with density of

states νi per spin degree of freedom and Thouless energy ETh,i , i = 1, . . . ,ND. The Thou-

less energy ETh,i = ħ/τerg,i , where τerg,i is the time for ergodic exploration of the ith quan-

tum dot. If the electron motion is diffusive inside each quantum dot with diffusion con-

stant D, ETh,i ∼ D/L
2
i where Li is the linear size of dot i. (Our definition, while common

in the literature, differs from some references where ETh,i is the inverse of the dot’s dwell

time.) We assume

ETh,iνi ≫ g̃ii , i = 1, . . . ,ND, (2.9)

so that random matrix theory can be used to describe the electronic states in the quan-

tum dot network. An external magnetic field is described by means of the dimensionless

numbers

gH,i = ETh,iνi
Φ2

i
Φ2

0

, i = 1, . . . ,ND, (2.10)

where Φi is the magnetic flux through the ith quantum dot and Φ0 = hc/e is the flux

quantum. In order to simplify the notation, we arrange the densities of states νi and the

parameters gH,i in diagonalND-dimensional matrices ν̃ and g̃H,

ν̃i j = νiδi j, (g̃H)i j = gH,iδi j, i , j = 1, . . . ,ND. (2.11)

Corrections to the conductance that depend on the magnetic field will only be relevant

where gH,i is of order g̃ii or less, otherwise they will be fully suppressed. In that parameter

range, the flux through the insulating regions between the quantum dots is much smaller

than Φ0, so that the corresponding Aharonov-Bohm phases can be neglected.
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The inequality (2.9) also implies that the electron-electron interaction in each dot is

well screened [44]. Hence, the electron-electron interaction couples to the total charge

qi = eni of each dot only. Such an interaction is described by means of capacitances Ci j

for the capacitive coupling between dots (if i ≠ j) and for each dot’s self-capacitance (if

i = j). Again, we arrange the capacitances into anND-dimensional matrix C̃,

C̃i j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
ND

k=1 Cik i = j,

−Ci j i ≠ j.
(2.12)

For metallic dots, one has the inequality

C̃ii/e2 ≪ νi , i = 1, . . . ,ND. (2.13)

2.2.2 Quantum corrections to the conductance

Ourmain result is a calculation of the ensemble-averaged conductance ⟨G⟩ = (dse2/h)⟨g⟩

of the quantum dot network as a function of temperature,

⟨g⟩ = gcl + δgWL + δg int,1 + δg int,2,

where gcl is the classical conductance of the network and δgWL, δg int,1, and δg int,2 are cor-

rections. The average conductance is calculated using the following limiting procedure

for the parameters of the network:

(1) We first take limit (2.9) needed for the applicability of randommatrix theory, while

keeping the ratios νi/ν j and T/νi , as well as the gH,i fixed, i , j = 1, . . . ,ND.

(2) We then take limit (2.6) of large contact conductances, while keeping the ratios

gi j/gik, gi j/gH,i , and gi j/g′ia fixed, i , j, k = 1, . . . ,ND, a = 1, 2.

(3) Finally, we simplify our results using the inequality (2.13), if possible.
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In all three limiting steps, the numberND of dots in the network is kept constant. Keeping

the ratio T/νi fixed in the first limiting step eliminates interaction corrections from non-

uniform interaction modes inside the quantum dots, see Eq. (2.1) above. In the second

limiting step, we do not make any assumptions about the temperature, thus allowing

for the full range of temperature-dependent effects that can be described within random

matrix theory. We note that, while the classical conductance gcl diverges in this limiting

procedure, this divergence does not affect the temperature or magnetic-field dependence

of ⟨g⟩ because gcl does not depend on temperature or magnetic field. Corrections not

included in Eq. (2.3) are either small in the limit (2.6) of large contact conductances or

small in the limit (2.9) used to justify the use of random matrix theory.

The leading term gcl in Eq. (2.3) reads

gcl =
ND

∑
i , j=1

g′1i(g̃−1)i jg′j2 = g′1⋅ g̃−1⋅⋅ g′⋅2, (2.14)

where, in the last expression of Eq. (2.14), we have written “⋅” to denote indices in adja-

cent factors that are summed over as in matrix multiplication [compare with the second

expression of Eq. (2.14)]. This shorthand notation will be employed throughout the text.

The correction δgWL is the weak localization correction to the ensemble-averaged

conductance. It can be distinguished from the remaining two corrections δg int,1 and

δg int,2 because δgWL depends on an applied magnetic field whereas δg int,1 and δg int,2 do

not. We find

δgWL = 2
ND

∑
i , j=1

c̃i j g′1⋅(g̃−1⋅i − g̃−1⋅ j )(g̃ − f̃ )i j g̃−1j⋅ g′⋅2 −
ND

∑
i , j=1

f̃i j c̃ j j g′1⋅ g̃−1⋅i g̃−1i⋅ g′⋅2

+
ND

∑
i=1

c̃ii (g′1⋅ g̃−1⋅⋅ f̃⋅i − f ′1i)g̃−1i⋅ g′⋅2 +
ND

∑
i=1

c̃ii g′1⋅ g̃−1⋅i ( f̃i⋅ g̃−1⋅⋅ g′⋅2 − f ′i2), (2.15)

where theND ×ND matrix c̃ is the counterpart of the “cooperon” in the theory of weak

localization in disordered conductors. For the quantum dot network, c̃ reads

c̃i j =
ND

∑
k=1

1

πħνk
(Γ + ΓH + Γϕ)

−1
ik, jk , (2.16)
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where Γ, ΓH, and Γϕ are rank-four tensors,

Γik, jl =
1

2πħνi
g̃ikδ jl +

1

2πħν j
δik g̃ jl

(ΓH)ik, jl =
1

2πħνi
g̃H,ikδ jl +

1

2πħν j
δik g̃H, jl ,

(Γϕ)ik, jl =
4πT

dsħ
(g̃−1ii + g̃−1j j − 2g̃−1i j )δikδ jl . (2.17)

The terms ΓH and Γϕ describe the suppression of weak localization by a magnetic field

and electron-electron interactions, respectively. In the limit of low temperatures Γϕ = 0

and Eq. (2.16) simplifies to

c̃i j = (g̃ + g̃H)−1i j . (2.18)

For high temperatures (Γϕ)ii , j j diverges [other elements are zero because of theKronecker

deltas in Eq. (2.17)], except for the diagonal elements with i = j. Hence, one finds

c̃i j ≡ c̃di j = (g̃d + g̃H)−1i j , (2.19)

where g̃di j is the diagonal part of the matrix g̃, g̃di j = g̃i jδi j. This is the contribution to the

weak localization correction that arises from self-returning electron trajectories that re-

side inside one quantum dot only and, hence, are unaffected by dephasing from electron-

electron interactions [67].

The first interaction correction δg int,1 is

δg int,1 =2π
ds ∫ dω ( ∂

∂ω
ω coth

ω

2T
)

ND

∑
α,β=1

ND

∑
k,l=1

Im [να(2πiω g̃−1αβ − ν̃−1αβ)νβ

× (g̃ − 2πiν̃ω)−1αk(g̃ − 2πiν̃ω)kl(g̃ − 2πiν̃ω)−1βl g1⋅(g̃−1⋅α − g̃−1⋅k )(g̃−1l ⋅ − g̃−1β⋅ )g′⋅2].

(2.20)

The second interaction correction δg int,2 represents the renormalization of the conduc-

tances between the quantum dots and between the dots and the reservoirs as a result of

the electron-electron interactions,

δg int,2 =
ND

∑
j=1

2

∑
a=1

∂gcl
∂g′a j

δg′a j +
ND

∑
j<k

∂gcl
∂g jk

δg jk . (2.21)
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The interaction corrections δg′ia and δgi j exist for nonideal contacts with fi j < gi j or

f ′ia < g′ia only, i , j = 1, . . . ,ND, a = 1, 2,

δg′a j = −(g′a j − f ′a j) ∫ dω
ω
(

∂
∂ω

ω coth
ω

2T
)Re δz̃ j j,

δg jk = −(g jk − f jk) ∫ dω
ω
(

∂
∂ω

ω coth
ω

2T
)Re (δz̃ j j + δz̃kk − 2δz̃ jk), (2.22)

where δz̃ is the difference of the network’s dimensionless impedance matrices with and

without interactions,

δz̃ = (ds g̃ − 2πiωC̃/e2)−1 − (ds g̃ − 2πiωdsν̃)−1. (2.23)

The interaction correction δg int,1 was obtained previously by Golubev and Zaikin for

a linear array of quantum dots [27], and by Beloborodov et al. in the context of a granular

metal [26]. It is the counterpart of the Altshuler-Aronov correction in disordered metals,

where it arises from the diffusive dynamics of the electrons. Although the electron dy-

namics is not diffusive in a quantum dot network, it is non-ergodic, which is sufficient for

this interaction correction to appear. (The exception is a quantum dot network consist-

ing of a single quantum dot only, for which the electron motion is ergodic. Indeed, one

verifies that δg int,1 = 0 ifND = 1, in agreement with Refs. [27, 38, 40, 41].) A semiclassical

calculation of δg int,1 for the special case of a double quantum dot with ballistic contacts

can be found in Ref. [28].

For the case of a single quantum dot, the renormalization of the contact conduc-

tances δg int,2 or “dynamical Coulomb blockade” was obtained previously in Refs. [35–41].

The renormalization of the contact conductances in the quantum dot network is essen-

tially the same as in the case of a single quantum dot or a single tunnel junction coupled

to a high-impedance electrical environment — in both cases the change of the contact

conductance is proportional to the factor (g − f )—, the only difference being that the

impedance z is replaced by the impedance matrix z̃ in the case of the quantum dot net-
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work [27]. The same conclusion was reached for the interaction correction in an array

of quantum dots with tunneling contacts in the context of transport through a granular

metal [26, 63–66].

Equations (2.3)–(2.23) provide a general solution for the ensemble-averaged conduc-

tance and its quantumcorrections in an arbitrary quantumdot network for arbitrary tem-

perature. These expressions can be simplified only by specializing to a particular quantum

dot network. In Sec. 2.5 we analyze these expressions for the case of a double quantum

dot, a network consisting of two quantum dots.

Although it is not possible to proceed quantitatively without specializing to a par-

ticular network, we can compare the sizes of these three quantum corrections and their

typical temperature dependences. For the limiting procedure taken here — see the dis-

cussion following Eq. (2.3) —, the relevant temperature scale for dephasing of the weak

localization correction is [67]

Tϕ = ħdsmax(g , gH)/τD, (2.24)

where

τD ∼ ħν/g (2.25)

is the typical dwell time for the network. (Here g and gH are shorthand notations for

typical values of gi j or gH,i in the network, respectively.) For the interaction corrections

δg int,1 and δg int,2, the relevant temperature scales are ħ/τD and the inverse charge relax-

ation time

ħ/τc ∼ e2g/C. (2.26)

(In amore precise analysis one needs to identifyND dwell times andND charge relaxation

times for a network consisting ofND quantum dots, see Sec. 2.5 for an explicit calculation

for ND = 2.) Since, typically, C/e2 ≪ ν, the charge relaxation time and the dwell time
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satisfy the inequality

τc ≪ τD. (2.27)

With these definitions, we find the order of magnitude of the weak localization cor-

rection δgWL to be

δgWL ∼ δgdWL +
δgodWL

max(1, T/Tϕ)
, (2.28)

where δgdWL and δgodWL are constants of order min(1, g/gH). Similarly, for interaction cor-

rections we find

δg int,1 ∼ min(1, ħ/TτD), (2.29)

δg int,2 ∼

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ln[max(τcT/ħ, τc/τD)] if T≪ ħ/τc,

ħ/Tτc if T≫ ħ/τc,
(2.30)

independent of the magnetic field. All three quantum corrections need to be taken into

account for a complete description of the temperature and magnetic-field dependence of

the conductance of a quantum dot network. In particular, in order to correctly describe

the temperature dependence of ⟨g⟩ for T ≲ ħ/τD, δg int,1 can not be neglected with respect

to δg int,2, in spite of the fact that δg int,2 is larger than δg int,1 by (at least) a large logarithmic

factor ln(τD/τc).

The temperature dependence of Eq. (2.28) implies a dephasing rate that is linear in

temperature. A linear temperature dependence of the dephasing rate was obtained pre-

viously by Blanter et al. in the context of a granular metal [67], and by Seelig and Büttiker

for a single quantum dot embedded in one arm of an interferometer [55]. In both cases,

the linear temperature dependence of the dephasing rate arose because the fluctuations

of the electric potential can be considered classical, similar to the situation encountered

in one-dimensional and two-dimensional disordered conductors [68]. As we will dis-

cuss in Secs. 2.3 and 2.4, the same mechanism is responsible for the linear temperature

dependence of the dephasing rate in the quantum dot network.
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ᾱ

α

Figure 2.2: Schematic drawing of a trajectory α and its time-reversed ᾱ that contribute

to the cooperon propagator c̃.

In Sec. 2.3 we describe a semiclassical derivation of the weak localization correction

and its temperature dependence, Eq. (2.15) above. A full quantummechanical calculation

of all three corrections to the conductance is given in Sec. 2.4. We apply the general results

presented here to the specific case of a double quantum dot in Sec. 2.5.

2.3 Weak localization: semiclassical considerations

In this section, we give a semiclassical argument for the temperature dependence of the

weak localization correction to the conductance of a quantum dot network. These argu-

ments provide a semiclassical interpretation of the fully quantummechanical calculations

of the next section.

Weak localization appears because of constructive interference of time-reversed tra-

jectories. This interference leads to a small increase of the probability Pret that an electron

returns to its point of origin. Following the standard arguments [2, 3], Pret is calculated

as a square of the return amplitude which, in turn, is written as a sum of amplitudes Aα

over all returning paths α. (These paths are classical paths in ballistic conductors [50, 53],
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and quantum diffractive paths in conductors with impurity scattering.) The quantum

correction to Pret then follows from interference between a path α and its time-reversed

ᾱ. Since the length of the self-returning path is arbitrary, the weak localization correction

to the dc conductance is proportional to the time integral of the interference correction

to the return probability, known as the “cooperon” in the diagrammatic theory of weak

localization [2, 3]. The counterpart of the cooperon for the quantum dot network is the

quantity

c̃i j ∼
1

(2πħ)2νiν j
∑
α

Aα(Aᾱ)
∗, (2.31)

where the sum is over all trajectories α that originate in dot j and end in dot i and ᾱ is the

time-reversed of α, see Fig. 2.2. [Note that the return probability involves the diagonal

elements c̃ii of the cooperonmatrix only. We have included non-diagonal elements in Eq.

(2.31) above in view of the discussion of interaction effects below. Non-diagonal elements

c̃i j with i and j in adjacent dots also appear for the description of weak localization in a

network of quantum dots with tunneling contacts, see Eq. (2.15) above.]

At zero temperature and without amagnetic field, Aᾱ = Aα. Wemay then calculate c̃i j

using that ∣Aα∣
2 is the probability that an electron propagates along trajectory α. Hence

c̃i j =
1

2πħνi ∫
∞

0

dτPi j(τ), (2.32)

where Pi j(τ) is the probability that an electron in dot j is found in dot i after time τ. In

Eq. (2.32) we canceled a factor 2πħν j in the denominator against the phase space volume

of the jth quantum dot. For a quantum dot network, Pi j(τ) can be expressed in terms of

a rate matrix γ̃,

Pi j(τ) = (e−γ̃τ)i j, γ̃ = g̃/(2πħν̃). (2.33)

Integrating over time, we then find

c̃i j = g̃−1i j . (2.34)
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The interference between a path α and its time-reversed is suppressed if time-reversal

symmetry is broken by a magnetic field, because a magnetic field changes the phases of

Aα and Aᾱ in opposite ways. Interference is also suppressed because of electron-electron

interactions at a finite temperature. Interactions cause the electrons to experience a time-

dependent potential ϕ(r, t), which modifies the phase of Aα and Aᾱ in different ways if

the trajectories α and ᾱ are in different dots at the same time t [68]. For a network of

quantum dots, the fluctuating potential ϕ is uniform inside each dot, so that we can write

ϕ( j, t), where j = 1, . . . ,ND is the index labeling the quantum dots in the network. For

each amplitude Aα one then has [68]

Aα[ϕ]→ Aα[0] exp{i ∫ tα

0

ϕ[ jα(t), t]/ħ} , (2.35)

where tα is the duration of the path α, jα(t) the index of the quantum dot corresponding

to the position of path α at time t, and Aα[0] the return amplitude in the absence of the

potential ϕ.

For a quantum dot network, one may consider ϕ as a classical fluctuating potential.

(This will be verified in the exact quantum mechanical calculation of Sec. 2.4.2 below.)

Its fluctuations are given by the fluctuation-dissipation relation [69],

⟨ϕ(i , t)ϕ( j, t′)⟩ = ∫ dω
2π

e−iω(t−t′)/ħ 2T
ω
Im [LR

i j(ω)] ,

(2.36)

where the response function LR
i j(ω) describes the (linear) change δϕi/e of the electric

potential in the ith quantum dot to a change δq j = eδn j of the charge in the jth quantum

dot,

δϕi(ω) = −L
R
i j(ω)δn j(ω). (2.37)

For the quantum dot network, one has

LR
i j(ω) = − [C̃/e2 + ds(ν̃−1 − 2πiω g̃−1)−1]

−1

i j , (2.38)
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t− 2dτ
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dτ
l

k
dτ

j
ii

α

ᾱ
j

t < 2dτ

Figure 2.3: Calculation of the cooperon propagator for a network of quantum dots. A

trajectory α originating in dot j and ending in dot i and duration t is separated into two

segments of duration dτ and a remaining segment of duration t − 2dτ if 2dτ < t. A self-

consistent equation for c̃i j is obtained by considering the combined effect of escape, the

magnetic field, and the fluctuating potential to first order in dτ.

where the matrices C̃, ν̃, and g̃ were defined in Sec. 2.2 above. Typically, C̃ii/e2 ≪ νi ,

g̃ii/∣ω∣, and we can replace Eq. (2.38) by

LR
i j(ω) =

1

ds
(2πiω g̃−1 − ν̃−1)i j. (2.39)

Using this expression for LR
i j(ω), we find that Eq. (2.36) simplifies to

⟨ϕ(i , t)ϕ( j, t′)⟩ = 4πħT
ds

g̃−1i j δ(t − t′). (2.40)

In order to find the effect of the fluctuating potential on the cooperon propagator

c̃i j, we separate the contributions from trajectories α of duration tα smaller and larger

than 2dτ, where dτ is a time interval sufficiently short that the net phase shift from the

fluctuating potential in the exponent in Eq. (2.35) is small, see Fig. 2.3. We also take

dτ much shorter than the dwell time in a single quantum dot, so that Pi j(dτ) = δi j −

γ̃i jdτ, see Eq. (2.33) above. For trajectories of duration tα > 2dτ we consider the initial

and final segment of duration dτ separately. Recognizing that the contribution from the

intermediate segments of duration tα − 2dτ can again be expressed in terms of c̃, and
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using Eq. (2.40) to average over the fluctuating potentials, we then find

c̃i j =
2dτ
2πħνi

δi j +
ND

∑
k,l=1
(δik − γ̃kidτ)(δ jl − γ̃l jdτ)c̃kl

−
ND

∑
k,l=1
(γ̃H,ik + γ̃H, jl + γ̃ϕ,i j)δikδ jl c̃kldτ,

= c̃i j +
dτ
πħνi

δi j − (Γ + ΓH + Γϕ)ik, jl c̃kldτ, (2.41)

up to corrections of order dτ2. Here

γ̃H,i j =
gH,i

2πħνi
δi j,

γ̃ϕ,i j =
4πT

dsħ
(g̃−1ii + g̃−1j j − 2g̃−1i j ), (2.42)

and Γik, jl = γ̃kiδ jl +δik γ̃l j, (ΓH)ik, jl = γ̃H,ikδ jl +δik γ̃H, jl , (Γϕ)ik, jl = γ̃ϕ,i jδikδ jl , cf. Eq. (2.17)

above. Solving this equation for c̃, we arrive at Eq. (2.16) of the previous section.

It is worth while to point out that the temperature dependence of weak localization

is caused by processes that involve the exchange of energy quanta small in comparison

to the temperature. Such processes are commonly referred to as “dephasing”, in contrast

to more general inelastic processes which lead to a broadening of the electronic distribu-

tion function [1, 3]. In this sense, interaction effects in the quantum dot network differ

from those in a single quantum dot, where weak localization is suppressed by inelastic

processes that involve a large energy transfer [16, 17]. Indeed, the characteristic energy

exchanged in the electron-electron interactions scales with the inverse of the dwell time

ħ/τD in each quantum dot — an observation that is closely related to the uniformity of

the interaction potential inside a quantum dot. The number of quanta exchanged along

a typical trajectory is too small to lead to a significant broadening of the distribution

function — in that sense transport in a quantum dot network is always quasi-elastic —,

although the exchange of a single quantum is sufficient to suppress the interference from

time-reversed trajectories.
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The semiclassical arguments of this section relied on the treatment of ϕ(r, t) as a

classical fluctuating potential. In this respect, we follow earlier works on quantum dots

by Seelig and Büttiker [55] and on granular metals by Blanter et al. [67] This approach

was taken originally by Altshuler et al. for dephasing in quasi one-dimensional and two-

dimensional disordered metals [68]. In the next section, we confirm the validity of this

approach in the present context by performing a fully quantum mechanical calculation

of the weak localization correction to first order in the interaction propagator L. The

calculation of Sec. 2.4 shows that the potential fluctuations are essentially classical if T ≳

ħ/τD, where τD is the (typical) dwell time in a quantum dot in the network. Since ħ/τD

is much smaller than the relevant temperature scale Tϕ for the suppression of the weak

localization correction by electron-electron interactions, cf. Eq. (2.24) of Sec. 2.2, this

proves the validity of our approach for all temperatures of interest.

2.4 Quantummechanical calculation

2.4.1 Randommatrix formulation

We consider a network ofND chaotic quantum dots coupled to electron reservoirs. The

Hamiltonian of the entire system is written as

Ĥ = Ĥ0 + Ĥint, (2.43)

where Ĥ0 describes the electrons inside the quantum dots or inside leads without taking

into account their interactions, and Ĥint describes the electron-electron interactions. We

write the non-interacting Hamiltonian Ĥ0 as a sum of three terms,

Ĥ0 = ĤD + ĤDL + ĤL, (2.44)
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where ĤD and ĤL describe the electrons inside the quantum dot network and inside the

leads, respectively, whereas ĤDL describes the coupling between the quantum dots and

the leads. We now describe each of the three terms contributing to Ĥ separately.

Linearizing the electronic spectrum around the Fermi energy inside the leads, we

have

ĤL = ∑
a=1,2

Na

∑
j=1
∫ dk

2π
va, jk ψ̂†

a, j(k)ψ̂a, j(k), (2.45)

where the index a = 1, 2 labels leads connecting to the left and right electron reservoirs.

The operators ψ̂†
a, j(k) and ψ̂a, j(k) are for electrons in scattering states at wavenumber

k (measured with respect to the Fermi wavenumber) and transverse mode j. The total

number of propagating modes in the leads connecting to reservoir a is Na, a = 1, 2. [If a

reservoir is coupled to more than one lead, the summation over the index j represents a

sum over the transverse modes in all leads connected to the given reservoir.] Finally, va, j

is the Fermi velocity of electrons in mode j. The current operator Îa reads

Îa = e
Na

∑
j=1

va, j (ψ̂†
a, j+ψ̂a, j+ − ψ̂

†
a, j−ψ̂a, j−) , a = 1, 2, (2.46)

where

ψ̂a, j± = ∫ dk
2π

e±ikδψ̂a, j(k), a = 1, 2, (2.47)

and δ > 0 is a positive infinitesimal.

We use random matrix theory to describe the quantum dots. Following standard

procedures, the electron operators in each quantum dot are represented by an M j-

component vector ψ̂ j, where the index j = 1, . . . ,ND labels the quantum dots in the net-

work andM j is the dimension of the subspace corresponding to the dot with index j. The

Hamiltonian ĤD then reads

ĤD =
ND

∑
i=1

M i

∑
α,β=1

ψ̂†
i ,αHi ,αβψ̂i ,β +∑

i< j
∑
α,β

( ψ̂†
i ,αVi j,αβψ̂ j,β + h.c.) . (2.48)
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Here the elements Hi ,αβ of the Mi-dimensional matrices Hi are random numbers taken

from from a Gaussian distribution with zero mean and with variance

⟨Hi ,αβHi ,γδ⟩ = ⟨Hi ,αβH
∗

i ,δγ⟩ =
λi

Mi
δαδδβγ +

λ′i
Mi

δαγδβδ . (2.49)

The parameters λi and λ′i are related to the density of states νi and magnetic flux Φi in

each quantum dot [44], i = 1, . . . ,ND,

λi =
M2

i
π2ν2i

, λ′i =
M2

i
π2ν2i

(1 −
ETh,iνiΦ

2
i

4MiΦ
2
0

) , (2.50)

where Φ0 the flux quantum and ETh,i is the Thouless energy of the ith quantum dot.

Further, in Eq. (2.48), the Mi ×M j matrices Vi j are related to the transmission matrices

ti j of the contact between dots i and j,

ti j = 2πVi j(νiν jMiM j)
1/2(MiM j + π

2νiν jV
†
i jVi j)

−1. (2.51)

The Hamiltonian HDL describing the coupling between the dots and the leads reads

ĤDL =
2

∑
a=1

Na

∑
j=1

ND

∑
i=1

M i

∑
α=1
∫ dk

2π
(ψ̂†

i ,αWia,α jψ̂a, j(k) + h.c.) , (2.52)

where the Ni ×Na matrices Wia =W
†
ai are related to the transmission matrices tia of the

contact between the ith quantum dot and reservoir a,

tia = 2πWia(νaνiMi)
1/2(Mi + π

2νiν
1/2
a WaiWiaν

1/2
a )
−1, (2.53)

with a = 1, 2 and νa an Na-dimensional matrix with elements (νa)i j = δi j(2πħva, j)−1.

The dimensionless conductance gi j and and form factor fi j of the contact between dots

i and j are defined in terms of the transmission matrix ti j as in Eq. (2.4). Similarly, the

dimensionless conductance g′ia = g′ai and form factor f ′ia = f ′ai between the dots and the

two electron reservoirs are defined in terms of t′ia as in Eq. (2.5).

For the electron-electron interaction we take density fluctuations inside each dot to

be well screened, so that the interaction couples to the total charges of the dots only,

Ĥint = ∑
i , j

e2
2
n̂i [C̃

−1]i j n̂j, n̂i =
M i

∑
α=1

ψ̂†
i ,αψ̂i ,α , (2.54)
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where the capacitancematrix C̃ was defined in Eq. (2.12) above. The corresponding inter-

action Hamiltonian for a single quantum dot is known as ‘universal interaction Hamil-

tonian’ [44].

Evaluating the conductance g of the quantum dot network and its leading interaction

corrections using the Kubo formula one finds

G =
dse2
h

g , g = g0 + δgdeph + δg int, (2.55)

where g0 is the conductance in the absence of interactions (i.e., for Hamiltonian Ĥ0),

and δgdeph and δg int are interaction corrections. (The reason for the separation between

δgdeph and δg int is that these two corrections have different temperature dependences, as

will become apparent later.) Denoting with “⋅” adjacent indices to be summed over [as in

Eq. (2.14)], the three terms in Eq. (2.55) read

g0 = 4π2 ∫ dε [−∂ε f (ε)] tr ν1W1⋅G
R
⋅⋅
(ε)W⋅2ν2W2⋅G

A
⋅⋅
(ε)W⋅1, (2.56)

and the interaction corrections δgdeph and δg int are

δgdeph =4π2 ∫ dε ∫ dω
2π
[−∂ε f (ε)] {coth(ω/2T) + tanh[(ε − ω)/2T]}

ND

∑
i , j=1

Im [LR
i j(ω)]

× tr [ν1W1⋅G
R
⋅i(ε)G

R
i j(ε − ω)G

R
j⋅(ε)W⋅2ν2W2⋅G

A
⋅⋅
(ε)W⋅1

+ ν1W1⋅G
R
⋅⋅
(ε)W⋅2ν2W2⋅G

A
⋅i (ε)G

A
i j(ε − ω)G

R
j⋅(ε)W⋅1

+
1

2
ν1W1⋅G

R
⋅i(ε − ω)G

R
i⋅(ε)W⋅2ν2W2⋅G

A
⋅ j(ε)G

A
j⋅(ε − ω)W⋅1

+
1

2
ν1W1⋅G

R
⋅i(ε)G

R
i⋅(ε − ω)W⋅2ν2W2⋅G

A
⋅ j(ε − ω)G

A
j⋅(ε)W⋅1] (2.57)

δg int = 4π2 ∫ dε ∫ dω
2π
[−∂ε f (ε)] tanh[(ε − ω)/2T]

ND

∑
i , j=1

Im{LA
i j(ω)

× tr [ν1W1⋅G
R
⋅i(ε)G

R
i j(ε − ω)G

R
j⋅(ε)W⋅2ν2W2⋅G

A
⋅⋅
(ε)W⋅1

+ ν1W1⋅G
R
⋅⋅
(ε)W⋅2ν2W2⋅G

A
⋅i (ε)G

R
i j(ε − ω)G

A
j⋅(ε)W⋅1] }. (2.58)
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In these equations GR
i j and GA

i j denote the retarded and advanced Green functions of the

network of quantum dots without the electron-electron interaction Hamiltonian Ĥint.

These are matrices of dimension Mi ×M j, which are the solution of

[ε −Hi + iπ
2

∑
a=1

WiaνaWai]G
R
ii(ε) + Vi⋅G

R
⋅i(ε) = 11i ,

[ε −Hi − iπ
2

∑
a=1

WiaνaWai]G
A
ii(ε) + Vi⋅G

A
⋅i (ε) = 11i ,

(2.59)

with 11i the Mi × Mi unit matrix. Finally, LR
i j(ω) and LA

i j(ω) = LR
i j(ω)

∗ represent the

[random-phase-approximation (RPA)] screened interaction propagator [see Eq. (2.38)

above].

It remains to calculate the ensemble average of the conductance G for the ensemble

of Hamiltonians described by Eq. (2.49) above. This is the subject of Sec. 2.4.2.

2.4.2 Average over randomHamiltonian

The average over the randommatrices Hi is performed using a variation of the impurity

diagrammatic technique [70]. This technique has been applied for various transport and

thermodynamic properties of chaotic quantum dots without electron-electron interac-

tions [52, 71–73]. Below we present its generalization to arbitrary networks.

Average Green function

We first discuss the calculation of the ensemble average of the Green function, ⟨GR
i j(ε)⟩

and ⟨GA
i j(ε)⟩. Following the diagrammatic rules laid out in Fig. 2.4 and keeping diagrams

in the non-crossing approximation only [74], i.e. diagrams without crossing double lines,
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a)

b)

α βα β γ δ γ δ
λ′λ

Σ

〈HαβHγδ〉

Σ

= +

=

+. . .

+. . .++

=

c)

= +

+

+

Figure 2.4: (a) Diagrammatic rules for the ensemble average using RandomMatrix The-

ory. The weight factors depend on the symmetry present: λ′ = λ in the presence of time

reversal symmetry, while λ′ is reduced in the presence of a weakmagnetic field and λ′ = 0

where time reversal symmetry is fully broken. (b) Expansion of the fullmatrix propagator

in terms of single propagators 1/(ε + iπνWW†), depicted by single lines, and the matrix

elements Hαβ, depicted by two open circles. (c) Dyson equation for the self energy Σ.

one finds that the ensemble averaged Green function ⟨GR
i j(ε)⟩ satisfies the Dyson equa-

tion

⟨GR
i j(ε)⟩ = G

R
0 (ε)i j +∑

k
GR

0 (ε)ikΣk⟨G
R
k j(ε)⟩, (2.60)

where the self energy Σk is

ΣR
k(ε) =

λk

Mk
tr ⟨GR

kk(ε)⟩, (2.61)

and GR
0 (ε) is the solution of Eq. (2.59) with Hi = 0. Combining Eqs. (2.60) and (2.61)

gives a self-consistent equation for ΣR. In the limit Mi ≫ g′i1 + g′i2 +∑ j≠i gi j, one finds

⟨GR
i j(ε)⟩ = ⟨G

A
ji(ε)⟩

† = −
iπ

Mi + ∆i
ν̃i j −

¿
Á
ÁÀ π2νiν j

4MiM j
ti j +

π

2M2
i
(πνiε − itr

∆i

Mi + ∆i
) ν̃i j,

(2.62)

where ν̃i j and ti j are given in Eq. (2.11) and (2.51) above and ∆i is an hermitian Mi ×Mi

matrix,

∆i = π2νi

ND

∑
k≠i

1

Mk
VikνkVki + π

2νi

2

∑
a=1

WiaνaWai . (2.63)
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Figure 2.5: Diffuson ladder (a) and cooperon ladder (b).

Classical conductance

To leading order in the average number N of transmitting channels per dot, the calcu-

lation of the average conductance involves the calculation of geometric series involving

the ensemble averaged Green functions. Diagrammatically, these geometric series corre-

spond to “ladder diagrams”, as shown in Fig. 2.5. Such ladders are the equivalent of the

“diffuson” propagator in diagrammatic perturbation theory. The building block of the

geometric series is

tr⟨GR
i j(ε)⟩⟨G

A
ji(ε

′)⟩ =
π2ν2i
Mi

δi j −
π2νiν j

4MiM j
[g̃ − i2π(ε − ε′)ν̃]i j ,

where g̃i j was defined in Eq. (2.7) above. Summing the geometric series in Fig. 2.5(a)

then gives the diffuson matrix

Di j(ε, ε
′) =

2Mi

πνi
[g̃ − i2π(ε − ε′)ν̃]−1i j

2M j

πν j
. (2.64)

For the calculation of the mean conductance one also needs a trace that involves the

lead indices,

D′ia = πνatr [Wai⟨G
R
ii⟩⟨G

A
ii⟩Wia] = πνi

g′ai
4Mi

, a = 1, 2. (2.65)

Combining everything as depicted in Fig. 2.6(a), we then find the leading conductance
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Figure 2.6: (a) Diagrammatic representation of the leading contribution gcl to the

ensemble-averaged conductance ⟨g⟩. (b)–(e) Diagrams contributing to the weak local-

ization correction δgWL. (f) Definition of the Hikami-box used in (c)–(e).

of the system

⟨g⟩ = g′1⋅(g̃−1)⋅⋅g′⋅2,

which is Eq. (2.14) of Sec. 2.2.

Weak localization correction

The above calculation gives the conductance to leading order in g. A correction to sub-

leading order in g is given by a class of diagrams that contains amaximally crossed ladder,

as shown in Fig. 2.5(b). These contributions are analogous to the “cooperon” contribu-

tions in diagrammatic perturbation theory [1]. The summation of the geometric series

promotes the contribution to be of order 1/N instead of 1/M, as is the naive expectation

for diagrams that contain one crossed line.
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δΣ

δ〈G〉
δΣ= +

=

Figure 2.7: Dyson equation for corrections to ⟨Gii⟩ due to the possibility of cooperon

like ladders in the time reversal symmetric case. Double-hatching indicates a retarded-

retarded or advanced-advanced pairing. These ladders are parametrically small, and for

that reason can also not extend across multiple dots.

In contrast to the diffuson propagator discussed above, the cooperon propagator is

sensitive to magnetic flux. Proceeding as before, we find

Ci j(ε, ε
′) =

2Mi

πνi
[g̃H + g̃ − 2πiν̃(ε − ε′)]−1i j

2M j

πν j
, (2.66)

with gH defined in Eq. (2.10). For the calculations below, we also need geometric series

of Green functions of the same type. These read

CRR
i j (ε, ε

′) =CAA
i j (ε, ε

′)∗

=
1

16π2νiν j
{[8Mi + g̃H,ii + g̃ii − i2π(ε + ε′)νi]δi j − g̃i j (1 − δi j)}.

(2.67)

Cooperon ladders give a correction to the self-energy appearing in the calculation of

the average Green function, as depicted in Fig. 2.7. Calculation of the self-energy correc-

tion δΣi to leading order in g/M then gives

δΣi =
λi

Mi
tr [⟨GR

ii⟩(C
RR
ii ⟨G

R
ii⟩ + δΣi)⟨G

R
ii⟩] =

i
4πνi

. (2.68)

As this contribution is already small as 1/M, onemay neglect the effect of aweakmagnetic

field on this term. The self energy correction δΣ affects the diffusion ladders as D →

D + δD, with

δDi j = −
π2ν2i
2M2

i
δi j. (2.69)

This contribution is depicted in Fig. 2.6(b).
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In the diagrams for theweak localization correction to the conductance, the cooperon

and diffuson propagators are connected in a so-called “Hikami box” [75]. In our dia-

grammatic analysis the analogue of a Hikami box is depicted in Fig. 2.6(f). We con-

sider the general case of a Hikami box with four energy arguments. We write ε1 (ε
′

1)

for the energy argument of the retarded (advanced) matrix propagator on the left side,

and ε2 (ε
′

2) for the energy argument of the retarded (advanced) propagator on the right.

For the calculation of the weak localization correction one only needs the case of equal

arguments, ε1 = ε′1 = ε2 = ε′2. For dephasing and interaction corrections, some argu-

ments differ. Explicit calculation shows that the Hikami box depends on the combina-

tion ω = ε′1 − ε1 + ε
′

2 − ε2 only. Hence we write Bi j,kl(ω), where the indices i and j refer to

the left and right (diffuson) ladders and the indices k and l refer to the bottom and top

(cooperon) ladders.

The calculation is essential but technical; we outline it in the appendix. The Hikami

box Bi j,kl(ω) is zero except where at most two different indices appear,

Bi j,kl(ω) =
π4νiν jνkνl

16MiM jMkMl
[2πiνiωδi jδ jkδkl − δi jδkl f̃ik

+(δikδi l + δ jkδ jl) f̃i j + (δi jδki + δi jδl i) f̃kl

+(δi lδ jk + δikδ jl)(g̃i j + g̃H,i j − f̃i j)]. (2.70)

For the evaluation of the weak localization correction, one also needs to consider

Hikami boxes that are connected to the leads, not only to diffuson propagators inside the

quantum dot network. The two contributions of this type are depicted in Fig. 2.6(c) and

(d). They are

B′a j, j j = B
′

ja, j j = −
π3ν3j

16M3
j
f ′a j. (2.71)
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ω
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Figure 2.8: Diagrams for the first-order dephasing correction. Diagrams depicted in (b),

(c) and (e), (f) are weighed with a factor 1/2, in line with Eq. (2.57). Together (a), (b) and

(c) constitute the correction to the diffuson propagator, which cancels to leading order.

Hence the only relevant contributions are the corrections to the cooperon in (d), (e) and

(f). In both cases, complex conjugate contributions exist which are obtained by placing

the vertices on the opposite matrix propagation lines.

Combining everything, we have (see Fig. 2.6)

δgWL = 4D′1⋅D⋅⋅δD⋅⋅D⋅⋅D
′

⋅2 + 4
ND

∑
i , j=1

Ci j [D
′

1⋅D⋅⋅B
′

⋅2, ji + B
′

1⋅, jiD⋅⋅D
′

⋅2 +D
′

1⋅D⋅⋅B⋅⋅, ji(0)D⋅⋅D
′

⋅2] ,

(2.72)

where D′ia = D
′

ai was defined in Eq. (2.65) above and we have suppressed superscripts as

well as inconsequential energy arguments of DRA(ε, ε), CRA(ε, ε), cf. Eqs. (2.64), (2.67).

The four terms correspond to the four diagrams (b) - (e) of Fig. 2.6. Substituting our

results for the Hikami box B, the cooperon and diffuson propagators C and D, and the

interaction propagator L, we arrive at Eq. (2.15) of Sec. 2.2, with the zero-temperature

cooperon c̃ = (g̃ + g̃H)−1.

So far we have not taken into account electron-electron interactions. To lowest or-

der in perturbation theory in the interaction Hamiltonian Ĥint, the dominant interaction
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correction to weak localization comes from δgdeph in Eq. (2.57). The corresponding dia-

grams are depicted in Fig. 2.8. We now calculate that correction. This interaction correc-

tion is nonzero only if both interaction vertices appear inside the cooperon propagator.

(This is why this interaction correction does not affect the leading contribution g0 to the

conductance.)

To calculate the interaction correction, one notices that the interaction vertices are

“dressed”, as is shown in Fig. 2.9. For this case energy arguments may be neglected, as

they lead to corrections small in g/M. Labeling the dot in which the interaction takes

place by the index α, the dressed interaction then reads

IRα,i j = (I
A
α,i j)

∗ = δαiδα j tr [⟨G
R
ii⟩ × (1 + tr [⟨GR

ii⟩⟨G
R
ii⟩]D

RR
ii ) ⟨G

R
ii⟩⟨G

A
ii⟩]

=
πνi

2Mi
(−i2πν̃i jδαi)

πνi

2Mi
(2.73)

where

DRR
i j (ε, ε

′) = DAA
i j (ε, ε

′)∗

=
1

16π2νiν j
[(8Mi + g̃ii − i2π(ε + ε′)νi)δi j − g̃i j (1 − δi j) ]. (2.74)

The interaction correction δC to the equal-energy cooperon propagator C(ε, ε) then be-

comes

δCi j = ∫ dε ∫ dω
2π
[−∂ε f (ε)] [coth(ω/2T) + tanh((ε − ω)/2T)]

ND

∑
α,β=1

Im [LR
αβ(ω)]

×[Ci⋅(ε, ε)I
R
α,⋅⋅C⋅⋅(ε − ω, ε)I

R
β,⋅⋅C⋅ j(ε, ε)

+Ci⋅(ε − ω, ε)I
A
α,⋅⋅C⋅⋅(ε − ω, ε − ω)I

R
β,⋅⋅C⋅ j(ε, ε − ω)

+c.c.]. (2.75)

Performing the energy integration and passing to dimensionless propagators, we then
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Figure 2.9: Renormalization of the interaction vertex by ladder diagrams involving

Green’s functions of the same type (retarded-retarded or advanced-advanced).

find

δci j = ∫ dω
2π

ω

2T sinh
2
(ω/2T)

ND

∑
α,β=1

Im [4π2νανβL
R
αβ(ω)]

× {(g̃ + g̃H + i2πων̃)−1iα (g̃ + g̃H)
−1

αβ
(g̃ + g̃H − i2πων̃)−1β j

− (g̃ + g̃H)−1iα (g̃ + g̃H + i2πων̃)
−1

αβ
(g̃ + g̃H)−1β j

+ (g̃ + g̃H − i2πων̃)−1iα (g̃ + g̃H)
−1

αβ
(g̃ + g̃H + i2πων̃)−1β j

− (g̃ + g̃H)−1iα (g̃ + g̃H − i2πων̃)
−1

αβ
(g̃ + g̃H)−1β j} . (2.76)

Let us now inspect the integral in Eq. (2.76). The term between brackets {. . .} is

proportional to ω−2 if ω ≳ ħ/τD, where ħ/τD ∼ g/ν is the inverse dwell time of a dot in

the network. Since ImLR(ω) ∝ ω for ω ∼ ħ/τD, one thus concludes that the integral

in Eq. (2.76) converges at ω ∼ min(ħ/τD, T). We focus on the regime T ≫ ħ/τD, in

which the convergence is at ω ∼ ħ/τD. In this regime the inequality ω ≪ T is obeyed

for all frequencies ω contributing to the integral, so that all relevant interaction modes

that contribute to dephasing can be described using the classical fluctuation-dissipation

theorem. Indeed, one verifies that in this regime the first-order interaction correction

(2.76) agrees with the interaction correction to c̃ obtained in the semiclassical framework

of Sec. 2.3, taken to first order in the interaction propagator L.

Estimating the magnitude of the first-order correction δc̃i j for T ≫ ħ/τD, we find

that δc̃i j ∼ c̃i jT/Tϕ, where Tϕ ∼ ħg/τD [see Eq. (2.24) above]. This observation has
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Figure 2.10: Dyson equation for the cooperon obtained by perturbation theory in the

high temperature limit. The hatched boxes indicate noninteracting cooperon ladders,

while gray shading indicates that interactions are taken into account. Wiggly lines indi-

cate the equal time interaction propagator, which can either connect back to the same

propagation line, or to the opposite, time reversed one.

two consequences: First, it implies that the regimes of validity of first-order perturba-

tion theory and the semiclassical approach of Sec. 2.3 overlap: Both approaches are valid

if ħ/τD ≪ T ≪ Tϕ. Second, it implies that interactions give no significant correction to

the weak localization correction δgWL if T ≲ ħ/τD, so that we may ignore the difference

between the fully quantum-mechanical interaction correction δc̃i j of Eq. (2.76) and the

semiclassical result in the low-temperature regime T ≲ ħ/τD within the limiting proce-

dure outlined in Sec. 2.2. (Both approaches give essentially no interaction correction to

weak localization at these temperatures.) When combined, these two observations justify

the semiclassical considerations of Sec. 2.3, as well as the expressions (2.15) – (2.17) for

the weak localization correction δgWL that followed from these considerations.

For completeness, wemention that the full temperature dependence of δgWL can also

be obtained from diagrammatic perturbation theory. Following the above arguments, in

the limit T≫ ħ/τD all factors coth(ω/2T)+ tanh(ε−ω)/2T appearing in the calculation

may be replaced by 2T/ω, irrespective of the value of ε. This considerably simplifies the
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calculation, and the m interaction propagators that appear in mth order in perturbation

theory may then be placed independently of each other along the cooperon ladder. Us-

ing Eq. (2.39) for the interaction propagator and writing the cooperon ladders (without

interaction corrections) in an integral form similar to Eq. (2.32),

(g̃ + g̃H + 2πiων̃)−1 = (2πħν̃)−1 ∫ ∞
0

dτe−γ̃τ−iωτ , (2.77)

one may perform the frequency integrations. The resulting expression consists solely of

time integrations with instantaneous interactions. The remaining combinatorial problem

leads to a Dyson equation of the form shown in Fig. 2.10. Here the first term on the

right hand side is the noninteracting cooperon c̃kl = (g̃ + g̃H)−1kl and the six other terms

are obtained by different placements of the interaction propagators. [Note that where

beginning and end are on the same Green’s function line, an additional weight of 1/2

arises from a factor ∫∞0 dτδ(τ) = 1/2.] Adding the six different contributions gives a

vertex proportional to (4πT/dsħ)(g̃−1mm + g̃−1nn − 2g̃−1mn), so that one arrives at the Dyson

equation

c̃kl = (g̃ + g̃H)−1kl −
ND

∑
m,n=1
[(Γ + ΓH)

−1
Γϕ]km,ln c̃mn , (2.78)

where Γ, ΓH, and Γϕ are rank-four tensors whose definition is given below Eq. (2.17). With

a little algebra one verifies that Eq. (2.78) is equivalent to the result (2.16) derived using

semiclassical arguments.

Equation (2.76) can also be used to calculate the magnitude of energy quanta ω ex-

changed with the fluctuating electromagnetic field in the quantum dots. Hereto, we note

that the sum of the second and fourth terms between brackets {. . .} in Eq. (2.76) is pro-

portional to (minus) the probability p1(ω) for emission or absorption of a photon along
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the electron’s trajectory, so that

p1(ω) =
1

g′1⋅ g̃−1⋅⋅ g′⋅2

ND

∑
α,β=1

ω

2πT sinh
2
ω/2T

×Im[4π2νανβL
R
αβ(ω)]Re[g′1⋅ g̃−1⋅α (g̃ + i2πων̃)

−1

αβ
g̃−1β⋅ g′⋅2]

=
16Tπ2

g′1⋅ g̃−1⋅⋅ g′⋅2

ND

∑
α,β=1

να g̃−1αβνβ Re [g′1⋅ g̃−1⋅α (g̃ + i2πων̃)
−1

αβ
g̃−1β⋅ g′⋅2], (2.79)

where, in the second equality, we took the limit T ≫ ħ/τD. The probability that one

inelastic scattering event of arbitrary frequency occurs is P1 = ∫ dωp1(ω). Equation

(2.79) is valid as long as P1 ≪ 1, so that first-order perturbation theory is sufficient.

FromEq. (2.79)we conclude that the energy of photons that are emitted or absorbed is

limited bymin(ħ/τD, T). The temperature Tϕ at which the interaction correction toweak

localization becomes relevant is the temperature at which the probability that at least one

energy quantum is exchanged becomes of order unity. However, the typical exchanged

energy remains of order ħ/τD for all temperatures. This implies that the broadening of the

distribution function by inelastic processes is parametrically smaller than the tempera-

ture T, by a factor 1/g ≪ 1. Transport in the quantum dot network is thus quasielastic for

all temperatures. (Inelastic processes become relevant only if T ≳ ETh,i g1/2, where ETh,i is

the Thouless energy of an individual quantum dot.)

Interaction corrections to the conductance

The relevant diagrams for the interaction correction to the conductance δg int are shown

in Fig. 2.11. These diagrams do not involve cooperon propagators. The diagram shown

in Fig. 2.11(a) is analogous to the ones we have already encountered in calculating the

(first-order) dephasing correction to weak localization. It gives an interaction correction

to the diffuson propagator D(ε, ε) that depends on the frequency ω of the interaction
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Figure 2.11: Diagrams contributing to δg int. The Hikami box is defined in Fig. 2.6.

propagator,

δDβα,i j(ω)
(a) = Di⋅(ε, ε)I

R
β,⋅⋅D⋅⋅(ε − ω, ε)I

R
α,⋅⋅D⋅ j

= −
4Miνβ

νi
g̃−1iβ (g̃ + i2πων̃)

−1

βα
g̃−1α j

4M jνα

ν j

(2.80)

(The frequency ω will be integrated over in the final expression.) For the remaining di-

agrams, we need to consider an interaction vertex that connects an advanced and a re-

tarded Green function. Such an interaction vertex is dressed by a diffuson propagator,

which allows the interaction vertex to be placed in a dot different from the one that ap-

pears at the outer end of the dressed interaction vertex,

Ĩα,i(ω) = δαi +∑
k
Dik(ε − ω, ε)tr ⟨G

A
kα(ε)⟩⟨G

R
αk(ε − ω)⟩

=
4Miνα

νi
(g̃ + i2πων̃)−1iα . (2.81)

With this interaction vertex, the diagrams of Fig. 2.11(b)–(d) (without the outer diffusion

ladders) can be represented by Hikami boxes Bi j,kl(ω) and B
′

a j,kl of Eqs. (2.70) and (2.71),
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but with gH → 0 because no cooperon ladders are involved. Combining the contributions

to the interaction correction we find

δg int = − 4 ∫ dω
2π
(

∂
∂ω

ω coth
ω

2T
)

ND

∑
αβ

ND

∑
k,l=1

Im{LA
αβ(ω)D

′

1⋅δDβα,⋅⋅(ω)
(a)D′

⋅2

+ LA
αβ(ω)Ĩkα Ĩlβ [B

′

1l ,⋅kD⋅⋅D
′

⋅2 +D
′

1⋅D⋅⋅B
′

⋅l ,2k +D
′

1⋅D⋅⋅B⋅l ,⋅k(ω)D⋅⋅D
′

⋅2]} . (2.82)

Expressing the propagators in terms of the matrices g̃ and f̃ , we find that δg int naturally

separates into two contributions, which are given by Eqs. (2.20)–(2.22) of Sec. 2.2. Both

corrections are small for all temperatures, and it is not necessary to consider higher order

contributions involving more than one interaction propagator L.

2.5 Application to double quantum dot

We now apply the theory of Secs. 2.3 and 2.4 to the case of a double quantum dot. There

are two cases of interest: A linear configuration, in which each dot is coupled to one

reservoir, see Fig. 2.12(a), and a side-coupled configuration, in which both reservoirs are

connected to the same quantum dot, see Fig. 2.12(b).

2.5.1 Linear configuration

The conductance matrix for the linear double quantum dot reads

g̃ =
⎛
⎜
⎜
⎝

g′11 + g12 −g12

−g12 g′22 + g12

⎞
⎟
⎟
⎠

, (2.83)

where g′11 and g′22 are the dimensionless conductances of the contacts connecting the two

dots to the reservoirs, and g12 is the dimensionless conductance of the contact between

the two dots, see Fig. 2.12. The form factor matrix f̃ has a similar structure, with g′11, g′22,
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and g12 replaced by f ′11, f ′22, and f12, respectively. The classical conductance of the system

is Gcl = (dse2/h)gcl, with

g−1cl = g′−111 + g′−122 + g−112 , (2.84)

[see Eq. (2.14) of Sec. 2.2].

Weak localization

The zero temperature weak localization correction to the conductance,

δGWL = (dse2/h)δgWL,

follows from substitution of the zero-temperature cooperon c̃(0) of Eq. (2.18) into Eq.

(2.15),

δgWL

g2
cl

= −
f ′11/g′211 + f12/g212

g′11 + gH,1 + g12 − g212/(g′22 + gH,2 + g12)

−
f ′22/g′222 + f12/g212

g′22 + gH,2 + g12 − g212/(g′11 + gH,1 + g12)

−
2(g12 − f12)/g12

(g′11 + gH,1 + g12)(g′22 + gH,2 + g12) − g212
. (2.85)

Here gH,2 and gH,1 are dimensionless numbers describing the effect of an appliedmagnetic

field, see Eq. (2.10). The limit of zero magnetic field gH,2 = gH,1 = 0 agrees with the result

obtained previously by Golubev and Zaikin [58]. The high-temperature limit of δgWL,d

of the weak localization correction is found by taking the diagonal contribution c̃d of Eq.

(2.19) for the cooperon propagator,

δgWL,d

g2
cl

= −
f ′11/g′211 + f12/g212
g′11 + gH,1 + g12

−
f12/g212 + f ′22/g′222
g′22 + gH,2 + g12

. (2.86)

Note that ∣δgWL,d∣ < ∣δgWL∣. The remainder of the weak localization correction, δgWL −

δgWL,d, is temperature dependent because of dephasing from electron-electron interac-
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tions. Taking the temperature-dependent cooperon from Eq. (2.16), we find that the tem-

perature dependence of the full matrix c̃(T) is encoded in a single scalar function f (T),

c̃(T) = c̃(0) − [c̃(0) − c̃d] f (T). (2.87)

Equation (2.87) immediately implies that

δgWL(T) = δgWL,d + [δgWL(0) − δgWL,d][1 − f (T)], (2.88)

where δgWL(0) and δgWL,d are given in Eqs. (2.85) and (2.86), respectively. In the regime

where temperature is large enough for dephasing effects to give a sizeable correction to

the weak localization correction to the conductance, we obtain f (T) from Eq. (2.16),

f (T) = T

Tϕ + T
, (2.89)

with

Tϕ

ds
=

ħ(τ1 + τ2)(g′11g′22 + g′11g12 + g′22g12)
4πτ+τ−(g′11 + g′22)

. (2.90)

Here τ1 and τ2 are the (classical) dwell times of the two dots, modified for the presence

of a magnetic field,

τ1 =
2πħν1

g′11 + gH,1 + g12
, τ2 =

2πħν2
g′22 + gH,2 + g12

, (2.91)

whereas τ± are time scales representing the relaxation of symmetric (+) or antisymmetric

(−) charge configurations in the double dot,

1

τ±
=

1

2τ1
+

1

2τ2
∓
1

2

√

(
1

τ1
−

1

τ2
)
2

+
g212

π2ħ2ν1ν2
. (2.92)

It is instructive to compare Eq. (2.89) with the expression for f (T) obtained in first-

order perturbation theory,

f (T) = ∫ dω
2π

ω/2T

sinh
2
(ω/2T)

Im [LR
11(ω) + L

R
22(ω) − 2L

R
12(ω)]

×
2ω2

(1 + ω2τ2
+
/ħ2)(1 + ω2τ2

−
/ħ2)

τ3
+
τ3
−

ħ4τ1τ2
. (2.93)
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Figure 2.12: Schematic drawings of two double quantum dots. Panel (a) shows a linear

configuration; Panel (b) shows a side-coupled configuration.
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The integral in Eq. (2.93) converges for frequencies ω/ħ of order τ−1
±
. For these frequen-

cies, we may neglect the capacitance C in the expression for the interaction propagator L

since C/e2 ≪ ν. The resulting frequency integration yields

f (T) = 2πTτ+τ−

3ħ(τ+ − τ−)
T

Tϕ

[F1(2πTτ−/ħ) −F1(2πTτ+/ħ)] , (2.94)

where

F1(x) =
3

x2
{
1

x
[2ψ′ (

1

x
) − x2] − 2} , (2.95)

and ψ′ is the derivative of the digamma function. With the asymptotic behavior ofF1(x),

F1(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − 1

5
x2 + 1

7
x4 + . . . , x ≪ 1,

3

x −
6

x2 +
π2

x3 + . . . , x ≫ 1,

(2.96)

we identify three different regimes for the temperature dependence of the dephasing cor-

rection:

f (T) = 1

15
τ+τ−(τ+ + τ−) (

2πT

ħ
)

3
T

Tϕ

(2.97)

if T≪ ħ/τ+,

f (T) = 2πTτ−

3ħ
T

Tϕ

(2.98)

if ħ/τ+ ≪ T≪ ħ/τ−, and

f (T) = T/Tϕ (2.99)

if ħ/τ− ≪ T, where Tϕ is given by Eq. (2.90) above. The intermediate temperature regime

exists only if τ+ ≫ τ−. A comparison of Eq. (2.99) with Eqs. (2.89) shows that the two

expressions for f (T) agree in the temperature regime ħ/τ− ≪ T ≪ Tϕ where both ex-

pressions are valid. It is in this temperature regime that the factor (ω/2T)/ sinh
2
(ω/2T)

in Eq. (2.93) can be approximated by 2T/ω, which is the appropriate weight appearing in

the classical fluctuation-dissipation theorem.

It should be noted that the low temperature corrections, Eqs. (2.97) and (2.98), result

in contributions to the conductance of order O(1/g). Such contributions are beyond the
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accuracy achieved in the limiting procedure outlined in Sec. 2.2. Further contributions

of the same order might be obtained by calculating, e.g., weak localization corrections to

the interaction corrections δg int,1 and δg int,2. For disordered metals such contributions

have been considered explicitly in Ref. [7].

The above equations take a simpler form in the limiting cases of large and small

interdot coupling g12 and of a large magnetic field. For small interdot coupling g12 ≪

min(g′11, g′22), one has

δgWL = −
f ′11g212 + f12g′211
g′211 (g′11 + gH,1)

−
f ′22g212 + f12g′222
g′222(g′22 + gH,2)

(2.100)

−
2(g12 − f12)g12

(g′11 + gH,1)(g′22 + gH,2)

Tϕ

Tϕ + T
, (2.101)

Tϕ

ds
=g′11g′22

(g′11 + gH,1)ν
−1
1 + (g′22 + gH,2)ν

−1
2

8π2(g′11 + g′22)
,

(2.102)

so that only a small part of the total weak localization correction is temperature depen-

dent. In the limit of a large interdot conductance, g12 ≫ max(g′11, g′22, gH,1, gH,2), the full

weak localization correction acquires a temperature dependence,

δgWL = −
g′222 f ′11 + g′211 f ′22

(g′11 + g′22)2(g′11 + gH,1 + g′22 + gH,2)

Tϕ

Tϕ + T
,

Tϕ

ds
=g12
(g′11 + gH,1 + g′22 + gH,2)(ν

−1
1 + ν

−1
2 )

8π2
.

(2.103)

Finally, in the limit of large magnetic field, gH,1, gH,2 ≫max(g′11, g′22, g12), we have

δgWL = − g2cl
f ′11/g′211 + f12/g212

gH,1

− g2cl
f ′22/g′222 + f12/g212

gH,2

− g2cl
g12 − f12

g12gH,1gH,2

Tϕ

Tϕ + T
, (2.104)

Tϕ

ds
=
g12
8π2
(gH,1ν

−1
1 + gH,2ν

−1
2 ) . (2.105)
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A special case of two weakly coupled quantum dots (g12 ≪ g′11, g′22) with tunneling

contacts ( f ′11 ≪ g′11, f ′22 ≪ g′22, f12 ≪ g12) has been considered recently by Golubev and

Zaikin [59]. While our calculation agrees with that of Ref. [59] in the high temperature

regime T ≫ Tϕ, significant differences appear in the low temperature limit. In partic-

ular, Golubev and Zaikin find a finite dephasing correction to weak localization at zero

temperature, whereas we find no such effect. A similar discrepancy has been found pre-

viously in the context of dephasing from the electron-electron interaction in disordered

metals [7, 76]. In this case the neglect of recoil effects in the influence functional approach

used by Golubev and Zaikin has been identified as the cause of the problem [77]. This

causes an ultraviolet divergence, which does not appear in the perturbation theory, where

it is avoided by the tanh-term in the factor coth(ω/2T)+ tanh ((ε − ω)/2T) that sets the

magnitude of the dephasing correction at low temperatures, see, e.g., Eq. (2.57) and Refs.

[7, 77]. (Neglect of recoil amounts to neglecting the ω-dependence of the argument of

the tanh, which causes this factor to no longer approach zero at large frequencies ω.) We

believe that the discrepancy between our result and that of Ref. [59] has the same origin.

Interaction corrections

The interaction corrections δg int,1 and δg int,2 do not depend on themagnetic field. Hence,

the relevant time scales do not involve gH,1 and gH,2, and we define

τi =
2πħνi
g′ii + g12

, i = 1, 2. (2.106)

Again, we introduce time scales τ± related to τ1 and τ2 as in Eq. (2.92) above. For the first

interaction correction δg int,1 we then find

δg int,1 =
g3
cl

dsg′11g12g′22 ∫ dω ( ∂
∂ω

ω coth
ω

2T
) Im

(τ+ + τ−)/ħ
(1 + iωτ+/ħ)(1 + iωτ−/ħ)

. (2.107)

This result was obtained previously in Ref. [28] for the symmetric case g′11 = g′22, ν1 = ν2

and in Ref. [27] for the case g′11 = g′22 = g12, ν1 = ν2. The frequency integral in Eq. (2.107)
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can be evaluated in terms of digamma functions. We have

∫ dω ( ∂
∂ω

ω coth
ω

2T
) Im [

1

(1 + iωτα/ħ)(1 + iωτβ/ħ)
]

=
2ħ

τα − τβ
[F2 (

ħ
2πTτα

) −F2 (
ħ

2πTτβ
)] , (2.108)

where

F2(x) = ψ(1 + x) + xψ′(1 + x) (2.109)

and ψ(x) is the digamma function [27]. From the asymptotic behavior of F2,

F2(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−γ + π2

3
x − 3ζ(3)x2 + . . . , x ≪ 1,

1 + ln x + 1

12x2 + . . . , x ≫ 1,

(2.110)

with γ the Euler-Mascheroni constant, we obtain the high and low temperature limit of

the interaction correction δg int,1

δg int,1 = −
2g3

cl

dsg′11g12g′22
×

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

τ+ + τ−

τ+ − τ−
ln

τ+

τ−
, T≪ ħ/τ±,

πħ(τ+ + τ−)
6Tτ+τ−

, T≫ ħ/τ±.
(2.111)

The second interaction correction δg int,2 is expressed in terms of interaction-induced

shifts δg′11, δg′22, and δg12 to the conductances g′11, g′22, and g12, respectively, see Eq. (2.21).

In contrast to the interaction correction δg int,1 considered above, the frequency integra-

tions needed to calculate δg′11, δg′22, and δg12 converge only if we account for the finite

(nonzero) capacitances of the quantum dots, see Eq. (2.22). [The integration in Eq. (2.22)

diverges logarithmically if the limit Cii/e2νi → 0 is taken.]

Below we give explicit expressions for the case of a symmetric double dot only, g′11 =

g′22 = g′, f ′11 = f ′22 = f ′, ν1 = ν2, and C = C11 = C22. In this case, the logarithmic divergence

of the integration in Eq. (2.22) is cut off at the inverse of the charge-relaxation times,

τc+ =
τ+

dse2ν/C
, τc− =

τ−

dse2ν/(C + 2C12)
, (2.112)
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and the corrections δg′11 = δg′22 = δg′ and δg12 are found to be

δg′ = g′ − f ′
dsg′

∑
σ=±

τσ

τ+
[F2 (

ħ
2πTτσ

) −F2 (
ħ

2πTτcσ
)] , (2.113)

δg12 =
2(g12 − f12)

dsg12
τ+ − τ−

τ+
[F2 (

1

2πTτ−/ħ
) −F2 (

1

2πTτc−/ħ
)] . (2.114)

For the case g′ = g12, f ′ = f12 and C12 = 0, Eqs. (2.113) and (2.114) agree with results

obtained previously in Ref. [27]. [ The result of Ref. [27] differs from Eqs. (2.113) and

(2.114) if C12 > 0 because Ref. [27] includes cross capacitances between each dot and

adjacent reservoir of the same magnitude as the cross capacitance C12 between the two

dots.] Equation (2.113) simplifies to the renormalization of the contact conductance for a

single quantum dot in the limit g12 →∞ [38, 40, 41]. Again making use of the asymptotic

behavior of the digamma function, we find that the above expressions simplify to

δg′ = − g
′ − f ′
dsg′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
τ+

τc+
+
τ−

τ+
ln

τ−

τc−
, T≪ ħ/τ±,

ln
e1+γ

2πTτc+
+
τ−

τ+
ln

e1+γ
2πTτc−

, ħ/τ± ≪ T≪ ħ/τc±,
πħ

6Tτ+
(
τ+

τc+
+

τ−

τc−
), ħ/τc± ≪ T,

(2.115)

δg12 = −
4(g12 − f12)

dsg12
τ+ − τ−

τ+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
τ−

τc−
, T≪ ħ/τ±,

ln
e1+γ

2πTτc−
, ħ/τ− ≪ T≪ ħ/τc−,

πħ
6Tτc−

, ħ/τc± ≪ T.

(2.116)

2.5.2 Side-coupled quantum dot

For the side-coupled double dot configuration of Fig. 2.12 the structure of the weak local-

ization correction and the interaction corrections is essentially the same as for the linear

configurations. The classical conductance is

g−1cl = g′−111 + g′−112 . (2.117)
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The weak localization correction to the conductance is

δgWL = −
f ′22g′211 + f ′11g′212

(g′11 + g′12)2(g′11 + g′12 + g12 + gH,1)

× {1 +
g212[1 − f (T)]

(g′11 + g′12 + gH,1)(g12 + gH,2) + g12gH,2

} ,

where f (T) = T/(Tϕ + T),

Tϕ

ds
=

1

4π

τ1 + τ2

τ+τ−
g12, (2.118)

and

τ1 =
2πħν1

g′11 + g′12 + gH,1 + g12
, τ2 =

2πħν2
g12 + gH,2

, (2.119)

with τ± given in terms of τ1 and τ2 as in Eq. (2.92).

Again, it is instructive to compare to what one finds to lowest order in perturbation

theory. The result is identical to Eq. (2.94), where τ1, τ2 and Tϕ are those of the side-

coupled system, Eqs. (2.118) and (2.119). Simplified expressions for the function f (T) in

the regimes T≪ ħ/τ+, ħ/τ+ ≪ T≪ ħ/τ−, and ħ/τ− ≪ T are as in Eqs. (2.97)–(2.99).

In the limit of small interdot coupling g12 → 0 only a very small fraction of the weak

localization correction is temperature dependent,

δgWL = −
f ′22g′211 + f ′11g′212

(g′11 + g′12)2(g′11 + g′12 + gH,1)
[1 +

g212
(g′11 + g′12 + gH,1)gH,2

Tϕ

Tϕ + T
] ,

Tϕ

ds
=

g12
8π2
[(g′11 + g′12 + gH,1)ν

−1
1 + gH,2ν

−1
2 ] . (2.120)

In the opposite limit of a large interdot conductance the entire weak localization correc-

tion is temperature dependent. In this limit there is no difference between the linear and

side-coupled configurations, and one finds that δgWL is given by Eq. (2.103) above, with

g′22 replaced by g′12. Finally, in the limit of large magnetic fields we find

δgWL = −
g′212 f ′11 + g′211 f ′22
(g′11 + g′12)2gH,1

(1 +
g212

gH,1gH,2

Tϕ

Tϕ + T
) ,

Tϕ

ds
=

g12
8π2
(gH,1ν

−1
1 + gH,2ν

−1
2 ) . (2.121)
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With a side coupled quantum dot, the interaction correction δg int,1 to the conduc-

tance vanishes. The interaction correction δg int,2 coming from the renormalization of

the contact conductances remains. The detailed expressions are rather lengthy and will

not be reported here.

2.6 Conclusion

Wehave calculated the quantum corrections to the conductance of a network of quantum

dots, including the full dependence on temperature and magnetic field. Our results are

valid in the limit that the quantum dot network has conductance g much larger than the

conductance quantum, so that the quantum corrections are small in comparison to the

classical conductance, and in the limit that the electron dynamics inside each quantum

dot is ergodic. Following the literature, we separated the quantum corrections into the

weak localization correction δgWL and two interaction corrections δg int,1, δg int,2. Our re-

sults for the interaction corrections agree with previous calculations of δg int,1 and δg int,2

by Golubev and Zaikin [27] for a linear array of quantum dots, and are closely related

to similar interaction corrections in a granular metal, see Ref. [26]. Our result for δgWL

agrees with the literature in the limit of zero temperature [57, 58] and in the high temper-

ature limit [67], but we are not aware of a calculation of the full temperature dependence

of δgWL in the literature. (The exception is a calculation of δgWL for a double quantum

dot by Golubev and Zaikin which, however, gives an unphysical result in the limit of zero

temperature [59]).

All quantum corrections to the conductance can be expressed in terms of the inter-

dot conductances, form factors, and the capacitances only. (Capacitances and form fac-

tors play a role only if the dots are connected via non-ideal contacts in which one or
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more transmission eigenvalues are smaller than one. For lateral quantum dot networks

defined in semiconductor heterostructures, contacts can be ballistic, and the only rele-

vant parameters are the quantized conductances of the contacts between the quantum

dots.) This makes a small quantum dot network an ideal model system to compare the-

ory and experiment, as, in principle, these parameters–conductances, form factors and

capacitances–can be measured independently. Agreement between our results and ex-

periments would unambiguously identify the electron-electron interaction as the sole

important source of dephasing at very low, if not the lowest, temperatures. It would add

an experimental result to the discussion about low temperature dephasing, see, e.g., in

Ref. [77]. In this context, agreement between our results and experiments would vindi-

cate the orthodox theory, which predicts the absence of dephasing at zero temperature.

We have formulated our final results in such a way that the evaluation of quantum

corrections for a network of a relatively small numberND of quantum dots does not re-

quire more than the inversion of an ND-dimensional matrix. The simplest example of

a small quantum dot network is a ‘double quantum dot’, which consists of two quantum

dots coupled to each other and to electron reservoirs via point contacts. Several groups

have reported transport measurements on such double dots [25, 78–80], or even on triple

dots [78]. (Double quantum dots also play a prominent role in recent attempts to achieve

quantum computation [81]. However, the dots used in these experiments typically hold

only one or two electrons each and can not be described by random matrix theory.) The

experiments of Refs. [25, 78–80] were performed for quantum dots weakly coupled to

source or drain reservoirs. In that limit, transport is dominated by the Coulomb block-

ade. Our theory applies to the opposite regime in which all dots in the network are open,

i.e., well coupled to source or drain reservoirs. In principle, the contact conductances

in lateral double and triple quantum dot networks are fully tunable, such that the open

regime considered here can be realized. A double dot system with large interdot con-
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ductance is particularly well suited to the comparison of theory to experiment. Equation

(2.103) predicts the weak localization correction’s dependence on temperature to be of the

form Tϕ/(Tϕ +T) and quantifies the dependence of the temperature Tϕ on the dots’ con-

tact conductances. This functional form, andmore saliently the dependence of Tϕ on the

contact conductance, can directly be compared to what is found in experiment. We hope

that the availability of such quantitative predictions will lead to renewed experimental

interest in quantum transport through open quantum dots.
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APPENDIX

Hikami Box calculation

In this appendix we provide details on the derivation of Eqs. (2.70) and (2.71) of Sec. 2.4.

The explicit expression for the Hikami box is an essential part of the calculation of the

quantum corrections to the conductance, but we have not found the explicit expression

of Eq. (2.70), nor its derivation, in the literature.

We refer to the text surrounding Eq. (2.70) for the notations used in this appendix.

In general, the Hikami box Bi j,kl(ω)will be nonzero only if the four indices span at most

two adjacent quantum dots. We here show the calculation of Bii ,ii(ω). There are three

contributions to Bii ,ii(ω), which are shown in Figs. 2.13ii,ii (a)–(c). They read

B
(a)
ii ,ii(ε1, ε

′

1, ε2, ε
′

2) = tr [⟨GR
ii(ε1)⟩⟨G

A
ii(ε

′

2)⟩⟨G
R
ii(ε2)⟩⟨G

A
ii(ε

′

1)⟩]

=
π4ν4i
M3

i
(1 +

iπνi(ε1 − ε′1 + ε2 − ε′2)
2Mi

+ tr [
−2∆i(Mi − ∆i)

(Mi + ∆i)3
+

∆4
i

Mi(Mi + ∆i)4
]) ,

(2.122)

B
(b)
ii ,ii(ε1, ε

′

1, ε2, ε
′

2)

= ( tr [⟨GR
ii(ε1)⟩⟨G

A
ii(ε

′

2)⟩⟨G
R
ii(ε2)])C

RR
ii (ε1, ε2) ( tr [⟨G

R
ii(ε1)⟩⟨G

R
ii(ε2)⟨G

A
ii(ε

′

1)⟩])

= −
π4ν4i
2M3

i
(1 +

g̃ii − g̃H,ii + i2π(3ε1 − 2ε′1 + 3ε2 − 2ε′2)
8Mi

+
1

Mi
tr [

∆3
i − 3M

2
i∆i

(Mi + ∆i)3
]) ,

(2.123)

B
(c)
ii ,ii(ε1, ε

′

1, ε2, ε
′

2)

= ( tr [⟨GR
ii(ε1)⟩⟨G

A
ii(ε

′

2)⟩⟨G
A
ii(ε

′

1)])C
AA
ii (ε

′

2, ε
′

1) ( tr [⟨G
A
ii(ε

′

2)⟩⟨G
R
ii(ε2)⟩⟨G

A
ii(ε

′

1)])

= −
π4ν4i
2M3

i
(1 +

g̃ii − g̃H,ii + i2π(2ε1 − 3ε′1 + 2ε2 − 3ε′2)
8Mi

+
1

Mi
tr [

∆3
i − 3M

2
i∆i

(Mi + ∆i)3
]) ,

(2.124)
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Figure 2.13: Diagrammatic depiction of Hikami boxes. Different diagrams contribute

depending on where the cooperon and diffuson like ladders end and begin.
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where the Mi ×Mi matrix ∆i was defined in Eq. (2.63) above. Traces involving the ma-

trices ∆i can be calculated using the identities

tr [
∆i

(Mi + ∆i)2
] = ∑

k

gik
4Mi

, (2.125)

tr [
∆2

i
(Mi + ∆i)4

] = ∑
k

fik
16M2

i
. (2.126)

Addition of Eqs. (2.122)–(2.124) gives

Bii ,ii(ω) =
π4ν4i
16M4

i
[2πiνiω + 2(g̃H,ii + g̃ii) + f̃ii] , (2.127)

where ω = ε′1 − ε1 + ε
′

2 − ε2.

The diagrams for the relevant contributions to Bi j,kl(ω) in which the indices differ

are shown in the other panels of Fig. 2.13. Expressing these contributions in terms of the

matrices ∆i and performing the traces with the help of Eqs. (2.125) and (2.126), we find

Bi j,i j(ω) =
π4ν2i ν

2
j

16M2
iM

2
j
( fi j − gi j) , (2.128)

Bii ,i j(ω) =
π4ν3i ν j

16M3
iM j
(− fi j) , (2.129)

Bii , j j(ω) =
π4ν2i ν

2
j

16M2
iM

2
j
fi j, (2.130)

for i ≠ j. Other contributions are related by symmetry. Rewriting the general case

Bi j,kl(ω) in terms of the matrices g̃ and f̃ for contact conductances and form factors,

we obtain the result given in Eq. (2.70) of Sec. 2.4.

If a Hikami box is placed adjacent to a lead, one finds the three contributions shown

in Fig. 2.14. Adding these we find, with the help of Eq. (2.126),

B′a j, j j =
π5νaν

4
j

M4
j

tr [WjaWa j
−M3

j∆ j

(M j + ∆ j)4
] = −

π3ν3j

16M3
j
f ′a j. (2.131)

This is the result reported in Eq. (2.71) of the main text.
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Figure 2.14: Diagrammatic depiction of contribution fromHikami boxes placed adjacent

to leads.
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CHAPTER 3

QUANTUM LIMIT OF THE TRIPLET PROXIMITY EFFECT IN HALF-METAL -

SUPERCONDUCTOR JUNCTIONS

3.1 Introduction

The recent experimental observation of the Josephson effect in a half-metallic junction

between two superconducting reservoirs [1] has renewed interest in superconductor–

ferromagnet hybrid devices. The observation of a supercurrent in a half metal is remark-

able, because Cooper pairs in spin-singlet superconductors consist of a pair of electrons

with opposite spin, whereas a half metal conducts electrons of one spin direction only [2–

4]. The resolution of this apparent paradox is the so-called “triplet proximity effect”, first

predicted theoretically by Bergeret, Volkov, and Efetov [5]. (See also Refs. [6–8], as well as

Ref. [9] for a review.) The triplet proximity effect relies on the conversion of spin-singlet

Cooper pairs of electrons with opposite spin into pairs of electrons of equal spin at a spin-

active interface between the superconductor and the half metal [5, 6, 8]. Since pairs of

equal-spin electrons can be transmitted coherently through a half metal, the triplet prox-

imity effect can indeed explain the observation of a Josephson current in the experiment.

Most theoretical studies of the triplet proximity effect were done using the quasi-

classical Green’s function method [5–8, 10–15]. This method is appropriate for systems

in which transport takes place through many conducting channels [16, 17]. For systems

with few channels only, the Green’s function technique should be applied without the

quasiclassical approximation. This, albeit doable [12, 13, 15], can lead to calculations of

significant complexity. Another method that is particularly well suited for few channel

structures is the scatteringmatrix approach. This method has been frequently used in the

context of transport problems involving superconductors (for a review, see [18]). How-
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ever, it has not yet been applied to the triplet proximity effect. It is the goal of the present

article to fill this gap.

In the language of the scattering approach, the triplet proximity effect relies on the co-

herent Andreev reflection of electron-like excitations into hole-like excitations with the

same spin [19]. Conventional Andreev reflection, as it takes place at the interface between

a normal metal and a superconductor, consists of the reflection of an electron into a hole

with opposite spin. "Same spin" and "opposite spin" here refers to the spin band from

which the electron and hole are taken. Since electron and hole from the same spin band

have opposite angularmomentum, conservation of angularmomentum implies that elec-

tron and hole are from opposite spin bands. Hence, Andreev reflection of electrons into

holes from the same spin band requires that the interface between the half metal and the

superconductor is spin active. Examples of appropriate spin active interfaces are a thin

ferromagnetic or half-metallic layer with a polarization that is non-collinear with the half

metal’s polarization or a normal-metal spacer layer with strong spin-orbit scattering.

Our focus is on systems with the fewest number of channels possible, a single con-

ducting channel at the Fermi level. This limit can be achieved by having single chan-

nel contacts between the superconductor(s) and the half metal. As an example of this

limit, we use the scattering theory to address the simplest single channel half-metal–

superconductor (HS) junction that can display triplet proximity effect: a single chan-

nel ferromagnetic or half-metallic ballistic point contact between H and S electrodes.

Béri et al. [20] extended this treatment to cover the more complex situation of HS and

superconductor–half-metal–superconductor (SHS) junctions where the half metal is a

chaotic quantum dot with single-channel point contacts. Here we also study the case

of ballistic devices which have translation invariance along the interfaces. This situation

allows for a single channel description as well, since the translation symmetry ensures
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that different transverse modes do not mix. While the latter system can in principle be

addressed by the quasiclassical Green’s function method, the former, physically single

channel setups are fully quantum mechanical, hence falling outside of the scope of qua-

siclassics.

We use the scattering matrix approach to calculate the differential conductance of an

HS junction, and the (zero-bias) supercurrent in an SHS junction. We find that there is

a remarkable difference between these two observables in the single-channel limit. For a

single-channel half-metal–superconductor junction at zero temperature, the linear con-

ductance vanishes at the Fermi level. The conductance becomes appreciable only if the

applied voltage is comparable to the superconducting gap ∆ or to the Thouless energy of

the junction, whichever is smaller. The Josephson current, on the other hand, proves to

be nonzero at zero temperature. The origin of this different behavior is that the Joseph-

son effect contains information about the entire excitation spectrum of an SHS junction,

whereas the linear conductance is a property that requires knowledge of excitations at

the Fermi-level only.

The remainder of this article is organized as follows. In Sec. 3.2 we outline the key

elements of the scattering approach and its application to HS junctions with a spin-active

superconductor interface. In Secs. 3.3 and 3.4we then apply the scattering theory to trans-

port through anHS junction and to the Josephson effect in an SHS junction, respectively.

We conclude in Sec. 3.5.

3.2 Scattering approach

For a scattering description of the triplet proximity effect, we consider half-metal–

superconductor (HS) junctions that consist of a half metal “end”, a spin-active intermedi-

100



t

r’r

t’

RA

R

H S

Figure 3.1: Composite HS junction consisting of a half-metallic contact (left), a super-

conducting contact (right), and a spin-active intermediate layer (center). In most of our

considerations, the intermediate layer is taken to be ferromagnetic with a magnetization

direction not collinear with the polarization of the half metal. Transport through the HS

junction is described by the scattering matrixR, which is calculated in terms of the An-

dreev reflection matrix RA of an ideal normal-metal–superconductor interface and the

reflection and transmission matrices r, r′, t, and t′ of the non-superconducting region.

101



ate layer, and a superconductor. The intermediate layer may be half-metallic, ferromag-

netic, or normal metallic.

The central object in the scattering approach is the scattering matrixR(ε) of the HS

junction. It relates the amplitudes of excitations at energy ε > 0 propagating towards

the superconductor and excitations propagating away from the superconductor at the

half-metal end of the junction, see Fig. 3.1. If ε is below the superconducting gap ∆, all

excitations must be reflected at the interface with the superconductor. This reflection can

be of normal type (electron-like excitations are reflected as electrons, and hole-like exci-

tations are reflected as holes), or of Andreev type (electron-like excitations are reflected

as holes and vice versa). Both reflection types are contained in the matrix R, which is

made explicit by the decomposition

R(ε) =
⎛
⎜
⎜
⎝

ree(ε) reh(ε)

rhe(ε) rhh(ε)

⎞
⎟
⎟
⎠

, (3.1)

where ree and rhh are matrices that describe normal reflection, whereas reh and rhe de-

scribe Andreev reflection. All four matrices have dimension N, the number of propagat-

ing modes at the Fermi level in H. Note that the propagating modes in H are not spin

degenerate. Below, we will use the polarization direction of H as the spin quantization

axis and refer to the electrons with spin parallel to the polarization direction of H as “spin

up”.

Knowledge of the scattering matrixR is sufficient to calculate the conductance of an

HS junction, as well as the Josephson current in an SHS junction. The zero temperature

differential conductance of an HS junction reads [21, 22]

G(eV) = 2e2
h

Tr r†
he
(eV)rhe(eV). (3.2)

(The factor of 2 accounts for the doubling of the current by the conversion of an electron

into a hole.) An SHS junction can be viewed as two HS junctions opposed to each other,
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S H S

Figure 3.2: Schematic drawing of an SHS junction. In the scattering approach, an SHS

junction is seen as two opposing (composite) HS junctions, with scattering matricesR′
andR, respectively. In the calculations of Sec. 3.4.1, scattering phase shifts from the cen-

tral half-metallic part are included intoR′.
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see Fig. 3.2. Denoting the scattering matrix corresponding to the second junction asR′,

the Josephson current reads [23]

I = −
2ekBT

ħ
d

dδϕ

∞

∑
n=0

ln det[1 −R′(iωn)R(iωn)], (3.3)

where ωn = (2n + 1)πkBT are the Matsubara frequencies, and δϕ is the phase difference

between the two superconductors.

In principle, the explicit calculation of R requires a solution of the Bogoliubov-de

Gennes equation for the full HS junction. Here, we take a different approach [24], and

expressR in terms of the scatteringmatrix S of the non-superconducting region – that is,

the intermediate layer and the half metallic region combined – and the reflection matrix

RA for Andreev reflection off an ideal normal-metal–superconductor interface. Using

the same block structure as in Eq. (3.1), it reads

RA = α(ε)

⎛
⎜
⎜
⎝

0 iσ2e iϕ11NS

−iσ2e−iϕ11NS
0

⎞
⎟
⎟
⎠

, (3.4)

where NS is the number of propagating spin-degenerate orbital modes at the Fermi level

at the superconductor interface and σ2 is the Pauli matrix acting in spin space, ϕ is the

phase of the superconducting order parameter, and

α(ε) = e−i arccos(ε/∆). (3.5)

The scattering matrix S has the structure

S =
⎛
⎜
⎜
⎝

S(ε) 0

0 S(−ε)∗

⎞
⎟
⎟
⎠

, (3.6)

where S(ε) is the scattering matrix describing the scattering of electron-like excitations

off the non-superconducting region. The scattering matrix S(ε) can be further divided

into transmission and reflection blocks,

S =

⎛
⎜
⎜
⎝

r t′

t r′

⎞
⎟
⎟
⎠

, (3.7)
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where r describes reflection for electrons coming fromH, r′ describes reflection for elec-

trons coming from the superconductor interface, and t and t′ describe transmission from

and to H. The matrices r and r′ have dimension N and 2NS, respectively. Solving for the

total scattering matrixR in terms ofRA and S, one then finds

ree = r + α2t′σ2r′∗σ2(1 − α2r′σ2r′∗σ2)−1t , (3.8a)

reh = ie iϕαt′σ2(1 − α2r′∗σ2r′σ2)−1t∗ , (3.8b)

rhe = −ie−iϕαt′∗σ2(1 − α2r′σ2r′∗σ2)−1t , (3.8c)

rhh = r∗ + α2t′∗σ2r′σ2(1 − α2r′∗σ2r′σ2)−1t∗. (3.8d)

Here we suppressed the energy arguments; the complex conjugate matrices in Eq. (3.8)

should be taken at energy −ε.

In the scattering matrix approach, a necessary condition for the superconducting

proximity effect is to have a nonvanishing rhe. For an HS junction, having a nonzero

rhe is not automatic: In the absence of spin-flip scattering in the intermediate layer, an

electron coming from H is Andreev reflected as a spin-down hole. This cannot re-enter

the half metallic contact; it is reflected from the half metal instead, upon which it is An-

dreev reflected once more to return as a spin-up electron. Andreev reflection can occur

only if the intermediate layer is spin active, that is, its scattering matrix is not diagonal

in the spin up/down basis of the half-metallic contact. Such anomalous Andreev reflec-

tion, in which a spin-up electron coming from the half-metallic contact is reflected as

a spin-up hole, is the key to the triplet proximity effect. Examples of spin active layers

that make this possible are a ferromagnet with a magnetization direction not collinear

with the polarization of the half metal, a normal metal with strong spin-orbit coupling,

or a half-metallic spacer layer with a different polarization direction and thin enough that

there is nonzero transmission of minority electrons through evanescent modes.

In the next two sections we use the scattering theory to calculate the conductance of
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an HS junction and the Josephson current in an SHS junction.

3.3 HS junctions

3.3.1 General considerations

The scattering matrixR(ε) obeys particle-hole symmetry,

R(ε) = Σ1R(−ε)∗Σ1, (3.9)

where Σ1 is the first Pauli matrix acting in electron-hole space. For the special case N = 1,

this symmetry, in combination with the condition thatR(ε) is unitary, leads to the con-

dition that either ree = 0 or reh = 0 at the Fermi level ε = 0. As we show in the appendix to

this chapter generically one has reh(0) = 0, although the possibility ree(0) = 0 does occur

for certain special choices of the spacer layer. The case N = 1 is relevant for the case that

the contact to the half metal has only one propagating mode at the Fermi level or, alter-

natively, for the case that there is perfect translation symmetry in the transverse direction

so that different orbital modes do not mix. To the best of our knowledge, the observation

that Andreev reflection at the Fermi level is absent for single-mode HS junctions has not

been made before. It presents a qualitative difference compared to FS junctions in which

both spin directions can propagate.

In the general theory of Sec. 3.2 the spin quantization axis is taken to be the polariza-

tion direction of the half metal. Fixing the spin polarization axis still allows for rotations

around that axis. For the scattering matrices appearing in the theory, such a rotation is
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represented by the transformation

S →

⎛
⎜
⎜
⎝

e iψ/2 0

0 e iψσ3/2

⎞
⎟
⎟
⎠

S

⎛
⎜
⎜
⎝

e−iψ/2 0

0 e−iψσ3/2

⎞
⎟
⎟
⎠

, (3.10)

where S is the scattering matrix of the non-superconducting region, see Eq. (3.6), the

block structure is that of Eq. (3.7), and ψ is the (azimuthal) angle of the rotation. Sub-

stituting this transformation into the expression (3.8) for R, one concludes that such a

rotation has the same effect onR as a change of the superconducting order parameter ϕ

as

ϕ → ϕ + ψ. (3.11)

A consequence of this observation is that, if the intermediate layer is ferromagnetic or

half metallic with a polarization along the unit vector

m = (sin θ cosψ, sin θ sinψ, cos θ)T, (3.12)

which makes an angle θ with the polarization direction of the half-metallic contact,R is

a function of the difference ϕ−ψ only. (Here, and in what follows, the polarization of the

halfmetal is taken to be along the z axis.) This observation, whichwill be important in our

discussion of the Josephson effect in SHS junctions below, was first made by Braude and

Nazarov, using the quasiclassical approach [10]. Here, it appears as a natural consequence

of the transformation rules of the scattering matrix under rotations.

3.3.2 HS junction with ferromagnetic spacer

As a first and simplest application of the theory, we consider an HS junction for which

the intermediate layer is a ferromagnet. The ferromagnet’s magnetization points along

the unit vector given in Eq. (3.12). We take the interfaces on both sides of the ferromag-

netic spacer layer F to be ideal and assume that the electronmotion in F is ballistic. In that
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case, different orbital modes decouple, and one can use an effective single-mode descrip-

tion for each orbital mode µ separately. We also assume that the thickness of F is short in

comparison to the superconducting coherence length ξS = ħvF/∆ (vF is the Fermi veloc-

ity), so that the energy-dependence of the scattering matrix S can be neglected, and we

assume that the magnetic flux through F is small in comparison to the flux quantum, so

that the orbital motion is time-reversal symmetric.

For this system, the calculation of S requires the composition of the 4 × 4 scattering

matrix of the ballistic ferromagnetic spacer layer,

SF =

⎛
⎜
⎜
⎝

0 U

U 0

⎞
⎟
⎟
⎠

, U = e i(η+ρm⋅σ)/2, (3.13)

and the 3× 3 scattering matrix SH of the ideal interface between the half-metallic contact

and the ferromagnetic spacer layer,

SH =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0

1 0 0

0 0 e iβ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.14)

In the above expressions, σ is the vector of Paulimatrices (acting in spin space), ρ = ν↑−ν↓

is the difference of the phase shifts of majority andminority electrons in F upon propaga-

tion through the spacer layer, and η = ν↑+ν↓. In Eq. (3.14), β is the phase shift spin-down

electrons experience upon reflection from the half metallic contact. The three phases ρ,

η, and β depend on the orbital mode µ. We have suppressed the mode dependence here,

but will restore it in the final expression, Eq. (3.16) below. The block structure of SF is as

in Eq. (3.7). The same is true for SH, where the lower right 2 × 2 submatrix corresponds

to the lower right block in Eq. (3.7).

Combining Eqs. (3.13) and (3.14) to calculate S, and then using Eq. (3.8) to findR, we
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obtain

R(ε) = α2

1 + α2 sin2 ρ sin2 θ

⎛
⎜
⎜
⎝

e−iβ(cos ρ + i sin ρ cos θ)2 −2i(ε/∆)e i(ϕ−ψ) sin θ sin ρ

−2i(ε/∆)e i(ψ−ϕ) sin θ sin ρ e iβ(cos ρ − i sin ρ cos θ)2

⎞
⎟
⎟
⎠

.

(3.15)

Substituting Eq. (3.5) for α and summing over all orbital modes µ, we conclude that the

differential conductance of a short ballistic HFS junction is

G(ε) =
2e2
h ∑µ

4ε2 sin2 θ sin2 ρµ

∆2(1 − sin2 θ sin2 ρµ)
2 + 4ε2 sin2 θ sin2 ρµ

, (3.16)

where the summation is over the orbital modes in the HS junction.

This simple result illustrates the two main properties of the triplet proximity effect in

HS junctions: First, Andreev reflection is possible as soon as there is a spacer layer that

breaks spin-rotation symmetry around the half-metal’s polarization direction, provided

the electron’s spin precesses by an angle different from 0 or π. [In Eq. (3.16) this translates

to the requirement that sin θ ≠ 0 and sin ρµ ≠ 0.] And, second, in the absence of orbital

mode mixing, G = 0 at the Fermi level, except for very special choices of the thickness

(proportional to ρµ) and magnetization direction of the spacer layer. In the present case,

these special choices are angles θ and ρµ for which sin2 θ = sin2 ρµ = 1. In that case, one

finds G = (2e2/h)M, where M is the number of modes with sin2 ρµ = 1.

Unlike the quasiclassical approach, the scattering approach can also deal with systems

in which the number of orbital modes is small. The simplest way to illustrate this is to

consider the contribution of one orbital mode; in this case, the result in Eq. (3.15) and the

corresponding term in Eq. (3.16) describe a single mode ballistic ferromagnetic quantum

point contact between the half-metal and the superconductor. In Fig. 3.3 we show the

differential conductance of such an HS quantum point contact for a few representative

values of the ferromagnet parameters ρ and θ. Both features mentioned are clearly seen:

the conductance decreases with sin2 θ and sin2 ρ, and it vanishes at the Fermi energy.
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Figure 3.3: The subgap differential conductance G versus the applied voltage V for a

ballistic single mode HS quantum point contact. The small grey rectangle in the contact

represents a region with a different magnetization than in the half-metallic part. Phys-

ically such a region can be present due to a misaligned magnetization at the half-metal

surface [14]. In our calculations this corresponds to the ferromagnetic spacer layer. The

curves correspond to different values of the phase angles in the ferromagnetic spacer,

θ = 0.8 and ρ = 0.9 (dashed curve), θ = 1.4 and ρ = 1.2, (dash-dotted curve), and θ = 1.56

and ρ = 1.53 (dotted curve).
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3.3.3 HS junction with half-metallic spacer

If the spacer layer between the half-metallic reservoir and the superconductor is not a

ferromagnet, but a half metal, transmission through the minority channel is via evanes-

cent modes, not propagating waves. The scattering matrix of the spacer layer, which was

given by Eq. (3.13) for the case of a ferromagnetic spacer, now reads

SH′ = e−iσzψ/2e−iσyθ/2S′e iσyθ/2e iσzψ/2, (3.17)

where

S′H′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 e iν↑ 0

0 −ie iν↓
√
1 − τ 0 e iν↓

√
τ

e iν↑ 0 0 0

0 e iν↓
√
τ 0 −ie iν↓

√
1 − τ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.18)

The (mode-dependent) phase shift ν↓ and transmission coefficient τ for minority elec-

trons are functions of the wavefunction decay rate q and effective massm↓ of the evanes-

cent minority electron wavefunctions, the velocity v of the majority electrons, and the

thickness d of the half-metallic spacer layer. If qd ≫ 1, the minority electron phase shift

ν↓ becomes independent of the layer thickness d,

− ie iν↓ = e iβ = v − iħq/m↓
v + iħq/m↓

, (3.19)

whereas the transmission coefficient τ ∝ e−2qd and ν↑ = m↑vd/ħ, wherem↑ is the effective

mass of majority electrons. [The phase shift β is the reflection phase forminority electron

reflection off a half-infinite half metal, see Eq. (3.14) above.]

With the definitions ρ = ν↑ − ν↓ and η = ν↑ + ν↓, we then find that the conductance of

an HS junction with a half-metallic spacer is

G =
2e2
h ∑µ

4ε2∆2τµ [sin ρµ + (1 − τµ)
1/2 sin ηµ]

2
sin2 θ

(B0∆
2 − B1ε

2)2 + 4B2
2ε

2(∆2 − ε2)
, (3.20)
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where we abbreviated

B0 = [sin ρµ cos θ + (1 − τµ)
1/2 sin ηµ]

2 + [cos ρµ + (1 − τµ)
1/2 cos ηµ]

2,

B1 = 2 + (1 + cos2 θ) (1 − τµ) + 2(1 − τµ)
1/2 cos(ηµ − ρµ)(1 + cos θ),

B2 = 1 + (1 − τµ)
1/2 cos(ηµ − ρµ)(1 + cos θ) + (1 − τµ) cos θ,

and restored the summation over the orbital modes µ. For τµ close to unity, this ex-

pression simplifies to the Andreev conductance for an HS junction with a ferromagnetic

spacer, Eq. (3.16) above. For small energies one may neglect the terms proportional to ε2

and ε4 in the denominator, and we find that G ∝ ε2τ. Since the transmission coefficients

τµ are exponentially small if qµd ≫ 1, the conductance is dominated by the transverse

mode µ with the lowest qµ.

Similar to the case of ideal transmission, there is a special set of parameters at which

the conductance becomes large, independent of transmission. This occurs when the co-

efficient B0 = 0 in Eq. (3.20), so that the denominator in that equation vanishes at ε = 0.

The condition B0 = 0 translates to

cos ρµ = −(1 − τµ)
1/2 cos ηµ ,

sin ρµ cos θ = −(1 − τµ)
1/2 sin ηµ . (3.21)

Solutions of Eq. (3.21) satisfy the relation sin2 ρµ sin
2 θ = τµ, which generalizes the con-

dition for resonance found for a ferromagnetic spacer layer (corresponding to τµ = 1).

Since ν↓µ = (ηµ − ρµ)/2 is a material property if qµd ≫ 1, see Eq. (3.19) above, ρµ and ηµ

are not independent in that limit. For a specific half metallic material and in the limiting

case qµd ≫ 1, the relevant solution of Eq. (3.21) then becomes (ρµ + ηµ)/2 = ν↑µ = π/2 ∣π∣

and θ → π. Since ν↑µ is a function of the thickness d of the spacer layer, not a material

property, this condition can always be satisfied for special values of d. If a mode satisfies
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the conditions (3.21), its contribution to the conductance is

Gres,µ =
2e2
ħ

4∆2τ2µ

4∆2τ2µ + ε
2 {[1 − cos θ + τµ(1 + cos θ)]

2 − 4τ2µ}
. (3.22)

At zero energy, one finds perfect Andreev reflection irrespective of τµ. As before, the

contribution of a single orbital mode in Eqs. (3.20), (3.22) describes the differential con-

ductance of a single mode quantum point contact with a misaligned half metallic surface

layer at the constriction, the analogue of the setup sketched in Fig. 3.3.

3.4 SHS junctions

We now contrast the transport current through an HS junction to the supercurrent

through an SHS junction. As in the previous section, we consider the effect of a thin

ferromagnetic layer between each superconductor and the adjacent half metal. (We do

not consider the case of a thin half-metallic spacer layer in this section.) While, at zero

temperature, the zero-bias conductance of a single single-channel HS junction vanishes

(except at special choices of the parameters), the zero temperature Josephson current I is

not zero. The reason is that, in contrast to the linear response conductance G, I is not a

Fermi level property. Instead, it is determined by the full excitation spectrum.

In order to apply the theory of the previous sections, we consider the SHS junction

as two opposing HS junctions, see Fig. 3.2. We refer to the opposing HS junction as S’H.

Both junctions have intermediate ferromagnetic layers, which are denoted by F and F’.

The two ferromagnets can have different magnetizations, parameterized by polar angles

θ, ψ and θ′, ψ′, respectively. The superconductors S and S’ are assumed to have equal

superconducting gaps ∆, but the phases ϕ, ϕ′ of the order parameters can differ.

Before turning to applications of our scattering theory, it is worthwhile to summarize

113



some general considerations. Because of the transformation property (3.11), the Joseph-

son current I can depend on the superconducting phases ϕ and ϕ′ and on the azimuthal

angles ψ and ψ′ through the single combination

ϕ̃ = ϕ − ϕ′ − (ψ − ψ′) (3.23)

only. This observation was made previously in the context of the quasiclassical ap-

proach [10, 11, 14].

Under the operation of time reversal, the phases of the superconductors and the (po-

sition dependent) magnetization direction m transform as ϕ → −ϕ, m → −m. The su-

percurrent of the time reversed system is the opposite of the original, that is,

I(ϕ − ϕ′,m) = −I(ϕ′ − ϕ,−m). (3.24)

The supercurrent is invariant under a position independent rotation of the magnetiza-

tion. This, together with Eq. (3.24) results in I(ϕ̃) = −I(−ϕ̃).

For phase angles not close to the special point sin2 θ = sin2 θ′ = sin2 ρ = sin2 ρ′ = 1,

the Andreev reflection probability at the SH interfaces is significantly smaller than unity

[see Eq. (3.15) above]. As a consequence, the ϕ̃-dependence of the supercurrent is nearly

sinusoidal in this case. The detailed calculations of the next section show, however, that

close to the special values of the phase angles the ϕ̃-dependence becomes non-sinusoidal.

As an illustration of our scattering theory, we now consider the ballistic junctions

addressed in the previous section. Our work on the Josephson effect in ballistic junctions

complements that of Galaktionov et al., who used a Green function approach [15].
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3.4.1 SHS junction with ferromagnetic spacer

For the ballistic SHS junction different orbital modes are not mixed, so that the scatter-

ing problem is effectively one-dimensional. As before, we denote the difference of the

(mode-dependent) phase shifts of majority and minority electrons transmitted through

F by ρ, see Eq. (3.13); The corresponding quantity for F’ is denoted by ρ′. We suppress the

mode index µ, except in the final expressions. For the calculation of the supercurrent, it

is necessary that phase shifts accumulated inside the half metal are included into the de-

terminant in Eq. (3.3). For an orbital mode µ these phase shifts depend on the length L of

the half-metallic segment and on the longitudinal component kµ(ε) = kµ(0)+ ε/(ħvµ) of

the wave vector for that mode, where vν is the group velocity of the mode at kµ(0). In or-

der to include this into Eq. (3.3) we take the scatteringmatrixR′ to include the scattering

phase shifts accumulated inside the half metal,

R′ =
⎛
⎜
⎜
⎝

e ikµ(ε)L 0

0 e−ikµ(−ε)L

⎞
⎟
⎟
⎠

R̃′
⎛
⎜
⎜
⎝

e ikµ(ε)L 0

0 e−ikµ(−ε)L

⎞
⎟
⎟
⎠

,

(3.25)

where R̃′ is the reflection matrix for the S’H junction without the scattering phases from

the half metal. This matrix is given in Eq. (3.15) of the previous section, but with θ, ψ, ϕ,

and ρ replaced by θ′, ψ′, ϕ′, and ρ′, respectively.

Since there is a probability of normal reflection at each end of the SHS junction, for

a given orbital mode, the contribution to the supercurrent contains terms that oscillate

with the length L of the junction. For the total supercurrent, obtained by summing the

contributions from different orbital modes, however, this results only in a small correc-

tion, provided that kµ(0)L≫ 1, since in this case, the sum of the oscillating contributions

averages out. Below, we calculate the non-oscillating contribution to the Josephson cur-

rent for a given orbital mode, and restrict our discussion to the limiting cases of a “short
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junction” (L ≪ ξS) and a “long junction” (L ≫ ξS). (In both cases, we assume that the

ferromagnetic spacer layers are thin in comparison to the superconducting coherence

length ξS. The same assumption was made in the previous section.)

For a short junction, one may neglect the energy-dependence of the wavenumber

kµ(ε) in the half metal. A closed-form expression valid for arbitrary temperatures could

be obtained for the special case sin2 θ = sin2 θ′ = 1 for a mode µ with sin2 ρµ = sin
2 ρ′µ = 1

only. The contribution Iµ to the supercurrent of such a mode is

Iµ = −
e∆
2ħ

cos
ϕ̃ + sµπ

2
tanh(

∆

2kBT
sin

ϕ̃ + sµπ
2
) , (3.26)

where sµ is defined through the relation

(−1)sµ = sin ρµ sin ρ
′

µ . (3.27)

The π shift in the current-phase relationship associatedwith sµ originates in the properties

of the interface reflection matrix (3.15): for this matrix, the transformation ρ → ρ + π is

equivalent to ϕ → ϕ + π.

In the limit of high temperatures kBT≫ ∆, one can find a closed-form expression for

arbitrary values of θ, θ′, ρ, and ρ′. Upon summation over all orbital modes, one has

I = −∑
µ

e
ħ

∆2

8kBT
sin ϕ̃ sin ρµ sin ρ

′

µ sin θ sin θ
′. (3.28)

Note that although the angles ρµ, ρ
′

µ are mode dependent, for sufficiently thin spacer lay-

ers themode dependence is weak enough that all modes contribute to the total Josephson

current with the same sign. The supercurrent is reduced once the thickness of the spacer

layers is large enough that ρµ, ρ
′

µ ≫ 1.

A numerical evaluation of the contributions to the zero-temperature supercurrent is

shown in Fig. 3.4 for a few choices of the angles θ, θ′, ρ, and ρ′. Although the discontinu-

ity at ϕ̃ = sπ is smeared for generic values of the phase angles, the order of magnitude of
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Figure 3.4: The contribution of a single transverse mode to the zero temperature su-

percurrent I of a short SHS junction, as a function of ϕ̃, for ferromagnetic phase angles

θ = θ′ = ρ = ρ′ = π/2 (solid), θ = θ′ = ρ = ρ′ = π/4 (dot-dash), and θ = θ′ = π/2,

ρ = ρ′ = π/4 (dashed). The supercurrent is shown in units of Ishort = e∆/ħ.
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the supercurrent is the same as at the special point sin2 θ = sin2 θ′ = sin2 ρ = sin2 ρ′ = 1.

This is in contrast to the Fermi-level conductance of an HS junction, which was zero for

generic phase angles and finite at the special point. As discussed above, the reason why

the supercurrent has a different behavior is that it is not a Fermi-level property but, in-

stead, depends on the entire excitation spectrum. For energies far away from the Fermi

level, the Andreev conductance is not qualitatively different at the special point and else-

where, see Fig. 3.3.

For a long SHS junction (but still with ferromagnetic spacer layers that are much

thinner than ξS), again a compact expression at arbitrary temperatures could be obtained

for the special case sin2 θ = sin2 θ′ = 1, for the contribution Iµ of a mode µ with sin2 ρµ =

sin2 ρ′µ = 1 only. In this case one finds

Iµ = −
e
ħ
2kBT∑

n

sin(ϕ̃ + sµπ)
cosh(2ωnL/ħvµ) − cos(ϕ̃ + sµπ)

, (3.29)

where sµ was defined in Eq. (3.27). At zero temperature the summation can be replaced

by an integration and one has

Iµ =
evµ[ϕ̃ − (1 − sµ)π]

2πL
, 0 < ϕ̃ + sµπ < 2π. (3.30)

In the limit of high temperatures, T ≫ ħvµ/L, only the term with n = 0 contributes, so

that

Iµ = −
e
ħ
4kBTe−2πkBTL/ħvµ sin(ϕ̃ + sµπ). (3.31)

The special point sin2 θ = sin2 θ′ = sin2 ρ = sin2 ρ′ = 1 is singular, however, and the

supercurrent contributions have a qualitatively different dependence on temperature for

generic θ, θ′, ρ, and ρ′. In the high-temperature regime ħvµ/L≪ kBT≪ ∆, one finds

I = −
e
ħ
16π2k3

B
T3

∆2
∑
µ

sin ρµ sin ρ
′

µ sin θ sin θ
′ sin ϕ̃

×
e−2πLkBT/ħvµ

(1 − sin2 ρµ sin
2 θ) (1 − sin2 ρ′µ sin

2 θ′)
, (3.32)
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Figure 3.5: The contribution of a single transverse mode to the non-oscillating compo-

nent of the zero temperature supercurrent I of a long SHS junction, as a function of ϕ̃,

for ferromagnetic phase angles θ = θ′ = ρ = ρ′ = π/3 (solid) and θ = θ′ = ρ = ρ′ = π/4

(dashed). The current is shown in units of Ilong = eħ2v3µ/πL3∆2, where vµ is the mode-

dependent longitudinal velocity.
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This result is a factor ∼ (kBT/∆)2 ≪ 1 smaller (per orbital mode) than the contribution

for the special choice of the angles θ, θ′, ρ, and ρ′ in Eq. (3.31). Whereas the supercur-

rent of a short Josephson junction depends on the full subgap excitation spectrum of

the junction [25], the supercurrent in the long junction limit is determined by the junc-

tion’s excitation spectrum up to the Thouless energy ħvF/L only [23]. In this range of the

spectrum, the absence of Andreev reflection at the Fermi energy still strongly affects the

magnitude of the supercurrent. For temperatures below the Thouless energy ħvF/L the

suppression factor with which Iµ is reduced in comparison to the special case of Eq. (3.29)

saturates around (ħvF/L∆)2. No closed-form expressions for Iµ at arbitrary temperatures

could be obtained. Figure 3.5, shows Iµ versus ϕ̃ at zero temperature, for two choices of

the parameters θ, θ′, ρ, and ρ′.

3.5 Conclusion

For the conventional proximity effect, the possibility of Andreev reflection of elec-

trons at the Fermi level gives a nonzero linear conductance through a normal-metal–

superconductor interface. In this article, we found that the situation is more delicate for

the triplet proximity effect in half-metal–superconductor (HS) junctions. In the case that

there is only one conducting channel at theHS interface, or that different orbital channels

at the HS interface decouple, we found that Andreev reflection processes can be present

only away from the Fermi level (except for special choices of the interface parameters).

While this result, which is independent of the nature of the spin active spacer layer in the

HS junction, leads to a vanishing linear conductance, it allows for a nonzero Josephson

current through an effectively single-channel SHS junction. Wehave illustrated this state-

ment on systems both in the quasiclassical and in the fully quantummechanical regimes.

In our calculations we have mainly concentrated on the case of ferromagnetic spin active
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intermediate layers.

First, we have calculated the zero temperature differential Andreev conductance at

finite bias for short HS junctions. This is the observable in which the present Andreev

reflection processes manifest themselves in the most direct way. In addition to the cal-

culation of the differential conductance for systems with ferromagnetic spacer layer, we

also studied ballistic systems where the spacer is a thin half metallic layer.

Second, we calculated the zero bias Josephson current through SHS junctions. We

have confirmed the observation, reported in earlier works [10, 11, 14], that the Joseph-

son current depends on the superconducting phase through the single variable ϕ̃ =

ϕ − ϕ′ − (ψ − ψ′) only, which is the difference of the superconductor phase difference of

two superconducting reservoirs and the azimuthal angle differences of themagnetization

direction of the two ferromagnetic spacer layers in the SHS junction. In the framework

of the scattering matrix approach, this observation follows directly from the fact that the

phase of the superconductor and the azimuthal angle of the ferromagnetic spacer at an

HS interface enter in identical ways in the calculation of the Andreev reflection ampli-

tude. Further symmetry considerations showed that the supercurrent is an odd function

of the variable ϕ̃. Similarly to earlier works [10, 11, 14, 15], we also find that for symmetric

ferromagnetic spacers, ψ = ψ′, ρ = ρ′, θ = θ′, the sign of the current is the opposite to the

case of conventional SNS junctions (see Figs. 3.4 and 3.5). Consequently, the equilibrium

phase difference corresponds to ϕ − ϕ′ = π, i.e., a π-junction behavior is realized. For

independent configurations in F and F’, the equilibrium phase difference varies continu-

ously as the function of interface parameters.

It is worthwhile to compare our results for the Josephson current in single channel

SHS systems to the result for a single channel SNS systems. In the latter case, at zero

temperature and in the absence of magnetic field, for a perfectly transparent normal re-
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F S

Figure 3.6: Sketch of a possible experimental setup for testing the vanishing Andreev

reflection at the Fermi level: a single channel quantum point contact to an FS junction.

The arrow in the quantum point contact indicates that the point contact transmits only

one spin direction.
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gion, the (per spin) Josephson current is given by [25] I = (e∆/2ħ) sin(ϕ/2), for short

junctions and [26] I = evFϕ/2πL for long junctions, where ∣ϕ∣ < π. We found [see

Eqs.(3.30) and (3.26)] that in the case of single channel SHS systems, in the special point

sin2 θ = sin2 θ′ = sin2 ρ = sin2 ρ′ = 1, the current-phase relation is identical, apart from

the phase shifts due to the azimuthal angles and s. Away from the special point, the

current-phase relation becomes sinusoidal, similar (apart from the phase shifts) to the

case of a normal region with low transparency. By adjusting the interface parameters,

the single mode triplet Josephson current interpolates between the result for the con-

ventional Josephson current through an ideal single mode channel and through a tun-

nel barrier. The key property that distinguishes the current phase relation in the triplet

Josephson effect through single mode structures from the conventional Josephson effect

is the magnetization dependent phase shift. This is a feature that is common between the

fully quantum mechanical single channel limit and the multi mode case corresponding

to the quasi-classics.

We end by relating our results about HS junctions to a possible experiment. One

experimental setup could be the HS quantum point contact sketched in Fig. 3.3. Such a

setup is somewhat subtle, as it relies on the presence of a surface magnetization in the

point contact. The generality of our proof in the appendix suggests, however, that the

main features of the single channel HS conductance, i.e., G = 0 at Fermi level and G ≠ 0

for 0 < eV < ∆ could be tested in an experimentally more robust arrangement. Such a

setup could be a single channel point contact to an FS junction, as sketched in Fig. 3.6. It

is not necessary to have the system in the short junction limit, and there can be arbitrary

number of modes at the ferromagnet-superconducting interface. The only important

detail is that the junction ends in a single mode point contact through which only one

spin direction can be transmitted. This can be achieved using a half metallic electrode or

with a spin filtering quantum point contact [27].
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APPENDIX

Absence of Andreev reflection for single-mode HS junctions

In this appendix we prove that, generically, the Andreev reflection amplitude rhe(0) = 0

for a junction with N = 1 orbital modes in the half metallic side. The number of modes

on the superconducting side can be arbitrary. The starting point of the proof is the sin-

gular value decomposition of the scattering matrix S of the non-superconducting region

between the half-metallic and superconducting reservoirs [18],

S =

⎛
⎜
⎜
⎝

V 0

0 W

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

R̂ T̂T

T̂ −R̂′

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

V′ 0

0 W′

⎞
⎟
⎟
⎠

. (3.33)

Here, V and V′ are N × N unitary matrices, W and W′ are unitary matrices of dimen-

sion 2NS, NS being the number of orbital channels at the normal-metal–superconductor

interface, T̂ is an 2NS ×N matrix with

T̂kl = δkl
√
τl , k = 1, . . . , 2NS , l = 1, . . . , N, (3.34)

with τl the lth transmission eigenvalue, l = 1, . . . , N, and

R̂ =

√

11N − T̂
TT̂, R̂′ =

√

112NS
− T̂T̂T . (3.35)

Substituting the decomposition (3.33) in Eq. (3.8c), and assuming det(112NS
+ r′σ2r′∗σ2) ≠

0, one finds

rhe(0) = −e−iϕV∗T̂T (Z† − R̂′Z∗R̂′)
−1
T̂V′ (3.36)

with Z = W′∗σ2W. If N = 1, the amplitude rhe(0) is proportional to the 11 element

of the inverse in (3.36). Using the general result A−1 = (det A)−1adj(A) for the matrix

inverse, we find that this element is proportional to the determinant of an antisymmetric

matrix of dimension 2NS − 1, and is therefore zero. The case rhe(0) ≠ 0 is possible if
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det(112NS
+ r′σ2r′∗σ2) = 0, that is, if the system has an Andreev bound state at ε = 0 that is

not coupled to the mode in the half metal. For the ballistic HS system in Sec. 3.3.2,

det(112NS
+ r′σ2r′∗σ2) = 1 − sin2 ρ sin2 θ, (3.37)

resulting in sin2 ρ = sin2 θ = 1 to be the only points where rhe(0) can be nonzero.
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CHAPTER 4

ENHANCED TRIPLET ANDREEV REFLECTIONOFF A DOMAINWALL IN A

LATERAL GEOMETRY

4.1 Introduction

A normal metal inherits superconducting properties if it is in electrical contact to a su-

perconductor. This “superconductor proximity effect” is mediated by Andreev reflection

[1], the process in which an electron incident from the normal metal is reflected as a hole

at the normal-metal–superconductor interface. As phase coherence between the electron

and the Andreev reflected hole is preserved over long distances ∼ ħvF/T, where vF is the

Fermi velocity and T the temperature, superconducting correlations extend deep into the

normal metal.

At the interface between a ferromagnet and a superconductor, majority electrons

(electronswith their spin parallel to themagnetization directionm) areAndreev reflected

as minority holes and vice versa.1 With the relative phase betweenmajority electrons and

minority holes now set by the exchange energy of the ferromagnet instead of the much

smaller excitation energy of electron and hole, the proximity effect becomes effectively

short-range in a ferromagnet. The situation is even more extreme in a half metal, a ma-

terial in which only majority charge carriers exist. At a half-metal–superconductor in-

terface Andreev reflection of majority electrons is strongly suppressed, simply because of

the absence of minority holes.

It was realized by Bergeret et al. [2] (see also Ref. [3]) that the situation is entirely

different if spin-rotation symmetry around the (mean)magnetization direction at the su-

1We here exclude interfaces between ferromagnets and superconductors with unconventional order

parameters in which the Cooper pairs are not spin singlets.
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perconductor interface is broken: In that case, majority electrons may be reflected as ma-

jority holes. The (odd-frequency) “triplet proximity effect” that results from such “spin-

flip” Andreev reflection can penetrate ferromagnets or half metals the same distance as

the standard proximity effect penetrates normal metals [4]. Various experiments have

hinted at the existence of this effect [5–8], the most striking of which is the observation

of a Josephson current through a µm long link of the half metal CrO2 by Keizer et al. [6].

There have been various proposals for the origin of the broken spin-rotation symme-

try needed for the existence of the long-range triplet proximity effect. One possibility is

an artificial structure, in which there is a thin ferromagnetic or half-metallic spacer layer

at the interface with a magnetization direction different from that of the bulk magnet,

see Ref. [9] and Chapter 3. For this scenario the ferromagnetic spacer layer should be

thin enough that the standard proximity effect has a range larger than its thickness. A

second possibility is a magnetically disordered or “spin-active” interface [10, 11]. Finally,

the triplet proximity effect can be caused by variations of the magnetization directionm

associatedwith a domainwall, either perpendicular [12] or parallel to the superconductor

interface [13].

In this chapter we focus on the triplet proximity effect in the presence of a domain

wall in a half-metallic film. The case of a halfmetal is not onlymost relevant for the exper-

iment of Ref. [6], it also allows for an unambiguous identification of the triplet proximity

effect [10]: in the absence of minority carriers, spin-conserving Andreev reflection of

majority electrons into minority holes is ruled out, and the “spin-flip” Andreev reflection

associated with the triplet proximity effect is the only possible Andreev reflection process

in a half metal.

Following the approach in the previous Chapter 3 we employ a scattering approach

which allows the treatment of exchange fields of arbitrary strength, in particular the half
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Figure 4.1: Superconductor–half-metal junction with a domain wall and serial (a) and

lateral (b) contacts.

metallic case. While a distinction of odd- and even-frequency contributions to the triplet

proximity effect is not immediate in the scattering approach, themethod is well suited for

the calculation of physical observables, such as the subgap-conductance and the Joseph-

son current. Our work thus complements previous studies of the triplet proximity effect

in the presence of domain walls in ferromagnets restricted to the limit of weak exchange

fields [12–14].

Although domain walls occur generically in magnetic materials, at first sight they are

an unlikely source of the triplet proximity effect in a half metal: The density of minor-

ity carriers decays exponentially away from the superconductor interface, so that only

domain walls that happen to be adjacent to the interface can contribute to the triplet

proximity effect and, of these, only a region of width comparable to the minority carrier

decay length ξ−. Typically ξ− is comparable to the (majority) Fermi wavelength λF and

much smaller than the domain wall width ld. This severely restricts the magnitude of the

triplet proximity effect mediated by domain walls in the contact geometry of Fig. 4.1(a),

in which a half-metallic film and the superconductor are placed “in series” and the do-

mainwall is parallel to the interface. As the previous Chapter 3 showed, an additional and

not less important complication of the series geometry is that destructive interference be-

tween different reflection paths is found to completely suppress the Andreev reflection

amplitude at the Fermi level ε = 0.

It is the goal of this chapter to show that these limitations are absent in a different con-
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tact geometry, shown in Fig. 4.1(b), in which the superconductor is laterally coupled to a

magnetic film over a distancemuch larger than the film thickness d. Although this lateral

contact geometry has received almost no theoretical attention —most theoretical works

deal with the serial geometry of Fig. 4.1(a) — it is the relevant one for the experiment

of Ref. [6]. We find that for a lateral contact majority electrons have an amplitude rhe

for Andreev reflection as majority holes that remains finite at the Fermi level and scales

proportional to λF/min(ld, d). Especially for thin half-metallic films (d ≪ ld), the re-

flection amplitude for a lateral contact is significantly enhanced with respect to the serial

geometry, for which rhe ∝ εξ−/ld∆, ∆ being the magnitude of the superconducting order

parameter.

In Sec. 4.2 belowwe calculate theAndreev reflection amplitudes. Section 4.3 discusses

two applications: the two-terminal subgap conductance between the half metal and the

superconductor in the lateral geometry, and the Josephson effect in a superconductor–

half-metal–superconductor junction. We conclude in Sec. 4.4.

4.2 Calculation of Andreev reflection amplitudes

In the lateral contact, the domain wall is perpendicular to the superconductor interface.

We first calculate the Andreev reflection amplitude rhe in the presence of such a domain

wall and then account for the combined effect of multiple Andreev reflections in a thin

half-metallic film (d ≲ ld). Quasiparticle excitations near the interface are described by

the Bogoliubov-de Gennes equation

⎛
⎜
⎜
⎝

Ĥ i∆e iϕσ2

−i∆e−iϕσ2 −Ĥ∗

⎞
⎟
⎟
⎠

Ψ = εΨ, (4.1)
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Figure 4.2: Half-metal–superconductor interface with a domain wall. An electron (e)

incident on the interface is either normally reflected, or Andreev reflected as a hole (h).

The Andreev reflection amplitude rhe for this situation given by Eq. (4.14) of the main

text.

where Ψ is a four-component wavefunction with components for the electron/hole and

spin degrees of freedomand and∆e iϕ is the superconducting order parameter. We choose

coordinates such that the half-metal–superconductor interface is the plane z = 0 and the

magnetization directionm in the half metal varies in the x direction, see Fig. 4.2. In the

superconductor (z > 0), we take the Hamiltonian to be

Ĥ = p̂ 1

2mS

p̂ − εF,S, (4.2)

where mS and εF,S = ħ2k2
S
/2mS are the effective mass and Fermi energy, respectively. In

the half metal (z < 0) we set

Ĥ =∑
±

p̂ P̂±

2m±
p̂ − εF,±P̂±, (4.3)

where m± and εF,± = ħ2k2
±
/2m± are the effective mass and the Fermi energy for majority

(+) andminority (−) carriers in the half metal, and P̂± = (1±m(x) ⋅σ)/2 project onto the

majority and minority components, respectively. We take the limit εF,− → −∞, so that

there are no minority carriers in the half metal. We further assume that the interface has

a normal-state transmission probability τ ≪ 1, which we model through the presence of

a potential barrier Vδ(z) at the interface.

We choose a right-handed set of unit vectors e1, e2, and e3 and consider a variation in
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the magnetization directionm of the form

m(x) = (e1 cosϕm + e2 sinϕm) sin θm(x) + e3 cos θm(x). (4.4)

We then employ a gauge transformation that rotatesm to the e3-direction

Ψ(x)→
⎛
⎜
⎜
⎝

U†(x) 0

0 UT(x)

⎞
⎟
⎟
⎠

Ψ(x), (4.5)

with

U(x) = e iθm(m(x)×e3)⋅σ/2 sin θm . (4.6)

This gauge transformation adds a spin-dependent gauge potential

A = iħU†
∇U (4.7)

to the Hamiltonian Ĥ [15], but it does not affect the singlet superconducting order pa-

rameter, UTiσ2∆U = iσ2∆.

Since the domainwall width ld is typicallymuch larger than the Fermi wavelength, we

may neglect spatial variations of A. The wavefunction Ψe of an electronic quasiparticle

in the half metal incident on the superconductor then reads as

Ψe(r) =
1
√v+,z

e ikx x+iky y

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e ikzz + reee−ikzz

0

rhee ikzz

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.8)

where ree and rhe are the amplitudes of normal reflection and Andreev reflection, respec-

tively. Further kx = k+ cosφ sin θ, ky = k+ sinφ sin θ, and kz = k+ cos θ = m+v+,z/ħ, where

the polar angles φ and θ parameterize the propagation direction of the electron with re-

spect to the superconductor interface and the domain wall (see Fig. 4.2). We neglected

the small difference of the wavenumbers of electrons and holes if the excitation energy ε

is finite.
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The Andreev reflection amplitude rhe can be found by matching Ψe to a linear com-

bination of the four linearly independent wavefunctions in the superconductor,

Ψα,β(r)∝ e ikx x+iky y+iq(α,β)z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−iαe iϕm

iαe−iη(β)

e−iη(β)−iϕm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.9)

where α, β = ±1, η(β) = ϕ − ϕm + β arccos(ε/∆) and q(α, β) is the solution of

q2 = k2S − k2x − k2y +
2imSβ

ħ2

√
∆2 − ε2 − αkx

∂θm
∂x

(4.10)

with Im q > 0. The matching conditions are on the wavefunction and its derivative at the

superconductor interface at z = 0. The wavefunction Ψ is continuous

Ψ(z ↓ 0) = Ψ(z ↑ 0), (4.11)

whereas its derivative satisfies the equation

ħ2

2mS

∂Ψ
∂z
∣
z↓0
= ∑
±

ħ2

2m±
P̂±

∂Ψ
∂z
∣
z↑0
+ VΨ(z = 0). (4.12)

Since we are interested in the limit εF,− → −∞, for minority components we may replace

the boundary conditions Eqs. (4.11) and (4.12) with

P̂−ΨS(z = 0) = 0, (4.13)

without a condition on the corresponding derivative. From the resulting six equations

we can calculate the six unknowns: Two reflection amplitudes and four amplitudes for

the wavefunction in the superconductor.

To lowest order in ∂θm/∂x and the transmission coefficient τ of the half-metal–

superconductor interface we then find

rhe(θ, φ) = −
τ(θ)k+ sin θ cosφ e−i(ϕ−ϕm)∆

4(k2
S
− k2
+
sin2 θ)

√
∆2 − ε2

∂θm
∂x

, (4.14)
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where we used the Andreev approximation (which is valid for all angles θ if k2
S
≳ k2

+
≫

∆mS/ħ2) and eliminated the potential barrier V at the interface in favor of the abovemen-

tioned transmission coefficient

τ(θ) =
4ħ2vS,z(θ)v+,z(θ)

4V2 + ħ2[vS,z(θ) + v+,z(θ)]2
, (4.15)

with mSvS,z = ħ(k2
S
− k2x − k2y)1/2. The amplitude reh for Andreev reflection of a majority

hole into a majority electron is

reh = r∗he. (4.16)

The presence of a finite triplet Andreev reflection amplitude at a domain wall is con-

sistent with a previous quasiclassical analysis of the triplet proximity effect at a domain

wall in ferromagnets in the limit of weak exchange fields [13]. 2

We also note that reff
he
≠ 0 at the Fermi energy is not in contradiction with the ob-

servation of the previous Chapter 3 that rhe = 0 at ε = 0 in clean serial half-metal–

superconductor junctions. For the serial geometry, the Andreev scattering problem may

be described using a 2×2 scatteringmatrix. For the lateral geometry the scatteringmatrix

is intrinsically four dimensional and the argument of of Chapter 3 does not apply.

The order of magnitude of the reflection amplitude (4.14) can be understood from the

following argument: the amplitude that the incidentmajority electron is initially reflected

into a hole of opposite spin is ∼ τ(θ)e−iϕ. Since the Andreev reflected hole exists up to

a distance ∼ 1/kS away from the position of the incident majority carrier [16], there is a

finite overlap with majority hole states in the half metal. This overlap is proportional to

(∂θm/∂x)/kS, hence the parameter dependence of Eq. (4.14).

2T. Champel andM. Eschrig, Phys. Rev. B 71, 220506(R) (2005), observe that the triplet proximity effect

is absent in a disordered ferromagnet if ∂θm/∂x is constant. This observation is not inconsistent with Eq.

(4.14), because rhe only enters through its angular average ∲ rhe∲ in a dirty ferromagnet and ∲ rhe∲ = 0
if ∂θm/∂x is spatially uniform.
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Figure 4.3: Ballistic (a) and disordered (b) half-metallic film of thickness d laterally cou-
pled to a superconductor. The Andreev reflection amplitude in the presence of a slowly-

varying magntization direction is enhanced by multiple scattering at the superconductor

interface.

We now apply the above result to an extended half-metallic film of thickness d ≪ ld

laterally coupled to an s-wave superconductor, as in Fig. 4.1(b). In the thin film geometry

electrons reflect repeatedly off the half-metal–superconductor interface, see Fig. 4.3(a).

Since the wavefunctions of the incident electron and the Andreev reflected hole have

the same dependence on the position r, see Eq. (4.8), amplitudes for Andreev scattering

from reflections at different positions at the interface add up coherently. This results in an

enhancement of the Andreev reflection probability similar in origin to the “reflectionless

tunneling effect” in disordered normal-metal–superconductor junctions [17].

We consider a domain wall whose length is shorter than the superconducting coher-

ence length (ld ≪ ħv+/∆) and for which the orientation of themagnetization varies along

the x direction. We assume that the film is in the clean limit (mean free path≫ ld). The

scattering states in the film are then parameterized using polar angles θ and φ which set

themagnitude of the (now quantized) momentum in the z direction and the propagation

direction in the xy plane, respectively. Combining contributions from the entire width

of the domain wall, we find that the effective reflection amplitude for Andreev reflection

off the domain wall is

reffhe (θ, φ) = −
τ(θ)k+ cos θe−i(ϕ−ϕm)∆δθm

8(k2
S
− k2
+
sin2 θ)d

√
∆2 − ε2

sign (cosφ), (4.17)

where δθm = θm(∞) − θm(−∞) is the total angle by which the magnetization direc-
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tion changes. The same result is found by directly solving the scattering problem in the

thin-film geometry, which is done in the following Chapter 5. For thin films, this An-

dreev reflection amplitude is significantly larger than the single reflection amplitude of

Eq. (4.14). As the final effective amplitude depends only on the total change in angle

δθm, reffhe remains finite in the adiabatic limit ld →∞, despite the vanishing of the rate of

change, ∂θm(x)/∂x ≈ δθm/ld → 0.

Equations (4.14) and (4.17) are the main results of this chapter. As advertised in Sec.

4.1, the Andreev reflection amplitude reff
he

is independent of the location of the domain

wall, as long as it is “under” the superconducting contact, and the angle of incidence

φ. The absence of a dependence on φ implies that the Andreev reflection amplitude does

not depend on the orientation of the domain wall. The appearance of the azimuthal angle

ϕm in the scattering phase is consistent with the Andreev reflection amplitude found in

Chapter 3 for the serial geometry (see also Ref. [18]).

4.3 Applications

With the reflection amplitudes obtained abovewe now consider the conductance GHS of a

lateral half-metal–superconductor junction [as in Fig. 4.1(b)] and the Josephson effect in

a lateral superconductor–half-metal–superconductor junction (as in Fig. 4.4). As before,

we consider the case that there is a domain wall somewhere below the superconducting

contacts and that the transmission coefficient of the half-metal–superconductor interface

τ ≪ 1. We also assume that the half metal is in the clean limit 3 that k+d ≫ 1 (many

transverse modes), and that ld ≪ ħv+/∆ (domain wall is short in comparison to the

superconducting coherence length). In order to simplify our final expressions, we set

3Normal reflection of majority carriers may occur at the “edge” of the lateral contacts, but this does not

affect our result if the transparency τ of the half-metal–superconductor interface is small.
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Figure 4.4: Superconductor–half-metal–superconductor junction with a domain walls

and lateral contacts.

kS = k+. For the subgap conductance GHS(V) = ∂I/∂V we then find

GHS(V) =
2e2
h

tr reffhe (eV)reffhe (eV)†

=
e2W
hd

⟨τ(θ)2⟩∆2

64π(∆2 − e2V2)
(δθm)

2, (4.18)

where W is the width of the half-metallic film and the brackets ⟨. . .⟩ denote an an-

gular average. This result is to be contrasted with the conductance of a half-metal–

superconductor junction with a domain wall parallel to the interface in the serial ge-

ometry, which is proportional to

GHS(V) ∝
e2Wd
hl2

d

e2V2

∆2
(δθm)

2 (4.19)

if eV≪ ∆, see Chapter 3.

When calculating the Josephson effect, we take the junction to be reflection symmet-

ric, with a domainwall below each superconductor such that the azimuthal angles ϕm and

the angle changes δθm are equal, see Fig. 4.4. We then calculate the zero-temperature su-

percurrent from the expression [19]

I = −
2e
πħ

∂
∂ϕ

Re ∫ ∞
0

dωtr ln[1 + e−2ωL/ħv ∣reffhe (iω)∣2e iϕ], (4.20)

where v is the propagation velocity of a transverse mode, L the distance between the

domainwalls, and ϕ the phase difference between the superconducting order parameters.

For short junctions, L≪ ħv+/∆, we then find

eI = πGHS(0)∆ sinϕ, (4.21)
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where GHS(0) is the Fermi level conductance of a single half-metal–superconductor in-

terface given in Eq. (4.18) above. For a long junction, L≫ ħv+/∆ one has

eI = 8

15
GHS(0)

ħv+
L

sinϕ, (4.22)

where v+ = ħk+/m+. We note that the long-junction limit of the supercurrent (4.22)

is parametrically larger than the supercurrent in a serial geometry, which according to

Chapter 3 scales proportional to,

eI ∝ ħ3v3
+

L3∆2
. (4.23)

The junction becomes a “π-junction”, with a supercurrent proportional to − sinϕ, if the

two domain walls have opposite δθm. 4

4.4 Conclusion

We expect that, although the calculations presented in this chapter are for ballistic half-

metal–superconductor junctions, the enhanced tripled proximity effect in the lateral ge-

ometry also exists in the presence of disorder, in the same way as reflectionless tunneling

exists both in clean and disordered junctions [17]. As long as the non-Andreev reflected

electron is transmitted through the domain wall, as in Fig. 4.3(b), the coherent addition

of amplitudes from multiple Andreev reflections is not affected by changes of the elec-

tron’s propagation direction in a disordered half metallic film. We have thus identified

a mechanism by which domain walls in a lateral geometry contribute to the long-range

proximity effect irrespective of their position (as long as they are under the supercon-

ducting contact), their orientation, and their width.

This mechanism could be a microscopic explanation for the Josephson currents ob-

4The possibility to generate a π junction is a common feature of hybrid magnet-superconductor struc-

tures with the triplet proximity effect, see, e.g., Refs. [9, 18] and Chapter 3 .
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served in the experiment by Keizer et al., which employed the lateral contact geometry

analyzed here [6]. The magnitude of the Josephson current observed there showed hys-

teresis as a function of the applied in-plane magnetic field, a feature consistent with the

dependence on large scale magnetic texture and/or domain walls implied by the mecha-

nism we considered here.
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CHAPTER 5

SYMMETRIES IN DOMAINWALL INDUCED TRIPLET ANDREEV

REFLECTION INTOHALF-METALS

5.1 Introduction

Superconducting correlations in s-wave superconductors are of spin singlet symmetry.

Half-metals only support quasiparticle excitations of one spin orientation. If super-

conducting correlations originating in s-wave superconductors are to extend into half-

metals, despite the absence of quasiparticle excitations of both spin directions, a con-

version mechanism is thus needed which changes the spin symmetry at the half-metal’s

interface with the superconductor. The breaking of azimuthal spin rotation symmetry

around the magnetization direction of the half-metal provides such conversion of singlet

pairing correlations into ones of triplet symmetry—in which case the spins of the two

particles may be aligned [1, 2]. Breaking of this remaining symmetry gives rise to rota-

tion of the spin’s orientation and results in a “long range triplet proximity effect” which

can penetrate ferromagnets over the same distance as normal metals, see Ref. [3] for a

review.

Chapter 3 showed that this mechanism is more delicate for half-metals: In the sin-

gle channel quantum limit, unitarity and electron-hole symmetry impose restrictions on

the reflection processes at the interface with a superconductor which fully suppress An-

dreev reflection at the Fermi energy. Here we show that the same restrictions apply if

the interface is invariant under translations as well as rotations by π about the interface

normal. In these cases, even when spin rotation symmetry is fully broken, the subgap

conductance through a half-metal–superconductor junction will be suppressed close to

the Fermi energy, compared to normal-metal–superconductor junctions. Similarly the
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magnitude of the Josephson current between two superconductors connected through a

long half-metallic link will be strongly reduced in comparison to what it would have been

in a normal metal link of equal length.

Experiments however have provided evidence that superconducting correlations can

indeed extend into half-metallic systems [4–7], most dramatically a Josephson effect has

been observed between two superconducting contacts deposited on a layer of the half-

metal CrO2 [5].

That spin rotation symmetry could be broken at the interface appears plausible. Mag-

netic anisotropy at the interface may differ from the bulk one, due e.g., to strain at the

interface, and finite interface roughness may reduce the coupling of spins at the interface

to the bulk [8, 9]. This motivates that the interface’s scattering matrix should include a

“spin-flip” term at the interface. With the help of the boundary conditions given by the

scattering matrix superconducting correlations induced in the half-metal can be inves-

tigated using quasiclassical Green functions [9–11]. Thin ferromagnetic or half-metallic

spacer layers whose magnetization is misaligned with the bulk orientation similarly give

rise to spin rotation at the interface and have been investigated in Refs. [12, 13] as well

as in Chapter 3. All of these mechanisms for Andreev reflection are suppressed in the

vicinity of the Fermi energy.

Domain walls, on the other hand, which are well known to induce long range triplet

correlations in ferromagnets [14–16], have received relatively little attention. Only re-

cently has it been shown for the extremely half-metallic limit that domain walls oriented

normal to the superconductor’s interface may indeed serve as a source of the triplet prox-

imity effect in half-metallic systems. It was also found that Andreev reflection in this case

is not suppressed at the Fermi energy. The present chapter aims to investigate further the

role of domain walls inducing Andreev reflection in half-metallic systems. Employing a

144



perturbative approach different from the previous Chapter 4, we determine the depen-

dence on orientation and geometry, allow for the presence of minority carriers in the

half-metal, and investigate the symmetry of the Andreev reflection mechanisms.

This chapter is organized as follows. In Section 5.2 we consider the restrictions of

symmetry on Andreev reflection and how they may be lifted. Following in Section 5.4 is

a calculation of the Andreev reflection amplitudes for three ways of breaking azimuthal

spin rotation symmetry: Domain walls oriented either along the interface or normal to

it, and a “spin-active” interface for comparison. Orientation, it turns out, is crucially

important. Section 5.5 considers a geometry appropriate for a laterally attached super-

conducting contact on a half-metallic film. Section 5.6 concludes. An appendix contains

details of calculations presented in the main text.

5.2 Constraints imposed by unitarity and particle-hole degeneracy

At excitation energies ε below the superconducting gap ∆, quasiparticles incident on the

half-metal–superconductor interface from the half-metallic side will be reflected back

into the half metal. This reflection can be either normal reflection or Andreev reflection,

for which electron-like quasiparticles are reflected as holes and vice versa. This scattering

processes are illustrated in Fig. 5.1.

This reflection process is described by a scatteringmatrix S(k′
∥
, k∥; ε), which takes the

form

S(k′
∥
, k∥; ε) =

⎛
⎜
⎜
⎝

ree(k′∥, k∥; ε) reh(k′∥, k∥; ε)

rhe(k′∥, k∥; ε) rhh(k′∥, k∥; ε)

⎞
⎟
⎟
⎠

, (5.1)

where k∥ and k′
∥
are the wavevectors of the incoming and outgoing quasiparticle states,

respectively, and the subscripts e and h refer to electron-like and hole-like states. The
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Figure 5.1: Along a translationally invariant interface a state with parallel wavevector k∥
can only be scattered to a state with the same parallel wavevector. As electron and hole

states with the same wavevector have opposite group velocities, the Andreev reflected

hole traces out the path of the ingoing electron. If the interface is invariant under a ro-

tation of π around the interface normal, Andreev reflection at the Fermi energy will be

suppressed.

scattering amplitudes reh and rhe describe Andreev reflection processes.

The scatteringmatrix S(k′
∥
, k∥; ε) satisfies two constraints: Unitarity and particle-hole

symmetry. The latter condition reads

S(k′
∥
, k∥; ε) =

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

S(−k′
∥
,−k∥;−ε)∗

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

. (5.2)

The combination of unitarity and particle-hole degeneracy severely restricts the form of

the scattering matrix if there is translation invariance along the interface, which implies

S(k′
∥
, k∥; ε) = S(k∥; ε)δk′

∥
,k∥ , (5.3)

and if the scattering problem is invariant for a π rotation around the interface normal,

which implies

S(k′
∥
, k∥; ε) = S(−k′∥,−k∥; ε). (5.4)

If Eqs. (5.3) and (5.4) are both met, particle-hole symmetry implies

ree(k∥; ε) = rhh(k∥;−ε)∗, reh(k∥; ε) = rhe(k∥;−ε)∗. (5.5)
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In combination with the condition of unitarity, this results in the equality

ree(k∥; 0)reh(k∥; 0) = 0 (5.6)

for the scattering matrix at the Fermi level ε = 0. Since ree ≠ 0, except for a special choice

of parameters, this implies that generically one must have

reh(k∥; 0) = 0. (5.7)

Equation (5.7) poses a severe restriction on the magnitude and the spatial extension

of the proximity effect in half metals that is absent in ferromagnet–superconductor junc-

tions with otherwise comparable characteristics. A nonzero Andreev reflection ampli-

tude for a half-metal–superconductor junction can be obtained only by fine-tuning de-

vice parameters such that the normal reflection amplitude becomes zero, or by invoking

processes that break the symmetries leading to Eq. (5.7). The former scenario was dis-

cussed in Chapter 3 and will not be addressed here. Examples of symmetry-breaking

processes that result in a nonzero Andreev reflection amplitude are: lifting of particle-

hole degeneracy by a finite excitation energy ε, see Chapter 3, breaking of the rotation

symmetry around the interface normal, Chapter 4, breaking of the translation symmetry

along the interface, or the breaking of phase coherence [17]. A domain wall for which the

magnetization direction varies in a direction parallel to the interface is an example of a

perturbation that breaks the rotation symmetry, see Chapter 4. However, a domain wall

for which themagnetization direction varies in a direction perpendicular to the interface

does not lift the constraints leading to Eq. (5.7). The role of variations in the magnetiza-

tion direction will be considered in more detail in Sec. 5.4 below.

A finite excitation energy ε lifts the particle-hole degeneracy, and the Andreev reflec-

tion amplitude reh becomes nonzero. The order of magnitude of the Andreev reflection
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amplitudes at finite ε can be estimated as

∣reh(ε)∣ ∼
∣ε∣

max(∆/τ, Eξ)
∣reh, FS∣, (5.8)

where Eξ is the Thouless energy of the interface layer where the singlet-triplet conversion

takes place, τ is the transparency of the superconductor interface, ∆ the superconduct-

ing gap, and reh, FS the Andreev reflection amplitude of a ferromagnet–superconductor

amplitude of otherwise comparable characteristics. The first term in the denominator

comes about because electrons and holes scattering off a normal-metal–superconductor

interface of transparency τ at finite excitation energy ε experience an additional phase

difference ∼ ±ετ/∆, which lifts the electron-hole degeneracy [18]. The second term in

the denominator appears from phase differences acquired in the interface layer. The typ-

ical thickness of this interface layer is of the order of minority decay length ξ, which

implies that Eξ is of the order of the Fermi energy. For tunneling interfaces one always

has ∣reh(ε)∣ ≪ ∣reh, FS∣ and we conclude that the breaking of electron hole symmetry by

finite excitation energies is not an efficient route towards sizeable Andreev reflection in

that case. The suppression of Andreev reflection in half-metal–superconductor junctions

(as compared to ferromagnet–superconductor junctions) is absent only for transparent

interfaces and excitation energies of order ∆.

The ε-dependence of reh not only determines the conductance through the half-

metal–superconductor interface at finite bias, it also sets the scale for the Josephson

effect in a superconductor-half-metal–superconductor junction. If the Thouless en-

ergy EL of the Josephson junction length is large in comparison to ∆ (“short junction

limit”), the Josephson current I is carried by quasiparticle states with energies up to

∆. In this limit, the symmetry considerations that suppressed Andreev reflection at

ε = 0 do not affect the order of magnitude of I, and one concludes that otherwise com-

parable superconductor-half-metal–superconductor and superconductor–ferromagnet–

superconductor junctions have comparable Josephson currents. If, however, EL ≪ ∆
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Figure 5.2: The half-metal (H) occupies the lower half space (z < 0) while the supercon-
ducting material (S) fills the upper one (z > 0).

(“long junction limit”), only quasiparticle states with energy below EL contribute to

I, so that I is significantly suppressed below the Josephson currents in comparable

superconductor–ferromagnet–superconductor junctions; see Chapter 3.

In the remainder of this article, we present explicit model calculations of the Andreev

reflection amplitudes for the case that singlet-triplet conversion is mediated by a domain

wall in the half metal.

5.3 Hamiltonian and Scattering states

5.3.1 Bogoliubov-de Gennes Hamiltonian

We choose coordinates such that the half-metal–superconductor interface is the plane

z = 0, see Fig. 5.2. The half metal occupies the negative half-space (z < 0). The super-

conductor is taken to be of s-wave, spin-singlet type. Quasiparticle excitations near the
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interface are described by the Bogoliubov-de Gennes equation

HΨ(r) = εΨ(r), H =
⎛
⎜
⎜
⎝

Ĥ i∆e iϕσ2

−i∆e−iϕσ2 −Ĥ∗

⎞
⎟
⎟
⎠

, (5.9)

where the four-component spinor

Ψ(r) = (u↑(r), u↓(r), v↑(r), v↓(r))T (5.10)

consists ofwavefunctionsuσ(r) for the electron and vσ(r) for the hole degrees of freedom.

The superconducting order parameter ∆(r)e iϕ is nonzero only in the superconductor.

We will take ∆(r) = ∆Θ(z), where Θ(z) = 1 if z > 0 and 0 otherwise. This step function

model is appropriate for tunneling interfaces of s-wave superconductors [19].

For the single-particle Hamiltonian, we take the simplest model that contains the

essential features of the half-metal–superconductor interface,

Ĥ = − ħ2
∇

1

2m(z)
∇ − ∑

σ=↑,↓

Vσ(z)P̂σ(r) + ħwδ(z), (5.11)

where

m(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

mH if z < 0,

mS if z > 0,
, (5.12)

with mH and mS being the effective masses for the half metal and the superconductor,

respectively,

Vσ(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

VH,σ if z < 0,

VS if z > 0,
(5.13)

where σ = {↑, ↓} and the potentials VH,↑, VH,↓, and VS represent the combined effect of the

chemical potential and band offsets for the majority and minority electrons in the half

metal and for the superconductor, respectively. w sets the strength of a delta-function

potential barrier at the interface. The operators

P̂↑ =
1

2
+
1

2
m(r) ⋅ σ̂ (5.14)

P̂↓ =
1

2
−
1

2
m(r) ⋅ σ̂ (5.15)
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project onto the majority and minority components, respectively, where m(r) is a unit

vector pointing along the magnetization direction in the half metal.

The potentials VH,↑, VH,↓, and VS are chosen such that VH,↑, VS > 0, and VH,↓ < 0. As a

result, majority states in the half metal and in the normal state of the superconductor are

propagating states, with Fermi wavenumbers

k↑ =
1

ħ
√
2mHVH,↑, kS =

1

ħ
√
2mSVS, (5.16)

respectively. The corresponding Fermi velocities are v↑ = ħk↑/mH and vS = ħkS/mS,

respectively. Minority states in the half metal are evanescent with wavefunction decay

rate

κ↓ =
1

ħ
√
2mH∣VH,↓∣. (5.17)

For a translationally invariant interface, solutions of the Bogoliubov-de Gennes equa-

tion (5.9) can be written as a product

Ψ(r) = e ik∥⋅rψk∥(z), (5.18)

where k∥ = (kx , ky , 0)T. For z ≪ 0, the function ψk∥(z) is of the form

lim
z→−∞

ψk∥(z) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψe
k∥↑(z)

0

ψh
k∥↑(z)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.19)

5.3.2 Scattering states for ∆ = 0

We first consider solutions of the Bogoliubov-de Gennes equation (5.9) in the normal

state (i.e., with ∆ = 0), for a spatially uniform magnetization direction m = e3, and at

151



ε = 0. In this case, solutions of the Bogoliubov-de Gennes equation (5.9) can be written

as a product

Ψ(r) = e ik∥⋅rΨk∥(z), (5.20)

where k∥ = (kx , ky , 0)T. For z < 0, the spinor wavefunction Ψk∥ has the general form

Ψk∥(z) = v−1/2+z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ce↑e ik↑zz + c′e↑e−ik↑zz

0

ch↑e−ik↑zz + c′h↑e ik↑zz

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ v−1/2
↓z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

ce↓eκ↓zz

0

ch↓eκ↓zz

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.21)

where

k↑z =
√

k2
↑
− ∣k∥∣2, κ↓z =

√
ξ2
↓
+ ∣k∥∣2, (5.22)

and

v↑z = ħk↑z/mH, v↓z = ħκ↓z/mH. (5.23)

For z > 0, the general form of the spinor wavefunction is

Ψk∥(z) = v−1/2
Sz

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

de↑e ikSzz + d′e↑e−ikSzz

de↓e ikSzz + d′e↓e−ikSzz

dh↑e−ikSzz + d′h↑e ikSzz

dh↓e−ikSzz + d′h↓e ikSzz

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.24)

where

kSz =
√

k2
S
− ∣k∥∣2, vSz = ħkSz/mS. (5.25)
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The amplitudes appearing in the above equations are related as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c′e↑

d′e↑

c′
h↑

d′
h↑

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r t 0 0

t r′ 0 0

0 0 r∗ t∗

0 0 t∗ r′∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ce↑

de↑

ch↑

dh↑

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.26)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ce↓

d′e↓

ch↓

d′
h↓

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t↓ 0

r′
↓

0

0 t∗
↓

0 r′∗
↓

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

de↓

dh↓

⎞
⎟
⎟
⎠

, (5.27)

with

t = 2(v↑zvSz)1/2
2iw + v↑z + vSz

, (5.28)

r = −1 + tv1/2
↑z v

−1/2

Sz , (5.29)

r′ = −1 + tv−1/2
↑z v1/2

Sz , (5.30)

r′
↓
= −1 + t↓v−1/2↓z v1/2

Sz , (5.31)

t↓ =
2i(v↓zvSz)1/2
2w + v↓z + ivSz

. (5.32)

The amplitudes r, r′, and t are majority electron reflection and transmission ampli-

tudes of the half-metal–superconductor interface (with the superconductor in the normal

state); the amplitude r′
↓
is the minority electron reflection amplitude. The coefficient t↓

parameterizes the evanescent wave amplitude for minority electrons in the half metal.

5.3.3 Scattering states

We now use the notation established in the previous subsection to construct scattering

states for the half-metal–superconductor interface at finite excitation energy ε. As before,
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we consider a spatially uniform magnetization directionm = e3.

The spinor wavefunction Ψk∥(z) takes the general form

Ψk∥(z) = v−1/2
↑z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ce↑e ik↑z(ε)z + c′e↑e−ik↑z(ε)z

0

ch↑e−ik↑z(−ε)z + c′h↑e ik↑z(−ε)z

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ v−1/2
↓z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

ce↓eκ↓z(ε)z

0

ch↓eκ↓z(−ε)z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.33)

for z < 0, and

Ψk∥(z) =
e ikSzz−κSz(ε)z
√vSz

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d′
↑

d′
↓

−d′
↓
e−iη(ε)−iϕ

d′
↑
e−iη(ε)−iϕ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
e−ikSzz−κSz(ε)
√vSz

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d↑

d↓

−d↓e+iη(ε)+iϕ

d↑e+iη(ε)+iϕ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.34)

for z > 0. Here we defined

k↑z(ε) = k↑z + ε/ħv↑z , (5.35)

κ↓z(ε) = κ↓z − ε/ħv↓z , (5.36)

η(ε) = arccos(ε/∆), (5.37)

κSz(ε) = (∆
2 − ε2)1/2/ħvSz . (5.38)

Solution of the Bogoliubov-de Gennes equation (5.9) then gives the following relations
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between the coefficients

c′e↑ = (r +
t2

e2iηr′
↓
− r′
) ce↑,

ch↓ =
tt↓e iη−iϕ
e2iηr′

↓
− r′

ce↑,

d↑ =
t

e2iηr′
↓
− r′

ce↑,

d′
↑
=

tr′
↓
e2iη

e2iηr′
↓
− r′

ce↑,

c′h↑ = (r∗ +
t∗2

e2iηr′∗
↓
− r′∗
) ch↑,

ce↓ = −
t∗t∗
↓
e iη+iϕ

e2iηr′∗
↓
− r′∗

ch↑,

d↓ = −
t∗r′∗
↓
e iη+ϕ

e2iηr′∗
↓
− r′∗

ch↑,

d′
↓
= −

t∗e iη+iϕ
e2iηr′∗

↓
− r′∗

ch↑. (5.39)

With the help of these wavefunctions, we construct the “retarded” scattering states

∣k∥, e⟩R and ∣k∥, h⟩R as the state with wavefunction

⟨r ∣k∥, e⟩R = Ψk∥ ,e(z)e ik∥⋅r,

⟨r ∣k∥, h⟩R = Ψk∥ ,h(z)e ik∥⋅r, (5.40)

where the spinor wavefunction Ψk∥ ,e(z) is given by Eqs. (5.33) and (5.34) with ce↑ = 1,

ch↑ = 0, all other coefficients being determined by Eqs. (5.39), whereas the spinor wave-

function Ψk∥ ,e(z) is given by Eqs. (5.33) and (5.34) with ce↑ = 0, ch↓ = 1. Similarly, the

“advanced” scattering states ∣k∥, e⟩A and ∣k∥, h⟩A are then defined as the states for which

c′e↑ = 1, c′
h↑
= 0 and c′e↑ = 0, c′

h↑
= 1, respectively, again with all other coefficients deter-

mined by Eqs. (5.39). These scattering states will be at the basis of the calculation of the

Andreev reflection amplitudes in the presence of a non-uniformmagnetization, which is

described in the next section.

155



5.4 Andreev reflection in the presence of a non-uniform magnetiza-

tion direction

5.4.1 Slow variations of the magnetization direction

A varying magnetization breaks the remaining symmetries in spin space and allows for

Andreev reflection at the half-metal–superconductor interface. Here we consider a con-

tinuous variation of the the magnetization directionm(r) over a length ld. An example

of such a continuous change is a domain wall, for which the net change of the magneti-

zation angle is π. However, smaller rotation angles are possible, e.g. induced by strain at

the interface due to lattice mismatches [8]. Throughout our calculation we will assume

that ld is much larger than the microscopic length scales k−1
+
, k−1

S
and κ−1

↓
.

To be specific, we choose a right-handed set of unit vectors e1, e2, and e3 and consider

a variation of the magnetization directionm of the form

m(r) = (e1 cosϕm + e2 sinϕm) sin θm(r) + e3 cos θm(r). (5.41)

(Such variations of the magnetization direction are sufficient to model domain walls, but

they do not allow for certain continuous changes of the magnetization at a fixed polar

angle, as it occurs in helical magnets. The full expressions in the presence of variations

in both ϕm and θm are given in App. 5.6.) We then employ a gauge transformation that

rotatesm to the e3-direction,

H →U(r)†HU(r), U(r) =
⎛
⎜
⎜
⎝

U(r) 0

0 U∗(r)

⎞
⎟
⎟
⎠

, (5.42)

with

U(r) = e iθm(m(r)×e3)⋅σ/2 sin θm . (5.43)
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This gauge transformation adds a spin-dependent gauge potential

A(r) = iħU†
∇U

=
ħ
2
(σ2 cosϕm − σ1 sinϕm)∇θm (5.44)

to the Hamiltonian Ĥ [20], but it does not affect the singlet superconducting order pa-

rameter, since UTiσ2∆U = iσ2∆. To lowest order in the rate of change of the angle θm we

then find that the perturbation V̂ to the Hamiltonian Ĥ reads

V̂ = i(σ2 cosϕm − σ1 sinϕm) (∇θ ⋅
ħ2

2m
∇ +∇

ħ2

2m
⋅∇θ) . (5.45)

Since we take the length scale ld for variations of the magnetization angle θm to be

large in comparison to the microscopic length scales k−1
+
, k−1

S
and κ−1

↓
, we may neglect

spatial variations of the perturbation V̂ in the direction parallel to the interface. In this

approximation translation symmetry along the interface is preserved and the scattering

matrix S(k′
∥
, k∥; ε) remains diagonal, see Eq. (5.3). To lowest order in the rate of change

of θm, the Andreev reflection amplitudes may then be calculated in perturbation theory.

Using the scattering states defined in the previous section, one has

rhe(k∥, ε) = −
i
ħ
⟨k∥, h, ε∣V∣k∥, e, ε⟩,

reh(k∥, ε) = −
i
ħ
⟨k∥, e, ε∣V∣k∥, h, ε⟩, (5.46)

where

V =
⎛
⎜
⎜
⎝

V̂ 0

0 −V̂∗

⎞
⎟
⎟
⎠

. (5.47)

We now present calculations of the Andreev reflection amplitudes for two special

cases: Variation of the angle θm in a direction perpendicular to the superconductor in-

terface, Fig. 5.3(a), and variation of θm in a direction parallel to the superconductor in-

terface, Fig. 5.3(b). These two cases differ with respect to the symmetries discussed in
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Figure 5.3: Domain walls of different orientation. In (a) the magnetization varies in a

direction perpendicular to the interface, in (b) the variation is along a direction parallel

to the interface. In (b) translational symmetry along the interface is broken whereas it is

preserved in (a).
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Sec. 5.2: The rotation symmetry around an axis normal to the interface is preserved in

the former case, whereas it is broken in the latter case. We will see that this difference has

profound consequences for the Andreev reflection amplitude.

For a domain wall of length ld oriented in parallel to the interface we take

θm(z) = z/ld (5.48)

if z < 0. The use of the gauge transformation (5.42) requires that θm is defined for z > 0,

too. In our calculation, we have set θm = 0 for z > 0, although this choice does not affect

our final result. Calculating the Andreev reflection amplitude, we then find

rhe(k∥; ε) = −
iεe−i(ϕ−ϕm)∆

κ↓z ld
√
∆2 − ε2

[
∣tt↓∣2

8
√
∆2 − ε2

− Re(
v↑z − iv↓z
v↑z + iv↓z

)
Re tt↓

ħ(v↑zv↓z)1/2k↑z
] . (5.49)

The amplitude for the conversion of holes into electrons is then given by

reh(k∥; ε) = rhe(k∥;−ε)∗. (5.50)

The dependence of this result on the interface parameters agrees with what was derived

in Sec. 5.2 using general considerations. Note that in the limit 1/κ↓ → 0, in which the

minority carriers are completely expelled from the half metal, the Andreev reflection

amplitude rhe vanishes.

A variation of the magnetization direction in which ∇θm is parallel to the supercon-

ductor interface breaks the rotation symmetry, thus allowing, in principle, for a nonzero

Andreev reflection amplitude at the Fermi level ε = 0. Here we elaborate on our previous

calculation of this effect and generalize the results of the previous Chapter 4 to the case of

a finite minority wavefunction decay rate κ↓ in the half metal. Calculating the Andreev

reflection amplitude according to Eq. (5.46), we then find

rhe(k∥; ε) = −reh(k∥;−ε)∗

= −
e−i(ϕ−ϕm)∆∇θm
√
∆2 − ε2

⋅

⎡
⎢
⎢
⎢
⎢
⎣

vS∥∣t∣2
4kSzvSz

+
v↑∥v1/2↑z Re tt↓

(k↑zv↑z + κ↓zv↓z)v1/2↓z

⎤
⎥
⎥
⎥
⎥
⎦

, (5.51)
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where

v↑∥ = ħk∥/mH, vS∥ = ħk∥/mS. (5.52)

The first term in Eq. (5.51) comes from the overlap integral in Eq. (5.46) inside the super-

conductor, whereas the second term comes from the overlap integral in the half metal.

The existence of a finite contribution to rhe from inside the superconductor is reponsi-

ble for the fact that rhe remains nonzero in the limit κ↓ → ∞ if θm varies parallel to the

interface.

We note that the presence of Andreev reflection at the Fermi energy for a domain wall

with∇θm parallel to the interface is accompanied by a nontrivial angle dependence of the

Andreev reflection amplitudes reh and rhe: If ∇θm is parallel to the interface, rhe and reh

are even functions of ε, but odd functions of k∥. On the other hand, if ∇θm is normal to

the interface, rhe and reh are odd functions of ε, but even functions of k∥. Similar behavior

has been noticed previously on the level of the quasiclassical Green functions [9, 21].

5.4.2 Spin-active interfaces

As a second example of a spatially varying magnetization direction, we now investigate

a simplified model of a thin ferromagnetic or half-metallic layer located at the interface,

whose magnetization is misaligned with respect to the bulk of the half-metal. In this

model of a “spin-active interface”, we take the magnetization direction to be the unit vec-

tor e3 in the entire half metal and consider a perturbation to the Hamitonian Ĥ of the

form

V̂ = h̃m̃ ⋅ σ̂δ(z), (5.53)

where

m̃ = (e1 cosϕm + e2 sinϕm) sin θm + e3 cos θm. (5.54)
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Triplet Andreev reflection at such “spin-active” interfaces has been considered previously

in Refs. [9, 11] and in Chapter 3. Using Eq. (5.46) to calculate the Andreev reflection

Andreev amplitude to first order in h̃ and taking the limit of a tunneling interface, ∣tt↓∣2 ≪

1, we then find

rhe(k∥; ε) = reh(k∥;−e)∗ = −
i h̃∣tt↓∣2 sin(θm)e−i(ϕ−ϕm)

2ħv↓z
ε∆

∆2 − ε2
. (5.55)

The proportionality to the square of the tunneling probability is in agreement with the

general considerations of Sec. 5.2. The opposite limit of an ideal interface (∣t∣ = 1) was

considered in Chapter 3.

5.5 Lateral geometry

A modification of the scattering problem arises in a lateral geometry, in which the half

metal has a finite thickness d and we consider the scattering of quasiparticles that move

parallel to the superconductor interface.

The geometry we consider is shown in detail in Fig. 5.4. As before, the half-metal–

superconductor interface is the plane z = 0. The superconductor occupies the half space

z > 0, whereas the half metallic film is in the region −d < z < 0. The system has a finite

width W in the y direction. Hard-wall boundary conditions are applied at z = −d, y = 0,

and y =W.

We first solve for the scattering states in the presence of a uniform magnetization di-

rection. The scattering states are normalized to unit flux in the x direction. There are

electron-like and hole-like scattering states ∣nynzs; e⟩ and ∣nynzs; h⟩, each labeled by in-

tegers ny, nz, and s, where ny and nz represent the quantized transverse modes in the y

and z directions, respectively, and s = ±1 for scattering states propagating in the positive
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and negative x direction, respectively. In the limit d ≫ ξ− the hard-wall boundary con-

ditions at z = −d are inconsequential for the minority carriers, and the corresponding

wavefunctions read

Ψny ,nz ,s,e(r) =
√

v↑z
4v↑xWd

Ψk∥ ,e(z) sin(ky y)e ikx(ε)sx , (5.56)

Ψny ,nz ,s,h(r) =
√

v↑z
4v↑xWd

Ψk∥ ,h(z) sin(ky y)e ikx(−ε)sx , (5.57)

where Ψk∥ ,e(z) and Ψk∥ ,e(z) are given in Eq. (5.40) and

ky = nyπ/W, ny = 1, 2, . . . (5.58)

kx(ε) =
√

k2
↑
− k2
↑z − k2y + ε/ħv↑x , (5.59)

and the allowed wavenumbers k↑z are determined from the condition that the wavefunc-

tions vanish at z = −d, which, in the limit of a tunneling interface, implies the condition

2k↑z,ed + π − arg(r +
t2

e2iηr′
↓
− r↓
) = 2πnz , nz = 1, 2, . . . (5.60)

for electron like states, and analogously for hole like states

2k↑z,hd + π − arg(r∗ +
t∗2

e2iηr′∗
↓
− r∗
↓

) = 2πnz , nz = 1, 2, . . . . (5.61)

In the limit of a tunneling interface the wavenumbers will be

k↑z =
πnz

d
+ O(t), nz = 1, 2, . . . , (5.62)

yet for the purposes of our calculation higher order terms need to be kept in order to find

a finite overlap among the different states.

We now consider the effect of a region in which the magnetization direction is not

spatially uniform. In this case, scattering between the electron-like and hole-like quasi-

particle states is possible. In contrast to the serial geometry, in the lateral geometry, nor-

mal reflection of electrons or holes at the interface does not come with a reversal of the

propagation direction. This situation is shown schematically in Fig. 5.4.
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Figure 5.4: A lateral superconducting contact giving rise to a waveguide geometry.

Quasiparticles which are not Andreev reflected in the region of inhomogeneous mag-

netization under the superconductor will emergy on the other side of the contact.

To lowest order in the rate of change of the magnetization direction, the Andreev

reflection amplitude rxy
he
and rxy

eh
for a quasiparticle incident on a region of nonuniform

magnetization, e.g., under a superconducting contact, can be calculated in perturbation

theory as

rxy
he
(n′yn′zs′; nynzs) = −

i
ħ
⟨n′yn′zs′; h∣V∣nynzs; e⟩,

rxy
eh
(n′yn′zs′; nynzs) = −

i
ħ
⟨n′yn′zs′; e∣V∣nynzs; h⟩, (5.63)

where V is given in Eq. (5.47) above. With these equations, the problem of calculating

Andreev reflection coefficients is brought into a form similar to that of the previous sec-

tion.

As an example, we consider the case that themagnetization directionmhas the spatial

dependence (5.41) with θm a function of x only and that the thickness d of the half metal

film is small in comparison to the superconducting coherence length ξS. In that case the

Andreev reflection matrix rxy
he
(n′yn′zs′; nynzs) is diagonal in the mode indices ny, n′y and

nz, n′z and one finds

rxy
he
(n′y , n′z , s′; ny , nz , s) =δn′y ,nyδnz ,n′z

v↑z
2v↑xd ∫ dxrhe(x;k∥)e2iεx/ħv+x , (5.64)
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where rhe(x , y;k∥) is the Andreev reflection amplitude of Eq. (5.51), evaluated with the

derivative dθm/dx at position x. The prefactor v↑z/2v↑xd in Eq. (5.64) expresses the geo-

metric enhancement of the reflection amplitude from the coherent superposition of mul-

tiple reflections at the half-metal–superconductor interface, see Chapter 4. The complex

exponential factor accounts for the phase differences acquired by electrons and holes be-

tween these reflections.

If the region in which the magnetization direction varies has a size smaller than

the superconducting coherence length, the x dependence of the complex exponential

e2iεx/ħv+x in Eq. (5.64) can be neglected. Since rhe(x;k∥) is proportional to dθm/dx, the

integral over x gives the total change δθm of the magnetization angle θm. One finds with

Eq. (5.51), and in agreement with the previous result in Chapter 4,

rxy
he
(n′y , n′z , s′;ny , nz , s)

= − δn′y ,nyδnz ,n′z
v↑z

2v+xd
e−i(ϕ−ϕm)∆δθm
√
∆2 − ε2

⎡
⎢
⎢
⎢
⎢
⎣

vSx ∣t∣2
4kSzvSz

+
v↑∥v1/2↑z Re tt↓

(k↑zv↑z + κ↓zv↓z)v1/2↓z

⎤
⎥
⎥
⎥
⎥
⎦

,

(5.65)

In this limit, the Andreev reflection amplitude no longer depends on the size ld of

the domain wall, nor on the precise x dependence of the magnetization angle θm. In the

opposite limit that the domain wall size ld is large in comparison to the superconduct-

ing coherence length, the reflection amplitude at ε = 0 is still given by Eq. (5.65) above,

but Andreev reflection is suppressed for excitation energies ε above the Thouless energy

ħv+x/ld of the domain wall. A common domain wall profile is [22]

θm(x) = arctan [sinh(πx/ld)] . (5.66)

In this case the suppression at finite bias is by a factor sech(eVld/ħv↑x).

Similar to Eq. (5.64) above where the magnetization varies along the x-direction,

one finds the same result for variation of the magnetization along the direction normal
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to the superconducting interface, as well as for a spin active interface. In these cases,

rhe(x , y;k∥) in Eq. (5.64) is the Andreev reflection amplitude of Eq. (5.49) and Eq. (5.55),

respectively.

When the variation of the magnetic structure is a property of the interface, due e.g.

to the interplay of the different lattice constants or the screening properties of the super-

conductor, one will find that the integration is extended along the whole interface. As

before the condition for applicability of this simple correspondence is κ↓d ≪ 1.

When the film thickness exceeds the superconducting coherence length Andreev re-

flection is no longer diagonal in the mode indices. One finds instead that the transition

to modes which are close in lateral wavenumber, kx − k′x ⪅ 2π/ld, becomes possible.

Such non-diagonal Andreev reflection will contribute to the subgap conductance of a

half-metal–superconductor junction, but not to the Josephson current between two su-

perconductors linked by a half-metal.

5.6 Conclusion

In this chapter we have investigated the symmetry properties of triplet Andreev reflection

into half-metals. The suppression of Andreev reflection in the single channel quantum

limit identified in Chapter 3 was shown to also apply to generic clean systems which sat-

isfy translation and point inversion symmetry. It was demonstrated that the orientation

of domain walls has crucial consequences insofar as it may lift the latter symmetry, en-

abling Andreev reflection at the Fermi energy.

Using a perturbative approach we were able to obtain the Andreev reflection ampli-

tude for half-metals in which minority carriers are not entirely absent but only evanes-
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cently present. Crucially, their presence allows for finite Andreev reflection where a do-

main wall is oriented parallel to the interface or where there is a “spin-active” interface.

It was also identified that theThouless energy associatedwith the length of the domain

wall adds an additional energy scale to the problem. Where this Thouless energy is lower

than the gap the subgap conductance will be suppressed with increasing bias voltage.

Worth noting is that very recently half-metal superconducting hybrid systems have

garnered attention as possible candidates for allowing Majorana fermion excitations

which are considered potentially promising candidates to implement topological quan-

tum computing. While the system considered here is not a direct candidate, the ingre-

dients present here—spin-flip scattering, half-metallicity, and s-wave superconducting

order—are precisely the same as those in the first proposal by Sau et al. [23].
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APPENDIX

Explicit calculation of the gaugetransformation

We have written the states in the half-metal as spinors with majority and minority spin

components respectively. When the magnetization orientation changes it will induce

transitions between these two. We perform a gauge transformation which rotates the ba-

sis in spin space such that the quantization axis is always aligned with the ê3 axis. Doing

so will induce a gaugepotential.

After the gauge transformation the normal electron part of the Hamiltonian in the

half-metal reads

Ĥ′ =(p̂ − Â) 1

2m(z)
(p̂ − Â) − V↑(z)

1 + σz

2
− V↓(z)

1 − σz

2
+ ħωδ(z) (5.67)

where UU† = 1 and U†m(x) ⋅ σU = σz have been used. A posteriori, this form justi-

fies our choice of states above: When Â → 0 majority and minority carriers are indeed

decoupled. Note that it is not advisable to employ the gauge transformation only in the

half-metal. Doing so would result in a discontinuous change in U at the interface to the

superconductor, in turn giving rise to δ-functions.

Treating the gaugepotential Â as a perturbation, to first order the resulting perturba-

tion V̂ to the single particle Hamiltonian Ĥ of Eq. (5.11) is

V̂ = −
1

2m
([p̂, Â]− + 2Â ⋅ p) , (5.68)

where the commutator may be nonzero as the gaugepotential need not be constant. With

Â∗ = ÂT and p̂∗ = −p̂ the contribution in the hole space follows

− V̂∗ = −
1

2m
([p̂, ÂT]− + 2ÂT ⋅ p) . (5.69)
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The same result is obtained from directly considering the gaugepotential due to the gauge

sector transformation of the Bogoliubov de Gennes Hamiltonian, see Eq. (5.42),

−H′∗ = −UTH∗U∗. (5.70)

The gauge potential naturally depends on changes both in the azimuthal angle ϕm as

well as the polar angle θm. For the transformation given in Eq. (5.43),

U(x) = e iθm(m(x)×e3)⋅σ/2 sin θm ,

the gaugepotential is found to be

Âi = −
ħ
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosϕ sin θ

sinϕ sin θ

1 − cos θ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∂iϕ(r) +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sinϕ

− cosϕ

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∂iθ(r)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ σ̂. (5.71)

In the main text we have focussed on a variation in the polar angle. Setting ϕ = ϕm a

constant one arrives at Eq. (5.44) of the main text. Using Eq. (5.68) the explicit form

following in Eq. (5.45) is found.
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