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PREFACE

This book is the first of two volumes intended for use in
courses in classical mechanics. My objectives in writing it were
to. provide students and teachers with a text consistent in content
and format with my ideas regarding the subject matter and
teaching of mechanics, and to disseminate these ideas. In the
Paragraphs which follow, they are discussed with specific refer-
ences to relevant portions of the book.

The ultimate purpose of courses in mechanics is to teach the
student how to solve physically meaningful problems arising in
a variety of fields. As the number of such problems, and even
classes of problems, is so great that one cannot hope to cover
them individually, the subject should be presented on a level of
generality sufficiently high to encompass the entire range of phe-
nomena to be considered, and in sufficient detail to permit rela-
tively direct application to specific situations. This requires a
suitable symbolic language, and vector analysis appears to be
the best one available. After using it with sophomore students

o r nearly ten years, I am convinced that it can simplify both
the presentation of theory and the solution of problems. (For
example, the topic discussed in Section 3.3.6 becomes practically
unmanageable in scalar form.) Accordingly, Chapter 1 contains
a detailed exposition of vector algebra, and no prior knowledge
°* this subject is required. Vector methods are then employed
throughout the remainder of the book, emphasis being placed
°n using them as guides to thought, rather than with slavish
adherence to a formalism (see, for instance, Sections 3.2.6, 3.4.7,
36.2).

Proofs and derivations are given in considerable detail. The
reason for this is that I favor spending only a very limited
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amount of classroom time on these, but believe they should be
available to students. In class, it seems preferable to discuss the
meaning and applications of a theorem and, in general, to con-
centrate on that which, apparently, cannot be taught very well
in print, that is, anything which requires simultaneous use of
visual and audio means of communication, such as, for example,
the "setting-up" of problems. Also, the book contains very little
discursive material—introductory remarks, allusions to topics of
philosophical or historical interest, explanations of the physical
significance of mathematically defined quantities, etc.—the un-
derlying assumption being that it is best to deal with these mat-
ters verbally, spontaneously, and in a way suited to the back-
ground of each group of students. I have used the book with
undergraduates, spending three hours per week for fifteen weeks,
and with graduate students, covering the same material in ten
to twelve lecture hours. In short, the book is not meant to be
the entire course. It is concerned with the trees, leaving the
teacher free, and indeed obligating him, to describe the forest.

The conviction that the difficult task of relating physics to
mathematics is facilitated by initially keeping the two separated
in a clear-cut way has strongly influenced me in the choice of
contents for Chapters 2 and 3. In the former, the topic of mass
centers is presented as a logical extension of concepts introduced
in connection with centroids, no attempt being made at this junc-
ture to relate mass centers to centers of gravity. (For the sake
of completeness, methods of integral calculus are discussed, but
it is not essential that the student have a mastery of this sub-
ject. On the contrary, believing that the solution of the majority
of practical problems requires skill in locating mass centers
without the use of integration, this aspect of the subject is
stressed.) In Chapter 3, a theory of moments and couples is con-
structed without reference to forces, these being mentioned only
in illustrative examples. This is done because it eventually be-
comes necessary to apply the theory to systems of vectors which
are not forces, such as momenta and impulses. Particularly in
connection with couples, I have broadened the more generally
used definition (see Section 3.4) in order to establish a sound
basis for later presentation of D'Alembert's Principle.
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Equilibrium, per se, is not mentioned until Chapter 4, and
even then the discussion is preceded by extended examination of
the concept of force. The attempt to deal with forces in an
intuitive way probably has been the source of most of the diffi-
culties encountered in teaching mechanics. Hence, taking con-
cepts of space, mass, and time for granted, and using the ana-
lytical tools previously developed for this purpose, concepts of
force are presented in an essentially axiomatic fashion. Of course,
this means that students do not get so much practice in solving
equilibrium problems as they would if this work were begun
earlier in the course. Consequently, their proficiency in dealing
with certain classes of situations may not immediately become
very great. But I am convinced that, in the long run, increased
understanding more than compensates for lack of facility. For
example, I have found that the very important ability to draw
correct free-body diagrams is not developed most efficiently by
drill, but by a theoretically sound exposition of the ideas under-
lying the construction of these diagrams. This is not to say that
Practice is unnecessary. On the contrary, problem solving is the
niost important activity on the part of the student. The attempt
has, therefore, been made to provide problems which are prop-
erly correlated with matters treated in the text, and to give just
enough of these to insure adequate coverage, without requiring
the expenditure of excessive amounts of students' time. Ex-
perience indicates that thorough study of very nearly all of the
Problems is both necessary and sufficient for mastery of the
subject.

One of the immediate goals of a first course in mechanics is
to prepare students for subsequent study of other subjects. While
I do not subscribe to the idea that extensive instruction in
strength of materials and statics of fluids should be made an
integral part of a mechanics course, it is certainly desirable to go
so far that later work in mechanics of continua can be under-
taken without any loss in continuity. Problem Set 16 and the
related sections of the text are meant to accomplish this.

T. R. KANE

Philadelphia, Pennsylvania
M, 1959
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1VECTOR ALGEBRA

1*1 Terminology

The magnitude, orientation, and sense of a vector are called
the characteristics of the vector.

1-1.1 The magnitude of a vector is specified by a positive num-
ber and a unit having appropriate dimensions. No unit is stated
tf the dimensions are those of a pure number.

Examples: Magnitude of a velocity vector: 30 mph. Magni-
tude of a force vector: 15 lb. Magnitude of a position vector: 6 ft.

1-1.2 The orientation of a vector is specified by the relationship
between the vector and given reference lines and/or planes.

Example: Orientation of the velocity vector of a point P
loving on a circular path: parallel to the tangent to the circle at P.

1.1.3 The sense of a vector is specified by the order of two
Points on a line parallel to the vector.

Example: Sense of the force exerted by a smooth sphere,
center at point A, on a smooth sphere, center at point B, when
the two spheres are pressed together: AB.

1.1.4 Orientation and sense together determine the direction
of a vector.

1«1.5 The dimensions of a vector are those of its magnitude.

1.1.6 When a vector is associated with a particular point P in
space, it is called a bound vector; otherwise, a free vector. The
Point P is known as the vector's point of application, and the line

l



2 VECTOR ALGEBRA; SECTION 1.2

passing through P and parallel to the vector is called the line of
action of the vector.

1.1.7 The operations of vector analysis deal only with the
characteristics of vectors and apply, therefore, to both bound and
free vectors. By the same token, they furnish no information re-
garding the point of application of any vector resulting from these
operations.

1.2 Notation

Vectors are denoted by bold face letters, e.g., a, b, A, B.
The symbol |v| represents the magnitude of the vector v; e.g.,

if the velocity v of a point has a magnitude of 30 miles per hour,
this may be indicated by writing

|v| « 30 mph

It follows from 1.1.1 that the symbol |v| never represents a
negative quantity.

1.2.1 Pictorially, vectors are represented either by straight or
curved arrows. A vector represented by a straight arrow has the
direction (see 1.1.4) indicated by that arrow. The direction of a
vector represented by a curved arrow is the same as the direction
in which a right-handed screw moves when the screw's axis is
normal to the plane in which the arrow is drawn and the screw is

FIG. 1.2.1 Fio. 1.2.2
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rotated as indicated by the arrow. For example, Fig. 1.2.1* shows
two representations of each of two vectors a and b.

1-2.2 If a sketch contains arrows representing vectors whose
dimensions (see 1.1.5) differ from each other, attention is drawn
to this fact by modifying some of the arrows, e.g., by drawing
circles through them. For example, in Fig. 1.2.2, a is an accelera-
tion vector, b a force vector.

1-3 Equality

Two vectors a and b are said to be equal to each other when
they have the same characteristics (see 1.1). One then writes

1.3.1 Equality does not imply physical equivalence of any
sort. For instance, two forces represented by equal vectors do not
ft cause identical motions of a body on which they act.

'•4 The product of a vector v and a scalar $: sv or vs

Definition: sv is a vector having the following characteristics:
Magnitude:

M = M = MM
where |s| denotes the absolute value of the scalar s.

Orientation: sv is parallel to v. If s •» 0, no definite orientation
^ attributed to sv.

Sense: If s > 0, the sense of sv is the same as that of v. If
s < 0, the sense of sv is opposite to that of v. If s = 0, no definite
^nse is attributed to sv.

Problem (a): A particle has a mass m of 0.05 slugs and the
acceleration a shown in Fig. 1.2.2. Determine the magnitudes of
ijjjhevector mo and (2) the vector ( - 2 ) o .

Each of the figures has the same number as the section in which it is
t cited.
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Solution (1):

\ma\ - |m||a| = (0.05)(10) = 0.5 slug ft sec-2

Solution (2):
|(—2)a| = | -2 | |a | = (2)(10) = 20 ft sec"2

Problem (b): Two vectors, p and q, are given by
p = 2b q = —2b

where b is the vector shown in Fig. 1.2.2. Draw a sketch showing
b, p and q.

20 Ib. ^
b

4 Q l b - • FIG. 1.4

401b.

Solution: See Fig. 1.4.
1.4.1 If si and «2 are any two scalars, then

This follows from the definition of equality of two vectors (see 1.3),
the definition of sv, and the commutativity law for the multipli-
cation of scalars. Hence parentheses are unnecessary, and one
writes

1.4.2 The vector (— 1) v is called the negative of v and is denoted
by the symbol — v. Its magnitude is the same as that of v, its
direction opposite to that of v. And

-(sv) = (-s)v = s(-v)

so that parentheses are unnecessary, and one writes — sv.

1.5 Zero vectors

When a vector v is multiplied by the scalar zero, the result is a
vector which does not have a definite direction (see 1.1.4 and 1.4)
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whose magnitude is equal to zero. Any such vector is called
a zero vector, and all zero vectors are regarded as being equal to
^ach other. The symbol used to denote a zero vector is the same
as that representing the scalar zero, i.e., 0.

••6 The quotient of a vector v and a scalar $: v/s or¥

20 mph.
v

10 mph. w

FIG. 1.6p
10 mph.

and

Definition:

V/S m (1/s)

Example: In Fig. 1.6,

P = v/2

q = = ^ 2

Unit vectors

A vector whose magnitude is the pure number 1 is called a
unit vector.

1.7.1 Given a vector v, a unit vector n having the same direc-
tion as v is obtained by forming the quotient of v and |v|:

v
M

1*7.2 The direction of a unit vector n is called the n direction.
The opposite direction is called the — n direction.

1*7.3 A vector v can always be regarded as the product of a
Scalar v, called a measure number, and a unit vector n which has
*be same orientation as v.
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Proof: Let n be a unit vector having the same orientation as v,
and take

v = |v|
or

according as it has the same sense as v, or the sense opposite to
that of v. Then (see 1.4) vn has the same characteristics as v, and
(see 1.3)

v = t;ii

Problem: Express each of the vectors v and v', shown in Fig.
1.7.3, as the product of a measure number and the unit vector n.

-**"
FIG. 1.7.3 V_ 2 0 Ib.

20 lb. ^ y'

Solution:
v * - 2 0 nib, v' - 20 nib

1.7.4 When a vector v is expressed as the product of a measure
number v and a unit vector n, the absolute value of the measure
number is equal to the magnitude of the vector:

M - M
Proof: If

v = vn
then*

LJ L.-l L.II.J L.I
|v| ss \vn\ ae |#||n| = \v\

(1.3) (1.4) (1.7)

* Numbers beneath equal signs refer to the corresponding sections of the
text. When these numbers are preceded by P, E, or F, this device indicates
a reference to specific problems, examples, and figures, respectively. For ex-
ample, (P 1.8.2) is to be read "see the problem discussed in Section 1.8.2."
When more than one example, figure, or problem is discussed in a particular
section these will be numbered (a), (b), etc. and referred to as, for example,
Fig. 1.7.5a, Problem 1.4(b).
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1.7.5 Vectors are sometimes depicted as shown in Fig. 1.7.5a,
l-^y by means of a straight or curved arrow together with a meas-
ure number. The corresponding vector is then regarded as having
the direction indicated by the arrow if the measure number is

FIG. 1.7.5a FIG. 1.7.5b

Positive, and the opposite direction if it is negative. As will be
later, this mode of representation is particularly convenient
the orientation of a vector is known while its magnitude

sense are unknown.

Example: Figure 1.7.5b shows four versions of the same vector.

VECTOR ADDITION

The sum of a vector Vi and a vector v2: Vi + v2 or

Definition: vi + vi is a vector whose characteristics are found
either by graphical or analytical processes based on any one of
™gs. 1.8a, b or c. In these figures, the length of each arrow is
Proportional to the magnitude of the vector represented by the
arrow.

1.8.1 The vector is called the resultant of vi and



VECTOR ALGEBRA; SECTION 1.8

FIG. 1.8a

FIG. 1.8b FIG. 1.8C

1.8.2 The definition of addition supplies no information re-
garding the point of application of the resultant (see 1.1.7).

Problem: In Fig. 1.8.2a, in and n2 are unit vectors. Find the
magnitude of the resultant of the two vectors p and q if p = 3ih
and q = — 4n2.

Solution: Sketch the vectors p, q and p + q, as shown in
Fig. 1.8.2b. Use the law of cosines.

|p + q| - [32 + 42 - 2(3)(4) cos 60°]* - 3.61

1.8.3. The following is an immediate consequence of the defi-
nition of vector addition: If two vectors, vi and v2, are each rotated
through an angle 0 in the plane P determined by vi and v2, thus
forming two new vectors, v/ and v2', the resultant of vi' and v2' is
equal to the vector obtained when the resultant of Vi and v2 is
rotated through the angle 0 in plane P.

q 4
FIG. 1.8.2b
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1.8.4 The sum vi + (—v2) is called the difference of vi and v*
and is denoted by vi — v2 (see Fig. 1.8.4a).

FIG. 1.8.4a

. Problem: Determine the magnitude of the vector p — q for
the vectors p and q described in Problem 1.8.2.

_ q

FIG. 1.8.4b

Solution: Sketch the vectors p, q, and p — q, as shown in
. 1.8.4b, then use the law of cosines:

|p - q| = [32 + 42 + (2)(3)(4) cos 60°]* - 6.09

The sum of n vectors v«, i = 1, 2 . . . , m

Vi + V2 + . . . + VH

v< or

Definition: 22 v» ls a ve°tor whose characteristics are

found either by graphical or analytical processes based on Fig. 1.9.
*tt this figure, the length of each arrow is proportional to the mag-
nitude of the vector represented by the arrow.

1*9.1 The vector

. , t = 1 , 2 , . . . , n.

*, is called the resultant of the vec-
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FIG. 1.9

1.9.2 Vector addition is commiUative and associative; i.e., the
characteristics of the resultant are independent of the order in
which the vectors are added (commutativity) and are not affected
by the manner in which the vectors are grouped when the sum is
regarded as the resultant of a number of partial sums (associa-
tivity).

Example:

v2 + v3 = v8 v8) + v2

1.9.3 Vector addition obeys the following laws of distribulivity:

Si (a)

t - 1 t - 1

Proof (a): For n = 2,

while

(b)
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Determine the magnitude and direction of v($i + s2) by using 1.4,
that of vsi + vs2 by using 1.4 and 1.8; then use 1.3. This concludes
the proof for n = 2. The validity of Eq. (a) for all values of n
follows from the fact that the sum of any number of vectors can
be obtained by successive additions of two vectors.

B1

Problem: Use the distributivity law to show that

3v + 4v - 5v = 2v

Solution:

3v + 4v - 5v « (3 + 4 - 5)v « 2v

Proof (b): For n = 2,

n
$ ]>3 Vi = «(Vi + V2)

t - l

while

t - l

These two vectors are shown (for a positive value of s) in Fig. 1.9.3.
Equality follows from the fact that triangles ABC and A'B'C are
similar, by construction (see 1.8 and 1.4). As the sum of any
dumber of vectors can be obtained by successive additions of two
vectors, Eq. (b) is valid for all values of n.

Example:

f * + |V2 = i (3V! + 4V2)
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COMPONENTS OF A VECTOR

1.10 Resolution of a vector v into n components

Every vector can be regarded as the sum of n vectors (n = 2, 3,
. . .), of which all but one can be selected arbitrarily. Each of these
n vectors is called a component of v.

Problem (a): Resolve the vector v shown in Fig. 1.10a into
four components, vi, v2, v3, v4.

FIG. 1.10a

Solution: Fig. 1.10b shows two solutions.
Problem (b): The force F shown in Fig. 1.10c has a magnitude

of 10 lb. Resolve it into two components, one parallel to line Li,

30°

FIG. 1.10C FIG. l.lOd

the other parallel to line L2, and determine the magnitude of each
component.

Solution: Call the components Fi and F2. Then

F = R + F2
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and the vectors F, Fi, F2 must form the triangle shown in Fig. LlOd.
Use the law of sines to determine the magnitudes of Fi and F2:

1.10.1 Problem 1.10(b) shows that it is possible to resolve a
vector into components which are larger than the vector itself
and that one of these components may be perpendicular to the
vector.

1.10.2 If m, n2, n3 are any three unit vectors not parallel to the
plane, there exist three unique scalars vh v2, v*, such that a
vector v can be expressed as

v =

The vector t\n» is called the n, component of v and Vi is called
the n, measure number of v.

Proof: Given v and the unit vectors m, n2, n3, there exists one
ai*d only one parallelepiped with v for its diagonal and with edges
Parallel to m, n2, n3 (see Fig. 1.10.2). The edges can be used to
construct arrows which represent the vectors i>iih, v2n2,

FIG. 1.10.2

1.10.3 When a zero vector v is expressed in the form
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where in, n2, n3 are unit vectors not parallel to the same plane, then

Vi = 0, i = 1, 2, 3

because the lengths of the edges of a parallelepiped are equal to
zero whenever the length of the diagonal is equal to zero.

1.10.4 Every vector equation is equivalent to three scalar
equations.

Proof: Every vector equation can be put into the form

v = 0

or, letting m, n2, n3 be unit vectors not parallel to the same plane,
into the form (see 1.10.2)

*>ini + v2n2 + vznz = 0

It then follows from 1.10.3 that

vi = 0, v% -B 0, v% = 0

and these are three scalar equations.
Problem: Given

a = 6ni — 4n2

and
o — 3iii — 112 *•"* 2HS

determine Ci, c2, cz, the ni, n2, n3 measure numbers of a vector c
defined by the vector equation

c - a - 2b

Solution:

+ c2n2 + c8n3
Hence,

Cini + c2n2 + c3n3 = 6ni — 4n2 — 2(3ih — n2 — 2n3)

= - 2 n 2 + 4n3

and
cini + (c2 + 2)n2 + (c3 - 4n3) « 0

Thus,

Cl « 0, c2 + 2 - 0, cz - 4 « 0
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and the measure numbers Ci, c2, c3 have the values

C\ = 0, c2 = —2, c8 = 4

1.10.5 When a vector v is expressed in the form

v = t>iih + 02112 + vznz

15

where m, n2, n3 are mutually perpendicular unit vectors, the mag-
nitude of v is given by

Proof: Draw a sketch showing v, the components t>iih, v2n2,
, and the vector v&i + t;2n2. (See Fig. 1.10.5.) Triangle ACD

is a right triangle whose sides have the lengths \vit\i + v&t\, |t>ins|
and |v|. Therefore,

>* (1)

ABC is a right triangle with sides of lengths
+ ttfis|. Thus,

Substitute into Eq. (1):

Use 1.7.4:
(2)

, i = 1,2,3
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Consequently,
|wi<|f = \vi\\ i = 1, 2, 3

The square of the absolute value of a number is equal to the square
of the number. Hence,

|i\nt|
2 = Vi\ i = 1, 2, 3

Substitute into Eq. (2):

|V| « (Vl* + V2* + VZ*)l

Problem (a): A force F is given by

F = 2ni - 3n2 - 6n3 lb

where in, n2, n8 are mutually perpendicular unit vectors. Deter-
mine |F|.

Solution:
|F| = (4 + 9 + 36)* = 7 lb

Problem (b): Determine whether or not n is a unit vector if
ni, n«, n3 are mutually perpendicular unit vectors and

n = 3ni — 2n2 + 4n3

Solution:
9 + 4 + 16 = 29

Hence,
|n| - (29)* ^ 1

and n is not a unit vector.

1.11 Methods for resolving a vector into three mutually
perpendicular components

See the problems given below.
Problem (a): Resolve the unit vector n shown in Fig. 1.11a

into components parallel to the edges of the rectangular
parallelepiped.

Solution: Set up unit vectors parallel to the edges PA, PB,
PC. There are many ways to do this; one is shown in Fig. 1.11b.
(tii points from the paper toward the reader.)
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A 2'

FIG. 1.11a

Let v be a vector joining P to Q, as shown in Fig. 1.11b. Then

v = 3m — 2n2 + 4n8 ft

(One may think of v in terms of "going" from P to Q by first
going 3 ft in the m direction, then 2 ft in the — n2 direction, finally
4 ft in the n3 direction.)

Find|v|:

|v | =(9 + 4 + 16)i = 5.39 ft
Use 1.7.1:

1
n = n 5.39

3
d.9.3) 5.39

(3ni - 2n2

2

4n3)

ni -
5.39 *

0.556ni - 0.371n2

5.39 *

0.742n8

Check: (0.556)2 + (0.371)2 + (0.742)2 - 0.308 + 0.148 +
0.550 - 1.006 « 1.000

Problem (b): Resolve the force F shown in Fig. 1.11c into
components parallel to the edges of the rectangular parallelepiped,
find the magnitudes of these components, and determine the sense
of each component.
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c

A 2'

V

FIG. 1.11C

Solution: Set up unit vectors parallel to the edges (see Fig.
1.11c), and construct a unit vector n having the same orientation
as F. From Problem 1.11 (a),

n = 0.556iii ~ 0.371n2 + 0.742n3

Noting that n and F have opposite senses, use 1.7.3:

F = -10n = -5.56rii + 3.71n2 - 7.42n3lb

The magnitudes of the three components of F (see 1.7.4) are

5.561b, 3.711b, 7.421b

and the signs in the expression for F show that the three compo-
nents have the senses AP, BP, CP.

Problem (c): Four forces, P, Q, R, S are applied to the box
shown in Fig. 1.1 Id. Force P has the magnitude and direction
shown in the sketch. The forces Q, R, S have lines of action re-
spectively parallel to OA, OB, OC. If the resultant of these four
forces is equal to zero, what is the magnitude and sense of each
of the forces Q, R, S?

Solution: Draw a sketch showing the four forces, assigning
the senses of P, Q, R arbitrarily and using the notation described
in 1.7.5. Also, set up unit vectors ni, n2, n3, as shown in Fig. 1.1 le.

Proceeding as in Problem 1.11 (a), construct a unit vector
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parallel to the line of action of each of the four forces, then express
each force as the product of a measure number and the appropriate
unit vector:

P = 10(-0.8n2 + 0.6ns)

Q = Q(-0.8n2 - 0.6n3)

R
Vl3

V20

(2n! + 3n,)

(2nt + 4n2)

Write the three scalar equations (see 1.10.3) corresponding to
the vector equation

P + Q + R + S = 0

which states that the resultant of the four vectors is equal to zero.
These are

Vl3 V20'

6 - 0.6Q + -y= R - 0
Vl3

Solve this set of simultaneous equations:

Q = 0, R = -2>/ l3 , S = 2\/20

J^ q\\ \
\ \ \ \

FIG. l . l ld FIG. l . l le
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Refer to 1.7.3 and 1.7.4 to determine the magnitude and sense
of each force (see Table 1.11).

Force

Q
R
S

TABLE 1.11

Magnitude

0
7.22 lb
8.96 lb

Sense

OB
CO

1.11.1 The presentation of information in tabular form fre-
quently saves time and space; e.g., all of the equations used in the
solution of Problem 1.1 l(c) are contained, essentially, in Table
1.11.1.

TABLE 1.11.1

Force ni 112

P 0 - 8 6
Q 0 -0 .8 -0 .6
R 2/VT3 0 S/VlS
s 2/V26 4/V26 0

1.12 Resolutes of a vector v

Definition: When a vector v is resolved into two components,
vx, and vp, with VL parallel to a line L (or to a unit vector n) and
vp perpendicular to L, VL is called the L (or n) resolute of v and vP

the resolute of v perpendicular to L. In terms of VL and vp, v is
given by

v = yL + vp

Problem: Determine the magnitudes of the L\ and L2 reso-
lutes of the force F shown in Fig. 1.12a.

Solution: Let Fi be the L\ resolute of F, F/ the resolute of F
perpendicular to L\ (see Fig. 1.12b). Then

|Fi| = 10 cos 60° = 51b
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10 Ib.

L,

FIG. 1.12a FIG. 1.12b

Next, note that L2 is perpendicular to F. It follows that the
magnitude of the L2 resolute of F is equal to zero.

1.12.1 No resolute of a vector v ever has a magnitude which is
greater than that of v; and if a line L is perpendicular to v, the L
resolute of v is equal to zero. (Compare with 1.10.1.)

SCALAR MULTIPLICATION OF VECTORS

1.13 The angle between a vector a and a vector b: (a, b)
or (b, a)

Definition: Given two vectors a and b, move either vector
parallel to itself (leaving its sense unaltered) until their initial
points coincide. The four situations which can arise are illustrated
by Figs. 1.13a, b, c, d. The angle 6 in Figs. 1.13a and b is called

(a)

FIG. 1.13a FIG. 1.13b FIG. 1.13C FIG. 1.13d
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the angle between a and b and is denoted by the symbols (a, b) or
(b, a). Fig. 1.13c represents the case (a, b) = 0 ; Fig. 1.13d, the
case (a, b) = 180°.

1.14 The scalar (dot) product of a vector a and a vector
b: a • b or b • a

Definition:
a b - |a| |b|cos(a, b)

Problem: Find the dot product of the two vectors shown in
Fig. 1.14.

FIG. 1.14

Solution:
a b = 10(20) cos 120°

= 10(20) (-0.5) = -lOOftlb

1.14.1 If a is perpendicular to b, a b = 0; but if a b = 0,
a is not necessarily perpendicular to b.

Proof: If a is perpendicular to b, then (a, b) = 90°, cos
(a, b) = 0, and a b = 0. On the other hand, a b = 0 implies
only that the product |a| |b| cos (a, b) is equal to zero, and this is
the case whenever |a| = 0, or |b| = 0, or cos (a, b) = 0.
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1.14.2 For any two vectors a and b and any scalar s,

(sa)-b = s(a-b) = a-(sb)
Hence parentheses are unnecessary, and one writes sa • b.

Problem: Evaluate - 3 a b by finding -3(a-b) , a-(—3b),
and (—3a) -b for the vectors a and b shown in Fig. 1.14.

Solution:

-3(a-b) - -3 ( -100) = 300ftlb
(P1.14)

a . (-3b) = 10(60) cos 60° = 300 ft lb
(-3a) -b = 30(20) cos 60° = 300 ft lb

1.14.3 Scalar multiplication of vectors is distributive:

° - I> = !>•*><)
Proof: For n = 2,

ii

while
n

2 (a-bt) = a-bi + a-b2

Draw a, bi and b2 with a common initial point P, and construct
bi + b2. Drop perpendiculars from the terminal points of bi, b2

and bi + b2, on the line passing through a. This gives the points
Qi, Q2 and Q shown in Fig. 1.14.3a.

FIG. 1.14.3a
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Note that TQ2 = QiQ, and evaluate a • bi, a • b2 and a • (bi + b2):

a bi - |a| |bi| cos (a, bi) - |a| VQX

a b2 = |o| |bs| cos (a, b2) - |o| PQ%

a (bi + b>) - |a| |bi + bs| cos (a, bi + b2) |a| FQ

Then

+ a b2 - |a| TQi + |a| - |a| +
(F1.14.3a)

The validity of the theorem for all values of n follows from the

fact that the vector 2J. bt can be regarded as the sum of two

vectors, for example, bi and ^ . b,-, and the scalar ̂ . (a -bt)

can be regarded as the sum of two scalars, e.g., a bi and

Problem: Fig. 1.14.3b shows three coplanar vectors, a, b and
c. Evaluate c-(b + 2a).

FIG. 1.14.3b

Solution:

1 C

c.(b + 2a) cb + 2ca
0 + 2(4) (3) cos 120°
- 1 2 in2
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+ a2n2 + a3n8
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and
b = 6ini + 62n2 + 63ns

where rii, n2, n3 are mutually perpendicular unit vectors, then

a b = aifti + ajb* + aJ>z

Proof: Use distributivity (see 1.14.3) and the relationships

Hi'iii = n2*n2 = nj-nj = 1

ni*n2 = n2-ns == 113-iii = 0

Problem: Determine the scalar product of the force F and
the unit vector n shown in Fig. 1.14.4.

Solution: Set up unit vectors ih, n2, n3 as shown in Fig. 1.14.4,
and express F and n in terms of these:

Then

F - - 8 n 2 ,

n « 0.8ni - 0.6n8

F-n - (0)(0.8) + (-8)(0) + (6)(-0.6) - -3.61b
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1.14.5 As the expression for a-b given in 1.14.4 does not
involve the angle (a, b) between a and b, it can be used in con-
junction with the definition of a b to evaluate this angle:

(a, b) = arc cos
(1.14, 1.14.4) V

The arc cosine is a multi-valued function. However, the angle
between two vectors (see 1.13) never exceeds 180 degrees. Only
one of the values of this function is, therefore, appropriate in any
given case.

Problem: Find the angle (na, n̂ ) between the unit vectors na

and nb shown in Fig. 1.14.5.

FIG. 1.14.5

Solution: Express no and n& in terms of the unit vectors ni, n2,
n, shown in Fig. 1.14.5:

n* = -0 .8n 2 + 0.6n8

n6 = 0.8ni - 0.6n«
Then

/ x (0)(0.8) + (-0.8X0) + (0.6X-0.6)
(n«, n&) = arc cos *-**— *

- arc cos (-0.36)

arc cos (-0.36) - 111.1°, 201.1°, 471.1°, . . .

Hence,
(nfl,n6) - 111.1°
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1.14.6 The dot product is useful in evaluating resolutes of a
vector (see 1.12):

VL = n-vn

Notation (see Fig. 1.14.6a):

/L

FIG. 1.14.6a

v a vector
L a line
VL the L resolute of v
vp the resolute of v perpendicular to L
n a unit vector parallel to L

Proof: By definition, VL is parallel to n. Hence vL can be ex-
pressed as the product of n and a measure number VL (see 1.7.3):

VL - vLn (1)
Also,

V - VL + VP (2)
(1.12)

Substitute from Eq. (1) into Eq. (2):

v = vLn + VP

Take the dot product of both sides of this equation with n:

n v = VLH-H + n»vp
But

n*n = 1
and

n-vp = 0
(1.14.1)
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Hence,
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n-v

Substitute into Eq. (1).
Problem: Determine the magnitude and sense of FL, the L

resolute of the force F shown in Fig. 1.14.6b.

FIG. 1.14.6b

Solution: Let n be a unit vector parallel to line L and having
the sense AB. Express F and n in terms of their ni, n2, n8 com-
ponents:

F = -16n2 + 12n8lb

Then

and

Hence,

n = 0.8tii - 0.6n3

n F - -0.6(12)
(1.14.4)

= -7.21b

FL = n Fn = -7.2nlb

|FL| - 7.21b
(1.7.4)

and the sense of FL is opposite to that of n; i.e., FL has the sense
BA (see Fig. 1.14.6b).
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1.14.7 Given a line L and n vectors v», i = 1, 2, . . . , n, the
resultant of the L resolutes of these vectors is equal to the L reso-
lute of the vectors' resultant.

Proof: Let n be a unit vector parallel to L. Then the resultant
of the L resolutes of the vectors vt, t = 1,. . . , n, is the vector (see
1.14.6)

while the L resolute of the resultant of the vectors v», i = 1, 2,. . . ,
n, is the vector

The equality of these two vectors follows from 1.9.3 and 1.14.3.

1.14.8 Given n vectors vt, i = 1, . . . , n, the resultant of the
resolutes of these vectors perpendicular to a line L is equal to the
resolute of the vectors' resultant perpendicular to L.

Proof: With self-explanatory notation,

(1.14.7)

1.14.9 Every vector v can be expressed in the form

v = ih-vni + n2-vn2 + n3-vn3

where m, m, n3 are mutually perpendicular unit vectors. (While
this identity is of little value for purposes of computation, it is
useful in certain proofs.)

Proof: v can always be expressed as

v » t̂ m + v&2 + vznz (1)
(1.10.2)

Dot multiply both sides of Eq. (1) with in:
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+ tfem-ns +

But,

and

Hence,

Similarly,

Substitute

(1.14.2, 1.

n2v

into Eq. (1).

14.3)

n

nm2

i

= v2

1 • Hi — 1

— Ill * II3 =

i l ' V = V\

and n3 •

• 0

V = VZ

1.14.10 While every resolute of a vector v is a component of v,
not every component is a resolute (see 1.10 and 1.12). However,
when v is resolved into three components parallel to mutually
perpendicular unit vectors n.-, i = 1, 2, 3, the n, component of v is
equal to the n, resolute of v. For, v is then given by

v = ni-vni + ih-viia + n8-viii
(1.14.9)

so that, for example, ni vru is the m component of v; and, in accord-
ance with 1.14.6, ni-vni is equal to the m resolute of v.

Problem: Find Fi, the ni resolute of the force F shown in Fig.
1.11c.

Solution: From Problem 1.1 l(b),

F = -5.5611! + 3.71ii2 - 7.42n8lb
Hence,

Fi = -5.5611! lb

1.14.11 The scalar obtained when a vector v is dot multiplied
with itself is called the square of v and is denoted by the symbol v*,
i.e.,

v2 as v v

From the definition of the dot product it follows that

v2 - |v|2
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1.15 The vector (cross) product of a vector a and a vector
b: a X b

Definition:
a X b = |a| |b| sin (a, b)n

where n is a unit vector whose direction is the same as the direction
of advance of a right-handed screw rotated from a toward b,
through the angle (a, b), when the axis of the screw is perpendic-
ular to both a and b.

Examples: See Fig. 1.15.

FIG. 1.15

1.15.1 The definition of a X b contains no information re-
garding the point of application of a X b (see 1.1.7).

1.15.2 The magnitude of a X b is given by (see 1.7.4)

|a X b| - |a| |b| sin (o, b)

Problem: Determine the magnitude of the cross product of
the vectors a and b shown in Fig. 1.15.2.

Solution:
|aXb| 10(20) sin 120°

10(20) (0.866) • 173.2 ft lb
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20 Ib.

FIG. 1.15.2

1.16.3 If a is parallel to b, then a X b = 0; but if a X b = 0,
a is not necessarily parallel to b.

Proof: If a is parallel to b, a X b is either equal to zero or 180
degrees, sin (a, b) = 0, and a X b = 0. On the other hand,
a X b = 0 implies only that the product |o| |b| sin (a, b) is equal
to zero, and this is the case whenever |a| = 0, or |b| = 0, or sin
(a, b) = 0.

1.15.4 For any two vectors a and b and any scalar s,

(so) X b = S(Q X b) = a X (sb)

Hence parentheses are unnecessary, and one writes s a X b .

1.15.5 The sense of the unit vector n which appears in the
definition of a X b depends on the order of the factors a and b
in such a way that

bXfl=-flXb

1.15.6 Vector multiplication obeys the following law of dis-
tributivity:

Proof: Forn = 2,

« X it b< - a X (bi + bt)
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while
n

^ ( a X b , ) = a X b i + aXb2

Introduce the following (see Fig. 1.15.6):

FIG. 1.15.6

L a line, parallel to a
P a plane, perpendicular to a
n a unit vector having the same direction as a
(bi)z,, (b2)i, the L resolutes of bi, b2

(bi + b2)L the L resolute of bi + b2

(bi)p, (b2)p the resolutes of bi, b2 perpendicular to L
(bi + b2)p the resolute of bi + b2 perpendicular to L

Consider the cross product of n and bi. n X bi is parallel to P
and perpendicular to (bi)p; and it has the same magnitude as
(bi)p. Thus n X bi is equal to the vector obtained when (bi)p is
rotated through 90 degrees in plane P. Similarly, n X b2 and
n X (bi + b2) can be obtained by rotating (b2)p and (bi + ^h)p
through 90 degrees in plane P. Now,

(bi + b2)p - (bi)p + (b2)p
(1.14.8)

Hence,
n X (bi + b2) - n X bi + n X b2(1.8.3)
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Make the substitution
a

n = -j—r
(1.7.1) | a |

and multiply both sides of the resulting equation with |a|. This
concludes the proof for the case n = 2. The validity of the theorem

b,and /
t-i -̂̂ i»i

(a X b») can each be regarded as a sum of only two vectors.
Problem: Show that

(a - b) X (a + b) = 2a X b
Solution:
(a - b) X (a + b) = (a - b) X a + (a - b) X b

= a X a - b X a + a X b - b x b

1.15.7 A set of mutually perpendicular unit vectors nh n2, n3

is called right-handed if ru X n2 = n8. If m X n2 = — n8, the set is
called left-handed.

Example: Three right-handed sets of unit vectors are shown
in Fig. 1.15.7.

1.15.8 If

and

FIG. 1.15.7

a =

b =

+ + a8n3
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where m, n2, n3 is a right-handed set of mutually perpendicular
unit vectors, then

a X b = (a2b3 — a362)ni

- a26i)n3

Proof: Use distributivity (see 1.15.6) and the relationships

ni X ni = n2 X n2 = n3 X n3 = 0

Hi X n2 = n3, n2 X n3 = ni, n3 X ni = n2

Problem: Referring to Fig. 1.14.4, resolve F X n into its nh

n2, n3 components.

Solution (see Problem 1.14.4):

F - - 8 n 2 + 6n3lb

n = 0.8ni — 0.6n3

Hence,
F X n = [ ( - 8 ) ( - 0 . 6 ) - (6)(0)]ih

+ [(6)(0.8) - (0)(-0.6)]n2

- 4.8ni + 4.8n2 + 6.4n3 lb

1.15.9 Using the same notation as in 1.15.8, a X b can be
expressed in the following determinantal form:

X b ax

n2

a2

n3

a3

Proof:
Expand the determinant by minors of the elements of the first

row:

ax

n2 n3

bz
t2 oi| lai a3

, 6,1 "•% h n,

- ajbt) -
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Problem: Repeat Problem 1.15.8.

Solution:

F X n =

" 1

0

0.8

= (~8)(
4.8nx -

n2

- 8

0

- 0 .6 )11 !

+- 4.8n2

n3

6

-0 .6

+ (6)(0.8)n, H

•f 6.4n3 lb

h (8)(0.8)n3

PRODUCTS OF THREE VECTORS

1.16 The scalar triple product of three vectors a, b, C: [a,
b, cl

Definition:
[a, b,c] =a-(b X c)

1.16.1 The parentheses in the expression a • (b X c) are un-
necessary because (a • b) X c is meaningless, (a • b) being a scalar.
Hence one writes a b X c.

1.16.2 The justification for using the symbol [a, b, c] to
denote the scalar triple product of a, b and c is that it does not
matter whether the dot is placed between a and b, and the cross
between b and c, or vice versa; i.e.,

[a, b, c] = a b X c = a X be

Proof: Resolve each of the vectors a, b, c into m, n2, n3 com-
ponents (ni, n2, n3 being a right-handed set of mutually perpen-
dicular unit vectors), and carry out the indicated operations.

1.16.3 A change in the order of the factors appearing in a
scalar triple product at most changes the sign of the product; i.e.,

[b,a,c] = -[a,b,c] (a)
and

[b ,e ,a ] - [a,b,c] (b)
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Proof (a):

[b ,a , c] = b X a - c
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Proof (b):

(1.16.2)

= - a X b c = - [ a , b, c]
(1.15.5) (1.16.2)

[b, c,a] = b X c - a
(1.16.2)

== a b X c = [a, b, c]
(1.14) (1.16.2)

1.16.4 If a, b and c are parallel to the same plane, or if any
two of the vectors a, b, c are parallel to each other,

[a, b, c] = 0

Proof: In the first case, b X c is perpendicular to a. Hence,

a-bXc = 0
(l.ii.i)

In the second case, the two parallel vectors can be put in
adjoining positions, and the cross can then be placed between
them. Use 1.15.3.

1.16.5 Using the same notation as in 1.15.8, [a, b, c] can be
expressed in the following determinantal form:

[a,b,c]
a>\

Ci

a2

b2

c2
Cz

Proof: Resolve each of the vectors a, b and c into three
mutually perpendicular components, and carry out the operations
indicated by a-(b X c). Expand the determinant given above.
Compare the results.

Problem: Referring to Fig. 1.14.6b, evaluate [F, ih, n*].

Solution:

F, ni, n2]

0
1

0

- 1 6
0

1

12
0

0

121b
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1.17 The vector triple product of three vectors a, b, c: a X
( b X e )

The expression a X (b X c) denotes the cross product of the
vectors a and b X c. The parentheses are essential because
a X (b X c) is not, in general, equal to (a X b) X c.

Problem: Evaluate (1) a X (b X c) and (2) (a X b) X c
with a = m, b = n2, c = ni + n2 + n8, and m, n2, n3 a right-
handed set of mutually perpendicular unit vectors.

Solution (1):

b X c = n2 X (ni + n2 + m) = — m + ni

a X (b X c) = m X ( -n 8 + m) = n2

Solution (2):

a X b = m X n2 = n3

(a X b) X c = n8 X (ni + n2 + n3) =* m — in

1.17.1 For any three vectors a, b and c,

a X (b X c) = acb - abc

Proof: Resolve each of the vectors a, b and c into three mutu-
ally perpendicular components, carry out the indicated operations
for both sides of the equation, then compare.

Problem (a): Given a vector v and a unit vector n, show that
v/>, the resolute of v perpendicular to n, is given by

vP - n X (v X n)
Solution:

n X (v X n) = n-nv — n-vn = v — n-vn

= v — VL — vp
(1.14.6) (1.12)

Problem (b): Show that

(a X b) X c - cab - c-ba
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Solution:
(a X b) X c = - c X (a X b)

(1.15.5)

= — cba + cab
= cab — c-ba

(1.9.2)





2 CENTROIDS AND MASS CENTERS

2.1 The position vector of one point relative to another

Definition: The position yector of a point P relative to a point
0 is a vector p having the following characteristics:

Magnitude: The length of line OP
Orientation: Parallel to line OP
Sense: OP

When a sketch of p is drawn, it is customary to show p as an arrow
connecting 0 to P (see Fig. 2.1).

FIG. 2.1 FIG. 2.1.1a

2.1.1 The position vector of a point P relative to P is a zero
vector. Conversely, the only point whose position vector relative
to a point P is a zero vector is P.

Problem (a): Referring to Fig. 2.1.1a, express (1) the position
vector p of B relative to A and (2) the position vector p' of A
relative to B in terms of their m, its, iu components.

41
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Solution (1):

p = - 4 m + 3n2 + 2n3ft

Solution (2): p' differs from p only in sense, i.e.,

p' = — p = 4 n i — 3ii2 — 2n3ft
Problem (b): Show that the distance d from a point P to a

line L is given by
d = |n X p|

where n is a unit vector parallel to L, and p is the position vector
of P relative to any point 0 on L.

FIG. 2.1.1b

Solution (See Fig. 2.1.1b):

d = |p| sin (n, p)

= |n| |p| sin (n, p)
(1.7)

- |nXp|
(1.15.2)

2.2 The relationship between the position vector p and the
coordinates x, y, z, of a point P

Notation (See Fig. 2.2a):

0, P two points
X, Y, Z oblique axes of a cartesian coordinate system

whose origin is at 0
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x, y, z the coordinates of P
p the position vector of P relative to 0
ni, 112, ns unit vectors, parallel to X, Y, Z, and having the

senses of the positive X, Y, Z axes

FIG. 2.2a FIG. 2.2b

When p is resolved into three components respectively parallel
*° ni> n2, n», the m, n2, n8 measure numbers of p (see 1.10.2) are
respectively equal to x,yfz:

P = zm + yn% + zn%

This relationship is the link between vector analysis and scalar
analytic geometry.

Problem: The rectangular cartesian coordinates of a point Pi
a r e £i, Vu *u those of a point P2, x%, y2, 22. Derive the distance
formula of scalar analytic geometry; i.e., show that the distance
d between Px and P% is given by

d - [(x2 - xi)2 + (2/2 - yi)2 + (22 - «i)2]*

Solution: Let pi and p2 be the position vectors of Pi and P2

to the origin of the coordinate system, and let m, 112, ns be
unit vectors such that (see Fig. 2.2b)

Pi

P2 X2I11 + t/202 +
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Then d is equal to the magnitude of the vector p2 — pi:

+ iyt - yi)n% + (*2 - zi)n%\

(2/2 - yiY + (Z2 - *i) 2]*

2.3 The first moment of a point P with respect to a point O

If p is the position vector of a point P relative to a point 0,
and N is a scalar associated with P (e.g., the mass of a particle
situated at P), the vector Np is called the first moment of P with
respect to 0. N is called the strength of P.

Problem: The point B shown in Fig. 2.1.1a has a strength of
10 slugs. Find the first moment of B with respect to A.

Solution: Let p be the position vector of B relative to A,
N the strength of B. Then

p * - 4 n i + 3n2 - 2n8ft
and

N = lOslug
Hence,

Np = - 4 0 m + 30n2 - 20n3 slug ft

SETS OF POINTS

2.4 The centroid of a set of points

Notation (See Fig. 2.4):

S a set of n points
Pi, i = 1, 2 , . . . , n the points of S
Ni9i — 1,2,... ,n the strengths of the points of S; i.e.,

n scalars, all having the same dimen-
sions, and each associated with one
of the points of S
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FIG. 2.4 FIG. 2.4.1

Definition: The centroid of the set S is the point P* with
respect to which the sum of the first moments of the points of S is
equal to zero.

2.4.1 The position vector p* of P*, relative to an arbitrarily
selected reference point 0, is given by

where p» is the position vector of P» relative to 0 (see Fig. 2.4.1).
Proof: The position vector of P» relative to P* is p, — p*.

The sum of the first moments of the points P» with respect to P*

is ^ Ni (p» - p*). If P* is to be centroid of S, this sum must

be equal to zero:

Expand the left-hand member of this equation:

i - l t - 1
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Solve for p*:
n

• ^ - ^

Jmmmd

2.4.2 If

• - 1

the centroid is not defined.

Problem (a): The points Pi and P« shown in Fig. 2.4.2a have
the strengths Ni = 2 slugs and N* = 6 slugs. Locate their centroid
P*, and show it on a sketch.

10' 5 _ 2.51 j 2.51

pt

FIG. 2.4.2a FIG. 2.4.2b FIG. 2.4.2C

Then

and

Solution: Introduce the following (see Fig. 2.4.2b):

0 the midpoint of line PiPt. (0 is an arbitrarily
selected reference point.)

Pi, ps the position vectors of Pi and P* relative to 0
P* the centroid of the set Pi, P2

p* the position vector of P* relative to 0
n a unit vector parallel to line P1P2

Pi = —5n ft, pt » 5n ft

- 2(-5n) + 6(5n)
K 2 + 6

- 2.5n ft

Result: See Fig. 2.4.2c.
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Problem (b): The strengths of the points Pi, . . ., P4 shown
in Fig. 2.4.2d are Nx - 2, Nt - - 3 , tf, •- 5, AT4 - 3. Locate
the centroid of this set of points.

FIG. 2.4.2d FIG. 2.4.2e

Solution: The strength of each point, the position vector of
each point relative to the arbitrarily selected reference point Pi,
and the first moment of each point with respect to Pi are recorded
in Table 2.4.2.

Point

Pi
Pt
Pt
PA

Totals

Strength

2
- 3

5
- 3

+1

TABLE 2.4.3

Position vector

ni

0
2
0

- 2

i*i

0
0

- 8
- 8

nt

0
3
3
3

First moment

ni

0
- 6

0
6

0

it*

0
0

- 4 0
24

- 1 6

n»

0
- 9
15

—9

- 3

p*, the position vector of the centroid P* relative to Pi, is
given by

* Oni - 16m - 3m
K 1

Result: See Fig. 2.4.2e.

- 3ns ft

2.4.3 The centroid of a set of points of given strengths is a
unique point: its location, as given in 2.4.1, is independent of the
choice of reference point 0.
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Proof: Suppose that two distinct points, P* and P*f were
obtained when two different reference points, 0 and 6 (see Fig.
2.4.3), are used to locate the centroid. Then the vector i, joining
P* to JP*, would not be a zero vector (see 2.1.1). Conversely, if

s = 0, then the points P* and P* coincide (see 2.1.1), and the
centroid is a unique point.

The position vectors of P* and P* relative to 0 and 0 are,
respectively, the vectors p* and p* given by

mmmm

-, p* = ^

From Fig. 2.4.3,

Hence,
• = r + P* - P*



CENTROID8 AND MASS CENTERS; SECTION 2.4 49

But,
P. - P< - - r

Thus,

2.4.4 If one assigns to the centroid of a set of points a strength
equal to the sum of the strengths of the points of the set, then the
first moment of the centroid with respect to any point is equal to
the" sum of the first moments of the points of the set with respect
to this point. In this sense, the centroid can be regarded as repre-
senting the entire set of points.

Proof (see Fig. 2.4.4 for notation): The sum of the first mo-
ments of the n points Piy i = 1,. . . , n, with respect to 0 is equal

FIG. 2.4.4

to ^ NiPi. The first moment of the point P* (regarded as

having the strength J^ . Ni with respect to 0 is given by
.

(2.4.1) V T l

» - l
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2.4.5 The cartesian coordinates of the centroid P* of a set of
points Pi, i = 1, 2 , . . . , n, of strengths Ni9 i = 1,. . . , n, are
given by three expressions of the form

Proof (see Fig. 2.4.5 for notation):

(2.2)

Substitute these into

, p*
(2.2)

I><*

and write the three scalar equations corresponding to the vector
equation thus obtained.
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2.4.6 If the points of a set are arranged in such a way that
corresponding to every point on one side of a certain plane there
exists a point of equal strength on the other side, the two points
being equidistant from the plane, but not necessarily lying on
the same normal to it, then the centroid of the set lies in this
plane. Such a plane is called a plane of symmetry.

Proof: Let the plane of symmetry be the X-Y plane of a rec-
tangular cartesian coordinate system. Using the same notation

as in 2.4.5, it must then be shown that z* = 0, i.e., that ]£* N* z>

* 0. Now, this sum may contain terms arising from points which
lie in the X-Y plane. The Z-coordinate of each such point is equal

to zero; hence, these points contribute nothing to ^ J . NiZi.

The remaining terms in J^ . AT»«» can be grouped into sums

°f the type Nz + N(—z), and each such sum is equal to zero.
Problem: Fig. 2.4.6 shows the strength and location of each

°f five points. Locate the centroid of this set of points by using
symmetry considerations.

5 (-2)

FIG. 2.4.6

Solution: The following planes are planes of symmetry: The
Plane passing through P% and normal to line PiP%; the plane in
which the points lie, i.e., the plane of the paper; the plane passing
through Px and P% and normal to the plane of the paper. The
centroid must lie in each of these planes. Hence it coincides with
their point of intersection, the point Pz.
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2.4.7 A set S' of points is called a subset of a set S if every
point of S' is a point of S. The centroid of a set S may be located
as follows:

(a) Divide S into a number of subsets.
(b) Locate the centroid of each subset.
(c) Assign to each centroid a strength proportional to the sum

of the strengths of the points of the corresponding subset.
(d) Locate the centroid of this set of centroids.
This method for locating the centroid is called the method of

decomposition.

Proof: The vector p* which locates P* relative to an arbi-
trarily selected reference point 0 is obtained (see 2.4.1) by adding
the first moments (see 2.3) of the points P t and then dividing by
the sum of the strengths of these points. Now, the sum of the first
moments can be found by adding the first moments for all the
points in each subset and then adding these sums. In accordance
with 2.4.4, each of these sums is, however, equal to the first
moment of the centroid of the corresponding subset, p* is, there-
fore, equal to the sum of the first moments of the centroids of the
subsets, divided by the sum of the strengths of the points of S.
But the sum of the strengths of the points of S is equal to the sum
of the strengths of the centroids of the subsets. Hence p* is equal
to the sum of the first moments of the centroids, divided by the

RH3)

QA(6)

10'

B(2)

FIG. 2.4.7b
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8um of the strengths of these centroids; but this is the vector
which locates the centroid of the set of centroids.

Problem: The points Pi,. . . , P8 shown in Fig. 2.4.7a have
the strengths indicated in parentheses. Locate the centroid of
this set of points.

Solution: From symmetry considerations, the centroid of the
subset Pi,. . . , P4 is known to be at point A; that of subset
P*y • • • , P*, at B. The points A and B, with strengths
!6 - 13 + 16 - 13 - 6 and - 7 + 8 - 7 + 8 = 2, form a set
of centroids (see Fig. 2.4.7b), and the centroid of this set lies on
tine AB, 2.5 ft from A, 7.5 ft from B.

CURVES, SURFACES, AND SOLIDS

2.5 The centroid of a curve, surface, or solid

Definition:

(a) Divide the curve, surface, or solid into n elements of
arbitrary size and shape.

(b) Pick a point in each element.
(c) Assign to each point a strength proportional to the length,

area, or volume of the corresponding element.
(d) Locate the centroid of the set of points.
(e) Find the point P* which the centroid of the set of points

approaches as n tends to infinity and each element shrinks to a
Point. P* is the centroid of the curve, surface, or solid.

Problem: Locate the centroid of the semicircular curve shown
2.5a.

FIG. 2.5a
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Solution:

(a) Division of the curve into n elements: Choose elements
having equal arc lengths, rR/n. Note that each element subtends
an angle of r/n radians at the center of the circle. Number the
elements as shown in Fig. 2.5b.

FIG. 2.5b FIG. 2.5C

(b) Selection of a point in each element: use the left-most
point of each element, calling these points Ph P 2 , . . . , Pn, as
shown in Fig. 2.5c. P» is a typical point of this set of points.

(c) Strengths of the points P» (i = 1,. . . , n): let N% be the
strength of P». The length of each element is x/2/n, as noted in
(a). Hence, all of the N< (i = 1, . . . , n) must be taken equal to
each other. Take

Ni- M « 1 , 2 , . . . , n (1)

(d) Location of the centroid of the set of points P» (t = 1,
. . . , n): All of these points lie in a plane. This plane is, therefore,
a plane of symmetry (see 2.4.6), and the centroid lies in this plane.
Set up rectangular cartesian coordinate axes, X and F, as shown
in Fig. 2.5d, and let x« and yi be the coordinates of Pi. Note that
angle PjOX = ir/n radians. Thus,

Xi = R cos (tV/n), yi = R sin (ir/n) (2)

Let x and y be the coordinates of a point Py the centroid of the
set of points P» (t •* 1,. . . , n). Then

(2.4.5) (2.4.5)
(3)
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FIG. 2.5d

Use Eqs. (1) and (2):

n n
2^ NiXi = ^ R cos (ir/n) = R ]jT] cos (iir/n)
»-i t-i *-i

sin (ix/n)s i n

i - i

2
Substitute into Eqs. (3):

(4)x = — 2^ cos (tw/n), y = - 2^ sm (tx/n)
/* iaml n

J2
These results can be simplified as follows: For any angle $ not

to 0, 2ir, 4ir,. . . radians, the sum ^J. cos (iB) can be

^t ten (see W. E. Byerly, "Fourier Series and Spherical Har-
monics," p. 32, Ginn & Co., Boston) as

1 1 sin [(2n + 1)0/2]
os W - 2 + 2 sin (6/2)

ai»d, similarly,

^ sin (n0/2) sin [(n + 1)0/2]
sin (0/2)
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Hence, for 0 = ir/n,
n

COS I COS
t - 1

_ I _L 1 sin (*• + ir/2n)
2 """ 2 sin (ir/2n)

; sin (ix/n)
t - i

Substitute into Eqs. (4):

x

sin (x/2n)

cotan (x/2n)

, ^ = — cotan (x/2n) (5)

The centroid JP of the set of points P» (t = 1,. . . , n) is shown in
Fig. 2.5e.

(e) Limiting position of P: as the elements were chosen in
such a way that each element automatically shrinks to a point as

n tends to infinity, the coordinates x* and y* of the centroid of
the curve are obtained by proceeding to the limit in Eq. (5), i.e.,

x* - lim£» lim (--) «0

t ry H oo

— cotan (ir/2n) = B —n J oo
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To evaluate this indeterminate form, express cotan (x/2n) as
follows (see B. O. Peirce, "A Short Table of Integrals," p. 91,
Ginn & Co., Boston): For any 4>, such that <t>2 < *•*,

cotan ^ as - — ? — ̂  — • . . (odd powers of <t>)
<f> «5 4 o

Hence, for 4 = *V2n,
x , / o x 2n 1 r 1 / x Vcotan* = cotan (ir/2n) - - - § _ - g ^ - j - . . .

Thus,

n^w |_ir 3n2n 45n \2n / J \ir/

The centroid P* of the semi-circular curve is shown in Fig. 2.5f.

FIG. 2.5f

2.5.1 Problem 2.5 shows that it is possible to locate the centroid
°f a curve by performing the steps described in the definition. It
also shows that, at least in this particular case, the process is
arduous and requires the use of formulas which may not be readily
available. The integral calculus furnishes a means for solving
such problems in less cumbersome fashion.

Notation (See Fig. 2.5.1):

Fifi = 1, . n

a curve, surface, or solid; any one of
these is called a "figure"
the total length, area, or volume of F
the n elements of F
the length, area, or volume of F«
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0
p.

p

FIG. 2.5.1

a point of Fi
a point
the position vector of Pi relative to 0
the centroid of the set of points Piy

i = 1,. . . , n, of strengths r», i = 1,

p the position vector of P relative to 0
P* the centroid of F
p* the position vector of P* relative to 0
L[Q] a symbol denoting the limit approached

by the quantity Q as n tends to infinity
and each of the elements Fif i = 1, 2,
. . . , n, shrinks to a point

In accordance with the definition in 2.5, p* is given by

P* = L[p]
From 2.4.1,

n

Hence,
t - i

Lt-i
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The theory of limits shows that limit of the quotient £)t.

- T< is equal to the quotient of the limits I< [2 T,-p<] and

Each of the two limits in this expression is called an "integral
over the figure F," and one writes

and

In these expressions, p denotes the position vector of a typical
Point of F, relative to 0, and dr is the length, area, or volume of a
differential element of F.

From Eqs. (1), (2) and (3),

I pdr
p ' - T (4)

JrdT

The integral J dr gives the total length, area, or volume of F,

that is,

f (5)
(This follows from Eq. (3) and the fact that the total length, area,
* volume of F is the sum of the lengths, areas, or volumes of the
elements rt, i = 1,. . . , n.)

Substitute from Eq. (5) into Eq. (4):

± fpdr
T JF

(6)
J

E<1- (6) is of no use unless one knows how to evaluate the integral
in the right-hand member. The properties of this integral can be
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studied by using 2.2 and Eq. (2) to reduce the integral to a sum
involving integrals of scalar functions, the theory of integration
of scalar functions being presumed known.

Introduce the following:

X, Y} Z oblique axes of a cartesian coordinate system
with origin at 0

Xij yiy Zi the coordinates of Pi
ni, tit, n» unit vectors parallel to X, Y, Z and having the

senses of the positive X, Y, Z axes
Then

Pi « xmi + 2/»fi2 +
(2.2)

From Eq. (2),

/ pdr « L \^2 n(xmi + 2/.fi* + ZMZ)

ni, n2, n3 are not affected by the limiting process:

/ p dr = m-L I ^ r<xt + IHL ^ r<y< + niL ]£^ r&i

Each of the three limits in this expression is the integral of a scalar
function:

Jxdr,etc. (7)

where xf y, z are the coordinates of a typical point of F. Thus

jFpdr - m Jpxdr + m jfydr + m JFzdr (8)

Let x*f y*t z* be the coordinates of P\ Then

(9)
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Substitute from Eqs. (8) and (9) into Eq. (6), and write the three
scalar equations corresponding to the resulting vector equation:

- I xdr, y* = - / ydr, z* = - / zdr
TJF TJF TJF

(10)

2.5.2 If the coordinate axes X, Y, Z are mutually perpendicu-
lar, then \x*\, \y*\y |z*| are the distances from the centroid to the
coordinate planes.

Problem (a): Locate the centroid of the semicircular curve
shown in Fig. 2.5.2a.

FIG. 2.5.2a

Solution: Introduce the following (see Fig. 2.5.2b):

X, Y rectangular axes
P a typical point of the curve
x, y the coordinates of P
B the angle POX
x*,y* the coordinates of the centroid
dr the length of a differential element of the curve

Express x, y, dr in terms of 6:

Th,en
x « R cos 0, y = R sin 6, dr « RdB

T = f dr = [' RdB « rR
JF JO

[xdr - fj (Rcos$)Rd9 = 0
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dr = fj (R sin 6) R d$ = 2R2

y* = -
2ft8 2ft

Result: The point P* shown in Fig. 2.5f is the centroid of the
semicircular curve.

Problem (b>: Find the distance from the centroid of a hemi-
spherical surface of radius R to the plane determined by the
circular boundary of the surface.

Solution: Introduce the quantities shown in Fig. 2.5.2c. Let

Z

Rsim//

FIG. 2.5.2C

z* be the distance from the centroid to the X-Y plane. This is
the desired distance.

Express z and dr in terms of 0 and yp:

z « R cos ̂ , dr sin R2 sin
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Then

T = f dr = [2wd6 [*/2 R2 sin

f dO /
O JO

- 1)]

sin * cos

fw/2 r ps -|ir/2

/. [-1-4

Problem (c): Find the distance from the centroid of a hemi-
spherical solid of radius R to its plane boundary.

Solution: Introduce the quantities shown in Fig. 2.5.2d. Let z*
be the distance from the centroid to the X-Y plane. This is the
desired distance.

Rsini//

FIG. 2.5.2d
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Express z and dr in terms of r, 6 and ^:

z = r cos ^

dr = (r sin ^ d0)(r # ) dr = r2 sin ^ d0 d^ dr
Then

/* /•« /-2ir /V/2

T = dr = dr d$ r*si
7F yo Jo Jo

r CR ri* r*/2
I zdr = / dr I d$ I r8 si

yF 7o yo Jo sin ^ cos

3K

2.5.3 The centroids of a number of figures, located by per-
forming calculations similar to those in the above examples, are
shown in the Appendix. In subsequent sections it is shown how
these results may be used to locate, without integration, the
centroids of many more figures.

2.5.4 If, corresponding to every point of a figure on one side
of a certain plane, there exists a point of the figure on the other
side, the two points being equidistant from the plane, but not
necessarily lying on the same normal to it, then the centroid of
the figure lies in this plane. Such a plane is called a plane of
symmetry.

Proof: Similar to the proof in 2.4.6.
Problem: Locate the centroid of the S-shaped curve shown

in Fig. 2.5.4.

Solution: Each of the three coordinate planes is a plane of
symmetry. Hence the centroid lies in each of these planes, i.e.,
it coincides with their point of intersection, the point 0.

2.5.5 A method of decomposition (see 2.4.7) may be used to
locate the centroid of a figure F:

(a) Divide F into a number of "contributing" figures.
(b) Locate the centroid of each figure.
(c) Assign to each centroid a strength proportional to the

length, area, or volume of the corresponding figure.
(d) Locate the centroid of this set of centroids.
Proof: Similar to the proof in 2.4.7.
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Y

0

FIG. 2.5.4

2,6.6 The centroid of a figure which is composed of more than
one type of figure—e.g., of curves and surfaces, or surfaces and
solids—is not defined.

Problem: Determine x*, the X coordinate of the centroid of
the plane surface shown in Fig. 2.5.6a.

Solution: Call the rectangular portion of the figure FXy the
semicircular sector F2. Use symmetry considerations and the
Appendix to locate Pi* and P2*, the centroids of Fx and Ft (see
Fig. 2.5.6b). Determine the areas, Ax and A2, of Fx and Ft:

Ax = 4 X 6 = 24 in.1

14.1 in.4

-2"-l

FIG. 2.5.6a

- 5 2 7 "

FIG. 2.5.6b
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Assign to Pi* the strength 24, to P2* the strength 14.1. Then

2 X 24 + 5.27 X 14.1
24 + 14.1

= 3.21 in.

2.5.7 Sometimes it is convenient to regard one or more of the
contributing figures (see 2.5.5) as contributing negatively.

Problem: Determine x*, the X coordinate of the shaded plane
surface shown in Fig. 2.5.7a.

Solution: Regard the figure as being composed of the rectangle
F\ and the semicircular sector F2} as shown in Fig. 2.5.7b. Use

-4'1—H

FIG. 2.5.7a FIG. 2.5.7b

symmetry considerations and the Appendix to locate Pi* and
P2*, the centroids of Fx and F2 (see Fig. 2.5.7c). Find the areas,
At and A2, of F\ and F2:

Ai = 24 in.2

A2 - 14.1 in.2

Assign to Pi* the strength 24, to P2* the strength -14.1. Then

. 2 X 24 +2.73 X (-14.1)

FIG. 2.5.7C

24 X (-14.1)

g A

= 0.96 in.
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2.5.8 A surface S (see Fig. 2.5.8a) which can be generated by
letting a plane curve C move in such a way that the points of C
are displaced equal amounts h along lines perpendicular to the
plane of C is called a rightrcylindrical surface. Its centroid lies on
a line which passes through the centroid of C and is perpendicular
to the plane of C.

FIG. 2.5.8a

FIG. 2.5.8b

Proof: Introduce the following (see Fig. 2.5.8b):
Xt Y, Z rectangular cartesian coordinate axes, the X-Y

plane containing the curve C
Pc*, P,* the centroids of C and S
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xc*, x9* the X coordinates of Pc* and P§*
Pe, P9 typical points of C and S
x the X coordinate of either Pc or P,
z the Z coordinate of P ,
L the length of the curve C
A the area of the surface S
dL the length of a differential element of C
dA the area of a differential element of S

It will be shown that xa* = xc*.
From 2.5.1, Eq. (5),

A = [dA, L - f dL (1)
JB JC

From Fig. 2.5.8b,
dA=dzdL (2)

Hence,
A = [dA - [[[hd*]dL = h f dL = hL (3)

(1) ^ (2) ^cLyO J Jc ( i )

From 2.5.1, Eq. (10),

Xt* = J [xdA, xS^j^fxdL (4)

Evaluate fxdA:

f xdA - / " r P x ^ l d L - A [zdL (5)
y« (2) JcLJO J Jc

Substitute from Eqs. (3) and (5) into Eq. (4):

M * x 1. 1 „ JT ^ *

X * = = _ fl I X CLLJ SS XC
hL Jc (4)

Similarly it can be shown that the Y coordinates of Pe* and P#*
are equal to each other and, furthermore, that the Z coordinate
of P t* is given by

z.* - h/2

Problem: Determine the coordinates x*, y*, z* of the centroid
of the surface shown in Fig. 2.5.8c. (X, F, Z are mutually perpen-
dicular axes.)
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Z

FIG. 2.5.8C

Solution: The surface is a right-cylindrical surface obtained
by moving a semicircle of radius b parallel to the Z-X plane,
" o m the Appendix, the centroid of the semicircle is the point
(0,0,2b/x). Hence, the X and Z coordinates of the centroid of the
surface are

x* = 0, *• - 26/x

The Y coordinate of the centroid is

y* - a/2
2.6.9 A right-cylindrical solid is a solid bounded by a right-

cylindrical surface (see 2.5.8) and by two parallel plane surfaces,
fjach of the two plane surfaces is called a base of the solid (see
Fi8- 2.5.9a). The centroid of a cylindrical solid is the midpoint of
•he line which connects the centroids of the bases.

BASE

FIG. 2.5.9a
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Proof: Similar to the proof in 2.5.8.
Problem: Determine the coordinates 3*, t/*, 2* of the centroid

of the solid shown in Fig. 2.5.9b. (X, F, Z are mutually perpen-
dicular axes.)

Solution: The solid is a right-cylindrical solid whose bases are
semicircular sectors of radius b. From the Appendix, the centroids
of the bases are at the points (0, 0, 46/3T) and (0, a, 46/3x). The
midpoint of the line joining these two points is the point
(0, a/2, 46/3*-). Hence,

x* = 0, y* « a/2, *• = 4b/3x

SETS OF PARTICLES

2.6 The mass center of a set of particles

Definition: The mass center of a set of particles is the centroid
of the set of points at which the particles are situated, the strength
of each point being taken equal to the mass of the corresponding
particle.

Problem: Particles of masses 2 slugs and 6 slugs are situated
at the points Pi and P% shown in Fig. 2.6. Locate their mass center.

I01-
Fio. 2.6

Solution: From Problem 2.4.1 (a) it follows that the mass
center lies on line Pi P2, 7.5 ft from Pi, 2.5 ft from P2.

CONTINUOUS BODIES

2.7 The mass center of a continuous body

Definition: The mass center of a continuous body is a point
located by means of a limiting process similar to that described
in 2.5:

(a) Divide the body into n elements of arbitrary size and shape.
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(b) Pick a point in each element.
(c) Assign to each point a strength proportional to the mass

of the corresponding element.
(d) Locate the centroid of the set of points.
(e) Find the point P* which the centroid of the set of points

aPproaches as n tends to infinity and each element shrinks to a
Point. P* is the mass center of the body.

Proceeding as in 2.5.1, the following relationships, analogous
to 2.5.1, Eqs. (5), (6) and (10), are obtained:

m / ,P*

H PPdr

(1)

(2)

z* = - / zpdr (3)

where the symbols are defined as follows (see Fig. 2.7a):

P
0
P

FIG. 2.7a

the figure (curve, surface, solid) occupied by
the body
a typical point of the body
a point
the position vector of P relative to 0
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dr

m
P*
P*
X, Y,Z

the mass density of the body at P. If F is a
curve, p is the mass per unit of length; if F is a
surface, the mass per unit of area; if F is a solid,
the mass per unit of volume
the length, area, or volume of a differential
element of F
the total mass of the body
the mass center of the body
the position vector of P* relative to 0
oblique axes of a cartesian coordinate system
with origin at 0
the coordinates of P
the coordinates of P*

Problem: p, the mass per unit of length of a thin semicircular
wire, is given by

p = (l + 0.50) X 10~8 slug ft-1

where 0 is the angle shown in Fig. 2.7b. Locate the mass center
of the wire.

P(x,y)

FIG. 2.7b FIG. 2.7C

Solution: Introduce the following (see Fig. 2.7c):

Xf Y rectangular axes
P a typical point on the semicircle
x, y the coordinates of P
x*, y* the coordinates of the mass center
dr the length of a differential element of the semicircle

Express x, y> dr in terms of 0:

x = R cos 0, y = R sin 0, dr = R d$



Then

Next,
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m = fFpdr = fj (1 + 0.50) X 10"3 R dd

= 10"3J?(l +

73

fj R cos 0(1 + 0.50) X lO"8 R dS - -10"8/?2

and

Hence,

x

and

J?sin0(l +0.50) X

-10~*R2

= / , * ' * - I o = *

z> \ y?dr

0.25ir)ir

10"3 R2(2 + 0.5x)

-0.178/?

+ 0 . 2 5 T ) T

2.7.1 The mass center of a continuous body does not, in gen-
eral, coincide with the centroid of the figure occupied by the body.
(Compare the results obtained in Problem 2.7 with those of
Problem 2.5.2(a).)

Problem: Problem 2.7 is rather academic, because it is not
*he sort of problem most frequently encountered in practical
situations. Generally, the mass density of a body is not given as
^function of the coordinates of a point of the body, and this func-
tj must, therefore, be constructed by the analyst. For example,

2.7.1 shows the cross-section of a steel shell whose inner

FIG. 2.7.1
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surface is hemispherical, and whose wall-thickness t varies linearly
with the angle ^. Locate the mass center of the shell.

Solution: Regard the shell as matter distributed with variable
density on a hemispherical surface of radius R = 12 in. This is
an approximation which may be expected to give good results if
the thickness of the shell is sufficiently small in comparison with
the radius.

Let P be a typical point on the hemispherical surface, and
introduce the quantities shown in Fig. 2.5.2c. Express the wall-
thickness t in terms of f: As t varies linearly with ^, t is given by

t = a + &

where the constants a and ft can be evaluated by noting that
t = 0.1 for ^ = 0, and t = 0.2 for ^ = x/2:

^-o = « = 0.1 in., ^ . T / 2 = a + ffw/2 = 0.2 in.
o o 0 2
= (0.2 - a) = - (0.2 - 0.1) = — in.

Hence,

Assume that the steel of which the shell is made has the same
properties at all points, and take p, the mass per unit of area of
the inner surface at point P, proportional to the thickness at P:

Find the mass m of the shell:
r [2* fir/2 / 0 2 \

m = / p d r = / del fcfO.l + ^ iH

= 2dfc#2(0.1 +0.2/*-)

Evaluate f zpdr:

f zpdr = f2Wd6 [*2 (Rcos+

0.15wkR*
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The Z coordinate of the mass center of the shell is given by

• 1 f . R { 1.5ir \

For R = 12 in.,
2* = 5.5 in.

This is the distance from the mass center of the shell to the
X-Y plane.

The approximate result here obtained can be compared with
those corresponding to other types of approximation. For example,
a r&ther "rough" approximation is that of neglecting the fact that
the shell has a variable thickness and regarding all of the matter
pontained in the shell to be distributed uniformly on a hemispher-
ical surface of radius 12 in. This leads to z* = 6 in.

2.7.2 If the mass density of a body is the same at all points of
the body, the density, as well as the body, are said to be uniform.
A he mass center of a uniform body coincides with the centroid of
the figure occupied by the body.

Proof: Introduce the following symbols (see Fig. 2.7.2):
B a uniform body
F the figure occupied by B
P the mass density of B at all points of F
T the length, area, or volume of F
tn the mass of B

FIG. 2.7.2



76 CBNTROIDS AND MASS CENTERS; SECTION 2.7

P* the mass center of B
P the centroid of F
P a typical point of F
0 a point
p* the position vector of P* relative to 0
p the position vector of P relative to 0
p the position vector of P relative to 0

It must be shown that p* = p. Now,

p* * ™ / p p d r> P = ~ fid*m JF TJF

If p is independent of the position of P, then

JFPpdr = p | F P d r
while

m = JF(>dT = p JFdr = pr

Hence,

p* = — p / pdr =

2.7.3 A method of decomposition may be used to locate the
mass center of a body B:

(a) Divide B into a number of "contributing" bodies. (These
bodies may be of various types, i.e., particles, bodies occupying
curves, surfaces or solids. Compare this statement with 2.5.6.)

(b) Locate the mass center of each body.
(c) Assign to each mass center a strength proportional to the

mass of the corresponding body (e.g., the weight of the body).
(d) Locate the centroid of this set of mass centers.
Proof: Similar to the proof in 2.4.7.
Problem: Parts A, B, C, D of the body shown in Fig. 2.7.3a

are made of the following materials:
A steel (489 lb/ft8)
B sheet metal (3.5 lb/ft2)
C aluminum (169 lb/ft8)
D brass (527 lb/ft8)

Find z*, the X coordinate of the mass center of the body.

Solution: Construct Table 2.7.3, by analyzing each of the
seven bodies shown in Fig. 2.7.3b.
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FIG. 2.7.3a

FIG. 2.7.3b



78 CENTROIDS AND MASS CENTERS; SECTION 2.7

w

FIG. 2.7.3C

Body 1. (See 2.7.2, 2.5.1 and Fig. 2.7.3c.)

u* = - / udr; r = / drT JF JF

u = r sin 0, v = r cos 6

dr = rdddrdw

The equation of the plane passing through the points A, B and C is

1 0 = 6 — t> = 6 — rcos0
Hence,

r d r = /'/2d* Pdr / ^ " ^ r ^ = 33.4 in.'
JO JO JO

/2d0 f* dr Jo
6- r c o" r* S in6dw - 33.8 in.4

33.8
33.4

1.01 in.
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coordinate of mass center:

6 + 1.01 = 7.01 in.
Specific weight:

489 lb ft-3

= 0.283 lb in."8

1728 in.8 ft-8

Strength:
(33.4 in.8)(0.283 lb in.-8) = 9.45 lb

Body 2. (See 2.7.2 and 2.5.8.) Use the Appendix to locate the
centroid P* of the arc AB shown in Fig. 2.7.3d. The result is
shown in Fig. 2.7.3e.

6/7T

FIG. 2.7.3d

coordinate of mass center:

Q 2 X 3

FIG. 2.7.3e

7.09 in.

Area (see 2.5.8, Eq. (3)):

A « 3 ( ^ - 14.1 in.2

Specific weight:

Strength:

3.5 lb ft-'
144 in.* ft~*

= 0.0243 lb in."

(14.1 in.*) (0.0243 lb in.-*) - 0.343 lb
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Body 3. (See 2.5.4 and note that the plane of the figure is a
plane of symmetry.)

X coordinate of the mass center: 6 in.
Specific weight: 0.0243 lb in.-2

Area: 4.5 in.2

Strength:
4.5 X 0.0243 = 0.1091b

Body 4. Use 2.7.2 and 2.5.4.
Bodies 5, 6, 7. Use 2.7.2 and 2.5.9.

TABLE 2.7.3

Body

1
2
3
4
5
6
7

Area or
volume

33.4
14.1
4.5

108.0
13.5
21.2
21.2

Specific
weight

0.283
0.0243
0.0243
0.0978
0.0978
0.0978
0.305

Strength
(weight)

9.45
0.343
0.109

10.6
-1.32
-2.07

6.46

23.53 1b

X coordinate
of mass
center

7.01
7.09
6.00
3.00
5.00
1.91
1.91

First
moment

66.20
2.43
0.65

31.80
-6.60
-3.96
12.30

102.82 in. lb

The last column in Table 2.7.3 contains the products of the
numbers in the preceding two columns. In accordance with 2.4.5,

102.82
23.53 4.37 in.



3 MOMENTS AND COUPLES

l The moment of a bound vector about a point

Notation (see Fig. 3.1a):

v a bound vector (see Sec. 1.2)
L the line of action of v
A a point
B any point on line L
P the position vector of B relative to A
M the moment of v about A

FIG. 3.1a

Definition:
M*/<* = p X v

tk P r ° W e m : R e f e r r i n8 to Fig. 3.1b, determine the moment of
lt* force F about points.

Solution: Let p be the position vector of R relative to <S. Then

p - 3m ft
n accordance with 1.7.3,

F = -5ns lb
81
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u s

Hence,
MF/s « p x F = 3tii X (-5m)

= -15m X m = 15n2ftlb

3.1.1 MA/V is a free vector, i.e., a vector associated neither
with a definite line nor with a definite point.

3.1.2 If the line of action of a vector v passes through a point
P, or if v is a zero vector,

Conversely, if
0

then either the line of action of v passes through P, or v is a zero
vector. This follows from 1.15.3 and the definition of Mv/p.

3.2 The moment of a bound vector about a line

Definition: The moment M*/L of a bound vector v about &
line L is the L resolute (see 1.12) of the moment of v about any
point on L.

Problem: Referring to Fig. 3.1b, determine the moment of
the force F about line OS.

Solution: S is a point on line OS. MF/S was found in Problem
3.1. Fig. 3.2 shows MF/S and a unit vector n parallel to line OS-
The n resolute of MF/S is given by
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FIG. 3.2

15 Cos ^ n = 15(*)n = 12n ft lb

•2.1 The moment of a vector about a line is a free vector.
3-2.2 The magnitude of M^L is given by

^ n is a unit vector parallel to L, and p is the position vector
a Point on the line of action of v relative to a point on L.
P (see Fig. 3.2.2): hA>'L is the L resolute of M*'A. Hence,

(1.14.6)

and

(3.1)

(1.16)

n ( p X v)n

[n, p, v]n

(1.7.4)

th* b l e m : Referring to Fig. 3.1b, determine the magnitude of
moment of the force F about line OS.

FIG. 3.2.2
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Solution: R is a point on the line of action of F, S a point on
line OS. Let p be the position vector of R relative to 8, and let n
be a unit vector parallel to OS and having the sense SO. Then

p = 3m ft, F « -5ii8 lb
n - i(3m - 4n2)

and

Hence

3.2.3

Proof

Then

and

[n, P, F]

If a line L

: Referring

(1.15.9)

3
0

intersects

; to 3.2.2,

[n, P,

0
0

-i

0
- 5

0

= —12 ft lb

-12| = 12 ft lb

the line of action of v, then

= 0

p can be

0,v]

chosen in such a way that

= 0

(1.7.3)

3.2.4 If a line L is parallel to the line of action of a vector v,
then

M - 0
Proof: Using the notation of 3.2.2,

M"/* - [n, p, v]n - 0
(1.16.4)

3.2.5 If a line L is perpendicular to the line of action of a vector
v, and 8 is the shortest distance between these two lines, then

| M ' " | = a\y\

Proof (see Fig. 3.2.5, noting that n is perpendicular to both L
and v):

M * |[n,p,v]| -" |n.(pXv)|
(3.2.2) (1.16)

- |n-(|p||v|8in(p,v)n)|«|p|M
(1.15)

- «M
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L

—-.__ v

FIG. 3.2.5

Problem: Referring to Fig. 3.1b, determine the magnitude of
the moment of the force F about line OT.

Solution: OR is the common perpendicular to the line of action
<* F and the line OT. Its length is 4 ft. Hence,

|MFA>*1 . (4)(5) = 20ftlb

3.2.6 When the line of action of a vector v is perpendicular to
* line L, the direction of Mv/L can readily be determined by inspec-
tion: M*/L is parallel to L and has the same sense as the vector
£ X v (see Fig. 3.2.5). Using 3.2.5, one can, therefore, evaluate
M*/L without explicitly performing any dot or cross multiplica-
tions, whenever the line of action of v is perpendicular to L.

Problem: Referring to Fig. 3.1b, determine the moment of
the force F about line ST.

Solution:

WST - (3)(5)nt - 15n, ft lb

3.2.7 The moment of a bound vector about a point is equal to
the sum of the moments of the vector about three mutually per-
pendicular lines which intersect at the point.

Proof: Let v be the vector, P the point, Lt, % « 1, 2, 3 the
Mutually perpendicular lines intersecting at P.

When M*/p is resolved into components respectively parallel to
the three lines, the component parallel to Lt is equal to the L»
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resolute of M*/p (see 1.14.10); but the Li resolute of M*/p is, by
definition (see 3.2), the moment of v about L». Hence

Example: Problem 3.1 may be solved as follows:

= 0 + 15n2 + 0
(3.2.3) (3.2.6) (3.2.4)

Hence,
M*'s - 15n2 ft lb

3.2.8 When a bound vector v is resolved into n components v»>
% = 1, . . . , n, whose lines of action pass through one point on the
line of action of v, the moment of v about any point or line is equal
to the sum of the moments of the vectors v,-, i = 1, . . . , n, about
that point or line.

FIG. 3.2.8a

Proof: (see Fig. 3.2.8a): It must be shown that

M*A* - J M ^ (1)

and that

Now,
M' - p X vt

(3.1)
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Hence,
n

s
Next,

t - 1 (1.15.6) fZi (1.10) (3.1)

4v/An and
(3.2,1.14.6)

Dot multiply both sides of Eq. (1) with n:

fzi d.14.3) ftrf

-Multiply both sides of this equation with n:

n-M*"n - (i* n-M^A) n - V (n-M^n)

UseEqs. (2):

87

(2)

Problem (a): Referring to Fig. 3.2.8b, find the moment of the
force F about line AB.

/loib.

C

3'

FIG. 3.2.8b

3 i
61b.

E

^ 4

I
81b.

FIG. 3.2.8C

r
3'

Solution: Resolve F into two components, Fi and Fj, one
Parallel to line AB, the other parallel to line AD, and both having
lines of action which pass through the same point E on the line
°* action of F (see Fig. 3.2.8c). Then
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= 0 + (2)(6)(-m)
(3.2.4) (3.2.6)

« — 12m ft lb

Problem (b): Fig. 3.2.8d shows five forces, drawn to a scale of
1 ft = 10 lb (for example, |F4J = (10)(3) - 30 lb). The force F is
the resultant of the four forces Fi, . . . , F4 and has been drawn,

C
/

FIG

^ \

. 3.2.8d

s
A

B

arbitrarily, with a line of action passing through A. Find (1) the
moment of F about A and (2) the sum of the moments of the forces
Fi, . . . , F4 about A, (n is a unit vector.)

Solution (1):
M ^ - 0

(3.1.2)

Solution (2): Find the moment of each force about point A,
then add these moments:

(3.1.2)
0

3(20)n - 40n
(F3.2.8c)

* (3)(30)n + 5(20)n - 190n
(F3.2.8f)

(F3.2.8d)
(2)(30)(-n) « -

+ . . . + (40 + 190 - 60)n - 170n ft lb
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20lb.

FIG. 3.2.8e

201b.

3.2.9 Problem 3.2.8(b) shows that the sum of the moments of
the components of a vector v is not necessarily equal to the moment
of v, or, in other words, it demonstrates the importance of that
part of 3.2.8 which states that the lines of action of the components
of v must all pass through one point on the line of action of v.

Problem: For the forces shown in Fig. 3.2.8d, locate the point
P on line AB (or line AB extended) at which the line of action of
the resultant of Fi, . . . , F4 must intersect line AB if the moment
of this resultant about point A is to be equal to the sum of the
moments of Fi, . . . , F4 about A.

P 20 Ib7

FIG. 3.2.9

Solution: Let s be the unknown distance AP, find the moment
of F about A (see Fig. 3.2.9), and set this moment equal to 170n
ft lb:

- 20an - 170n
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The scalar equation corresponding to this vector equation is

20s = 170
Hence,

s = 8.5 ft

and P is 8.5 ft to the right of point A.

3.2.10 Problem 3.2.9 shows that it may be possible to place the
resultant of a system of vectors in such a way that the moment
of the resultant about a certain point is equal to the sum of the
moments of the vectors about that point. Problem 3.2.10 will
demonstrate that it is not always possible to do this.

Problem: Fig. 3.2.10 shows three forces, drawn to a scale of
1 ft = 10 lb (for example, |F2| = 5 0 lb). Letting F be the resultant

FIG. 3.2.10

of Fi, F2, F3, find (1) the moment of F about point A and (2) the
sum of the moments of Fi, F2, F3 about A.

Solution (1):

F - 0
(1.9)

Hence the moment of the resultant about point A (and about all
other points) is equal to zero (see 3.1.2).

Solution (2):

0, (12)(50)n,
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- 600n ft lb
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and, for the purpose of taking moments about point A, it is im-
possible to replace the given force system with its resultant.

3.3 Moments of a system of bound vectors

Notation:

8
v<, i - 1, 2, . .
P
L
Ms/p

Definitions:

a system of bound vectors
. , n the n vectors of S

a point
a line
the moment of S about P
the moment of S about L

Problem: Find the moment of the system S of three forces
shown in Fig. 3.3 (1) about point A and (2) about line AB.

201b.

10 lb.

FIG. 3.3
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Solution (1):

= 40m + 0 + 60m + 40n3

= 100m + 40n3 ft lb

Solution (2):

- 0 + 0 + 40n3

= 40n3 ft lb

3.3.1 The moments of a system of vectors about points and
lines are free vectors.

3.3.2 The moment Ms/L of a system S of bound vectors v»,
i = 1, . . . , n, about a line L is equal to the L resolute of the
moment hA8^A of S about any point A on line L.

Proof: Let n be a unit vector parallel to L. Then

(3.3) (Zi (3.2,1.14.6)

(1.9.3,1.14.3) \jTi / (3.3)

and this vector is equal to the L resolute of Ms/A (see 1.14.6).
Problem: Repeat part (2) of Problem 3.3.

Solution:

- 40n3 ft lb

3.3.3 The moments Ms/A and Ms/A' of a system S of bound
vectors, about two points A and A1, are related to each other as
follows:

' + p X R
where p is the position vector of A' relative to A, and R is the
resultant of S.
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Proof: Let v,, i = 1, . . . , n, be the vectors comprising S,
B{ a point on the line of action of v«, p» and p / the position vectors
of Bi relative to A and A' (see Fig. 3.3.3). Then

- y;
(3.3) fTi 3.1) fZ

(F3.3.3) fTi (1.15.6)

- I>'Xv<+]E>Xv,
(1.9.2) fZ{ til

(1.15.6) fZi
/ X vt + P X

(3.1)

' + P X R
(3.3)

Problem: Referring to Problem 3.3, evaluate MS'B.

Solution: Let p be the position vector of A relative to B, R
the resultant of S:

p - - 3 n 8 ft

R » 5m - 20«t - 10ns lb
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From Problem 3.3,

100m + 40n3 ft lb
Hence,

M«/* M 5 ^ + P X R
- 100m + 40n3 - 3(5n2 + 20m)

= 40m - 15n2 + 40n3 ft lb

3.3.4 The moments of a system S of bound vectors about all
points of any line parallel to the resultant R of S are equal to each
other.

Proof: Referring to 3.3.3, let A and A1 lie on a line parallel
to R. Then

pX R - 0
(1.15.3)

and

3.3.5 The moments of a system S of bound vectors about all
lines parallel to the resultant R of S are equal to each other.

Proof: Referring to 3.3.3, place A and A1 respectively on two
lines L and V parallel to R, and let n be a unit vector parallel to R.
Then

(3.3.2)

-
(3.3.3)

0
(3.3.2) (1.16.4)

3.3.6 If the resultant R of a system S of bound vectors is equal
to zero, the moments of S about all points are equal to each other
(see 3.3.3). If R is not equal to zero, the points about which S has
a minimum moment (M*) lie on a line (L*) which is parallel to R
and passes through a point (P*) whose position vector (p*) relative
to an arbitrarily selected reference point (0) is given by

m R X

L* is called the central axis of S. M* is given by
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Proof: For an arbitrarily selected reference point 0, M5 /0 is
not, in general, parallel to R, and the R resolute of Ms/O is, there-
fore, smaller than M s /0 . Suppose it were possible to find a point A,
such that Ms /A is parallel to R. Then Ms/A would be smaller than
M s / 0 , because (a) MSIA would be equal to the R resolute of M8IA;
(b) the R resolute of Ms/A is equal to the R resolute of M5 /o (see
3.3.2 and 3.3.5); (c) the R resolute of M5 / o is smaller than Ms/0.
Thus Ms/A would be the minimum moment M* of S, and M*
would be given by

|R| |R| (l.H.ii) R2

To show that points such as A exist, let p* be the position
vector of a point P* relative to 0, and impose on P* the require-
ment

In accordance with 3.3.3,

M ^ - Ms/o - p* X R

Hence p* must satisfy the equation

or

This equation is satisfied identically by

. R X
p

Thus there exists at least one point (P*) about which the moment
of S is equal to M*. From 3.3.4 it follows that the moments of S
about all points of a line L* which is parallel to R and passes
through P* are also equal to M*.

It remains to be shown that the points of L* are the only points
about which the moment of S is equal to M*.

The moment of S about a point P not lying on L* is given by

. M * + P X R
(3.3.3)
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where the position vector p of P relative to P* is not parallel to R.
Hence p X R is not equal to zero, and Ms/P is not equal to M*.

Problem: Referring to Problem 3.3, determine the minimum
moment M* of £, and find the shortest distance d* from point A
to the central axis of S.

Solution: The resultant R of S is given by

R = 5m - 20n2 - 10n3 lb
while

M5/A = 100m + 40n8 ft lb
(P3.3)

Hence,
RMS/A * lOOftlb2

and

M*
R2 *

100
- H (6ni ~ 20n2 - lOtis)

= 0.952m - 3.808n2 - 1.904n3 ft lb

Next, the position vector p* of a point on the central axis, relative
to point A, is given by

, R X MS'A

- 5I5 (-800m + 800ih + 2000n,)

Now, p* is perpendicular to the central axis (as can be seen by
recalling that the central axis is parallel to R and noting that
Rp* = 0). Hence

d* - |p1

- | | j (64 + 64 + 400)i

- 4.38 ft
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COUPLES

3.4 Definition

A couple is a system of bound vectors whose resultant is equal
to zero and whose moment about some point is not equal to zero.

Example: The system of three forces described in Problem
3.2.10 is a couple.

3.4.1 Couples are not vectors; for, a system of vectors is not a
vector, any more than a system of points is a point.

3.4.2 A couple consisting of only two vectors is called a simple
couple. The vectors comprising a simple couple have equal mag-
nitudes, parallel lines of action, and opposite senses.

Example: The two forces shown in Fig. 3.4.2 constitute a
simple couple.

10 1b.,

FIG. 3.4.2

10 Ib.

3.4.3 Most writers use the word "couple" to denote what has
here been called a simple couple.

3.4.4 The moment of a couple about a point is called the torque
of the couple. It is unnecessary to refer to a specific point, because
the moment of a couple about one point is equal to the moment of
the couple about any other point. This follows from 3.3.3 and the
fact that the resultant of a couple is equal to zero.

3.4.5 Although couples are not vectors, and torques are vec-
tors, the words "couple" and "torque" are often used interchange-
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ably. One encounters, for instance, such phrases as "the magnitude
of a couple," "the direction of a couple," "a torque applied to a
body," etc.

Problem (a): The system of four forces shown in Fig. 3.4.5a
is a couple. Find the torque T of this couple.

10 Ib, ,

81b. ^
8 lb.

k
4' L

IOIb/F3

FIG. 3.4.5a

Solution: Select a convenient point. Find the moment of
each force about this point. Add these moments:

= 64m - 24n2 + 24n3 ft lb

Problem (b): Fi and F2 are two forces of a system S of 96 forces,
the remaining 94 comprising a couple C whose torque T is shown
in Fig. 3.4.5b. (The circle drawn through the arrow representing T
is meant to call attention to the fact that the dimensions of T are
different from those of Fi and F2.) Find (1) the resultant F of St

(2) the moment M5/A of S about point A, and (3) the moment
Ms/B of S about point B.

Solution (1): The couple C contributes nothing to the resultant
of S. Hence

F = F! + F2 - 5m + 10n2 lb
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T
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U^
FIG. 3.4.5b

Solution (2):

0 + (6)(10)n3 + T

6O113 + 30 cos 60° in + 30 sin 60° n2

15m + 25.98n2 + 60n3 ft lb

Solution (3):

= 0 + 0 + T
= 15m + 25.98n2 ft lb

3.4.6 The magnitude of the torque T of a simple couple is
given by

|T| = *M
where s is the distance between the lines of action of the two
vectors comprising the couple, and v is one of these vectors.

Proof (see Fig. 3.4.6): T is the sum of the moments of v and
"-v about any point. Take moments about point A:

T « WA + M ^

Hence,

p X v+ 0
(3.1) (3.1.2)

|p X v| = |p| |v|sin(p, V) = s|v|
(1.15.2)

Problem: Determine the magnitude of the torque T of the
couple shown in Fig. 3.4.2.
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Solution:
|T| = 3(10) - 30 ft lb

3.4.7 The direction of the torque of a simple couple can readily
be determined by inspection: T is perpendicular to the plane deter-
mined by the lines of action of the two vectors comprising the
couple, and the sense of T is the same as that of p X v (see Fig.
3.4.6). Using 3.4.6, one can, therefore, find the torque of a simple
couple without explicitly performing any cross multiplications.

Problem (a): A body is subjected to the action of a system S
of forces, S consisting of two simple couples, C and C , as shown in
Fig. 3.4.7a. Evaluate the moment of S about point A.

Solution:

- 3(10)m
= 30n2 - 15m ft lb

Problem (b): Draw three simple couples whose torques are
respectively parallel to the unit vectors m, ih, na shown in Fig.
3.4.7b and whose resultant moment about any point in space is
equal to that of the force system described in Problem 3.4.5(a).

Solution: Let Ch C2, C8 be the three simple couples, Ti, T2, T$
their torques. Then

L + T2 + T3 - 64m - 24n2 + 24n8 ft lb
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FIG. 3.4.7a

FIG. 3.4.7b
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This equation may be satisfied by taking

L = 64m ft lb, T2 = -24n2 ft lb, T3 - 24n3 ft lb

One system of simple couples having these torques is shown in
Fig. 3.4.7b.

3.4.8 The moment of a couple about a line L is equal to the L
resolute of the torque of the couple.

Proof: Use 3.4, 3.3.2 and 3.4.4.

Problem (a): Referring to Problem 3.4.5(b) determine the
moment of S about line AB.

Solution: Fi and F2 contribute nothing to MS/AB. The moment
of C about line AB is equal to the AB resolute of T. Hence,

Mfi/^ = 30 cos 60° m = 15m ft lb

Problem (b): Evaluate the moments of the couple C shown
in Fig. 3.4.8, about (1) line Llf (2) line L2, (3) line L3, (4) line U.

Solution (1): The torque T of the couple C is given by

T - 30n3ftlb
(3.4.7)

The resolute of T parallel to L\ is T itself. Hence,

M 3On3 ft lb
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Solution (2): The resolute of T parallel to L2 is equal to the
resolute of T parallel to Li, Hence,

n3 ft lb

Solution (3): Let n be a unit vector parallel to L3 (see Fig.
3.4.8). Then

T
(1.14.6)

24nftlb
()

Solution (4): T is perpendicular to L4. Hence the L4 resolute
of T is equal to zero, and

Mc/u 0
3.4.9 The moments of a couple about two parallel lines are

equal to each other.
Proof: Use 3.4.8
3.4.10 When the torque T of a couple C is resolved into three

mutually perpendicular components, each component is equal to
the moment of the couple about any line parallel to that com-
ponent.

Proof: When T is resolved into components respectively par-
allel to mutually perpendicular unit vectors n», i = 1, 2, 3, the n,
component of T is equal to the n, resolute of T (see 1.14.10); and
the n» resolute of T is equal to the moment of C about any line
parallel to n, (see 3.4.8 and 3.4.9).

Problem: The box shown in Fig. 3.4.10a is subjected to the
action of a system S of forces, S consisting of a force F and a couple

FIG. 3.4.10a

4' C

FIG. 3.4.10b
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C. The moments of S about lines AB, AC and AD are equal to
zero. Determine the magnitude of the torque T of the couple C.

Solution: Let T\, T2, T% be the m, n2, n3 measure numbers of
T (see Fig. 3.4.10b), and take moments about lines AB, AC, AD:

= 0 + T 2 ( - n 2 ) = 0

/. T2 » 0
MS/AC = ^F/AC + ^C/AC

= 3(10)(-n8) + 7V-n3) = 0
/. Tz = -30ft lb

= 4(10)(-m) + Tmi - 0

.-. Ti - 40 ft lb

The magnitude of T is given by

|T| = (Ti* + 77 + Tz*)l - (1600 + 0 + 900)* = 50 ft lb
(1.10.5)

The fact that Tz is negative means that the 113 component of T has
a sense opposite to that shown in Fig. 3.4.10b.

EQUIVALENCE, REPLACEMENT, AND REDUCTION

3.5 Definition

Two systems S and S' of bound vectors are said to be equivalent
when both of the following conditions are fulfilled: (a) The resultant
of S is equal to the resultant of S'. (b) There exists at least one
point about which S and S' have equal moments.

If S and S' are equivalent, then either is called a replacement
of the other, and if S' contains fewer vectors than S, S' is called a
reduction of S. The process by means of which a replacement
(reduction) is obtained, is also called replacement (reduction).
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Example: Fig. 3.5 shows a force system S consisting of three
forces (Fi, F2, F3) and a couple (of torque T); further, a system S,
consisting of a force (F) and two couples (of torques TV, T2')- S is
equivalent to S', as may be seen by evaluating their resultants,
R and R', and the moments, MS'A and M ^ , of S and S' about A:

S"

R = F, + F, + F, - 3n* - 7m + 3n» = -4n* + 3n» lb

R' . F = 5n = 5(-0.8nt + 0.6n,) = -4n» + 3n,lb

= Mf'/A + Mf'/* + MF«/-* + T
- 0 + 4(7)B» + 0 + 5n* = 5nt + 28n»ft lb

+ V + TV

3.6.1 The word "equivalence" is not to be regarded as imply-
ing physical equivalence of any sort: Figs. 3.5.1a and 3.5.1b each

1000 lb. 1000 lb. 1000 lb. 1000 lb.

FIG. 3.5.1a FIG. 3.5.1b
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show a rod subjected to the action of a pair of forces. The two
pairs of forces are equivalent; but their effects on the rod are quite
different from each other.

3.5.2 Given a line L and two equivalent systems S and S' of
bound vectors, the sum of the L resolutes of the vectors in S is
equal to the sum of the L resolutes of the vectors in S'.

Proof: The sums of the L resolutes of the vectors in S and S'
are respectively equal to the L resolutes of the resultants of S and
S' (see 1.14.7). These resultants are equal to each other (see 3.5);
hence they have equal L resolutes.

Example: Referring to Example 3.5, it may be verified that
the sums of the m resolutes of the forces in S and S' are each
equal to — 4ri2 lb.

3.5.3 The moments of two equivalent systems of bound vectors,
about any point, are equal to each other.

Proof (see Fig. 3.5.3): S and S' have equal resultants, R and

FIG. 3.5.3

R', and there exists at least one point, say A, about which S and
S' have equal moments. Hence

and

It must be shown that S and S' have equal moments about a
point such as B, i.e., that
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(3.3.3)

+ p X R'

(3.3.3)

Note that

Hence,

But

Thus,

3.5.4 The moments of two equivalent systems of bound vectors,
about any line L, are equal to each other.

Proof: The moments of the two systems about L are respec-
tively equal to the L resolutes of the moments of the systems
about a point A on L (see 3.3.2). These moments about A are
equal to each other (see 3.5.3); hence they have equal L resolutes.

Problem: A force system S consists of two forces (Fi, F2) and
two couples (of torques Ti, T2), as shown in Fig. 3.5.4a. Reduce S

FIG. 3.5.4a

to a force system S' consisting of a simple couple C and a force F
whose line of action passes through point A.

Solution: Let T be the torque of C. Show F and T on a sketch
(see Fig. 3.5.4b). Evaluate the resultants, R and R', of S and S':
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Then

Next,

MOMENTS AND COUPLES;

R = Fx
R' = F

F

MS/A =

(F3.5.4a)

=
——

+ F, - -8n ,

SECTION

+ 6n,lb

= -8ns + 6n» lb

MF.M + MF»M + Ti +

40ni + 24n* -

-20n*ftlb
-40n, -

3.5

T,

44n*

and

(F3.5.4b)

Hence (see 3.5.3),
T = -20mft lb

A simple couple C, whose torque is equal to — 20n2 ft lb, and the

force F are shown in Fig. 3.5.4c.

3.5.5 If S is equivalent to £', and S' is equivalent to £", then
S is equivalent to 5". This property of the equivalence relation
is called transitivity. It is an immediate consequence of 3.5.

3.5.6 Every system S of bound vectors can be replaced with
a system S' consisting of a couple C and a single bound vector v
whose line of action passes through an arbitrarily selected base
point 0. The torque T of C depends on the choice of base point:

T
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The vector v is independent of the choice of base point:

109

where R is the resultant of S.

Proof (see Fig. 3.5.6): If

v
and

then S and S' have equal resultants and equal moments about
point 0. See 3.5.

Problem: Referring to Problem 3.5.4, replace S with a force
system consisting of a couple of torque T and a force F whose line

of action passes (1) through point A and (2) through point B,
Determine F and t for each case.

Solution (1):

R + F,

(P3.5.4)
-20mft lb
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Solution (2):

F = F! + F2 - -8n2 + 6n3lb

T = Ms/* = M8'A + 4n2 X F
(3.3.3)

3.5.7 A couple C can be replaced with any system of couples
the sum of whose torques is equal to the torque of C. This follows
from 3.5.6 and 3.4.4.

3.5.8 When a system of bound vectors consists of a couple of
torque T and a single vector parallel to T, it is called a wrench.

If the resultant of a system S of bound vectors is not equal to
zero, S can be replaced with a wrench W, consisting of the resultant
R of S, placed on the central axis L* of S (see 3.3.6), and a couple,
whose torque T* is equal to the minimum moment M* of S.

Proof: When W is constructed as described above, S and W
have equal resultants and equal moments about any point of L*.
Hence they are equivalent.

Problem: A force system S consists of 4 forces and a couple of
torque T, as shown in Fig. 3.5.8a. Replace S with a wrench.

FIG. 3.5.8a
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Solution: Let F* be the force and T* the torque of the couple
associated with the wrench. Then

and the line of action of F* passes through the point P* whose
position vector relative to point A is given by

P* -
F* X

(3.3.6) F**

10n»X (-30m + 20n>)
100 3ns ft

That is, P* coincides with point B. T* is given by

T*
(3.3.6)

F* - 20n* ft lb

Fig. 3.5.8b represents the wrench equivalent to S.

FIG. 3.5.8b

3.5.9 The solution of practical problems frequently involves
reductions of systems of bound vectors whose lines of action
intersect at a point, pass through a line, lie in a plane, or are
parallel to each other. In the sections which follow, reductions
of such systems are examined in detail.

3.5.10 A system of vectors Vt, i = 1,. . . , n, whose lines of
action intersect at a point 0, can be replaced with a single vector
whose line of action passes through O.
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FIG. 3.5.10a

Proof: Replace S in accordance with 3.5.6, using point 0 as
base point (see Fig. 3.5.10a). Then the torque T of the couple C
is given by

(3.5.0) (3.3) f
= 0

(3.1.2)

and S' consists entirely of v.

Problem: The system S of three forces shown in Fig. 3.5.10b
is to be replaced with (1) a single force F and (2) a simple couple
and a force F whose line of action passes through point B. Show
each of these replacements in a sketch.

7 34 Ib B

C 4'

10 Ib

/ - ^30° C A 734 1b
I Ib f

17 Ib

FIG. 3.5.10b FIG. 3.5.10C FIG. 3.5.10d
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Solution (1): The single force F is equal to the resultant of S:

F = -7.34mlb

The line of action of F must pass through point A. See Fig. 3.5.10c.

Solution (2): The force F is again equal to the resultant of S.
The torque T of the simple couple is equal to the moment of S
about point B:

T = -22n3ftlb

The desired replacement is shown in Fig. 3.5.lOd.

3.5.11 A system S of vectors v», i = 1, . . . , n, whose lines of
action intersect a line L can be replaced with a couple whose

FIG. 3.5.11

torque is perpendicular to L, together with a vector whose line of
action intersects L.

Proof: Replace S in accordance with 3.5.6, using a point 0 on
L as base point (see Fig. 3.5.11). Then the torque T of the

couple C is given by

Now.

T =
(3.5.0)

(3.2.7)

(3.3) f
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where Lf and L" are lines intersecting at 0 and perpendicular to
L. Furthermore,

M*-/L = 0
(3.2.3)

and Mv«/L' is parallel to Lf, MVt/L" to L", so that both are perpen-
dicular to L. Hence MVi/0 is perpendicular to L. It follows that T
is perpendicular to L.

3.5.12 When the lines of action of the vectors v,, i — 1, . . . , ft,
of a system S lie in a plane P, S is called a system of coplanar

Fie 3.5.12

vectors, and S can be replaced with a couple whose torque is per-
pendicular to P, together with a vector whose line of action lies
in P.

Proof: Replace S in accordance with 3.5.G, using a point 0 of
plane P as base point (see Fig. 3.5.12). Then the torque T of the
couple C is given by

T =
(3.5.0)

= T Mvi/0 = I > * X
(3.3) fZ\ (F3.5.12) f^i

Now, pt X v, is perpendicular to both pt and v,, hence to P. I*
follows that T is perpendicular to P.

The line of action of v lies in plane P because it passes through
0 and is parallel to the resultant of S.
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3.5.13 If the resultant of a system S of coplanar vectors is not
equal to zero, S can be replaced with a single vector. This vector
is the resultant R of S, placed on the central axis of S.

Proof: Reduce S to a wrench W (see 3.5.8). The minimum
moment of S is given by

(3.3.0) K

and M5 /o is perpendicular to R. Hence

M* = 0

and W consists of R, placed on the central axis of S.

3.5.14 A system S of vectors v,, i' = 1, . . . , n, whose lines of
action are parallel to a line L can be replaced with a couple whose

FIG. 3.5.14

torque is perpendicular to L, together with a single vector whose
line of action is parallel to L.

Proof: Replace S in accordance with 3.5.6, using any point 0
a s base point (see Fig. 3.5.14). Then the line of action of v is
Parallel to L, and the torque T of C is given by

(3.5.0) (3.3)
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Now,
IVjvt/O = Mv,/Li -f- Mv ' /^2 -f- M*1'/^1

(3.2.7)

where Lh L2, L3 are mutually perpendicular lines intersecting at O.
If L3 is taken parallel to L, then

M*'/*" = 0
(3.2.4)

and, as Mv'/Ll and Mv / / 2 are respectively parallel to Li and L2,
Mv'/0 is perpendicular to L. Hence, T is perpendicular to L.

3.5.15 If the resultant of a system S of parallel vectors v»,
i = 1, 2, . . . , n, is not equal to zero, S can be replaced with a
single vector. This vector is the resultant R of S, placed on the
central axis of S. Furthermore, the central axis passes through
the centroid P* of a set of points P t, i = 1 ,2 , . . . , n, of strengths
V{, i — 1 , 2 , . . . , n, obtained as follows: P t is any point on the
line of action of v», and v{ is a measure number satisfying the
equation

Vt = Vit\

where n is a unit vector parallel to the vectors of S.
Proof: The minimum moment M* of S is given by

M* = '
(3.3.0) R2

where R is the resultant of S and M s / 0 the moment of S about an
arbitrarily selected reference point. It was shown in 3.5.14 that
M s / 0 is perpendicular to R. Hence

M* = 0
and when S is reduced to a wrench (see 3.5.8), the wrench consists
entirely of R, placed on the central axis of S.

The central axis passes through the point P* whose position
vector p* relative to 0 is given by

* R X MSI°
P* = p̂ —

(3.3.6) K

Now, if
V» = Vif\
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FIG. 3.5.15a

and pi is the position vector of P< (see Fig. 3.5.15a) relative to 0,
then

= ( E »«•)n
(1.9.3) \ i a B l /

and

M v i / ° =(3.D n

Hence,
(1.15.4,1.15.0) \ f r f

^A X n
/

+ Xn

where X is an appropriately selected scalar. The first term in this
expression is the position vector, relative to 0, of the centroid of
the set of points f\, i = 1, . . . , n, of strengths vi} i = 1, . . . , n.
(See 2.4.1.)

Problem: The system of five forces shown in Fig. 3.5.15b is to
be replaced with a single force F. Show F in a sketch.
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f5lb.

• 30 Ib.
FIG. 3.5.15b

Solution: Let n be a unit vector parallel to the lines of action
of the five forces (see Fig. 3.5.15b). F is the resultant of these
forces:

F = (15 + 10 + 5 - 20 - 30)n = -20n lb
Let x* and y* be the X and Y coordinates of the centroid of the set
of points at which the lines of action of the forces intersect the X-Y
plane, and take the strengths of these points equal to the measure
numbers of the corresponding forces. Then (see 2.4.5)

15(0) + 10(1) + 5(4) + (-20) (2) + (-30)(3)
15 + 10 + 5 + (-20) + (-30)

* = 15(2) + 10(1) + 5(0) + (-20K3) + (-30) (2) f
y 15 + 10 + 5 + (-20) + (-30)

Fio. 3.5.15c

F is shown in Fig. 3.5.15c.
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ZERO SYSTEMS

3.6 Definition

A system S of bound vectors is called a zero system if both of the
following conditions are fulfilled: (a) The resultant of S is equal
to zero, (b) There exists at least one point about which the mo-
ment of S is equal to zero.

3.6.1 Given any line L, the sum of the L resolutes of the vectors
of a zero system S is equal to zero.

Proof: The sum of the L resolutes of the vectors in S is equal
to the L resolute of the resultant of S (see 1.14.7). The resultant
of S is equal to zero. Hence its L resolute is equal to zero.

Problem: If the system of forces shown in Fig. 3.6.1a is a zero
system, what is the value of F?

10 Ib.

30°,
10 Ib.

FIG. 3.6.1a FIG. 3.6.1b

or

Solution: Let n be a unit vector parallel to OA (see Fig. 3.6.1b),
set the sum of the n resolutes of the three forces equal to zero:

10 cos 30° n + Fn * 0

(0.866 + F)n = 0
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Hence,
8.66 + F = 0

and
F = -8.66 lb

3.6.2 The resolute of a vector parallel to a line can always be
expressed as the product of a unit vector n and a measure number.
When this is done for the resolute of each vector of a zero system,
and these resolutes are then added, there results a scalar equation
governing the measure numbers (in Problem 3.6.1, the equation
8.66 + F = 0). This equation can often be written by inspection,
once the unit vector n has been chosen in order to establish a "sign
convention" for the measure numbers.

Problem: Referring to Problem 3.6.1 and Fig. 3.6.1b, deter-
mine F by setting the sum of the n' resolutes of the three forces
equal to zero.

Solution:
10 + F cos 30° - 5 cos 60° = 0

10 + 5(j) ,
F = 0.866 = ~ 8 - 6 6 l b

3.6.3 The form of the scalar equation obtained by setting a sum
of resolutes parallel to a line equal to zero depends on the line.
Frequently, one line is more convenient than another; e.g., in
Problem 3.6.1, line OA is more convenient than line OA', and line
OA" cannot be used at all, for the purpose of evaluating F.

3.6.4 When a zero system is composed either partly or entirely
of couples, the vectors comprising the couples contribute nothing
to equations obtained by setting sums of resolutes equal to zero.

Problem: A zero force system consists of four forces, a simple
couple Ch and a couple of torque T2, as shown in Fig. 3.6.4. Deter-
mine F.

Solution: Set the sum of the A B resolutes of all forces equal
to zero. This gives
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20 1b. 4-0 ft. f1— ^"Cl
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3.6.6 Given any point A, the moment of a zero system S about
A is equal to zero.

Proof: There exists at least one point, say A', about which S
has zero moment. Keeping in mind that the resultant of S is equal
to zero, it follows from 3.3.3 that

M ^ = M^' = 0

Problem: A zero system S consists of only two vectors, vi and
v2. Show that the lines of action of vi and V2 coincide.

Solution: Let P be a point on the line of action of vi. Then

(3.3)

As S is a zero system,

(3.1.2)

Hence,

= 0
(3.0.5)

= 0

It follows from 3.1.2 that the line of action of V2 passes through
Point P. As P is any point on the line of action of vi, the line of
action of v2 thus passes through every point on the line of action
°f vi; i.e., the lines of action of vi and V2 coincide.

3.6.6 Given any line L, the moment of a zero system S about L
^ equal to zero.
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Proof: Let A be a point on L. Ms/L is equal to the L resolute
of MS'A (see 3.3.2). Now,

MSA = 0
(3.0.5)

Hence the L resolute of Ms/A is equal to zero.
Problem (a): A zero system S consists of three vectors, vi, v2,

V3. Show (1) that the lines of action of vi, V2, V3 are coplanar, and
(2) that these lines of action are either concurrent or parallel.

Solution (1): Let P t, i = 1, 2, 3, be points on the lines of
action of v», i = 1, 2, 3, as shown in Fig. 3.6.6; and let Li} t' = 1, 2, 3,

be lines joining these points. Find the moment of S about each
of these lines:

(3.3)

= M"/**, i = 1, 2, 3
(3.2.3)

As S is a zero system,
MVL, = Oy i = l f 2f 3

(3.6.«)

Hence,
M*'/L' = 0, t = 1, 2, 3
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and the line of action of vt either is parallel to L,, or intersects L*.
In either case the line of action of v, lies in the plane determined
by the three points P t , t = 1, 2, 3.

Solution (2): First, suppose that no two of the lines of action
are parallel. Let P be the point of intersection of any two. The
third line of action must pass through P, in order that the moment
of S about P be equal to zero. Next, if two of the lines of action
are parallel to each other while the third intersects these two at
points A and B, the moment of S about neither A nor B is equal
to zero. Hence A and B cannot exist; i.e., the third line of action
must be parallel to the other two.

Problem (b): Solve Problem 3.6.4 by setting the moment of
the given force system about line CD equal to zero.

Solution: Let n be a unit vector parallel to CD and having the
sense CD. Then

-3(*F)n + 3(20)n = 0
or

( - | F + 20)n = 0
Hence,

- £ F + 20 = 0
and

F = 25 lb

3.6.7 The moment of a vector (or couple) about a line can
always be expressed as the product of a unit vector n and a measure
number. When this is done for the moment of each vector of a
zero system, and these moments are then added, there results a
scalar equation governing the measure numbers (in Problem
3-6.6(b), the equation -$F + 20 = 0). This equation can often
be written by inspection, once the unit vector n has been chosen
*n order to establish a "sign convention" for the measure numbers.

Problem: Solve Problem 3.6.4 by setting the moment of the
given force system about line DE equal to zero.

Solution:

-2(5) - 2(fF) +40 = 0
F = 25 lb
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3.6.8 The form of the scalar equation obtained by setting a
sum of moments about a line equal to zero depends on the line.
Frequently, one line is more convenient than another; e.g., com-
paring the solutions of Problems 3.6.6(b) and 3.6.7, line CD is seen
to be more convenient than line DE, and line AB (see Fig. 3.6.4)
cannot be used at all, for the purpose of evaluating F.

3.6.9 The orthogonal projection of a bound vector v, on a plane
N (see Fig. 3.6.9) which is perpendicular to a unit vector n, is a

FIG. 3.6.9

bound vector v' equal to the resolute of v perpendicular to n.
The point of application of v' is the point P' at which a line
parallel to n and passing through the point of application P of v
intersects N.

If S is a system of bound vectors, and S' consists of the or-
thogonal projections of the vectors in S, on plane AT, then (a) if S
is a zero system, S' is a zero system, and (b) if S is a couple of
torque T, S' is either a couple whose torque T' is equal to the n
resolute of T, or S' is a zero system.

Proof: Let v be a typical vector of S, v' the corresponding
vector of S'. Then

v' = n X (v X n)
(PI.17.1 (a))

If R is the resultant of Sy the resolute of R perpendicular to n
is equal to n X (R X n). As shown in 1.14.8, this resolute of R is
equal to the resultant R' of S'. Thus

R' = n X ( R X n ) (1)
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Let 0 be a point of AT, p and p' the position vectors of P and
P' relative to 0. Then the moments of S and S' about 0 are given
by

But p' is the resolute of p perpendicular to n; that is,

p' = n X (p X n)
Hence,

£ P' X v' = Y, [" X (P X ")] X [" X (v X n)]

= " • ( E P X v) n
and

M«'/o = n Ms/On (2)

(a); If S is a zero system,

and

Substitution into Eqs. (1) and (2) shows that S' is a zero system.
Part (b): If S is a couple of torque T,

and

Substitution into Eqs. (1) and (2) shows that

R' = 0
and

Ms'/° = n Tn

Thus, S' has a zero resultant, and the moment of S' about 0 is
equal to the n resolute of T. If T is not perpendicular to n, S' is,
therefore, a couple whose torque T' is equal to the n resolute of T;
and if T is perpendicular to n, S' is a zero system.

3.6.10 When a system S of bound vectors is a zero system,
infinitely many scalar equations governing the vectors of S can be
written by setting the moments of S about various lines L, or the
sums of the L resolutes of the vectors of Sy equal to zero. At most
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six such equations are both independent of each other and non-
trivial. This follows from the fact that each of the two conditions
imposed on the vectors of S by the definition of a zero system can
be expressed as one vector equation.

One way to obtain the largest number of independent, non-
trivial, scalar equations available in a given case, is to (a) set the
sums of the Lh L2, L3 resolutes of the vectors of S equal to zero,
and (b) set the moments of S about Lh L2, L3 equal to zero, Lh

Z/2, Lz being mutually perpendicular lines. If this procedure yields
fewer than six equations, no other will yield a greater number.

Problem: The lines of action of the vectors of a zero system
S lie in a plane P. Show that at least three independent, trivial,
scalar equations governing the vectors of S can be written. (Con-
sequently, at most three independent, non-trivial, scalar equations
are available in this case.)

Solution: Let Lh L2, L3 be mutually perpendicular, concurrent
lines, L\ and L2 lying in plane P. Then the sum of the L3 resolutes
of the vectors of S\ the moment of S about Lx\ and the moment
of S about L2 are each equal to zero, whether or not S is a zero
system, and no information about the vectors of S is obtained by
setting these quantities equal to zero. The corresponding equa-
tions are, therefore, trivial.



4 STATIC EQUILIBRIUM

4.1 Force

In the study of certain physical phenomena it is convenient to
employ a class of bound vectors called forces. The sections which
follow contain descriptions of forces associated with specific situa-
tions.

GRAVITATIONAL FORCES

4.2 Mutual gravitational attraction of particles

With every pair of distinct particles in the universe there are
associated two forces, F and F', given by

F = -Gmm'p(p2)-? (1)

P - - F (2)

where G is a positive constant, the same for all particles; m and mf

are the masses of the particles; p is the position vector of P relative

P'(m')

FIG. 4.2

**> Pf (see Fig. 4.2), P and P' being the points at which the particles
a re situated.

The points of application of F and F' are P and P\ respectively.
(The lines of action of both forces thus coincide with line PP'.)

127
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F and F' are called, respectively, the gravitational force exerted
on the particle at P by the particle at Pr and the gravitational force
exerted on the particle at P' by the particle at P.

4.2.1 The word "distinct" in 4.2 rules out the possibility p = 0:
Two distinct particles cannot be situated at the same point.

4 2.2 Equation (2), sometimes called a law of action and reac-
tiony is not independent of Eq. (1), because the procedure by means
of which F is constructed must apply equally well to the construc-
tion of F'. Eq. (2) is, therefore, an immediate consequence of
Eq. (1) and of the fact that p', the position vector of P' relative
to P, is equal to — p.

4.2.3 The magnitudes of the gravitational forces F and F' are
equal to each other and are inversely proportional to the square of
the distance between P and P':

|F| = |F'| = Gmm'/p2

Proof:

| | |
(4.2)

= Gmm'(p2)-S|p|
(1.4)

= Gmm'(p2)-'(p2)J = Gmm'/p2

(1.14.11)

4.2.4 The dimensions of force (F), length (L), mass (Af), and
time (T) are related to each other as follows:

Problem: A particle of mass 2 grams exerts a force of magni-
tude 6.66 X 10~6 dynes on a particle of mass 5 grams when the
two are separated by a distance of 0.1 centimeters. Determine the
constant (?, expressing the result in units of (1) force, length and
mass, and (2) length, mass and time.

Solution (1): Use 4.2.3, with

|F| = 6.66 X 10~6dyne

m = 2 gm, m! = 5 gm, p2 = (O.I)2 = 0.01 cm2
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This gives

G = |FV/mm' = 6.66 X 10"8 X 0.01/2 X 5
= 6.66 X 10"8 dyne cm2 gm~2

Solution (2) Use 4.2.4 to express the unit of force (the dyne)
in terms of units of mass, length and time:

(1 dyne)(l cm)-!(l g m ) - ^ sec)2 = 1

1 dyne = 1 cm gm sec"2

Substitute into the result obtained in (1):

G = 6.66 X 10~8 cm gm seer2 cm2 gm~2

= 6.66 X 10~8 cm3 gm"1 sec~2

4.2.5 In general, three relationships are required to establish
the connection between two systems of units. In the case of the
metric absolute (dyne, centimeter, gram, second) and British gravi-
tational (pound, foot, slug, second) systems, only two relationships
are required, because the unit of time is the same in the two
systems.

Problem: Use the results of Problem 4.2.4 to express the con-
stant G in units of force, length and time of the British gravita-
tional system of units, taking

1 cm = 0.0328 ft, 1 gm = 6.86 X 10"6 slug

Solution: Use 4.2.4 to re-write the result obtained in Problem
4.2.4 as

G = 6.66 X 10"8 dyne"1 cm4 sec"4

the relationship between the dyne and the pound by using
4.2.4 together with the given relationships between units of length

d units of mass:

1 dyne = 1 cm gm sec"2 = 0.0328 X 6.86 X 10~6 ft slug sec"2

- 2.25 X 10-6 ft slug sec"2 « 2.25 X 10~6 lb

Substitute:

0 . 6 - 6 6 > < 1
9

0 " X i n y 2 8 ) 4 - 3.42 X 10- l b - ft< sec-
Z.Zo X lv)
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4.2.6 The system of gravitational forces exerted on a particle P
by the particles of a set S is equivalent to a single force F whose
line of action passes through P. F is called the gravitational force
exerted on P by S.

In general, the line of action of F does not pass through the
mass center P* of S. However, if the distances from the particles
of 5 to the point P* are sufficiently small in comparison with the
distance between P* and P, F is nearly equal to the gravitational

FIG. 4.2.6a

force F* exerted on P by a particle of mass m* situated at P*, m*
being the total mass of the particles in S; and the line of action
of F then nearly passes through P*.

Proof: Introduce the following (see Fig. 4.2.6a):

p
Pi, i =

Ft

F

P*
P*
Pi
rt

m*

F*

1, 2, . .
a particle of mass m

. , n the particle of a set S
the mass of P»
the gravitational force exerted on P

by I\
the resultant of the forces F,-, i s 1?

. . . , n
the mass center of S
the position vector of P* relative to P
the position vector of P t relative to P
the position vector of P t relative to

P*
the total mass of S
the gravitational force exerted on P

by a particle of mass ra* at P*
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It must be shown that (a) the system of forces Ft, i = 1 , 2 , . . . ,
n, is equivalent to a single force whose line of action passes through
P, and that (b) this force is nearly equal to F* and has a line of
action which nearly passes through P*, when |rt| (i = 1 , 2 , . . . , n)
is sufficiently small in comparison with |p*|.

The following relationships will be used:

Ft =
(4.2)

(1.9.1) £ t

F* = Gmm*p*
(4.2)

n

7/1 — / , 77It

. P . C P . 2 ) - 1 (i)

(2)

(3)

(4)

p. = p* + r,-
(F4.2.fia)

,4ri (2.0, 2.4)
= 0

(5)

(6)

Part (a): In accordance with 4.2, the lines of action of the
forces Ft, i = 1, 2, . . . , n, intersect at P . It follows from 3.5.10
that the system of forces Ft, i = 1 , 2 , . . . , n, is equivalent to the
single force F placed in such a way that its line of action passes
through P. This is indicated schematically in Fig. 4.2.6b.

o'n

FIG. 4.2.6b
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Part (6): Express Ft in a form suitable for taking into account
the possibility

K.I < IP*I
From Eqs. (1) and (5),

F, = Gmm,(p* + r,)[(p* + rtf]-'

= Gmm,(p* + r,)[p*2 + 2p*-r, + tf]~*
(1.14.11)

Use the Binomial Theorem, dropping all terms whose magnitudes
depend on the second or higher powers of the ratio |r t |/|p*|:

Ft

Substitute into Eq. (2):

; + £ m* - £ p* • £ "t
Use Eqs. (4), (6), and (3):

F « Gm(p*2)-ip*m* = F*

The line of action of F* passes through P* (see 4.2). Hence the line
of action of F nearly passes through P*.

4.2.7 The statements made in 4.2.6 remain correct when the
words "on" and "by" are replaced with, respectively, "by" and
"on."

4.2.8 Referring to 4.2.6, the particle P must be distinct from
each of the particles Piy i — 1, 2, . . . , n. If this is not the case, no
meaning is attributed to the phrase "the force exerted on P by S."
For example, if n = 2, particle Px cannot be said to exert a force
on the set of particles Px and P2.

Problem: 100 particles, each having a mass of 0.01 gm, are
placed at equal intervals along a circle of radius 1 cm. Determine,
approximately, the gravitational force F exerted by this set of
particles on a particle of mass 0.5 gm placed at a point P whose
distance from the center C of the circle is 10 cm. Show F in a
sketch.
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Solution: F is approximately equal to the force exerted on the
particle at P by a particle of mass 100 X 0.01 gm at C:

C \ 3.33 xlO'10 DYNE „
o--) «< op FIG. 4.2.8

F _ (100 X 0.01)(0.5)
111 (4*3) W

= 6.66 X 10~8 X 0.005 = 3.33 X 10"10 dyne
(P4.2.4)

See Fig. 4.2.8.

4.3 Mutual gravitational attraction of a particle and a
continuous body

Divide the figure occupied by the body B into elements of
arbitrary size and shape. Pick a point in each element, and deter-
mine the gravitational force (see 4.2.6) exerted by a particle P '
°f mass mf on a set of particles situated at these points, each
Particle of the set having the mass of the associated element. The
limit approached by this force, when the number of elements tends
* infinity and each element shrinks to a point, is a force F whose

of action passes through P'. F, called the gravitational force
exerted on B by P', is given by

F = -Gm>

Proof: Introduce the following (see Fig. 4.3):

F the figure (curve, surface, solid) occupied by the body B
P a typical point of F
P the mass density of B at P
dr the length, area, or volume of a differential element of F
p the position vector of P relative to P'
F the gravitational force exerted on B by P'
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B-

FIG. 4.3

"PV)

F is, by definition, the limit of a force of the kind considered in
4.2.6, i.e., a force whose line of action passes through Pr and which
is given by an expression of the form

n

-Gm!

As n tends to infinity and the elements of F shrink to points, the

sum ^2 WiP»(p»2)"~* approaches the integral / p(p'2)~*P dr as a

limit.

4.3.1 The particle P' and the body B must be distinct from
each other in order for the phrase "force exerted on B by P' "
to be meaningful.

Problem: To explain the statement "a sphere attracts as if
concentrated at its center," (1) determine the gravitational force
exerted on a particle P' of mass m! by a sphere of mass m, the
density p at a point P of the sphere depending only on the distance
between P and the center C of the sphere. (The distance "a"
between C and the particle must be taken greater than the radius
R of the sphere.) (2) Determine the gravitational force F' exerted
on P' by a particle of mass m situated at C.

Solution (1) (see Fig. 4.3.1a):
Express p and dr in terms of r, 0, ^:

p = r sin \f/ cos 0 m + r sin \p sin 0 112 + (a + r cos \f/) ns

dr = r2 sin \f/ dd d\p dr
(P2.5.2(c))

m, the mass of the sphere, is given by

m = jFpdr = J dr j * dd j * r2 sin ^ p #
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Integrate with respect to 6 and ^. (Integration with respect to
r cannot be performed explicitly, because p depends on r in an
unspecified way.)

m = 4T / r'2pdr (1)

• is the negative of the gravitational force exerted on the sphere
by the particle:

Hen

(4.3)

the law of cosines,

p2 = a2 + r2 + 2ar cos \p

ce,

where
F = Gm'(I xm + I2nt + /,n,)

^ i = / dr I d$ I
7o yo jo (a2 + r2 +

(2)

2ar cos

u =

- dr / # / ^
yo yo jo (a*

o (a2 + T2 + 2ar cos \

sin \f/(a + r cos \j/)

r2
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Integrate with respect to 6:

I*

Introduce a

Then

and

- 2TT r C

Jo

h =

Jo
new variable v,

a2 + r2

= C

g

(tf

by

+

), h = 0

in \f/(a + r cos \f/]
1 + r2 + 2ar cos

letting

2ar cos \(/ = v2

2 - a2 - r2)/2a

)r2

(3)

(4)

(5)

a + r cos 4f = (t;2 + a2 - r2)/2a (6)

Differentiate Eq. (5) with respect to v:

d\l/
— 2ar sin \1/ ~- = 2v

dv

or
sin yp d\f/ = — — dt; (7)

ar
Use Eq. (5) to determine the values of v corresponding to \f/ = 0
and \p = T: For ^ = 0,

y = (a2 + r2 - 2ar)i = a + r
For ^ = TT,

v = (a2 + r2 - 2ar)i = a - r (a > r)

Substitute from Eqs. (5), (6) and (7) into Eq. (4):

T * r A [*"# + <* - r2
 f

/a = " ^ / rprfr / — i ? dv

a J0 Ja+r V

= -~2 f \ fa 'dv + (a2 - r2) fa 'v-2dv\rpdr
a JO LJa + r Ja+r J

- r - ( a + r ) - ( a 2 - "

= — / r2prfr

UseEq. (1):

i, - S
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Substitute from Eqs. (3) and (8) into Eq. (2):
r GfYlTYl'

137

The gravitational force F exerted on P' by the sphere is shown in
Fig. 4.3.1b.

Solution (2): The gravitational force F' exerted on P' by a
particle of mass m situated at C is identical with the force F shown
in Fig. 4.3.1b. This follows from 4.2.

FIG. 4.3.1b

4.3.2 Problem 4.3.1 shows that the gravitational force exerted
by a particle on a continuous body may be identical with the force
exerted by the particle on a single particle placed at the mass center
°f the continuous body. In general, this is not the case; but if the
distances from all points of a continuous body B to its mass center
P* are small in comparison with the distance from P* to a particle
°> the force exerted by P on B is nearly equal to the force exerted
by P on a single particle placed at P* and having the same mass
a s B. This is an immediate consequence of 4.2.6 and 2.7.

Problem: Determine Fi and F2, the m and 112 measure num-
^ r s of the force F exerted on a particle P' of mass m' by a thin,
Uniform wire of mass m and length Z, when the particle and the wire
°ccupy the positions shown in Fig. 4.3.2a. Show that the line of
action of F does not pass through the mass center P* of the wire.

Solution: As the wire is uniform, its mass density, p, is given
b

m
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vWIRE

P'(m')

FIG. 4.3.2a

p, the position vector of a typical point P of the wire, relative
to Pf, is given by

p = am + yn2

and dr by
dr = dy

Hence,

and the m and n2 measure numbers of F are

Gmm!mm! fl
 (

j — / a(a2
1 Jo + a(P + a2)i

a2\l a"|

Fig. 4.3.2b shows the point Q at which the line of action of F
intersects the wire. The distance d from Q to one end of the wire
is given by

d = a tan 6 = aF2/Fi
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FIG. 4.3.2b

The line of action of F passes through P* if d = 1/2, that is, if

There exists no finite value of the ratio a/I which satisfies this
equation. Consequently, the line of action of F does not pass
through P*. But (in agreement with 4.3.2) the equation can be
satisfied to any desired degree of accuracy, by assigning a suffi-
ciently large value to a/I.

For future reference, note that F\ and F* can be expressed in
the form

~, Gmm' ~ Gmm' b — a
ab ab I

where 6 is the distance between P' and that end of the wire which
is farthest from P'.

4.4 Mutual gravitational attraction of two continuous bodies

Divide the figure occupied by one of the bodies (B) into ele-
ments of arbitrary size and shape. Pick a point in each element,
and regard the mass of the element as concentrated at this point in
^ e form of a particle. Determine the forces exerted on these
Particles by the other body (B')f and replace them with a couple
a nd a force whose line of action passes through an arbitrarily se-
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lected base point. The limits approached by this force and by the
torque of the couple, when the number of elements tends to
infinity and each element shrinks to a point, are, respectively, a
force F whose line of action passes through the base point and a
couple of torque T. F is called the gravitational force, and T the
torque of the gravitational couple, exerted on B by Bf. (The bodies
B and B' must be distinct from each other; i.e., neither may contain
any matter contained in the other.)

Problem: Fig. 4.4 shows a thin, semicircular wire B lying in
a plane which passes through the end point of, and is normal to,
a thin, straight wire B'. Both wires are uniform. Their masses are

FIG. 4.4

M and M', respectively. Reduce the system of gravitational forces
exerted on B by B'', to a couple of torque T and a force F whose
line of action passes through point 0.

Solution: The mass density p of B is given by

M
9 = a-K

Hence the mass of an element of B situated at P (see Fig. 4.4) and
having a length a dd is

pads = —

and, letting this mass play the part of ra', and M' that of m, in the
results obtained in Problem 4.3.2, the gravitational force exerted
by B' on this element of B is seen to be



STATIC EQUILIBRIUM; SECTION 4.4 141

GMM' ( , b - a
Tab de

where n and m are the unit vectors shown in Fig. 4.4, and b is the
distance between P and that end of B' which is farthest from P.

The line of action of this force passes through P. Hence the
moment of the force about point 0 is given by

„ YGMM ( , b-a \ ,."| GMM' ,, , ^ ,a

Thus, when the system of all such forces is replaced with a cou-
ple of torque T and a force F whose line of action passes through 0,

T = 7̂ — (b - a) I n X ni d$(b — a) I n X ni i
Jo

and

\dd
wab

Now,
n = cos 0 112 + sin 6 n3

Hence,
T GMM' ,L W 7 7 ,
I = rj— (o — a)(/3n2 — /2n3)

and

F _ GMM' /b-a _

where

/! = [" d6 = *
Jo

h = I cos 0 d0 == 0

/3 = f* sin Odd = 2
yo

Thus,
T 2GMM'(b - a)
I = -r: 112

vbl
and

b-a 2
1 Hi — _ I
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4.4.1 There exist bodies for which the choice of base point can
always be made in such a way that T vanishes; i.e., the system of
forces exerted on such a body by any other body can be replaced
with a single force. (One example, the sphere, has already been
encountered.) These bodies are said to be centrobaric; and, while
centrobaric bodies are the exception rather than the rule, every
body B is approximately centrobaric as regards its interaction with
bodies B' whose points are separated from the mass center P* of B
by distances large in comparison with the distances from P* to
the points of B. For, under these circumstances, the system of
gravitational forces exerted on B by Bf can be replaced, approxi-
mately, with a single force whose line of action passes through P*.
This follows from 4.3.2 and 4.4.

4.4.2 When a non-centrobaric body B (mass m) whose largest
dimension is small in comparison with the radius of a sphere S
(mass mr) is located near the surface of S (see Fig. 4.4.2), the

,S(m')

FIG. 4.4.2

conditions under which B is approximately centrobaric are not
satisfied, because not all points of S are separated from the mass
center P* of B by distances large in comparison with the distances
from P* to the points of B. Nevertheless, the system of gravita-
tional forces exerted on B by S can be replaced with a single force,
provided only that the density p at a point P of S depend solely
on the distance between P and the center C of S (see Problem
4.3.1); and (see 4.3.2) this force is nearly the same as that exerted
on a particle of mass m at P* by a particle of mass m! at C.
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Problem: Regarding the earth as a sphere having a radius of
3960 miles, a mass of 4.11 X 1023 slugs, and a mass density which,
at any point P, depends only on the distance between P and the
center of the sphere, show that the magnitude of the gravitational
force F exerted by the earth on a small (in comparison with the
earth) body B located near the earth's surface is proportional to
the mass m of B. Let g be the constant of proportionality and
show that g is equal to 32.2 lb/slug when expressed in units of
the British gravitational system.

Solution: F is approximately equal to the gravitational force
exerted on a particle of mass m by a particle of mass ra', the
particles being separated by a distance of 3960 miles. Hence,

|F| = — — = gm
(4.2.3) P

where
G = 3.42 X 10~8 lb ft2 slug"2

(P4.2.5)
m! = 4.11 X 1023slug

p2 = (3960 x 5280)2 ft2

and
Gm1 3.42 X 4.11 X 1015

 <iO o ,,
g = " 7 " = (3960 X 5280)2 = ^ l b

4.4.3 The gravitational force exerted on a body B by the earth
is so large in comparison with gravitational forces exerted on B by
other bodies that the latter forces may frequently be neglected.

Problem: Taking the mass density of lead equal to 22.5
slug/ft8, evaluate (1) the magnitude of the force exerted by the
earth on a lead sphere of radius 1 ft and (2) the magnitude of the
force exerted on this sphere by another, identical one, when their
centers are three feet apart.

Solution (1): The mass m of the lead sphere is

m = ^ X 22.5 = 30* slug

Hence the force exerted on this sphere by the earth has a magnitude
°f (see Problem 4.4.2)

32.2m = 32.2 X 30x = 3040 lb
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Solution (2): The two lead spheres attract each other as if
each were concentrated at its center. Hence the force each exerts
on the other has a magnitude of

3.42 X lQ-» X (30,)' = Q>

32

The force exerted on one of the spheres by the earth is seen
to be nearly ninety million times as large as the force exerted on
that sphere by the other one.

4.4.4 A certain force, which depends, in part, on the earth's
motion, and whose line of action is the plumb line passing through
the mass center of a body B, has a magnitude called the weight
of B. This force is not equal to the gravitational force exerted on
B by the earth; but the two are so nearly equal that they are
frequently used interchangeably.

4.4.6 In view of 4.4.2-4.4.4, one frequently may regard the sys-
tem of all gravitational forces exerted on a body B (mass m) by
other bodies in the universe as approximately equivalent to a single
force directed from the mass center P* of B toward the earth, along
the plumb line passing through P*, and having a magnitude equal
to the product mg (g = 32.2 lb/slug) or to the weight of B.

4.4.6 Gravitational forces belong to a class of forces called
forces exerted at a distance. Other forces belonging to the same class
are those associated with the phenomena of magnetism and elec-
tricity.

CONTACT FORCES

4.5 Force systems associated with contact surfaces

With every contact surface a between two distinct bodies B
and B' there are associated two systems of forces whose points of
applications are points of o\ The forces in one system are called
contact forces exerted on B by B' across <r; those in the other, contact
forces exerted on B' by B across a.
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4.6.1 The word "distinct" in 4.5 rules out the possibility of
contact forces being exerted on a body by any of its parts: Two
bodies B and B' are distinct only if neither contains any matter
contained in the other, which is not the case if B' is a part of B.

4.5.2 Every contact between two bodies involves two physical
surfaces and one mathematical surface. In some situations it is
necessary to distinguish these from each other—for instance, when
one wishes to discuss contact of a rough body with a smooth body
—but generally the term "surface" is taken to mean any one of

FIG. 4.5.2

the three. Furthermore, a surface may be one of actual contact,
for instance, the surface a of contact of the block B and the table T
shown in Fig. 4.5.2, or it may be one of imagined contact, such as
the surface <r' which separates the upper and lower portions of the
•eg of the table.

4.6 Equilibrium equations

Equations governing the gravitational and contact forces ex-
i t ed on a body B by other bodies are obtained by using the
Properties of a zero system, together with the following proposi-
tion:

In the absence of magnetic and electric effects, the force system
consisting of (a) all gravitational forces exerted on a body B by other
bodies in the universe and (b) all contact forces exerted on B by other
odies is a zero system whenever B is at rest on the earth.

In this proposition, motions of the earth are left out of account.
^ s knowledge of kinematics is prerequisite to understanding a
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quantitative description of the errors thus introduced, further
consideration of this question is deferred to Vol. II.

Equations based on 3.6(a) or 3.6.1 are called force equations;
those based on 3.6.5 or 3.6.6, moment equations. The term equilib-
rium equation applies to all of them.

Problem: A steel sphere (specific weight 489 lb/ft3) is attached
to an inclined board by means of a screw, as shown in Fig. 4.6a.

FIG. 4.6a Yu,. 4.6b

Regarding the sphere and that portion of the screw which is outside
of the board as a body B in contact over a surface a (see Fig. 4.6b)
with a body Bf consisting of the remainder of the screw and a
portion of the board, describe the system of contact forces exerted
on B by Bf across a.

Solution: The system of all gravitational forces exerted on B
by other bodies in the universe is approximately equivalent to a
single force (see 4.4.5) of magnitude

489 X 32 lb

and having the line of action shown in Fig. 4.6c. (The mass center
and the weight of B are taken to be those of the steel sphere, it
being assumed that the screw's volume is so small, in comparison
with the sphere's, that errors introduced by neglecting any possible
difference in the mass densities of the screw and sphere are neg-
ligible.)
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^(Vertical)

FIG. 4.6C

The only body with which B is in contact is Bf. In accordance
with 3.5.6, the system of all contact forces exerted on B by Br

across a can be replaced with a couple of torque T and a single force
F whose line of action passes through the point P shown in Fig.
4.6c.

Use the force equation

F - 32n3 = 0
(3.0)

and the moment equation (moments about point P)

T - 32(3 sin 30°)m = 0
(3.6.5)

to determine F and T:
F = 32n3 lb, T = 48m in lb

Result: The system of forces exerted on B by Bf across a is
equivalent to the system of forces shown in Fig. 4.6d.

FIG. 4.6d

16 lb
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4.6.1 The solution of equilibrium equations does not furnish
detailed descriptions of individual contact forces exerted on one
body by another. It leads only to descriptions of force systems
equivalent to systems of such forces.

Any force system equivalent to the system of contact forces
exerted on a body B by a body B' across a surface <r is called the

FIG. 4.6.1

reaction of Bf on B across a. Note that a given reaction can be
represented in infinitely many ways, because every force system
can be replaced by infinitely many others.

Problem: Referring to Problem 4.6, show that the reaction of
B1 on B across a can be represented by the single vertical force
shown in Fig. 4.6.1.

Solution: The force F shown in Fig. 4.6.1 is equivalent to the
force system shown in Fig. 4.6d. The latter is equivalent to the
system S of contact forces exerted on B by Bf across a. Hence F is
equivalent to S (see 3.5.5) and, therefore, represents the reaction
of Bf on B across a.

4.6.2 Before writing equilibrium equations for a body B, it is
always advisable to make a sketch representing B and some system
of forces equivalent to the system of all gravitational and contact
forces exerted on B by other bodies. (The presence of couples is
indicated by arrows representing the torques of the couples.) Such
a sketch is called & free-body diagram of B.

Example: Fig. 4.6c is a free-body diagram of the body B
described in Problem 4.6. A second free-body diagram of B &
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shown in Fig. 4.6.2. Figs. 4.6d and 4.6.1 are not free-body dia-
grams, because the gravitational forces exerted on B by other
bodies are not represented in these sketches.

FIG. 4.6.2

4.6.3 A sketch representing the orthogonal projections of a
body B and of all gravitational and contact forces exerted on B
by other bodies, on a plane N% is called a plane free-body diagram
of B. (See 3.6.9(b): In a plane free-body diagram, the presence
of couples is indicated by arrows representing only the n resolutes
°f the torques of these couples, n being a unit vector normal to N).
The system of forces represented on such a sketch is a zero system
whenever B is at rest on the earth (see 4.6 and 3.6.9(a)). Hence,
although a plane free-body diagram is not a free-body diagram, it
c&n be used as a basis for writing equations which furnish informa-
tion about the forces acting on B.

Problem: Draw plane free-body diagrams of the body B de-
scribed in Problem 4.6, for planes Nh N2y Nh respectively normal
to the unit vectors m, n2, n3 shown in Fig. 4.6c. Write three force
ar*d three moment equations governing the unknown forces and
torques appearing in each diagram; and solve these equations, thus
determining the reaction of B' on B.

Solution: Figs. 4.6.3 a, b and c are plane free-body diagrams
^responding to the free-body diagram shown in Fig. 4.6.2.
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Gf^t*
FIG. 4.6.3a FIG. 4.6.3b FIG. 4.6.3C

Force equations:

Fig. 4.6.3a: F2 = 0, F, - 32 = 0

Fig. 4.6.3b: F3 - 32 = 0, Fx = 0

Fig. 4.6.3c: Fx = 0, F2 = 0

Moment equations (moments about P):

Fig. 4.6.3a: 7\ - 32(3 sin 30°) = 0

Fig. 4.6.3b: T2 = 0

Fig. 4.6.3c: r 3 = 0
Result:

Fi = 0, F2 = 0, F3 = 32 lb

T, = 48 in lb, T2 = 0, T3 = 0

4.6.4 As will be seen later, there exist situations in which some
of the quantities appearing in a free-body diagram cannot be deter-
mined, while all of the remaining ones appear in certain plane
free-body diagrams. These are the situations in which it is particu-
larly advantageous to use plane free-body diagrams.

4.7 The relationship between reactions across a given sur-
face

Taken together, the two systems of forces associated with a
contact surface a between two bodies B and B' (see 4.5) which are
at rest on the earth constitute a zero system. Consequently, if the
reaction of Bf on B is a couple of torque T and a force F whose line



STATIC EQUILIBRIUM; SECTION 4.7 151

of action passes through a point Py and the reaction of B on B'
is a couple of torque T' and a force F' whose line of action passes
through the same point P, then

and
P = - F

T ' = - T
Proof: Let S be the reaction of B' on B across a; S' the reaction

of B on Bf across a; S the system of all gravitational and contact
forces exerted on By with the exception of the contact forces ex-
erted on B by Br across a\ S' the system of all gravitational and
contact forces exerted on B\ with the exceptions of the contact
forces exerted on B' by B across a. These force systems are shown

_

B

j

TsT B'

cr

5

I

B B1

§•

J

FIG. 4.7a FIG. 4.7b FIG. 4.7C

in free-body diagrams of B, B\ and the body consisting of both B
and JB', in Figs. 4.7a, b, and c. (S and S' do not appear in Fig. 4.7c,
because neither contains forces exerted on the body consisting of
* and B'.)

It must be shown that

S + S' = 0

(This is a convenient symbolic form of the statement "the system
°f forces consisting of all forces in S and all forces in S' is a zero
system.")

As B, B\ and B + B' are each at rest on the earth, the system
°f all forces exerted on each of these bodies is a zero system. Hence,

S + S - 0

S' + S' - 0
S' + S = 0
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Add the first two of these "equations," then use the third. This
gives

S + S' = 0

Now let £ be equivalent to a couple of torque T, together with a
force F whose line of action passes through a point P, and AS'
equivalent to a couple of torque T', together with a force F' whose
line of action passes through the same point P. Then the resultant
of S + S' is equal to F + F', and the moment oi S + S' about P
is equal to T + T', so that, if S + S' is a zero system,

F + P = 0
and

T + T' = 0
Hence,

P = - F
and

V = - T

Problem: Referring to Problem 4.6, determine the reaction
of B on B' across a.

Solution: In Problem 4.6.1, it was shown that the reaction of
B' on B across a is the single vertical force F shown in Fig. 4.6.1.
Hence the reaction of B on Bf is the single force F' given by

P = - F = -32n3 lb

and having a line of action passing through the center of the sphere.

4.8 Contact forces and physical properties

By using only equilibrium equations, the system of all contact
forces exerted on a body B by other bodies can be reduced to
a known force F and a couple of known torque T whenever all
gravitational forces exerted on B by other bodies are known: F is
equal to the negative of the resultant of the gravitational forces
and has a line of action passing through an arbitrarily selected
point P; T is equal to the negative of the moment of the gravita-
tional forces about point P.
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On the other hand, equilibrium equations, alone, never furnish
sufficient information for the determination of the reactions on a
body B of individual bodies with which B is in contact: Each such
reaction involves two unknown vector quantities, so that 2n vector
equations are needed for the determination of n reactions; but
only 2 independent vector equations can be written for a given
body. Thus, additional information is required. Such information
is obtained from experiments which disclose relationships between
physical properties of bodies and forces exerted on, or by, these
bodies.

The discussion of the results of experiments inevitably involves
words associated with undefinable qualities (e.g., flexibility, rough-
ness.) The ability to understand these words has its roots in
sensory perceptions and is the product of experience. It must,
therefore, be presupposed. Furthermore, it is clearly impossible
to compile a complete list of all such results. The paragraphs which
follow may be regarded as supplying a partial one.

4.8.1 The system of all contact forces exerted on a portion B
of a thin, flexible cable by a contiguous portion B' (see Fig. 4.8.1a)
*s equivalent to a single force F whose line of action coincides with
the tangent to the cable at the point P where B and B' meet. F has
the sense OP, 0 being a point on that half of the tangent which is
associated with B. The magnitude of F is called the cable tension
at P.

Problem: Figure 4.8.1b illustrates a body B of weight W, B
being supported by three light, non-coplanar cables, attached at a

FIG. 4.8.1A
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FIG. 4.8.1b

point P. P* is B's mass center, n is a unit vector directed vertically
upward, and ni, i\2, 113 are unit vectors respectively parallel to the
cables. Show that P is vertically above P* whenever B is at rest,-
and determine the cable tensions Th T2, Tz at arbitrarily selected
points of the cables.

Solution: Let Pi, P2, Pz be points on the three cables, and
draw a free-body diagram of the body consisting of B and the
portions of the cables between Pi and P; Pi and P; and P3 and P
(see Fig. 4.8.1c).

As the cables are "light/* their weights can be neglected in
comparison with that of B. The system of all gravitational forces
exerted on the body under consideration is then approximately
equivalent to a single force in the — n direction and of magnitude
W, as shown in Fig. 4.8.1c. The system of all contact forces is

W

FIG. 4.8.1C
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equivalent to three forces whose lines of action coincide with the
cables and whose magnitudes are Th T2, T3 respectively.

To show that P is vertically above P* whenever B is at rest,
note that the system of three forces 7\ni, T2n2, T3n3 can be replaced
with a single force F whose line of action passes through P (see
3.5.10). F and — Wrx then constitute a zero system whenever B
is at rest. The lines of action of these two forces must coincide
(see Problem 3.6.5), and this is possible only if P lies vertically
above P*.

The most convenient way to find the cable tensions is to write
force equations for directions perpendicular to two of the cables.
For example, let n/ be a unit vector perpendicular to both 112 and
n3. Then the forces T2f\2 and jT3n3 contribute nothing to the sum
of the n\ resolutes of the forces shown in Fig. 4.8.1c, and

nV(rmi) + n\>(-Wn) = 0
Hence,

In terms of 112 and n3, m' is given by

, n2 X n3

X n3|
Thus,

T — W Ln; n2> "3]
•*• 1 r 1

[til, 112, n3j
Similarly,

T — W
I 2 — 'V H2, n 3 ]

and

T _ ur ["> ni> "2]
i s — yy r T

[iii, n2, n3j

(It is instructive to study the limits approached by these expres-
sions as m, n2, n3 tend toward parallelism with (a) a vertical plane
a nd (b) a horizontal plane.)

4.8.2 The lines of action of contact forces exerted across a
smooth surface a are normal to a at their points of intersection
with <r.
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FIG. 4.8.2a

Problem (a): Figure 4.8.2a illustrates two rigid bodies, B and
B', attached to each other by means of a ball-and-socket connec-
tion. Show that the system S of contact forces exerted on B by B'
can be reduced to a single force whose line of action passes through
the center C of the ball, if the surfaces of the ball and socket are
smooth.

Solution: S consists of forces whose lines of action are normal
to the (spherical) surface of the ball and thus pass through C. It
follows from 3.5.10 that S can be replaced with a force whose line
of action passes through C.

Problem (b): Figure 4.8.2b shows a uniform block A which

FIG. 4.8.2b
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weighs 9 lb and is supported by a thin, cylindrical pin B, a bracket
C, and a light, flexible cable D. Assuming that the surfaces over
which the block is in contact with the pin and bracket as smooth,
determine the cable tension T at an arbitrarily selected point of D,
and find the reaction of the block on the pin and bracket.

Solution: Draw a free-body diagram of the body consisting
of A and a portion Df of D (see Fig. 4.8.2c), based on following
considerations:

If the cable is light, and pin B is thin (so that the volume of the
cylindrical hole containing the pin is small in comparison with the

4" i
PK K

6" • "

FIG. 4.8.2C

volume of ^4), the system of all gravitational forces exerted on
A + D' is approximately equivalent to the 9 lb force shown in
F*g. 4.8.2c.

Contact forces are exerted on A + D' (a) by a portion of D
contiguous to / ) ' ; (b) by B; and (c) by C. These can be replaced
w | th (a) (see 4.8.1) a force of magnitude Tf line of action coincident
w*th the cable; (b) (see 3.5.11, keeping in mind that forces exerted
by -8 have lines of action normal to the cylindrical surface of B)
a couple, whose torque is perpendicular to the pin axis, together
w*th a force, whose line of action is perpendicular to the pin axis

intersects it; and (c) (see 3.5.14) a couple, whose torque is
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perpendicular to the pin axis, together with a force, whose line of
action is parallel to the pin axis.

Together, the forces and couples in (b) and (c) can be reduced
to a single force and couple, the force having the three components,
and the torque of the couple the two components, shown in Fig.
4.8.2c.

T and the measure numbers Fh F2, Fz, T2, Tz can now be found
by solving equilibrium equations.

Force equations:

fii. r i — $ i = U

n2'. F2 = 0

n3: F* - 9 + \T = 0

Moment equations (lines through P):

m:
n2:

n3:

These give

r2

-2(9) + 5(f T) =
-1.5(9) + 3(|T)-
5(^r) + T3 = 0

T = 61b

= 4.8 lb, F2 = 0,

= 17.1 in lb, Ti

0
— 3($T

F3 =

= - 2 4

) + 1

5.4 1b
inlb

The reaction of the block on the pin and bracket is a couple
of torque T and a force F whose line of action passes through F,
with (see 4.7)

T = —(Tim + Tm) = -17.1n2 + 24n3 in. lb
and

F = -(Fmi + F2n2 + F3n3) = -4.8m - 5.4n3 lb

4.8.3 If a contact surface <r is sufficiently small, the moment of
a system S of contact forces associated with <r, about any point P
of cr, is so small, that 5 may be replaced with a single force whose
line of action passes through P.

Problem: A uniform, solid hemisphere H of weight W rests
on a horizontal support S and is attached to a wall by means of a



STATIC EQUILIBRIUM; SECTION 4.8 159

FIG. 4.8.3a

horizontal string (see Fig. 4.8.3a). Draw a sketch showing the
reaction of S on H.

Solution: Draw a plane free-body diagram of the body con-
sisting of the hemisphere and a portion of the string (see Fig.
4.8.3b), representing the reaction of S on H with three forces whose
lines of action pass through the contact point P.

Via. 4.8.3b

Take moments about a line passing through Q and parallel to n3:

(R + R sin 30°)F, - (fft sin 30°) W = 0

Use two force equations:

n2: F2 - W = 0

n,: F3 - 0
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The reaction of S on H is shown in Fig. 4.8.3c.

4.8.4 If the points of a contact surface <r lie sufficiently near
a curve 7, the lines of action of contact forces associated with a
may be regarded as intersecting 7.

FIG. 4.8.3C

Problem: A uniform, solid half-cylinder C of weight W rests
on a horizontal support S and is attached to a wall by means of a
horizontal string (see Fig. 4.8.4a). Determine the reaction of S
on C.

Solution: In the three plane free-body diagrams of the body
consisting of the cylinder and a portion of the string, the reaction
of S on C can be represented (see 3.5.11) by a couple, whose torque

FIG. 4.8.4a
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(Ti, T2) is perpendicular to the line of contact PPf between C and
S, and a force (Fh F2, F3), whose line of action intersects this line
at point P (see Fig. 4.8.4b, c, d).

0

r

W f

1?

T

oP'

FIG. 4.8.4b FIG. 4.8.4C FIG. 4.8.4d

Referring to Fig. 4.8.4b, find Fi by taking moments about a
line passing through Q and parallel to n3, and use a force equation
to determine F2:

From Fig. 4.8.4c,
F2 = W

F3 = 0

1 2
and from Fig. 4.8.4d,

T2 = 0

Thus the reaction of S on C is a couple whose torque T is given by

T WL

and a force F whose line of action passes through P, F being given
by

F « -— m +
9ir
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As the couple can be replaced (see 3.5.7) with two forces, — Wi\2
and Wt\2, whose lines of action pass respectively through P and
through the midpoint of line PP'y the reaction of S on C can be
represented by the two forces shown in Fig. 4.8.4e.

FIG. 4.8.4e

4.8.5 When the ends A and A1 of a light, helical spring are
attached to two bodies B and B\ the systems of contact forces
exerted on the spring by B and B' are respectively equivalent to
forces F and F', described as follows: If L is the natural length of
the spring, i.e., the distance between A and A' when the spring is
not attached to other bodies (see Fig. 4.8.5a), and x is the deforma-

FIG. 4.8.5a

tion of the spring, i.e., the amount by which the distance between
A and Af exceeds L, or is smaller than L, when the spring is
attached to B and B' (see Figs. 4.8.5b and c), then

|F| = |F'| «/(*)
where/(x) is a function of x. The points of application and direc-
tions of F and F' are those shown in Figs. 4.8.5b and c.
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FIG. 4.8.5b

FIG. 4.8.5C

If there exists a range of values of x in which

f(x) = kx

where k is a constant, the spring is said to be linear in this range,
&nd k is called its spring constant or modulus.

Problem: A uniform sphere, weighing 15 lb, is free to slide on
a smooth vertical shaft and is attached to two light, helical springs,
each having a natural length of 5 inches (see Fig. 4.8.5d). The
uPper spring has a spring constant of 2 lb/inch; the lower, a spring
constant of 3 lb/inch. Determine h.

> 2(IO-h)

S/f//V////////Z////

FIG. 4.8.5d

3(IO-h)

FIG. 4.8.5e
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Solution: Fig. 4.8.5e is a free-body diagram of the sphere.
(The forces exerted on the sphere by the springs are found, in part,
by using 4.7.)

The force equation

2(10 - h) - 15 + 3(10 - A) = 0
leads to

h = 7 in.

4.9 Several-body problems

The equilibrium equations used in the solution of all problems
considered so far were, in each case, equilibrium equations for a
single body. The examples which follow, show that the determina-
tion of certain quantities requires that equilibrium equations be
written for several bodies associated with a given system.

•ii

±L

h
h

h

FIG. 4.9a

Problem (a): Figure 4.9a shows two views of a uniform beam
of weight w per unit of length, the beam being supported at one
end by a smooth pin and bracket; at the other, by a cylindrical
roller. A load P is applied at point C; i.e., a body (not shown)
exerts contact forces on the beam, across a surface in the neighbor-
hood of C, and this system of contact forces is equivalent to a
single force of magnitude P, as shown in Fig. 4.9a. Determine the
reaction of the pin and bracket on the beam.

Solution: Draw free-body diagrams (see Figs. 4.9b and c) of
(1) the beam and (2) the roller, based on the following considera-
tions :
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(1) The system of all gravitational forces exerted on the beam
is replaced with a single force of magnitude 2wL (see 4.4.5).

The reaction of the pin and bracket on the beam is a force
(Ai, A2i Az) whose line of action passes through the point A on
the pin-axis, together with a couple whose torque (a2, a3) is per-
pendicular to the pin-axis (see Problem 4.8.2(b)).

In accordance with 4.8.4 and 3.5.11, the system of contact
forces exerted on the beam by the roller is replaced with a force
(Bh B2, J53) whose line of action passes through point By together
with a couple whose torque (ft, ft) is perpendicular to the line of
contact of the beam and roller.

(2) A single force of magnitude W represents the gravitational
forces exerted on the roller.

A replacement of the system of contact forces exerted on the
roller by the beam is obtained by using 4.7.

The system of contact forces exerted on the roller by the sup-
Port on which the roller rests is replaced in accordance with 4.8.4
and 3.5.11.

None of the five quantities which are to be determined
Wi> -42, Ah a2, as) can be found by solving equilibrium equations
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written for the beam, as can be seen by examining the following
force and moment equations:

Force equations:

0 (1)

(2)

(3)

m: Ai -h t

ivf. A2 + B2 = 0

n3: Az + Bz - 2wL - P = 0

Moment equations (lines through B):

m: -2LAi - hA2 + 2wU + PL/2

n2: hAx + a2 + 02 = 0
II3: LJA 1 "T" OLz ~T~ M3 = = v)

(4)

(5)

(6)

FIG. 4.9C

Equations (2) and (4) can be solved for At and Ah once Bt is
known. Bt is found by taking moments about the line of contact
of the roller and the support on which the roller rests (see Fig. 4.9c):

Bi = 0

Thus, from Eqs. (2) and (4),

At = 0

A3 = wL + —
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A\t «2, and a3 cannot be evaluated, because it is impossible to
write further equilibrium equations for the roller without involv-
ing at least one of the unknown quantities B\f B'2) B'h j3'2y 0'3.

Note that the quantities which can be evaluated by solving
equilibrium equations for the beam and the roller are precisely
those appearing in plane free-body diagrams (for a plane normal
to ni) of these two bodies. These diagrams are shown in Figs. 4.9d

FIG. 4.9d FIG. 4.9e

and e. Hence nothing is "lost" by using these diagrams in place
of the free-body diagrams shown in Figs. 4.9b and c. On the
contrary, it is advantageous to do so (see 4.6.4).

Problem (b): Figure 4.9f represents schematically a device
known as "Hooke's joint," described as follows:

Two shafts, S and S', are mounted in fixed bearings, B and Br
y

the axes of the shafts being respectively parallel to unit vectors n
and n' and intersecting at a point A. Each shaft terminates in a
"yoke," and these yokes, Y and F', are connected to each other
by a rigid cross, one of whose arms is supported by bearings D and
E, the other by bearings Df and E'. The arms of the cross have
equal lengths, form a right angle with each other, and are respec-
tively perpendicular to n and n'.

Supposing that this system is at rest when subjected to the
action of two couples exerted on the shafts by contiguous portions
(not shown), these couples having torques Tn and TV, respec-
tively, express the ratio of T to T in terms of n, n', v, and v\ where
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FIG. 4.9f

v and v' are unit vectors parallel to the arms of the cross, as shown
in Fig. 4.9f. (Neglect all gravitational forces.)

Solution: Draw free-body diagrams (see Figs. 4.9g, h, i) of (1)
the lower shaft and yoke, (2) the upper shaft and yoke, and
(3) the cross, based on the following consideration: The lines of
action of contact forces exerted on a shaft across the surfaces of a
well constructed bearing either very nearly intersect or are very
nearly parallel to the axis of the shaft.

(1) The system of forces exerted on *S by B is replaced with a
force B whose line of action passes through the axis of S, together

FIG. 4.9g FIG. 4.9h FIG. 4.9i
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with a couple whose torque P is perpendicular to n (see 3.5.11 and
3.5.14), so that

n/3 = 0 (1)

Similarly, the system of forces exerted on Y across the bearing
surfaces at D and E is replaced with a force A whose line of action
passes through A, together with a couple whose torque ct is per-
pendicular to v:

VOL = 0 (2)

(2) With slight changes in notation, the statements made in
(1) apply equally well to the present case. Hence

n'-0' = O (3)
and

v'a! = 0 (4)

(3) In accordance with 4.7, the systems of forces exerted on the
cross by Y and Y' are equivalent to two forces, —A and —A',
whose lines of action pass through A, together with two couples,
whose torques are —a and —a', respectively.

Equilibrium equations:

Fig. 4.9g, moments about the axis of S:

T + n-0 + n-tt = 0
or, using Eq. (1),

T + n-a = 0 (5)

Pig. 4.9h, moments about the axis of S':

T + „'./!' + „'.«' = 0
or, using Eq. (3),

V + n ' a ' = 0 (6)

Fig. 4.9i, moments about point A:

- a - a' = 0 (7)
Equations (2), (4), (5), (6) and (7) must now be solved for the

ratio T/T. Use (7) to eliminate a! from (4) and (6):
*'•<* = 0 (8)

r - n ' a = 0 (9)
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Solve (5) for T, (9) for T', and divide the results:

T_ _ n a.
Tf no.

(10)

From (2) and (8) it follows that OL is perpendicular to both v
and v'. Hence a can be expressed as

a = \v x v'
where X is an appropriately selected scalar. Substitute in Eq. (10):

L - _ [n, y, *']

4.10 Traction

The analysis of certain phenomena requires that "local" prop-
erties of contact force systems be taken into account. This is done
by using an experimentally verifiable fact (see 4.8.3) as the basis
for the definition of a quantity called traction, in terms of which
one can then deal with contact over a surface of any size, by
regarding it as a limiting case of many contacts over small surfaces.

FIG. 4.10a

Notation (see Fig. 4.10a):

B
P
na

a continuous body
a point of B
a unit vector
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N a line passing through P , parallel to na

a a surface which contains P and whose normal at P
isN

A the area of a
B\y B2 two distinct parts of B, in contact over the surface

<r, numbered in such a way that a point moving
on N in the direction na leaves Bx and enters B2

when crossing a; na is called the outward normal
to Bi at P.

Definition: It is assumed that, as a shrinks to the point P
(while N remains unchanged), the system of contact forces exerted
on Bi by B2 across a tends toward equivalence with a single force F
whose line of action passes through P and whose magnitude is
proportional to A. In other words, the smaller a is, the more nearly
is the system of forces exerted on Bi by B2 across <r equivalent to a
single force F given by

F = Ara
p

where ro
p is a vector whose characteristics depend only on no.

Ta
p is called the traction at P, for the direction na

is not parallel to na.)
(In general,

Fio. 4.10b
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Problem: In Fig. 4.10b, 0 is a point of a continuous body B.
The tractions at 0, for the directions m and n2, are given by

n ° = - 12n3 lb in~2

T2° = 2m - 4n2 lb in"2

The bodies Bh B2, Bz, shown in Fig. 4.10c, are parts of B. As-
suming that c is very small, give descriptions of approximate reduc-
tions of the systems of forces exerted (1) on B\ by B2, (2) on B2 by
B\, (3) on Bi by the body consisting of B2 and B3.

FIG. 4.10C

Solution (1): The area of the surface of contact of Bi and B%
is equal to TTC2/2. 0 plays the part of the point P; the Y axis, that
of line N; n2, that of na. Hence the system of contact forces exerted
on Bi by B2 is approximately equivalent to a force F whose line
of action passes through O, F being given by

F = (Tt2/2)r2° = (m - 2n2)7T€2

F is shown in Fig. 4.10d.

FIG. 4.10d FIG. 4.10e
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Solution (2): Use 4.7: The system of contact forces exerted
by Bi on B2 is approximately equivalent to the force F' shown in
Fig. 4.10e.

Solution (3): The system of contact forces exerted on Bi by
the body consisting of B2 and B3 is composed of the two systems of
contact forces exerted on Bx by B2 and Bz. The latter is approxi-

z

A

FIG. 4.10f FIG. 4.10g

mately equivalent to the single force shown in Fig. 4.10f. Hence
Fig. 4.10g represents an approximate reduction of the force system
in question.

4.10.1 If ra
p and rb

p are the tractions at a point P, for the
directions na and n&, and

then
— n a

This is an immediate consequence of 4.7 and the definition of
traction.

Problem: Referring to Problem 4.10, determine the traction
a t 0, for the direction — m.

Solution: Let
n« = — i
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and call the desired traction ro°. Then

Tao = _ T l o = 12n3lbin-2

4.10.2 The point P appearing in the definition of traction may
be a point of an actual surface of a body B. If B is not in contact
with any other body at Py and na is a unit vector perpendicular
to the surface of B at P, then

ra
p = 0

because either B\ or B2 vanishes during the limiting process used
for the determination of ra

p. Under these circumstances, the sur-
face of B is said to be traction-free at P.

4.10.3 The system of contact forces exerted on a body B by a
body B1 across a surface a is related to the tractions at points of a
as follows (see Fig. 4.10.3a):

Divide a into elements ct, i = 1 , 2 , . . . , n. Let Ai be the area
of (7t; Pif a point of crt; n», the outward normal to B at P»; rf*f

FIG. 4.10.3a

the traction at P», for the direction n»; Ft, a force whose line of
action passes through P t and which is given by

As n tends toward infinity and the elements <rt, i = 1, . . . , n,
shrink to points, the system of forces F,, i = 1, 2, . . . , n, ap-
proaches equivalence with the system of forces exerted on B by B'
across cr.

Problem: A uniform block of weight W rests on a horizontal
support (see Fig. 4.10.3b). Assuming that the traction at all points
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of the surface of contact between the block and support, for the
direction na, is the same, say raj determine this traction.

Solution: no is the outward normal to the block at every point
of the surface of contact between the block and support. Draw a
free-body diagram of the block, replacing the system of contact
forces exerted on the block by the support, across elements ait

i a= 1,. . . , n, of the contact surface, with forces A ,-T«P<, i = 1,. . . ,
n, as shown in Fig. 4.10.3c. Let L[Q] denote the limit approached

FIG. 4.10.3b FIG. 4.10.3C

by the quantity Q as n tends to infinity and the elements <riy

i = 1, . . . , n, shrink to points. Then the following force equation
is justified:

Assuming that

£
ra

Pi = ra, i = 1, 2, . . . , n

the limit appearing in (1) may be evaluated:

t - i

raL ^ ^ i =

(1)

where A is the area of the contact surface. Substitute into Eq.
(1) and solve for ra:

W
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4.10.4 Limits of the kind encountered in Problem 4.10.3 are
similar to those considered in 2.5.1 and can frequently be expressed
as integrals; e.g.,

Correspondingly, a force such as AiTa
Pi in Fig. 4.10.3c is then

replaced with a differential force ra
p dA, dA being the area of a

differential element da of the contact surface, as shown in Fig.
4.10.4.

FIG. 4.10.4

4.10.5 From 4.10 and 4.8.2 it follows that the traction at a
point P, for the direction na, is parallel to no whenever P is a point
of a smooth surface and na is perpendicular to this surface, at P.

Problem: A taut, flexible cable is supported by a smooth cy-
lindrical surface, the cable lying in a plane normal to the genera-
tors of the surface (see Fig. 4.10.5a). Neglecting the weight of the
cable, show that (1) the cable tension does not vary from point to
point along the cable, and (2) the magnitude of the traction at a
point P, for the direction normal to the support, is directly propor-

FIG. 4.10.5a
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tional to the tension at P, inversely proportional to the radius of
curvature of the cable at P, and inversely proportional to the width
w of the surface of contact between the cable and the support.

FIG. 4.10.5b

Solution: Introduce the following (see Fig. 4.10.5b):

A a point of the cable
4> the angle between the tangents to the cable at A and P
s the length of the arc AP
Q a point of the cable, so chosen that the arc AQ has a

length s + L
ty the angle between the tangents to the cable at A and Q
6 the angle between the tangents to the cable at P and Q
na a unit vector normal to the supporting surface at P,

pointing from the cable toward the surface
T the cable tension at P
r the magnitude of the traction at P, for the direction na

p the radius of curvature of the cable at P

For later use, it is convenient to express 6 in terms of L, p
s. This is done as follows: By construction,

6 = * - <t> (1)

Regard ^ as a function of s; that is, let

Then
* = <f>(s + L)
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or, using Taylor's Theorem,

Hence,

For any plane curve,

(1)ds ^ ds22i. ' ' *

Substitute:

Regarding T as a function of s, it is to be shown that

and that

f-o
as

wp
Draw a free-body diagram of the portion of the cable between

points P and Q. The contact forces acting on this body are (a)
those exerted by contiguous portions of the cable at P and Q, and
(b) those exerted by the support.

The system of forces exerted on PQ by AP is equivalent to the
single force of magnitude T shown in Fig. 4.10.5c. As T is a func-
tion of 5, the system of forces exerted by PQ on a portion of the
cable to the right of point Q is equivalent to the force shown in
Fig. 4.10.5d. Using 4.7, the system of forces exerted on PQ by a
portion of the cable to the right of Q is thus equivalent to the force

V
Fio.

L -

4.

a

V
10.5c

T + dT
ds

FIG. 4. 10.5d FIG. 4.

9

10.5e

shown in Fig. 4.10.5e.
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The system of forces exerted on PQ by the supporting surface
can be replaced, approximately, with a single force whose line of
action passes through P and is normal to the (smooth) supporting
surface, and whose magnitude is equal to WLT, where w is the width
of the contact surface at P. The complete free-body diagram is

FIG. 4.10.5f

shown in Fig. 4.10.5f.
Assuming that w is so small that the surface of contact between

the body PQ and the support may be regarded as shrinking to a
point when L approaches zero, the force equations

— T -f- ( T -\- ~j~ £/ -j- . . . 1 cos 0 = 0 (3)

and

T + y~ L + . . .) sin 0 = 0 (4)
as /

apply when L approaches zero.
Replace sin 0 and cos 0 with, respectively,

0s 02

sin 0 = 0 - — + . . . , cos 0 = 1 - 2? + . . .

Use Eq. (2) to eliminate 0, then arrange the terms in each equation
in order of ascending powers of L:

ds 2p2

T dT L . A /A\
p as p
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Let L approach zero:
dT

as

T

—

(5)

=
(6)

0

T
Wp

4.11 Friction

Notation (See Fig. 4.11a):

J5,J3' continuous bodies
a a surface of actual contact of B and Bf

P a point of a
no the outward normal to B at P
ra

p the traction at P, for the direction na

rn the no resolute of ro
p; rn is called the normal com-

ponent of ra
p

r/ the resolute of ra
p perpendicular to na; rf is called

the friction component of ra
p

FIG. 4.11a

The following relationships between rn and T/ are valid for
bodies having dry, clean surfaces, and are called Laws of Dry
Friction:

I When B is at rest relative to B' at P,

k/| ^ Mknl
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where ju is a number which depends only on the materials of which
B and J5' are composed at P. M is called the coefficient of static
friction for B and Bf. Typical values are 0.2 for metal on metal,
0.6 for metal on wood.

/ / When B is in a state of impending, tangential motion rela-
tive to Bf at P,

k/| = Mknl

and rf is directed in such a way as to oppose relative motion.
/ / / When B is moving tangentially relative to Bf at P,

\r,\ = M'IT-I

where M' is a number called the coefficient of kinetic friction for B
and B'. The value of y!\ for a given pair of materials, is usually
slightly smaller than the value of n for the same materials. rf is
again directed so as to oppose relative motion.

Problem (a): A uniform block of weight W rests on a hori-
zontal surface and is attached to a horizontal cable, as shown in
Fig. 4.1 lb. The tension in the cable is increased gradually, reaching

FIG. 4.11b FIG. 4.11C

a value T when the block begins to slip. The coefficient of friction
for the block and surface has the value 0.2. Determine T.

Solution: In the free-body diagram, Fig. 4.11c, the forces
exerted on the block by the support are represented by the typical,
differential forces of magnitude rn dA and rs dA, the direction of
the latter force being so chosen that the force opposes impending
Motion. (The direction of impending motion is determined by con-
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siderations of symmetry; if the cable were attached at one of the
corners of the block, or did not make an angle of ninety degrees
with the edge, the direction of impending motion at a typical point
of the contact surface would not be known.)

rn, being unknown, must be presumed to vary from point to
point of the contact surface a. From / / , r/ depends on rn:

Tf = HTn (1)

Force equations:

n3: -W + J0rndA=O (2)

m: T-[TfdA=0 (3)
Jo

Substitute from Eq. (1) into Eq. (3), and solve for T:

(4)jffrndA

The integration in the right-hand member of Eq. (4) cannot be
performed explicitly, because it is not known how rn varies from
point to point over the surface of contact; but it is unnecessary to
perform this integration, because Eq. (2) furnishes the value of the
integral in question:

TndA = W
Jo

Substitute into Eq. (4):
T =

With M = 0.2,
T = 0.2W

Problem (b): A uniform cylinder of weight W rests in a hori-
zontal trough and is attached to a horizontal cable, as shown in
Fig. 4.1 Id. The tension in the cable is increased gradually, reaching
a value T when the cylinder begins to slip. The coefficient of fric-
tion for the cylinder and trough has the value 0.2. Determine T.

Solution: Draw the free-body diagram shown in Fig. 4.lie.
Note that r», being unknown, must be regarded as an unknown
function of 6 and x (see Fig. 4.lie). From / / ,

r, = »rn (1)
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T,dA

FIG. 4.1 Id FIG. 4.lie

Force equations:

n3: -TF + JffTncosedA = 0

m: T - J^r/dA = 0

Substitute from Eq. (1) into Eq. (3), and solve for T:

T =

(2)

(3)

(4)

The integration in the right-hand member of Eq. (4) cannot be
performed explicitly, because it is not known how rn varies from
point to point over the surface of contact; and in the present prob-
lem, as contrasted with Problem 4.11 (a), it is necessary to perform
this integration, because the integrals appearing in Eqs. (2) and
(4) are not identical with each other, as they were previously. It
is therefore necessary to make an assumption regarding the de-
pendence of rn on 0 and x.

Assume that rn is an even function of 0, which attains its maxi-
mum value when 6 = 0 and vanishes for 6 = ±ic/2. One of the
simplest functions fulfilling these requirements is

Tn(0, X) = p(x) COS 6

where p(x) is an unspecified function of x.
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Substitute into Eqs. (2) and (4) (after replacing dA with
RdBdx):

-W + R fLdx f'/2 p cos2 Ode = 0 (5)
JO J— w/2

T = nR JQ
L dx J*'* p cos 6 dd = 0 (6)

Integrate with respect to 6 in Eqs. (5) and (6):

W + L

T = 2»R fQ
Lpdx = 0 (8)

Solve Eq. (7) for /£ p dx, and substitute into Eq. (8):

With M = 0.2,
T = 0.254W

4.11.1 The two forces N and F defined as (see 4.11 for notation)

N = jorndAy F = j^TfdA

are called, respectively, the normal force and the friction force ex-
erted on B by Bf across <r. Their magnitudes, |N| and |F|, are not,
in general, related to each other in the same way as are those of
rn and rf; i.e., the Laws of Dry Friction do not, in general, apply
to N and F.

Problem: Determine the ratio of the magnitude of the friction
force to that of the normal force for the situations described (1) in
Problem 4.11 (a) and (2) in Problem 4.11(b).

Solution (1) (See Fig. 4.11c):

F =

• / ( —MTnih) dA = — Mih / Tn dA

/ (rnn8) dA = n3 / r» dA
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Hence,

and

lai.JEL
knl |N|

Solution (2) (See Fig. 4.1 le):

F =

N = | r B r f A

= f rn( — sin ^n2 + cos 0n3) dA

= — n2 f rn sin ^ dA + n3 J rn cos $ dA

As in Problem 4.11(b), let

Tn(B} X) = p(x) COS ^

and evaluate the integrals appearing above:

/ TndA = R fL dx fw/2 p cos 6 dS = 2R fLpdx
J9 JO J-w/2 r JO

I rn sin 6 dA = R f dx f* 2 v cos 6 sin 6 dd = 0

/

fL fir/2 D _ /-L

rn cos6dA ^ R dx p cos2 Odd = ^ pdx
J0 J-w/2 * JO

Substitute.

Hence,

and

F

N

JE
|N|

= -2?Rn

= T"S /

= 4M

- J E L

1 f pdx

pdx
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4.11.2 When the surface of contact between two bodies is so
small that the lines of action of the forces exerted by one body on
the other may be regarded as passing through a single point (see
4.8.3), the Laws of Dry Friction do apply to the associated normal
force (N) and friction force (F). For, as the surface a shrinks to a
point, the integrals Ja rn dA and /«, rf dA approach, respectively,
rn ja dA and rf fa dA; that is,

where A is the (very small) area of the contact surface a. Hence

and rn and 17 may be replaced with, respectively, N and F through-
out / , / / a n d / / / i n 4.11.

Problem (a): Referring to Problem 4.8.3, determine the min-
imum value of the coefficient of friction, /A, for the hemisphere and
support.

Solution: The normal force N at the point of contact P is
given by

N = F2n2 = W n2

while the friction force F is

F _ _ JP mm I 77T __ fiJT /Q\mm.

= r \t\\ ~\~ t $f\3 = \W / o)f\\

As the hemisphere is at rest relative to the support,

|F| ^ MIN|

or

IF] _ W/S _ 1
M ^ |N| W 8

Thus, I is the minimum value of n.

Problem (b): In Problem 4.10.5, it was shown that the tension
in a light, taut, flexible cable supported by a smooth cylindrical
surface does not vary from point to point along the cable. If the
supporting surface is not smooth, the tension does vary. Referring
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FIG. 4.11.2a

to Fig. 4.11.2a, show that, when the cable is on the verge of slipping
from A toward P, the cable tensions, T and TA) at P and A are
related to each other as follows:

T = TAe»+

where M is the coefficient of friction for the cable and support.

Solution: The free-body diagram shown in Fig. 4.10.5f must
be modified by the addition of a force of magnitude IJLWTL, directed
as shown in Fig. 4.11.2b. Accordingly, Eq. (3) of Problem 4.10.5
is replaced with

/ AW \

cos 6 = 0

while Eq. (4) remains

WLT — |

unaltered:

/

^ W rWl

+ .

V

. . jsinfl = 0

FIG. 4.11.2b



188 STATIC EQUILIBRIUM; SECTION 4.11

Proceeding as in Problem 4.10.5, reduce these equations to

and

— HWT + -T- = 0
as

Wp

Eliminate r, and replace 1/p with d<t>/ds:

m d<f> , dT

or
d

This equation shows that, when T ^ O ,

-M<*> + log T = C

where C is a constant.
Evaluate C by noting that T = TA when <t> = 0; that is,

0 + log TA = C
Then

and
T = TAe»+

Problem (c): A thirty-four pound weight is supported by a
cable which is wound on a fixed horizontal drum and is attached
to a wall, as shown in Fig. 4.11.2c. The coefficient of friction for

34 Ib

FIG. 4.11.2C
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the drum and cable has the value 0.2. Determine the reaction of
the cable on the wall.

Solution: Draw plane free-body diagrams of (1) the portion
of the cable between points C and B, (2) the portion of the cable

Fio. 4.11.2d FIG. 4.11.2e

t~34 lb

FIG. 4.11.2f

in contact with the drum, (3) the body consisting of the weight
and the portion of the cable below point A (see Figs. 4.112d, e, f).

Force equations:

Fig. 4.11.2d: Tc~TB = 0; Tc = TB (1)

Fig. 4.11.2f: TA - 34 = 0; TA = 34 (2)

If the weight is on the point of moving upward,

TB = TA&* (3)

If it is on the point of moving downward,

TA = TBe>* (4)

With <t> = 4.5TT, M = 0.2, TA = 34 lb, Eq. (3) gives

TB = 34e2 M = 34 X 17 = 578 lb (5)

while Eq. (4), solved for TB, leads to

TB = 34e-2 M = ff = 2 lb (6)

Hence, for impending motion upward,

Tc = 578 1b
(1.5)
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while, for impending motion downward,

Tc = 2 1b
(1,6)

The force exerted on the wall by the cable therefore has a minimum
magnitude of 2 lb and a maximum magnitude of 578 lb. The actual
value cannot be determined solely on the basis of information con-
tained in the statement of the problem.
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PROBLEM SET 1
(See Sections 1.1-1.7 of the text)

(a) A force F has a magnitude of 20 pounds. Two scalars, Si
and s2, have the values Si = — i, s2 = 3 ft. Using scales of 1 in. =
10 lb and 1 in. = 20 ft lb, draw F and the vectors SiF, s2F; Si(s2F),
S2O1F), (siS2)F; (-Si)F, Si(-F), - (s iF); F/si.

(b) Letting n be a unit vector having the same direction as the
force F in Problem l(a),* each of the vectors drawn in Problem l(a)
can be expressed in the form sn. Determine s for each case.

Results: 201b, -101b, 60 ft lb; - 3 0 f t l b , - 3 0 f t l b , - 3 0 f t l b ;
10 lb, 10 lb, 10 lb; - 4 0 lb.

5 lb F

FIG. lc

(c) In Fig. l(c),f ni, n2 and n3 are unit vectors parallel to the
edges of a parallelepiped. F, G and H represent forces; p, q and
ri velocities. Express each force and velocity as the product of a
scalar and one of the unit vectors.

* In the sixteen Problem Sets particular problems are referred to as follows:
arabic numeral indicates the number of the Problem Set, and the letter

enclosed in parentheses indicates the paragraph in which the problem is pre-
sented.

t In the Problem Sets each figure has the same number as the problem to
wnich it pertains.

193
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Results: 5n2 lb, -6n2 lb, 7n2 lb; -2nx ft sec"1, 3ih ft sec"1,
—4n3 ft sec"1.

(d) A force F' is given by

P = -15nlb

where n is a unit vector having the same direction as the force F
in Problem l(a). Express F' as the quotient of F and a scalar.

Result: P = F/(—J).

(e) Referring to Fig. l(c), determine the scalar s for which

n3 = sr
Result: — \ ft"1 sec.

(f) A force F has a magnitude of 10 lb and the direction of the
vector p shown in Fig. l(c). Express F as the product of a scalar
and the vector q.

Result: F = —y>q lb.

(g) A vector v is given by
G

v=-jpf
where G and p are two of the vectors shown in Fig. l(c). Deter-
mine the magnitude of v.

Result: 3 lb sec ft"1.

PROBLEM SET 2
(See Sections 1.8-1.9 of the text)

All problems in this set deal with three forces, Fi, F2 and F3,
defined as follows:

Fx = lOni lb, F2 = - 15n2 lb, F3 = 20n3 lb

where ni, n2 and n3 are the unit vectors shown in Fig. 2(a).

Flo.2a ^r-i^^l—60

90°VJ
^n 2
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(a) Determine |Fi + F2| analytically, then check the result
graphically and compare it with |Fi| + |F2|. Is the magnitude of
the sum of two vectors ever equal to the sum of the magnitudes
of the vectors? Draw a sketch illustrating a situation in which the
magnitude of the sum of two vectors is equal to the diflference of
their magnitudes.

(b) Determine |Fi — F2| analytically, check graphically, and
compare with |Fi| — |F2|.

(c) Find two scalars, $i and s2, for which SiFi + s2F2 = 0. Is
the solution of this problem unique?

(d) Find two scalars, Xi and x2} for which #iFi + x2F2 = F3.

Result: -

(e) Determine the magnitude of the resultant of Fi, F2 and
-F./2.

Result: 17.8 lb.

(f) Determine whether or not |5Fi — 5F2| is equal to 5|Fi — F2|,

then either prove that | 2 j . svt| is equal to s 2^. v,|, or give a

counter-example.

(g) n is a unit vector having the same direction as Fi + F2 and
satisfying the equation

n + Ani + Bn2 = 0

Evaluate A and B.

Result: -2 /Vl9, 3/Vl9.

PROBLEM SET 3
(See Section 1.10 of the text)

(a) The force F shown in Fig. 3(a) is to be resolved into four
coplanar components, F,, F2, F3, F4, three of which are shown,
determine the magnitude of F4.

Result: 4.03 lb.
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FIG. 3a

(b) A vector is resolved into two components, each of which has
a magnitude n times as large as that of the vector. Assuming that
n is large in comparison with unity, determine the (smallest) angle
between the lines of action of the components.

Result: l/n rad.

(c) Determine the values of x, y and z for which the two vectors

(2x - Sy)nx — zn2 + (x - *)n3

and
(z - l)ni + (2y - x)n2 - zn3

are equal to each other, ni, n2 and n3 being unit vectors not parallel
to the same plane.

Result: 0, 1, - 2 .
Would this result be altered if ni, n2 and n3 were parallel to the

same plane?

(d) Letting ni, n2 and n3 be the unit vectors shown in Fig. 2(a),
determine the values of x and y for which the two vectors

xih — 2n2 + 3n3

and
7m + 2n2 + (3 + 2y)n3

are equal to each other.

Result: 5, Vjj.
Could these two vectors be equal to each other if ni, n% and n$

were not parallel to the same plane?
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(e) Two forces, Fj and F2, expressed in terms of unit vectors
ni, n2, n3 which are not parallel to the same plane, are given by

Fi = 9ni — 3n2 + n3 lb

F2 = 5n2 — 4n3 lb

A third force, F, is defined as

F = 4(Fx - 2F2)

Determine the ni, n2, n3 measure numbers of F.

Result: 36 lb, - 5 2 lb, 36 lb.

(f) Determine the magnitude of the force F of Problem 3(e),
taking niy n2 and n3 to be the unit vectors shown in Fig. 3(f).

9 0 c

FIG. 3f

Result: 81.2 lb.

(g) Determine the magnitude of the force F of Problem 3(e),
letting ni, n2 and ns be mutually perpendicular.

Result: 72.8 lb.

PROBLEM SET 4
(See Sections 1.11-1.12 of the text)

(a) Determine the magnitude of the resultant of the two forces
M and F2 shown in Fig. 4(a).

Result: 31 lb.
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FIG. 4a

(b) Determine the nh n2, n3 measure numbers of the unit vector
n shown in Fig. 4(b), assuming that in, n2, n3 are mutually perpen-
dicular unit vectors.

FIG. 4b

Result: -0.860,0.171, -0.470.

(c) Two forces, F\ and F'2, each of magnitude F, are to be
added to the forces Fi and F2 shown in Fig. 4(a). If the line of
action of F'i passes through points B and G, and the resultant of
Fi, F2, F'i, F'2 is equal to zero, what is the value of F?

Answer: 40.3 lb.

(d) For the vectors ni, n2 and n3 shown in Fig. 2(a), determine
a2, a3; ft, fix] 7i» 72, such that

fii = a2n2

n 2 = /33n3

a3n3

7ini
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Compare a2
2 + az

2, ft2 + £i2, and 712 + Y2
2 with, respectively, |ni|,

|n2|, |n3|, and state, in general terms, a conclusion based on these
comparisons.

Results: - 2 , - V S ; -Vsj/2, - £ ; - I / V 3 , - 2 / V 3 .

(e) The vectors nh n2, ih' and n2' shown in Fig. 4(e) are unit
vectors parallel to the plane of the paper. Express ni and n2 in
terms of 0, n\ and n2'; n/ and n2' in terms of 0, in and n2.

FIG. 4e

Results:

m = — sin^n/ + cos^n2', n2 = — cos^n/ — sin 0n2'

n/ = — sin^tii — cos0n2, n2' = cos^ni — sin0n2*

(f) Four rectangular parallelepipeds, !?», i = 1, 2, 3, 4, are
arranged as shown in Fig. 4(f). The unit vectors n,y, j = 1, 2, 3,
are respectively parallel to the edges of Rim The configuration
shown is one in which the angles <t>y 0, \f/ (called "Eulerian" angles)
are regarded as positive.

The vectors ni», i = 1, 2, 3, can each be expressed in the form

2^
i-l

— ^ the nine quantities An (t, j = 1, 2, 3) are functions of the
Eulerian angles. Determine these functions.

Suggestion: Noting that nn = n23, n2i = n3i, and n3s = n43, pro-
ved as in Problem 4(e), to express nn, tin and ms in terms of fin, n»
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FIG. 4f

and n23; next, 1121, nM, n23 in terms of n3i, n32, n33; finally, n3i, n32, n33

in terms of n4i, n42, n43. Then substitute.
Result:

i

1

2

3

COS 0 COS \p

—sin 4 cos ^

sin $ sin \p

j - 1

— cos 0 sin ^ sin ^

— cos 0 cos 0 sin ^

i

cos 0 sin ^

— sin ^ s i n ^

—sin 5 cos ^

- 2

-f cos 0 sin 4 cos yp

+ cos 0 cos <fi cos ^

i - 3

sin $ sin ^

sin 0 cos 4>

cos 0

(g) A force F is given by

F = 2nu - 3ni2 + 4ni3 lb

where nu, i = 1, 2, 3, are three of the unit vectors shown in Fig.
4(f). Resolving F into three components respectively parallel to
n4i, n42, n43, determine the n<2 measure number of F, for <t> = —30°,
B « 60°, ^ = 180°.

Result: (2 + l l V 3 ) / 4 1b.

(h) The L\ resolute of the force F shown in Fig. 4(h) has a mag-
nitude of 5 lb. When F is resolved into two components, one
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FIG. 4h

parallel to Lh the other parallel to L2, what is the magnitude of
the component parallel to Li?

Answer: 10 lb.

(i) A force F is parallel to line Li of Fig. 4(h) and has a magni-
tude of 20 lb. Determine the magnitude of the Lx resolute of the
resolute of F perpendicular to L%.

Result: 5 lb.

PROBLEM SET 5
(See Sections 1.13-1.14 of the text)

(a) For the vectors a and b shown in Fig. 5(a), determine the
angles (a, b), ( - a , b), ( -a , - b ) , (a, - b ) .

Results: 50°, 130°, 50°, 130°.

130°

FIG. 5a

and

(b) Show that, for any two vectors a and b,

sin ( -a , b) = sin (a, b)

cos ( - a , b) » -cos (a, b)
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(c) Referring to Problem Set 2, evaluate F2ni and F2n2.
Results: 7.5 lb, - 1 5 lb.

(d) Letting s2 = 2 ft lb"1 and «3 = —3, and referring to Fig.
3(a), evaluate

($2F2) • (S3F3)

Result: 144^3 ft lb.

(e) Referring to Fig. 3(a), determine the angle between F3 and
Fi + F2, evaluate cos [F3, (Fi + F2)], then use the definition of the
dot product to find F3-(Fi + F2). Check the result by evaluating
F3F1 and F3F2 and adding these. Is one of these two ways of
evaluating F3(Fi + F2) "better" than the other?

(f) Referring to Problem 3(e), evaluate Fx • F2, first taking ni, n2,
n3 to be the unit vectors shown in Fig. 3(f), then letting ni, n2, n3

be mutually perpendicular unit vectors.
Results: - 3 7 1b2, - 1 9 1b2.

(g) Referring to Problem 4(f), show that

nii-fUy = Aij

and use this fact to show that when the vectors n^, j = 1, 2, 3, are
expressed as

the quantities Bjk are given by

Bjk =

(h) Referring to Fig. 4(a), let p be a vector joining B to G and
having the sense BG. Without first finding the angle between p
and Fi, evaluate p-Fi.

Result: - 5 0 in. lb.
(i) A force Fi has a magnitude of 10 lb; a force F2, a magnitude

of 8 lb. Evaluate
( F i + F , ) - ( F i - Fi)

Result: 36 lb2.

(j) Repeat Problem 3(f), by evaluating (F2)*.

(k) Referring to Problem 4(f), show that
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(1) Referring to Problem 4(f), determine the angle between nn

and n42, for <f> = 60°, 6 = 30°, ^ = 60°.
Result: 123°.

(m) Referring to Problem 5(h), determine the angle between
p and Fi.

Result: 112.6°.

(n) A unit vector n, expressed in terms of mutually perpendicu-
lar unit vectors nh n2, ri3, is given by

n = Xni "h Mn2 + vftz

Determine the "direction cosines" of n, i.e., the cosines of the
angles between n and ni, n2, n3.

(o) n and n' are unit vectors making angles a, fiy y and a', fi', y'
with mutually perpendicular unit vectors ni, n2, n3. Show that

cos (n, n;) = cos a cos a' + cos fi cos fi' + cos 7 cos 7'

(p) A force F is parallel to the force Fi shown in Fig. 4(a). The
CF resolute of F has a magnitude of 70 lb and the sense CF.
Determine the magnitude and sense of F.

Results: 650 lb, BH.

(q) The edges PPh PP2y PP3 of the tetrahedron shown in Fig.
5(q) are respectively parallel to the mutually perpendicular unit

FIG. 5q
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vectors ni, n2, n3. n is a unit vector, perpendicular to the face
Pi9 Piy Pz of the tetrahedron. Letting A be the area of this face,
Ai the area of the face which is perpendicular to m, etc., show that

A •
-£ = nt n, = 1, 2, 3

PROBLEM SET 6
(See Sections 1.15-1.17 of the text)

(a) The vectors a, b, c, and d, shown in Fig. 6(a), have mag-
nitudes of 4, 5, 3, and 5 feet, respectively. Draw sketches showing
the 9 vectors

a X b, b X a, ( -a) X b, - ( a X b), (2a) X (3b),

6(a X b), a X (b + c), a X c + a X b, c X d

FIG. 6a

and determine the minimum number of vectors which must be
drawn for this purpose.

Result: 5.

(b) The angle between the two forces described in Problem
5(i) is 30 degrees. Determine the magnitude of

(Fi + F2) x (Fi - F,)
Result: 80 lb2.
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(c) Letting F' be the BG resolute of the force Fi shown in Fig.
4(a), explain why it is difficult to evaluate Fi X F' "directly,"
i.e., without first resolving Fi and F' into mutually perpendicular
components. Then find Fi X F' and determine the magnitude
and sense of the BC resolute of this vector.

Result: 192 lb2, BC.

(d) Two unit vectors, m and n2, are respectively parallel to
two lines, L\ and L2. Letting n be a unit vector perpendicular to
both L\ and L2, show that

til X 112
n = X n2l

(e) Referring to Fig. 4(a), determine the (smallest) angle be-
tween line AB and a line which is perpendicular to both HB and
ED.

Result: 68.2°.

(f) m, n2 and n3 are mutually perpendicular unit vectors.
Letting

a = 2ni — 3n2, b = in — 2n3, c = — m + 3n2 — 2n3

show that a X b = a X c. Does this prove that b and c are
equal to each other?

(g) Evaluate [m, n2, ns] for (1) the unit vectors shown in Fig.
3(f), (2) a right-handed system of mutually perpendicular unit
vectors, (3) a left-handed system of mutually perpendicular unit
vectors.

Results: V5/2, 1, - 1 .

(h) Referring to Problem 3(e), use the simplest possible method
to evaluate [Fi, F2, F] and [Fi, 3F,, 5F2]. Check the results by
evaluating the appropriate determinants, assuming that the unit
vectors m, n2, m are mutually perpendicular.

(i) A vector v is related to two vectors a and b as follows:

v = a X [b X (a X b)]

Express the vector b X [a X (b X a)] entirely in terms of v.
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(j) A vector a and the crossproduct of a with a vector b are
given by

a == ni + 112, a X b = — 2ri3

where m, 112, n3 are mutually perpendicular unit vectors. Express
the vector

. a b

in terms of in, m, n3.
Result: ±(m — 112).

(k) Letting a and b be any two vectors, determine the cross-
product of the resolutes of a and b perpendicular to a unit vector n.

Result: [n, a, b]n.

PROBLEM SET 7
(See Sections 2.1-2.4 of the text)

(a) P, Q and R are the vertexes of a triangle; p, q and r the
position vectors of these points relative to a point 0 (not neces-
sarily lying in the plane of the triangle). Express the position
vectors of P relative to Q, Q relative to /?, and R relative to P in
terms of p, q, r.

Result: p — q, q — r, r — p.

(b) Letting a and b be the position vectors of two vertexes of
a triangle, relative to the third vertex, show that the area of the
triangle is equal to £|a X b|, and use this fact to determine the
area of a triangle whose vertexes have the rectangular cartesian
coordinates ( - 2 , 3 , - 1 ) , (0 ,0 , -1 ) , (4,0,1), the coordinates
being measured in feet.

Result: 7 ft2.

(c) Two wires are attached to vertical posts, as shown in Fig.
7(c). Assuming that the wires are straight, determine the value
of h for which the shortest distance between the wires is one foot.

Suggestion: Show first that the shortest distance between any
two lines is equal to |pn| , where p is the position vector of any
point on one of the lines relative to any point on the other line,
and n is a unit vector perpendicular to both lines.

Result: 5.8 ft.
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FIG. 7C

(d) In Fig. 7(d), n and n' are unit vectors respectively parallel
to two lines L and Z/, p is the position vector of a point Af on V
relative to a point A on L, and v is a unit vector parallel to line
BB'y the shortest line joining L and L'. Express the distance
between A and B in terms of p, n, n', and v.

Suggestion: Write an equation which expresses the fact that

the vector AB + BBf is equal ta the vector A A' + A'B', then
dot-multiply both sides with n ' X ^ .

Result: [p, n', r]/[n, n', r].

FIG. 7d
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(e) If the points F, B and H in Fig. 4(a) have strengths of 2,
4, and —7 pounds, what is the distance from their centroid to
point C?

Answer: 88.2 in.

FIG. 7f

(f) The points Pi, P2, P3, and P4, shown in Fig. 7(f), have
strengths of 1, 2, 3, and 4 units. Noting that the X axis is not per-
pendicular to the Y axis, determine the coordinates z*, y* and z*
of the centroid of this set of points.

Result: x* = 0.4 ft, y* = -0.266 ft, z* « 0.866 ft.
(g) The points Pi, . . . , P8, shown in Fig. 7(g), have the fol-

P-
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lowing strengths: 1, —2, 3, —4, 1, —2, 3, —4. Determine the
first moment of this set of points with respect to point Pby by (1)
adding the first moments of the points of the set and (2) using
symmetry considerations to locate the centroid and regarding the
centroid as a "representative" point. Is one of these two methods
"better" than the other?

PROBLEM SET 8
(See Section 2.5 of the text)

(a) Determine the distance between the centroid and one end
of a straight line, by carrying out the limiting process described
in the text. Check the result, by integration.

FIG. 8b

(b) Determine, by integration, the coordinates of the centroid
of the figure shown (in two views) in Fig. 8(b), regarding the figure
as (i) a surface possessing no plane portions, and (ii) a solid.

Results:

(i) fin.
Hin.

-J in.
-J in.

0
0

(c) Determine, without integration, the coordinates of the
centroid of the figure shown in Fig. 8(c), regarding the figure as



210 PROBLEM SET 8

Iz

FIG. 8C

(i) the curve A BCD A, and (ii) a surface consisting of a triangle
and a quarter of a circle.

Results:

y*

(i)
(ii)

0.970 in.
0.517 in.

1.37 in.
1.56 in.

1.20 in.
1.04 in.

(d) Determine, without integration, the X-coordinate of the
centroid of the figure shown (in two views) in Fig. 8(d), regarding
the figure as (i) a surface possessing no plane portions, and (ii) a
solid.

Results:
I R + 2r I R2 + 2rR + 3r2

3 R + r ' 4 #2 + rR + r2

FIG. 8d
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FIG. 8e

(e) Locate, without integration, the centroid of the figure
shown in Fig. 8(e), regarding the figure as (i) a surface consisting
of two rectangles and the surface ABCDy and (ii) a solid.

Results:

(i) 2.24 in.
2.39 in.

0.927 in.
0.988 in.

-2.5 in.
-2.5 in.

(f) A plane curve C of length L is revolved about a line lying
in the plane of C and not intersecting C. Show that the area of the
surface of revolution thus generated is equal to the product of L
and the circumference of the circle described by the centroid of C,
and use this theorem, together with the fact that the surface area
of a sphere of radius R is equal to 4ir/22, to locate the centroid of
a semicircular curve.

(g) A plane region R of area A is revolved about a line lying
in the plane of R and not intersecting R. Show that the volume of
the solid of revolution thus generated is equal to the product of A
and the circumference of the circle described by the centroid of ft,
and use this theorem, together with the fact that the volume of a
sphere of radius R is equal to 4*fts/3, to locate the centroid of a
semicircular sector.

(The two theorems stated in Problem 8(f) and Problem 8(g)
are sometimes called "Theorems of Pappus" or "Guldin's Rules.")
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PROBLEM SET 9
(See Sections 2.6-2.7 of the text)

(a) The point at which the centroid of a set of points is located
when all of the points of the set are assigned equal strengths is
called the "center of mean position" of the set. Referring to Fig.
4(a), determine the distance between the center of mean position
of the points F, B, H and the mass center of three particles of
masses 10 gm, 2 gm, 3 gm placed at these points.

Result: 1.82 ft.

(b) Particle weighing 0.001, 0.002, 0.003, and 0.004 pounds
are placed at the points Ph Pi, P3, and F4 shown in Fig. 7(f).
Determine the coordinates of the mass center of this set of parti-
cles, and compare the results with those of Problem 7(f).

(c) The mass per unit of length at a point P of a straight wire
is a linear function of the distance from P to the end of the wire.
The distance from one end of the wire to the mass center is equal

FIG. 9d



PROBLEM SET 9 213

to ^ of the length of the wire. Determine the ratio of the mass
densities at the two ends of the wire.

Result: 3:1.

(d) A thin metal strip of non-uniform thickness is bent into
the form of a quarter circle, as shown in Fig. 9(d). Determine the
X-eoordinate of the mass center approximately, (1) assuming
that the thickness varies sinusoidally, and (2) regarding the thick-
ness as uniform.

Results: 2#/3, 2R/w.

(e) A wire, ABC, is attached to a triangular piece of sheet
metal, A CD, as shown in Fig. 9(e). The total weight of the wire
is one tenth that of the sheet metal. Determine the coordinates
of the mass center of this assembly.

Results: 1.21 in., 1.31 in., 0.212 in.

FIG. 9e

(f) A steel (489 lb ft~8) wedge has a core in the form of a
right-circular cylinder, as shown in Fig. 9(f). Determine the dis-
tance between the mass centers of this body when the core is made
of brass (527 lb ft~8), on the one hand, and aluminum (169 lb ft"8),
on the other.

Result: 0.052 in.
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FIG. 9f

(g) Figure 9(g) represents a thin-walled, open, cylindrical ves-
sel, filled to a height h with a fluid having a uniform weight
density of 60 lb ft~a. The walls and base of the vessel are made of
a uniform material weighing 5 lb per square foot. Determine the
value of h for which the mass center of the entire system (vessel
plus fluid) is at the lowest possible point.

Result: 6 in.

2'

FIG. 9g
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PROBLEM SET 10
(See Sections 3.1-3.2 of the text)

Problems 10 (a)-(g) deal with moments of the two forces F
and G shown in Fig. 10(a). The lines Lh L2 and L3 are mutually
perpendicular, and the unit vectors m, 112 and n3 are parallel to
lines Li, L2 and L3, respectively.

40

FIG. 10a

(a) Determine the moments of F and G about point A and
line L3, by using the definitions of the moment of a vector about a
point and about a line.

Results:

-270m - 300n3in. lb

162(n2 + m) in. lb

-3OOn3in. lb

i62n, in. lb
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(b) Use the results of Problem 10(a) to determine the magni-
tudes of the moments of F and G about line L3.

Results: 300 in. lb, 162 in. lb.

(c) Determine the magnitude of the moment of F about L3,
by evaluating the product of |F| and the distance s between L*
and the line of action of F. Compare this method for finding
|MF/La| with that used in Problem 10(6), and explain why this
method is not suitable for the evaluation of |MG/L||.

(d) Determine the moments of F about line L2 and of G about
line Li, by inspection.

(e) Find MF/A, by regarding it as the sum of the moments of
F about Li, L2 and L3 and evaluating these moments by inspection.
Compare this method for finding MF/A with that used in Problem
10(a), and explain why it is not a useful method for the evaluation
of

(f) Resolving G into 3 mutually perpendicular components
whose lines of action intersect at point B, use these components
to evaluate the moments of G about point A and line L3, and
compare this method with that used in Problem 10(a).

(g) Show that there exists no force whose line of action passes
through point B and whose moment about point A is equal to the
sum of the moments of F and G about A.

(h) Letting m, n2, n3 be a left-handed set of unit vectors re-
spectively parallel to the axes of a rectangular cartesian coordinate
system, determine the m, n2, n3 measure numbers of the moment
of a force F about the origin, the m, n2, n3 measure numbers of F
being Fh F2, F3, and F being applied at the point whose coordi-
nates are xh x2, xz.

Result: xzF2 - x2Fh xxFz - xzFu x2Fx - xxF2

(i) A force has a magnitude of 21.3 lb. The moment of the
force about a point P has a magnitude of 270 in. lb. Determine
the shortest distance from P to the line of action of the force.

Result: 12.7 in.
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PROBLEM SET 11
(See Sections 3.3-3.4 of the text)

Problems ll(a)-(h) deal with moments of the force system S
consisting of the two forces F and G shown in Fig. 10(a).

(a) Using the definitions of the moment of a system of vectors
about a point and about a line, determine the moments of S about
point A and line L3.

Results: -270m + 162n2 - 138n3 in. lb; -138n3 in. lb.

(b) Determine the resultant of Sy and use it, together with
Ms/A as found in Problem 11 (a), to evaluate the moment of S
about point B. Check the result, by evaluating the sum of MF/B

and

(c) If LA and LB are lines passing through A and B, respec-
tively, and the moments of S about LA and LB are equal to each
other, are LA and LB necessarily parallel to (1) the resultant of S
and (2) each other?

Answers: (1) No, (2) Yes.

(d) Determine the magnitude of the minimum moment of S.
Result: 226 in. lb.

(e) Determine the distance from B to the central axis of S.
Result: 3.77 in.

(f) Explain why S is not a couple, and, letting H be a force
such that the system of three forces F, G, H is a couple and the
line of action of H passes through point B, determine the magni-
tude of the torque T of this couple, and find the angle between
T and H.

Results: 270 in. lb, 33°.

(g) The line of action of one of the forces of a simple couple
coincides with line L3 in Fig. 10(a); that of the other passes through
point B. The torque of the couple has a magnitude of 50 in. lb
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and the same direction as ri2. Determine the magnitude and
direction of the force whose line of action passes through B.

Results: 5 lb, — n3

(h) A force system S' consists of S and a couple whose moments
about lines Lx and L3 are equal to zero. The moment of S' about
line AC is equal to zero. Determine the moment of S' about line
U

Result: - 138n2 in. lb.

FIG. Hi

(i) A force system S consists of two couples whose torques
are shown in Fig. ll(i). Determine the magnitudes of the mo-
ments of S about lines L and V.

Result: 36 ft lb, 4 ft lb.

PROBLEM SET 12
(See Section 3.5 of the text)

(a) Replacing the system of two forces shown in Fig. 10(a)
with (1) a couple of torque T and a force whose line of action
passes through point A, and (2) a couple of torque T' and a force
whose line of action passes through point B, determine the angle
between T and T'.

Result: 39.2°.
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(b) The line of action of every force of a system S of forces
applied to the surface ABCD of the body shown in Fig. 8(e) is
normal to that surface. The sum of the resolutes of the forces of
S parallel to the X-axis has a magnitude of 80 lb and is directed
to the left; the sum of the resolutes parallel to the y-axis has a
magnitude of 60 lb and is directed upward. The resolutes of the
moment of S about the origin, parallel to the X- and F-axes, have
magnitudes of 60 and 80 in lb and are directed to the right and
downward, respectively. If S is replaced with a single force F
whose line of action passes through D, and a couple of torque T,
what are the magnitudes of F and T?

Answers: 100 lb, 260 in. lb.

(c) Replacing the system of two forces shown in Fig. 10(a),
with a single force and a couple, the line of action of the force
being chosen in such a way as to make the torque of the couple
as small as possible, determine (1) the (shortest) distance from
point A to the line of action of the force, and (2) the magnitude
of the torque of the couple.

Results: 6.57 in., 226 in. lb.

(d) The system S of forces exerted on a vertical mast by guy
wires PA, PB and PC (see Fig. 12(d)) is equivalent to a force
whose line of action passes through P. This force has a magnitude
Q and is directed vertically downward. S is also equivalent to a



220 PROBLEM SET 12

system of three forces whose lines of action pass through P and
are parallel to PA, PB and PC. These forces have magnitudes
of R> S and 1000 pounds, respectively. Determine Q, R and S.

Results: 4,950 lb; 1,700 lb; 3,070 lb.

(e) Let F' and G' be a system S' of two forces, the line of
action of F' being the line L\ shown in Fig. 10(a). If S' is equiv-
alent to the system of two forces F and G, what are the magnitudes
of F' and G', and what is the distance from B to the line of action
ofG'?

Suggestion: Verify that when a system S of vectors can be
replaced with two vectors, v and v', of which the line of action,
L, of one, say v, is chosen arbitrarily, then

v = —rj n, v = K — v

and
v ; x M

P

where R is the resultant of S, M is the moment of S about any
point 0 on L, n is a unit vector parallel to L, and p is the position
vector of a point on the line of action of v', relative to 0.

(If M is perpendicular to n, but not to R, AS cannot be replaced
with two vectors, one of which has L for its line of action.)

Results: 32.8 lb, 21.3 lb, 12.7 in.

(f) The system S of forces exerted on a pulley by two belts is
equivalent to the four coplanar forces shown in Fig. 12(f).

(1) With

Pi = 100 lb, P2 = 90 lb, Qi - 80 lb, Q2 - 70 lb

determine the shortest distance from A to the line of action of a
single force which is equivalent to S.

(2) With
Pi = 100 lb, P2 = 90 lb, Qi - 80 lb

determine the value of Q2 for which S can be replaced by a single
force whose line of action passes through A.



PROBLEM SET 12 221

FIG. 12f

(3) With
Px - 100 lb, Qi = 80 lb

determine the values of P2 and Q2 for which S can be replaced
with a couple, and find the magnitude of the torque of this couple.

Results: (1) 2.31 in., (2) 63.3 lb; (3) 100 lb, 80 lb, 40 in. lb.

(g) Figure 12(g) represents a system of forces equivalent to
some of the vertical forces acting on a portion of a horizontal
beam. Draw a sketch showing the single force with which this
system of five forces can be replaced.

1000 lb ,1000 1b

.500

2000 lb

T
M500 lb

Fxo. 12g
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PROBLEM SET 13
(See Section 3.6 of the text)

(a) The system S of four forces shown in Fig. 13 (a) is equiv-
alent to the system of forces exerted on a ring by four cables. S is

FIG. 13a

a zero system. Determine the values of P and Q, (1) by setting
the sums of the resolutes of all forces parallel to the X- and F-axes
equal to zero; (2) by setting the sums of the resolutes of all forces
parallel to the line of action of the 1000 pound force, and parallel
to the F-axis, equal to zero; (3) by setting the sum of the resolutes
of all forces parallel to the line of action of the 1000 pound force,
and the moment of S about some point (other than 0) on the line
of action of P, equal to zero; (4) graphically, by constructing the
resultant of £, to scale.

Explain the "physical" significance of the signs of P and Q as
found above.

Why is method (1) the "worst" of the four?

(b) Seven feet above a horizontal floor, a microphone is sus-
pended from three wires, as shown in Fig. 13(b). Assuming that
the system S of all forces acting on the microphone consists of the
four forces shown in Fig. 13(b), that the wires are straight, and
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FIG. 13b

that S is a zero system, determine the magnitude of F3, by writing
(and solving) a single (scalar) equation.

Result: 41.9 lb.

(c) A flexible shaft S is supported by a rigid housing H, as
shown in Fig. 13(c). (m, 112,113 are mutually perpendicular unit
vectors.) This assembly is subjected to the action of a force
system S consisting of the following: A force A, whose line of
action passes through point A and is perpendicular to m; a force B,
whose line of action passes through point B and is perpendicular
to ns; a couple, whose torque T is perpendicular to m; two couples,

FIG. 13C
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whose torques are equal to — lOOni ft lb and — IOO113 ft lb, respec-
tively. S is a zero system. Determine the magnitudes of A and T.

Results: 50 lb, 50 ft lb.

(d) A system S of forces acting on a portion of a truss is
equivalent to the six forces shown in Fig. 13(d). (The letter "K"

denotes a unit of force, called the "kip" or, more fully, the kilo-
pound; i.e., IK = 1000 lb.) Assuming that S is a zero system,
determine P, Q, and R. Do this (1) by setting the sum of the
moments of all forces about point A, the sum of the AB resolutes
of all forces, and the sum of the moments of all forces about point
C equal to zero, and (2) by setting the sum of the AD resolutes of
all forces, the sum of the moments of all forces about point B, and
the sum of the CD resolutes of all forces equal to zero.

Which of the two methods is "better"? Can the problem be
solved without summing resolutes parallel to any line, i.e., by using
only moment equations?

(e) A system £ of forces acting on a cantilever beam consists
of the three forces shown in Fig. 13 (e), a force F whose line of
action passes through point P, and a couple of torque T. If £ is a
zero system, what are the magnitudes of F and T, and what is the
angle between F and T?

Revolts: 4.58 K, 20 ft K, 90°.
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FIG. 13e

(f) A force system S consist of two couples whose torques are
shown in Fig. ll(i). Letting Si be the orthogonal projection of S
on a plane which is perpendicular to ni, and *S2 the orthogonal pro-
jection of £ on a plane which is perpendicular to n2, determine the
magnitudes of the moments of Si and $2 about (1) line L and (2)
line L', and compare the results with those of Problem ll(i).

Results: 36 ft lb, 0; 36 ft lb, 32 ft lb.

PROBLEM SET 14
(See Sections 4.1-4.4 of the text)

(a) The masses of particles situated at the points C, F, B, H
shown in Fig. 4 (a) are 10~3, 2 X 10~3, 3 X 10"3, 4 X 10""3 slug.
Determine the magnitude of the resultant of the gravitational
forces exerted on the particle at C by the particle at F, and on the
particle at B by the particle at H.

Result: 5.54 X 10"13 lb.

(b) Two particles, I\ and P2, are separated by a distance of
3 ft. A third particle, P, lies on the line joining Pi and P2, 1 ft
from Ph 2 ft from P%. The masses of Pi and P2 are m and 2m,
respectively. Letting F be the gravitational force exerted on P by
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Pi and P2, and F* the gravitational force exerted on P by a particle
of mass 3m placed at the mass center of Pi and P2, determine (1)
the angle between F* and F, and (2) the ratio of the magnitudes
of F* and F.

Results: 180°, 6.
In view of these results, is F* a satisfactory approximation to F?

(c) Four particles of masses 2, 4, 6 and 8 grams are placed at
the points Pi, P2, P3, and P4 shown in Fig. 7(f). Determine, ap-
proximately, the magnitude of the gravitational force exerted on
this set of particles by a particle of mass 1 gram, placed on the
Z-axis, 5 ft above the X-Y plane.

Result: 83 X 10~12 dyne.

(d) A uniform wire of mass m is bent into the shape shown in
Fig. 14(d), and a particle P is placed at point 0. Letting F be the

FIG. 14d

gravitational force exerted on P by the wire, and F* the gravita-
tional force exerted on P by a particle of mass m placed at the mass
center of the wire, determine the ratio of the magnitudes of F and

(e) Particles of masses M and Mf are placed on the axis of a
thin, uniform, hemispherical shell, as shown in Fig. 14(e). Deter-
mine the value of M/M' for which the gravitational forces exerted
on the shell by the particles are equal in magnitude.

Result: \.
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M
FIG. 14e

(f) Show that the gravitational force exerted by a thick, uni-
form, spherical shell on a particle placed inside the shell is equal to
zero.

(g) In Fig. 14(g), lines AB and A'B1 represent identical, uni-
form wires; in, n2, n3 are mutually perpendicular unit vectors; and
the distance between A and A' is equal to the length of either wire.

FIG. 14g

Replacing the system of gravitational forces exerted on A'Bf by
AB} with a couple of torque T and a force F whose line of action
passes through A> determine the ratio of the n% and nx measure
numbers of (1) F, and (2) T.

Results: — - / log
3 / 6 7=

- V3)(l
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(h) The earth satellite launched in Russia on October 4, 1957
was reported to have a diameter of twenty-two inches and a weight
of 184 pounds. Determine the magnitude of the force exerted on
the earth by the satellite at an altitude of 560 miles.

Result: 141 lb.

PROBLEM SET 15
(See Sections 4.5-4.9 of the text)

(a) A brass (527 lb ft~3) sphere, radius 4 inches, rests on a
horizontal table. Imagining the sphere as divided into two parts
by a plane which passes through the sphere's center C and is
inclined at an angle 6 to the horizontal, reduce the system of forces
exerted by the upper part on the lower part, to a couple of torque T
and a force whose line of action passes through C. Determine the
magnitude of T for 6 = 0, 45 and 89.99 degrees.

Results: 0, 43.3 in. lb, 61.2 in. lb.

(b) Figure 12(d) represents a vertical mast which is supported
by three guy wires and by a ball-and-socket connection at 0. Show
that the reaction at O can be reduced to a vertical force, and deter-
mine the maximum magnitude of this force, if none of the cable
tensions exceeds 5000 lb.

Result: 8,060 lb.

(c) A flexible shaft S (see Fig. 15(c)) is supported by a rigid
housing H which is held in place by a fixed sleeve A and a fixed
ring B. Each end of the shaft is subjected to the action of a couple
exerted on that end by a contiguous portion of the shaft (not
shown), these couples having torques of — 100ni and — 100n3 ft lb.
Assuming that the surface of the housing is smooth, and neglecting
gravitational forces, determine the reactions of A and B on H.

Results: A force of 50n2 lb, line of action passing through the
point A shown in Fig. 13(c), and a couple having a torque of 50n3

ft lb; a force of — 50n2 lb, line of action passing through the point B
shown in Fig. 13(c).



PROBLEM SET 15 229

FIG. 15C

(d) Three flexible cables are attached to a cantilever beam, as
shown in Fig. 15(d). The tensions in cables A, B, and C are equal
to 2, 3 and 4 kips, respectively. Neglecting gravitational forces,

p

o
»

c

A

- — 4'-*

B

* 4 •

r G

60'

FIG. 15d

reduce the reaction of the beam on the wall to a couple of torque T
and a force F whose line of action passes through point P, and
determine the magnitudes of F and T.

Results: 4.8 kip, 20 ft kip.

(e) Three flexible cables are attached to a cantilever beam, as
shown in Fig. 15(d). The tensions in cables A and B are equal to 2
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and 3 kips, respectively. Cable C is attached to a fixed support.
Explain why this information is insufficient for the determination
of the reaction of the beam on the wall, then reduce this reaction
to a couple of torque T and a force F whose line of action passes
through P, and determine the magnitudes of F and T, assuming
that gravitational forces can be neglected and that the magnitude
of F is equal to the tension in cable C.

Results: 5 kip, 12 ft kip.

(f) A steel (489 lb ft"3) plate, 5' X 5' X \", is suspended from
two vertical cables, each five feet long, as shown in Fig. 15(P).
Next, two cables are attached at A and B, and these are used to

ss/// ss/ss

FIG. 15P FIG. 15f" FKJ. 15P"

exert forces which cause the plate to rise through a distance of one
foot while rotating about a vertical line passing through the plate's
center (see Fig. 15(f"). These cables are then attached at C and
D'f four feet below C and I), respectively (see Fig. 15(f'")). Deter-
mine the tensions in cables AC and BC

Results: 319 lb, 255 lb.

(g) One end of a uniform, twenty-one foot long boom is sup-
ported in a spherical socket. When the boom is not in use, its
upper end is attached to a five foot cable and rests on a vertical
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FIG. 15g

wall, as shown in Fig. 15(g). The boom weighs 920 pounds. Deter-
mine the tension in the cable, assuming that the wall is smooth.

Result: 100 1b.

(h) Fig. 15(h) illustrates an element of a seismic device con-
sisting of a uniform, 15 pound sphere which is free to slide on a
vertical shaft mounted in a box, and is attached to the sides of the
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box by two springs, each of which has a natural length of 5 inches.
The springs have moduli of two and three pounds per inch, re-
spectively. Determine h.

Result: h = 7 in.

• • • \ A A H

K A A A H

•VAAAAAAAAAA/^-J LA/WI

-WVAAAAAAAAAAAAAAJ LAAA-

—^AAAAAAAAAAAAAAAAAAA/J

FIG. 15i

(i) Two bodies are connected by a very large number of
springs, all of which have the same modulus, k. If the springs are
arranged as shown in Fig. 15(i), what is the modulus of the single
spring equivalent to this system of springs?

Answer: (V5 — l)k.

(j) One corner of a smooth, uniform plate rests on a post. The
plate weighs 120 lb and is held in a horizontal position by a rod
built into a wall, as shown in Fig. 15(j). Show that the reaction of

FIG. 15j
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the rod on the wall can be reduced to a single vertical force, and,
neglecting the weight of the rod, determine (1) the magnitude of
this force and (2) the distance from the line of action of the force
to that corner of the plate which rests on the post.

Results: 80 lb, 7.5 ft.

HORIZONTAL

FIG. 15k

(k) Figure 15(k) represents two smooth, overlapping tubes,
pinned to fixed supports at A and A'. The tubes have equal
weights per unit of length. Reducing the reaction of the shorter
tube on the support at A to a force F and a couple, and that of the
longer tube on the support at A1 to a force F' and couple, deter-
mine the ratio of the magnitudes of the vertical resolutes of F
and P.

Result: 813/937.

(1) In Fig. 15(1), line AB represents the axis of a smooth hinge
connecting two uniform, square plates, each of which weighs W
pounds. The corners C and D are joined by a string, and this
assembly rests on a smooth, horizontal plane. Determine the ten-
sion in the string.

Result: (3/8) *W.
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B

FIG. 151

(m) In Fig. 15(m), S and S' represent shafts mounted in bear-
ings B and B' and connected to each other with a shaft S" which
is attached to both S and S' by means of Hooke's joints. nh n2, n3

are mutually perpendicular unit vectors. Lines XX and X'X' are

FIG. 15m

parallel to m, YY is parallel to n2, ZZ and Z'Z' are parallel to n3.
S lies in the plane determined by Y Y and ZZ, Sf in that determined
by X'X' and YY.

Two couples, whose torques are respectively parallel to S and S'
and have magnitudes T and 7", are applied to S and S'. Determine
the ratio of T to T'.

Result: V2/3.
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(n) Figure 15(n) shows two shafts, S and Sr mounted in bear-
ings, B and B', and connected to each other with an Oldham cou-
pling, constructed as follows: Circular discs, D and Z)', are rigidly
attached to S and S', respectively. Each disc has a groove in which
one of two tongues on a third disc, C; can slide freely. These
tongues are at right angles to each other.

A couple, whose torque is parallel to the axes of the shafts, is
applied to each shaft. Show that the ratio of the magnitudes of
these torques is equal to unity.

FIG. 15n

(o) Referring to Problem 15(g), replace the system of forces
exerted on the upper half of the boom by the lower half, with a
force and a couple. Determine the magnitude of the force, and
show that the line of action of the force is parallel to the boom.

Result: 420 lb.

(p) A manually operated punch has the dimensions shown in
Fig. 15(p). Assuming that the system of forces exerted by the
hand on members A and B is equivalent to the two forces shown
in the drawing, use symmetry considerations to reduce the system
of forces exerted by member D on the piece C to a force whose
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" U

rn n
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h a—4t-b->4* c H

FIG. 15p

line of action passes through point P. Determine the magnitude
of this force.

Result: 2F(a + b)(b + c)/ad.

PROBLEM SET 16
(See Sections 4.10-4.11 of the text)

(a) When certain contact forces are applied to a rectangular
beam having the dimensions shown in Fig. 16(a), the tractions at

z

h 72" ^ j

\
1
1

FIG. 16a
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the point (xf y, z), for the directions nh n2, n3, are respectively
given by

n = 10(16 - z2)n3 1b in."2

r2 = 0

r3 = 10(16 - x2)nx - 20(72 - z) x nz lb in.~2

where x, y and z are measured in inches.

(1) Letting P be the point at which the Z-axis intersects the
face z = 72 of the beam, and <r a portion of this surface, a contain-
ing P and having an area of 0.01 in.2, reduce the system of contact
forces exerted on the beam across the surface er, to a couple of
torque T and a force F whose line of action passes through P, and
determine (approximately) the magnitudes of F and T.

Results: 1.6 lb, 0.

(2) The surface z = 36 divides the beam into two parts. Let-
ting B be the part in which z is greater than 36, and Br that in
which z is less than 36, reduce the system of forces exerted by Br

on B, to a couple of torque T and a force F whose line of action
passes through the point (0, 0, 36), and determine the magnitudes
of F and T.

Results: 5120 lb, 15,360 ft lb.

(b) Referring to Problem 5(q), suppose that the tetrahedron
is a portion of a continuous body at rest. Let r be the traction
at a point of face PiP2P3, for the direction n; rx

p
1 T2P, T3

P, the trac-
tions at P, for the directions ni, n2, n3, respectively.

Assuming that the tetrahedron is small and that gravitational
forces can be neglected, express r in terms of r,p, n, (i = 1, 2, 3) >
and n.

Result: r ^ n-niTjp + n-n2r2
p + n-n3r3

p.

Note: When the face PiP2P3 approaches point P in such a way
that the orientation of n remains unaltered, the relationship found
above becomes exact and thus furnishes a means for determining
the traction at any point of a body, for any direction, whenever
the tractions at that point, for three mutually perpendicular direc-
tions, are known.
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(c) Referring to Problem 16(a), let A, B and C be the points
(4, -3 ,36) , (-4,3,36), and (0,0,36), respectively. Determine
(1) the magnitude of the traction at C for the direction AB, and
(2) the angle between this traction and line AB.

Results: 128 lb in."2, 90°.
(d) A "perfect fluid" is a body which, when at rest, exhibits

the following property: The traction (ra
p) at any point P, for the

direction na, is parallel to na. Hence ra
p can be expressed as

and, similarly, if nb is any other direction,

rb
p = r6

pn6

Use the result of Problem 16(b), together with the expressions
n a = ni • na i i i -f- n2 • nari2 + n.j • nari3

lift = fix • n&ni -f- 112*11̂ 112 ~h 113*115113

to show that
r p = rup

Note: The negative of the quantity ra
p is called "the pressure

at point P."

(e) In Fig. 16(e), S represents a part of a shaft which is sup-
ported by a conical bearing surface and is subjected to the action
of a system of forces equivalent to a single axial force of magnitude
F. (This system of forces includes the gravitational forces exerted
on the shaft by the earth.) Letting r be the traction at a point P
of the bearing surface, for the direction of the normal to this surface

FIG. 16e
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at P, determine the magnitude \r\ of T, assuming that the surface is
smooth and that \r\ is (1) independent of the position of P, and
(2) inversely proportional to the distance r from P to the axis of
the shaft.

Results:
F F

T(R2
2 - Ri2)' 2wr(R2 - Ri)

(f) Referring to Problem 16(e), suppose that the bearing sur-
face is not smooth and that the coefficient of friction has the value/.
Let T be the torque of a couple which is applied to the shaft, in
addition to the system of forces described in Problem 16(e), in
order to set the shaft in motion (rotation). If T is parallel to the
axis of the shaft, and the same assumptions are made about \r\
as were made in (1) and (2) of Problem 16(e), what is the magni-
tude of T?

Answers:

3 sin a(R2
2 -

R2)
2 sin a

(g) Referring to Problem 15(g), determine the smallest value
of the coefficient of friction for the wall and the boom, such that
the boom can remain in the position shown in 15(g), when the
cable is removed.

Result: (4/25)V26.

(h) A thin-walled tube, resting on a horizontal support, is
subjected to the action of a system of forces equivalent to a single

FIG. 16h
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axial force of magnitude F, together with a couple whose torque is
parallel to the axis of the tube and has a magnitude T, as shown in
Fig. 16(h). Determine the value of T for which the tube is in a
state of impending rotation about the tube's axis, and check your
results by regarding the present situation as a limiting case of
those considered in Problem 16(f).

(i) A cylindrical drum D is rigidly attached to a shaft whose
axis coincides with that of the drum and which is mounted in
smooth bearings. A couple, whose torque is parallel to the shaft
axis and has a magnitude C, is applied to the shaft. In order to
measure C, a band brake is used in the two ways shown in Figs.
16(i') and 16(ii"). The brake consists of a brake band B, one of

FIG. 16i' FIG. 16i"

• - T

whose ends is attached to a fixed point P, the other to the brake
arm A. The brake arm is free to rotate about a fixed axis which
passes through P and is parallel to the axis of the drum, and the
brake is actuated by the application of a force perpendicular to
the arm, this force having a magnitude F in one case, F' in the
other. If F and F' are equal to 60 and 130 pounds, respectively,
when the drum is just prevented from rotating, what is the value
of C?

Answer: 210 ft lb.
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Centroids of Curves, Surfaces, and Solids
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Length: 2R9

FIG. 1A. CIRCULAR CURVE.

Length: 8a

FIG. 2A. CYCLOID.



244 PLANE SURFACES

Area: eR 2

FIG. 3A. CIRCULAR SECTOR.

Area: bh/2

FIG. 4A. TRIANGLE.
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Area: 2irR*

FIG. 5A. HEMISPHERICAL SURFACE.

Area: »R(h* + R')*

FIG. 6A. CONICAL SURFACE.
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Volume: 2TTR3/3

FIG. 7A. HEMISPHERICAL SOLID.

Volume: *R2h/3

FIG. 8A. CONICAL SOLID.
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Action and reaction, 128, 150
Addition of vectors, 7
Angle between two vectors, 21

in terms of measure numbers, 26
Associativity, 10

B

Ball-and-socket, 156
Base point, 108
Bound vector, 1
British gravitational units, 129

Cable, 153, 176, 186
tension, 153

Central axis, 94
Centrobaric bodies, 142
Centroids, 41-69

cartesian coordinates, 50
coincidence with mass center, 73
curve, surface, or solid, 53-69
distance from coordinate planes, 61
hemispherical solid, 63
hemispherical surface, 62
location by decomposition, 52
location by integration, 57
location without integration, 64
planes of symmetry, 51
negative contributions, 66
position vector, 45
representative point, 49
right-cylindrical solid, 69
right-cylindrical surface, 67
set of points, 44-53
uniqueness, 47

Characteristics of a vector, 1
Coefficient of friction, 181
Commutativity, 10
Components, 12-21

mutually perpendicular, 16
relationship to resolutes, 30

Contact forces, 144
exerted across a smooth surface,

155
exerted by a spring, 162
relation to physical properties, 152
actual and imagined, 145
small, 158

Coplanar vectors, 114
Couple, 97-104

gravitational, 140
moment, 97
moment about a line, 102
replacement, 110
simple couple, 97
torque, 97

Cross product, see Vector product of
two vectors

Decomposition, 52, 76
of a figure, 64

Determinantal form of cross prod-
uct, 35

of scalar triple product, 37
Difference of two vectors, 9
Differential force, 176
Dimensions of a vector, 1

of force, 128
Direction cosines, 203
Direction of a vector, 1

247
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Distance
from centroid to coordinate planes,

61
from a point to a line, 42
between two points, 43

Distributivity
cross product, 32
scalar multiplication of vectors, 23
vector addition, 10

Dot product, see Scalar multiplica-
tion of vectors

Equality of vectors, 3
Equilibrium equations, 145
Equivalence, 104
Eulerian angles, 199

First moment, see Moment
Flexible cable, 153
Force, 127

contact forces, 144
differential, 176
dimensions, 128
gravitational, 127-144

Free-body diagram, 148
plane, 149

Free vector, 1
Friction, 180-190

Gravitational attraction, 127-144
of the earth, 143
of a sphere, 134
of two bodies, 139

Gravitational force, 127-144
exerted by the earth, 143

Guldin's Rules, 211

H

Helical spring, 162
Hemispherical solid

centroid of, 63

Hemispherical surface
centroid of, 62

Hooke's joint, 167

I

Impending motion, 181

Law of action and reaction, 128
Line of action, 2

M
Magnitude of a vector, 1

in terms of measure numbers, 15
Mass center, 70-80

coincidence with centroid, 73
continuous body, 70-80
set of particles, 70
uniform body, 75

Measure number, 5
of a component, 13

Metric absolute units, 129
Minimum moment, 94
Moment

of a couple, 97
bound vector about a line, 82-91
bound vector about a point, 81
of a couple about a line, 102
first moment about a point, 44
lines parallel to the resultant, 94
minimum magnitude, 94
relationship between moments

about two points, 92
system of bound vectors, 91-96

Multiplication of vectors, see Vector
product of two vectors

N
Negative of a vector, 4
Normal force, 184
Notation, 2

Oldham coupling, 235
Orientation of a vector, 1
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Orthogonal projection, 124
Outward normal, 171

Pappus, theorems of, 211
Plane free-body diagram, 149
Plane of symmetry, 51
Point of application, 1
Position vector, 41

relationship to coordinates, 42
of the centroid, 45

Pressure, 238
Product of a vector and a scalar, 3

Q
Quotient of a vector and a scalar, 5

distributivity, 23
Scalar product, see Scalar multipli-

cation of vectors
Scalar triple product, 36
Sense of a vector, 1
Simple couple, 97

torque,99
Smooth surface, 155
Spring, 162

constant, 163
modulus, 163

Square of a vector, 30
Strength of a point, 44
Subset, 52
Symmetry, 51, 64
Systems of units, 129

Reaction, 148
Reduction, 104

of special systems, 111
Replacement, 104

of a couple, 110
with a single bound vector and a

couple, 108
of special systems, 111
with a wrench, 110

Representative point, 49
Resolutes, 20

relationship to components, 30
in terms of cross products, 38
resultant of, 29

Resolution into components, 12
Resultant

of resolutes, 29
two vectors, 7
several vectors, 9

Right-cylindrical solid, 69
Right-cylindrical surface, 67
Right-handed set of unit vectors, 34

s
Scalar equations, 14

largest number, 126
Scalar multiplication of vectors, 21-

30

Tension, 153
Torque, 97

of gravitational couple, 140
direction, 100
simple couple, 99

Traction, 170-180
relationship to contact forces, 174

Traction-free surface, 174
Transitivity, 108
Triple products, 36-̂ 39

scalar, 36
vector, 38

Trivial equations, 126

U
Uniform body, 75
Unit vectors, 5

right-handed set, 34
Units, systems of, 129
Uniqueness of centroid, 47

V
Vector product of two vectors, 31-35

distributivity, 32
determinantal form, 35

W
Weight, 144
Wrench, 110
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Z consisting of two vectors, 121
orthogonal projection, 124

Zero systems, 119-126 scalar equations, 125
composed of couples, 120 Zero vector, 4








