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Transmission of neural information starts by the fusion of a synaptic vesicle inside a 

neuron with the membrane of the neuron. This fusion process mainly consists of two 

steps. First one is docking which is to bring the vesicle into the proximity of neuron 

membrane, against the repulsive forces from electrostatics and hydration. The forces 

necessary to overcome this repulsion are provided by a family of proteins known as 

SNARE. Second step is fusion pore formation, which leads to the release of the 

neurotransmitter, for its collection by the next neuron. We have studied the process of 

synaptic vesicle fusion using Continuum and CG molecular models. Continuum 

models of the vesicle and neuron membrane are used to understand the deformation 

and forces in the membrane system in response to the SNARE and repulsive forces. In 

another study, a CG-model of SNARE is combined with continuum model of the 

membranes to analyze the deformation and forces during docking. Our calculations 

show that about 4-7 SNARE complexes are needed to “dock” the vesicle. Using a 

continuum model, we estimated the docking time of a synaptic vesicle under the effect 

of hydrodynamics. We found out that it is the nature of the force generated by the 

docking machinery which governs it. We have also developed a CG model 

incorporating lipid bilayer membrane and SNARE complexes to better understand the 

dynamics of the fusion process. 



 

iv 

 

BIOGRAPHICAL SKETCH 

 

 

Pankaj Singh was born in Jhansi, Uttar Pradesh, India in 1988. He grew up in the city 

of Aligarh, Uttar Pradesh, 90 miles south east of Indian national capital, New Delhi. 

He is a Ph.D. candidate in the Field of Theoretical and Applied Mechanics in the 

Department of Mechanical and Aerospace Engineering at Cornell University. He is 

advised by Prof. Chung-Yuen Hui from Cornell University and Prof. Anand Jagota 

from Lehigh University. He loves to think about theoretical and computational 

techniques applied to mechanical systems. His research focus has been on continuum 

and molecular modeling of synaptic vesicle fusion during neurotransmission. He holds 

a Dual Bachelor-Masters of Technology in Mechanical Engineering from Indian 

Institute of Technology, Kanpur in the year 2012. He really enjoys outdoors, while 

hiking or biking. His favorite bike ride is 90 miles loop of Cayuga Lake.  

 

 

 

 

 

 

 

 

 

 



 

v 

 

 

 

 

 

 

 

 

Dedicated to Pitaji.



 

vi 

ACKNOWLEDGMENTS 

 

 

I would like to express my sincerest regards to my advisor, Prof. Chung-Yuen Hui for 

his invaluable guidance and support during my years at Cornell University. His 

enthusiasm and curiosity towards mechanics, dedication towards research and an 

excitement for life have always been an inspiration for me. This dissertation would not 

have been possible without his mentorship which provided me with best possible 

guidance and immense support to grow into an independent researcher. His 

welcoming nature to discuss things beyond academics has made him special for all of 

his students. I always cherished his homemade dinners several times a year, group 

lunches, food and travel stories. He has been more than a mentor for me and I will 

always look up to him as an ideal human being, with the strongest work ethics and 

excitement for life. 

 

I am extremely thankful to Prof. Anand Jagota, Prof. Jim Jenkins, Prof. Paulette 

Clancy and Prof. Fernando Escobedo for being on my special committee and guiding 

me through my research and academics. I would like to thanks Prof. Jagota for 

inviting to work in his lab during the Spring’14 and helping me throughout my 

research continuously. I would also like to thank our collaborator Prof. Maria 

Bykhovskaia for her immense help in giving us biological insight all through this 

research work. I am extremely grateful to have work together with Dr. Nicole Fortoul 

on joint research article and projects. I would also like to thank Dr. Marcia Sawyer for 

her invaluable help and suggestions on dealing with administrative matters. 



 

vii 

I am also thankful to my fellow research group members: Jing, Feng, Snow, Abhishek, 

Tianshu, Jingyi, Haibin and Zezhou, who have always been extremely supportive and 

provided with invaluable ideas and suggestions, making me realize the power of 

thinking out aloud and discussing ones thoughts. Being around them certainly made 

me much better researcher and improved how I approached problems and came up 

with a solution. I am lucky to have had such amazing research group members as good 

friends, which made our discussions more free flowing.  

I am greatly thankful to my long list of friends in Ithaca. Friends from the Indian 

community: Abhishek, Samanvya, Nikunj, Maneet, Arjun, Macha, Avik, Ved, 

Chaitanya, Shreyas, Ritika, Kritka, Arzoo, Chaitali, Gauri, Aniket, Ashesh, Ayush, 

Ritesh, Himanshu, Pooja and Rohil, friends from Gamma Alpha: Ian, Allie, Eric, Sam, 

Shaun, Zach, Aditya, Diego, Rachel, Sarah, Kevin, Tim, David, Kalay, Christine, 

Leilah and Mane, friends from the Cornell Outing Club: Kath, Emily, Kendra, 

Bhuvanesh and Connor, friends from Lehigh University: Jack, Tyler, Sarah, Sam, 

Steph and Akshaya. I am lucky to have shared some of the most memorable moments 

of my graduate life with them. 

I am forever indebted to my parents: Jai Devi and Teeran Singh, to go away from the 

norm to give me their love and unwavering support for this Ph.D. I am extremely 

thankful for my sister Moon, who always has been wiser than me and came in to 

rescue when I needed the support most. I am eternally grateful to my girlfriend 

Lauren, for being that calmest spot in my life whenever things went crazy. She always 

had faith in me and everyday inspired me to be better than what I was yesterday. I 



 

viii 

would like to thank Gabuzzi family for their affection towards me and to make me feel 

welcomed into their lives.  

I would like to acknowledge the sources of financial support that have made my 

graduate studies possible. I am thankful to the department of Mechanical and 

Aerospace Engineering for providing me Research Fellowships and Teaching 

Assistantships. I am also thankful for the support from National Institute of Health 

(Award Number: R01 MH099557) towards a major financial assistance during my 

entire Ph.D.  

 

  



 

ix 

TABLE OF CONTENTS 

 

BIOGRPAHICAL SKETCH ………………………………………………………. iv 

ACKNOWLEDGEMENTS ………………………………………………………... vi 

TABLE OF CONTENTS …………………………………………………………..... ix 

LIST OF FIGURES ………………………………………………………………... xiv 

 

CHAPTER 1. INTRODUCTION …………………………………………………… 1 

1.1. Neurotransmission …………………………………………………………... 1 

1.2. Synaptic vesicle fusion ……………………………………………………… 2 

1.2.1. Lipid bilayer membrane structures: Synaptic vesicle and neuron plasma        

membrane …………………………………………………………….. 4 

1.2.2. SNARE complex ……………………………………………………... 6 

1.3. Role of SNARE on Vesicle docking ………………………………………… 8 

1.4. Synaptic Vesicle Fusion ……………………………………………………... 9 

1.5. Organization ………………………………………………………………... 10 

1.6. Bibliography ..……………………………………………………………… 13 

 

CHAPTER 2. A CONTINUUM MODEL OF DOCKING OF SYNAPTIC VESICLE 

TO PLASMA MEMBRANE …………………………………………... 17 

2.1. Abstract …………………………………………………………………….. 18 

2.2. Introduction ………………………………………………………………… 19 

2.3. Geometry and model ……………………………………………………….. 21 



 

x 

2.3.1. Governing equations for the vesicle membrane …………………….. 24 

2.3.2. Governing equations for the plasma membrane …………………….. 28 

2.4. Results ……………………………………………………………………… 29 

2.5. Effect of Hemi-fusion ……………………………………………………… 45 

2.6. Summary and Conclusion ………………………………………………….. 47 

Bibliography ………………………………………………………………………… 49 

Appendix A2 ………………………………………………………………………... 56 

 

CHAPTER 3. COARSE-GRAINED MODEL OF SNARE MEDIATED DOCKING 

  …………………………………………………………………………………….. 120 

3.1. Abstract …………………………………………………………………… 121 

3.2. Introduction ……………………………………………………………….. 122 

3.3. Materials and methods ……………………………………………………. 125 

3.3.1. All Atom simulations ….…………………………………………... 125 

3.3.2. SNARE Coarse-Grained model …………………………………… 126 

3.3.3. Continuum model of the vesicle and plasma membrane ………….. 135 

3.3.3.1. Governing equations for the continuum membrane model and 

their solution ……………..……………..……………..…….. 140 

3.4. Results ……………..……………..……………..……………..………….. 142 

3.4.1. Force-displacement response of the vesicle-membrane interaction .. 142 

3.4.2. SNARE force-separation curve ……………..……………..………. 143 

3.4.3. Combined SNARE and vesicle-membrane results ………………... 145 

3.5. Discussion and conclusion ……………..……………..…………………... 152 



 

xi 

Bibliography ……………………………………………………………………….. 156 

Appendix A3 ………………………………………………………………………. 167 

 

CHAPTER 4. HYDRODYNAMICS GOVERN THE PRE-FUSION DOCKING 

TIME OF SYNAPTIC VESICLE ……………..……………..……….. 203  

4.1. Abstract ……………..……………..……………..……………..………… 204 

4.2. Introduction ……………..……………..……………..……………..…….. 204 

4.3. Materials and methods ……………..……………..……………..………... 206 

4.3.1. Model: Geometry, fluid flow and membrane mechanics ………….. 207 

4.3.2. Lubrication theory ……………..……………..……………..……... 208 

4.3.3. Elastic deformation of the plasma membrane: Calculation of w ….. 209 

4.3.4. Numerical solution ……………..……………..……………..…….. 210 

4.4. Results ……………..……………..……………..……………..………….. 210 

4.4.1. Undeformable plasma membrane limit ……………..……………... 210 

4.4.2. Deformable membrane ……………..……………..……………..… 213 

4.4.3. Different force model ……………..……………..……………..….. 219 

4.5. Conclusions ……………..……………..……………..……………..…….. 221 

Bibliography ……………………………………………………………………….. 223 

Appendix A4 ………………………………………………………………………. 233 

 

CHAPTER 5. COARSE-GRAINED MODELING OF SYNAPTIC VESICLE 

FUSION ………..……………..……………..……………..…………. 276 

5.1. Abstract ……………..……………..……………..……………..………… 277 



 

xii 

5.2. Introduction ……………..……………..……………..……………..…..… 278 

5.3. Model ……………..……………..……………..……………..…………... 281 

5.3.1. Lipid membrane ……………..……………..……………..……..… 283 

5.3.2. SNARE coarse grained model ……………..……………..……….. 287 

5.3.2.1. Bonded interactions ……………..……………..…………... 287 

5.3.2.2. Non-bonded interactions ……………..……………..……... 288 

5.4. Results ……………..……………..……………..……………..………….. 290 

5.4.1. Membrane fusion under the effect of an indenter …………………. 290 

5.4.2. SNARE mediated synaptic vesicle fusion ………………………… 295 

5.5. Summary and Conclusion ……………..……………..……………..…….. 300 

Bibliography ……………………………………………………………………….. 302 

Appendix A5 ………………………………………………………………………. 308 

 

CHAPTER 6. CONCLUSION AND FUTURE WORK ……………..…………... 344 

6.1. Discussion ……………..……………..……………..……………..……… 344 

6.2. Future work ……………..……………..……………..……………..…….. 347 

Bibliography ……………..……………..……………..……………..…………….. 349 

 

 

 



 

xiii 

LIST OF FIGURES 

 

1.1 Schematic of synaptic vesicle fusion (Image ref: J.H. Hurst et al, J. Clin. Invest., 

2013, kennesaw.edu) ……………..……………..……………..………………. 3 

1.2 Lipid bilayer and single lipid molecule (Image ref: Wikipedia) ………………. 5 

1.3 SNARE complex: a) along with synaptic vesicle and plasma membrane b) its 

constituent proteins (Image ref: Wikipedia) ……………..……………..……..   6 

1.4 Synaptic vesicle docking ……………..……………..……………..…………... 8 

1.5 Synaptic vesicle fusion ……………..……………..……………..…..………… 9 

 

2.1 Schematic of the axisymmetric model. Inset shows the deformed structure under 

the effect of SNARE-machinery force and electrostatic interaction. ………… 24 

2.2 (a) Arc length and tangent angle over the membrane, (b) Forces and moment 

along a cut in the membrane. ……………..……………..……………..……... 26 

2.3 Deformed geometry for different force magnitudes. The thick lines represent the 

plasma membrane and the thin lines represent the vesicle. The inset shows the 

zoomed-in section near the load application point (shown as   ). The parameters 

of the analysis are: load application point,
0

/ 6S  , pretension in plasma 

membrane, 
0

1T   and vesicle pressure. 
0

1p  . ……………..……………..……. 

32 

2.4 Separation between the two C-termini (of Syx and Syb) of SNARE-machinery 

with the strength of the line force. .……………..……………..……………… 33 

http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://science.kennesaw.edu/~jdirnber/Bio2108/Lecture/LecPhysio/48_05NeuronStructure_L.jpg
http://en.wikipedia.org/wiki/Phospholipid
https://en.wikipedia.org/wiki/SNARE_(protein)


 

xiv 

2.5 Tension along the arc length for the vesicle (a) and the plasma membrane (b). 

The inset in (b) shows the location of force on the vesicle and the plasma 

membrane in the undeformed configuration. .……………..……………..…... 34 

2.6 Maximum tension in vesicle and compression in plasma membrane as the load is 

increased for different surface charge densities. ……………………………… 35 

2.7 Deformed geometry of the membranes under varying force location, while 

keeping its magnitude the same. The inset shows the location of the force 

application point (  ) on the deformed geometry for different cases. The 

parameters are: line force magnitude, 20F  , pretension in plasma membrane, 

0
1T   and vesicle pressure. 

0
1p   . …………………………………………….. 36 

2.8 Tension along the arc length of the vesicle (a) and the plasma membrane (b), 

when the location of the SNARE-machinery force is varied. Inset in (b) shows 

the different locations of the SNARE-mechanism. …………………………... 37 

2.9 Maximum tension in the vesicle and the plasma as the location of the force is 

varied …………………………………………………………………………. 38 

2.10 Maximum tension in the vesicle and plasma as the magnitude of force supplied 

by the SNARE-machinery is increased for different locations of the SNARE-

machinery. ……………………………………………………………………. 38 

2.11 Deformed geometry of the membranes as the pretension in the plasma 

membrane is varied. Inset shows the location (  ) of the force on the deformed 



 

xv 

geometry. The parameters are: load application point,
0

/ 6S  , line force 

magnitude 20F   , and vesicle pressure, 
0

1p   . ………………………………. 40 

2.12 Tension in the vesicle and compression in the plasma membrane along the arc 

length for two different values of pretension. ………………………………… 41 

2.13 Maximum tension in the vesicle and maximum compression in the plasma 

membrane (on the left axis) and minimum separation between the vesicle and 

the plasma membrane (on the right axis) as pretension is varied …………….. 42 

2.14 Deformed geometry of the membranes as the osmotic pressure in the plasma 

membrane is varied. Inset shows the location (  ) of the force on the deformed 

geometry. The parameters are: load application point,
0

/ 6S  , pretension in 

plasma membrane, 
0

1T   and line force magnitude 20F  …………………….. 43 

2.15 Tension in the vesicle and compression in the plasma membrane along the arc 

length for three different values of osmotic pressure. ………………………... 44 

2.16 Maximum tension in the vesicle and plasma membrane as the magnitude of 

pressure across the vesicle is increased ………………………………………. 45 

3.1 The AA (left) and CG (middle) representations of the SNARE bundle are shown. 

Both models include helices Syb, Syx, SN1, and SN2 with each helix 

contributing one residue to the ionic layer (beads): R56, Q226, Q53, and Q174 

respectively. The C-terminal ends of Syb and Syx play an integral role in the 

fusion process in that they attach to the vesicle (Syb) and plasma membrane 

(Syx). The ENM spring network (right) that maintains the individual helical 



 

xvi 

structure is shown for Syb and Syx where the thick lines represents the Cα 

backbones and the thin lines represent ENM springs. The Miyazawa and 

Jernigan contacts between Syb and Syx are also represented (dotted lines). (B) 

The spectra used to compare the fluctuations of the AA and CG models are 

shown for Syb. Values for ks of 0.0963 N/m and Rc of 20 Å were used for the 

CG model. The inset shows 10 snapshots of Syb during the corresponding AA 

simulation. (C) Mean distance for different values of parameter A along with 

snapshots of the SNARE bundle. The original crystal is represented by the black 

line. The version chosen for simulation is marked by the black circle. ……... 130 

3.2 (A) A schematic of the axisymmetric model in the undeformed configuration, 

showing the location of SNARE and direction of force applied. (B) The 

repulsive forces (shown by the dotted lines) act on the deformed configuration of 

the vesicle as does the SNARE force, F. (C) The figure shows the convention for 

shear force (Q), in-plane tension (T), and moment (M) acting on the cross-

section of the membrane a location (S), where (S) is the tangent angle in the 

undeformed configuration measured from the vertical. (D) Example of a 

deformed vesicle-plasma membrane complex for a 20-nm diameter vesicle 

docked by 15 SNAREs ……………………………………………………… 138 

3.3 (A) Force versus SNARE end separation for the vesicle-membrane system for 

different numbers of SNAREs for the hydration repulsion case. (B) The force 

during separation of the ends of the SNARE bundle using λ of 0.30 for the CG 

model of SNARE along with snapshots of the SNARE bundle at the 

corresponding C-terminal end separation. The end separation is defined as the 



 

xvii 

distance between the Syb and Syx C-terminal beads. Syb, Syx, the ionic layer 

residues (beads), and the C-terminal residues (beads with arrows) that are 

attached to pulling beads are shown in each SNARE snapshot. The purple 

arrows correspond to the direction along which the C-terminal beads are being 

pulled. (C) The force as a function of Syb-Syx C-terminal distance is shown for 

the vesicle-membrane (the exponentially decreasing curves) and SNARE. One 

(solid line), two (dash line), and three (dash-dot line) SNAREs are shown in this 

plot. Intersections between the vesicle-membrane and SNARE force-

displacement responses represent equilibrium states. There are a number of 

instabilities represented by load-drops. These correspond to separation of 

individual layers and have been so labeled. ………………………………… 145 

3.4 A) Energy as a function of SNARE end separation when repulsion between the 

vesicle and plasma membrane is dominated by hydration repulsion. The 

energetic contributions from SNARE (attractive), hydration (repulsive) and the 

total (their sum) are shown. The hydration repulsion has been shifted vertically 

by -17 kT for clarity. (B) Contour plot of total energy as a function of SNARE 

end separation distance for different numbers of SNAREs under hydration 

repulsion. Circles correspond to global energy minima representing the 

equilibrium SNARE end separation for a given number of SNAREs. Vesicle 

radius is 20 nm. (C) Contour plot of total energy as a function of SNARE end 

separation distance for different numbers of SNAREs under electrostatic 

repulsion for a fixed charge of -0.025 C/m2 on the vesicle and the membrane in 

the limit of high tension in the vesicle and plasma membrane. For this case, 

minimum lateral separation between the SNARE bundles has been increased 



 

xviii 

from 3 nm to 4nm. (D) The structure of SNARE corresponding to the case 

shown in Fig. 4 B, number of SNAREs=1. Syb, Syx, SN1, SN2 are shown with 

the ionic layer residues indicated as large beads. (E) The same structure as in 

Fig. 4 D but showing only Syb and Syx for clarity. All contacts for residues 

within 2σ of each other are indicated with thin lines ………………………... 151 

 

4.1 Synaptic vesicle docking mediated by ribbon structure and SNARE proteins, (b) 

the driving force is represented by single force acting on the south pole of the 

vesicle (c) deformed plasma membrane under hydrodynamic and driving force, 

horizontal arrows indicate direction of fluid flow …………………………... 196 

4.2 Traverse time of the vesicle for a constant force ……………………………. 201 

4.3 Traverse time of the vesicle versus number of SNAREs using eq. 4.10.  m 

governs the rate of decay of SNARE force with distance. ………………….. 202 

4.4 Traverse time with varying decay exponent, for 1n   ………………………. 204 

4.5 Traverse time with varying number of SNAREs ……………………………. 205 

4.6 Traverse time with varying number of pretension, for number of SNAREs (a) 

1n  (b) 2n   and (c) 3n  ……………………………………………………. 207 

4.7 Traverse time of synaptic vesicle vs. a) number of SNARE complex when 

1
1 7

m a x
F p N  b) 

1 m a x
F when number of SNARE complexes, 1n   …………… 209 

5.1 Schematic for SNARE mediated synaptic vesicle fusion a) side view of pre-

fusion geometry b) simplified membrane geometry c) a side view close up of 



 

xix 

pre-fusion geometry d) post-fusion and fusion pore formation. …………….. 281 

5.2 FENE and harmonic bonds in a lipid molecule …………………………….. 285 

5.3 Bending stiffness calculation of lipid membrane using the methodology 

proposed by Hu et al.  [29]. 
x

F  is the force exerted by the lipid membrane on the 

yz face of the simulation box and is scaled with  
l ip id

lip id


, the coefficients 
i

b ’s are 

the coefficients in the expansion, 
x

L and 
y

L  are the length of the membrane 

along x and y directions, 
B

k  is the Boltzman Constant and T  is the temperature.  

……………………………………………………………………………….. 286 

5.4 Schematic of membrane fusion under the effect of indenters ………………. 292 

5.5 Critical separation between the membranes for hemifusion to occur………... 293 

5.6 Fusion pore formation in membranes under in-plane tension ………………. 294 

5.7 SNARE protein mediated synaptic vesicle fusion a) side view (yz plane) b) top 

view (xy plane) ……………………………………………………………… 297 

5.8 (a) A closer look at the fusion pore from the top vesicle side (xy plane) (b) View 

of the red slice of the fused membranes along x axis (c) View of the green slice 

of the fused membranes along y axis ...……………………………………… 300 

 

 

 



1 

 

Introduction 

1.1 Neurotransmission 

In the body of living organisms, the neural information is transmitted across the 

nervous system by the process of neurotransmission. The nervous system is a network 

of specialized cells called neurons. Neural information is transmitted from a neuron to 

its neighbor in the network by electric impulses and chemical transfer. The chemical 

transfer involves transportation of neurotransmitter and is synchronized by an electric 

impulse commonly known as an action potential. The neurotransmitters are packed 

inside nanometer scale sacs known as synaptic vesicles. These vesicles are fused to the 

base of the neuron to release the neurotransmitter towards the next neuron in the 

network.  

The process of neurotransmission is a crucial step in the functioning of the nervous 

system. An improper neurotransmission can lead to various neurological disorders. 

For example, GABA (gamma-Aminobutyric acid) is associated with the regulation of 

neurotransmission of Glutamate, which is a key neurotransmitter associated with 

anxiety. The malfunctioning of GABA receptors at the interface between two neurons 

is believed to be the cause behind anxiety [1]. In the case of brain injuries it has been 

reported that the level of calcium ions in the neurons goes up, which will result in 

improper action potential and hence poor neurotransmission [2]. Huntington’s disease 

involves an excessive release of the neurotransmitter Glutamate and reduced release of 

Dopamine at the synapse. Glutamate and Dopamine interplay governs the motor 

control in living organisms [3]. A reduction on Dopamine release is the major cause 
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behind Parkinson’s disease. This reduction is caused by the blockage of dopamine 

receptors in the neurons [4].  

Despite its importance, neurotransmission is not well understood. The length scale 

involved in the process of neurotransmission is of the order of ~ 20nm , which is the 

radius of the synaptic vesicle [5]. The time scale associated with the neurotransmission 

is few nano-seconds [6].  The lacks of simultaneous spatial and temporal resolution at 

nanometer and nanosecond level respectively pose a huge obstacle in visualizing 

neurotransmission. 

In this thesis we used a simulation based approach to study neurotransmission and 

more specifically synaptic vesicle fusion. Coarse Grained Molecular Dynamics 

(CGMD) simulation techniques capture the role of molecular interaction in the fusion 

process. Continuum mechanics based models provide additional insight on a coarser 

scale. n this work, we employed both approaches to study synaptic vesicle fusion.  

In the next section, we will give a more detailed description of the synaptic vesicle 

fusion process. 

1.2 Synaptic vesicle fusion 

Synaptic vesicle fusion is the exocytosis process by which neurons exchange the 

neurotransmitter between them. As shown in Fig. 1.1, when a neural signal is received 

by neuron 1, also known as presynaptic neuron, that signal has to be passed along to 

the neuron 2, the postsynaptic neuron. The neural signal travels down the body of 

presynaptic neuron in form of an electric impulse referred to as, action potential. This 

action potential then reaches the synapse, which is the interface between two 

neighboring neurons. It needs to be emphasized that the neurons are not in direct 
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contact with each other – they are separated by a gap known as synaptic cleft which is 

approximately 20nm wide [7].   

 

Fig 1.1: Schematic of synaptic vesicle fusion (Image ref: J.H. Hurst et al, J. Clin. 

Invest., 2013, kennesaw.edu) 

The base of the presynaptic neuron has prepackaged sacs of neurotransmitters, known 

as synaptic vesicles with a radius of 20nm . These vesicles wait at the base of the 

neuron for an action potential to trigger the fusion process.  The machinery which 

drives the fusion process is a protein complex known as SNARE (Soluble NSF [N-

ethylmaleimide Sensitive Fusion protein] Attachment Protein Receptor). The role of 

the SNARE protein complex in fusion can be broken down into two major steps:  

1) To position the vesicle into the proximity of neuron plasma membrane and this 

step is known as priming of synaptic vesicles or docking; 

http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://www.jci.org/articles/view/72681/figure/3
http://science.kennesaw.edu/~jdirnber/Bio2108/Lecture/LecPhysio/48_05NeuronStructure_L.jpg
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2) Upon the arrival of action potential, the SNARE complex undergoes changes 

in conformation, which leads to fusion pore formation, allowing the release of 

the neurotransmitter into the synaptic cleft. 

Before diving into the details of the synaptic vesicle fusion, we will describe the 

different components of synaptic vesicle fusion. 

1.2.1 Lipid bilayer membrane structures: Synaptic vesicle and neuron plasma 

membrane 

The surfaces of synaptic vesicles and neuron are composed mostly of lipid bilayers. 

The lipid bilayer membrane is an omnipresent biological element playing an extremely 

important role in various biological processes. Lipid membranes along with specific 

set of proteins regulate the essential cell processes like exocytosis, endocytosis, cell 

division, signaling etc. Lipid molecules are the basic building blocks of the lipid 

membranes. These molecules are amphiphilic in nature, due to the presence of a 

hydrophilic head and hydrophobic tails as shown in Fig. 1.2. When exposed to an 

aqueous medium, they tend to form interesting structure in order to minimize their free 

energy. The goal of these structures is to keep the hydrophobic tails away from water. 

As shown in Fig. 1.2, bilayer membranes are one of many geometric structures which 

result under this criterion of energy minimization. 
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Fig 1.2: Lipid bilayer and single lipid molecule (Image ref: Wikipedia) 

The synaptic vesicle is roughly a spherical structure of radius ~ 20nm . The presence of 

neuro-transmitters inside the vesicles creates an osmotic pressure across the synaptic 

vesicle membrane.   This pressure is about 0.3Osm [8] at room temperature. This 

osmotic pressure creates an in-plane tensile stress in the membrane comparable to its 

rupture strength of ~10 / mmN  [9], [10].  The SNARE complex positions and further 

regulates the in-plane tension.  Specifically, the SNARE complex can imposed 

additional tension on the membrane, so a fusion pore can be formed to release its 

contents.  

In contrast, the neuron plasma membrane is a relatively larger structure. Relative to 

the synaptic vesicle, it can be modeled as flat surface as there is no significant osmotic 

pressure across this membrane. 

 

 

 

http://en.wikipedia.org/wiki/Phospholipid
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1.2.2 SNARE complex 

         

Fig 1.3: SNARE complex: a) along with synaptic vesicle and plasma membrane 

b) its constituent proteins (Image ref: Wikipedia) 

A SNARE (Soluble NSF Attachment Protein Receptor) complex is a tightly bound 

bundle of four proteins helices which is attached to the synaptic vesicle and neuron 

plasma membrane, as shown in fig 1.3a. Its role is to drive synaptic vesicle fusion. The 

four protein helices are contributed by three different proteins of SNARE family and 

they are listed below: 

1. Synaptobrevin (Syb) 

This is a protein which is anchored to the lipid bilayer membrane of the 

synaptic vesicle and also known as v-SNARE or VAMP (Vesicle Associated 

Membrane Protein) [11], [12]. It contributes one SNARE motif to the SNARE 

complex bundle.  Fig. 1.3b shows that the helix of this protein can be divided 

into three parts: 

a. SNARE motif 

https://en.wikipedia.org/wiki/SNARE_(protein)
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The part of the helix which is contributed towards the SNARE complex 

formation.  

b. Linker domain 

A small portion of the helix which connects the SNARE domain with 

the Trans-Membrane Domain. It is believed that it changes its 

conformation from unstructured (ribbon like) to structured (helical) 

upon arrival of action potential at the synapse [13]–[15]. 

c. Trans-Membrane Domain (TMD) 

The TMD is a helical domain of the Syb which extends into the 

membrane of the synaptic vesicle and acts as an anchor for it [16]. Due 

to the hydrophobic nature of the TMD it is stable within the 

hydrophobic core of the lipid bilayer membrane.  

2. Syntaxin (Syx) 

Syx is the SNARE protein which contributes one SNARE motif (called t-

SNARE) in the SNARE complex. It is anchored to the neuron plasma 

membrane by a similar hydrophobic TMD as that of Syb. Together SNAP-25 

and Syx are known as t-SNAREs, means that they are attached to the target 

membrane or neuron plasma membrane. It has a very similar structure to that 

of Syb as shown in fig. 1.3b, with a SNARE motif, a linker domain and a 

TMD. The linker domain of Syx is also believed to change its conformation 

from unstructured to structured, upon the arrival of action potential at synapse 

[17]. 
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3. SNAP-25 

SNAP-25 contributes two SNARE motifs in the SNARE bundle. The two 

helices are called SN1 and SN2. The unstructured sequence of SNAP-25 

between SN1 and SN2 is anchored to the top of the plasma membrane [18]. 

This domain of SNAP-25 is adsorbed on the surface of the plasma membrane 

due to palmitoylation of few amino acids.  

1.3 Role of SNARE on Vesicle Docking 

  

Fig 1.4: Synaptic vesicle docking 

A synaptic vesicle which is tightly packed with neurotransmitter migrates towards the 

neuron plasma membrane.  Upon which the v-SNARE anchored to the lipid membrane 

of the synaptic vesicle finds a t-SNARE group on the neuron plasma membrane. These 

v-SNARE and t-SNARE zips together to form the SNARE complex.  This zippering 

process closes the gap between the two lipid membrane structures and results in 

docking as shown in Fig. 1.4. Specifically, the zippering of the SNARE motifs 

provides energy to counter the repulsive effects of following interactions: 
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1. The lipid molecules have a hydrophilic head, which can be charged or polar. 

This gives rise to electrostatic repulsion between the two lipid membrane 

structures. 

2. Due to the polar/charged nature of the lipid heads, the water molecules are 

hydrogen bonded with lipid heads. The resistance against breaking the 

hydrogen bonds is known as hydration pressure. 

3. Hydrodynamic forces can affect the docking process. A pressure gradient is 

required to create an outward flow of fluid in between the two membranes. 

This allows for the molecular rearrangements in the opposing lipid membranes, 

setting the environment for the synaptic vesicle fusion. 

1.4 Synaptic Vesicle Fusion 

  

Fig 1.5: Synaptic vesicle fusion 
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When the action potential arrives at the synapse, the docked vesicle is brought closer 

to the neuron membrane. The arrival of action potential initiates several 

conformational changes in the docked synaptic vesicle. One of these changes takes 

place in the linker domain of Syb and Syx. The unstructured linker domain where 

bending stiffness is negligible becomes helical and this stiffening straightens the entire 

helix of Syb/Syx from its initial bent state.  In this straighten state, these helices 

minimizes their elastic free energy [19].  

The process of helical straightening brings the two lipid membranes further close to 

each other. This squeezes the water out and the molecular rearrangements in the lipid 

bilayer structures lead to formation of a fusion pore. The pathway from two lipid 

membranes to a fusion pore is a debatable topic [20]–[23]. The intermediate stages of 

this process are believed to be a stalk and a hemifused diaphragm. The hemifused 

diaphragm then ruptures to release the contents of the synaptic vesicle into the cleft. In 

some other observations, it has been proposed that next stage after stalk formation is 

fusion pore formation. Another topic of debate in this area lies in answering the 

question of how many SNARE complexes are needed for a successful synaptic vesicle 

fusion [24].   

1.5 Organization  

In this work we will talk about the approaches which have been incorporated in 

understanding the synaptic vesicle fusion. We have used a combination of continuum 

mechanics and CGMD models to simulate various aspects of the synaptic vesicle 

fusion. 
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In chapter 2, we have used a continuum mechanics model to understand the 

deformation and in-plane tension in the synaptic vesicle and neuron plasma 

membrane. This is in response to the external force acting on the membrane structures 

due to SNARE complexes and the electrostatic repulsion. From the deformed 

membrane shape we can locate the point at which the lipid membranes are closest to 

each other. This location is the probable site for stalk fusion and subsequently the 

fusion pore.   

In Chapter 3, we have used the continuum model developed in chapter 2 along with a 

CGMD model of SNARE complex to answer the highly debatable question of how 

many proteins are needed to dock a synaptic vesicle. The SNARE complex force has 

to compete against the electrostatic repulsion and hydration pressure. A vesicle is 

assumed to be docked, if the shortest gap between the two membranes is ~ 2nm  

[reference needed]. Based on our calculation 4-8 SNAREs complexes are sufficient to 

dock the synaptic vesicle at ~ 2nm away from the neuron plasma membrane. 

In chapter 4, we looked into the role of hydrodynamics in the synaptic vesicle 

docking. During the docking the physiological fluid has to be squeezed out from the 

gap between the vesicle and neuron plasma membranes. We have used a lubrication 

theory to compute the traverse time of synaptic vesicle under the effect of SNARE 

forces. Based on the experimental studies [25], it takes ~ 250 secm to dock a synaptic 

vesicle and it requires the force from the SNARE complex to decay rapidly as the gap 

closes.  
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Chapter 5 looks into the CGMD simulation of SNARE mediated membrane fusion and 

pore formation. The CGMD SNARE model used in [19] is implemented along with a 

CGMD lipid bilayer model [26]. The simulation studies inclined towards the 

possibility of stalk and subsequently a pore is formed. The simulation is still under the 

parameter tuning for interaction between SNARE and lipid bilayer membrane CGMD 

models. 
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Chapter 2 

 

Synaptic vesicle docking is an extremely crucial step during the neurotransmission 

process. A neurotransmitter filled synaptic vesicle is made fusion ready and positioned 

in the proximity of the neuron plasma membrane. Docking is mediated by the proteins 

of SNARE family. These proteins zip together to form a SNARE complex. This 

complex serves as the clamping mechanism for the docking. The constituent proteins 

are attached to both neuron plasma membrane and synaptic vesicle at one end. The 

other end of these proteins is the initiation site for the zippering.  This zippering 

provides the necessary force needed for clamping to dock the vesicle and competes 

against the electrostatic force. This electrostatic force originates due to the charge 

present on the lipid membranes. A force balance between the clamping force and 

electrostatic forces determine the deformation and stress in the membranes.  

In this chapter we present a continuum mechanics based theory to estimate the state of 

the system under a prescribed clamping force. The system is assumed to be an axis-

symmetric model, in which the synaptic vesicle is modeled as a sphere, whereas the 

neuron plasma membrane is modeled as a circular disc. The size of the circular is 

chosen to be much larger than the size of the synaptic vesicle ( ~ 20nm ). This 

assumption is made based on the cryo-electron images of the synapse. The neuron 

plasma membrane is nearly flat compared to the synaptic vesicle. To mimic the far 

field, a constant line load is applied on the edge of the neuron plasma membrane. The 

clamping force of the SNARE complex is distributed over a circular line on the 

synaptic vesicle and the neuron plasma membrane. 
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The model predicts the location of the closest proximity between the vesicle and 

plasma membrane occurs near the location where proteins are anchored to the 

membranes. This suggests that the fusion of the membranes gets initiated at location 

away from the bottom of the synaptic vesicle. At this location the in-plane tension in 

the membrane of vesicle is significantly high compared to the rest of the surface of the 

vesicle. One other important finding indicates that if the location of the load 

application is moved away from the center the more SNARE complexes need to be 

employed in order to maintain a similar distance of closest proximity between the two 

membranes. We also study the effect of surface charge, osmotic pressure and the far 

field pretension in the neuron plasma membrane on the deformation in the system. 

 

2.1 Abstract 

Neurotransmitter release from neuronal terminals is governed by synaptic vesicle 

fusion. Vesicles filled with transmitters are docked at the neuronal membrane by 

means of the SNARE machinery. After a series of events leading up to the fusion pore 

formation, neurotransmitters are released into the synaptic cleft. In this paper, we 

study the mechanics of the docking process.  A continuum model is used to determine 

the deformation of a spherical vesicle and a plasma membrane, under the influence of 

SNARE-machinery forces and electrostatic repulsion. Our analysis provides 

information on the variation of in-plane stress in the membranes, which is known to 

affect fusion. Also, a simple model is proposed to study hemi-fusion. 
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2.2 Introduction 

Neuronal transmitters are packed into vesicles and released from synaptic terminals by 

fusion of the vesicles with the plasma membrane. Synaptic vesicle fusion is mediated 

by the protein complex termed the SNARE. Details of the mechanism are still unclear, 

since it occurs at the microsecond scale, and thus it is difficult to capture the process 

using current imaging techniques. The release of transmitters into the synaptic cleft 

involves two major steps: 1) docking of vesicle on the plasma membrane, and 2) 

membrane fusion and subsequently pore opening. The central role in this entire 

mechanism is played by a specialized group of proteins termed the SNARE (soluble 

N-ethylmaleimide-sensitive-factor attachment protein receptor) complex [1–4]. More 

specifically, the process involves two transmembrane proteins Synaptobrevin 2 (Syb), 

Syntaxin 1 (Syx) and a protein SNAP-25 [5]. Syb is attached at one end to the vesicle 

by embedding a hydrophobic trans-membrane domain [6] into the vesicle membrane. 

It is hence referred to as “v-SNARE”. The protein Syx embeds a transmembrane 

domain [7], and the protein SNAP-25 is anchored with a palmitoyl chain [8], onto the 

plasma membrane. The proteins attached to the target membrane are termed as “t-

SNAREs”. When a vesicle is near the plasma membrane, t-SNAREs form an acceptor 

site for the v-SNARE leading to the formation of the SNARE complex [9,10]. This 

SNARE complex consists of four helices (contributed by the Syb, Syx and SNAP-25), 

zippered into a tight bundle. It has been suggested that several SNARE complexes are 

involved in the docking process and the zippering action of these SNAREs provides a 

force to counter the repulsive electrostatic force between the membranes. Gao et 

al.[11] using optical tweezers controlled pulling experiments, found that the SNARE-
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machinery generates forces of an order of 2-20 pN, depending on the level of 

zippering. Recently, calculations of the electrostatic repulsion between the vesicle and 

the membrane suggested that the repulsive force changes strongly with distance 

between the vesicle and membrane, and is on the order of 100-200 pN for a separation 

of 1nm between a typical synaptic vesicle and plasma membrane [12]. 

Synaptic vesicle and plasma membranes are bilayers made up of relatively long 

amphipathic lipid molecules, with their hydrophilic heads in the aqueous solution on 

either side of their bilayer and the hydrophobic tails in the interior. Lipid membranes 

are generally regarded as two dimensional fluids that, from modeling point of view, 

conserve their area during deformation [13,14]. Because the outer surface of the 

bilayer usually carries a net negative charge, considerable force is required to 

overcome the electrostatic repulsion between the vesicle and plasma membranes to 

dock the former. It has been hypothesized that the energy released during the SNARE 

zippering is utilized to overcome the energy barrier of the electrostatic interaction 

[15]. 

Coarse-grained continuum models for the contact mechanics of vesicle membranes 

have been studied by various authors [16–28]. Recently, Blount et al. [29], analysed 

the problem of a pressurized cylindrical vesicle interacting with a rigid substrate under 

a potential which has short range repulsion and long range attraction. Our approach in 

this work is similar, except that our vesicle is spherical, our substrate is a lipid 

membrane and the attractive potential is replaced by the zipping force exerted by the 

SNARE-machinery, which is modeled as a concentrated line load acting on both 
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membranes. Electrostatic repulsion between the membranes is modeled using the 

Debye-Huckel theory [12].   

 

2.3 Geometry and Model 

The geometry is shown schematically in Fig 2.1. We use a cylindrical coordinate 

system  ,,r z  with   the angle of revolution about z  axis. To simplify the 

calculation, we assume axisymmetry; that is, we model the docking process by 

prescribing a circle of line forces of magnitude F on a spherical vesicle of radius 

R (see Fig 2.1) as well as on the plasma membrane. These forces represent the zipping 

of the SNARE-machinery and counter the repulsive electrostatic forces between them. 

As shown in Fig 2.1, the line force acts along a latitude of the undeformed vesicle and 

is constrained to remain normal to the deformed surface. The location of the latitude is 

specified by the arc length
0S of a cross-section in the reference configuration, which is 

taken to be a spherical vesicle. Because the plasma membrane is very large compared 

to the vesicle radius, its reference configuration is taken to be a flat circular membrane 

of radius L  under pretension
0T . We allow two different types of line forces acting on 

the plasma membrane. Both sets of forces act on a circle of radius 
0S

 
and have the 

same magnitude F . The first set is assumed to be always normal to the deformed 

plasma membrane, while the second set is always directed opposite to the force on the 

vesicle (Fig 2.1). 

The double layer model of charged surfaces in electrolytes has been successfully used 

to model the electrostatics near the lipid bilayers [30,31].   In this work, we follow the 
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double layer model used by Bykhovskaia et al. [12] where electrostatic repulsion 

between the vesicle and plasma membrane is determined by the solution of Debye-

Huckel (DH) equation.  McIntosh et al. [32] observed that when the gap between the 

membranes is greater than 1 nm, the DH equation predicts membrane interactions 

consistent with their experiments. For membrane separation below 1 nm, which is 

close to the Debye length (0. )nm67Dl  in our system, hydration repulsion, van der 

Waals attraction, and nonlinearity in the electrostatics come into play. Thus, as long as 

the gap between the membranes is greater than the Debye length, the solution of the 

DH equation should give a reasonable description of the electrostatics. It will be 

shown in the results section that, for the issues addressed in this manuscript, the 

separation between the membranes is always greater than twice the Debye length, 

ensuring that our electrostatics is consistent with the DH approximation. In our model, 

the electrostatic interaction between curve surfaces is calculated by the Derjaguin 

approximation [33], which assumes that locally the surfaces are flat, so interaction 

between two material points on the different membranes separated by a distance of 

 (see Fig. 2.1, figure on right) can be described by determining the force per unit 

area between two infinite parallel planes separated by the same distance. The DH 

equation, appropriate for this geometry is given by eq. 2.1a. The repulsive force per 

unit area between the two planes, 
eF , is obtained by solving eq. 2.1a using the 

constant charge boundary conditions (eq. 2.1b). Details of solution are given in 

Supplementary information (see eq. A2.105).   
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 2.1a-c 

where 2( 0.025C/ m )v  
 
and 2( 0.070C/ m )pm    are the surface charge densities 

of the vesicle and plasma membrane respectively, ( 0.67 )Dl nm is the Debye length, 

 80   is the relative permittivity of water and 
0  is the permittivity of vacuum. 

Our choice of surface charge densities above is based on the work of Bykhovskaia et 

al. [17]. It is about 2 to 3 times higher than those reported by Pekker et al. [34].  

However, as noted later (see Fig. 2.6), the tension profile between membranes is 

insensitive to the magnitude of charge densities within this range. We also check that 

the equilibrium distances between the membranes are also not very sensitive to the 

magnitude of charge densities within this range (see  Fig. A2.5).    

The membranes are deformed by the zipping force of the SNARE complexes and 

electrostatic repulsion force. We model this deformation using continuum theory. The 

strain energy densities W of both membranes are given by, 

2W cH          2.2 

where H  is the mean curvature and 10 20 BTc k  is the bending rigidity of the lipid 

bilayer [35].  
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Fig 2.1: Schematic of the axisymmetric model. Inset shows the deformed structure under the effect of SNARE-machinery 

force and electrostatic interaction. 

2.3.1 Governing equations for vesicle membrane 

In the following, we use the formulation of Jenkins [17,36] and Long et al. [37] to 

derive the governing equations for the deformation of the spherical vesicle and the flat 

plasma membrane. The undeformed configuration of the vesicle is a sphere of radius 

R with arc-length in a cross-section denoted by S , whereas the plasma membrane 

occupies the interior of a circle of radius L R . We introduce the notation  to 

denote the angle made by the tangent to a point on the cross-section of the deformed 

membrane in the  ,r z  plane with the z axis (see Fig 2.1a). The osmotic pressure of 

the vesicle is denoted by
0p . The forces acting on the vesicle and plasma membrane 

due to SNARE complexes (several SNARE complexes can be attached to a vesicle, 

and the forces due to these vesicles are distributed uniformly on a closed circular arc 

on the vesicle) are denoted by F  and F  respectively (see Fig 2.1).  Forces are 

resolved into a normal ( nF ) and tangent component ( tF ) with respect to the deformed 
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vesicle and plasma membrane.  The electrostatic interaction force eF  is given by eq. 

2.1 and is assumed to act in the z direction.   

The equations describing the deformation involve the angle , the mean curvature H , 

the deformed arc length , the deformed coordinates of a generic material point 

 , ,r z  which has an arc length coordinate S  in the undeformed configuration.  The 

force variables relevant to the calculation involve the shear force Q  and, d  an 

integration constant which determines the tension T  in the membranes.   

 

To reduce the number of parameters in our simulations we introduce normalized 

variables which are indicated by a horizontal bar.  All distances are normalized by R , 

the radius of the vesicle.  Since the bending rigidity c  has units of energy, we use it to 

normalize force per unit length quantities, i.e., the out of plane shear, Q  and in-plane 

tension T is normalized by
2/c R . Also, force per unit area quantities, 0p , eF , tF  and 

nF  are made dimensionless by dividing with
3/c R .  These variables are summarized in 

eqs. 2.3, below.    
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Fig 2.2: (a) Arc length and tangent angle over the membrane, (b) Forces and moment along a cut 

in the membrane. 

In all simulations, we set the tangential component of snare force 
tF
 
on the vesicle to 

zero.  In the Appendix A2, we derived in detail the six ordinary differential equations 

governing the deformation of the vesicle membrane (the final forms of these equations 

are given in eqs. A2.85 & A2.87):  
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    2.4a-f 

where the dot denotes differentiation with respect to the normalized undeformed arc 

length S , and  

,            2.4g 

Eq. 2.4a represents force balance in the normal direction (eq. A2.83). Eqs. 2.4b and 

2.4c are rearranged form of the mean curvature (eq. A2.74) and shear force (eq. 

A2.77) definitions, respectively. Eqs. 2.4d and 2.4e represent the geometric 

relationship between the variables (eq. A2.65), whereas, eq. 2.4f is obtained from the 

force balance in tangential direction (eq. A2.84). The generalized pressure p in Eq. 

2.4a is related to the normalized osmotic pressure
0p , the electrostatic force per unit 

area, eF and the normal component of the line load applied at 0S S , nF  by 

 0 0sin ,e n Sp p F F S             2.4h 

where 0( )S S  is the Dirac delta function. 

 

These differential equations are supplemented with the boundary conditions: 
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 2.5a-f 

The boundary conditions defined above describe the symmetry in the vesicle 

geometry. About the symmetry ( z ) axis, the curve has zero slope and the out of plane 

shear Q  is zero, at both 0S   and . Also, for the continuity of the geometry, we 

impose 0r   at both 0S   and . 

The notation for positive shear force and tension is described in  

Fig 2.b. Finally, the expression for the normalized in-plane tension T in both the 

vesicle and plasma membranes is given by 

2 2
2R cTR

d c
os

T
c r

H cH
c


   

 
  

 
.       2.6 

2.3.2 Governing equations for plasma membrane 

The governing equations for the deformation of the plasma membrane are the same as 

eqs. 2.4a-2.4f, (see SI for details) except that eq. 2.4g must be replaced by 

                    2.7 

This change is due to the difference between the reference configurations (one is a 

sphere and the other a flat surface).  The boundary conditions are: 
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       2.8a-f  

The first three boundary conditions eqs. 2.8a-2.8c are due to axisymmetry.  Eq. 2.8f 

states that the tension in the plasma membrane approaches the pretension at the 

boundary. This boundary condition along with eqs. 8d and 8f allow the plasma 

membrane to deflect only in horizontal direction. Had we replaced this boundary 

condition with a clamped condition, the deflection everywhere would be zero because 

of area incompressibility.    

The coupled differential equations given by eqs. 2.4a-2.4g and eq. 2.7 with the 

boundary conditions given by eqs. 2.5a-2.5f and eqs. 2.8a-2.8f are solved using the 

MATLAB® bvp4c solver. The input parameters for the solver are the osmotic 

pressure 
0p
 

across the vesicle membrane, which remains fixed throughout the 

deformation, SNARE-machinery force parameters (
0S
 

and F ), electrostatic force 

 eF , and pretension (
0T ) in the plasma membrane. 

2.4 Results 

We first study the dependence of the deformed shape on magnitude of the line 

force F , for the case where force is equal and opposite on the vesicle and plasma 

membrane. The location of force application is fixed at 0 / 6S   on both the vesicle 
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and plasma membrane, as shown in Fig 2.3. We vary the strength of the line force in 

the range of 5 20  in dimensionless terms, which is equivalent to a total force 

between 66 266 pN . In our axisymmetric model, this force represents the total force 

exerted by all the SNARE complexes attached to the vesicle.   For example, Gao et al. 

[17] found that the unzipping force for a single SNARE complex ranges from 2 to 20 

pN. This force range should be treated as the lower estimate of the forces exerted in 

vivo, since in the study the SNARE complex unzippering occur at the range of 

seconds, while the process of neuronal fusion occurs at the scale of microseconds.  If 

we assume that the force of 20pN or somewhat higher unzips a single SNARE 

complex in vivo, the force range explored in our study would be sufficient to separate 

3-6 SNARE complexes. Fig 2.3 shows the deformed shapes of the membranes for four 

different values of F . Note that the minimum separation between the membranes does 

not occur at the bottom of the vesicle, as is usually assumed, but near the point of load 

application where the SNARE complex is located. For practical purposes, the point of 

load application can be used as an estimate for the minimum separation. This 

separation is representative of the separation between the C-termini transmembrane 

domain of Syb and Syx. Fig 2.4 shows this estimate of minimum separation versus the 

applied force. The separation decreases rapidly with increasing applied force, with the 

rate of decrease of separation becoming slower at higher loads. Note that the minimum 

separation in the simulations is greater than twice the Debye length of our system, 

which is consistent with the DH approximation.     

As shown in Fig 2.5a, the entire vesicle membrane is under tension and the maximum 

tension occurs at the bottom of the deformed vesicle. However, due to the direction of 



 

31 

 

the applied force, part of the plasma membrane can be under compression despite the 

pretension. Our results show that the maximum compression occurs at the center of 

the plasma membrane as shown in Fig 2.5b.  Because the applied force in the plasma 

membrane has a tangential component, the tension is discontinuous across the line of 

load application as shown in Fig 2.5b.  Fig 2.6 shows that these maxima are quite 

insensitive to the surface charge densities, that is, increasing the surface charge 

density on the plasma membrane by a factor ~ 3  does not affect the maximum tension 

and compression for a given applied force. The rupture strength of a lipid bilayer is 

approximately 10 mN/m [38,39], which on our non-dimensional scale turns out to be 

~ 44  units. Therefore, the range of SNARE forces used in our analysis is not sufficient 

to cause rupture.  

The results in Figs 2.3-2.6 are for membranes that are subjected to equal and opposite 

forces. We also carried out calculations for the case where the applied forces are 

always normal to the deformed surfaces. Our numerical result shows that except for 

the fact that the plasma membrane has much less compression, there are no qualitative 

differences between these two loading configurations; therefore, plots similar to Figs 

2.3-2.6 for this other loading conditions are given in the Appendix A2.  For the rest of 

this paper, we will focus on the case in which the applied forces are equal and 

opposite.   
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Fig 2.3: Deformed geometry for different force magnitudes. The thick lines represent the plasma 

membrane and the thin lines represent the vesicle. The inset shows the zoomed-in section near the 

load application point (shown as   ). The parameters of the analysis are: load application 

point, 0 / 6S  , pretension in plasma membrane, 
0 1T   and vesicle pressure. 0 1p   . 
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Fig 2.4: Separation between the two C-termini (of Syx and Syb) of SNARE-machinery with the 

strength of the line force 
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Fig 2.5: Tension along the arc length for the vesicle (a) and the plasma membrane (b). The inset in 

(b) shows the location of force on the vesicle and the plasma membrane in the undeformed 

configuration. 

Next, we vary the location of the SNARE-machinery on both vesicle and plasma 

membrane ( 0S ), and keep F  fixed. It is interesting to note that, because the 

magnitude of the line force is fixed, increasing 0S
 
to 

'

0S is equivalent to increasing the 

number of SNAREs by a factor of 0 0sinS / sinS
 
in our simulation.  Fig 2.7 shows that 

increasing 0S  increases the deformation of the membranes, bringing them closer. The 
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tension (compression) in the membranes also increases with 0S , as shown in Fig 2.8 

and Fig 2.9. Note that as 0S  increases, there is a smaller jump in tension in the plasma 

membrane. This result is due to the fact that, as 0S  increases, the deformed plasma 

membrane surface reorients so that the direction of the SNARE force is closer to the 

surface normal. Fig 2.10 shows that, as the SNARE-machinery moves away from the 

center (increasing 0S ), the maximum tension increases rapidly. Recall in Fig 2.6 the 

maximum tension and compression vary approximately linearly with the magnitude of 

the applied force. Therefore, the slope of the lines in Fig 2.10 increases with 0S . 

 

Fig 2.6: Maximum tension in vesicle and compression in plasma membrane as the load is 

increased for different surface charge densities. 
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Fig 2.7: Deformed geometry of the membranes under varying force location, while keeping its 

magnitude the same. The inset shows the location of the force application point ( ) on the 

deformed geometry for different cases. The parameters are: line force magnitude, 20F  , 

pretension in plasma membrane, 0 1T   and vesicle pressure. 0 1p   . 
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Fig 2.8: Tension along the arc length of the vesicle (a) and the plasma membrane (b), when the 

location of the SNARE-machinery force is varied. Inset in (b) shows the different locations of the 

SNARE-mechanism. 
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Fig 2.9: Maximum tension in the vesicle and the plasma as the location of the force is varied 

 

Fig 2.10: Maximum tension in the vesicle and plasma as the magnitude of force supplied by the 

SNARE-machinery is increased for different locations of the SNARE-machinery. 
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Our pretension boundary condition allows the plasma membrane to deflect. In the real 

system of synaptic vesicle fusion, pretension in the membranes is due to the osmotic 

pressure inside the neuron cell relative to its surroundings. In particular, the case of 

infinite pretension is equivalent to a rigid substrate which was studied earlier by 

Blount et al. [29] (see introduction).     

To determine the influence of pretension in the plasma membrane, we keep the 

SNARE-machinery force at a fixed magnitude and location, while varying the 

pretension imposed at the far end of the plasma membrane. Fig 2.11 shows the 

deformed shapes for two different values of pretension 0T , the deformation in the 

plasma membrane as well as that of the vesicle, decreases as the pretension increases. 

The distributions of tension in the membranes are shown in Fig 2.12 for two different 

pretensions. For the larger pretension, the entire plasma membrane is under tension. 

The critical dimensionless pretension where this occurs is 7, as shown in Fig 2.13, 

where we plot the maximum tension (compression) of the plasma membrane versus 

pretension. Interestingly, the maximum tension in the vesicle decreases with 

pretension. Fig 2.13 shows why this is the case: the minimum separation between the 

plasma membrane and the vesicle increases as the pretension becomes higher. The 

increase in separation results in a decrease in the electrostatic repulsion. Because the 

electrostatic force has a tangential component along the vesicle surface, lowering this 

force lowers the membrane tension.   
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Fig 2.11: Deformed geometry of the membranes as the pretension in the plasma membrane is 

varied. Inset shows the location (  ) of the force on the deformed geometry. The parameters are: 

load application point, 0 / 6S  , line force magnitude 20F   , and vesicle pressure, 0 1p   . 
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Fig 2.12: Tension in the vesicle and compression in the plasma membrane along the arc length for 

two different values of pretension. 
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Fig 2.13: Maximum tension in the vesicle and maximum compression in the plasma membrane 

(on the left axis) and minimum separation between the vesicle and the plasma membrane (on the 

right axis) as pretension is varied 

To determine the influence of osmotic pressure across the vesicle membrane, we keep 

the SNARE-machinery force at a fixed magnitude and location, while varying the 

osmotic pressure across the vesicle membrane. In the synaptic vesicles the osmolarity 

is ~ 0.3 Osm , which on non-dimensional scale induces a pressure of about ~ 70  inside 

the vesicle [40,41]. As stated in [41], the actual osmolarity could be lower than 

0.3 Osm , as some of the neurotransmitters can bind with the matrix inside the synaptic 

vesicle, resulting in a lower osmotic pressure. Fig 2.14 shows the deformed shapes for 
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three different values of osmotic pressure difference, it is evident that the deformation 

in the plasma membrane increases as the osmotic pressure increases. However, the 

minimum separation between the vesicle and the plasma membrane is nearly 

insensitive to the osmotic pressure. The distributions of tension in the membranes are 

shown in Fig 2.15 for three different pressure values. As expected, the profile of 

tension in the vesicle translates upward with a constant value proportional to the 

osmotic pressure. As a result, the maximum tension increases more rapidly in the 

vesicle, as compared to the plasma membrane, as shown in Fig 2.16.  If the osmotic 

pressure of the vesicle is kept at a sufficiently high value, so that the peak tension at 

the vesicle bottom exceeds the failure tension value ( ~ 44units on the dimensionless 

scale), then it could expose a site for fusion of the membranes. 

 

Fig 2.14: Deformed geometry of the membranes as the osmotic pressure in the plasma membrane 

is varied. Inset shows the location ( ) of the force on the deformed geometry. The parameters 

are: load application point, 0 / 6S  , pretension in plasma membrane, 0 1T   and line force 

magnitude 20F  . 
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Fig 2.15: Tension in the vesicle and compression in the plasma membrane along the arc length for 

three different values of osmotic pressure. 
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Fig 2.16: Maximum tension in the vesicle and plasma membrane as the magnitude of pressure 

across the vesicle is increased 

2.5 Effect of Hemi-fusion 

Numerous theoretical and experimental [2,42–45] studies suggested  an intermediate 

step in the fusion process that involves the formation of a stalk and hemi-fusion 

diaphragm, followed by membrane rupture. The formation of stalk implies that 

instability developed at some location between the two bilayers, which induces a 

localized lipid rearrangement.  Eventually, this rearrangement of lipids leads to the 

formation of a single bilayer, which is commonly known as hemi-fusion diaphragm.  

As mentioned above, our numerical results indicate that the shortest gap between the 

two membranes lies near the SNARE location. This supports the experimental 

observation that the trans-membrane segment of SNARE induces distortion in the lipid 

packing around it [46]. It is possible that this distortion will eventually lead to the lipid 

rearrangement in the membranes resulting into the formation of hemi-fusion 
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diaphragm. In the following, we propose that at this point of proximity hemi-fusion is 

initiated and propagates from there towards the bottom of the vesicle.  

The exact mechanisms behind this complex sequence of events are still an active area 

of research. It is difficult to understand hemifusion using continuum membrane theory, 

because hemifusion is controlled by events on the nanometer scale. In this section, we 

consider a simpler question: assuming that there is a hemi-fused state, what is the 

tension in the hemi-fused region?    

Because hemi-fusion involves very close contact between the lipid bilayers, it is 

reasonable to assume that the two membrane surfaces are completely dehydrated. 

Consistent with this assumption, hemi-fusion is modeled in our continuum approach 

by turning off the repulsive force inside a specified region on the membranes, which 

we define as the hemi-fused region. Thus, in the hemi-fused region, the outer surface 

of the vesicle is free of electrostatic repulsion and hence can be modeled as traction 

free.  A limitation of our model is that it does not account for the fact that the hemi-

fused region has only one bilayer instead of two. Because the real system consists of 

only one layer and we have neglected concentrated moments and shear at the edge of 

the hemi-fused region, the tension predicted by our model is expected to be lower than 

in the actual situation.   

Details of these simulations are presented in the Appendix A2. Here we summarize the 

main results. Our key result is that the membrane tension increases with the length of 

the hemifused region. The deformation and tension are more severe than the case of 

without hemifusion. Our results suggest that hemifusion propagation increases the 
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chances of membrane rupture. Eventually a fusion pore formation is possible in the 

hemifused region, where tension is highest. 

 

2.6 Summary and Conclusion 

In this article we use a coarse–grained continuum model based on membrane theory to 

study the deformation and tension in the vesicle and base membranes during docking.  

The zipping action of the SNARE complex is represented by two sets of equal and 

opposite line forces acting on the membranes. The repulsive interaction between the 

membranes is represented using Debye-Huckel theory.  The magnitude and location of 

these line forces are varied in our simulations to study their effects on tension and 

membrane deformation. We also study hemi-fusion by turning off the repulsive force 

in a region where the membranes are closest to each other.  Our results can be 

summarized as follows: 

 The closest approach between the vesicle and plasma membrane does not 

occur at the bottom of the vesicle, but near the location where the components 

of the SNARE complex are inserted into the membranes. 

 The maximum in plane tension occurs at the bottom of the vesicle membrane. 

 The maximum in plane tension increases linearly with the applied force.   

 The maximum in plane tension is insensitive to the charge density of the 

surfaces.  This can be explained by the fact that, the change in repulsive forces 

alters the separation between the membranes, while keeping the local 

deformation nearly the same as before. 
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 For small pretensions, the plasma membrane can be under compression, and 

the maximum compression occurs at the center, directly below the bottom of 

the vesicle.   For normalized pretension greater than 7, the entire plasma 

membrane is under tension. 

 As the location of force is moved away from the bottom of vesicle (which is 

equivalent to increasing the number of SNAREs in our simulation), the tension 

in the vesicle membrane increases. 

 Hemi-fusion causes an increase in the in-plane tension of both the vesicle and 

the plasma membrane. We expect that this increase in the magnitude of the 

tension will eventually lead to rupture of the membranes, leading to fusion 

pore formation. 
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Appendix A2 

 

A2.1 Differential Geometry Primer 

 

Like a plane in Cartesian coordinates, a surface can be defined using two 

independent variables, u (where 1,2  ). 

Therefore, a point on space can be written as, 

( )r r u .                        A2.1 

A local basis can be defined in the tangent plane at a particular position as, 

,ra
r

u
 





 ,                       A2.2 

where, comma denotes the partial derivative with respect to u . Thus, 1a and 2a are 

tangent vectors to curves with constant 1u and 2u at that particular position. 

 

Reciprocal basis a
 can be defined as, 

a a 

   . A2.3 

Normal to the surface can be defined as, 

1 2

1 2

a a
n

a a





, A2.4 

as it can be seen that the normal is a unit vector by definition. 
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First fundamental form of surface a , is given by the following relation, 

a a a    , A2.5 

where, a is the symmetric metric tensor and its inverse matrix is a . 

Using the fact that, normal is perpendicular to the tangent plane at a given position, 

one can get the Second fundamental form of surface,b as, 

0n a   

, , 0n a n a       

, ,b n a n a        . A2.6 

Again, we can see that b is a symmetric tensor. 

Mean curvature can be related to the surface parameters as, 

 , ,

1 1 1 1

2 2 2 2
b aH b na a n a   

             A2.7 

Elemental area, can be written as, 

1 2 1 2 1 2

1 2 1 2dA a du a du a a du du du da u     .       A2.8 

Here, we used the result that
1 2 aa a  , which can be shown as follows, 

2 2211 12 1 2

2

2 2 2

1 1 11 1

21 22 2 1 2

2

2

1

1

cos
det det det sin

cos

a a a aa a a a a a
a a a

a a a aa a a a a a






 
   

 

2

1 2 1 2a a a aa a    A2.9 
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Note : Using a and a for lowering and raising indices 

A vector V can be expressed in terms of its covariant and contravariant components 

as, 

V V a V a 

    

By performing dot products one can find a relationship between the covariant and 

contravariant components as, 

V V a 

 and V V a  . 

When V a , it can be easily shown that, 

a a a

  . 

Similarly, when V a , 

a a a 

 . 

Taking dot product of above two relations, 

a a  

  . 

Thus it can be clearly seen that a and a can be used to raise and lower indices. 

 

A2.1Covariant Differentiation 

First we describe the general covariant differentiation for 3-D curvilinear coordinates. 

So, if one moves from one position to other by keeping a vector exactly same, both the 

components and basis vectors will change. Therefore, when defining the derivative of 

a vector, 

i j

i jV V a V a   
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Where, , andi j k  can take values1,2 and 3, differentiating with respect to 
ku gives, 

, , ,

i i

k k i i kV V a V a   

, , ,

j j

k j k j kV V a V a   

Now, let’s define,
, ,

l

i k i k la a 
 

We can get a definition for ,

j

ka
using the following identity.  

 

j j

i ia a    

, , ,0j j j l j

i k i k i k ik la a a a a a a a           

, , .j j j j i

i k ik k ika a a a         

Therefore, the expression of covariant derivative can be simplified as, 

   , , ,

i j i l j

k k jk i j k l jkV V V a V V a      

, | |

i j

k k i j kV V a V a   

where, 

| ,

i i j i

k k jkV V V    A2.10 

| ,

l

j k j k l jkV V V      A2.11 

Considering the fact that, for the present case at given position the set of basis 

is ( , )a n .So the relation of covariant differentiation for a vector 

 n

nV V V a V n V a V n 

      can now be written as, 

, ,,

n nV V a V a V n V n 

          

,

n n n n

n nV V a V a n V n V a n   

        
               
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,

n n n n n

n nV V V V a V V V n    

      
                 

| |,

nV V a V n

      A2.12 

where, 

| , ,|& n n

n

n n nn

nV V V V V V V V 

     

   

           

Similarly, 

, , ,, n nV V a V a V n V n 

           

, ,

n n

n n n nV V a V a n V n V a n    

      
               

, ,

n n

n n n n nV V V V a V V V n  

        
                   

, |nV V a V n

    A2.13 

where, 

| ,| &n

n

n

n nnn nV V V V V V V V 

                  

The expressions for covariant differentiation in eq. A2.12 and eq. A2.13 can be 

simplified by using the following results, 

,

n a n b       A2.14 

,n n a b

  

      A2.15 

, 0n

n n n b a n

           A2.16                      2 ,n n a b

  

                       3 , 0n

n n n b a n

                       4 

(for the eq. A2.14, we have used Weingarten’s equation of surface from 

eq.A2.Error! Reference source not found. ) 

to get, 
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| , ,

|

|

| ,

&

&

nn n

nn n

V V V V b V V V

V V V V b V V

b

V b

 

 

 

 





   

    

    

 

  

    

    

     A2.17 

Thus finally giving us the expressions for covariant differentiation as, 

   , ,,

nnV V V V b a V V b n 

   

               A2.18 

and also, 

   , ,n nV V V V b a V V b n 

  

                  A2.19 

A2.1.2 Divergence of vector 

div V V V 

   A2.20 

From the definition of covariant differentiation, one can get, 

,V V V    

      A2.21 

We can write the derivative ,a  in terms of Christoffel’s symbol of second kind and 

first kind as follows, 

,a a a  

       A2.22
 

Taking dot product of both sides in eq. A2.Error! Reference source not found. 

with a
gives, 

a 

  

   A2.23 

We can get an expression for  as follows. 
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Begin with the relation, 

a a a   
 

Differentiating both sided w.r.t. u ,
 

a a a a a          

a      

 

On permuting these indices three times, following set of equations is obtained, 

,a       

a      

,a       

which eventually gives us, 

, ,

1

2
a a a                         A2.24 

Therefore, in eq. A2.Error! Reference source not found. 

, ,

1

2
a a a a       
      

1

2
a a 

  
 

This can be shown with the help of calculations below. 

   , , , , , ,a a a a a a a a a a a a 

                         

 , , , ,a a a a a a a a a  

                  

,

2

,

2r r
a a a a a a

u u u u
a  

        

  
        

    
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, ,a a a a 

        

a a a a 

   

      

 

    

    

 





    

 





    

0  

 

Therefore, the expression for divergence in eq. 

A2.Error! Reference source not found. can be written as, 

, , ,

1

2
V V V V V a a      

 



        A2.25 

From, the definition of derivative of determinant, 

a aa a
aa

u a u u 

 





  
 

   

 

,

1 a
a a

a u
 









         A2.26 

Further simplification of eq. A2.Error! Reference source not found. gives, 

 
, ,

1 1 1

2

V aa a

a
V V

u u
V V

ua a
V



   

   

 
 


 


 




 

Therefore the divergence of a vector is given as,

 

 1 V a

ua
V










   A2.27 
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A2.1.3 Relation between curvatures and elements of α

βb  

Characteristic equation of matrix b


is given as, 

2 det 0btr b 

         

2 2 0H K     A2.28 

Using Cayley-Hamilton theorem, 

2 0b b Hb K   

       

2 0b a b a Hb K 

  





      

2 0b b Hb K 

  





      

2 0b b Hb K 

 





     A2.29 

Using the above relation one can get, 

2 0b b Hb K



 

           

24 2b b H K

    A2.30 

A2.1.4 Weingarten Equation of surface 

From the second fundamental form of the surface we know that 

,b n a   
 

and also, 

1 0n n n n    
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Using above two relations, it can be easily concluded that, ,n  has no component along 

n , and
 

,n b a b a a a b a   

            

Thus Weingarten equation of surface is given as  

,n b a      A2.31 

A2.1.5 Gauss equations of surface 

Starting with the fact that, 0a n    and taking covariant derivative w.r.t. u , 

| ,0 0a n a n a n a n a n b                     

Also, substituting a in the definition of covariant derivative in eq. 

A2.Error! Reference source not found., to get, 

| ,a a a nb 



        ,
 

and taking dot product of both sides with a
, 

| , 0a a a a a a n a b   

 



           
 

Thus the Gauss equation of surface is, a b n  .     A2.32 

A2.2 Bilayer Membrane Calculations 

Energy stored in a membrane due to bending can be given as, 
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2W cH , A2.33 

where, W is the strain energy density, c is a material property known as lipid bilayer 

bending stiffness and H is mean curvature at a particular position. 

Consider a patch of lipid bilayer membrane A , with curve C surrounding that area. 

Total strain energy U of the membrane patch can be written as, 

2

A

U cH dA  , A2.34 

where, 
1 2adudA du using result of eq. A2.Error! Reference source not found.. 

The local area incompressibility can be written as, 

     1 20 0 0dd uA a du a            A2.35 

Imposing the local area incompressibility, using the Lagrange multiplier  u , U can 

be modified as, 

 2

A

U cH dAa   . A2.36 

Next we introduce a variation to the surface, r . 

From the principle of virtual work one can say that, 

U P  , A2.37 

where, P is the work done by external forces and moments acting on the membrane 

area A and on the curve C , surrounding the membrane. 
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Taking the variation of eq. A2.Error! Reference source not found., 

 2
A

U cH a dH A   
 

   . A2.38 

a can be simplified as, 

1 1

2 2

a
a a

aa a
a   




 


, 

using the relation from determinant theory, 

 
  1

det
det

ij

ij

A
A A

A







, 

to get, 

     
1

2

1

2 2 2

a a
a aa a a a a a a a a a

a a
a       

      
        

 

 aaa a 

   .     A2.39 

Next we simplify H . 

Using the definition of H from eq. A2.Error! Reference source not found., 

   , ,

1 1

2 2
H a a nn  

 

    . A2.40 

Simplifying the first term in expression of H gives, 

   , ,n aa a n  

    . 

Following are the steps for above. 



 

68 

 

       ,a a a aa n a ab

      

  
    
   

   

 

using the Weingarten equation 
, bn a   

 

   a b a ba a a 

   

  
  
 

   

   b a a a ab a 

   

  
   
 

   

using the symmetric nature of b  , 

   
1

2
b a a ab a 

  

 

    
 

 

   
1

2
b a b a 

  

 

  
 

 

   
1

2
b a a aab  

   

 



   
 

 

   
1

2
b a aaa  

  

  

   
 

 

 
1

2
b a a 

 

    

 
1

0
2

b  

     

Thus, back in eq. A2.Error! Reference source not found., the expression of H can 

be written as, 

   , ,

1 1

2 2
a nH a a n   

     A2.41 

Plugging in the results from eqs.A2.Error! Reference source not found. and 

A2.Error! Reference source not found. into eq. 

A2.Error! Reference source not found. to get, 
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     ,,

A

a a n aU cHa n a dacH A     

        
   

We now expand the middle term in the integrand by using the chain rule of 

differentiation as follows, 

, , , ,( ) ( )( ) ( )cHa cn nHa cHa c a nHn   

             
  A2.42

 

Using definition of covariant differentiation of indexed quantities [1].  

Consider a vector, T T a

  

For the componentT , covariant differentiation can be defined as 

,| |,T T T T T T       

           

Now, consider
,( )cH na

 , which can be written as 

, ,( ) ( )cHa cH an n 

      

Comparing with the above definition we have nT cH a    

, |( ) ( ) ( )cH a cH a cn nHn a   

               A2.43 

So, eq. A2.Error! Reference source not found. further expands the first term in eq. 

A2.42. 

Next, If we replace the component T with some vector pa
, where p is function of 

position 

| , , |( ) ( ) ( ) ( ) ( ) ( )pa pa pa pa pa pa       

          

Now, consider ,( )cHa

  

Comparing with the above definition we have pa cHa   
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, |( ) ( )cHa cHa cHa   

     A2.44 

Substituting back the results from eqs. A2.Error! Reference source not found. and 

A2.Error! Reference source not found.,  back into eq. A2.42, to 

get,

 , | |( ) ( ) (( ) ( ))cHa cH a cn Hn n a cHa cHa n      

                 

, | |(( )) ( )) (cHa cH an n ncHa  

          
  

  A2.45 

Surface divergence theorem states that, 

|

A C

F dA F m dA 

    A2.46 

Where, m is normal to curve C as well as perpendicular to normal to the surface at that 

position. 

Using surface divergence theorem in our calculations we can get, 

, | |( ) ( )( ) ( )
A AA

cHa cH an cdA n dA nHa dA  

           

, |( ( ) ( ( )))
A AC

cHa cH a mn dA n dl ncHa dA  

          
  

A2.47 

Now, we use the following identities to simplify the above RHS in eq. 

A2.Error! Reference source not found. (1 ) 0nn n n      

0 ( ) ( )a n a a nn          

As it can be seen above equations, ( )n is a surface vector and can be written as, 

 ( ) ( )n n a a

     A2.48 

Now consider the area integral term in eq. A2.Error! Reference source not found. 



 

71 

 

| , |( ) )( ) ( ( )cHa a cn cH aha n a   

            

using the Gauss equation of surface,
| | 0a b n a a   

          

  
| , |( ) ( )( ) ( )n cHcHa a a cha a n a    

               

| ,( ( ) ( )) n cHcHa a an 

             A2.49 

we also acknowledge the fact that covariant differentiation is equivalent to simple 

differentiation for un-indexed quantities [1], which gives | ,H H  . 

 

Thus integral in eq. A2.Error! Reference source not found. can be rewritten as, 

, ,( ( )) ( )
A C A

cHa cH a m a n dAn dA n dl cH a  

           
 

Substituting back in our original integral expression we get, 

, , ( ) ( )
A C

U cHa aa a dA cHa n mn cH a n dl   

         


 


   A2.50 

Now we simplify the integrand of the area integral 

, , , , ,( )cHa aa a cHa an cH a n n cH a n a r     

             
 







 

 A2.51 

Considering each term individually to expand the above expression. 

1) , ,( ) cH a n r


   

, , , , , ,)( ( ) )(cH a n cH a n cHr r n ra  

            
 

We consider the covariant differentiation as defined earlier for a component and 

vector respectively as, 
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, , , | ,( ) ( ) ( )cH a n cH a n cH a nr r r   

           
 

and 

, , , | ,( () )cH a cH a c a nHn n   

      
 

Here we have something of the form 

|( )T n   

which can be simplified using the definition of covariant differentiation as, 

| ,

, ,

, ,

, |

( ) ( )T n T n T n

T n T n T n

T n T T n

T n T n

   

  

   

  

   

  

 

 

 

  

 



   

 





 

Here, we used the fact that, 

| ,T T T   

   
 

and that the covariant differentiation of non-indexed quantities is equal to the 

partial derivative 

| ,n n 
 

Therefore, we can write the final expression as        

, , , | ,( () ) ( )cH a n cH a r n nrcH ar   

              

, , , | ,( )cH a n cH a n cH n ra   

              

, , , | , , , |)( ( ) ( )cH a n cH a n cH a n c nr ar H r   

                   

 A2.52

 2) 
,( ) aa r



   
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, , ,( ( ) ( )) ( )aa r a r a aa r  

            
 

We consider the covariant differentiation as defined earlier for a component and 

vector respectively as, 

, |( ) ( ) ( )a r a a r a a r a   

            
 

& 

, |( ) ( )aa aa aa   

     
 

Substituting back into the parent equation, we get 

, | |( ) ( ) ( )aa r a r a a r a r aa aa      

                       
 



 

, | |( ( ) ( ))aa r a r a r aa  

                 

 A2.53

 
3) 

, ,)(cH rna


   

, , , , , ,( () ( )) ( )cHa r cn nHa r cHa rn  

          
 

Here we can note that, 

,T cHa r cHa r cHan b a b ar     

           
 

is a component of vector(i.e. the vector T transforms ). So we can use the covariant 

differentiation definition defined for components as, 

, , , | ,( ) ( ) ( )cHa r cHa r c rnHan n   

         
 

& the corresponding definition for indexed vectors as, 

, , , | ,( ) ( )cHa cHa cHan n n   

      
 

Substituting back into the parent equation, we get 
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, , , | , , | ,( ( ) ) ( )) (cHa r cHa r cHa r r cHa cHn n n nan      

                    

 

, , , | , |( ( )) ( )cHa r cHa r r nHan n c  

                  A2.54 

 

Eventually eq. A2.Error! Reference source not found.can be written as, 

, , , , ,
|

( )cHa aa r cHan cH a n n r r aH n ac a r     

    


           
  

   


 

, ,
|

n cH a ncHa aa r  

 


   
 



              A2.55 

Substituting the result in eq. A2.Error! Reference source not found. back into the 

integral in eq. A2.Error! Reference source not found., we get 

, , , ,
| |

A

n cHU cH a n n cH a na r r aa r cHa aa r dA     

   
 

                
  


 

( )
C

cHa m dln

 
 

Using divergence theorem on first term of area integral, 

, ,
|

A

nU cHa aaa rdcH n A  

 


      
             

 , , ( )
C

n cH a ncHa aa r c m dHa n l   

       
 

          A2.56 

Next, we use Weingarten equation in the eq. 

A2.Error! Reference source not found. 

,n b a

    
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which gives, 

 

,
|

, ( )

A

C

U cH ab a cH a n

a cH a n dl

a rdA

cHb aa r cHa n m

  

 


   

  

  

  

  
 

  

 

    
 




   5 

On the other hand the virtual work done by the forces and moment on the boundary 

C can be written as, 

 ( ( ) )
C A

P F r M n n dl t a pn r dA   

             6 

 

From the principal of virtual work U P  , stated in eq. 

A2.Error! Reference source not found. to get, 

 

,
|

,

( )

( )

( )

b a cH a n pn a

F cH

cH a

a n b

M n cHa m c

a t a

cHb a aa m

  

 


  

  















    
 

  

  

     A2.57 

This set of equations is valid for any general patch of membrane, which has some 

pressure, p acting on the area A and force F and moment M acting on the curve 

C surrounding the membrane. 

Eq. A2.Error! Reference source not found.-a is the local equilibrium equation 

relating normal pressure p and shear load t , on the membrane to the geometrical 

parameters of the membrane. 
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Expression for moment in eq. A2.Error! Reference source not found.-c can be 

further by simplified as follows, 

 

     

 

M n cHm a a

a n M M a n cHm a a

M a n cHm n

M a cHm





 



   



 



 



   

     

   

   

 

M cHm a 

          7 

Equilibrium eq. A2.Error! Reference source not found.-a can further modified as, 

 

,
|

,
|

b a cH a ncH aa

cH ab a cH aa n

  

 


  

 






  
 

   
 

  

using chain rule of covariant 

ifferentiation,

| | , | , |( ) ( ) ( )cH aa cH ab a b a cH a n c aa H n     

             

 

using the fact that covariant differentiation of un-indexed quantities is equivalent to 

the normal derivative ( | ,nn  ) along with the Gauss ( |a b n   ) and 

Weingarten ( ,n b a    ) equations of surface, 

| , | ,

| , , |

( ) ( ) ( )

( ) ( ) ( )

cH aa cH aa n

cH aa cH

b a b b cH a n cH a b a

b cH b a b b cb H na a

      

       

     

      

 

 

     

        
   
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Comparing the above simplification of eq. 

A2.Error! Reference source not found.-a with its R.H.S. to get, 

| ,

, |

( ) ( )

( ) ( )

cH aa

cH ab

b cH b t a

b b cH a p b

  

 

  

   





  

   
 A2.58

 

Eq.A2.Error! Reference source not found.-a is the tangential equilibrium 

equation of the membrane patch and eq. A2.Error! Reference source not found.-b 

is the normal equilibrium equation. 

Eq. A2.Error! Reference source not found.-a can be further simplified by 

multiplying both sides with a  , 

 

 

 

 

| ,

| ,

, , ,
,

,
,

2

,

( )

( )

2

2

b a cH b a t a

b cH b t a

c

cH aa

cH a

aH b cHH cH b t a

cHH t a

cH t

a

aa

  

    

  

     

 

     


 






 




























  

   

    

  

  

 

Here we have used the identity, | 0a   , proof of which is appended below. 

| | |

a

a

a

a aa

a

a

  

       



  




 

using the Gauss equation of surface |a b n    

| 0a b n a na b          
 

and also the relation 

| | ,2b b H 

      
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which can be easily proved using Mainardi-Codazzi equation, | |b b    and 

| 0a    

Thus, the highly simplified form of the tangential equilibrium is given as,  

 2

,
cH t aa 





   A2.59 

 

 

Using the expression of divergence from eq. 

A2.Error! Reference source not found. and result in eq. 

A2.Error! Reference source not found., the normal equilibrium equation in eq. 

A2.Error! Reference source not found.-b can be written as, 

   2

,
,

1
4 2 2cH aH c aK a

a
H pH 




      A2.60 

Thus, finally we can write the equilibrium equation for the case where a membrane 

has loading distribution in normal as well as tangential direction, 

   2

,
,

1
4 2 2cH aH c aK a

a
H pH 




     

 2

,
acH t a




   

and at any point in the membrane, Force and moment are given by the relation, 

 ,F cH ac n

M

Hb a

Hm a

aa m

c

  

  







 

  

 


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A2.3 Calculations for axisymmetric geometry 

For the an axis-symmetric membrane we can define the geometry of the problem, by 

two surface coordinates, 
1 2,u Su  , where   is the angle of revolution about z axis 

and S is the arc length in the reference undeformed configuration as shown in Fig. 

A2.1. 

 

Fig. A2.1: undeformed and deformed configuration 

As shown in the figure, position of a point can be written as, 

cos sin ˆˆ ˆr r ri j z k   ,      A2.61 
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where, ˆˆ ˆ, ,i j k  are the Cartesian basis vectors. Fig. A2.1 shows the cross sectional 

plane for constant  , with z&r are coordinates on that plane. Because of the 

axis-symmetry, z&r depend only on S  .  

Next, we introduce two new variables, &  , which are arc length and angle made 

by tangent with vertical respectively in deformed configuration. Again, by the 

virtue of axis-symmetry, &   only depend on undeformed arc length S . 

As observed in Fig. A2.1,  

sin , cos
r z

 
 

 
 

 
. A2.62 

Now, we can define the surface basis vectors 

as,

ˆ ˆˆ ˆ ˆ ˆcos sin sin cos sin sin cosS

r r r z
i j k i j k

S S S
a

S

  
         

  

      
     

     




,  

 A2.63 

ˆ ˆsin cosa
r

r i r j  



  


, A2.64 

where, 
S








 . It can be clearly seen that both these basis vectors are orthogonal 

to each other as , 

0Sa a  . 

Normal can be defined as, 
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ˆˆ ˆcos cos cos sin sin .S

S

a a
n

a
i j

a
k



      





   A2.65 

Next, we define first fundamental form of surface and its inverse as, 

2

2

0
,

0

S

S

r
a








 
     

 

 A2.66 

2
1

2

0

.
1

0

1

S

S

a a
r















 
 

       
 
  

 A2.67 

It can be easily shown that, 

    
,

,

,

,

cos

si

ˆ ˆsin ,

ˆ ˆsin sin cos ,

ˆˆ ˆsin cos cos sin cos si .

n

nS

S S

S

i r j

a a i j

a i j

a r

k

 

 

 

     

         

 

  







   

 

Thus, second fundamental form of surface is, 

,

cos 0
,

0

S

S

r
b n a






  

 
          

 

 A2.68 

2

2

cos
00

cos 0
.

1 0
0 0

1

S

S

r r
b a b

r











 

 

 

  
    
              
    
     

  A2.69 



 

82 

 

Imposing local area incompressibility ( constanta  ), we can get, 

R
a r R

r
     , A2.70 

where, R is the radial distance of a point in undeformed configuration. 

Therefore, we can define curvatures as, 

1 1 cos 1 cos

2 2 2

r
H

r
b

R r

  








   
      

  
,   A2.71 

cos cos cos
et 2dK b

r
H

r r

   








 
   





   . A2.72 

 

Using the expression of force from eq. A2.Error! Reference source not found.-b, 

one can get the in plane and transverse shear forces. As shown earlier, m is 

normal to curve C , such that it is perpendicular to the normal to surface at that 

point. So if we cut our axis-symmetric geometry at a given z , we will have 

m perpendicular to &a n . Since & Sa a are also perpendicular, then it is easy to 

conclude that m  is parallel to Sa .  

1
1

1 & 0

S

S

S S

S

S

m m a m a

a

m m

a a

m











 

   

  
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Therefore, we get 0 & Sm m   . Also, due to axis-symmetry we can say that 

there is no component of force acting along a . Combining all these facts, we can 

write the expression of force as, 

 2

2 2

,S22 22

2 ,S

SS S
S

S

ca
cHa b aa m a m

H
F cH a n ncH a

a


 

 

 
     





.  

A2.73 

Comparing this with the following expression of force, 

S

S

a
F QnT

a
  , 

we get, 

&
cH

cH aT Q



 

 
  
 

  , A2.74 

where, 
H

H
S





. 

Now, we can use the above information for the deformed configuration to come up 

with its equilibrium equations, using eqs. A2.Error! Reference source not found. 

& A2.Error! Reference source not found.. For the axis-symmetric case we only 

have one variable i.e. S . 

Thus equilibrium equations can be modified as, 
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 2

,S

S

SScH a t a   A2.75 

   ,S
,S

2 1
4 2 2 SScH aH c aH K aH p

a
      A2.76 

Assuming a new variable d , such that, 

2d acH    A2.77 

And, we also get, 

,S

S

SSd t a  A2.78 

Now using eq. A2.Error! Reference source not found.,   could be eliminated 

from eq. A2.Error! Reference source not found. to get, 

    2

,S
,S

1
2 SSH d c cH K H a pa

a
     A2.79 

Now using the definition of Q  from eq. A2.Error! Reference source not found., 

and the facts that a r R  and 
2

1SSa


 , to get 

    

  

  

2

2

,S ,S

2

,S ,S

,S

1
2

2

2

H d c rQ
R

r Q
r H d

H K p

Q H K

Q H K

c p
R R

r Q
r H d c p

R R

 





   

 



  

 

Writing 
,SQ Q and ,Sr r  
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  

  

2

2

2

2

H K
r Q

Q p H d c r
R R

R R Q
Q Hp H d c r

rr
K

r

 



   

   

 

Again using the definition of K  from eq. A2.Error! Reference source not found., 

to get, 

2 cos
2 2

cosQ R R
H c

r r r
Q r H d c H p

r r

 
 

  
       

  
    A2.80 

Next we simplify eq. A2.Error! Reference source not found., starting with the 

idea that we have an electrostatic interaction happening between the two 

membranes facing each other and the force due to the interaction is only in vertical 

direction. Let the electrostatic force per unit area be denoted by,
eF . The main idea 

is to get St  in eq. A2.Error! Reference source not found.. 
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Fig. A2.2: electrostatics force on vesicle 

Referring to the above figure, it can be seen that this vertical force could be 

resolved into 2 components, one normal to the membrane and one along the tangent 

to the arc at that particular point. Also, considering the tangential component of the 

concentrated load, 
tF acting at some specific location, 

0S S . Thus, the net 

tangential force acting at a particular point on membrane can be written as, 

 
cos cos

cosS SS
S

S

e t e t
e

S

t

a F F
t F

F F
a F t

a a

 




 
     

Thus, we can write eq. A2.Error! Reference source not found. as, 

2coseS

SS
tF

d t a d
F 





    
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 cose tFF
R

d
r

   A2.81 

Also, we need to modify the expression of pressure used in eq. 

A2.Error! Reference source not found., to include the effect of the normal 

component of the electrostatic interaction and the concentrated load at
0S S , as 

follows 

 0 0sine nF Sp p SF       

Thus, we can finally write the complete set of coupled ODE’s as follows: 

 

 

2
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0 0

sin 2 2 ,
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s

,

,

,

,
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r c
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
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

 



 
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 

  
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  







 







 
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A2.4 Normalization for spherical vesicle 

For the spherical vesicle with a undeformed radius  , radial position of a point is 

given by, sin
S

R 



 
 
 

.   

We use this in our set of ODE’s to get the modified system of equations, as 

follows,
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sin sin
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sin

sin

sin

c

sin 2 2

o

,

,

,

s

,

e t

S S

Q S
Q H d c H p
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r c
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H c
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 

   
   

                
   

 
 
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 
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 







 
 

 
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in

re,
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F S  
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
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 

 

Now, we normalize the quantities with  and c , such that  
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This eventually gives us the following set of non-dimensional equations, 
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H
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H
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

 

A2.82(a-f) 

Also, we have the following set of boundary conditions to go along with the 

deformation of a pressurized vesicle (pressure acting normally outward) under the 

influence of electrostatic interaction with a substrate and a concentrated load, 
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( 0) ,
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( 0) 0,

( 0) 0,
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 A2.83(a-f) 

A2.5 Normalization for flat membrane 

For the flat circular membrane with an undeformed in-plane radius L , radial distance 

of a point in reference configuration is given as R S .  We use this in our set of 

ODE’s to get the modified system of equations, as follows, 
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Now, we normalize the quantities with  and c  , such that  
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This eventually gives us the following set of non-dimensional equations, 
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A2.84(a-f) 

Also, we have the following set of boundary conditions to go along with the 

deformation of a pressurized flat membrane (pressure acting normally outward) under 

the influence of electrostatic interaction with a substrate and a concentrated load, 
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A2.6 Electrostatics force calculation 

In this section we show the derivation for the electrostatics force per unit area.  

Chemical Equilibrium 

Consider the chemical concentration of an ionic species inside the neuron, with a z-z 

electrolyte. It is known that the far field potential inside the cell is 0 and the ionic 

concentration is 0c as shown in Fig A2.3. Based on this information, we write a 

chemical equilibrium balance in terms of chemical potential equality as, 
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Fig A2.3 : near field and far field quantities inside the neuron 

Poisson’s equation 

The Poisson’s equation, governing potential inside the electrolyte solution is given 

as, 

2

0





                A2.87 

where, 

 is the charge density inside the electrolyte, 

 is the dielectric constant of electrolyte, 
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0 is the permeability of the vacuum. 

Charge density of a electrolyte solution, with both cations and anions, can be 

defined using eq. A2.89 as, 
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Substituting expression of charge density from eq. A2.91 into eq. A2.90, we get, 
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let’s assume, 
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to rewrite the eq. A2.92 as, 
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The equation above can be linearized to get, Debye-Huckel equation as, 
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which can be written in 1-D case as, 
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Modified J-integral 

The J-integral used to evaluate force in [2], 
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 is only applicable to the corresponding Poisson Boltzmann equation, 
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For the governing equation A2.7, obtained in the analysis before, the modified J-

integral is given as, 
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The above J-integral should go to zero exactly when evaluated along a surface 

which doesn’t include a singularity. 
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now, using eq. A2.97, to get, 
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Clearly, this J-integral is the apt for eq. A2.97.  

 

Based on this J-integral, we can write the expression of the force as follows, 
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For the plane strain case, as shown in fig. A2.4, the gradient in potential  is only 

along the x-direction. Therefore, the above expression simplifies to, 
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Also, from the geometry, it can be seen that for a particular path parallel to the 

membrane surfaces, the integrand is independent of the area, allowing us to write, 
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Where, A  is the area of the membrane under consideration. Also J has dimensions 

of force, so force per unit area of the membranes is given as, 
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Electrostatics between the inner surface of plasma membrane and outer 

surface of the vesicle 

 

Fig A2.4: electrostatics between plasma membrane and vesicle 

There are two possible scenarios when solving the DH equation. In the case of 

constant potential surfaces, the charge densities redistribute (for example K
+
 ions) 

or degree of ionization (of lipid heads) varies, to maintain the potential value. The 

other case of constant surface charge density, involves fully ionized lipid heads 

with a fixed charge. These two cases are the representative of the possible extreme 

scenarios for a real lipid bilayer system. Constant potential represents, relatively 

softer electrostatic interactions compared to the constant charge density case. In the 
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present article we assume constant surface charge densities, to account for high 

forces from electrostatics. 

Known parameters: 

Debye length, 0

2 2
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 ,

 

surface charge on vesicle, v ,
 

surface charge on inner surface of plasma membrane, pm . 

(We need to figure out an alternate parameter for pm , as it is not known 

experimentally.) 

Governing equation: 
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Non-dimensionalisation: 
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The solution to equation is given by,  
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Boundary conditions: 

 

We have two charge boundary conditions at 0x  and a , as 
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this, in non-dimensional forma can be written as, 
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Solution: 

 

After applying the boundary conditions in eq. 13, 
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Force between the membranes: 

 

Based on the result of force per unit area expression, for two charged surfaces in an 

electrolyte [3], we have, 
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In the non-dimensional form it can be written as, 
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where, 0

2

v

f f



 . 

 

The net force calculation is done around a loop which surrounds the vesicle 

membrane, as shown in Fig. A2.4.  The force coming from the sides 12 and 34 is 

zero, as 1 0n   along the branches 12 and 34. 

12 34 0f f  . 

 

Along the far field branch 23, 1 1n  , but 0   .  
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Along the side 41, we know the expression of the potential. Thus, net force on the 

vesicle membrane piece is along x direction, and is given by,  

14f f .  

For the sake of simplicity, we just say that, 
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Next, we evaluate, 
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Thus, we have the net force on the vesicle membrane as, 
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this, in dimensional form can be written as, 
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Effect of surface charge on membrane deformation 
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Fig A2.5: force versus SNARE end displacements for different charge densities 

 

With SNARE-machinery force always normal to deformed vesicle and neuron 

base 

Here we present our numerical results obtained under the assumption that the SNARE-

machinery force is always normal to the deformed vesicle and the neuron base. 

Overall, the conclusion is that there is not much difference between the two loading 

conditions, which is because of the small tangential component of the SNARE-

machinery force under the equal and opposite loading case. We have not considered 

the effect of the concentrated moment at point of load application. The reason to 
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ignore the moment is to avoid the discontinuity in the curvature of the shape, which is 

difficult to handle numerically.  

 

Varying force magnitude 

 

Fig. A2.6: Deformed shape of vesicle with different value of magnitude of force 

applied by protein, position of protein S=pi/6, deformable substrate. 
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Vesicle                                                          Substrate 

 

Fig. A2.7: In-plane tension distribution in vesicle and substrate with different 

value of magnitude of force applied by protein, position of protein S=pi/6, 

deformable substrate.                                                                                           
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Vesicle                                                          Substrate 

Fig. A2.8: Variation of peak of tension in vesicle and substrate with respect to 

value of magnitude of force applied by protein, position of protein S=pi/6, 

deformable substrate. 

Varying force magnitude 
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Fig. A2.9: Deformed shape of vesicle with different position of protein, f=20, 

deformable substrate. 

 

Vesicle                                                          Substrate 

Fig. A2.10: In-plane tension distribution in vesicle and substrate with different 

position of protein, f=20, deformable substrate. 
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Vesicle                                                          Substrate 

Fig. A2.11: Variation of peak of tension in vesicle and substrate with respect to 

position of protein, f=20, deformable substrate. 

       

 

Varying force location 
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Fig. A2.12: Deformed shape of vesicle with different pretension of substrate, 

f=20, position of protein S=pi/6, deformable substrate. 
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Vesicle                                                          Substrate 

Fig. A2.3: In-plane tension distribution in vesicle and substrate with different 

pretension of substrate, f=20, position of protein S=pi/6, deformable substrate. 
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 Vesicle                                                          Substrate 

Fig. A2.4: Variation of peak of tension in vesicle and substrate with respect to 

pretension of substrate, f=20, position of protein S=pi/6, deformable substrate. 
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Effect of Hemi-fusion 

Fig A2.14 shows the deformed shape of the two membranes after turning off the 

electrostatic repulsion in a small region [ ]H L,S S at the point of closest approach LS , 

where H LS S .    We use 0H HL S S  as a length scale to specify the size of the 

hemi-fused region. The results in Fig A2.14 are obtained using 4 different HL .  The 

largest HL corresponds to 0HS  where the repulsive force in the region between 

bottom of the vesicle and the point of closest approach is turned off. We also plot the 

deformation without hemi-fusion as a comparison.  Our results show that turning off 

the repulsion brings the hemi-fused region into closer contact. For the case of 0HS  , 

the two membranes actually interpenetrate, and at this point our simulation breaks 

down.    

The distributions of tension in the vesicle and plasma membrane are shown in Fig 

A2.15. Note that as the hemi-fusion region grows (increasing HL ), the tension in the 

hemi-fused region increase significantly. This increase in tension may potentially 

result in the in-plane rupture of the membrane leading to the formation of a hole 

between vesicle and plasma membrane.  

Next, we analyze the effect of variation of different parameters on the membrane 

deformations, before and after hemifusion. Evident from the results in Fig A2.16, as 

we increase the strength of line force, the maximum tension in the vesicle and 

maximum compression in the plasma membrane increases. Thus, full hemifusion 

intensifies the overall deformation of the system. In further studies of the effect of full 
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hemifusion, while varying pretension (Fig A2.17), force location (Fig A2.18) and 

vesicle pressure (Fig A2.19), the similar behavior is observed. In all the cases the 

deformation is more severe than the case of without hemifusion. From all these 

observations, we can propose that the hemifusion propagation increases the chances of 

membrane rupture if the conditions are sufficient to make it happen. Eventually a 

fusion pore formation is possible in the hemifused region, where tension is highest. 

 

Fig A2.15 : Deformed shape of the vesicle with different hemi-fused region, 

assuming that the hemi-fused region is propagated inward. The parameters are: 

load application point, 0 / 6S  , pretension in plasma membrane, 0 1T  , line force 

magnitude 20F  and vesicle pressure, 0 1p  . Full hemi-fusion is defined as whole 

region from / 6 to 0S   
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Fig A2.16: In-plane tension distribution in the vesicle and substrate with different 

hemi-fused regions, assuming that the hemi-fused region is propagated inward. 
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Fig A2.17: Variation of peak of tension in the vesicle and substrate with respect 

to the concentrated load magnitude. The parameters are: load application 

point, 0 / 6S  , pretension in plasma membrane, 0 1T   and vesicle pressure, 0 1p  . 

Full hemi-fusion is defined as whole region from / 6 to 0S   



 

116 

 

 

Fig A2.18: Variation of peak of tension in the vesicle and substrate with respect 

to the plasma membrane pretension. The parameters are: load application 

point, 0 / 6S  , line force magnitude, 20F   and vesicle pressure, 0 1p  . Full hemi-

fusion is defined as whole region from / 6 to 0S   
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Fig A2.19: Variation of peak of tension in the vesicle and substrate with 

respect to the position. The parameters are: line force magnitude, 20F  , 

pretension in plasma membrane, 0 1T   and vesicle pressure, 0 1p  . Full hemi-

fusion is defined as whole region from 0  to 0S S S   
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Fig A2.20: Variation of peak of tension in the vesicle and substrate with respect 

to the pressure inside the vesicle. The parameters are: load application 

point, 0 / 6S  , line force magnitude, 20F  and pretension in plasma membrane, 

0 1T  . Full hemi-fusion is defined as whole region from / 6 to 0S    
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Chapter 3 

 
Proteins of SNARE family play an inevitable role in the process of neurotransmission. 

Starting with the docking of the synaptic vesicle to the fusion pore formation leading 

to the release of neurotransmitter into the synaptic cleft, the complete pathway is 

majorly governed by SNARE proteins. Four helices from these proteins zip together to 

form SNARE complex. The force generated in the process of zippering counters the 

repulsive interactions between the membranes. These repulsive interactions arise 

mainly due to the electrostatic interactions between the lipid membranes and hydration 

pressure. The electrostatic interactions are a result of the charged/polar lipid molecule 

which constitutes the lipid membranes. For membrane fusion it is required that the 

water between the two lipid membranes is squeezed out and the lipid molecules from 

the two lipid bilayer membranes can see each other. The hydration pressure is the 

resistance against squeezing the water out of the gap between the synaptic vesicle and 

neuron plasma membranes. The water molecules are hydrogen bonded to 

charged/polar lipid heads in the membranes making it difficult to expose the lipid 

molecules from one lipid membrane to another. The balance between the SNARE 

complex force and repulsive interactions determines the final state of the docked 

synaptic vesicle. The deformation and state of stress in the membrane is the crucial for 

the membrane fusion and pore formation leading to the release of neurotransmitter 

into the synaptic cleft. 

In the present chapter we present a study which combines a Coarse Grained Molecular 

Dynamics (CGMD) simulation of SNARE proteins with a continuum mechanics based 

model of lipid membranes. The CGMD simulation of SNARE complex is developed 
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by Prof. Anand Jagota and Nicole Fortoul at Lehigh University. The CGMD SNARE 

model has been calibrated against the experimental studies done on single SNARE 

unzippering. From this calibration the peak SNARE protein structural parameters are 

tuned so that the peak force matches with the experimental values. The continuum 

model of the lipid membrane used in the present work is a slightly improved version 

from the model presented in Chapter 2. The current continuum model takes into 

account both the hydration pressure and electrostatics into account to model the 

repulsive interactions.  

In the following sections we describe the modeling of the SNARE complex and lipid 

membranes. That description is followed by combining the force displacement curves 

obtained from two systems to obtain an equilibrium configuration of the docked 

vesicle. This equilibrium configuration determines the minimum gap between the two 

membrane structures. This location of the minimum gap is expected to be the site 

where fusion is expected to initiate. We analyze how the minimum gap between the 

two membranes changes by varying the number of SNARE complex in the synaptic 

vesicle docking. We conclude that there is optimality in terms of number of SNARE 

complexes that can be employed to lead a docked vesicle towards membrane fusion 

and subsequently towards a fusion pore formation.  

 

3.1 ABSTRACT 

Synaptic transmission requires that vesicles filled with neurotransmitter molecules be 

docked to the plasma membrane by the SNARE protein complex. The SNARE 

complex applies attractive forces to overcome the long-range repulsion between the 
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vesicle and membrane.  To understand how the balance between the attractive and 

repulsive forces defines the equilibrium docked state we have developed a model that 

combines the mechanics of vesicle/membrane deformation with a new coarse-grained 

model of the SNARE complex.  The coarse-grained model of the SNARE complex is 

calibrated by comparison with all-atom molecular dynamics simulations as well as by 

force measurements in laser tweezer experiments.  The model for vesicle/membrane 

interactions includes the forces produced by membrane deformation and hydration or 

electrostatic repulsion.  Combining these two parts, the coarse-grained model of the 

SNARE complex with membrane mechanics and electrostatics, we study how the 

equilibrium docked state varies with the number of SNARE complexes.  We find that 

a single SNARE complex is able to bring a typical synaptic vesicle to within a 

distance of about 3 nm from the membrane. Further addition of SNARE complexes 

shortens this distance, but an over-docked state of more than 4-6 SNAREs actually 

increases the equilibrium distance.  

 

3.2 INTRODUCTION 

The SNARE (soluble NSF-attachment protein receptors) (1, 2) complexes are the core 

protein machinery involved in synaptic vesicle docking and fusion. SNARE proteins 

form a link between vesicles and the plasma membrane, providing a mechanism for 

zippering the two together.  The transmembrane vesicle associated protein 

synaptobrevin (Syb or v-SNARE) forms a four-helical bundle with the proteins 

SNAP-25 and the transmembrane protein syntaxin (Syx), which are attached to the 

neuronal plasma membrane and termed the “t-SNARE”. SNAP-25 contributes two 
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helices (SN1 and SN2) to the bundle, while both Syx and Syb contribute one helix 

each (3, 4). During exocytosis the vesicles are first tethered or targeted towards the 

plasma membrane (>25nm (5)), then they are docked at the plasma membrane with the 

help of the adhesive forces provided by SNAREs. After docking, priming occurs 

which finally leads up to vesicle to membrane fusion (1). The zippering of the SNARE 

bundle is thought to provide the necessary force to bring the vesicle in proximity to the 

plasma membrane by overcoming the hydration or electrostatic repulsion between the 

two. 

 

The process of synaptic vesicle docking and fusion can be viewed as deformation of a 

mechanical system, in which a synaptic vesicle, a nearly spherical lipid bilayer shell, 

is brought in proximity to the plasma membrane, a nearly flat lipid bilayer, under the 

influence of the attractive forces exerted by the SNARE complex.  Key structural 

characteristics of the SNARE bundle have been determined experimentally, including 

its x-ray crystal structure (6) and the location of the layers thought to be essential to 

SNARE’s function (7), which has been confirmed through single molecule force 

experiments (8). All-atom simulations have been performed to analyze the structural 

aspects of the SNARE bundle including detailed interactions between the different 

helices (9) as well as to investigate the effects of oxidation and reduction of the 

SNAP25 linker domain on  the formation of the SNARE bundle (10). Some all-atom 

simulation work has been done on the unzippering of the SNARE bundle (11), 

however, time constraints prevent simulations for large displacements and longer time 

scales. In an effort to overcome timescale limitations, some coarse-grained (CG) 
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simulations have been performed (12, 13). Force-fields for CG simulations have been 

developed (14). However, to suit a wide range of applications, these force fields still 

need to be refined (15).  Relatively little has been done on coupling the SNARE 

unzipping process to the vesicle-plasma membrane behavior to address questions 

including that of how docking depends on the number of SNAREs. This problem is 

difficult because it must capture large length scale deformations and electrostatics in 

the vesicle-plasma membrane system as well as amino acid-level chemical specificity 

that are essential to the functioning of the SNARE bundle.   

 

There is significant debate about how many SNARE complexes are required to make 

synaptic fusion happen. Earlier studies suggested that 5 to 8 SNARE complexes form 

the fusion pore (16).  However, recent studies suggest a smaller number of SNARE 

complexes. Thus, it was suggested recently that a single SNARE complex can trigger 

fusion, (17), while stating the fact that the fusion rate increases with the number of 

SNARE’s. In (18), it has been proposed that two Syb units are required for fusion, 

based on fluorescence response of tagged Syb. The work done in (19) suggests that 

three SNARE units are needed to carry out the fusion, on the basis of fusion rate.  At 

the same time, studies performed on model systems in vitro suggest numbers ranging 

between 5-11 (20).   

 

To investigate how the number of SNARE complexes affects vesicle docking, we 

developed a continuum model of the lipid bilayers and combined it with a CG model 

for the SNARE which includes chemical specificity.  Specifically,  the proteins in the 



125 

 

SNARE bundle are represented by an alpha-carbon based CG model that includes both 

structural and chemical specificity by employing an elastic network model (ENM) (21, 

22)  and Miyazawa and Jernigan (MJ) contact energies (23–25), respectively.  The 

SNARE CG model is calibrated to match the peak unzipping force determined by Gao 

et al. (8), and is used to calculate a force displacement curve for the unzipping process, 

along with snapshots of corresponding structures that provide information about the 

unzipping pathway.  The continuum model for bilayer deformation is based on lipid 

membrane theory developed in Jenkins et al. (26) and is an extension of work done in 

Long et al. (27).  It computes the force required to counter the vesicle-membrane 

repulsion, bringing the vesicle to a given distance from the membrane while taking 

full account of the vesicle and membrane deformation. Balancing the SNARE-induced 

attraction against the vesicle-membrane hydration or electrostatic repulsion provides 

us with information about the equilibrium gap between the two membranes for a given 

number of SNAREs. Based on this information we study the effect of the number of 

SNAREs from the point of view of the mechanics of the process. 

 

3.3 MATERIALS AND METHODS 

   

3.3.1 All Atom (AA) Simulations  

We conducted all-atom molecular simulations of SNARE helices in order to obtain 

some of the parameters for the SNARE CG model.  AA simulations of the four 

individual helices as well as the full SNARE bundle were performed using the 

GROMACS molecular simulation package (28) and the CHARM22 forcefield (29).  
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The starting structures for the 4 individual helices and the full SNARE bundle were 

extracted from the final timestep of a 40 ns AA simulation with initial configuration 

given by the high resolution x-ray structure 1N7S (7, 11).  (See Supporting Material 

for a discussion.) For each set of runs, the corresponding structure was solvated in a 

waterbox (70  Å  x 150  Å  x 70  Å), and potassium ions were added to neutralize the 

overall charge.  Additional potassium and chloride ions were added so that there was a 

150mM concentration of KCl to mimic physiological conditions (30). All bonds were 

constrained. Dynamics were run at 300 K first using an NVT ensemble for 100 ps 

followed by NPT for 100 ps using the Parrinello-Rahman barostat.  Five sets of 40 ns-

long runs were conducted with a timestep of 2 fs for Syb, Syx, SN1, SN2, and the 

SNARE bundle. Computations were performed at the Texas Advanced Computing 

Center (TACC) through XSEDE resources.  

 

3.3.2 SNARE Coarse-Grained Model 

A principal result of this work is the development of a CG model for the SNARE 

complex.  Our goal has been to make it as simple as possible while still retaining the 

identity of individual residues.  As shown in Fig. 3.1 A, in our SNARE model every 

residue is represented by a bead located at the alpha carbon of that residue. 

 

The size and mass of each bead are equivalent to the Van der Waals radius (31) and 

mass (31) of the bead’s corresponding residue. Two major types of interactions were 

accounted for in this CG model, those within individual helices and those between 

them.  An elastic network model (ENM) (21, 22) is used to represent the intra-helical 
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bonds and interactions that maintain the individual helical structure as shown in Fig. 

3.1 A. Pairs of beads within the cutoff distance, cR , on the same helix are said to be 

“in contact” and are connected by a harmonic spring with the energy potential  

0

21
( )

2
 spring su k r r                           3.1 

where sk  is the spring constant, r  is the distance between the two beads, and 0r  is the 

natural length of the spring. From the 40 ns long individual helix AA simulations, it 

was observed that the natural state of each individual helix was a relatively straight 

conformation compared to the helices in the SNARE x-ray crystal structure. (The 

mean curvature of the helices in the SNARE bundle (3.11x10
7
 1/m)

 
is three times as 

large as that of the individual helices (1.03x10
7
 1/m), see Supporting Material)).  

Because these straightened-out conformations represent the ‘natural’ or relaxed state 

of the helices, they were used to construct the ENM.  This is important because, as the 

helices unzip from the main bundle and break their helix-helix contacts, they revert 

back to their natural straight conformation, releasing elastic energy. 
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FIGURE 3.1 (A) The AA (left) and CG (middle) representations of the SNARE 

bundle are shown. Both models include helices Syb, Syx, SN1, and SN2 with each 

helix contributing one residue to the ionic layer (beads): R56, Q226, Q53, and 

Q174 respectively. The C-terminal ends of Syb and Syx play an integral role in 

the fusion process in that they attach to the vesicle (Syb) and plasma membrane 

(Syx). The ENM spring network (right) that maintains the individual helical 

structure is shown for Syb and Syx where the thick lines represents the Cα 

backbones and the thin lines represent ENM springs. The Miyazawa and 

Jernigan contacts between Syb and Syx are also represented (dotted lines). (B) 

The spectra used to compare the fluctuations of the AA and CG models are 

shown for Syb. Values for ks of 0.0963 N/m and Rc of 20 Å were used for the CG 

model. The inset shows 10 snapshots of Syb during the corresponding AA 
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simulation. (C) Mean distance for different values of parameter A along with 

snapshots of the SNARE bundle. The original crystal is represented by the black 

line.  The version chosen for simulation is marked by the black circle.  

 

The values of sk for the ENM were chosen by matching the spectrum of fluctuations of 

the AA simulations and the CG model for each helix independently.  For the analysis 

of individual AA helix simulations, the positions of the alpha carbons were extracted 

every 10 ps. For each alpha carbon a time series of distance from its average location 

was calculated. The fast Fourier transform (FFT) was then computed for each bead’s 

time series and averaged over all beads, yielding a single spectrum per helix.  In order 

to make this comparison of the fluctuations, CG simulations were conducted for the 4 

individual helices using Langevin dynamics at 300 K for a range of values of sk .  

(Details on numerical implementation of the CG simulation are provided in 

Supporting Material.) The same FFT analysis was conducted for individual helix CG 

simulations as the AA simulations. The time length of simulations required was 

determined by conducting a normal modes analysis (NMA) on the CG model of the 

crystal structure, 1N7S, for all helices individually using different values of sk .  AA 

simulations were run for 2 ns, which is considerably longer than the characteristic time 

given as the inverse of the lowest natural frequency (See Table A3.1). In order to best 

match the fluctuations, the root mean squared deviation (RMSD) between the AA and 

CG spectra was found for each run. An example of the comparison of both spectra is 

shown in Fig. 3.1 B for Syb with sk value of 0.0963 N/m. For all helices sk  was varied 
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between 0.00009 N/m and 0.4816 N/m and the resulting RMSD for all values of sk  

are shown in Supporting Material. Based on these data, a value of 0.0963 N/m was 

chosen for sk  for all four helices.  

 

The second main category of interactions in the CG model is helix-helix interactions 

that require chemical specificity. These interactions are implemented by utilizing 

Miyazawa and Jernigan (MJ) contact energies that provide a scalable reference for 

residue-residue interactions (23–25). Any beads on separate helices interact if they are 

within the MJ cutoff distance, 
c_ MJR . To avoid checking the distance between every 

bead during every timestep, a neighborlist is built every 1000 steps.  Any beads on 

different helices that are within 1.5*
c_ MJR of each other are added to the neighborlist. 

Contacts are determined from the pairs already chosen by the neighborlist.  

 

Following Kim and Hummer (32), the interaction energy  ij
 between residues i and j 

of the SNARE structure is scaled from the Miyazawa and Jernigan contact energies 

ije (32).  

0( )  ij ije e                               3.2 

Note that there is no self-interaction, i.e., eq. 3.2 applies only for ji  .  Also, these 

interactions operate only between residues on different helices, intra-helical 

interactions being already represented by the ENM.  There are two tunable parameters, 

a scaling parameter, , and a shifting parameter, . Throughout the tuning of 

parameters,  was set to 0.  Although it was available as an extra parameter, it was 
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not found necessary to match the SNARE structure and hence was not used in order to 

minimize the number of adjustable parameters. 

 

Forces corresponding to the MJ contact energies are implemented using a slightly 

modified 6-12 LJ potential. The format of this potential varies depending on whether 

there is attraction or repulsion between these residues as well as if the distance 

between beads is greater than or less than that the distance at which the potential 

minimum occurs, 
0

ijr . The sign of  ij
 determines whether the interaction between the 

residues is attractive (negative) or repulsive (positive).  The modified Lennard Jones 

potentials (32) are  

If 0 ij
: 

12 6

( ) 4
 


    

     
     

ij ij

ij iju r
r r

               3.3 

If 0 ij
 & 

0 ijr r  

12 6

( ) 4 2
 

 
    

      
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              3.4 

If 0 ij
& 

0 ijr r  : 

12 6

( ) 4
 


    

      
     

ij ij

ij iju r
r r

              3.5 

where r  is the distance between the two beads and  ij
is the interaction radii. eq. 3.4 

contains a shift in the potential that ensures that repulsive pairs of beads will always 

repel each other.   
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The interaction radii is defined as the average of the Van der Waals radii of residues i 

and j  

2

 




 
i j

ij A                      3.6 

where A  is available as a tuning parameter and  i  and  j
 are the Van der Waals radii 

of residues  and . In order to match both CG and AA behavior and structure, A  was 

adjusted to match the SNARE bundle width, defined as the diameter of the tube 

shaped space inside the bundle that can be seen if one looks along the center axis of 

SNARE. The reference bundle width was found by computing the mean distance of all 

of the nearest MJ contacts from the SNARE crystal structure determined from 1N7S. 

These 21 nearest contacts represent the distances between the inner residues of the 

bundle and therefore the bundle width.  Fig. 3.1 C shows the mean distance for a few 

cases.  The value of A  is directly related to bundle width, and from Fig. 3.1 C we 

chose a value of A  as 0.8 to produce a similar mean bundle width to the crystal 

structure. This value of A  corresponds to interaction radii ranging from 3.6 Å for Gly-

Gly and 5.44 Å for Trp-Trp (32).  

 

The remaining parameter,  , controls the strength of inter-helical interactions and was 

determined by calibrating the results of simulated force-extension behavior of the 

SNARE complex by the recent experimental study by Gao et al. (8), which provided 

characteristic forces for the unzipping of the 4 helix SNARE bundle pulled apart in an 

optical tweezer experiment.  The value of   was calibrated to match the measured 
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peak force of 14 to 19 pN (specifically, 17.2 pN).  For our unzipping simulation the C-

teriminal residues of Syx and Syb were each attached to a fixed bead by a spring with 

a spring constant kspb.  Displacement control was used on the bead attached to the C-

terminal Syb bead as opposed to the actual Syb C-terminal bead in order to allow for 

rotation of the SNARE bundle. In order to see how much the orientation of the pulling 

force on the SNARE matters, the simulations were performed in two ways: by 

applying a displacement to pulling beads attached to Syb89 and Syx256 through a 

spring (as shown in the manuscript) and by directly applying displacements to Syb89 

and Syx256.  (The pulling beads allow for rotation of the SNARE bundle during the 

simulation and are hence less restrictive.) The results of these simulations were quite 

similar.  To mimic the experimental setup in which the N-termini of Syx and Syb are 

connected, a FENE bond connecting the N-terminal residues of Syb and Syx was 

incorporated in the model to represent the additional residues and the N-terminal 

disulfide bridge that Gao et al.’s (8) experiment included. The potentials used to 

implement the FENE bond are  

If 
_( )  c FENEr t r : 

2

2

0

0

1 (t)
( ) ln 1

2

  
    
   

FENE F

r
u t k r

r
                    3.7 

If _( )  c FENEr t r : 

 
21

( ) (t)
2

  FENE Fu t k r                      3.8 

where  is the distance between two bonds at t , 0r  is the maximum bond length, Δ is 

the resting bond length or, in this case, the original distance between the two beads 
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(34), and 
_c FENEr  is 0.9* Δ. The value of r0 was determined by the number of residues 

that the spring represents, 8 for Syb and 5 for Syx, times the maximum extension per 

residue, 3.65 Å (8).  The FENE spring constant, kF, used was the same at ks for the 

ENM of 0.0963 N/m.  

Before beginning the CG displacement control simulations, the SNARE structure 

was relaxed for 10
6
 timesteps under quasi-static conditions, i.e., at 0 Kelvin.  This 

relaxation was performed on the SNARE structure extracted from the final timestep of 

the 40 ns AA simulation in order to ensure that the initial structure was fully 

equilibrated. After this relaxation period, the C-termini beads were separated under 

displacement control using the two pulling beads that were discussed previously. The 

bead attached to the Syx C-terminus was held fixed, and all displacements were 

applied to the bead attached to the C-teriminal Syb bead. For each displacement, this 

bead was moved 1 Å along the vector between the two pulling beads. After each 

displacement was applied, the structure was relaxed for 10
5
 timesteps in order to allow 

it to equilibrate. At the end of the relaxation period, the forces on both pulling beads 

were nearly identical, and these forces were recorded as a function of displacement 

(See Fig. A3.4).  

 

Displacement control runs were conducted with eleven different values of λ between 

0.16 and 0.72. This parameter directly adjusted the magnitude of the force, so it was 

used to match the peak unzipping force reported by Gao et al. (8) of between 14 pN 

and 19 pN.  On this basis, a value of 0.3 was chosen to produce a peak force in the 

experimentally measured range of 17.2 pN.  
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3.3.3 Continuum Model of the Vesicle and Plasma Membrane 

The vesicle and plasma membrane are subjected to forces from the SNARE complex 

drawing them together and distributed distance-dependent electrostatic and hydration 

repulsion.  During this process, the vesicle and plasma membrane both deform 

considerably and the task of the continuum model is to obtain a consistent solution of 

the deformed shape subject to these forces.  The continuum calculations are based on 

the formulation of Jenkins et al. (26) and its extension to SNARE-mediated fusion by 

Long et al. (27). The current axisymmetric continuum model extends these 

formulations to include concentrated forces due to the SNARE molecules and the 

electrostatic forces due to the charges on the membranes or hydration repulsion.   

The axisymmetric geometry is shown schematically in Fig. 3.2.  We use a cylindrical 

coordinate system  ,,r z  where   is the angle of revolution about the z  axis. 

Owing to the axisymmetric assumption, the forces exerted by the zipping of the 

SNARE complexes are represented by a circle of line force of magnitude F on a 

spherical vesicle of radius R (see Fig. 3.2 B) as well as on the plasma membrane. This 

line force counters the repulsive forces between the vesicle and the plasma membrane. 

As shown in Fig. 3.2 B, the line force acts along a latitude of the undeformed vesicle 

and is constrained to remain normal to the deformed surface.  The location of the 

latitude is specified by the arc length 0S  of a cross-section in the reference 

configuration, which is taken to be a spherical vesicle. Because the plasma membrane 

is very large compared to the vesicle radius, its reference configuration is taken to be a 

flat circular membrane of radius L under pretension, 0T . The SNARE forces act on a 
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circle of radius 0S  in the reference configuration, have the same magnitude F , and are 

always directed opposite to the force on the vesicle (Fig. 3.2 B and C). 

 

FIGURE 3.2 (A) A schematic of the axisymmetric model in the undeformed 

configuration, showing the location of SNARE and direction of force applied. (B) 

The repulsive forces (shown by the dotted lines) act on the deformed 

configuration of the vesicle as does the SNARE force, F. (C) The figure shows the 

convention for shear force (Q), in-plane tension (T), and moment (M) acting on 

the cross-section of the membrane a location  (S), where  (S) is the tangent 

angle in the undeformed configuration measured from the vertical. (D) Example 
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of a deformed vesicle-plasma membrane complex for a 20-nm diameter vesicle 

docked by 15 SNAREs. 

 

In our model, the repulsive force depends only on the local separation  , as shown 

schematically in Fig. 3.2.  Following Bykhovskaia et al. (11), electrostatic and 

hydration repulsion between the vesicle and plasma membrane are calculated using 

Derjaguin’s approximation (35) in which interaction between curved surfaces is 

estimated assuming that the surfaces are locally flat.  This approximation is valid if the 

length scale over which forces decay is much smaller than the radius of curvature of 

the vesicle. The applicable range of separations prior to vesicle to membrane fusion is 

2-4 nm.  In this range, the principal repulsive forces are due to electrostatics and 

hydration.   

 

The functional form of both the electrostatic and hydration repulsion is approximately 

the same, an exponential decay. Electrostatics has the larger decay length (typically 1 

nm under physiological conditions) and smaller prefactor (35). The decay length for 

hydration repulsion is in the 1-4 A range (35–38).  Consequently, hydration dominates 

for small separation and electrostatics for larger separation.  Much of the previous 

work suggests that the cross-over distance beyond which electrostatics dominates is 

about 1.5 nm (35, 37).  However, recent work of Aeffner et al. (36) suggests that 

hydration repulsion exceeds electrostatic repulsion for distances upto about 3 nm.  

Based on the work of Aeffner et al. (36), we have performed calculations taking 

hydration repulsion to be the dominant repulsive interaction.  However, given some 
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uncertainty regarding the relative importance of electrostatics and hydration, we have 

also computed results for the case where electrostatic repulsion is assumed to 

dominate. The hydration pressure takes on the form of an exponential decay: 

0( ) exp( / )w w hP d P d  

                                     

3.9 

where wd is the lipid bilayer separation, 0P is the hydration pressure amplitude, and 

h is the decay length. According to Aeffner et al. (36), the prefactor, 0P , ranges from 

0.24 – 4.13 GPa and h ranges from 2.3 – 3.7 Å. We chose to use a value of 0.43 GPa 

for 0P  and a h  of 3.22 Å based on the parameters suggested for a synaptic vesicle 

corresponding to experiments performed in a physiologically relevant DOPC/Chol 

70:30 mixture (36).  

Local electrostatic interaction is determined by solving the Debye-Huckel equation for 

two infinite parallel planes separated by  .  We consider two limiting scenarios, 

1) The membranes have fixed charge density throughout the process of docking. This 

corresponds to the case when the lipid molecules are completely ionized and have a 

fixed charge. 

2) The membranes have fixed surface potential.  This is achieved by adjusting the 

surface charge density of the ions in the Stern layer of the membrane or by varying 

the degree of ionization of the polarizable lipid molecules.  

 

For the constant surface charge densities, the repulsive force along the z direction per 

unit area is given by  
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where 1 and 2  are the surface charge densities of the vesicle and neuron base 

respectively, Dl is the Debye length,   is the relative permittivity of water and 
0  is 

the permittivity of vacuum. The choice of surface charge 1  is based on the 

electrophoretic measurement by Ohsawa et al. (39) and force-displacement 

measurement by Marra et al. (40). The reported value of surface charge is in the range 

0.01 – 0.03 C/m
2
. Also, assuming the same surface charge density on the outer leaflet 

of the plasma membrane and based on the observation by Pekker et al. (41) that a 

charge density difference of only ~0.0001C/m
2
 between the inner and outer leaflet is 

necessary to maintain the resting potential difference of 70 mV for the neuron cell, we 

choose the value of 
2

1 2 0.025C/m    . 

 

For the case of constant surface potential, the force per unit area is  
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3.11 

 

When the two membrane structures are far away from each other, they have charge 

density given as 
2

1 2 0.025 /C m    . The potential on an isolated surface and charge 

density are related by,  

0

Dl 


           3.12 
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The value of surface potential for the bilayers 1 2 25mV    , is evaluated using Eq. 

3.12. As the vesicle approaches the membrane, the surface potential is held constant 

and Eq. 3.11 is used to obtain the force between the membranes.  A similar approach 

was followed in (11).  However, in that work the mechanics of SNARE opening was 

not coupled to the electrostatic repulsion, and the SNARE-end opening was picked at 

1 nm, whereas here the minimum separation of SNARE-ends is taken to be 2 nm.  

Primarily for this reason, the repulsive electrostatic forces in the present work are in 

the range of tens of pN instead of the hundreds of pN quoted in (11).  Relevant 

parameters for modeling electrostatic forces are listed in Table A3.3  

 

3.3.3.1 Governing Equations for the Continuum Membrane Model and Their 

Solution 

The vesicle-membrane system has been modeled under axisymmetry in an 

 ,,r z coordinate system. In the undeformed configuration, the vesicle is modeled as 

a sphere with radius R , whereas the undeformed plasma membrane is a circular disc of 

radius L R . As shown in Fig. 3.2, S refers to the undeformed arc length, whereas in 

the deformed configuration, the arc length is denoted by . The tangent to the 

membrane makes an angle  with the z  axis and the mean curvature of the membrane 

surfaces is denoted by H . 

 

The forces in the membranes are shear force, Q , and the in-plane tension, T , as 

shown in Fig. 3.2 C. The osmotic pressure inside the synaptic vesicle is represented by 
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0p . As shown in Fig. 3.2 B, the repulsive electrostatic force per unit area, 
eF  in Eqs. 

3.9 and 3.10, acts on both membranes, along the z  direction. The force due to SNARE 

bundles is represented as line loads acting on the circles over the undeformed 

geometry of vesicle and plasma membrane (denoted by vectors F  and F , as shown 

in Fig. 3.2 B ). On the vesicle, the radius of this circle, 0r , is determined by the 

geometrical compatibility condition which is based on the width of SNARE helix, d , 

and number of SNARE bundles, as,  

 
0

number of SNAREs

2
r

d





.            3.13 

The assumption here is that the packing of SNAREs is limited by steric hindrance 

between them and Eq. 3.13 represents the smallest radius that would accommodate the 

given number of bundles. The equivalent arc length value for load application is given 

by  1

0 0sin r /RS  . This arc length is same for both the vesicle and the membrane. 

We assume that the strain energy density W of both membranes is given by, 

2W c H ,                            3.14 

and by variation of total energy, the governing equations for the vesicle-membrane 

system are obtained in Eqs. A3.11. These equations represent equilibrium in the 

normal (Eq. A3.11a) and tangential (Eq. A3.11f) directions at each point on the 

membranes. The geometrical constraints can be used to obtain Eqs. A3.11b-e. These 

governing equations form a non-linear system of ODE’s. By specifying the input 

geometric parameters ( R,L ) and the force parameters ( 0 0 and eF,S , pF ), this system 

of ordinary differential equations (ODE’s) can be solved numerically to obtain an 
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equilibrium configuration of the membrane system. We use the non-linear boundary 

value problem solver bvp4c in MATLAB© to solve the ODE’s.  

 

3.4 RESULTS  

 

3.4.1 Force-Displacement Response of the Vesicle-Membrane Interaction 

The equal and opposite forces on the Syx and Syb C-termini are transmitted to the 

plasma membrane and vesicle, respectively, as forces attracting the two together. 

Below separations separations of ~2.5 nm attractive forces are resisted primarily by 

hydration repulsion. A characteristic force-separation curve can be obtained for the 

vesicle-membrane system using the formulation described in section 3.2.3. By 

specifying the number of SNARE bundles attached to the vesicle-membrane system, 

the location of the line load can be determined using Eq. 3.13. The effect of zipping of 

SNARE bundle is simulated by varying the strength of the line load in small steps. For 

each increment in force, an equilibrium configuration of the membrane system is 

obtained, and hence we determine the separation between the two load points on 

vesicle and plasma membrane, respectively. This separation is the distance between 

residues Syb89 and Syx256. By varying the number of SNAREs, a series of force-

separation curves can be obtained as shown in Fig. 3.3 A. 
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3.4.2 SNARE Force-Separation Curve  

Fig. 3.3 B shows the results of a simulation in which the SNARE bundle has been 

pulled apart for a total end-to-end separation of 20 nm between the C-terminal Syb 

and Syx end beads. 

 

FIGURE 3.3 (A) Force versus SNARE end separation for the vesicle-membrane 

system for different numbers of SNAREs for the hydration repulsion case. (B) 

The force during separation of the ends of the SNARE bundle using λ of 0.30 for 

the CG model of SNARE along with snapshots of the SNARE bundle at the 

corresponding C-terminal end separation. The end separation is defined as the 

distance between the Syb and Syx C-terminal beads. Syb, Syx, the ionic layer 
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residues (beads), and the C-terminal residues (beads with arrows) that are 

attached to pulling beads are shown in each SNARE snapshot. The purple arrows 

correspond to the direction along which the C-terminal beads are being pulled.  

(C) The force as a function of Syb-Syx C-terminal distance is shown for the 

vesicle-membrane (the exponentially decreasing curves) and SNARE.  One (solid 

line), two (dash line), and three (dash-dot line) SNAREs are shown in this plot.  

Intersections between the vesicle-membrane and SNARE force-displacement 

responses represent equilibrium states.  There are a number of instabilities 

represented by load-drops.  These correspond to separation of individual layers 

and have been so labeled.  

 

Each drop in the force-displacement plot (Fig. 3.3 B) represents the system 

overcoming a barrier where there is a strong interaction between the SNARE bundles. 

Two examples are the snapshots at 10.9 nm and 11.9 nm in Fig. 3.3 B.  With an 

increase of only 1.0 nm in displacement and little visible change in structure there is a 

significant (5.1 pN) increase in force to a peak value of 17.2 pN, after which the force 

immediately drops to about 2 pN. (Because a significant amount of the linker domain 

was not present in the crystal structure of SNARE that was used to build the CG 

model, the first force jump seen by Gao et al. (8) at 3 nm and 8-13 pN is not present in 

these results.) The CG model is able to capture the experimentally determined 

precipitous force-drop after which the remaining interactions holding the SNARE 

bundle together are relatively weak and are therefore not measurable in a force-

controlled experiment.  The subsequent increase in force is associated with stretching 
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of the linkage between the N termini of Syx and Syb, and presumably would not be 

present in a physiological setting.  It is included here because this feature is also 

present in the experiments of Gao et al. (8).  For simplicity, in the version of the 

elastic network model used here, we do not allow the helices to unravel, justified by 

the following facts.  As the results of the next section show, the equilibrium separation 

for all the cases studied in this paper is about 3 nm or less.  At these separations the 

force on each SNARE is < 5 pN. Based on the work of Gao et al. (2012) the first 

unwinding event occurs at ~10-12 pN.  Thus our simplifying assumption (which will 

be relaxed in future work) that helices remain unfolded is justifiable for the range of 

openings and displacements representative of the equilibrium docked state.  We have 

checked the sensitivity of our results to this assumption by allowing small portions of 

the unzippered region to unfold as shown in supporting material.   

 

3.4.3 Combined SNARE and Vesicle-Membrane Results  

In the previous two sections we have independently obtained force-separation results 

for the vesicle-membrane system (Fig. 3.3 A) and for the SNARE (Fig. 3.3 B). Before 

combining the two results, we first accounted for the fact that the distance between 

outer surfaces of the membranes is larger by about 2 nm than the distance between 

Syb89 and Syx256, the SNARE residues that we move apart (see Appendix A3). 

Specifically, we shifted the SNARE force displacement curve to the right by 2 nm in 

order to obtain this consistency.  Clearly, in the combined SNARE-vesicle-membrane 

system there is a single force and corresponding displacement.  Applying this 
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consistency condition between the two results determines equilibrium.  Moreover, we 

can determine how equilibrium depends on the number of SNARES.   

For systems with 1, 2, and 3 SNAREs, the information from Fig. 3.3 A and Fig. 3.3 B 

is combined to produce Fig. 3.3 C. Because it has been shown that SNAREs mediate 

vesicle to membrane fusion in a synchronous way, we assume that the force required 

to unzip two SNAREs would simply be twice the force required to unzip one SNARE, 

and so on (42, 43).  In all three cases, the curves intersect at an equilibrium SNARE 

end separation of between 2 nm and 3 nm suggesting that even 1-3 SNAREs are 

sufficient to overcome hydration repulsion and allow the vesicle to dock at the plasma 

membrane. The corresponding structures for the intersection points for all three cases, 

shown in Fig. 3.3 C, also suggest there is no important conformational difference 

between the three structures other than a difference in the number of residues that have 

been unzippered. 

It is instructive next to consider the energy landscape corresponding to the force-

separation results shown in Fig. 3.3.  For this purpose, the SNARE (positive) and 

vesicle-membrane (negative) force-separation results are integrated numerically. Fig. 

3.4 B shows the results corresponding to the force-separation results shown in Fig. 3.3.  

Note that because the SNARE force-displacement response contains unstable jumps, 

the entire energy landscape is not represented in Figs. 3.4 B-C. Because of the nature 

of the displacement control simulations, there are several instabilities present in the 

original SNARE force separation curve.  An example of one of these instabilities is the 

drop at 7.5 nm as shown in the SNARE curves in Fig. 3.3 C.  Integrating across these 

instabilities makes the total energy of the system slightly more negative than it should 



147 

 

be (see Appendix A3).  Figs. 3.4 B-C show contour plots of interaction energy as a 

function of the number of SNAREs and end-to-end separation. Fig. 3.4 B shows the 

results for a vesicle with radius of 20 nm, representing a synaptic vesicle.  The gray 

circles represent the global energy minimum for each value of number of SNARES, 

corresponding to force equilibria in Fig. 3.3. An example of how these minima were 

determined is shown in Fig. 3.4 A that was used to determine the global energy 

minimum for 1 SNARE for the hydration repulsion case.  It is striking that a single 

SNARE produces a distinct energy minimum at ~3 nm. As the number of SNAREs 

increases to 4 SNAREs the equilibrium SNARE end separation decreases.  For 4-8 

SNAREs there is little difference in the equilibrium separation. For 5 SNAREs the 

total energy per SNARE is ~ -17 kT which is quite consistent with the 13 – 27 kT 

range reported by Zorman et al. (44). With increase in the number of SNAREs over 8, 

the equilibrium SNARE separation slowly increases; the minimum separation (~ 2.1 

nm) is achieved with 4 bundles. Thus, we may conclude that 4-8 SNAREs are 

sufficient to complete the zippering process and to bring the membrane and the vesicle 

at a distance of 2.1 nm. Importantly, a larger number of SNARE bundles do not bring 

the vesicle closer to the membrane, because steric hindrance pushes them out to a 

larger radius.  

We next explored how electrostatics would affect the vesicle to plasma membrane 

repulsion. We recalculated the continuum model results using a fixed surface charge 

of -0.025 C/m
2
 on the vesicle and the membrane with electrostatic repulsion as shown 

in Fig. A3.9 B. For this case for one SNARE the end separation is ~2.4nm which is 

smaller than the 3 nm seen for the hydration repulsion case. However, when more than 
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one SNARE is added to the system, the equilibrium SNARE end separation is constant 

at ~2 nm for 2-13 SNAREs. In this case, the equilibrium configuration of the SNARE 

bundle would be a nearly completely zipped conformation.  For this case with 4 

SNARES the total energy per SNARE is  ~ -14 kT which again within the range of 13 

– 27 kT reported by Zorman et al. (44). 

We next explored how the vesicle size would affect the number of SNAREs required 

to dock a vesicle to the membrane. Figs. A3.10 B and D show the results for the case 

of a vesicle that is 100 nm in radius, corresponding to vesicles in neurosecretory cells. 

For the hydration repulsion case, there is a considerable difference between the 20nm 

and 100nm vesicles. For the 100nm case the minimum separation is also reached with 

4 SNAREs, however that minimum separation is ~2.5nm as opposed to ~2.1nm for the 

20nm vesicle. For the case of electrostatic repulsion with a constant surface charge, 

the only difference between the two cases is for 1 and 2 SNAREs. For the 100nm 

vesicle case the equilibrium separation is ~3.4nm as opposed to ~2.4nm for the 20nm 

vesicle. Additionally for 2 SNAREs there is also a larger separation for the 100nm 

vesicle of 3nm as opposed to 2nm for the 20nm vesicle. However for 3 of more 

SNAREs there is little difference between the two vesicle sizes because both SNARE 

configurations are nearly completely zippered. 

 

 

 



149 

 

 

 

FIGURE 3.4 (A) Energy as a function of SNARE end separation when repulsion 

between the vesicle and plasma membrane is dominated by hydration repulsion. 

The energetic contributions from SNARE (attractive), hydration (repulsive), and 

the total (their sum) are shown. The hydration repulsion has been shifted 

vertically by -17 kT for clarity. (B) Contour plot of total energy as a function of 

SNARE end separation distance for different numbers of SNAREs under 

hydration repulsion.  Circles correspond to global energy minima representing 

the equilibrium SNARE end separation for a given number of SNAREs. Vesicle 
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radius is 20 nm.  (C) Contour plot of total energy as a function of SNARE end 

separation distance for different numbers of SNAREs under electrostatic 

repulsion for a fixed charge of -0.025 C/m
2
 on the vesicle and the membrane in 

the limit of high tension in the vesicle and plasma membrane. For this case, 

minimum lateral separation between the SNARE bundles has been increased 

from 3 nm to 4nm.  (D) The structure of SNARE corresponding to the case shown 

in Fig. 4 B, number of SNAREs=1. Syb, Syx, SN1, SN2 are shown with the ionic 

layer residues indicated as large beads. (E) The same structure as in Fig. 4 D but 

showing only Syb and Syx for clarity. All contacts for residues within 2σ of each 

other are indicated with thin lines. 

 

Fig. 3.4 B and C represent results for an optimized set of parameters describing 

molecular details and electrostatic forces.  To judge the robustness of the conclusions 

gleaned from these results, we explored several variations of parameters including (1) 

allowing a portion of Syb to melt with the surface charge held constant, (2) holding 

the surface potential constant instead of surface charge, (3) high osmotic pressure in 

the vesicle and low pretension in the plasma membrane, and (4) the limit of high 

tension in both the vesicle and plasma membranes.  These variations in the modeling 

assumptions generally make little difference in the conclusions drawn from Fig. 3.4 

(see Appendix A3).  The main conclusion that 4-8 SNAREs bring the vesicle to the 

minimum distance away from the membrane still holds. Because the equilibria of 

interest for the problem addressed in this work occur at relatively small separation and 

forces, in our model we have not allowed the helices to unravel.  In order to see the 
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potential effect of unraveling, the first two helical turns of Syb were melted and the 

force displacement curve for SNARE was calculated from Fig. 3.3 B. The resulting 

energy surface for this case for a 20 nm vesicle with hydration repulsion is shown in 

Fig. A3.11 A. 4-10 SNAREs brings the vesicle within a minimal distance of the 

plasma membrane. However, that minimal distance is ~2.4nm as opposed to the 

~2.1nm for the case where Syb is not permitted to unravel.  

In an effort to compare to the experimental prefusion structures of the vesicle and 

plasma membrane as shown by Malsam et al. (45) and Hernandez et al. (46), the 

continuum model was calculated using high osmotic pressure in the vesicle and low 

pretension in the plasma membrane.  However, the resulting energy surface for this 

modification to the base cases shown in Fig. 3.4 has little effect on the results because 

the repulsive force is dominated by hydrostatic repulsion as shown in Fig. A3.14. 

The limit of high tension in both the vesicle and plasma membrane was studied using 

an analytical model described in the Supporting Material. In order to test the 

sensitivity of the solution to the location of the SNAREs, calculated using Eq. 3.13, 

the diameter of the SNARE bundle was varied from 2 nm, Fig. A3.17 A, to 4nm, 

whereas the base case used 3nm. This variation seems to have the most significant 

effect on the solution. Decreasing the size of the SNARE bundle still yields a similar 

result in that for more than one SNARE the bundle is nearly completely zipped shut. 

On the other hand when the size of the SNARE bundle is increased, instead of having 

a nearly fully zippered bundle, there is a minimum separation that occurs at 4 

SNAREs. With the addition of more than 5 SNAREs the equilibrium separation again 

begins to increase all the way up to ~3nm with 13 SNAREs. 
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Fig. 3.4 D and E show the equilibrium structures of SNARE at a 2.1 nm separation for 

the case shown in Fig. 3.4 B. SN1 and SN2 were removed from the structure for 

clarity in Fig. 3.4 E, and the residues of Syb and Syx that were “in contact” were 

determined. Because the Miyazawa and Jernigan forces greatly decrease after a 

separation of ~2* , that distance was used as the criteria for 2 residues being in 

contact. At the start of the displacement control simulation, Syb and Syx had 574 

contacts between them. After a 2.1 nm separation, only 449 contacts remained.  The 

removed contacts begin to create a crack-like defect separating the helices. After the 

2.1 nm separation, residues 89 (Trp) of Syb and 256 (Lys) of Syx were still in contact. 

These residues are still far away from the ionic layer showing that the SNARE bundle 

had not yet unzipped to that point. 

 

3.5 DISCUSSION AND CONCLUSION 

The docking of vesicles onto the plasma membrane of a neuron involves interplay 

between the SNARE complexes that provide attractive forces, long-range repulsion 

between the vesicle and membrane, and deformation of all three components.  

Although each of these components has previously been investigated in detail, to 

understand the biophysics and mechanics of vesicle docking it is imperative to 

combine them. We report here the first model which couples chemical specificity of 

the SNARE complex with hydration, electrostatic, and mechanical forces imposed on 

the vesicle and plasma membrane. Such a model can serve as a tool to investigate how 

mutations in the SNARE complex could affect the docking and fusion process.  
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We have developed separate coarse-grained models for the deformation of the SNARE 

complex and of the vesicle-membrane assembly.  The vesicle-membrane model is 

based on a continuum description of membrane deformation subjected to either 

hydration or electrostatic repulsion and forces from the SNARE complexes.  The 

fusion of lipid bilayers have been extensively modeled (47) to capture the intermediate 

states of fusion, including stalk formation, and to understand their energetics. Our goal 

in this study was to understand the forces produced by membrane bending and 

hydration or electrostatic repulsion that need to be overcome by the SNARE 

complexes to dock a vesicle to the membrane. The continuum membrane model was 

coupled with a coarse grain model of the SNARE complex. The SNARE forces are 

represented in the continuum membrane model as an axisymmetric line force, an 

assumption that is increasingly accurate for increasing number of SNAREs.  (A single 

SNARE at the axis of symmetry also presumably results in axisymmetric deformations 

of the vesicle/membrane.) For a given number of SNARES, the model holds fixed 

their anchor points in the vesicle and plasma membrane.  This constraint potentially 

affects our results.  However, we note that the position of the SNARE anchor points 

does vary as we change the number of SNAREs (Eq. 3.13). The number of SNAREs 

was varied from 1-13. Usually, for 2 or more SNAREs there is little difference in the 

equilibrium separation, suggesting that the model results probably will not vary much 

if we remove the constraint of holding the positions fixed. 

The CG SNARE model is based on an elastic-network representation of each of the 

helices combined with Miyazawa-Jernigan potentials to capture inter-helical 

interactions.  It is a minimalistic model that still represents residue-specificity.   Its 
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few parameters are calibrated either by comparison with all-atom MD simulations of 

individual SNAREs, or by comparison to experimentally measured forces to separate a 

single SNARE complex, Gao et al.(8)  Specifically, we match the experimentally 

observed peak force of 17.2 pN force.  Each of the two models separately yields a 

force-separation relationship.  Enforcing consistency between the two yields 

equilibrium configurations for the SNARE-vesicle-membrane complex, for a given 

number of SNAREs.   

As the first application of our model, we explored here the effect of the number of 

SNARE complexes on the mechanics of vesicle docking and the prefusion state of the 

SNARE complex. It is still a matter of debate as to how many SNARE complexes 

need to assemble prior to the fusion process. High concentration of Syb on the vesicle 

(~70 copies (48)), as well t-SNARE clusters at docking sites (49) suggest that in vivo 

fusion may be mediated by multiple SNARE complexes. At the same time, 

experiments and model systems suggest that one (50), two (18), or three (19, 51, 52) 

could be sufficient. Other studies, however, suggest a larger number of SNARE 

complexes per fusion, ranging between 5 and 11 (16, 20, 53). Finally, recent studies 

suggest that the number of assembled SNARE complexes may determine the release 

efficiency (54) and that it may vary (55).  Thus, how vesicle docking might depend on 

the number of SNARE complexes remains an open question, previously not addressed 

from the biophysical and biomechanical point of view. 

We find that one SNARE complex is sufficient to dock the vesicle onto the membrane.  

As few as 2-3 SNAREs are sufficient to bring the distance between the membrane and 

vesicle to the minimum and thus to complete the docking process.  Interestingly, there 
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is a point of diminishing returns such that a larger number of SNAREs (i.e., an over-

docked state) does not further reduce the vesicle-membrane separation.  The 

corresponding predicted SNARE end-to-end separation is in the range 2-3 nm (56, 57) 

but one can expect significant fluctuation about the equilibrium state because the 

energy profile is relatively shallow (Fig. 3.4 A).  This picture of a partially zippered 

docked state is consistent with the conclusions of an in-vivo toxin cleavage assay in 

crayfish neuromuscular junctions.   In this work, we only model docking, not fusion. 

That is, we calculate the equilibrium separation between the vesicle and plasma 

membrane during docking. The lower bound of ~2 nm separation between the vesicle 

and plasma membrane is based on the steric hindrance of having to fit the SNARE 

bundles between the two surfaces. This distance is probably a bit too large for fusion 

to occur, which suggests that some additional mechanism other than SNARE 

zippering must act for fusion. 

Several variations in the model including calculations under fixed charge, fixed 

surface potential, high vesicle pressure and high membrane tension, and varying 

vesicle radius have all shown similar results.   

Our results are consistent with the view that a prefusion state involves a partially 

assembled SNARE complex (58–60) which keeps the vesicle at a short distance from 

the plasma membrane in anticipation of Ca2+-induced fusion rather than the 

alternative view that SNARE zippering represents a final step of exocytosis and 

rapidly progresses once nucleated (61). Specifically, our model robustly predicts an 

equilibrium separation between the vesicle and the membrane to be on the order of 

2.0-3.0 nm corresponding to opening of at most layer 8. 
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Appendix A3 

 

A3.1 Coarse-Grained Simulations: Solution Procedure 

CG simulations were conducted for the 4 individual helices using Langevin dynamics 

at 300 K for a range of values of ks. The Langevin equation (1) includes an inertial 

term, a viscous term, a random force term, and a potential energy term, respectively, in 

the form  

 

( ) ( ) ( )mx t x t R t E                  A3.1 

 

where  is the mass of each bead,  is the bead’s acceleration at time ,  is the 

damping constant,  is the bead’s velocity at ,  is a random force that 

represents the protein’s interaction with the surrounding fluid, and  is the potential 

energy governing the solute that includes ENM forces. The fluctuation-dissipation 

theorem (2) connects the random force and viscous drag  

 

( ) ( ') 6 ( ')BR t R t k T t t                  A3.2 

 

where  is Boltzman’s constant,  is temperature,  is the random force applied 

at , and  is the Dirac delta function.  Written as a system of equations for all 

beads, the Langevin equation takes the form 
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[ ]{u(t)} {u(t)} {R(t)} [k]{u(t)}M                 A3.3 

 

where [M] is a diagonal mass matrix,  are column vectors 

containing the accelerations, velocities, and positions in the x, y, and z directions for 

each bead,  is a column vector containing the random force in the x, y, and z 

directions for each bead, and  is a stiffness matrix. 

The standard deviation of the random force is derived from Eqs. A3.2 and A3.3 to 

be 

 

2 Bm k T
SD

t





                          A3.4 

 

where  is the timestep. The friction coefficient is dependent on the bead type as well 

 

6 a

m


                      A3.5 

 

where  is the Van der Waals radius of the bead and  is the viscosity of water. The 

timestep used for Langevin dynamics was based on the characteristic time, τ, that is 

defined as 

 

s

m

k
                      A3.6 
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where  is the maximum bead mass. The timestep was adjusted to match the diffusion 

of a bead attached to a spring. Using this technique, the timestep was determined to be 

43.4 fs or τ/20. 

In order to model the dynamics of the coarse-grained model, the Langevin dynamics 

equation was solved using a generalized Verlet algorithm (1)  

 

1/2 1 ( )
2

n n n n nt
x x m E x Mx R  

                   A3.7 

 

1 1/2n n nx x tx                                                   A3.8 

1 1/2 1 1 1 1( )
2

n n n n nt
x x m E x Mx R     

                  A3.9 

 

where  is the timestep. The position is calculated from the half velocity, and then the 

position and half velocity are both used to calculate the full velocity. 

 

A3.2 ENM Reference State 

 

 

 

FIGURE  A3.1 A model showing two beams. The reference or zero energy state 

for both beams is when they are separated from each other.  When the beams 
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form a bundle, mutual interactions deform them into some shape with associated 

stored energy that will be released when the beams are separated. 

 

For each of the helices there exists a relaxed, natural, or reference state, and we 

maintain that the relaxed state of the springs that comprise the elastic network model 

should be defined in this reference state.  This idea is illustrated in the Fig A3.1. Say 

we have two helices (orange and blue) with two different reference states (bent and 

straight).  When the two helices come into contact with each other, they will both 

deform to form an equilibrium structure. If we assume the energy of the system to be 0 

on the left, some energy is required to bend both helices to form the combined 

structure on the right. In our model we use our references states, like those on the left, 

to help us calculate the energy stored in the bundle that can be released as the bundle 

is pulled apart. 

The existence of such a reference state is not contingent upon its viability as a stable 

state for an actual isolated helix.  Although Syb by itself is largely unstructured, we 

can still define the Syb helix by itself, i.e., removed from the other SNARE helices.  It 

is a notional state used merely to obtain the frozen or stored elastic energy in the 

SNARE bundle.  That is, all that is required is that the helical forms be stable as a 

bundle and that we have a systematic procedure by which to define springs on a 

relaxed state, again, regardless of whether the relaxed state actually exists.  

We recognize that in many sources in the literature it is noted that Syb is largely 

unstructured when not in the presence of the SNARE bundle.  We conducted 40 ns all-

atom simulation of the individual SNARE helices, starting with a configuration 
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extracted from the crystal structure.  We found that this timescale was more than 

sufficient to allow all of the helices to straighten into relatively straight rod-like 

conformations.  It was also short enough that each rod retained its helical structure.  

Because of this separation of time scales – time to relax an individual helix << time 

required for it to lose it structure – we were able to define the natural or reference state 

of each helix on which to construct the elastic spring network. 

 

 

A3.3 Determining the Cut-Off Distance and Spring Constant in the Elastic 

Network Model for SNARES 

Coordinates from the straightened out helical structures were extracted from the 

individual AA simulations, and the connectivity and natural length of the ENM 

springs for each helix were determined based on these structures.  If the cutoff 

distance is too small, the proteins will denature. If it is too large, simulation speed will 

be compromised with no significant improvement in representation.  In order to find 

an optimal value, this distance was adjusted and a histogram was created for each 

helix to show the total number of springs that were connected to each bead. The 

minimum criterion for the number of springs was that each bead should be connected 

by a spring to all of its nearest neighbors. It was concluded that a cutoff distance of a 

minimum of 10 Å yielded at least 4 springs per bead, which satisfied this criteria. 

After further investigation, it was determined that Rc was required to be at least 20 Å 

in order to maintain the helical structure of each helix during AA simulations. The 
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histogram for the final value of Rc, 20 Å, for the helix Syb is shown in Fig. A3.2. The 

histograms for the other three helices are similar.  
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FIGURE  A3.2 A histogram for the number of ENM springs per bead is shown for 

Syb with a value of 20 Å for Rc. 

 

The values of ks for the ENM were chosen by matching the spectrum of fluctuations of 

the AA simulations and the CG model.  For the analysis of individual AA helix 

simulations, the positions of the alpha carbons were extracted every 10 ps. For each 

alpha carbon a time series of distance from average location was calculated. The fast 

Fourier transform (FFT) was then evaluated for each bead’s time series. The average 

was taken over all beads yielding a single spectrum per helix.  In order to make this 
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comparison of the fluctuations, CG simulations were conducted for the 4 individual 

helices using Langevin dynamics at 300 K for a range of values of ks.  The time length 

of simulations required was determined by conducting a normal modes analysis 

(NMA) on the CG model of the crystal structure, 1N7S, for all helices individually 

using different values of ks.  AA simulations were run for 2 ns, which is considerably 

longer than the characteristic time given as the inverse of the lowest natural frequency. 

The results for Syb are shown in Table A3.1. 

 

TABLE A3.1 The lowest natural frequencies and characteristic times for Syb 

determined are shown below for different values of ks 

ks 

(N/m) 

Lowest Natural 

Frequency Squared 

(1/ns)
2
 

Time 

(ns) 

0.0963 4.53 4.70E-01 

0.1926 9.05 3.32E-01 

0.2889 1.36 2.71E-01 

0.3853 1.81 2.35E-01 

0.4816 2.26 2.10E-01 

 

For Syb, as was seen for all helices, the characteristic times are significantly less than 

1 ns.  As a result the AA simulations were analyzed for the first 2 ns of the 

trajectories, and the CG test simulations were conducted for 2 ns and analyzed with 

data collected every 2 ps. In order to best match the fluctuations, the root mean 
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squared deviation (RMSD) between the AA and CG spectra was found for each run. 

An example of the comparison of both spectra is shown in Fig. A3.3 for Syb with ks 

value of 0.0963 N/m. The RMSD for all helices for all values of ks are shown in Table 

A3.2 with the minimum RMSD values shaded in grey. 
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FIGURE A3.3 The spectra used to compare the fluctuations of the AA (blue) and CG 

(red) models are shown for Syb for 2 ns. Values of ks as 0.0963 N/m and Rc of 20 Å 

were used for the CG model. An RMSD of 4.7E-10 was found. 

 

TABLE A3.2 The RMSD values between the AA and CG fluctuation spectra are 

shown below for all helices for a range of values of ks. The minimum RMSD 

values are shaded in grey. 

ks (N/m) Syb RMSD  Syx RMSD  SN1 RMSD  SN2 RMSD  

0.00009 9.6450e-09 1.0532e-08 1.2658e-08 9.5905e-09 

0.0009 4.9432e-09 5.5075e-09 6.7327e-09 4.6640e-09 
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0.0096 1.4341e-09 1.1056e-09 1.5941e-09 1.7538e-09 

0.0481 7.4334e-10 1.4651e-09 8.5729e-10 1.6778e-09 

0.0963 4.7077e-10 4.3346e-10 1.3671e-09 2.3080e-09 

0.1444 7.2271e-10 9.9229e-10 1.5680e-09 1.1604e-09 

0.1926 1.4341e-09 1.1064e-09 1.5941e-09 1.7539e-09 

0.2889 1.2019e-09 1.5654e-09 2.7382e-09 3.0644e-09 

0.3853 1.7372e-09 2.0310e-09 3.2207e-09 3.3413e-09 

0.4816 2.4969e-09 2.8429e-09 3.2951e-09 3.5652e-09 

 

Based on the data in Table A3.2, a value of 0.0963 N/m was chosen for ks for all four 

helices. For Syb and Syx, this corresponds to the value of ks with the smallest RMSD. 

For SN1 and SN2 however, the minimum RMSD occurs either a little above or below 

ks of 0.0963 N/m. Because the RMSD is still very small for these two helices with that 

value of ks, it was chosen to use a consistent value of ks for all helices. 

 

A3.4 Calibration of λ and Displacement Orientation 

As described in the SNARE CG model portion in the methods section, the value of λ 

was adjusted in order to match the peak force reported by Gao et al. (3) of 14 – 19 pN.  

We conducted a series of displacement control simulations at 0K for a set of λ values 

ranging from 0.30 to 0.72.  Displacement was applied in steps and the system allowed 

to relax.  Relaxation to equilibrium was monitored by tracking the forces acting on the 

C-terminal beads of Syb and Syx as shown in Fig. A3.4. Each force spike corresponds 

to a displacement being applied to the C-terminal bead of Syb. After 10
5
 timesteps, 
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both forces relax to nearly the same value, which is taken as the equilibrium force for 

that displacement, and the next displacement step is then applied. 
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FIGURE A3.4 The force as a function of timestep is shown for a displacement 

control run with λ set to 0.30. The forces on the C-terminal beads of Syb (blue) 

and Syx (red) are shown. Each spike in the Syb force corresponds to application 

of a new displacement step. A total displacement of 20 nm is shown. 

 

The resulting force displacement curves for a few of these runs for varying λ are 

shown in Fig. A3.5. 
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FIGURE A3.5 Force displacement curves are shown for displacement control 

simulations done using λ values of 0.16 (red), 0.24 (blue), 0.30 (black), and 0.40 

(magenta).  

 

It was clear that as λ was increased, the peak force increased as well. By choosing its 

value to be 0.3, we attained a peak force of 17.2 pN that lies in the experimentally 

measured range. 

 

  

A3.5 SNARE Force Displacement Instabilities and Their Effect on Energy 

There are several mechanical instabilities in the force-separation curve of the SNARE, 

for example at 7.5 nm in Fig. 3.3 C. These usually correspond to “breaking” of one of 

the layers.  When the system jumps from one stable point to the next, it does not 
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follow the equilibrium force-separation relationship between these two points; instead, 

it lies above it.  When we integrate the force-separation curve to obtain energies, we 

consequently compute a slightly larger magnitude (more negative) than it should be. 

This does not affect any of the predictions about stable equilibria. 

  

A3.6 Continuum Governing Equations and Their Solution 

The axisymmetric deformation of the vesicle-membrane system can be reduced to the 

solution of a set of ordinary differential equations.  The undeformed configuration of 

the vesicle is a sphere of radius R with arc-length in a cross-section denoted by S  

whereas, the plasma membrane occupies the interior of a circle of radius L R . We 

introduce the notation   to denote the angle made by the tangent to a point on the 

cross-section of the deformed membrane in the  ,r z plane with the z axis (see Fig. 

A3.5 A). Briefly, the equations describing the deformation involve the shear force Q , 

the angle , the mean curvature H , the deformed arc length , the deformed 

coordinates of a generic material point  ,r z which has an arc length coordinate S in 

the undeformed configuration. To expedite the analysis, we introduce the following 

normalized variables:  
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where, 

0p is the osmotic pressure of the vesicle,  

d  is an integration constant resulting from integrating the tangential force equilibrium 

equation (see supplementary information for details), 

eF is the electrostatic force per unit area of the membrane and is always along 

z direction, 

tF is the tangential component of the concentrated load at the material point
0S in the 

deformed membrane, 

nF is the normal component of the concentrated load at the material point
0S deformed 

membrane. 

        A                                                                          B 

 

FIGURE A3.6 (A) Arc length and tangent angle over the membrane, (B) Forces 

and moment along the cut in the membrane. 
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As shown above non-dimensionalization of all the length scales is done by the radius 

of the undeformed vesicle, R . As c has units of energy, we use it to non-

dimensionalize force per unit length quantities i.e. in-plane tension, T and out of plane 

shear, Q by 2/c R . Also force per unit area quantities, 0p , eF , tF  and nF  are made 

dimensionless by 3/c R . 

Also, in both the loading conditions it has been assumed that the 
tF
 
for vesicle is 

always zero. There are six ordinary differential equations governing the deformation 

of the vesicle membrane, they are: 
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  (A3.11a- A3.11f) 

 

where, the dot denotes differentiation with respect to the normalized undeformed arc 

length S , and  

sinS
r

  .        (A3.11g) 

 

The normalized normal force acting on the deformed membrane surface, p in Eq. 

A3.11a is related to the osmotic pressure of the vesicle, 0p , the electrostatic  force per 
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unit area,
eF and the normal component of the concentrated load applied at 

0S S ,
nF  

by, 

 0 0sine nF Sp p SF             (A3.11h) 

 

where, 
0( )S S  is the Dirac delta function. 

These differential equations are supplemented with the boundary conditions: 
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       (A3.12a- A3.12f) 

 

The boundary conditions defined above essentially represent the symmetry in the 

vesicle geometry. About the symmetry axis, the curve has zero slope and out of plane 

shear Q  is zero, at both 0S   and . Also, for the continuity of the geometry, we 

impose 0r   at both 0S   and π. 

The notation for positive shear force and tension is described in Fig. A3.6. Finally, the 

expression for the in-plane tension in both the vesicle and plasma membrane is given 

by, 

2 2
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The governing equations for the deformation of the plasma membrane is very similar, 

except that Eq. A3.11g must be replaced by, 

 

S

r
            (A3.14) 

 

This change is due to the difference between the reference configurations. The 

boundary conditions are: 
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     (A3.15a- A3.15f)   

  

The boundary conditions at 0S  is due to axisymmetry.  Eq. A3.15f states that the 

tension in the plasma membrane approaches the pretension at the boundary. This 

boundary condition allows the neuron membrane to deflect. Had we replaced this 

boundary condition with a clamped condition, the deflection everywhere would be 

zero because of area incompressibility.    

The coupled ODE’s in Eqs. A3.11 - A3.15 with the boundary conditions are solved 

using the MATLAB® bvp4c solver. The input parameters for the solver are the 
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osmotic pressure 
0p across the vesicle membrane which remains fixed throughout the 

deformation, SNARE-machinery force parameters (
0S and magnitude F ), 

electrostatic force and pretension (
0T )  in the plasma membrane. 

 

A3.7 Example Problem of Continuum Model 

Here we show an example of the results of the calculation of vesicle-membrane 

interaction.  In this example, the location of force application is fixed at 0
6

S


 on 

both the vesicle and neuron base, as shown in Fig. A3.7.  This location of load 

application corresponds to the number of SNAREs of 21.   Parameters used in the 

continuum model are shown in Table A3.3. 

 

TABLE A3.3 Parameters used for the continuum model of the vesicle and plasma 

membrane 

Parameter Value Comment 

Permittivity of vaccum, 
0  8.85 x 10

-12
 Fm

-1 
 

Dielectric constant of water,   80 dimensionless 

Ion concentration inside neuron,
 0c  200 mM (4) (1-1) electrolyte 

Debye length, 
Dl  0.67nm 2 22

o B
D

o

k T
l

q z c


  

Synaptic vesicle radius, R  20nm (5)  

Surface charge of vesicle and inside -0.025 Cm
-2

, -0.025 Cm
-2 
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of plasma membrane, 
1 2 and    (5–7) 

Surface potential of vesicle and 

inside of plasma membrane, 

1 2 and    

-25 mV, -25 mV  

Bending rigidity of lipid bilayer, c  ~20 kBT (8)
 

8.28 x 10
-20

 J 

 

The strength of the line force is varied in the range of 5 20  in dimensionless terms, 

which is equivalent to a net force between 66 266 pN . Fig. A3.7 shows the 

deformed shapes of the membranes for four different values of F . The inset on the 

right shows the calculated relationship between applied force and separation between 

load application points. The force decreases rapidly with increasing separation, 

reflecting the steep decay of the electrostatic repulsion. 
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FIGURE A3.7 Deformed geometry for different force magnitudes. The thick lines 

represent the neuron base and the thin lines represent the vesicle. The inset on 

the left shows the zoomed in section of the load application point (shown as   ) 

and the inset on the right shows the vertical separation between the two ends of 

SNARE-machinery versus the net SNARE force. The parameters are for the 

analysis are: load application point,
0 / 6S  , pretension in plasma membrane, 

0 1T   and vesicle pressure. 0 1p   . 

 

 

A3.8 SNARE Force Separation Curve Shift  

To compare the attractive force imposed by the SNARE bundle to the repulsive force 

on the vesicle, we need a consistent definition of separation.  The distance connecting 

the final residue beads (Syb89 and Syx256) is shorter than the distance between the 

outside membrane surfaces due to the presence of other parts of the SNARE.  To 

address this issue, we created a static coarse grained structure of a 20 nm vesicle and 

plasma membrane with a partially opened SNARE at its equilibrium configuration as 

shown in the figure below.   We found that distance between the outer surface of the 

membranes is actually about ~1nm further apart than the distance between Syb89 and 

Syx256.   We have therefore added this distance when comparing the attractive force 

on the SNARE to the repulsive force on the vesicle.  Adding the initial separation 

between Syb89 and Syx256, the minimum distance allowed between the membranes 

at the point of force application is about 2nm.  Another related effect is that inter-

SNARE-bundle repulsion can increase the minimum lateral separation.  We have 
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considered two additional cases where we take lateral SNARE bundle width to be 2 

and 4 nm (an additional Debye screening length increase in radius in the latter case).  

The larger lateral spacing makes the effect of number of SNAREs significantly 

stronger but the minimum separation and the number of SNAREs needed to achieve it 

does not change much. 

 

Figure A3.8.  Drawing of a vesicle near a plane along with a model for the 

SNARE bundle. 

 

 

A3.9 Choice of SNARE Model 

The CG simulation model was built using the SNARE X-ray crystal structure 1N7S 

that includes Syb (27-89), Syx (189-256), SN1 (5-83), and SN2 (139-204).   We 

recognize that this structure only includes part of the Syb linker domain (85-95) and 

none of the linker domain of Syx (256-266).   However, we believe that our choice of 

placing the membrane outer surface at residues 89 and 256 is correct.  Our choice is 
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based on the following papers (9, 10) that show Syb insertion  in the membrane starts 

at Trp 89.  Specifically, they show that 89-94 is unstructured but is inserted in the 

membrane.  Similarly, the following paper shows that for Syx, residues after 261 are 

in the lipid bilayer.  Specifically, 261-266 are unstructured but inside the lipid bilayer 

(11).  The following study (12) also concludes that the linker domains (256-266) and 

(85-95) are buried in the top layer of the membrane.   Because the reference distance 

from the hydration repulsion is the outer surface of the membrane, to be consistent we 

believe that it is quite appropriate to define SNARE displacement from 88 for Syb to 

256 for Syx, within some uncertainty of a just a few residues.   

 

Whether or not the linker domains have unraveled is debatable.  It was shown in Gao 

et al’s optical tweezer experiment that the Syb linker domain unravels at 10-13 pN.  

Because the equilibrium SNARE end-end distances of interest in this work are <~ 

3nm), our maximum force only reaches (<5pN) and neglecting helix unraveling in our 

model is justifiable.  Nevertheless, in order to check the robustness of our solution 

against unraveling, we did melt two helical turns of Syb (including up to residue 91).  

The principal effect is that the minimum equilibrium separation increases from 2 nm 

to 2.5 nm for both hydration and electrostatic repulsion with a constant charge. 

 

A3.10 Robustness of Model Results 

To judge the sensitivity of our main conclusions on the various assumptions we have 

made, we carried out a number of other simulations.  Our main conclusion is that the 
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principal results of our model are quite robust with respect to uncertainty in the 

assumptions made.  

  

A3.10.1 Electrostatics: We explored how electrostatics would affect the vesicle to 

plasma membrane repulsion. Fig. A3.9 shows results for the case where hydration 

repulsion is replaced by electrostatics using a fixed surface charge of -0.025 C/m
2
 on 

the vesicle and the membrane. Evidently, with these parameters the electrostatic 

repulsion is weaker than the hydration repulsion.  For one SNARE the end separation 

is ~2.4nm, which is smaller than the 3 nm seen for the hydration repulsion case (Fig. 

3.4 B). However, when more than 1 SNARE is added to the system, the equilibrium 

SNARE end separation is constant at ~2 nm for 2-13 SNAREs, that is, it would be 

completely zippered shut. 

 

 

FIGURE A3.9 (A) The force in the membrane/vesicle system is shown as a 

function of SNARE end separation for a vesicle radius of 20nm with electrostatic 

repulsion with a fixed surface charge. (B) The corresponding contour plot of total 
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energy as a function of SNARE end separation distance and the number of 

SNAREs.  Gray circles correspond to global energy minima representing the 

equilibrium SNARE end separation for a given number of SNAREs. 

 

A3.10.2 Larger vesicles: Although our primary interest is in the smaller synaptic 

vesicles, the model can also be applied to study larger vesicles.  Fig. A3.10 shows 

results for the case of a 100 nm vesicle.  

 

FIGURE A3.10 The force in the membrane/vesicle system is shown as a function of 

SNARE end separation for a vesicle radius of 100nm with (A) hydration repulsion and 

(C) electrostatic repulsion with a fixed surface charge. Contour plots of total energy as 
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a function of SNARE end separation distance and the number of SNAREs are shown 

for a vesicle radius of 100nm with (B) hydration repulsion and (D) electrostatic 

repulsion with a fixed surface charge.  Gray circles correspond to global energy 

minima representing the equilibrium SNARE end separation for a given number of 

SNAREs. 

 

For the hydration repulsion case the minima are significantly larger than those found 

for the 20nm case shown in Fig. 3.4 B. For four or more SNAREs the equilibrium 

separation is ~2.5nm which is different from the 20nm case where the separation is 

~2nm and the SNARE bundle can be nearly fully zippered.  For the case of 

electrostatic repulsion, for larger number of SNAREs the repulsion is still insufficient 

to open the SNARE except when there are three or fewer SNAREs.   

 

A3.10.3Fixed Potential: We also carried out computations assuming a fixed potential 

of -25 mV on the vesicle and on the membrane as opposed to the fixed surface charge 

case that was assumed in the majority of the paper. The resulting force separation 

curves for the 20nm and 100nm vesicle cases are very similar to the case of fixed 

charge.  This is not unexpected because the electrostatic force for fixed charge versus 

fixed potential cases becomes nearly the same for separations greater than the Debye 

screening length.  

 

A3.10.4 Unraveling of Syb: Several other modifications were made to the cases shown 

in Fig. 3.4.  There is some question about whether part of the syb helix unravels.  We 
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have argued that the forces are small enough that the helical structure should be 

preserved.  However, to test the effect on our prediction of potential unraveling, we 

allowed 2 helical turns to unravel and be represented by elasticity of a worm-like 

chain coil. Because the Syb helix touches the membrane at residue 91 and the CG 

model only contains up to residue 89, an extra 2 residues were added to the unraveled 

portion of Syb. The force displacement curve for the melted portions of Syb were 

modeled using a worm like chain model following Gao et al.(3) The force extension 

relationship was calculated using the Marko-Siggia formula 
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                     (A3.16)  

                

where  is the persistence length of the melted segment (0.6 nm) and   is the 

end to end distance of the melted segment. , the maximum end to end distance of 

the melted segment, was calculated assuming a 0.365 nm contour length per residue 

(3) which totaled to 1.3 nm due to ~2 helical turns being melted. The master force 

displacement curve was slightly adjusted by deleting the portions of the curve that 

corresponded to the 7 residues that are now accounted for using the WLC model. The 

SNARE end separation, , was defined by 

 

( ) ( ) ( )SNARE melt bundlex F x F x F BW                      (A3.17)  
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where  is the end to end distance of the melted portion of Syb,  is 

described using the manipulated master force curve described in this section, and BW 

is the width of the SNARE bundle or the distance between the Syb and Syx C-termini 

when no external force is being applied.  The corresponding results are shown is 

shown in Fig. A3.11 A for a 20nm vesicle with hydration repulsion and Fig. A3.12 A 

for a 20nm vesicle with electrostatic repulsion and a fixed surface charge. 

 

 

FIGURE A3.11 For a 20nm vesicle with hydration repulsion, contour plots of 

normalized total energy as a function of SNARE end separation distance and the 

number of SNAREs are shown.  Gray circles correspond to energy minima 

representing the equilibrium SNARE end separation for a given number of 
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SNAREs.  Several cases are shown: (A) 2 helical turns unraveled, (B) Syx frozen, 

(C) SNAP25 frozen, and (D) Syx and SNAP25 frozen. 

 

 

FIGURE A3.12 For a 20nm vesicle with electrostatic repulsion assuming a fixed 

surface charge, contour plots of normalized total energy as a function of SNARE 

end separation distance and the number of SNAREs are shown.  Gray circles 

correspond to energy minima representing the equilibrium SNARE end 

separation for a given number of SNAREs.  Several cases are shown: (A) 2 helical 

turns unraveled, (B) Syx frozen, (C) SNAP25 frozen, and (D) Syx and SNAP25 

frozen. 
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In both cases, the results differ from those seen in Fig. 3.4 when unraveling was not 

permitted. For the case of hydration repulsion, the minimum separation is somewhat 

larger (~2.4 nm) than that shown in Fig. 3.4 B (~2.1 nm). There is a similar difference 

for the case of electrostatic repulsion.  

 

A3.10.5 Freezing SNAP25 or Syx: In our simulations we allowed SNAP25 helices to 

be free to adjust their orientation.  This mimics the optical tweezers experiment used 

to calibrate our model.  However, the situation in vivo is likely different with SNAP25 

and/or Syx constrained against motion. In order to see the effects of the positioning of 

SNAP25 in relation to the SNARE bundle we studied three variations: freezing Syx, 

freezing SNAP25, and freezing both Syx and SNAP25. When Syx was frozen, 

SNAP25 still remained associated with Syb. Anytime that SNAP25 was frozen at all, 

it remained associated with Syx. The energy calculations were repeated for the 

hydration repulsion case (Fig. A3.11) and the electrostatic repulsion case with fixed 

surface charge (Fig. A3.12). The freezing of helices in all of these cases has little 

effect on the minimum distance and number of SNAREs. The principal difference 

occurs for the one-SNARE case where the equilibrium distance reduces significantly.   

 

A3.10.6 High Osmotic Pressure and Low Pretension Limit 

Figs. 3.2 and A3.7 show cases of low osmotic pressure and plasma membrane tension 

where the plasma membrane bulges near the axis of symmetry because the attractive 

forces draw the two membranes to each other at their point of application but near the 

axis of symmetry only repulsion acts.  Experiments suggest that prior to vesicle to 



195 

 

membrane fusion, the vesicle retains its spherical shape while the plasma membrane 

surface conforms when the two are in contact (13, 14).  The continuum model was 

recalculated using high osmotic pressure in the vesicle and low pretension in the 

plasma membrane with constant potential. The resulting structures are shown for 10 

and 15 SNAREs in Fig. A3.16. 

 

 

FIGURE A3.13 For a 20nm vesicle with high osmotic pressure and low 

pretension in the plasma membrane with constant potential the vesicle and 

plasma membrane structures are shown including their bilayer thickness for (A) 

10 SNAREs and (B) 15 SNAREs.  

 

Under the conditions of high osmotic pressure and low pretension when 10 SNAREs 

are present there is little bulging of the plasma membrane and the vesicle remains 

spherical when the vesicle and plasma membrane are brought together. The separation 

is relatively constant which is consistent with the Malsam et al.(13) and Hernandez et 
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al. (14).  As the number of SNAREs is increased to 15, there is some bulging in the 

plasma membrane at the axis of symmetry.  The vesicle has retained its spherical 

shape while the plasma membrane bends to conform to it. 

The energy surface for this case is shown in Fig. A3.14.  We note that there is little 

difference between these and those of Fig. 3.4 B.  This suggests that our model is 

robust with respect to this uncertainty. (In particular, the value of vesicle osmotic 

pressure is difficult to estimate.) 
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FIGURE A3.14 Contour of normalized total energy as a function of SNARE end 

separation and number of SNAREs for a 20nm vesicle with high osmotic pressure 

and low pretension in the plasma membrane, and with constant potential on the 

vesicle and plasma membrane. White circles correspond to energy minima 

representing the equilibrium SNARE end separation for a given number of 

SNAREs. 

 

A3.10.7 High Vesicle Pressure, High Membrane Tension Vesicle-Membrane Model 
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In order to display the effects of the deformation considered in the continuum model, a 

more simplified analytical model of the Vesicle-Membrane system based on 

Bykhovskaia et al.(15) was calculated. The parameters used in the analytical model 

were consistent with those used in the continuum model as described in Section 3.3.  

Consider the case in which vesicle pressure Po and the membrane tension T are 

sufficiently large such that neither the vesicle nor the membrane deform as they 

approach each other. In this case Bykhovskaia et al.(15) have shown that the force 

between the vesicle and membrane is given by  
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for fixed surface potential and 
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for fixed charge.  The force separation curves are shown for the vesicle-plasma 

membrane for several cases using this model in Figs. A3.15 and A3.16. 
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FIGURE A3.15 For the high vesicle pressure high membrane tension limiting 

case, the net applied force in the membrane/vesicle system is shown as a function 

of SNARE end separation for a vesicle with a (A) 20nm radius with fixed charge, 

(B) 20nm radius with fixed surface potential, (C) 100nm radius with fixed charge, 

and (D) 100nm radius with fixed surface potential. 
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FIGURE A3.16 For the high vesicle pressure high membrane tension limiting 

case, the net applied force in the membrane/vesicle system is shown as a function 

of SNARE end separation for a radius for a vesicle with a 20nm radius with fixed 

charge when (A) the SNARE bundle diameter is 2nm and (B) the SNARE bundle 

diameter is 2nm. 

 

A3.10.8 Effect of Lateral Bundle Width: Figure A3.17 shows results of a test of the 

sensitivity of the solution to the location of the SNAREs when the lateral size of the 

SNARE bundle was varied from 2nm in Fig. A3.17 A to 4nm in Fig. A3.17 B (the 

base case used is 3nm, Fig. 3.4 B). Increasing the lateral width of the SNARE bundle 

seems to have a significant effect on the solution. There is a minimum separation at 4 

SNAREs. With the addition of more than 5 SNAREs the equilibrium separation again 

begins to increase all the way up to ~3nm with 13 SNAREs. 
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FIGURE A3.17 For the high pressure high tension limiting case, contour plots of 

normalized total energy as a function of SNARE end separation distance and the 

number of SNAREs are shown.  Gray circles correspond to energy minima 

representing the equilibrium SNARE end separation for a given number of SNAREs.  

Several cases are shown for the vesicle with a radius of 20nm and fixed charge. The 

size of the SNARE bundle was varied to (A) 2nm and (B) 4nm.  
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    Chapter 4  

During the process of neurotransmission in a healthy neuron, a large number of 

synaptic vesicles are docked at the synapse. These docked vesicles wait for an electric 

impulse commonly known as an action potential. Upon the arrival of the action 

potential, these vesicles fire the packed neurotransmitter towards the neighboring 

neuron and hence transmitting the neural information. It is believed that a neuron fires 

approximately 100 synaptic vesicles over a course of 10 mins [1]. New 

neurotransmitter filled synaptic vesicles are supplied at the synapse to replenish the 

stock of active vesicles. This docking is mediated by the SNARE proteins, which 

brings the synaptic vesicle close to the neuron plasma membrane. During the process 

of docking, SNARE force is employed to encounter the hydrodynamic forces. The 

hydrodynamic forces originate from the flow of physiological fluid away from the 

spacing between the synaptic vesicle and neuron plasma membrane. The 

hydrodynamic force determines the time taken by SNARE complexes to dock a 

vesicle and make it fusion ready by positioning it close to the neuron plasma 

membrane. In this chapter we present a continuum mechanics based model to estimate 

the docking time. Experimentally, the docking time has been measured to be ~250 

msecs [2]. We have used a lubrication theory based transient solution scheme along 

with a simplified continuum model of the system to calculate the value of docking 

time. We observed that during the docking, SNARE force needs to go through a rapid 

change of magnitude to produce the required docking time of the order of msecs. The 

nature of force needed for docking can provide insight into the structure of the 

SNARE proteins and their zippering. This model can also be used to predict the 
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docking time for a similar system based on the force variation during the course of 

process. 

4. 1 Abstract 

Synaptic vesicle fusion is a crucial step in the neurotransmission process. 

Neurotransmitter-filled vesicles are pre-docked at the synapse, by the mediation of 

ribbon structures and SNARE proteins at the ribbon synapses. An electric impulse 

triggers the fusion process of pre-docked vesicle, leading to the formation of fusion 

pore and subsequently resulting into the release of neurotransmitter into the synaptic 

cleft. In the present work, a continuum model of lipid membrane along with 

lubrication theory is used to determine the traverse time of the synaptic vesicle under 

the influence of hydrodynamic forces. We find that the traverse time is strongly 

dependent on how fast the driving force decays or grows with closure of the gap 

between vesicle and plasma membrane. If the right behavior is chosen, the traverse 

time obtained is of the order of few hundred milliseconds and lies within the 

experimentally obtained value of ~ 250 msecs [2]. We hypothesize two different force 

behaviors, which comply with the experimental findings of pre-fusion docking of 

synaptic vesicle at the ribbon synapses. The common theme in the proposed force 

models is that driving force has to very rapidly increase or decrease with the amount 

of clamping. 

4.2 Introduction 

For a continuous neurotransmission process, neurotransmitter-filled synaptic vesicles 

are resupplied and primed for fusion, at the ribbon synapse. These vesicles are docked 

at the synapse by ribbon structures [3], [4] and proteins of the SNARE (Soluble N-
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ethylmaleimide-sensitive-factor  Attachment  protein  REceptor) family [5]–[9]. 

Specifically, there are 3 SNARE family proteins involved in the docking process: 

Synaptobrevin 2 (syb), Syntaxin 1 (syx) and SNAP-25 [10]. Syb is attached to the 

synaptic vesicle at one end, and is referred as ‘v-SNARE’ [11]. Attached to the plasma 

membrane are the ‘t-SNAREs’: Syx and SNAP-25 [12], [13]. During the pre-fusion 

docking process, the ribbon structure drives the vesicle to the synapse so that the v-

SNARE and t-SNAREs are within striking distance of each other allowing clamping 

to initiate [2].  

Using flouresence microscopy, Zenisek et al. [2] showed that the time to dock a 

vesicle is about 250 msecs. From this, they concluded that it takes about 250 msecs for 

the pre-fusion docking machinery to close the gap between the membranes from 

~ 20nm [2] to ~ 2 nm [14]. The separation of ~ 2 nm, is often considered as the 

distance below which electrostatic and hydration pressure dominates [14]–[17]. At this 

stage, vesicle is referred to as fusion ready, and it waits for an electric impulse to 

initiate the fusion process [2], [18], [19]. Beyond this separation ( 2 nm), the 

dominant impeding force for the docking comes from hydrodynamics. As the vesicle 

is pulled towards the plasma membrane, water has to be squeezed out. For this to 

occur, an outwards pressure gradient is required.  This pressure deforms the 

membranes and affects the traverse time. 

In this paper, we model this phase of vesicle docking where hydrodynamics forces are 

dominant. Our results show that the traverse time is very sensitive to the time history 

of the driving force. To agree with the time measured by Zenisek et al. [2], the driving 
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force should either decay or rise very rapidly with the gap closure. The length scale 

over which this rapid force change takes place is of the order of few nanometers. 

 

4.3 Materials and Methods 

 

Fig 4.1: (a) Synaptic vesicle docking mediated by ribbon structure and SNARE 

proteins, (b) the driving force is represented by single force acting on the south 

pole of the vesicle (c) deformed plasma membrane under hydrodynamic and 

driving force, horizontal arrows indicate direction of fluid flow. 
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4.3.1 Model: Geometry, Fluid flow and Membrane mechanics 

The synaptic vesicle is assumed to be a rigid sphere of radius R . The entire 

compliance of the system comes from the plasma membrane of the neuron. A 

justification is that cryo-electron micrsocopy images of synaptic vesicles docked near 

the plasma membrane shows very little deformation [20], [21] in the vesicles. This 

could be due to high osmotic pressure across the synaptic vesicle membrane [22], 

pretaining to the high concentration of neurotransmitter inside it. In addition, the 

vesicle is expected to be stiffer since it is much smaller than the plasma membrane. 

Therefore, our model lumps all the deformation to the much larger plasma membrane 

which before deformation, is modeled as a flat circular disk with radius l . It is held at 

the edge  r l  by a tension force, which is the pretension, 
0T  of the neuron. Varying 

this pretension will allow us to change the compliance of the system. The plasma 

membrane is modeled as a lipid bilayer using a continuum theory developed by 

Jenkins et al. and Steigmann et al. [23]–[26]. The continuum theory has been used in 

literature for mechanistic modelling of the lipid membrane associated processes in red 

blood cell shape analysis [23], receptor-mediated endocytosis [27], micropipette 

aspiration of and curvature sorting of proteins [28]–[31], two component lipid 

membrane systems [32], [33], vesicle adhesion [34]–[37], and synaptic vesicle fusion 

[14], [38], [39].  

The fluid layer between vesicle and plasma membrane is assumed to be sufficiently 

thin so we can use Reynold’s equation in elasto-hydrodynamic lubrication theory to 

model the flow [40]–[45].  This theory is well suited for the present problem for the 

following reasons, 



 

208 

 

1) The flow between the synaptic vesicle and plasma membrane is in the low 

Reynold’s number regime, hence it can assumed to be laminar, 

2) The film thickness is relatively small compared to the size of the synaptic vesicle. 

As in Zenisek et al. [1], we assume the driving force to overcome hydrodynamics is 

provided by the ribbon structure and SNARE complex. Because the vesicle is rigid, 

the driving force can represented by a point force F  acting on the south pole of the 

vesicle as shown in Figs. 4.1a and 4.1b.  The magnitude of this force depends on the 

number of SNARE complex, n  acting on the vesicle which can vary from 1n   to 11 

[46]–[50].  This membrane model is coupled with a hydrodynamic solver based on 

lubrication theory. This allows us to determine the flow as well as the traverse time of 

the vesicle given the time history of F.   

4.3.2 Lubrication theory 

The problem is axisymmetric. For axisymmetric flow, Reynold’s equation is [51],  

 3 12h p
h

t






 .         4.1 

where r is the radial distance from the symmetry axis ( z axis) of the vesicle (see Fig. 

4.1c),  is the gradient operator in cylindrical coordinates,  ,h r t  is the thickness of 

the fluid film,  ,p r t is the fluid pressure and   is the dynamic viscosity of water. The 

film thickness  ,h r t  is related to the deflection of the membrane  ,w r t and the shape 

of the sphere by, 

     
2

0, ,
2

  
r

h r t
R

h w rt t ,        4.2 
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where  0h t  is the vertical separation between the lowermost point on the sphere and 

the plasma membrane at r l , where the membrane deflection  ,w r t  is zero, as 

shown in Fig. 4.1c.  We assume l  to be much greater than the region where pressure is 

significant. The second term on the right hand side of eq. 4.2 approximates the local 

shape of the sphere by a paraboloid.      

 

4.3.3 Elastic deformation of the plasma membrane : Calculation of w 

The deformation of the membrane is coupled to the flow via the fluid pressure,  ,p r t  

which acts normal to the surface. The governing equations of the lipid membrane in 

the full form can be used to obtain the deformation in the plasma membrane for a 

general pressure distribution. For the present work, the governing equations have been 

linearized under the small deflection assumption (see SI for details). The linearized 

equation is found to be, 

     4 2

0, , ,
2

w r t T w r t p r t

     ,       4.4 

where  is the bending rigidity of the lipid membrane. Eq. 4.4 is solved analytically 

(see SI for details) and the deflection  ,w r t  is found to be, 

             0 0 0 0 0 0 0 0

0 0

2 2 , 2 2, ,
1

r

r

w r t K I p d I K p d
T

T r T t T r T t       



 

 
 


  ,

 4.5 

where,  0I r  and  0K r are the modified Bessel functions of the 1
st
 and 2

nd
 kind 

respectively. 

 



 

210 

 

4.3.4 Numerical solution 

Details of the numerical methods are given in SI.  Briefly, the rigid sphere (vesicle) is 

moved towards the plasma membrane at a prescribed rate, 0h

t




. For a given 

0h and 

0h

t




, eq. 4.1 is solved iteratively, to determine the pressure distribution,  ,p r t  at a 

given time.  The force F is calculated using the force balance equation,  

 
0

2 ,
l

F p r t rdr  .        4.6 

4.4 Results 

Much insight can be gained by considering the special case of an undeformable 

plasma membrane. This case provides a lower bound for the traverse time. Also, since 

the solution is exact, we can study analytically how the traverse time depends on the 

variation of clamping force with time. Details of solution are provided in the SI, here 

we state the key results.     

 

4.4.1 Undeformable plasma membrane limit 

   1F t nF t , 0t  , denote the time history of force, where n  is the number of 

SNARE complexes and  1F t  is the force exerted by one SNARE complex. Let us first 

assume that the force acting on the vesicle is a constant independent of time, that is, 

 1 17F t pN ,                       for all 0t  ,      4.7 

where 17pN is the peak force exerted by one SNARE complex [52]. The tranverse 

time ft  is found to be (see SI for details) 
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0

0

l
6

n
 i

f

f

h
t

F h

R  
  

 
 

,         4.8 

where, 
0 20ih nm and 0 2fh nm  are the separations between the vesicle and plasma 

membrane at 0t  and  ft t  respectively. The presence of the logarithmic function 

indicates that the traverse time is insensitive to the initial separation. Fig. 3 shows the 

dependence of the traverse time versus to number of SNARE complexes. For 4n  , it 

is about 200 nanoseconds, which is 6 orders of magnitude smaller than the 

experimental value of 250 milliseconds [2].   

 

 

                       Fig 4.2: Traverse time of the vesicle for a constant force. 
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Experiments suggested that the SNARE clamping force is not a constant, but varies 

with distance between the clamps [52], [53]. This motivates us to use a clamping force 

that varies with distance between the sphere and the membrane, for the present case, 

this distance is  0h t . We assume that, 

 
 0

1max *

m

h t
F t nF

h

 
  

 
,                    for all 0t  ,     4.9 

where, m governs the rate of decay of force (larger m implies faster decay) and 

* 20h nm , the separation between the synaptic vesicle pool and plasma membrane [2], 

is used as a scaling parameter for the separation and 1, 17maxF pN . Eq. 4.9 states that 

clamping force is maximum when the SNARE complex zipping starts and reduces to a 

very small value towards the end of docking. The traverse time for this particular force 

history is (see SI for details), 

2

0

*

0

*

1

6

f

m m

f

m iax

R

m

h

n

h

h hF
t

    
          

 .       4.10 

Fig. 4.3 plots ft  versus the number of SNARE complexes n. It shows that the traverse 

time is very sensitive to the rate of decay the SNARE’s clamping force. To agree with 

the experimental result of Zenisek et al. [2], the force has to decay rapidly with 

separation, with m between 5.5 - 6.5.    



 

213 

 

 

Fig 4.3: Traverse time of the vesicle versus number of SNAREs using eq. 

4.10.  m governs the rate of decay of SNARE force with distance.    

 

4.4.2 Deformable membrane  

The result in previous section shows that decay of clamping force is the dominant 

factor controlling the traverse time. For example, increasing the number of SNARE 

complexes or the clamping force will not change the traverse time by several orders of 

magnitude. However, one may still argue that membrane deformation can also 

increase the traverse time, here we study this possibility by solving eq. 1 in 

conjunction with the eq. 4.5. All calculations are performed with 0001  . Pa-sec 
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(kinematic viscosity of water) and 20R nm . We fixed the bending stiffness of the 

membrane to be 20 Bk T [54]. This means that the compliance of system depends on 

the pretension 0T . We vary the decay constant, m , the number of SNARE complexes 

n  and 0T , which controls the compliance of the system.     

 

Fig. 4.4  plots the logarithm of the transverse time ft versus the decay exponent m , for 

1n  and for three different plasma membrane tension 0T  . Consistent with the 

undeformable membrane case, the traverse time is extremely sensitive to the decay 

constant m . This result is in conjunction with result of our previous section, that is, 

the force to dock the vesicle must be derived from the posterior part of the SNARE 

complex. In particular, varying the complaince of the system by changing 0T , has 

negligible impact on the traverse time compared to that of m . 
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         Fig 4.4: traverse time with varying decay exponent, for 1n   
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         Fig 4.5: Traverse time with varying number of SNAREs  

Fig. 4.5 shows the effect of varying the number of SNARE complexes, n  on the 

traverse time, with 6.5m  and three different values of 0T . The traverse time is a 

straight line in a log-log plot, indicating that the transverse time is inversely 

proportional to n , which is consistent with eq. 4.10 (un-deformable membrane). 

Again, variation in membrane pretension 0T  has little effect on traverse time, 

indicating that the compliance of the system plays a secondary role in controlling the 

traverse time. Clearly, the traverse time is much more sensitive to the decay constant 

than the number of SNARE complexes.    
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The effect of pretension 
0T  is shown in Fig. 4.6. As one increases the pretension, the 

traverse time very slowly approaches the undeformable membrane limit given by eq. 

4.10. Our numerical result shows that the traverse time is approximately constant for 

2

0 10 /T mN m . This is about three orders of magnitude smaller than the rupture 

strength ( 10 /ruptureT mN m , [55], [56]) of lipid membranes. This result again supports 

the fact that compliance or pretension is not an important factor compared to decay 

behavior in determining the traverse time of the synaptic vesicle. 

As expected the traverse time of the synaptic vesicle is always higher for deformable 

membranes.  Our numerical result shows that when the synaptic vesicle is docked 

~ 2nm  from the plasma membrane, the deformation in the plasma membrane was 

negligible. This result is in agreement with the cryo-electron microscopy images of the 

synapse, which shows negligible deformation in the plasma membrane, with synaptic 

vesicle docked and ready for fusion [20], [21]. 
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(a)                                                                              (b) 

 

     (c) 
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Fig 4.6: Traverse time with varying number of pretension, for number of 

SNAREs (a) 1n  (b) 2n   and (c) 3n   

4.4.3 Different force model 

From the comparison of rigid and compliant model of the plasma membrane, a very 

clear conclusion can be drawn that the traverse time is extremely sensitive to how the 

driving force varies with distance between clamps. The elasticity of the membrane and 

the magnitude of the force have relatively small effect on the traverse time. The force 

behavior described in the previous analysis is in agreement with the force behavior 

obtained from SNARE un-zipping experiment [52], [53].  However, it is possible that 

the SNARE complex zipping behavior can be very different and the ribbon structure 

might drive the vesicle for a part of its traversal. In the light of this, we propose to 

study another force model. Since we have demonstrated that the compliance of 

membrane has little effect on the transverse time, all results in this section are obtained 
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using the undeformable plasma membrane limit where an exact solution can be found.      

The force behavior is assumed to have the form: 

  
 

*

1max

0

m

h
F t nF

h t

 
  

 
 .   for all   *

0h t h    4.11 

This force model is based on the idea that as the SNARE complex zips, the force 

increases. The clamping force reaches a maximum value 
1maxnF when the synaptic 

vesicle is within ~ 2h nm  proximity of the plasma membrane, after which strong 

repulsive forces (electrostatic and hydration forces) acts to resist docking (not modeled 

by eq. 4.11). The parameter m  in eq. 4.11 controls the rate of increase of the clamping 

force.   

Fig. 4.7a plots the traverse time versus the number of SNARE complexes for three 

different values of m . It should be noted that, a change in the value of m  impacts the 

traverse time much severely than changing the value of SNARE complexes. In order 

to reach a traverse time of 250 msecs, we find 6.5m   . The variation of force versus 

h0 is shown for 6.5m   is given in the insert of Fig. 4.7a showing that, the SNARE 

force changes in a matter of few nanometers. For most of the traverse the vesicle is 

driven towards the plasma membrane by the ribbon structure and for the last stretch 

SNARE proteins take over the task.  

Fig. 4.7b shows the effect of varying the peak force which can be applied by the 

SNARE complex on the traverse time. The peak force was varied in the range as 

reported in the literature [52], [53]. The impact is not yet as big as varying the 

exponent of force behavior. 
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                                          (a)                      (b) 

Fig 4.7: Traverse time of synaptic vesicle vs. a) number of SNARE complex when 

1 17maxF pN  b) 1maxF when number of SNARE complexes, 1n   

4.5 Conclusions 

Using elasto-hydrodynamic lubrication theory, we determine the docking time of a 

synaptic vesicle against the plasma membrane of a neuron. This docking is driven by 

the force exerted by the SNARE complexes and is resisted by hydrodynamics.    

The main conclusions are: 

1. The decay of the clamping force of SNARE complex is the most important 

factor in determining the traverse time of the synaptic vesicle. 

2. The effect of membrane pre-tension and number of SNARE complex is 

negligible in comparison to the impact of the decay in clamping force. 

3. The rapid clamping force decay indicates the possibility that the posterior 

segment of SNARE complex is the force generating machinery. 



 

222 

 

4. The clamping force decays down to very small values by the end of docking 

process, when the vesicle is fusion ready. Our result suggests the possibility of 

other force regulating machineries that are needed to bring the synaptic vesicle 

closer to the plasma membrane for exocytosis.  This is still a subject of debate,  

but complexin (cpx) is believed to be a force regulatory agent which initiates 

the further clamping of the SNARE complex on the arrival of electric impulse 

[57]–[61]. 
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Appendix A4 

 

A4.1 Lubrication Theory 

In this section we show the derivation of Reynolds equation, which governs the fluid 

flow between two surfaces. The schematic is shown in the Fig A4.1, where the red and 

blue areas represent the surfaces which are in motion, and the vertical height between 

two points on the surface is (x,z)h .   

 

 

Fig A4.1 : Schematic 

In the following derivation, we start with the Navier-Stokes equation, do a scaling 

analysis to keep the dominant components of the equation and finally getting to the 

Reynold’s equation. 
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A4.1.1 Navier Stokes equations  

The most general form of Navier-Stokes equation is given as, 
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where, 

  is the density of the fluid, 

 a  , ndu v w  are the velocity components of fluid in  a  , ndx y z directions, respectively, 

 a  , ndX Y Z  are the body force components on fluid in  a  , ndx y z directions, 

respectively, 

  is the fluid viscosity. 

 

Assuming that, there is no body force on the fluid and also neglecting the inertial term, 

the Navier-Stokes equations can simplified to, 
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We choose the following non-dimensionalizing scheme for the eqs. A4.2, 

1) Time is non-dimensionalized by a characteristic time of the system, 
0 . Hence, 

0t t . 

2) Length dimensions associated in y-direction are normalized by local film 

thickness, h . Therefore, 

0

 and vy h
h

y v


 . 

3) Length dimensions associated in x and z directions are normalized by 

characteristic length of the system, l , where, 1
h

l
 . Therefore, 

0 0

,  , and w
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x h z
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 
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4) Density is normalized by room temperature density, 
0 , which results in, 

0   . 

5) Viscosity is normalized as, 
2
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 . 

6) Pressure is normalized as, 
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p p
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
 . 

Applying this normalization scheme to the system of eqs. A4.2, to get, 
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             

2
w l v

y y h z

        

                   

,         
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A4.

3 

Eq. A4.2 b, the Navier-Stokes equation in y-direction is identically satisfied on both 

sides. The pressure gradient in y  direction is negligible compared to the pressure 

gradients in x  and z directions. On the right hand side, the quantities are also very 

small compared to the corresponding terms in eqs. A4.2 a & c. 

Looking at the eq. A4.3, the terms which are scaled by,  
2

1
l

h

 
 

 
 are dominant and 

rest of the terms can be neglected on the right hand side. This gives, 

2 2

 and   
p u l p w l

x y y h z y y h
 
              

                              

.   A4.4 

 

On plugging back the dimensional term into eqs. A4.4, one gets back the dimensional 

form as, 

 and   
p u p w

x y y z y y
 
           

       
           

.     A4.5 

 

For an iso-viscous system, the equations can be modified as, 

2 2

2 2
 and   

p p w

x y y

u

z
 

   
 

   
.       A4.6 

 

This same set of equations can also be obtained by a force balance on a fluid element 

shown in Figs. A4.1 and A4.2. 
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Fig A4.1 : Force balance on a fluid element 

By doing a simple force balance in x-direction, on a fluid element between the two 

surfaces, as shown in Fig. A4.2, we can write the governing equations for fluid flow 

as, 

2

2

up

x y


 





.          A4.7 

Similarly, a force balance in z direction will give us the equation, 

2

2

wp

z y


 





.         A4.8 

In the above expressions, 

p is the pressure in the vertical fluid column and is assumed to be invariant along y 

axis, 

  is the fluid viscosity. 

Both eqs. A4.7 and A4.8 can be integrated twice each, to get the fluid velocities as, 

21

2

p

x

A
u y y B

 
 





 ,       A4.9 
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21

2

p

z

C
w y z D

 
 





.        A4.10 

 

Boundary conditions relevant to vesicle adhesion problem 

 

 

Fig A4.2 : Velocity boundary conditions 

For the case of lipid membrane fusion and adhesion, the only velocity element is the 

one in vertical direction, v
h

t




. Therefore, we have following boundary conditions 

for the velocity profiles obtained above in eqs. A4.9 and A4.10, 

 and 0,  at 00, 0 w yu v    ,       A4.11  

 and 0,  a  0, t
h

w yu v h
t


 


  .      A4.12 

Using these boundary conditions in eqs. A4.9 and A4.10, we get, 

 21

2
u y h

p
y

x




   ,        A4.13 
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 21

2
w y h

p
y

z




  .        A4.14 

Volume flow rates 

The volume flow rate per unit length, in x and z direction can be defined as, 

3

0
12

h

x

p

x

h
V udy


  



  ,        A4.15 

3

0
12

h

z

p

z

h
V wdy


  



  .       A4.16 

Continuity equation 

The continuity equation for fluid is, 

     
0

u v w

t x y z

     
  

   



.      A4.17 

For a constant density system, the equation can be simplified to, 

0
u v w

x y z





 

 



.        A4.18 

On integrating this equation with respect to y, between the limits 0 and h, we get, 

      
0 0 0

0

h h h

dy dy
u v w

d
x y z

y
  

  
     . 

Using Leibnitz rule of integration, 

0 0

00 0

0

0

0,

0,

0.

h h

h

h h h

x z

h

udy u v v wdy w
h h

x x z z

h

x t z

V

udy

V h

x

d

z t

w y

 

   

   



     

 

  

  

 

   

   


 

   

Plugging in the expressions of  and x yV V  into the expression above to get, 
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3 3 12h h
p p h

x x z z t


    

   

   
     

   
.      A4.19 

 

Eq. A4.19 above is referred to as Reynold’s equation. In this case, it has been 

modified to account for the fluid squeezing between two surfaces, one held fixed and 

other approaching it along the vertical direction.  

 

In more general form for any other geometry (spherical, cylindrical or Cartesian), it 

can written as, 

 3 12h p
h

t






 .         A4.20 
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A4.2 Rigid sphere against a rigid substrate 

Dimensional analysis 

 

Fig A4.4: Rigid sphere traversing against a rigid wall 

Starting with the Reynolds equation, which is the only governing equation for the case 

under consideration. The problem involves, pushing down a rigid sphere of radius R 

onto a flat rigid surface and in between the surfaces, there is fluid, which has to be 

squeezed away. 

 

In the part of the geometry, where film thickness is small, following approximation for 

the fluid film thickness, can be made, 

   
2

0,
2

r
h r t h t

R
  .         A4.21 
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Next, consider the Reynolds equation,  

 3 12h p
h

t






 ,         A4.22 

and for the axis-symmetric case, it can written as, 

3 12
p h

r
r r t

rh 
 


  

 


 
.        A4.23 

 

Also, we have following constraint on the pressure distribution on the sphere, which 

has to be satisfied all times, 

 
0

, 2F p r t rdr


  .         A4.24 

 

Non-dimensionalization 

 

Following scheme has been chosen to non-dimensionalize eqs. A4.23 and A4.24. 

2

, , .
h pR

r h p
R

r

FR
           A4.25 

 

This when applied to eq. A4.23,  

3
2 2 2

0 0

12

2 2

r p R r
r h r h

tFr r

 
   
 
 

     
   

     
, 

choosing, 
212

Ft
t

R
  to get, 

3
2 2

0 0
2 2

r p r
r h r h

r r t

   


   
 

  
        

.     A4.26 
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Also, eq. A4.24 can written in non-dimensional form as, 

 
0

,
2

1
p r t rdr





          A4.27 

As seen from the non-dimensional analysis, the only quantity with the units of time 

is
2

F

R
. So, the time of approach scales with 

2

F

R
 and is a function of initial and final 

separations between the surfaces, 
0,1

0,2

h

h
. Therefore the time of approach of sphere 

against the rigid surface can be written as, 

2
0,1

0,2

hR
t f

F h




 
   

 

 .         A4.28 

 

This is also the nature of expression obtained from the analytical derivation appended 

in next section. 

Analytical calculation 

Consider a rigid sphere of radius R  , being pushed onto a flat surface, while squeezing 

out fluid between the two surfaces. The separation between the lowermost point on the 

sphere and flat surface is referred to as
0h . The aim of this derivation is to get the time 

taken by the sphere to be brought down from initial bottommost separation of 
0ih  to 

final bottom most separation of 0 fh , while a force F  acts on the sphere in the 

downwards direction. 
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Thickness of lubrication film 

 

The geometry of the problem has axis-symmetry, therefore r  and z represents the 

coordinates. Henceforth, we have film thickness given as, ( , )h h r t . We can write an 

expression of h  in terms of 
0h  and r , as follows, 

 
1/2

2 2

0

1/2
2

0 2

2 4
2 2 2

0 2 2 2

,

1 1 ,

1 1 ..
1

.. ,
2 8 1

1 1

6

h h R R

h h R
R

h h R
R R R

r

r

r r r

   
  

  
      
   

     
                



 






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2 2 2

0 2 2
1 .... ,

2 4 8

1 1
h h

r

R R R

r r    
         
     

  

In the lubrication region, r R , hence the above expression can be approximated as, 

2

0
2

h h
R

r
            A4.29 

 

Reynold’s equation 

 

The Reynolds equation for general coordinate system is given by, 

3 12
h

h p
t




     
        A4.30 

For an axis-symmetric case, the Reynold’s equation is given as, 

3 12
p h

rh
r r t

r
   

    
         A4.31 

where,  
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( , )p p r t  is the fluid pressure in a vertical column of fluid film, 

  is the fluid viscosity. 

Solution 

The Reynold’s equation can be integrated to obtain an expression of pressure as a 

function of fluid film thickness. 

Integrating once, 

3

3 3

12
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,

,

p h
rh

r r
r

t

p h A

r h t rh
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
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 
 






 

To avoid a singularity in pressure gradient at 0r  , 0.A  Hence, we get, 

3

3

6
,

6 ,

p h

r h t

h
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r

r
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t h


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 
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
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


  

 


 

using, eq A4.29, we get, Rdh rdr , pugging in above expression, 
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
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


 

For large h , the pressure goes to zero, for it to be satisfied, 0B  . Hence,  

2

3
.

h

h

R
p

t

 
 


         A4.32 

This pressure, at any point in time balances the net force applied onto the sphere, 
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Eq. A4.24 can be integrated to obtain the time of approach of the sphere from initial 

separation of 
0ih  to final separation of 0 fh . 

 
2

0

06

dhF
dt

R h
  .        A4.34 

We will be integrating eq. A4.34 under different loading conditions, which describes 

the variation of force with the gap between the sphere and substrate. 

 

1) Constant Force 

 

Let the force on the sphere be given by the following function, 

1,maxF nF , 

where,  

n is the number of SNARE proteins working together, 

F1,max is the maximum force exerted by a single SNARE protein. 
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Plugging in this expression of F into eq. A4.34 and integrating, 
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0 0

ln
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R h h
     

 

Hence, 
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n

h
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


 
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 
 

.       A4.35 

 

2) Force changing with gap 

 

Let the force on the sphere be given by the following function, 

0

1, *

m

max

h
F nF

h

 
  

 
,       A4.36 

where,  

n is the number of SNARE proteins working together, 

F1,max is the maximum force exerted by a single SNARE protein, 

h0 is the minimum gap between the rigid sphere and rigid substrate, 

h
*
 is the characteristic length scale, chosen so that the force is F1,max at the 

maximum opening of SNARE. 

 

The maximum opening for a single SNARE bundle is 13nm and measured 

force at that opening is 17pN. Hence, to F have desired functional properties, 

h
*
 must be 13nm. 
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Plugging in this expression of F into eq. A4.34 and integrating, 
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A4.3Rigid sphere against compliant substrate 

 

Fig A4.5: Rigid sphere traversing against a flat lipid membrane 

Consider a rigid sphere of radius R  , being pushed against a initially flat lipid 

membrane. During this process, the fluid between the two surfaces is squeezed out. 

The squeezing requires a radially outward pressure gradient for the fluid flow. This 

pressure field causes the membrane to deform and hence it is an interplay between the 

pressure field and membrane deformation. 

 

The aim of this derivation is to get the governing equations for the motion of sphere, 

while a force F  pushes it towards the flat lipid membrane. 
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Governing equations 

 

This problem can be simplified a lot by exploiting the feature of axisymmetry. Under 

the assumption of axis-symmetry, mathematically this problem involves solving a 

partial differential equation (PDE) along with the system of ordinary differential 

equations (ODE’s) which govern the deformation of the lipid membrane.  

 

We begin with explaining the two sets of equations used in this analysis. 

 

1) Hydrodynamics 

 

The equation governing the hydrodynamics of the problem is called Reynolds 

equation. In its most general form, it can be written as, 

3 12
h

h p
t




     
.        A4.38 

Under the axis-symmetric assumption, it can be written as, 
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p h

rh
r r t

r
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    
       A4.39 

 along with, 

     
2

0, ,
2

r
h r t h t w r t

R
    ,      A4.40 

where, 

( , )h r t , is the film thickness at some time t  and at some radial coordinate r , 
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( , )p r t , is the pressure in the fluid film,  

 , is the fluid viscosity, 

0 ( )h t , is the separation between the lowermost point on the sphere and far field flat 

surface, 

( , )w r t , is the vertical deformation of the surface. 

 

Along with PDE in eq. A4.39, from force balance on the rigid sphere, following 

constraint equation can be obtained, 

 
0

, 2F p r t rdr


  ,        A4.41 

where, F  is the applied force on the rigid sphere, pushing it towards the flat lipid 

membrane.  

 

Since, the eq. A4.39 is a second order in space and first order in time, it comes 

along with two boundary conditions, 

a) 
0

( , )
0

r

r tp

r 




 , due to the symmetry of geometry,     A4.42 (a-b)  

b) ( , ) 0
r

r tp


 , in the far field the pressure in fluid film should go to zero, 

 

and the following initial condition, 

( , 0) 0r tp   , initially there is no deformation in the system.  A4.43 

 

2) Lipid membrane deformation 
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The lipid membrane deformation is governed by a 4
th

 order differential equation,  

 4 2

0
2

w T w p r

      ,       A4.44 

where, 

 , is the bending rigidity of the lipid membrane and has a value of ~ 20 Bk T , 

0T , is the far field pretension in the lipid membrane, 

 w r , is the deformation of the lipid membrane, and 

 p r , is the pressure acting on the lipid membrane at a given location.  

 

Eq. A4.44 resembles a plate equation with a pretension in it. 

Non-dimensionalization   

 

Normalizing this system of equations in accordance to the following scheme, 

0
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Non-dimensionalizing the hydrodynamics equations to get,  
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along with, 
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and following constraint equation, 
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The boundary conditions are normalized to, 

a) 
0
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r

r tp

t 




 ,             A4.49(a-b)  

b) ( , ) 0
r

r tp


 . 

 

The initial condition becomes, 

( , 0) 0r tp   .         A4.50 

 

Non-dimensionalizing the lipid membrane deformation equation to get, 

 4 2

02 2w T w p r     .       A4.51 

 

Equation A4.51 can be solved exactly analytically using Green’s function to get, 
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             0 0 0 0 0 0

0 0

0 02 2 2
1

2
r

r

w r K I pT r T Td I p d
T

r TK       


 
 
 
 

   

 A4.52 

 

Numerical solution 

 

This problem is solved in a displacment controlled manner, which means 0h  is 

incremented in time according to a specified rate, 0h

t




, then pressure is obtained 

numerically and subsequently the deformation of the lipid membrane. 

 

The numerical solution of the problem has been broken down into two parts. The 

former involves the state when the lipid membrane is significantly deformed and in the 

later part the deformation of the lipid membrane is negligible compared to 
0h . In the 

following section each stage is described along with its numerical implementation. 

 

1) lipid membrane significantly deformed  0 0|rh w    

The system of equations  governing the fluid flow eqs A4.46-A4.50 and A4.52 are 

solved using a numerical scheme, which is implicit, to obtain the pressure as a 

function of location along the radial direction while incrementing in time. 

 

The numerical implementation is described as follows, 

a) eq A4.46 can be expanded to get, 
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2
23 3 0

2
123

hh p p
h rh

w
rrh

r r r t t

 
 

     
  

     
 

 
 

 

Fig A4.6 : Discretization scheme 

 

b) to solve for pressure field at time 1kt  , the above equation can discretized at a 

location ( 1,2,3.... )ir i N , while using the following definition of the 

derivatives, 

1

1 1 1

, 1 1 , , 1 1

k

k k k

i i i i i i i i i

i

A A
p

p p p
r

A



  

   

 
   

 




, and 

 

1
2

1 1 1

, 1 1 , , 1 12

k

k k k

i i i i i i i i i

i

B B
p

p p
r

Bp



  

   

 
  




 
, 

  

to obtain, 
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 

 

 
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1
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i

k
k

k
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k
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k
k

i
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k

h
h rh rh p

r

h
h rh rh p

r

h
h rh rh p

r

h w w

t

A B

A B

A B

r
t






  











 







 
 
  

 
 

 
 

 

 
 

  

 
  
  

  


 

 
 

 







  
 

.


    A4.53 

 

 For these equations, 2,3, ... 1i N  .  

 Also, 

 

1

1 1 1

, 1 1 , , 1 1

k

k k k

i i i i i i i i i

i

A A
h

h h h
r

A



  

   

 
   

 




, 

 along with, 

 
2

1 1 1

0
2

k k ki

i i

r
h h w      . 

  

c) Using the boundary condition eq A4.49b, 0Np  .  

d) Using the boundary condition eq. A4.49a, to rewrite as, 

   
2 1 1 2 2 1

0

1 2 2 12 21 1

r p r p r r
p

r r r r r r r r
 



 
.      A4.54 

 

e) The rate of change of 0h  ,  0h

t




 is specified. For the present simulation it has 

been assumed to be, 0 0

0 *6

m

maxh h

h

F
h

t 

 
   

  


.    A4.55 
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 This is based on the result from the rigid substrate case when the SNARE 

forces decay in accordance with the 0

*

m

max

h
F F

h

 
   

 
. This dependence of 0h

t




on 

0h can be tuned my changing the exponent m .   

 

f) 0h  is incremented at each time step, by the amount specified according to 0h

t




, 

1 0

0 0

k

k

k h
h h t

t


 
 
 

  .  

g) For a specified 0h , the equations A4.53 and A4.54 solved iteratively and a 

solution is obtained. 

h) From the converged solution of pressure, Force on the sphere is numerically 

evaluated using the discretized form of eq. A4.48, 

1

1

2
N

i i

i

F r p r




  .       A4.56 

This is simulated until the point that the deformation in the middle of the plasma 

membrane, 
0r

w


  is negligible compared to 0h . 

 

Upto this point in the simulation force F and location of tip of the sphere 0h , is 

measured at each time step. Using this data, a fitting of the form, 0

*

x

max

h
F F

h

 
 
 

  is 

done to obtain the exponent x . 
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2) lipid membrane deformation is negligible  0 0|rh w   

In part 1 of the simulation scheme, the deformation at 0r   is compared with 0h , 

and once it is below a threshold value, then it can be ignored. This assumption can 

simplify the expression of h as, 

   
2

0,
2

r
h r t h t   . 

 

This assumption makes the convergence in the iterative solver faster. The 

numerical scheme remains the same as described in part A4.1). 
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A4.4 Small deformation of a flat lipid membrane 

Consider a flat circular membrane, of radius l  spanned in the polar coordinates of r 

and z. The governing equations for this membrane are given by, 

2 sin sin
,cos 2 2H d H

Q

r
H

Q

r
p

r

 
  


 

  
     

  
  

,
H Q

 
   

2 ,
sin

H
r

 


          A4.57(a-e) 

cos ,
r



  

sin ,
z



  

where, 
S

r
   .  

The boundary conditions associated with this membrane are, 

1) at 0,S    

0,

0,

0,

Q

r

 





          A4.58(a-c) 

these boundary conditions comply with the symmetry at the center of the 

geometry. 

2) at ,S l   
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2

0

0,

0,

sin
,

z

T d H H T
r




 





   

      A4.58(d-f) 

these boundary conditions mimic the far field boundary conditions of a flat 

lipid bilayer membrane in a finite sized geometry. 

 

Non-dimensionalization 

 

Normalizing this system of equations in accordance to the following scheme, 

, , , , ,
r z

S r z H RH
R R R

S

R


     

2 2 2

, , ,
QR dR TR

Q d T
  

         A4.59(a-i) 

3 3
, .S

SpR R
p t

t
 

  

 

In the above scheme, the quantity R is the radius of the synaptic vesicle and  is the 

bending rigidity of the lipid bilayer membrane. On applying this non-

dimensionalization scheme to the system of eqs. A4.57(a-e) and boundary conditions 

eqs. A4.58(a-f), we get, 

2 sin
cos 2

n
2

si
,H d

r

Q
H

Q
p

r
H

r

 




  
     

 



   

,
H

Q


   
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2 ,
sin

H
r

 


         A4.60(a-f)  

cos ,
r



  

sin ,
z



  

where, 
S

r
  . 

The boundary conditions modify as follows, 

1) at 0,S    

0,

0,

0,

Q

r

 





          A4.61(a-c) 

2) at ,S l   

2

0

0,

0,

sin
.

z

T d H H T
r




   



       A4.61(d-f) 

 

Udeformed membrane  

 

For an unperturbed membrane, in its undeformed configuration, the loading should be 

zero ( 0p  ), and the system variables are given by, 

0, 0, 0,  and 0,rQ H S z           A4.62(a-f) 

with 0d T   . 
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Perturbed solution 

 

Let’s choose the following first order perturbation scheme about the undeformed 

configuration, 

1,0Q Q    

1,0H H           A4.63(a-f) 

1,0    

1,r S r   

1,0z z   

0 1.d T d    

 

Now we can derive the boundary conditions in terms of the perturbed variables as 

follows, 

The boundary conditions modify as follows, 

1) at 0,S    

1

1

1

0 0

0 0

0 0

Q Q

r r

   

  

  

        A4.64(a-c) 

2) at ,S l   

1

1

2 2 1
0 0 1 1 1 0 1

0 0

0 0,

s n
.

i
0

z z

d H H T T d H H T d
r S r

 



  

  

        


 A4.65(d-f) 
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Hence, 0.d T   

 

Perturbing the governing equations 

 

We start with perturbing the equations one by one and get a linearized form of 

equations. 

1) 2 sin
2

si
cos 2

n
H

Q Q
p

r r
d H H

r

 



  

  
     

  
 

   

2

2

2

23 2 2

cos 2 2

cos 2 2

sin sin

sin sin

sin s ns 2 ico 2

Q
H d H H

r

S S S
H d H H

r r r

r Sr HS d H r Hr r

Q p
r r

Q
Q p

r r

Q p SQ

 
   

 


  

  
     

  

 

   

   


     
  

       
 

 

plugging in the perturbed functions into the above expression and solving step by 

step, 

 2 2

0 1 0d H T H T    , 

      2 2 2 2 2

11 0 1 02 2r d H S r S r T S r S T      , 

   1 1 1 1sin s 2in 02Hr H r S         , 

     2 2

01

2sin sin2 2r d H Hr S r S T      
 

 , 

 

     1

2 2 2 3

1 0 1 02 2 2sin s n 2i 2HS d H r Hr H S S r S T H T S         
  

  , 

 2

1

2 2r S p S rp S S   , 
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  2

1 1 1 1cos cosSr S r QSQ SQ      , 

hence, the R.H.S. of equation simplifies to, 

     2 2 2 2 3 2

1 1 0 1sicos 2 2 2n sin 2 .Sr HS d H r Hr r S S H T S p S rp Q SQ S          





 

On the other hand, L.H.S. can be written as, 

 
3

3

1 1 1

3r r S QQ Q S  . 

Combining both L.H.S. and R.H.S., to get, 

 3 2 3 2

1 1 1 102 ,2S Q S H T p S r S SQ S     

1
1 1 0

12 1 2
r

Q H T p
S

Q

S

 
     


 


.     A4.66a 

 

2) 
H

Q


   

SH Qr   , 

plugging in the perturbed functions, 

 1 1 1

1 1

H Q

H

r S S

S SQ

   

  

 

1 1H Q           A4.66b 

 

3) 2 ,
sin

H
r

 


   
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2

,
sin

2

sin
2

2 si

,

,n

H
r

H
r

S S

r

r SH

r

Sr


  




 

 

 

 

 

 

 

  

plugging in the perturbed functions, 

   
2

1 1 1 1 1

2 2

1 1 1

2 sin ,

,2

r S S r S S

S S S

H

H

 

 

   

 








 

1
1 12 ,H

S


            A4.66c 

 

4) cos ,
r



  

cos ,

cos ,

cos ,

r

S
r

r

r r S

 





 

 

 

 

plugging in the perturbed functions, 

   1 1 1

1 1

1 cos ,

,

r S r S

r S S r S

 

 

 

 
 

1
1 ,

r
r

S
            A4.66d 

 

5) sin ,
z



  
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sin ,

sin ,

sin ,

z

S
z

r

rz S

 





 

 

 

 

plugging in the perturbed functions, 

 1 1 1sin ,r S z S    

1 1,z            A4.66e 

 

Hence, we have following system of equations, 

11
1 1 0 1 22

r
Q H T p

S

Q

S

 
    





 

1 1H Q   

1
1 12 ,H

S


            A4.66(a-e) 

1
1 ,

r
r

S
   

1 1,z   

 

Along with following boundary conditions, 

1) at 0,S    

1

1

1

0 0

0 0

0 0

Q Q

r r

   

  

  

        A4.65(a-c) 

2) at ,S l   
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1

1

0 0

0 0,z z

   

  
        A4.65(d-e) 

Combined equation and comaprison with plate equation 

 

Reviewing the  governing equations, 

11
1 1 0 1 22

r
Q H T p

S

Q

S

 
    





 

1 1H Q   

1
1 12 ,H

S


            A4.66(a-e) 

1
1 ,

r
r

S
   

1 1.z   

 

Start with plugging in the eq. A4.66e into eq. A4.66c, 

1 1
1 1 1 1

1
2

2

z
H H

z
z z

S S
    

 
  

 
,      A4.67 

plugging eq. A4.67 into eq. A4.66b, 

1 1
1 1 1 1 2

1

2

z z
Q H Q z

S S
    

 
 

 
,      A4.68 

plugging eqs. A4.67 and A4.68 into eq. A4.66a, 



 

268 

 

1
1 1 0

1 1 1 1 1 1 1
1 0 1

1

1

3

1

2 3 2

1 1 1 1
1 0 12 3

1 2

1 1
1 2

2 2

1
2 1 2

2

2 ,
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 

    
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 


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 1 1
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1 1
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z z r

S S T S p
S S S S S S S S S S
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                       

 

 

4 2

1 0 1
11 22 2 .

S S

r
z T z p

S

 
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
 


       A4.69 

 

Comparing this with the governing equation in the literature for a plate with 

pretension, 

4

0

2 ,r rw w q            A4.70 

where, w  is the deflection in the plate, 

 0 is the pretension in the plate, 

 q is the load per unit area on the plate, and 

 r is the r coordinate of the system. 

 

It can be shown that eqs. A4.69 and A4.70 are same equations. In order to do that, 

consider eq. A4.66d, 

1 1 1
1 1 1 1ln ln c

r r r
r r S c r S

S SS


     


   , 

along with the boundary condition in eq. A4.65c,  1 0 0r S    

1 10 0.r S r            A4.71 
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This also helps to conclude from eq. A4.67 d, 

r S .          A4.72 

Hence, eq. A4.69 can be written  down as, 

4 2

1 0 12 2 .r rz T z p           A4.73 

 

On comapring eqs. A4.70 and A4.73,  

0 02T   and 2q p  . 
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A4.5 Solution of Small deformation lipid membrane equation 

The non-dimensionalised small deformation equation for an axis-symmetric flat lipid 

membrane can be written as, 

     4

0

22 2w r T w r p r            A4.74 

where,  

 w r , is the vertical deformation of the membrane at a given location r , 

0T , is the far field tension in the membrane, and 

 p r , is the pressure acting on the membrane at some given location r . 

 

Making following replacements,  

2

02T      and        2q r p r  ,  

to get, 

     4 2 2w r w r q r    .       A4.75 

Making one more substitution of    2r w r       A4.76 

to get, 

   22 r q r     .        A4.77 

For now, assuming that the pressure distribution is localized on a ring of radius 
0r  . 

Hence, we have, 

   0q r r r  , 

and it has the following integral result, 
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 0
0

2 1r r dr r 


  .        A4.78  

Solving for  r   

We solve eq A4.77for  r  and eventually solve for  w r  . Eq A4.77 can be solved 

two different ways, method 1 involves use of Hankel Transform and method 2 is 

standard ODE solving. 

Method 1 

Taking Hankel transform of eq A4.77, 

         2 2

0

0

q q J d          


      , 

where,      0

o

f r r rdf J r 


   denotes the Hankel transform of a function  f r . 

Further simplification gives, 

     02 2
0

1
q dJ    

 



  


. 

Taking inverse Hankel transform and rearranging the order of integrals to get, 

 
 

   

   
   

0

02 2
0 0
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2 2
0 0

,

.

J
r d d

r
q J

r JJ
r d dq

 
     

 

  
    

 

 

 

 
     

 





   

 

 

The integral in the    brackets is a standard integral and can be written as follows, 

       

   
0 00 0

2 2
0

0 0

0KI r rJ
d

K

r J

I r r

    


    

 

 

 
 


. 

Implementing this result in the integral, we get, 
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             

             

0 0 0 0
0

0 0 0 0
0

,

.
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r I r d K r dq K

r r I d r

q I

K q I q K d

          

          





    

    

 

Now, plugging in the fact that q  is a delta function to get a solution for    

 
   

   

0 0 0 0

0 0 0 0

1

2

I r r

K

r K r

r r
r

r I r

 


  


 


 





.     A4.79 

        

Method 2 

Because of the delta function at 
0 ,r r  in the region  0,r   excluding

0r r , the 

solution of the eq A4.77 can be written down in terms of two arbitrary constants as 

follows, 

 
 

 
0 0

0 0

A I r r
r

B K r r

r

r






 
 


 .       A4.80 

From the inspection of eq  A4.77, it can be observed that, the delta function on the 

right hand side originates from the  2 r  term, rather than  r term. 

Integrating, both sides of eq A4.77, in the interval 0 0,r r r       , 
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0 0

0

1
.

2
rr r r

r
r r



 


  

    
   

 


   


    

      A4.81 

Apart from this, we have continuity condition for  r  at 
0r r , 

0 0r r r r
 

  
 .        A4.82. 

Using the expression of   from eq A4.80 into the eqs A4.81 and A4.82, to get 

following set of equations, 

    0

0 1 0 1 0 ,
2

q
B K A Ir r r 


           A4.83 

   0 0 0 0A r rI B K   .       A4.84 

Solving eqs A4.83 and A4.84 for A and B, 
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  

 
 
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 
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Using the Wronskian property of modified Bessel functions,  

       0 0 1 0 0 0 1 0

0

1
I K K Ir r r r

r
   


  , 

into the expressions for A and B, to get, 
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Going back to eq A4.80, and plugging in the values of A and B to get, 
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Solving for  w r   

Both methods of solving yielded the same result, as seen in eqs A4.79 and A4.85. 

Next step, is to solve for  w r , in the equation, 

   
   

   
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I K r rw w

r K I

r r

r r rr rr

 
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 
  

 

 
 



.    A4.86 

The homogeneous solution of eq A4.86 is, 

  lnw r C r D  . 

For a closed form w , 0C   and for the asymptotic solution of 0w , 0D  . Hence, 

the solution of eq A4.86 only comprises of the particular solution. 

Since,  0I r and  0K r  are solutions to the following differential equation, 

2 2
2 2

2 2
0

1 1y y y
y y

r r r r
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   
    , 

hence,  
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Using the above fact to obtain the particular solution, 
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.     A4.87 

This solution of  w r  in eq A4.87 is the Green’s function of the eq A4.75 and can be 

written in the standard Green’s function representation as, 
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and hence,  

     

             0 02

0

0

0 0

2 |

.

,

1

r

r

w r G r q

w r

d

rK I q d I K qr d

    

         




 
 







 



 

 

Plugging in, the values of    2q p    and 2

02T  , 
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Implementation in a numerical scheme 

For a numerical scheme when the pressure  ip r is provided at some discrete data 

point 
ir . Apart from that the domain is also finite, hence the second integral instead of 

going to   goes to some large value, l . Under these conditions, the deformation 

 iw r  can be written as, 
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Chapter 5 

During synaptic vesicle fusion, SNARE family proteins play an extremely important 

role. The SNARE complex is anchored to the membranes of the synaptic vesicle and 

neuron base. They mediate the vesicle fusion starting from docking the vesicle, fusing 

the lipid membranes and eventually leading to the fusion pore formation. The role of 

SNARE proteins and the intermediate stages of this fusion are a topic of debate in the 

neuroscience community. It is believed that SNARE complexes work in collaboration 

to bring down the synaptic vesicle. The questions on an ideal arrangement of SNARE 

complexes, number of SNARE complexes and role of membrane tension are still 

unclear.   

In the present work, we have used a Molecular Dynamics (MD) scheme to extract 

details of synaptic vesicle fusion. The MD scheme used in this work is known as 

Coarse Grained MD (CGMD). CGMD simulations are an important tool in analyzing 

complex systems. The behavior of multiple particles can be aggregated to be 

represented by one single particle. This simplification offers a huge computational 

advantage by making simulations faster. A reduction in computational expense allows 

researchers to carry out simulations for longer physical times and for spatially larger 

systems compared to All Atom (AA) simulations. Due to its capability to run 

simulations for longer time durations, we were able to simulate synaptic vesicle fusion 

over a span of nano-seconds. During these simulations we were able to demonstrate 

the occurrence of synaptic vesicle membrane fusing with neuron plasma membrane 

and leading to the fusion pore formation.  
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The CG scheme presented in this work is still under development. With this scheme 

we aim to understand the dynamics of during the synaptic vesicle fusion. We aim to 

study the arrangement of SNARE complexes between the two membranes. This 

arrangement plays an important role as it is an outcome of SNARE to SNARE 

interaction. Moving further, we will want to answer the most debatable question in the 

neuroscience community on how many SNAREs are needed to carry out a successful 

synaptic vesicle fusion. We also want to understand the role of high in-plane tension in 

synaptic vesicle membrane. This in-plane tension is a result of the osmotic pressure 

across the lipid membrane of synaptic vesicle, due to the presence of neurotransmitters 

inside it. The lipid membrane tension is believed to increase the probability of fusion 

pore formation. In this work we present qualitative results on the effect of in-plane 

tension in the lipid membrane.  

5.1 Abstract 

Synaptic vesicle fusion is a key step in the neurotransmission process. SNARE 

proteins mediate the docking of synaptic vesicles at the plasma membrane and 

eventually leading to the fusion pore formation which releases the neurotransmitter 

into the synaptic cleft. In the present work we propose a CGMD model of two 

juxtaposed lipid membranes undergoing a fusion pore formation. We study the 

influence of varying number of SNARE complexes and the tension in the lipid 

membranes on the vesicle fusion. We find that the strength of interaction between the 

transmembrane domain and the hydrophobic core of the lipid membrane is an 

important factor in orchestrating the fusion pore formation.  
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5.2 Introduction 

Neurotransmission at the junction of two neurons is mediated by the SNARE (Soluble 

NSF Attachment Protein Receptor) machinery [1], [2]. SNARE complexes are present 

in between the synaptic vesicle and plasma membrane of neuron base, linking the two 

membrane structures. The membranes are held close to each other with the help of 

clamping force provided by SNARE complexes [3]. This clamping force is believed to 

be the driving force for the synaptic vesicle fusion and subsequently the fusion pore 

formation [4]. The mechanism of the fusion pore formation is still an unanswered 

question as it is difficult to witness the process in vitro, due to its extremely small time 

and length scales. The process is believed to proceed through two major steps before 

the release of neurotransmitter in the synaptic cleft: 1) the docking of the synaptic 

vesicle at the neuron base [5] 2) and opening of the fusion pore [6]. The synaptic 

vesicles filled with neurotransmitters are continuously replenished near the neuron 

base and are docked with the help of SNARE complexes. This docked assembly then 

awaits an action potential [7] to trigger the next step of synaptic vesicle fusion, i.e. 

pore formation [4], [8]. 

The SNARE complex driving the synaptic vesicle fusion is made up of four helices, 

which are derived from 3 different proteins [9]. These proteins are classified as v-

SNARE and t-SNAREs. Synaptobrevin (Syb) is the v-SNARE (v stands for vesicle) 

protein anchored to the membrane of synaptic vesicle membrane with the help of a 

hydrophobic Trans-Membrane Domain (TMD). Syb contributes one helix in the 

SNARE complex [10]. On the other hand the Syntaxin (Syx) and SNAP-25 are 

attached to the plasma membrane of the neuron and are referred to as t-SNAREs (t 
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stands for target) [11]. Similar to Syb, Syx is attached to the neuron membrane by 

embedding a hydrophobic TMD. SNAP-25 on other hand is anchored to the 

hydrophilic surface of the neuron membrane by an adsorbed palmitoyl chain [12]. The 

Syx and SNAP-25 contribute one and two helices respectively in the SNARE complex 

formation. When the neurotransmitter filled synaptic vesicle is in the vicinity of the 

neuron base, the t-SNAREs acts as an acceptor site for the v-SNARE. The zippering 

of the four helices into a tight bundle leads into the formation of SNARE complex 

[3][13]. This zippering is driven by interactions of the amino acid residues on each of 

the contributing helices. This provides the necessary force for docking the synaptic 

vesicle and bringing the two lipid membranes in proximity of each other. When the 

action potential is received at the neuron base, fusion pore formation is triggered. 

Some studies claim that the linker domain of the Syb and Syx becomes structured at 

this instant [11], [14], [15]. A linker domain is the part of the SNARE proteins which 

connects the TMD and the part of helix which contributes to SNARE complex. The 

linker domain is present in Syx and Syb. It has been found to be unstructured before 

the arrival of action potential, but becomes structured on its arrival.  

The two lipid membrane structures [16] involved in this process are synaptic vesicle 

and plasma membrane of the neuron. The basic constituent of this membrane is a lipid 

molecule. These molecules are amphithatic in nature. This results in self-assembly in 

an aqueous environment, such that the hydrophilic portion of the molecule is exposed 

to water, while the hydrophobic part is hidden away from it. The synaptic vesicles are 

approximately spherical shaped structures with a radius of ~ 20nm [17]. Due to the 

presence of neurotransmitter inside the vesicle, a huge amount of osmotic pressure 



 

280 

 

acts across its lipid membrane. Literature suggests that the osmotic pressure is high 

enough to keep the membrane of vesicle near the rupture strength [18], [19]. On the 

other hand the lipid membrane at the neuron base has a very small curvature relative to 

the synaptic vesicle and can be assumed almost flat. The SNARE proteins Syx and 

Syb are held to the lipid membrane with the help hydrophobic interaction between the 

tails of the lipid membranes and the TMD provides the necessary anchoring force. 

The details of the mechanism leading to synaptic vesicle fusion and pore formation are 

still unclear and debatable. The system has been studied using experimental and 

simulation techniques to develop a better understanding. Molecular simulations 

present themselves as an ideal technique to visualize synaptic vesicle fusion [7], [20]–

[23]. But the huge computational cost associated with molecular simulations poses a 

limit on length of simulations and spatial details of the system. In such cases coarse 

graining techniques can be a low computational cost alternative. Coarse Grained 

Molecular Dynamics (CGMD) simulations offer an opportunity to carry out long 

duration simulations by cutting down on molecular details. The molecular simulation 

models for lipid membranes present in literature lie in an extremely wide range of, 

single bead representation of lipid molecule to a full atomic detail model. In the 

coarse-grained category, the membrane model with the implicit solvent scheme comes 

along with a big reduction in computational costs. The presence of water molecules is 

sufficed by a hydrophobic interaction between the hydrophobic tails. The three bead 

lipid model by Cooke et al. is chosen for the present work [24]. The SNARE coarse 

grained model is based on the work by Fortoul et al. [25]. In this model, each amino 

acid residue is represented by a single bead. An Elastic Network Model (ENM) creates 
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the helical backbone of the SNARE proteins and Miyajawa-Jernigan (MJ) force field 

defines the interaction between the amino acid residues. This CG model of SNARE 

proteins is calibrated against All Atom (AA) simulations and force measurements 

made in single SNARE laser tweezer experiments. The CG models of lipid membrane 

and SNARE proteins have been developed in LAMMPS. The hydrophobic interaction 

between the lipid membranes and TMD is found to be an important tuning parameter 

for the simulation and with the right choice of hydrophobic interaction the simulations 

have shown the formation of fusion pore.  

In the following section the outline of simulation scheme is described. 

 

5.3 Model 

 

Fig 5.1: Schematic for SNARE mediated synaptic vesicle fusion a) side view of 

pre-fusion geometry b) simplified membrane geometry c) a side view close up of 

pre-fusion geometry d) post-fusion and fusion pore formation. 
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A synaptic vesicle fusion machinery consists of a synaptic vesicle, SNARE complex 

and plasma membrane of neuron. The SNARE complex is present in between the two 

lipid membrane structures as shown in Fig 5.1a. The neurotransmitter filled synaptic 

vesicle is docked at the plasma membrane with the help of zippered SNARE complex. 

In this state the SNARE complex awaits an action potential to fuse the vesicle and 

plasma membranes. The number of SNARE complexes present in between the two 

membranes is a debatable topic in neuroscience community. The electrical 

conductance studies carried out by Han et al. [8] proposes that 5-8 SNARE complexes 

are present around the fusion pore. Work of Sinha et al. [26]  on fluorescence response 

from single fusing synaptic vesicle indicates the presence of only two SNARE 

complexes at the fusion site. Titration analysis by Mohrmann et al. [27] comes up with 

a conclusion that at least three SNARE complexes are needed for a successful fusion 

event. The work of Fortoul et al. [25] using coarse grained simulation studies reports 

the requirement of 4-6 SNARE complexes for synaptic vesicle fusion. The 

discrepancies in the number of SNARE complexes necessary for fusion is reviewed by 

Bogaart et al. [28] and is reported to be in the range of 1-11. This variation in number 

is due to the experimental technique used to obtain this number. The common theme 

in the reported research on number of SNARE complexes proposes that the expected 

fusion site is usually located between a ring of SNARE complexes. All the SNARE 

complexes collaboratively mediated the fusion pore formation.  

To simplify the analysis, the fusion site can be visualized as two plane lipid 

membranes held in proximity of each other by the help of a ring of SNARE 

complexes. In the present work, the two membranes have been assumed to span the xy 
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plane as shown in Fig 5.1b. Periodic boundary conditions are imposed in both x and y 

direction as indicated by arrows in Fig 5.1b. In the initial configuration of the lipid 

membranes are placed at a given separation from each other as shown in Fig 5.1c. A 

specified number of SNARE complexes are placed in the gap between the membranes. 

These SNARE complexes extend their TMD into the two membranes, Syb in vesicle 

membrane and Syt in plasma membrane respectively. This system is implemented in 

LAMMPS with a NVE ensemble along with a Langevin thermostat to maintain the 

temperature of the system at 300K. The expected outcome of this simulation is the 

formation of fusion pore as shown in Fig 5.1d. In the next section, we present the 

details of the implemented molecular model. 

5.3.1 Lipid membrane 

In the present  work, the 3 bead lipid model by Cooke et al. [24] is implemented for 

the lipid membranes. In this model, a single lipid molecule is represented by 3 beads. 

The head bead represents the hydrophilic head, whereas the rest of the two beads 

represent the hydrophobic tail. This 3 bead chain is connected with two FENE bonds 

( lipid

FENEV ) as shown in Fig 5.2, for which the potential is described in eq. 5.1, 

2

21
lo( ) g 1

2

lipid lipid

FENE FENE

r
V K

r
r r



  
   
   

          5.1 

with 
 

2
30

lipid
lipid

FENE
lipid

K



   and 1.5 lipidr   . 

where, r is the distance between two beads connected by FENE bonds, 

lipid

FENEK  is the potential coefficient, 

r  is the maximum extension allowed in the bond, 
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lipid  is the LJ energy parameter for lipid molecule  

lipid is the LJ the size parameter for lipid molecule. 

An additional bond is added to maintain the orientation of the molecule. This is 

represented by a harmonic spring ( lipid

harmonicV ) and it acts between the first (head) bead 

and the third (second tail) bead as shown in Fig 5.2. The potential of this bond is given 

by eq. 5.2 

 
2

0

1

2
( )lipid lipid

harmonic harmonicV K r rr          5.2 

with, 
 

2
10

lipid
lipid

harmonic
lipid

K



   and 0 4 lipidr  . 

lipid

harmonicK  is the potential coefficient, 

0r  is the length of the spring. 

To simulate the implicit solvent a modified short distance repulsive and long distance 

attractive potential ( l d

tail

ipiV ) is implemented for tail beads as shown in eq. 5.3. This 

potential keeps hydrophobic core of the lipid membrane together and maintains the 

bilayer structure. 
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Fig 5.2: FENE and harmonic bonds in a lipid molecule 
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with, 1.6 lipid

cw   which is chosen from the parameter space (Fig A5.3) provided by 

Cooke et al [24]. 

Here 1/62 lipid

cr  , is the location of the minimum of the LJ 6-12 potential. 

The interaction between a head and tail bead, and two head beads is governed by 

Weeks-Charles-Andersen potential ( lipid

repulsionV ) as defined by eq. 5.4. This potential 

provides the necessary soft repulsion between the beads to avoid them collapsing into 

each other. 
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The parameters for the lipid membrane model are chosen to reflect the bending 

stiffness similar to biological membranes. For the values lipid   0.542 kCal/mol and 

lipid  9.7 nm, the bending rigidity,   of the membrane is calculated using the 

simulation experiment described by Hu et al. [29] and shown in Fig 5.3. This value is 

found out to be 11.8 Bk T  and is in agreement with the work in literature using other 

molecular simulation [30]–[32] as well as experimental techniques [33]–[37]. The 

details of the bending modulus study are appended in section A5.2. 

 
Fig 5.3: Bending stiffness calculation of lipid membrane using the methodology 

proposed by Hu et al.  [29]. xF  is the force exerted by the lipid membrane on the 

yz face of the simulation box and is scaled with  
lipid

lipid
, the coefficients ib ’s are the 
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coefficients in the expansion, 
xL and yL  are the length of the membrane along x 

and y directions, 
Bk  is the Boltzman Constant and T  is the temperature.  

 

5.3.2 SNARE coarse grained model 

In the present work the SNARE coarse grained model is based of the work of Fortoul 

et al. [25]. The CG SNARE model presented in Fortoul et al. was extended to include 

the Trans-Membrane Domains (TMD) and Linker Domain (LD) of the Syb and Syx. 

The methodology for extending Syb and Syx is described in section A5.3. This model 

represents each residue with a single bead placed at the location of   carbon. The 

representative beads retain the identity by having the equivalent van der Waals radius 

and mass as that of the residue. The residues interact with other residues in the same 

SNARE complex by two interactions which are described below. 

 

5.3.2.1 Bonded interactions 

The intra-helical interactions between the residue beads are defined using an Elastic 

Network Model (ENM) [38], [39]. These interactions maintain the helical structure of 

individual proteins. The location of residue beads along the helices is based on an x-

ray structure of the proteins. A cutoff distance cR  is chosen. Two residue beads from 

same helix and within this cutoff distance are connected by a harmonic spring. The 

spring potential is given by, 

 
2

0

1

2

SNARE SNARE

harmonic harmonicV K r r  ,        5.5 
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where, 0.0963 /SNARE

harmonicK N m  and 0r  is the distance between two beads when the 

individual helices are in relaxed and nearly straight. The value of SNARE

harmonicK is carefully 

chosen after comparing the fluctuation spectrum of individual helices of All Atom 

(AA) and CG model of individual helices.  

 

5.3.2.2 Non-bonded interactions 

The next set of interactions incorporates the chemical specificity of residues which 

governs the SNARE complex formation. This interaction acts between the residue 

beads from same helix and the residues on the other helices which are part of the same 

SNARE complex. The interaction energy of between residues is a scaled version of 

the contact energy values provided by Miyazawa et al. [40]–[42]. The scaling used in 

the present work is based on Kim et al. [43] formulation, 

 0

SNARE

ij ije e   ,          5.6 

where, SNARE

ij is the interaction energy, ije is the contact energy,   is a scaling factor 

and 0e  is an offset parameter. The beads within a cutoff distance _C MJR  of each other 

are assumed to be in contact and the interaction between the beads is governed by a 

modified 6-12 LJ potential ( SNARE

ijV  ) as shown eq. 5.7. The choice of potential is based 

on the value of SNARE

ij .  
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where, 0

ijr is the distance at which the minimum of the LJ potential occurs, 

2

SNARE SNARE

i jSNARE

ij A
 


 

   
 

 is the size parameter of mixed interactions between two 

residues and SNARE

i is the van der Waal radius of a residue bead, A is a tuning 

parameter to match the bundle width with the experimental acquired value. For the 

present work 0.8A . The parameter   in eq 5.6 controls the strength of inter-helical 

interactions. Its value was chosen so as to match the SNARE unzippering behavior in 

comparison to the experimental results of single molecule unzippering  by Gao et al. 

[13]. The calibration is done by matching the peak value of force (17.2 pN) reported in 

the experiments. 

In the next step the interaction between the SNARE residue and lipid beads is defined. 

The interaction between the hydrophobic residue beads and lipid tails ( ,

lipid SNARE

i tailV   ) is 

defined in eq. 5.8. It is modeled similar to the interaction between the tail beads of a 

lipid molecule. 
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where, *lipid SNARE lipid SNARE

i ii    and 
2

lipid SNARE

lipid SNARE i

i A
 

 
 

  
 

. 

In the equation above, lipid SNARE

i
  and lipid SNARE

i
  are the energy and size parameter 

respectively for mixed interaction between the lipid and SNARE beads. The value of 

0.8A  is same as in the case of SNARE

ijV . 

5.4 Results 

The CGMD scheme described in the previous sections is used to simulate lipid 

membrane fusion without mediation from SNARE proteins. The purpose of these 

simulations was to test the ability of the CGMD lipid model to simulate membrane 

fusion. The membrane fusion models proposed in the literature relies on the presence 

of explicit solvent, whereas in the present work an implicit solvent scheme is 

implemented. In the next section we present the results for membrane fusion under the 

effect of an indent and in the following sections we will show the results from the 

membrane fusion mediated by SNARE proteins [44].  

5.4.1 Membrane fusion under the effect of a rigid indenter 

The geometry of the simulation can be described as follows and also shown in Fig. 

5.4, 
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1) All the simulation were carried out in planar periodic box, with periodicity in x 

and y directions 

2) There are two planar membranes facing each other, the top membrane is 

supposed to represent synaptic vesicle membrane and the bottom membrane 

represents plasma membrane of neuron. The in-plane stress in the membrane 

can be altered by changing the density of lipid molecules in either membrane. 

3) The length of the membranes in x-direction ( xL ) is significantly longer than in 

y-direction ( yL ). 

10x

y

L

L
   

4) For all the simulations described in LAMMPS, fix indent is used to create an 

indenter which then pushes the membranes towards each other. 

5) All the indenters are cylindrical, with axis aligned along y axis (into the plane) 

6) The diameter of indenter is specified as 2nm. This is based on the assumption 

that the size of bump induced in the lipid membrane due the anchored SNARE 

proteins is of the order of few nanometers 

7) All the simulation snapshots are on the xz plane, x is horizontal axis, z is 

vertical axis and y is coming out of the page. 
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Fig. 5.4: Schematic of membrane fusion under the effect of indenters 

 

In the next step, we conducted two set of simulations with the above setup to induce 

fusion between the two membranes. The first set of simulation did not have any initial 

in-plane membrane tension and in the second set of simulations, an initial in-plane 

tension was imposed in the membranes. 

 

1. No in-plane membrane tension 

During these simulations, the separation between the indenters was varied and 

occurrence of hemi-fusion instances was observed as shown Fig 5.5. Hemi-

fusion [45], [46] has been identified as an intermediate state of the apposing 

lipid membranes where, the lipid monolayers facing the other lipid membrane 

merge with each other while the rest of the lipid membrane (one monolayer on 
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each side of the lipid membrane) stay intact. It is believed that, in later stages 

of fusion process the hemi-fused diaphragm ruptures and leads to the formation 

of fusion pore [45]–[48]. 

The gap between the surfaces of the cylindrical indenters, d , as shown in Fig. 

5.5 was varied and above some critical separation no hemi-fusion was 

observed. For this case, when the separation between the indenters was more 

than ~3.6 nm, hemifusion ceases to take place. The absence of tension is also a 

crucial factor in the formation of hemi-fusion. In the next section we will see 

how the in-plane membrane tension affects the membrane conformation when 

they are placed close to each other.  

 

        

Fig 5.5: Critical separation between the membranes for hemifusion to 

occur. 
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2. In-plane tension present 

For this set of simulation, the tension in the membranes was varied, by varying 

the number of lipid molecules, while holding the lengths of membranes to be 

constant. This is done for both lipid bilayers. The separation between the 

indenters was chosen so that the hemi-fusion was expected to take place.  

 

Fig 5.6: Fusion pore formation in membranes under in-plane tension 

Few interesting observations, from the variation of tension simulations are, 

1. As the tension in the membranes was increased, the length of the hemi-

fused diaphragm increased. This is because, the density of lipid 

molecules increases as the length of the hemi-fused diaphragm and the 

lipid molecules in two tense membranes are now in one single 

membrane. 

2. For sufficiently large tensions the membranes rupture during the 

indentation, and the broken ends of the membrane end up joining 

between the synaptic vesicle membrane and plasma membrane. This 

leads to the formation of fusion pore, as shown in Fig. 5.6. 
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This simulation study demonstrated the capability of the CGMD lipid membrane 

scheme to demonstrate fusion. For the next set of simulations, we have combined the 

CGMD schemes of lipid membrane and modified SNARE proteins.  

 

5.4.2 SNARE mediated synaptic vesicle fusion 

The fusion pore formation during synaptic vesicle fusion is an expected outcome of 

the process. It is believed that fusion pore formation is a result of collaborative effort 

of SNARE complexes. It has been proposed the arrival of action potential at the 

synapse triggers conformational changes in the LD of Syx and Syb [14], [15]. This 

makes the complete helix of both Syb and Syx to straighten and provides extra force 

on the opposing membranes to get close to each other and at the same time increases 

the level on in-plane tension in the membrane of synaptic vesicle and neuron base.  In 

Fig. 5.7 we show the results of our initial tudies of these simulations, which led into a 

successful fusion pore formation. Fig 5.7 (a) shows the side view (yz plane) of the 

fused membranes and fig 5.7 (b) shows the fusion pore from the top going through 

both the membranes Fig 5.8 (a) shows a closer look at the fusion pore and it can be 

clearly seen that lipid molecules are oriented horizontally around the fusion pore. To 

dig deeper into the fusion pore structure, two slices around the fusion pore were 

analyzed. Fig 5.8 (b) shows the red slice and fig 5.8 (c) shows the green slice, viewed 

along x axis and y axis respectively. In both views it can be clearly seen that the lipid 

molecules rearrange to form a fusion pore structure. 
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This scheme can be used to characterize the parameters which will enable the fusion 

pore formation. In our simulations the interaction between the lipid molecules and the 

SNARE beads is one of the key interactions in the process of fusion pore formation. 

This interaction is hydrophobic and is similar to the interaction between the 

hydrophobic beads of the lipid molecule. If this interaction is weak then the 

membranes tend to detach from the TMDs of the SNARE complexes. On the other 

hand if the interaction is too strong the lipid molecules tend to aggregate around 

TMDs of the SNARE complexes. This aggregation hinders the interaction of the lipid 

molecules in the opposing lipid monolayers of synaptic vesicle and neuron plasma 

membrane. 

 

Further simulation studies need to be conducted with the current scheme to find the 

right parameters. These simulation studies will be done to analyze the effect of 

number of SNARE complexes, in-plane tension in the membranes, self-arrangement 

of SNARE complexes around the expected fusion site and subsequently the fusion 

pore formation.  
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Fig 5.7: SNARE protein mediated synaptic vesicle fusion a) side view (yz plane) 

b) top view (xy plane) 
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Fig 5.8: (a) A closer look at the fusion pore from the top vesicle side (xy plane) (b) 

View of the red slice of the fused membranes along x axis (c) View of the green 

slice of the fused membranes along y axis 

 

5.5 Summary and Conclusion 

The CG simulations presented in this work has been demonstrated to show the fusion 

pore formation. The CG lipid membrane model is computationally efficient due to its 

implicit solvent scheme and reduces the computational cost of simulations. This 

scheme has been demonstrated to show lipid membrane fusion and subsequent fusion 

pore formation. The CG SNARE model includes the chemical specificity of the real 
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SNARE proteins. This CG model is calibrated to exhibit behavior similar to real 

SNARE complex obtained from experimental studies conducted on single SNARE 

reconstitution. The SNARE proteins Syb and Syx are extended to include LD and 

TMD. These extended proteins are embedded inside the lipid membranes to anchor the 

SNARE complexes. The work on choosing the right parameters to have a stable lipid 

membrane and SNARE complex assembly is still under progress. The most crucial 

amongst those parameters is the interaction between the TMD of SNARE complex 

and the hydrophobic core of the lipid membranes. At the beginning of the simulation 

the SNARE complexes are arranged in a circular pattern. The simulation scheme has 

the capability to vary the number and arrangement of SNARE complexes between the 

membranes and vary the tension in the lipid membranes. 

The fine-tuned simulation scheme can be used to answer some of the following 

questions related to synaptic vesicle fusion, 

1. The number of SNARE complex needed to carry out a successful synaptic 

vesicle fusion. 

2. Self-organization of SNARE complexes around the fusion pore. 

3. Collaborative effect of SNARE complexes to lead to the fusion pore formation. 

4. Role of in-plane tension in the lipid membranes towards the fusion pore 

formation. 

5. Role of LD domains in pushing the opposing lipid membranes closer to each 

other to initiate the fusion process. 
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Appendix A5 

 

A5.1 Brownian Dynamics Calculations 

Consider a particle of mass m , suspended in a liquid (friction constant ) and moving 

at speed v . During this motion, particle has two different forces acting on it, which 

are, 

1. a frictional force of magnitude, v   

2. a random force coming from the bombardment of water particles around this 

particle, (t)R and has the following properties, 

a) (t) 0R  , means that the force can be random in direction 

b) (t) (t' (t t'))R R c  , means that the force at two different instants, 

is not correlated, 

where, c  is the parameter which we are going to obtain from this analysis. 

So, the equation of motion can be written as, 

dr
v

dt
  , A5.1 

(t)
dv

m
dt

v R    . A5.2 

Next, we solve for the velocity, v  from eq. A5.2. Since, it is an ODE, the solution can 

be obtained in two parts, a homogeneous solution, hv and a particular solution, pv . 

a) Homogeneous solution 
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0

t
m

dv
m v

dt

v v e




 







  

where, 0v  is the velocity of the particle at time 0t  . 

b) Particular solution 

              (t)
p

p

dv
m

dt
v R   , 

assuming that the particular solution is of the type, (t)
t

m
p wv e




 and plug it 

in the above equation to get, 

(t)
t

m

m
m we





 (t)

(t)
t t

m m
dw

w
dt

e e
 

  
 


 


 



0

1
(t) ( )d

(t)

m

t

w e R
m

R



 




 

 

Our complete solution looks like, 

0

0

1
(t) ( )d

t t
m m

t

mv v e e e R
m



 
  

 

     A5.3 

In the next step we calculate the kinetic energy of the particle, which is given by, 
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using the properties of the (t)R , 
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for long timespan as t    
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. .
4

c
K E 


 . 

For a particle in a 3D space, the average . .K E of the particle is 
3

2
kT . This gives 

the value of c  as, 

 6c kT        A5.4 

Therefore, we have, 

 (t) R(t (t t') 6 ')R kT   .     A5.5 

But, in the numerical scheme Dirac delta functions cannot be implemented because of 

the discrete time stepping. Thus it has to be replaced by a combination of Heaviside 

function as shown in Fig A5.1, 

1
(t t') ' '

2 2

t t
H t t H t t

t


        
                     

  

 

Fig A5.1: Approximating Dirac delta function with Heaviside function 

Plugging this in eq. A5.5, 
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(t) R(t') ' '
2

6
2

t t
H t t H tR kT t
        
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   


   

  A5.6 

Dimensional consistency 

In eq. A5.6 checking the dimension of both sides. 

L.H.S. 
2 2 4(t) R(t')R M L T        

  

  1MT        

  2 2kT ML T      

 

R.H.S. 
2 2 46 kT

t
M L T  
     

 




  

From the dimensional comparison it can said that the magnitude of the random vector 

(t)R is 
6 kT

t




. 

Thus, we can write the vector as ˆ
6

(t)
kT

n
t

R



 , where n̂  is a random unit 

vector in 3D space. 

 

Coefficient of Diffusion calculation 

Again consider eq. A5.2 and dropping the inertial term of acceleration, 



 

313 

 

(t)0

6 6(t) 1
ˆ

6

6

ˆ

ˆ

ˆ

v R

R kT kT
v n n

t t

x kT
n

t t

kT t
x n

 


   

   


 



 




  



  

From this above relation, we can say that the magnitude of the random step, 

6kT t
l





. 

Also, it is well known that, 

2(t) (t) 6r r Nl Dt   

where, N is the number of steps taken by the particle in the 3D space in time 

t tN  . 

Substituting the values in the above relation, we finally have, 

 N
6kT t

6D N


 t  

k
D

T
 


  A5.7 

Coefficient of Diffusion calculation: Alternative way 

We can also get the value of coefficient of diffusion, D  from the rms distance 

calculation. As we know that, 

(t) (t) 6r r Dt .                                  A5.8 
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Begin with, eq. A5.3 and integrate it to get the position of the particle as a function of 

time. 
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Using eq. A5.9, we can get the r.m.s distance squared from time 0t   as follows, 
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Using the properties of the random force 
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Under the condition as t  , 
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Plugging in the value of 6c kT  , 
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Comparing with eq. A5.8, we can say that, 

kT
D 


, 

which is exactly the same result obtained in eq. A5.7.  
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A5.2 Brownian Dynamics Calculations: Bead with spring calculation 

Consider a particle of mass m , suspended in a liquid (friction constant ) and moving 

at speed v and attached is a spring from origin with unstretched length as 0 . 

During this motion, particle has three different forces acting on it, which are, 

1. a frictional force of magnitude, v , 

2. a spring force of magnitude, Kr , 

3. a random force coming from the bombardment of water particles around this 

particle, (t)R and has the following properties, 

a) (t) 0F  , means that the force can be random in direction 

b) (t) (t' (t t'))F F c  , means that the force at two different instants, 

is not correlated, 

where, c  is the parameter which we are going to obtain from this analysis.  

So, the equation of motion can be written as, 

2

2
(t)

d r dr
Km

dt d
r

t
F     , A5.10 

Next, we solve for the velocity, v  from eq. A5.2. Since, it is an ODE, the solution can 

be obtained in two parts, a homogeneous solution, hv and a particular solution, 
pv . 

a) Homogeneous solution 
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b) Particular solution 

Using the method of variation of parameters, the particular solution can be 

obtained which satisfies the following differential equation, 
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Assuming that the particular solution is of the type, 
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Therefore, we have our complete solution as, 
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and also, the velocity is given by, 
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For the sake of simplicity, let us assume that we have following set of initial 

conditions, 

(t 0) 0

(t 0) 0
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Using these, we have, 

0A B  , 

resulting in, 
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At this point, let’s assume, 
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this simplifies our expression of position and velocity vectors as, 
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Calculating Kinetic Energy 

We get the average K.E. of the particle using the following expression, 
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It is also known that,  

3
. .

2
K E kT , 

which gives us, 

6c kT  . 
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This is exactly the same thing obtained from the case where was no spring involved in 

the picture. It means that irrespective of the spring’s absence or presence, the . .K E  is 

going to be
3

2
kT , as long as we choose the value of 6c kT  . 

 

Calculating Potential Energy 

We get the average P.E. of the particle using the following expression, 
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plugging in the value of c , 

3

2
kT  

So, in case of potential energy it also comes out to be exactly 
3

2
kT . 
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A5.2 Coarse Grained lipid molecule 

 
Fig A5.2 : Coarse grained lipid molecule (image ref: [1]) 

 

The lipid molecule is represented by a chain of three beads as shown in Fig. A5.2. One 

bead (shown in blue) is a representative of the hydrophilic part of the lipid molecule. 

Whereas, the other two beads play the role of the hydrophobic part of the lipid 

molecule.  

The parameter 
cw is a tunable parameter, which can be chosen from the parameter 

space as shown in Fig. A5.3. The choice of the parameters from the plot below 

determines the stability of bilayer. If the values are chosen outside the prescribed zone, 

the system tends to be either gas or crystal and doesn’t express the right behavior. 
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Fig A5.3: Parameter space for attractive potential (image ref: [1]) 

 

For this particular simulation the values of parameters are chosen as, 1.6cw   and 

1.1Bk T
 . 

This above formulation of potentials is implemented in LAMMPS to simulate the lipid 

membrane formation, under a Langevin thermostat. The details of LAMMPS 

implementation are discussed in next section. 

LAMMPS implementation  

The CG molecular model described in the previous section has been implemented in 

LAMMPS. The simulation is carried out under a Langevin thermostat (LT) under 

NVE ensemble. LT provides the necessary thermal fluctuations necessary for the 

proper lipid membrane behavior. The magnitude of these thermal fluctuation inducing 
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forces (
TF  ) is determined from “Fluctuation-dissipation” theorem, which relates the 

viscosity of the solvent ( ) and system temperature (T ) in eq. A5.5, 

(t) (t') 6 ( )T T BkF T t tF    . 

 For a numerical scheme this relationship can be simplified as shown in eq. A5.6 

(t)
6

ˆB
T

k T
n

t
F




  ,          

where, t  is the time step for the integration, 

and, n̂  is a random unit vector in 3D determining the direction of the random force. 

This random force is a part of the governing equation for the dynamics of the particles 

in the system, which is essentially the Newton’s second law of motion and is a 

generalized version of eq. A5.10, 

 ( (t)t) Tv F
t

F
dv

m
d

r    ,       A5.11 

where, m is the mass of the particle, 

and,   r(t)F  is the force due to various system interactions involving spring forces, 

intermolecular interactions etc.  

Eq. A5.11 essentially describes the Brownian motion of a particle and can be 

specialized for the Langevin dynamics by neglecting the inertial term with respect to 

the force term, which gives us, 

 (t) (t) 0Tv F r F     .       A5.12 

The eq. A5.12 can be solved for the location of the particle in the system under the 

influence of various system forces, random forces and viscous damping. 
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In LAMMPS this set of equations is solved for each and every particle at each time 

step. For the current simulation following parameters were chosen.  

Parameter value 

t   0.001   

   1    

neighbor list updation 50 t  

 

Below is a snippet from the LAMMPS script, with the molecular model incorporated 

with the before mentioned parameters. 

# Coarse Grained Lipid 

# setting up environment of simulation 

units            lj 

dimension        3 

boundary         p p p 

atom_style       full 

 

 

 

# defining the pair potential 

#                            h-h, h-t & t-t attraction 

pair_style       hybrid/overlay lj/cut 1.12246 table linear 10000 



 

331 

 

 

# defining the bonding between the beads 

#                        bending bond 

bond_style      hybrid harmonic fene 

 

# read the parameters of the system and initial conditions 

read_data       input.data 

 

# defining the pair interaction parameters 

pair_coeff      1 1 lj/cut 1 0.95 1.06633        # WCA repulsion between h-h beads 

pair_coeff      1 2 lj/cut 1 0.95 1.06633        # WCA repulsion between h-t beads 

pair_coeff      2 2 lj/cut 1 1 1.12246            # WCA repulsion between t-t 

beads 

pair_coeff      2 2 table cosine.table cos       # attractive potential between t-t beads 

pair_modify     shift yes                        # shifting the potential and forming WCA 

pair interaction 

 

# defining bond parameters 

bond_coeff      1 harmonic 5 4 

bond_coeff      2 fene 30 1.5 0 0.95 

bond_coeff      3 fene 30 1.5 0 1 

 

# specifying run parameters 
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group            all type 1 2 

neighbor         2.0 multi 

neigh_modify    delay 50 

timestep         0.001 

 

# specifying the time integration scheme and ensemble 

run_style       verlet 

fix              1 all langevin 1.100 1.100 1 48279 zero yes 

fix             2 all nve 

 

In the next section of this works details are provided on the bending rigidity 

measurement by deforming the lipid bilayer membrane into a buckled structure. 

 

Bending the membrane 

The procedure of lipid bilayer membranes bending rigidity calculation involves 

deforming a periodic membrane inside a box of length less than its natural relaxed 

length [2], as shown in Fig A5.4. 
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Fig A5.4 : Schematic of membrane bending procedure to determine the bending 

rigidity [2] 

The procedure firstly involves obtaining a relaxed membrane, which is done is 

LAMMPS by incorporating a NPH ensemble. It is assumed that if membrane is let to 

fluctuate for a long time under NPH ensemble the membrane is going to attain a 

relaxed configuration with zero pressure exerted on the walls of the simulation box in 

both x and y directions. The configuration of membrane is such that most of the 

deformation occurs in x direction and minimal happens in y-direction. To ensure this, 

the length of the membrane is chosen to be much longer than the length in y-direction. 

Also, by doing this, one can analyze the membrane in an analytical fashion and get 

expressions for forces in and deformations.  
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After the complete relaxation the natural length 0

xL  of the membrane can be obtained, 

which is the reference length of the membrane and strain is further defined in terms of 

this reference length as follows, 

,         A5.13  

where, xL  is the length of the simulation box at some point during the deformation 

process.   

From the analytical analysis, the expression of forces can be obtained as follows, 

  A5.14 

where, xF , is the force measured on the x-faces of the simulation box, 

, is the bending rigidity of the lipid bilayer membrane, 

, is the strain applied on the membrane. 

 

The CG simulation described before, can be used to simulate the lipid membrane 

bending as described to measure the force on the x-faces of the membrane. The force 

on the membrane can be measured from the pressure information generated by the 

simulation output. The method involves measuring the pressure on the simulation in x-

direction and converting it to force, by making use of the simulation box area as 

follows, 

         A5.15 

In next section, results from the force measurement methodology are shown. 
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Results 

In this section the results of the case where force is measured from pressure 

measurement. The box dimension for the relaxed membrane are used from [2], with 

0 66.75xL  and 12yL  . The compression is incrementally increased on the box to 

get different values of strain. At each strain value, the simulation is deployed for a 

duration of 5~10   . Here  is the characteristic simulation time, given by, 
m

    . 

The force is calculated by averaging over non-overlapping windows of size ~ 25000 . 

The mean of all the window averages is used to calculate the representative force 

values at each strain value.  

 

Below, is the result generated from the simulations in comparison to the result 

provided in [2]. The bending rigidity of the membrane is found out to be, 

11.8 0.4 BTk  , which is close to the values reported in literature 12.8 0.4kB T [2], 

11.7 0.2 BTk  [3], 12.5 1.0 BTk [3] and 12.44 0.26 BTk [4].  
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Fig A5.5 : force vs strain 

 

Fig A5.6 : Force vs. strain [2] 
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A5.3 Coarse Grained SNARE model 

The SNARE model presented in this work is based on the CGMD scheme proposed by 

Fortoul et al. [5]. The CGMD scheme is extended to include the linker and 

transmembrane domains of the Synaptobrevin (Syb) and Syntaxin (Syx). Below we 

describe the methodology for the extension of helical structures of Syb and Syx. 

A5.3.1 Synaptobrevin (Syb): sequence beyond C-terminus and its structure 

Syb is the v-SNARE protein. It contributes one out of four helix in the SNARE 

bundle. It is believed that Syb is unstructured in the pre-SNARE state (before binding 

with SNAP-25 and Syx) [6]. Syb is made up of a sequence of 116 amino acids. 

Following is the breakdown of the sequences relative to the SNARE bundle [7]: 

1. 30-85 : SNARE motif 

2. 85-95 : Linker domain 

3. 95-116 : Transmembrane domain 

 

Fig A5.7 Residue sequence of proteins in Syb [7] 

 

The linker domain (85-95), is partly in the head region (~ 90-93) and partly juxta-

positioned right next to head region of lipid membrane [6] (~ 85-89). It is proposed 

that part of linker domain in the head region of lipid membrane is unstructured. This 

unstructured domain provides a hinge for the Syb to bend significantly, without 
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stressing the rest of the - helix. This bend in the Syb has also been observed by Kweon 

et al. [8] and Bowen et al. [9]. It has been suggested that in the later stages of clamping 

of SNARE complex, the unstructured domain of the Syb between the linker domain 

and transmembrane domain goes back to its helical form. This results in an - helix all 

the way through [7], from sequences 30 to 116 and this later stage - helix formation is 

believed to be a driving force for the stalk formation and its transition into a 

membrane fusion pore [10], as outlined in the figure below. 

 
Fig A5.8 Straightening of linker domain [10] 
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The CGMD SNARE model in Fortoul et al. [5] has the sequences of Syb from 27-89, 

meaning that,  

a) The   helix needs to be extended upto residue 116.  

b) The residue sequence ~89-92 needs to be unstructured during the early stage of 

simulation. 

c) During the later part of the simulation the spring network in the linker domain 

needs to be activated to ensure the   helix throughout. 

d) There are ~20 residues in the transmembrane domain, which correspond to an 

  helix length of 3nm, which agrees well with the thickness of the 

hydrophobic core lipid bilayer membrane. 

 

A5.3.2 Syntaxin (Syx): sequence beyond C-terminus and its structure 

Syx is the t-SNARE protein. It contributes one out of four helix in the SNARE bundle. 

It is present on the plasma membrane of the neuron, while it binds with SNAP-25, 

which contributes two helices to the SNARE bundle. Syb is a sequence of 288 amino 

acids. Following is the breakdown of the sequences relative to the SNARE bundle [7]: 

1. 183-256: SNARE motif  

2. 257-265: Linker domain 

3. 267-288: Transmembrane domain 

 

http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Ryan/helix2.html


 

340 

 

Fig A5.9 Residue sequence of proteins in Syx [7] 

 

In a manner similar to Syb,  Syx also has the linker domain (257-265), partly in the 

head region (~ 261-266) and partly juxta-positioned right next to head region of lipid 

membrane [11,12] (~ 257-260). It is proposed that part of linker domain in the head 

region of lipid membrane is unstructured. This unstructured domain provides a hinge 

for the Syx to bend significantly, without stressing the rest of the - helix.  

 

Lindau et al. [10] concluded that unstructured domain of Syb goes back to its helical 

form towards the end of SNARE complex clamping. Similar process takes place for 

the Syx helix too.  

 

The CGMD SNARE model in Fortoul et al. [5] has the sequences of Syx from 189-

256, meaning that, 

a) The   helix needs to be extended up to 288. 

b) Sequence ~261-266 needs to be unstructured during the early stage of 

simulation, 

c) During the later part of the simulation the spring network needs to activated to 

ensure the - helix throughout the whole Syx  

d) There are ~21 residues in the transmembrane domain, which correspond to an 

  helix length of 3.15nm, which agrees well with the thickness of the 

hydrophobic core lipid bilayer membrane. 

 

http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Ryan/helix2.html
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A5.3.3 SNAP25 

SNAP-25 has two helices which contribute towards the SNARE bundle, SN1 (5-83), 

and SN2 (139-204). The unstructured sequence of SNAP-25 [13] between SN1 and 

SN2 (~85-120) is anchored to the top of the plasma membrane. This domain of SNAP-

25 is adsorbed on the surface of the plasma membrane due to palmitoylation of few 

amino acids. Ideally there should have been an interaction between the two, but for the 

present work, we are moving ahead without considering this interaction between the 

unstructured domain of SNAP-25 and lipid membrane.  

 

A5.3.4 Extension of helices of Syb and Syx 

The extension of helices was carried out by extending the existing helical structures to 

append the amino acid sequences corresponding to linker and transmembrane domains 

of both Syx and Syb. Following steps are involved in the process, 

1. Given a helix radius, generate the location of required number of amino acids. 

These amino acid units are equidistantly placed along the helical trajectory. 

2. Obtain the vector along the axis of this generated helix. 

3. Obtain the vector along the axis of existing helix. 

4. Based on the last atom of existing helix and first atom of the extended helix, 

find the rest of the two axis for coordinate axis alignment. 

5. Generate the rotation matrix to align the extended helix with the existing helix 

6. Append the list of transformed coordinates at the end of existing coordinate 

file 

7. Using the list of nearest neighbor location generate an Elastic Network Model. 
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8. This will provide the natural length of all the springs and the stiffness is same 

for all the helices. 
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Chapter 6 

6.1 Discussion 

In the present work we have proposed coarse-grained computational modeling as a 

tool to analyze biological processes. These models are capable of providing details on 

various aspects of the systems which might be difficult to obtain experimentally. In 

this work we have focused on using continuum mechanics and Coarse Grained 

Molecular Dynamics (CGMD) to model synaptic vesicle fusion.  

Synaptic vesicle fusion is a crucial step during the neurotransmission and is the 

process by which two neighboring neuron cells exchange information with each other. 

The synaptic vesicles are lipid membrane structures and carry neural information in 

form of neurotransmitters. A protein of SNARE family, Synaptobrevin (Syb) is 

attached to the surface of the vesicle. This attachment is due to the Trans-Membrane 

Domain (TMD) of the Syb which is embedded inside the lipid membrane of the 

synaptic vesicle. On the target side, two other SNARE family proteins, Syntaxin (Syx) 

and SNAP25 are attached to the neuron plasma membrane, which is also a lipid 

membrane structure. Syx is also attached to the neuron plasma membrane by a TMD 

domain and SNAP25 is adsorbed on the surface of the membrane.  

When a neurotransmitter filled synaptic vesicle approaches the neuron plasma 

membrane, Syx and SNAP25 acts as a receptor site for the Syb attached to the 

synaptic vesicle. The SNARE motifs of Syb, Syx and SNAP25 start zippering from 

the free ends and closes towards the anchored end. During this process the synaptic 

vesicle is positioned closer to the neuron plasma membrane and is known as docking. 
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The docked vesicle waits for an arrival of an electric impulse known as action 

potential. 

In chapter 2 we have presented a continuum mechanics model for analyzing 

deformation of lipid membrane structures during the docking. These deformations are 

an outcome of multiple forces acting on the system which includes SNARE forces, 

electrostatic repulsion between the membranes, osmotic pressure inside the synaptic 

vesicle and the in-plane membrane tensions. We obtained the deformed membrane 

structures for quasi-static variation of the loading on the membranes [1]. The key 

findings from the continuum model indicates the location of closest approach between 

the two membranes occur near the protein attachments into the membranes. The in-

plane tension in the region surrounded by SNARE complexes is much higher than rest 

of the membrane. The in-plane tension is an important parameter to monitor as it 

determines the location of membrane rupture and leads to the fusion pore formation.  

In chapter 3 we have used the continuum mechanics and CGMD to answer one of the 

most debatable questions in the area of neuroscience on how many SNAREs are 

needed to dock a synaptic vesicle. The SNARE CGMD scheme [2] was developed by 

Prof. Anand Jagota’s research group at Lehigh University. This SNARE model is 

tuned to show the similar force behavior as demonstrated in experimental work by 

Gao et al [3]. The model was then used to obtain a force separation curve. This force 

separation curve was then used to determine an equilibrium configuration of a docked 

synaptic vesicle. In this docked configuration the distance of closest approach was 

calculated. This analysis was repeated for different number of SNARE complexes and 

based on that we proposed that 4-8 SNAREs are needed to dock a synaptic vesicle. 
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Chapter 4 looks into a hydrodynamics of the synaptic vesicle docking. Docking 

positions the synaptic vesicle close to the plasma membrane. This requires squeezing 

out the water present in between the two lipid membranes. The SNARE forces 

compete against the hydrodynamics force to create a pressure gradient away from the 

bottom of synaptic vesicle. In the range of separations considered in the analysis, 

hydrodynamics is the strongest force in comparison to electrostatics and hydration 

pressure. Here we have used a lubrication theory based continuum mechanics model to 

obtain the docking time of a synaptic vesicle. In the experiments by Zenisek et al. [4] 

the docking time of synaptic vesicles has been measured to be ~250 msec. In chapter 

4, we have explored various kinds SNARE force behaviors to achieve similar docking 

times. From our analysis we have concluded that the most crucial feature for the 

SNARE complex forces is the rate of change of its magnitude with gap closure. 

Number of SNAREs and in-plane membrane tension are some other parameters in the 

problem. We found that those parameters do not affect the docking time as strongly as 

the rate of change of SNARE force with gap. 

For the membrane fusion to take place, the lipid membranes need to be in close 

proximity of each other. The docked synaptic vesicle is staged for the fusion event as 

it waits for an action potential. Upon its arrival, the SNARE proteins undergo a 

confirmation change to make Linker Domain (LD) of both Syx and Syb to assume 

helical shape [5], [6]. This process pushes the lipid membranes further closer leading 

to the fusion event and subsequently a pore formation to release the neurotransmitter 

into the synaptic cleft. In Chapter 5, we have presented a CGMD scheme to simulate 

how two juxtaposed lipid membranes held close to each other by SNARE complexes 
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undergo fusion. We have used the CG lipid membrane model developed by Cooke et 

al. [7] and slightly modified CG SNARE model proposed by Fortoul et al. [2]. This 

scheme has been demonstrated its capability to simulate membrane fusion followed by 

pore formation. The parameters of this scheme are still under evaluation and 

subsequently we aim to study the effect of tension on fusion pore formation, required 

number of SNARE complexes and their self-arrangement.  

6.2 Future Work 

The continuum mechanics and CGMD scheme present themselves as a powerful tool 

to analyze and visualize intricate biological systems. The continuum mechanics based 

model of synaptic vesicle docking can be extended to include the role of lipid 

membrane interactions, like electrostatics, hydration pressure and hydrodynamics into 

other membrane processes. One such system is hemifused lipid membrane structures 

[8]. There is a significant debate about how hemifused diaphragm formation leads into 

the fusion pore formation. With continuum mechanics we attempted to model such a 

system to understand the parameters of hemifused diaphragm and their impact on 

subsequent fusion pore formation. The continuum mechanics models have a limitation 

in terms of complexity of the governing equations. This theory is ideal for modeling 

plane strain and axisymmetric systems. Adding further complexity increases the order 

of governing equations.  

Another continuum mechanics tool that we explored during the course of present work 

is Finite Element Modeling (FEM). The FEM for lipid membrane has potential of 

exploring problems which are 3 dimensional and are more accurate representation of 
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the actual biological systems. FEM developed by Klug et al. [9] is an ideal starting 

point for someone willing to explore this area.  

The CGMD scheme presented in this work provides the details of the system which 

are beyond the capabilities of continuum mechanics models at the cost of 

computational power. The CGMD scheme can provide molecular details of the fusion 

process and can be help to visualize the dynamics. This dynamics is otherwise hard to 

capture in continuum mechanics models. The CG SNARE model can be extended to 

include the effect of other proteins, for an instance Complexin (Cpx) [10]–[14].  

The synaptic vesicle fusion is a kind of problem where molecular details are an 

important aspect but are only confined to a small portion of the overall system. We 

propose that continuum mechanics models can be used to understand the system 

where molecular interactions are not significant. Whereas for the portion which is 

driven by molecular interactions can be modeled by MD. This kind of multi-scale 

modeling can certainly help to utilize the robustness of continuum mechanics along 

with the strength of MD to provide the molecular details. 
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