Issues in NP-Optimization and Approximation

Desh Ranjan
Ph.D Thesis

92-1297
August 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

ISSUES IN NP-OPTIMIZATION AND APPROXIMATION

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Desh Ranjan
August 1992

© Desh Ranjan 1992
ALL RIGHTS RESERVED

ISSUES IN NP-OPTIMIZATION AND APPROXIMATION

Desh Ranjan, Ph.D.

Cornell University 1992

Optimization or finding the best solution for a problem amongst several possible
ones is one of the central themes in computing. In particular, NP-optimization
(NPO) problems, examples of which include such well-known problems like Integer
Programming and Traveling Salesperson Problem, have proved to be of great prac-
tical and theoretical importance. Different NPO problems exhibit starkly different
properties and understanding the structure of these problems and their classifica-
tion has been a long-standing goal in theoretical computer science.

This thesis investigates the properties of NPO problems in two settings. In
the first part of the thesis we investigate how the logical expressibility of NPo
problems relates to some of their computational properties like approximability
and self-improvement. In the second part we study NPo problems in the context
of a relatively new model called the counterezample model. This allows us to achieve
two objectives : Firstly, it gives us a framework to study and analyze incremental
computation of optimal or near-optimal solutions in an abstract setting. This is
useful because, in practice, for most of the NPo problems, one has to resort to

inexact algorithms which work incrementally towards computing a good solution.

Secondly, it gives us a way to precisely formulate and study questions about the
structure of these problems which we believe are fundamental from theoretical
point of view - for example, how much does the knowledge of one solution of a

problem help in computing another solution?

Biographical Sketch

Desh Ranjan was born on June 15, 1965 in Lucknow which lies in the fertile
Gangetic plains of India. After a religious and relatively uneventful childhood and
adolescence, which included schooling at Mahanagar Boys’ High School and Colvin
Talugedars’ College in Lucknow, Desh joined the Indian Institute of Technology
at Kanpur from where he recieved his Bachelor’s degree in Computer Science in
May 1987. Thereafter, in search of truth, beauty, broader perspective and a higher
degree, Desh joined the graduate school at Cornell University where he succeeded
in achieving three out of these four goals. Desh was awarded a Master’s degree in
computer science in August 1990 and a Ph.D. in August 1992. Despite the long,
cold Ithaca winters which prohibit outdoor activity and can make one believe in

divine retribution, Desh is now an atheist and a decent tennis player.

il

To my parents

iv

Acknowledgements

I am greatly indebted to Juris Hartmanis for guiding me through this thesis. This
thesis wouldn’t have been completed without his constant encouragement. I thank
Devika Subramanian and Richard Shore for serving on my special committee and
providing many helpful suggestions.

It’s my pleasure to acknowledge the help of my coauthors Suresh Chari, Alessan-
dro Panconesi and Pankaj Rohatgi. Parts of this thesis are as much their work
as mine. Special thanks to Alessandro for introducing me to the subject of NP-
optimization and approximation, which is what this thesis is all about. I have also
benefited from discussions with Tushar Chandra, Richard Chang, Radhakrishnan
Jagadeesan, Jim Kadin, Dexter Kozen, Steve Mitchell, Prakash Panangaden, Steve
Vavasis and Vijay Vazirani.

I would like to thank all my friends (I like to believe that there are too many
of them to name) for reasons as diverse as they are. I would specially like to thank
Daniela Rus and Judith Underwood, my officemates for the last year at Cornell,
for patiently putting up with all the complaining I had to do about jobs or lack
thereof.

I gratefully acknowledge the financial support provided by Cornell University

(Sage Graduate Fellowship), Mathematical Sciences Institute (MSI Fellowship)

and National Science Foundation (Research Grants #DCR-8520597 and #CCR-
8823053) to facilitate my research.

Last but not the least, I thank Jan Batzer, Becky Personius, Cindy Robinson-
Hubbell and Suzy Harris for taking care of multitude of odd jobs that could have
gobbled up significant amount of my time otherwise, and buoying up my spirits

with their mild bantering and cheerful disposition on innumerable occasions.

vi

Table of Contents

1 Introduction

2 Preliminaries

2.1 NP-optimization : Definition and Examples

2.2 Approximation Algorithms and Classes

2.3 Reductions: Definitions and Properties

3 Logical Expressibility and Approximation!

3.1 Why Logical Expressibility

3.2 Background
3.3 Results and Organization . .

3.4 Expressiveness of MAX NP

3.5 Structural Properties of MAX II;
3.6 Expressive Power of Restrictions of MAX II;

3.7 Conclusion

4 The CounterExample Computation Model?

4.1 Introduction
4.1.1 Prelude

4.2 The Counterexample Model

4.3 The Complexity of Computing New Satisfying Assignments
4.4 Tight Bounds for polynomial valued problems

4.5 Protocols with Randomness

5 Approximation and Counterexample Model?

5.1 Introduction

5.2 Approximating protocols and Lower Bounds
5.3 An example where suboptimal solutions help

5.4 Protocols with Guarantees

Bibliography

vii

13
13
14
17
18
25
31
35
36

37
37
37
40
41
49
52

57
57
58
65
73

76

List of Figures

2.1
4.1

5.1
5.2

Classification of NPO problems based on approximability 11
Algorithm to construct advice for strings of lengthn 45
The cost function.o o 67
R is the set consisting of the distinct regions . Intersection of two

regions is the gcd of the corresponding numbers. 71

viii

Chapter 1

Introduction

Efficient solution of optimization problems is one of the most challenging tasks in
computer science. In particular, the characterization of the difficulty of computing
optimum or approximate solutions of what are called NP-optimization (hereafter
NPO) problems is of great interest and importance in practice and theory. Although
the historical importance of the study of NP-optimization in the development of
the field of computer science hardly requires recounting, we shall do so briefly.
After the first computers were built, substantial effort was spent on developing
fast algorithms for solving various optimization problems. Typical of these were
circuit design for computing boolean functions [Sha49,Yab59a] and various linear
programming and graph theoretic problems, a classic example of such a problem
being the traveling salesperson problem, MINTSP, which is the problem of comput-
ing the shortest hamiltonian tour in a given edge-weighted graph. It was observed
that even though these problems were effectively solvable in theory trivially, since
one had to explore only a finite solution space, in practice they became intractable
very quickly because the size of this solution space grew at a very fast rate as
compared to the problem instance size. Hence, even before the notion of time
complexity was defined the possibility of “combinatorial explosion” and extreme

inefficiency and impracticality of the “perebor” (the brute force search) to solve

these problems were discussed [Yab59b]. Combinatorial problems were crucial in
shifting the attention from effective computability to feasible computability. It was
the combinatorial problems that really brought forth the difference between effi-
cient and inefficient algorithms [Edm65,vyN53] and led to formal definition of time
complexity. For a nice exposition of how combinatorial optimization problems have
played an important part in development of the theoretical computer science, we
refer the reader to Karp’s Turing award lecture [Kar86].

After the notion of time complexity was formalized by Hartmanis and Stearns
[HS65], it was noticed that the best known algorithms for solving many practical
and useful combinatorial optimization problems had exponential time complexity.
In spite of the failure of all attempts it was initially thought that it was just a matter
of time before, with cleverness and subtlety, efficient algorithms were discovered
for these problems. The picture changed drastically after the work of Cook and
Karp in the early 1970’s. In a seminal paper written in 1971, Cook formally
defined the classes of languages P and NP, showed that the satisfiability problem
is complete for NP and stated the open problem P INP. This problem that has
been central to the development of theoretical computer science over the last two
decades[Coo71]. Immediately afterwards, Karp in another influential piece of work
showed that the decision versions of many well-known optimization problems were
NP-complete[Kar72]. This meant that there were efficient algorithms for solving
these problems if and only if P=NP. The statement P=NP has deep implications.
For a quick survey of the history and status of the P I NP question see [Sip92].

These developments had two effects. Firstly, significant research effort in the
coming years was devoted to understanding the structure of the class NP. This
lead to a good understanding and an elegant theory of NP-completeness capped
by the postulation of the Berman-Hartmanis conjecture which states that all NP-
complete sets are p-isomorphic. In other words, all NP-complete sets had more or

less the same structure. Secondly, it helped to redirect the research in the area of

optimization. In particular, it became quite clear that it would be more fruitful to
concentrate efforts on developing fast approximation algorithms rather than exact
algorithms. Early on, this resulted in a wealth of results providing ingenious al-
gorithms for approximation of individual problems, and several isolated proofs of
non-approximability of others (assuming P # NP). Very soon it was noted that,
contrary to the decision problems, different optimization problems exhibited radi-
cally different behavior with respect to many computational properties of interest,
e.g. approximation, although the reasons why this was the case were far from clear.
This situation was correctly deemed unsatisfactory by many computer scientists
who directed their efforts towards the classifying NPO problems and providing a
unifying theoretical framework to study, classify and understand the diverse be-
havior of the NpO problems. We shall summarize some of these efforts very briefly
in the next chapter.

In this thesis we present our contribution to the general endeavor of under-
standing the structure of NPO problems. The diversity amongst the various Npo
problems arises because of the cost functions associated with the problems. Notice
that all the NP decision problems can be thought of as optimization problems with
the associated cost function being the function that associates a cost of zero with
the non-solutions and a cost of one with the feasible solutions. This, intuitively and
mathematically, is a big homogenizing factor and it makes the resulting problems
isomorphic. On the other hand, with different costs attached to different solutions
of the same problem instance, the NPO problems display widely varying behav-
ior with respect to computationally interesting properties. Hence, understanding
the NPO problems basically entails understanding the the structure of the solu-
tion space resulting from the imposition of different cost functions on the solution
space. This is our goal in this thesis.

The thesis investigates the properties of NPO problems in two different settings.

In chapter 3 we investigate the logical expressibility of the NPO problems and the

relationship between logical expressibility and some computational properties of
interest. The motivation here is to see if important computational properties like
approximation can be linked to formal syntactic representations of these problems.
In chapter 4 and 5 we study the NpPO problems in the context of a new model called
the counterexample model. Our motivation is to understand the interdependence
of the solutions modulo polynomial time computations, and to characterize if and
how the knowledge of non-optimal solutions can be used towards computing an
optimal or a near-optimal solution efficiently. Chapter 2 covers the background

material required for the other chapters.

Chapter 2

Preliminaries

In this chapter we shall give the definitions and background required for the rest of
the thesis. We assume knowledge of basic computational complexity theory, graph
theory and predicate calculus . Since NP-optimization problems are the primary
objects of interest here we shall start by giving a precise formal definition of what

an NP-optimization problem is. We shall then illustrate it via a few examples.

2.1 NP-optimization : Definition and
Examples

Definition 1 An NPO problem is a tuple F = (Zp, SF, fr,opt) where

o Ir C ¥* is the set of input instances. It is recognizable in polynomial time.

o Sp(x) is the set of feasible solutions on input x € Zr. We require that
Ve € Ip, Sp(e) = {y | 1y| < ar(|z]) A mr(e,y)} where gr is a polynomial
and mp is a polynomial time computable predicate. qp and wg depend only

on F.

o fp:Ip x¥* — N, the objective function, is a polynomial time computable

function. fr(z,y) is defined only when y € Sp(z).

e opt € {max, min}.

Solving an optimization problem F' given the input 2 € Zr, means finding a
y € Sp(z) such that fr(z,y) is optimum. The optimum value of F' on input z is
defined as

optp(z) = obtycgp(z) fF(%,Y)-

We present some examples of how some well-known problems can be expressed
in this formalism.

The first example is the MAXCLIQUE problem which is the problem of finding
a clique in a given graph which has the maximum number of vertices.

Example 1. MAXCLIQUE
INSTANCE. An undirected graph G = (V, E).

SoLuTIONS. C C V such that C is a clique in G, i.e., it induces a complete

subgraph in G.
CosT FUNCTION. cost(G,C) = |C] .

OBJECTIVE. MAX .

We are assuming that encoding of the graphs is such that it can be recognized
whether a given string is an encoding of a graph in polynomial time. This is true
for any reasonable encoding of the graphs. Also note that given a graph G and a
subset C of its vertices it is possible to check if C is a clique in G in polynomial
time. The cost function, which is just the number of vertices in C, is computable in
polynomial time. Hence, this specification satisfies all the criteria of the definition.

The next example is the famous traveling salesperson problem. The goal here
is to compute a hamiltonian tour of shortest length given an edge-weighted graph
with non-negative weights.

Example 2. MINTSP

INSTANCE. A graph G = (V, E) with non-negative weights assigned to edges.

SOLUTIONS. H C E, such that edges in H form a hamiltonian tour in G.
CosT FUNCTION. cost(G, H) = sum of the weights of the edges in H.

OBJECTIVE. MIN .

The following two examples revolve around the well-known satisfiability prob-
lem which is known to be NP-complete. The first problem is to find an assignment
to the variables of a given boolean formula in conjunctive normal form that satisfies
the maximum number of clauses of the formula.

Example 3. MAX 3SAT

INSTANCE. A boolean formula F' in 3CNF
SOLUTIONS. Assignments A to the variables of F.
CosT FUNCTION. cost(F, A) = number of clauses in F' satisfied by A.

OBJECTIVE. MAX .

The next example, which we shall be using repeatedly later, is one of the hardest
problem amongst the NP-optimization problems. This is the problem of finding
the lexicographically largest satisfying assignment for a given boolean formula F'.

Example 4. LEXMAXSAT

INSTANCE. A boolean formula F on variables z1, ..z,

SOLUTIONS. Assignments to the variables of F' : a1, ..an, a; € {0,1} such

that F(a1,..an) is true.

CosT FUNCTION. cost(F,A = aj...a,) = value ajas...a, treated as a

binary number,i.e., 2?=12"'iai.

OBJECTIVE. MAX .

It seems possible to define NPO more concisely in the following way. We use
N(z,y) to indicate the final output of a nondeterministic Turing machine N(z)
along the computation path y. If we interpret N(z,y) as a natural number then

F € Npo iff there exists a polynomial time NDTM N such that, for all z € Zp,
optp(z) = max N(z,y).

However, this definition is unsatisfactory for our purpose as it does not explicitly
state what the set of feasible solutions and the objective function are. We shall
be studying approximation in later chapters and we believe that it is essential to
separate these two objects if one wants to study approximation.

As stated previously, solving most of the NPO problems exactly in polynomial
time is as hard as proving P=NP. So, in practice, one has to compromise and adopt
less ambitious approaches. One natural way to do so is to look for algorithms that
compute solutions that are approximately optimal. We discuss approximations in

chapter 3 and 5.

2.2 Approximation Algorithms and Classes

To formally study the behavior of a problem with respect to approximation, we
need to define precisely what it means for an algorithm to compute an approxi-
mately optimal solution. For this, we need the notion of relative error for a feasible

solution.

Definition 2 The relative error of a feasible solution y of instance z of an NPO

problem F is defined as

loptp(z) — fr(z,y)|
optp(z)

gF(.’I?,y) =
where y € Sp(z).

Now we are ready to define the notion of approximability.

Definition 3 An NPO problem F is e-approximable, if there exists a polynomial
time algorithm A such that, for all instances x of F: i) A(z) € Sp(z), and ii)
Er(z,A(z)) < €. A problem is approximable if there is an € € (0,1) such that it is

e-approrimable.

Notice that the above definition is only meant for maximization problems. For
minimization problems the definition would be the same except that e could be

any real greater than zero.
Definition 4 APX is the class of all approzimable NPO problems.

Examples of problems in ApX are MAX SAT, MAX CuT, MIN ATsp, MIN
BIN PACKING and MIN NODE COVER [GJ79,PS82,Joh74].

NP-optimization problems display diverse behavior with respect to approxima-
tion. For example, it is well known that some NPO problems are e-approzximable

for any e > 0 [GJ79,PS82].

Definition 5 An NPO problem is said to have a polynomial time approximation
scheme if there ezists an algorithm A(z,e€) such that, for all € and all x € Ip:
i) A(z,e) € Sp(z), and ii) Ep(z, A(z,€)) < €. The complexity of A must be

polynomial for any fixed e.

To clarify the definition, the complexity of a polynomial time approximation
scheme can be something like 21/¢p(| z|) or something like |z |1/ °; these cases actu-
ally arise in practice [HS87,GJ79].

Sometimes the dependence on ¢ is also polynomial.

Definition 6 An NPO problem is said to have a fully polynomial time approxi-
mation scheme if it has polynomial time approzimation scheme whose complezity

is of the kind p(1/¢,|z|), where p is a polynomial.

Definition 7 PTAS s the class of NPO problems that have a polynomial time

approximation scheme.

10

Definition 8 FPTAS s the class of NPO problems that have a fully polynomial

time approximation scheme.

Many scheduling problems are known to be in PTAs [HS87]. MAX KNAPSACK
is an example of a problem belonging to the class FpTAs [PS82].

The classification of problems above is based on degree of approximability of the
problems. NPO problems have been classified also on the basis of other difficulty
measures. For example one criteria that has been used for classification is the
number of oracle queries a polynomial time machine requires to ask a SAT oracle to
compute an optimum solution[Kre88]. Several interesting result have been proved
in this area and one of the most interesting open problems in structural complexity,
pSAT LpSATliogl derives from this work. In the next chapter, we shall define classes
of optimization based on logical expressibility and in chapter 4 and 5 we shall define

classes of NPoO problems based on the difficulty measure used in the counterexample

model.

2.3 Reductions: Definitions and Properties

To understand and classify various optimization problems according to amenabil-
ity to approximation it is convenient to define reductions analogous to the more
conventional reductions between languages in complexity theory. Recall that in
complexity theory the general idea behind a reduction is that if a language A re-
duces to B and B is in a particular complexity class C then A is also in C. Moreover
the reduction relation is transitive that is if A reduces to B and B reduces to C
then A reduces to C. Intuitively, A reduces to B in some way captures that A is
easier than B and that’s why this is usually denoted as A < B.

We would like analogous reductions for NPO problems with the added constraint
that these reductions preserve approximability. We define below precisely what
this means, but clearly the general idea is that if an NPO problem A reduces to

another NPo problem B and B is approximable then so should be A. We note

11

approximability

OMINTSP non-approximable
OMAXCLQ unless P=NP

approximable for some ¢

OMAXS3SAT
OMAX3DM

approximable for all ¢

OBINPACK

approximable for all €
in poly(1/¢) time

OKNAPSACK

polytime solvable

Figure 2.1: Classification of NPO problems based on approximability

12

that most known reductions to NP-complete problems do not satisfy this property

when simply translated to NPO problems.

Definition 9 Given two NPO problems Fand G, a PTAS preserving reduction
(P-reduction) from F' to G is a triple f = (t1,t2,c) such that

i) t1, t2 are polynomial time computable functions and c¢: (0,1) — (0,1).
i) t1:Ip — Ig, and ty : Ip X Sg(ti(z)) — Sp(z).

i) Vo € Ip and Vy € Sg(ti(z)), if Eq(ti(z),y) < c(e) then Ep(z,ta(z,y)) < €.

Most of the reductions we use will actually be much stronger than this reduc-

tion.

Definition 10 A P-reduction from F to G is said to be an approximation pre-

serving reduction (A-reduction) if c(€) = e.

In a P-reduction, we use ¢; to map instances of F' into instances of GG, and ¢t
to map approximate solutions for G back into approximate solutions of . The

relation among t1, t2 and c ensures that the following proposition holds.
Proposition 1 If G € PTAS and F <p G, then F € PTAS.

Proposition 2 P-reductions compose, i.e. if F <p G and G <p H then F <p H.

Chapter 3

Logical Expressibility and

Approximation!

In this chapter we will investigate the logical expressibility of NP-optimization
problems and then the relationship between expressibility and approximation.
Characterization of complexity classes via logical expressibility is a well-developed
area in computational complexity [Fag74,Immg80]. It has yielded a fresh perspec-
tive on complexity classes and has lead to breakthrough results like the famous

Immerman-Szelepcsényi theorem[Imm88,Sze87].

3.1 Why Logical Expressibility

In order to develop a theory for approximation of NPO problems, one has to define
subclasses of NPO with problems in the same subclass having similar approxi-
mation properties. Defining these classes in terms of Turing machines presents
a fundamental problem; changing something “computationally insignificant” like
the value of a single bit, can have enormous effect on the approximation properties
of the computed function. It is possible to define approximation classes within

NPO in terms of Turing machines as is done by Crescenzi and Panconesi[CP89].

ljoint work with Alessandro Panconesi

13

14

The results are interesting, but it seems doubtful that meaningful problems can be
proven complete in those classes.

To avoid the problems which arise in the Turing machine model, Papadimitriou
and Yannakakis [PY88] introduced an approach based on the logical characteriza-
tion of NP given by Fagin [Fag74]; this result states that NP is the set of languages
that are the generalized spectra of a second order existential formula, ranging over
finite structures. They use this characterization to define a natural class of NrPO
problems, which they call MAx NP. Roughly speaking, a problem in MAX NP
has the property that the set of its feasible solutions can be described by a formula
of the type 37 ®(g,S), where ® is quantifier-free, S is a feasible solution and 7
ranges over the input structure, such as a graph or a boolean formula. Interest-
ingly enough, they show that all the problems in MAX NP are approximable and
that there is a uniform way in which they can be approximated. In this chapter,
our aim is to further investigate the relationship between logical expressibility and

computational properties.

3.2 Background

We assume familiarity with basic predicate calculus i.e. inductive definition of
formulae, interpretations, models etc. A finite structure is a nonempty finite set,
along with certain given functions and relations on the set. Finite structures can
be used to specify problem instances. For example, the set of finite graphs can be
specified by a finite structure (V, E) where V is a finite set (the set of vertices)
and F a binary relation (the edge relation). Different graphs can be specified by
different assignments to V' and E. Similarly, a boolean formula in conjunctive
normal form can be described by a finite structure (A4, P, N) where A is a finite
set of integers and P and N are binary predicates. To describe a formula F' with
m clauses and n variables we let A = {1,2...m + n} and assign P(7,j) true iff

variable ¢ occurs positively in clause j and assign N(i,j) true iff variable ¢ occurs

15

negatively in clause j. For a more formal treatment of finite structures we refer to
[Fag74].

An important result in computational complexity is the logical characterization
of NP due to Fagin [Fag74]; a language is in NP if and only if it is the generalized
spectrum of a second order existential formula, ranging over finite structures. The
generalized spectrum of a formula is the set of finite structures which model the
formula ¢.e. that make the formula true.

For example, ¢ € SAT if and only if
3T Ve 3z (P(z,¢) AT(2)) V (N(z,c) A -T(z))

Intuitively, T' is a second-order variable that ranges over truth assignments; ¢
is described by means of the two binary predicates P and N as explained above
i.e. P(z,c) = TRUE iff variable z appears positive in clause ¢ and N(z,c) = TRUE
iff variable z appears negated in clause c¢. The formula (P(z,c)AT(2))V (N(z,c) A
—T'(x)) ensures that T" sets to true at least one literal for each clause. Hence, SAT
is the generalized spectrum of the above formula.

In general, for any language L in NP there is a quantifier free formula ®, such

that
Iel & 3Svz W d.(1,5,%,7)

(see [Fag74]). Informally, the instance I is described with a finite structure
I={AP", . P*}, where P} C A%, and A is a finite set. In the formula &, I
stands for the set of predicates P;** (this is an abuse of notation; for more formal
description see [Fag74]). S C A® is a predicate of arity s describing the solution
(e.g a satisfying assignment), and 7,7 are vectors of fixed arity of elements of A.
We could consider a more general format where S too is a collection of predicates;
here we consider the case where S is a single predicate for sake of simplicity, but

most of our proofs can be generalized.

16

It is important to realize that the formula ®; is the same for all instances I.
In particular it is of fixed size, and the arities of the vectors Z, 7, together with the
arities of the predicates appearing in I and S are fixed.

Papadimitriou and Yannakakis noticed that a similar formalism can be used to
describe NPO problems. Again, for sake of clarity, we consider an example. Take
the problem MAX SAT: given a boolean formula ¢ in CNF | find an assignment
that maximizes the number of clauses set to true.

Let ®(z, ¢, P, N,T) be an abbreviation for (P(z,c) AT (z))V (N(z,c) A =T (z)).

Then, for all instances ¢ the following holds

OptMAX SAT((p) = mj&}x “{C | 3.17 @(CB,C, Pa N>T)}"

Definition 11 [PY88] MAX NP is the class of NPO problems F such that

optp(l) = max |{7 | 3y ¢r(I, 5,7,7)}|
where @ is a quantifier free formula.

Theorem 1 [PY88] Every problem in MAX NP is e-approzimable for some € €
(0,1), i.e. MAX NP C APX.

This result is important and surprising because it links logical expressibility
which is a syntactical notion to approximability which is a computational property
and there is no apparent reason why the two should be related. This theorem im-
mediately motivates one to consider the following two questions. The first question
is if the reverse direction of the theorem is true or equivalently, if there are approx-
imable problems that are not in this class, that is, what is the expressive power of
the class. The second, more general question is: what is the relationship, if any,
between the logical representation of a problem and its approximation properties?

We shall address these two questions in the following sections.

17

3.3 Results and Organization

We begin by investigating the expressive power of MAx NP and showing that
it is rather limited. We prove that well-known and important problems like
MAXCLIQUE, MAX 3DM, and MAXx 3SP (optimization versions of 3DM and SET
PACKING) are not in MAX NP. It is not known if MAXCLIQUE is approximable?
but we prove that MAX 3DM and MAX 3SP are approximable. In fact, we also
prove the stronger fact that MAX NP does not even capture all of P because we
show that the problem of finding a maximum matching in a graph can not be
expressed in MAX NP. These are expressibility results and do not rely on any
assumptions (such as P # NP).

It turns out that all these problems which cannot be expressed as problems in
MAXx NP have similar logical structure and they fit nicely into a new class that
we call MAX II;. Loosely speaking, these problems have the property that the set
of feasible solutions can be described by means of a first order formula of the type
Vg ®(g,S).

We investigate the structure of MAX II; and find natural complete problems
under reductions that preserve approximability [CP89,0M87,PM81,PY88|. For
example we prove that, given a boolean formula, the problem of finding a satisfy-
ing assignment that sets to true the maximum number of variables (we call this
problem MAX ONES) is MAX II;-complete. MAX II in its full-fledged form turns
out to be too expressive; the complete problems for MAX II; are not approximable
unless P = NP. But many natural problems in MAX II; for example MAX 3DM,
MAXcCLIQUE, MAX 3SP do not seem to be as hard as the complete problems
for MAX ITjInterestingly enough, neither do they seem to require the full expres-
sive power of MAX II; to prove that they are indeed in MaX IT; This leads us to
define subclasses of MAX II; based on restricting the structure of the logical formu-

lae allowed to express the problems. The motivation for the constraints imposed

2By a recent result of Arora and Safra these problems are not approximable unless P= NP

18

comes from observing the similarity in the expressions for the problems mentioned
above. The major restriction that is imposed corresponds to saying that if S is
a feasible solution for the problem and S’ C S, then so is S’. The smallest and
most interesting of these subclasses contains MAX k-DM, MAX k-SP, and has
MAXCLIQUE and MAX GRAPH k-COLORING as complete problems. The other
classes have a natural generalization of MAXCLIQUE as their complete problems.
All of the complete problems share the interesting property that either they are
non-approximable or are approximable within any fixed ratio.

This chapter is organized as follows. In Section 3.4 we prove that MAXCLIQUE,
Max 3DM, and MAx 3SP, and the maximum matching problem are not in
MAX NP. We then introduce the class MAX II; and prove that the above problems
belong to it. In Section 3.5 we prove the MAX IIj-completeness of the problems
MAax ONES and MAX NSF with respect to approximation preserving reductions
(MAx NsF is the following problem: given a set of CNF -formulae, find the max-
imum number of satisfiable ones). In Section 3.6, we define a subclass of MAX IIj,

the class RMAX, and prove completeness results for several optimization problems.

3.4 Expressiveness of MAX NP

In this section we show that certain important optimization problems are not
in MAX NP. In fact, we show that there are approximable problems and poly-
nomially computable problems that are not in MAX NP. We first show that
MAXCLIQUE is not in MAX NP; it is not known whether MAXCLIQUE is approx-
imable. Then we introduce two large classes of matching and set packing problems.
For these, we prove that they are approximable and that they do not belong to
MAX NP. All these problems naturally belong to a new complexity class that we

call Max II;.

The following theorem is motivated by a more general principle

AE3Jz®(z) AN ACB = BE3Jzd(z)

19

where ®(z) is quantifier-free, and .A C B means that A is submodel of B [CK73|.

The proof of the following theorem is due to Dexter Kozen.

The statement and proof carry the implicit assumption that graphs are repre-
sented in the usual manner; i.e., as finite structures G = (V, E') where V is the set
of vertices and E is the edge predicate. We remark on other representations after

the proof.
Theorem 2 MAXCLIQUE is not in MAX NP.

Proor. The proof is by contradiction. Assume that MAXCLIQUE belongs to

MAXx NP, meaning that for all graphs G,

optcro(G) = max| {7 | 37 2,5, B,)}

where & is quantifier-free, and for some fixed rs,t > 0, Z = (z1,...,%¢), § =
(y1,..,9r), and S C V*. Let us consider one particular G; = (V1, Eq) (with the

only requirement that it has nonempty edge set) and let S; be such that

OptC’LQ(Gl) = " {E [3@ é(j’g> El,Sl)}"

Now we construct a new graph Gpey. Let Go = (Va, E9) be an isomorphic copy
of G1 and let Gpew = (V1 U Vo, E1 U E3), i.e. there are no edges between G7 and
G. Hence, optorg(Grew) = optcrg(G1) = optoro(Ga) e/ OLDVALUE We claim
that,

max I{Z | 37 ®(Z, Y, Enew,S)}| > 2- OLDVALUE

Given a tuple Z of vertices in G; we will indicate with Z' the tuple made of the
corresponding elements in G. Similarly, Sy is the “isomorphic copy” of Si; that
is

<ay,..,as >€S] & <d),..,a, >€ Sy

We have that

20

3? q)(a-ayrEl’Sl) A ay (I)(a,’?a E2aS2)
Choose Spew = S1U S3. We make the subclaim that, for all @ € V¢,
3@ (I)(-d’ Y, Ela Sl) = 3@- <I>('d, Y, Enewa Snew)-

To see this, assume a to be such that G1,51 = 37 ®(a,7, F,S). This im-
plies that there exists b such that ®(a,b, E1,S1) is true. We will show that
®(@, b, Enew, Snew) is also true. We will show that the truth values of the atoms
of ® in the two cases are the same. The atoms of ®(a@,b, Enew, Snew) are of
the form Epew(Z), Snew(w), where Z and @ are tuples of elements taken from
the set {ai,...,a¢ b1,...,b,}, or of the form z = y where z and y range over

{a1,...,at,b1,...,b,}. But then, since Speyy = S1 U Sy and Epey = E1 U E,
Enew(w) & E1(w) and Spew(Z) & S1(2).
A simple structural induction on formulae then shows:
®(a,b, E1,51) © ®(@,b, Enew, Snew)
which proves the subclaim. Similarly,

3@7 @(TI,@ E2,S2) = Eiy ‘P(T',ﬂ, Enew,Snew)

and hence
" {T l Jy Q)(f, U, Enew, Snew)} " > 2- OLDVALUE

because {Z | 37 ®(Z, 7, E1,51)} and {7’ | Iy (7', ¥, E2, S2)} are disjoint. O

21

The theorem was proved under the assumption that a graph is a finite structure
of the kind G = (V, E). However, what we actually used in the proof were the fol-
lowing assumptions on the coding of graphs via finite structures. First, isomorphic
graphs are represented by isomorphic structures and isomorphic structures repre-
sent isomorphic graphs. Second, if G = (V4, E1) has a coding G; = (43, PL, .., PL)
and Gy = (V3, E3) has a coding Gy = (As, PZ,.., P2) then G = (V1 UV, E1 U E»)
has a coding isomorphic to G = (A1 U A, P U PZ,.., P} U P?). These conditions
are satisfied by any reasonable encoding of graphs.

We now introduce a family of optimization problems. We first show that they
are approximable and then that they do not belong to MAX NP.

This family is a natural generalization of the MAXIMUM MATCHING problem.

Suppose we are given a set of k-tuples T' = {T1,.., T} C A1 X Ay X ... X Ay,
where the A;’s are pairwise disjoint sets. Say two tuples are compatible if they
differ in all £ components. Then a set M C T is a matching if every two k-tuples

in M are compatible.

MAX k-DIMENSIONAL MATCHING (MAX k-DM).

INSTANCE. A collection of k-tuples T' = {71, .., T, }.

PRrROBLEM. Find the maximum size matching.

When k£ = 2, MAX k-DM is equivalent to the MAXIMUM MATCHING problem
on bipartite graphs that is known to be in P. Max 3DM is the optimization
version of the NP-complete problem 3DM [GJ79].

Proposition 3 For all k > 2, MAX k-DM is in APX.

PROOF. One can show that the size of any mazimal matching is at least 1/k

of the size of a maximum matching. O

22

The next theorem shows that MAX NP does not include all polynomially com-

putable optimization problems.
Theorem 3 MAX 2DM is not in MAX NP.

PrOOF. The proofis similar to that of Theorem 2. Assume, for contradiction,
that MAX 2DM € MAX NP. Then, there exists a formula ® such that for all
instances I of MAX 2DM,

Opt?DM(I) = mgx ” {T | a-y— (P(T’ Y, Iv S)}"

Consider an instance I; = {T1,..,T,,} such that optyps(I1) = n, i.e. I; is a
set of n pairwise compatible pairs (we can look at I; as a collection of n disjoint
edges).

From our assumption for contradiction, we have that there is S; such that

optepy (1) = T |39 ®(z,7, 1, S1)}| = n.

Let 71, ..,T, be the tuples satisfying the above formula. Consider Z; and sup-
pose, without loss of generality, that it contains a;, i.e. T = (a1, us, .., ux), and
that T1 = (a1, b1).

We now construct another instance /5 by simply replacing a; with a brand new
element ag. Let Iy = {Ty,T%,..,Tn} where Ty = (ag,b1). I is made of the same
tuples of I; except the first, To. Ty and Ty only differ for the first component,
namely a;. We choose ag so that I5 is made of n mutually compatible tuples. Now
define Sy to be the same set as Sy provided any occurrence of a; is replaced by
an occurrence of ag, and define Z; to be the same tuple as #; provided the same

substitution takes place. Then,

1{z | 37 ©(z,7, I2, S2)} | = n.

If we now consider the new instance I, = I1 U I5 and define Speqy = S1 U So,

we have that optypar(Inew) = 1 but

23

max [{w | 37 8(@, 9, Inew, S)} 2 [{W| 37 (@, Y, Inew, Snew)}| 2 n+1
because
” {Th '~aTn} U {Ely -'7_z-n} ” >n+1.

This contradiction shows that MAX 2DM ¢ Max NP. O

Basically the same proof applies to MAX k-DM, for all £ > 2.
Corollary 1 For all k > 2, MAX k-DM does not belong to MAX NP.

We now introduce another family of problems, similar to MAX k-DM. Given
a collection of sets of cardinality k, S = {Si,..,Sn}, we define a packing to be a

collection of pairwise disjoint sets: S; € C A S; € C = S;NS; =0.
Max K-SET PACKING (MAX k-SP).

INSTANCE. A collection S = {5y, .., Sp} of sets, where each S; has car-

dinality k.

PROBLEM. Find a packing of maximum size.

MAX k-SP is the natural optimization version of the problem SET PACKING
[GJ79]. We claim, without proof, that the following theorems hold. Their proofs

are very similar to the theorems we saw for MAX k-DM.
Theorem 4 For all k > 2, MAX k-SP is in APX.
Theorem 5 For all k > 2, MAX k-SP does not belong to MAX NP.

All the problems we introduced in this section fit nicely in a new complexity

class.

24

Definition 12 MAX II; s the class of NP optimization problems F such that, for

all input instances I,
opte(l) = max|{z | Y7 (G, 5,7, D)} |
As an example, consider MAXCLIQUE. It is easy to see that, for all graphs G,
optor(G) = max|{z [C(z) A Vyz (C(y) AC(2) — E(y,2) Vy = 2)}|

where z,y, and z range over vertices and E(y, 2) = TRUE iff (y,2) € E.

The proposition which we state next has a trivial proof, which is omitted.
Proposition 4 MAXCLIQUE, MAX k-DM, MAX k-SP belong to Max II;.

Max II; is a natural way of expressing many NPO problems. In the next section
we will prove completeness for natural variants of SAT.

In particular, our canonical complete problem will be the following.

MAX NUMBER OF ONES (MAX ONES).

INSTANCE. A boolean formula ¢ in 3CNF .

PROBLEM. Find a satisfying assignment with the maximum number of

variables set to TRUE.

We can express MAX ONES as a MAX II; problem as follows. As in the case of
3SAT the instance is coded by means of four predicates Cy, .., C3 where Ci(z,y, z) =
TRUE iff ¢ has a clause whose variables are z,y, and z and where the first ¢ among
its variables appear negated (e.g. Cy(z,y, 2) means (ZV gV z) is a clause) [PY88].
Then,

OptONES((P) = m%x " {(B | T(.’l?) A Vyzw q’(‘P,T,J»’,y, Z,'LU)} "

where

25

- T(y)VT(z)VT(w))A

!

-T(y) VT(2)VT(w))A
— =T(y) vV -T(2) VT(w))A

3.5 Structural Properties of MAX II;

In this section we exhibit complete problems for the class MAX II; . We also show
that the complete problems for the class are non-approximable unless P = NP.

Our first MAX II;-complete problem is the following.

MAX NUMBER OF SATISFIABLE FORMULAE (MAX NSsF).

INSTANCE. A set of 3CNF formulae {¢1, 92, ..., 0n} -

PROBLEM. Find a truth assignment to the variables such that the max-

imum number of the formulae are satisfied.

In this problem, the set of feasible solutions of non zero weight are the assign-
ments satisfying at least one formula ;; this implies that approximating MAX NSF

is NP-hard.
Theorem 6 MAX NSF is MAX IIy-complete under A-reductions.

PROOF. We first show that MAX NSF € MAX II;. Informally, this is because

the optimum value on instance I can be expressed as

optnax Now(T) = max|{i | ¢i(T) = ThUB, 1< i< n}]

where I is the input instance {1, ¢2,..., 05} and T is a unary predicate which

is basically a truth assignment to the variables in {¢1, p2,..., on} -

26

To write this formally, we may suppose that I is presented via two 3-ary pred-
icates P and N where P(i,7,k) is true iff variable zx occurs positively in the jth
clause of the formula ¢; , C;;, and N(4, j, k) is true iff variable zj occurs negatively

in Cj;j. Then, more precisely,

OptMAX NSF(I) = m’_l@X “ {Z | vjk1k2k3 @(I,T,’I;,j, kl,k2)k3)}"

where

P(iaja kl A P(i)ja k?) (7‘ .7,]”3) - T(kl) VT(k2) VT(k3)) A
) AN(i, j,ks) = T(k1) vV T(ke) V =T (k3)) A
N(i,j, kz) A (Z,) — () \ —|T(k)2) V —|T(k‘3)) A
))

N(i,7,k1) N N(i,j,ka) A N(i,j, ks) = =T(k1) vV =T'(ko) V =T (k3)).

Second we establish the completeness of MAX NSF .
Let F' be any optimization problem in MAX II;, and let fr be its optimization

function. Then

optp(I) = mazs|{z | vy ¥(z, 7,1, S)}|.

Recall that Z,y represent fixed-arity tuples of variables. Hence, each tuple
ranges over a polynomially sized domain (in the size of I). Let us enumerate the
domain of z as d1, dz, .., ¢, and the domain of y as by, bg, .., b,. Each d; is a tuple of
names for elements of the domain, which can be substituted for for the respective
variables of Z in W; similarly, the names b_] can be substituted for §. Then for
each 7, 1 <i < m, define ; to be the formula A;<;<, ¥(as,bj, 1, S). Each ¢; is a
polynomially sized boolean formula whose variables are S(v1,..,v;) where S is an
l-ary predicate. Moreover there are exactly m of these formulae. Since the formula
U is fixed in terms of F', the time taken to put ¥ itself into CNF is immaterial.

Then, with the introduction of new variables, ¥ can be changed into a 3CNF

27

formula maintaining satisfiability. Hence, we can assume that each ¢; is a 3CNF
formula.
Now observe that, for any predicate assignment Sy to S, the corresponding

truth assignment S’ to {S(v1,..v;)| (v1,..v;) € domain(S)} given by

S(vi,...v) = TRUE & (v,...7;) € Sp

makes k-many formulae ¢; true iff fr(Sp) = k. Hence this is an A-reduction,

which concludes the proof. 0O

We now show the MAX II;-completeness of MAX ONES with respect to P-
reductions. We have already shown at the end of section 3.4 that MAX ONES
is in MAX II;. To show hardness, we first exhibit a reduction from MAX NSF
into an intermediate problem, MAX DONES, and then reduce MAX DONES to

MAX ONES. MAX DONES is the following problem.
MAX DISTINGUISHED ONES (MAX DONES).

INSTANCE. A boolean formula ¢(X, Z) where X = {z1,..,2,} and Z =

{#1,..,2m}. The z;’s are the distinguished variables.

PROBLEM. Find a satisfying assignment for ¢ with the maximum num-

ber of distinguished variables set to TRUE.

Lemma 1 MaAX DONES is MAX II;-complete with respect to A-reductions.

PrROOF. MAX DONES can be written down as a MAX II; problem in essen-
tially the same way we wrote MAX ONES; besides the predicates C; we need a
predicate D(z) that is TRUE iff 2 is a distinguished variable.

We reduce MAX NSF to MAX DONES. Given instance ¢ = {¢1(X), .., on(X)}

of MAX NSF we construct the formula

28

F(X,Z)=(p1V2z1) A . AMpn V 02p)

By distributing the z;’s over the clauses of ¢; we can see that F' is a 4CNF
formula that satisfies the following: there is an assignment that makes £ formulae
©iys - Pi, i0 9 true if and only if there is a satisfying assignment for F(X, Z) that
sets 2, ..., 2, t0 TRUE.

This is an A-reduction. To complete the proof we have to transform F(X,Z7)
into a 3CNF formula. This can be done by introducing extra undistinguished
variables y;’s; a clause (z; V 22 V 23 V z4) is mapped into the two clauses (z1 V
z2 VY1) A (—y1 V x3 V z4). Since the y’s are non-distinguished, this is again an

A-reduction. O

Theorem 7 MAX ONES s MAX IIj-complete with respect to P-reductions.

ProOOF. We have already established that MAX ONES € MAX II; at the end
of the preceding section. To prove completeness, we transform MAX DONES into
MAXx ONES. Let o(X, Z) with Z = {21, ..., 2p} and X = {z1,.., 24} be an instance
of MAX DONES; we transform it into an instance ¥(X,Y, Z, Z') of MAX ONES.
In what follows we will indicate with 7/ : X UY U ZU Z' — {0,1} a satisfying
assignment for v, and with 7 the restriction to X U Z of /. The reduction we are
going to show is such that ¢(7'(X),7(Y),7(2),7(Z')) = TRUE & ¢(7(X, Z)) =
o(7"(X),7'(Z)) = TRUE.

The instance of MAX ONES is the following formula
WX,Y,2,2") = o(X,Z)NB(Z,Z") N a(X,Y, Z).

Y and Z' are sets of brand new variables while X and Z are the same variables

appearing in .

29

In % any true variable contributes to the weight of a satisfying assignment 7'.
We would like the contribution of the z’s and y’s to be negligible with respect to
that of the 2’s. The mission of the subformula §(Z, Z') is to amplify the weight
carried by the variables 2’s. We define

B(z,2)= N\ (N e zz’j)
I<i<p \1<j<21-1

where Z = {z1,..,2p} and Z' = {2;; | 1 < i <p, 1 < j <20 —1}. The index
[is set to [= q + r, where r is the number of y’s in 1. [is selected after the
construction of o is done. What 3 does is equivalent to assigning a weight of 2/
to each 2;. Notice that 3 can be expressed in CNF with clauses of two literals.
Also notice that any satisfying assignment for ¢(X, Z) automatically determines
a satisfying assignment for §(Z, Z') and that § can be expressed in CNF using
4lp-many clauses of two literals each.

The mission of (X, Y, Z) is to forbid truth assignments of ¢ where some of the
x;’s are set to true and all the z;’s are set to false. If this happened, we would have a
solution of 9 with cost greater than zero mapped into a solution of ¢ of cost zero,
i.e. approximated solutions would not be mapped into approximated solutions
(recall that our transformation simply considers restrictions 7(X, Z) = (X, Z),
where 7' satisfies v).

A way of implementing a would be to write down

a= A (—nmiv V zj).
1<i<q 1<5<q
But these are clauses of unbounded length. To have clauses of length at most

three, we transform each clause (—z; V 21 V.. V z4) into

(mzi Vi Vyr) A(myr Vza V) A A(=gg—1 V zg).

It can be checked that a(X,Y, Z) so defined satisfies the two properties: i) the
truth of any y; or z; implies the truth of some z;; i) any truth assignment 7’ of

©(Z,X) can be extended to a truth assignment 7 O 7’ satisfying a(X,Y, Z).

30

To summarize, ¥(X,Y, Z,Z') can be expressed in 3CNF and the restrictions
to X U Z of its satisfying assignments form the set of satisfying assignments for
o(X, 2).

We now have to show that the reduction is a P-reduction. The transformation
can certainly be carried over in polynomial time.

Let optponEgs(¢) = k. By construction it follows that optoyps(¥) > 2lk. Tt
also follows that the possible weights for a solution 7’ of ¢ are w(7') = 0,2l +
N1, .., 21t + n;, ..2lk + ny, where 1 <7 < k and n; <[= g+ r for all i’s. Moreover,
the relationship between a solution 7' and its restriction 7 is given by w(7') =
20l +n; & w(r) =1 and w(r') =0 & w(r) = 0.

We want to show

opt(y) ~ w(r') _ ¢ _ opile) ~u(r) __
@) 27 T opile) -~

In order to do so, it is enough to prove

opt(y) — w(r’) . opilp) — w(7)
op(9) = 2 0pily)

Consider a solution 7’ of 9. When w(7') = 0 or w(7') > 2lk the above equation

IN

holds. Suppose then that w(r') = 2li + n; with 1 <7 < k — 1. We have

opt(v) — w(r") S 21k — w(7")
opt(v) - 21k
2k — 1(2i + 1)
2lk
2k — (20 + 1)
2k
k—1
2k
opt(p) — w(r)
2 opt(p)
Equation (1) holds since opt(t) > 2lk, while equation (2) holds since w(7') =

v

v

2li + n; <1(2i + 1). This concludes the proof. O

31

The complete problems we saw are not approximable unless P = NP. How-
ever, we know that MAX II; contains approximable problems, like MAX k-DM,
and problems that are believed not to be approximable like MAXCLIQUE, and
which have the interesting property that they are either not approximable or are
in PTAS. It would be interesting to characterize, within MAX II;, classes whose
problems share similar approximation properties. In the next section, we see how it
is possible to describe problems like MAX CLIQUE, MAX k-SP, and MAX k-DM
by posing syntactic restrictions on the formulae ® certifying membership of F' in

MAax II;.

3.6 Expressive Power of Restrictions of MaAXx II;

In the previous section we saw that MAX II; in its full generality has problems
which are too hard for approximation. On the other hand, let us examine the
expressions for the optimization functions for various problems we have been dis-

cussing, and which we proved are not in MAXx NP
e MaX CLIQUE. optcrg(G) = mazc|{z | C(z)AYuv ®(C, E,u,v)}|| where
®(C, E,u,v) = (-C(u) vV ~C(v) V E(u,v)).
e Max 3DM. optspm(I) = mazy|{a | M(a) A Vbe ®(M,T,b,c)}| where
®(M,T,b,e) = [-M(b) VT(b)] A [=M(b) V ~M(C) V Ai=1,23(b;i # ci)].
Here @ stands for (a1, a2, as) and I stands for the input instance (A, T) where

T C A3 with T(a) = TRUE iff “G is a triple” .

These problems are not only in MAX I, but the fashion in which they are
expressed is also rather similar. More precisely, all these problems can be expressed

as:

OptF(I) = mbzgx{HSl] : Vﬂ q)F(g’Ia S)}

32

where | S| denotes |{Z : S(Z)}], 7 is a first-order variable and ®p is quantifier-
free. Most importantly, if & is expressed in C' N F' then all occurrences of S occur

negatively.

Definition 13 A problem F € RMAX(k) if its optimization function can be ez-

pressed as
optp(I) = mazs{||S|| : V5 &(7,1,5)}

where ® is a quantifier-free CNF formula with all occurrences of S in ® being
negative, S a single predicate appearing at most k times in each clause, and ||S]||

denotes ||{z : S(Z)}|-
Definition 14 RmAX = U, RmMAX (k).

This subclass may seem very restricted in the beginning, but it captures many
of the problems in MAX II; which are provably not in MAX NP. In fact, most of
the problems we have considered are in RMAX(2) . Other problems which fall into

this class include :

e MAX SP: this is a generalization of MAX k-SP. Given a collection S, ... S,
of finite sets, find a packing of maximum size. This problem and MAX k-SP
are in RMAX(2). Notice, MAX SP = |J,, MAX k-SP. Similarly, MAX DM
and MAX k-DM are in RmaX(2).

e MAX INDEPENDENT SET: given a graph, find the size of the maximum

independent set. This problem is in RMAX(2).

e MAX GRAPH k—COLORING: given a graph G = (V,E) and an integer k,
find the maximum number of vertices of G that can be colored with & colors

such that no two adjacent vertices have the same color. This problem is in

RMAX(2).

33

e MAX k-ANLSAT: this is the restriction of MAX ONES where all the variables
in the input formula appear only negatively, and where every clause has at

most k literals. This problem is in RMAX(k).

e MAX k-HYPERCLIQUE: An input instance is a k-hypergraph H = (A, E)
where A is a set and E C P(A) and e € E = 1 < |e| < k. An element
of E is called a hyperedge. A feasible solution is any set W C A satisfying
{ui,...,ui} €W = {u1,...,u;} € E, i < k. Such a set is called a k-

hyperclique. The goal is to find a k-hyperclique of maximum size.

This problem is a generalization of the CLIQUE problem for graphs to hyper-

graphs and it is a trivial fact that MAX CLIQUE =4 MAX 2-HYPERCLIQUE.

Thus there is a large class of problems which are in RMAX (k). We now estab-
lish two theorems. The first theorem shows that MAX k- ANLSAT is complete in
RMAX(k) with respect to A-reductions. The second theorem is about the equiva-

lence of the families of problems MAX k-HYPERCLIQUE and MAX k-ANLSAT.
Theorem 8 If F' € RMAX(k) then F <4 MAX k-ANLSAT.

Proor. If FF € RMAX(k), it can be expressed with a formula & with &
occurrences of the predicate S per clause and with all negative occurrences of S.

The rest of the proof is similar to that of Theorem 6. O

Theorem 9 For all k > 2, MAX k-HYPERCLIQUE =4 MAX k-ANLSAT.

ProoOF. We first show that MAX k-HYPERCLIQUE <4 MAX k-ANLSAT. Let
H = (A, F) be any k-hypergraph. Construct ¢z as follows. The variables of ¢z are
{z;]i € A}. ¢g is a conjunction of all the clauses of the form (—z;, V-ziy, . ..V -z,)
where z;; € var(¢g) and {i1,i2,...4x} is not a hyperedge in E. The literals may

be repeated within a clause in which case it is simplified. These are the only clauses

34

of ¢g. It can now be checked that ¢z can be satisfied with z; , z;,,... z; all set
to TRUE if and only if {i1,142,...4;} form a hyperclique in H.
To prove that MAX k-ANLSAT <4 MAX k-HYPERCLIQUE, use the inverse

mapping. O

The last two theorems have interesting consequences.

Theorem 10 Problems MAX CLIQUE, MAX GRAPH k-COLORING, MAX SPand

Max DM are RMAX(2)-complete with respect to A-reductions.

ProoOF. The completeness of MAX CLIQUE follows from Theorem 8 and the
fact that MAX CLIQUE =4 MAX 2-HYPERCLIQUE. The remaining reductions
are easy to obtain; for example, MAX CLIQUE <4 MAX GRAPH k-COLORING

because an independent set can always be 1-colored. O

All the RMAX(2)-complete problems share a very interesting property: either
they are not approximable or they are in PTAS. The reason why, for example,
MAXx CLIQUE shows this behavior is that given any graph G we can, in polynomial
time, construct G’ such that: i) opt(G') = opt(G)?; i) if C' C G' is a clique of
k vertices then we can find in polynomial time a clique C' C G of at least vk
vertices. This implies that if |C'|/opt(z') > 1 — € then |C|/opt(z) > 1 —e.
Since lim,—00(1 — e)l/ 2" = 1, we can obtain in G' any approximation we want by
iterating the above construction [GJ76,PS82].

The following definition generalizes this kind of situation. Recall that fr is the

objective function of the NPO problem F.

Definition 15 A problem F € NPo is self-improvable if there is a P-reduction
r = (t1,t2,¢) from F to itself and a function h such that:

35

e h:(0,1) — (0,1), h is monotone increasing, and lim,_, o h"(2) = 1.
(]

frz.y) oy (M)

optp(z) ~— \ optp(2')

where ' = t1(z), ¥ € Sp(z'), and y = ta(z,v).

If a problem is self-improvable, then it is either in NPO — APX or in PTAs. The
reason is that we can apply the reduction n times to map z into ¢}(z); an error of
€ in the solution of ¢(z) corresponds to an error ¢, in the solution of z, where ¢,
tends to 0 as n tends to infinity. This can be seen as follows; let z, = t}(z) and
Yn € Sp(zy), from the above definition it follows that

fP(20,%0)) o 1n (fF(ﬂ?n,yn)>
optp(zo) ~ optp(zn)

where g is obtained by repeated applications of {2 on appropriate arguments
starting from z,—1 and y,.

For example, MAX CLIQUE is self-improvable with h(z) = 21/ [GJ76,PS82].
Fact 1 If F is A-equivalent to G and G 1is self-improvable, so is F.

We then have the following corollary.
Corollary 2 All the A-complete problems of Theorem 10 are self-improvable.

Notice that these results are obtained without directly mapping these problems

to themselves.

3.7 Conclusion

In this chapter, we investigated the relationship between the logical expressibility
of NPO problems and their approximation properties. To summarize, we have first
shown that class MAX NP is rather weak in its expressive power. We have then

defined another class of NPo problems based on logical structure. For this class

36

we have demonstrated complete problems; moreover we have obtained interesting
subclasses where the complete problems have similar properties with respect to
approximation and in addition they all have the property of self-improvability. We
see this work as a step in the direction of developing a general framework for estab-
lishing a connection between logical structure of a problem and its approximation

properties.

3.8 State of the Art

Following this work, Kolaitis and Thakur have shown in their work [KT90] that,
based on expressibility in terms of quantifiers, the NPO problems can be classified
exactly into five classes which are all different. They also study the minimization
problems and show that, surprisingly, they behave differently from the maximiza-
tion problems[KT91]. We also refer to Viggo Kann’s Ph.D. thesis for work related
to that of this chapter and also a nice compendium of the current status of the

approximability and hardness of various optimization problems[Kan92].

Chapter 4

The CounterExample
Computation Model?

4.1 Introduction

In this chapter and the next, we shall be studying the difficulty of solving NP-
optimization problems, exactly and approximately, in the counterezample model.
Before we go on further we would like to briefly describe the counterexample model
and provide some motivation as to why it is important and interesting to study

the NP-optimization problems in the context of this model.

4.1.1 Prelude

As stated previously, most NPO problems are NP-hard, one can not expect to
compute an optimal solution efficiently. Therefore, for such problems one con-
centrates on designing efficient algorithms which are guaranteed to compute good
approximations. In many instances, for example MINTSP, even this may be hard
and one has to rely on the heuristic approach. Even though heuristics work well

in practice, unfortunately there is no theoretical guarantee on their performance.

%joint work with Suresh Chari and Pankaj Rohatgi

37

38

Many heuristics are incremental in nature. An incremental algorithm for an
optimization problem works by repeatedly improving the previously computed so-
lutions. So, in an abstract setting, an incremental algorithm can be thought of as
an improver of solutions. A classic example of an incremental algorithm is the sim-
plex method for linear programming. Other well-known examples are the famous
edge-exchange procedures for MINTSP which were presented by Lin [Lin65] and Lin
and Kernighan [LK73]. A more general example is the class PLS (polynomial-time
local search)[JPY88], where every problem has an associated incremental algorithm
to compute the local optimum. The notion of incremental computation is quite
fundamental and should be understood per se. We believe that a study of opti-
mization and approximation of NPO problems with respect to their amenability
to solution by heuristics and incremental algorithms will lead to a better under-
standing of their structure. This will also shed new light on the puzzling fact that
different NPO problems exhibit starkly different behavior even when their decision
versions are computationally the same (p-isomorphic).

The counterexample model provides an abstract framework to study incremen-
tal computation in an abstract setting. This model was first introduced by Kraji¢ek
et al [KPS90] and studied further in [RCR91] , although with a different motiva-
tion. A counterexample protocol is a two-party interactive protocol: there is an
all-powerful teacher, T', and a student, S, with limited power (polynomial time).
The goal of S is to compute an optimal solution to the given instance of the op-
timization problem. To this end he is aided by 7" in the following way: at any
point in the computation S may present a solution claiming it to be optimal. If
the presented solution is in fact optimal, T" accepts, and the protocol halts, else
T disproves the claim by presenting a counterexample, i.e. a better solution and
the interaction is repeated. The difficulty of a problem is measured by the num-
ber of counterexamples the best student requires to compute the optimal solution

given the least cooperative teacher. To study approximation properties we re-

39

quire S to compute only an approximate solution rather than an optimal solution
and the protocol halts when an approximate solution with the desired accuracy is
computed.

It is worth noting that this computation is very similar to a computation by an
incremental algorithm which gets a better solution on each iteration but with no
guarantees on how much better the solution is. Specifically, assume that we can
show that a particular optimization problem requires at least k(n) counterexamples
on some input of length n to compute the desired answer. This implies that for any
incremental heuristic, which operates only on the basis that the solution obtained
at each step is better than the previous one, there may be instances where it
requires at least k(n) improving steps. Hence, establishing lower bounds in this
model corresponds to the worst case analysis of such heuristics. The case where
such guarantees do exist can be modeled by imposing constraints on the improved
solutions provided by the teacher. For example, one may study heuristics with
additive guarantees by imposing the constraint that the new solution provided by
the teacher is at least f(n) better than the previous solution, for some function f.

The model is also interesting because it relates conjectures about the relative
powers of theories of bounded arithmetic to those about this model which are purely
computational in nature. For example, if one could prove a super-polynomial
complexity for the traveling salesperson problem, MINTSP, in this model, it will
also prove that S5 # Ts [Bus86,KPS90].

In this chapter, we will be concerned about computing the exact solutions
to the problems. In the next chapter, we shall consider approximate solutions.
This chapter is organized as follows. In the next section we briefly review the
counterexample model, giving the necessary definitions and relevant results. In
Section 4.3, we establish the difficulty of computing the lexicographically maximum
satisfying assignment of boolean formulas in this model. The proof uses a result

(Lemma 2) which is central to this chapter and the next, and interesting in its own

40

right. It states that, under the assumption that the Polynomial Hierarchy(PH)
does not collapse to its third level, not only is it hard for some polynomial time
machine to compute a satisfying assignment for a boolean formula but there are
formulas for which it is hard to find a new satisfying assignment even given a
lot of non-trivial ones which it can not compute by itself. We use similar results
to prove sharp bounds for the computation of the optimum solution for several
graph-theoretic NP-optimization problems such as MAXCLIQUE. We then define
probabilistic counterexample protocols and prove that these bounds exist even if

the student has access to the power of randomness.

4.2 The Counterexample Model

An S-T' counterexample protocol for an optimization problem consists of a deter-
ministic polynomial time machine S, called the student and an all powerful Turing
machine 7', the teacher. Given an instance of the problem, the goal of the student
is to produce an optimum solution. During the computation the student repeat-
edly presents the teacher with feasible solutions, claiming them to be optimal. The
teacher either produces a better solution, i.e. a counterezample, or accepts if there
is none. The computation ends when the teacher accepts. Note that the student
is restricted to spending polynomial time before producing a new feasible solution.

However it is allowed an arbitrary number of steps over the entire computation.

Definition 16 An NP-optimization problem P has an f(n)-counterezample pro-
tocol if there is a student S, such that for all teachers T, S-T form a counterexample

protocol for P which requires no more than f(n) counterexamples on inputs of size

n.

Definition 17 C[f(n)] is the class of all NP -optimization problems which have an

f(n)-counterezample protocol.

41

It is easy to see that MAXCLIQUE has an n-counterexample protocol. Given a
graph G the student first presents a one vertex clique. Then the student repeatedly
presents the same solution that the teacher provides as a counterexample. We call
such a strategy the trivial strategy. Clearly in this case the strategy takes at
most n counterexamples. However it is not clear that there is poly-counterexample
protocol for LEXMAXSAT. As stated previously the interesting questions in this
model relate to the number of counterexamples required to compute the optimum

solution of a given problem. It is established by Krajicek et al (1990) that

Theorem 11 For all polynomial time constructible functions f such that 1 <

f(n) < nl=¢ Clf(n)] =C[f(n)— 1] implies NP C P /poly, for all € > 0.

This shows that extra counterexamples help. As an initial step towards char-
acterizing the difficulty of solving NP-optimization problems using the counterex-

amples the following theorem is also proved:

Theorem 12 If PH does not collapse then there exists an € > 0 such that there

1—e¢

15 mo n-~¢-counterexample protocol for LEXMAXSAT and MAXCLIQUE.

In the following sections we extend the above result, showing that for all e > 0

there is no nl—¢

-counterexample protocol for these problems. Since MAXCLIQUE
has an n-counterexample protocol, this gives a tight bound on the number of
counterexamples required for computing a clique of maximum size in a graph. We
use our techniques to prove such bounds for many other problems. In fact, we

show the same result for these problems even in presence of randomness.

4.3 The Complexity of Computing New
Satisfying Assignments

In this section we establish lower bounds on the number of counterexamples re-

quired to compute the optimum solutions for LEXMAXSAT and MINTSP, under

42

standard structural complexity theoretic assumptions. Towards this end we show
a result about the problem SAT, which is interesting in its own right. The result
states that there are polynomial sized collections of uniquely satisfiable formulas
whose satisfying assignments are independent in the sense that knowledge of any
subcollection of these does not convey information about any of the others. We then
use these formulas to construct a single formula with many independent satisfying
assignments and establish lower bounds for LEXMAXSAT in the counterexample

model.

Notation 1 USAT denotes the set of uniquely satisfiable formulas. For F € USAT,

s(F') denotes the unique satisfying assignment of F. For any set A, A" denotes

{reA| |z| =n}.
We now formally define the notion of independence of a collection of formulas.

Definition 18 Let D be a polynomial time transducer. A set Fy, ..., Fy, of formu-
las in USAT=" are said to be independent with respect to D if for all j, 1 < j < m,
D on input {F1,..., Fr,s(F1),...,8(Fj-1),8(Fj41),--.,5(Fm)} does not compute
s(Fj).

A collection of formulas is dependent with respect to D, if it is not indepen-
dent. The following lemma establishes that, for each transducer D, independent

collections of formulas exist, unless USAT € co-NP/poly. We later show that if

USAT € co-NP /poly, the Polynomial Hierarchy collapses.

Lemma 2 If there exists a polynomial time transducer, D, and a polynomial ()
such that, for all but finitely many n, every collection of 7(n) formulas in USAT™"

is dependent with respect to D, then USAT € co-NP /poly.

ProoF. Using D, we construct a co-NP machine, N, and a polynomial sized
advice for each length, using which N recognizes USAT.
By assumption there exists ng such that for n > ng, every collection F =

{F1,..., Fy(n)} of formulas of length n is dependent with respect to D. Let n > ng,

43

and r = r(n). Denote by j(F) the least index j, between 1 and r, of the formula
for which D computes s(F;) given F = {Fy,...,F,} and all s(F;) except s(F}).
Finally, define the set help(F) as

help(F) = F \ {Fj»}

Note that for any collection F, given the formulas in F and the satisfying as-
signments of the formulas in help(F), D computes the assignment satisfying the
remaining formula Fjz). Consider any set of formulas Z, where Z C UsaT™".

For any collection F C Z, of size 7, help(F) is a set of size 7 — 1. There are
| Z |
7
| Z |
r—1

subsets of size r — 1. By the pigeonhole principle, there must be some r — 1 sized

subset F' which is help(F) for at least

1ZI\,(1Z]_|Z]|-r+1
(G5 -

r sized subsets F. Then, given this set ' and the solution of its formulas, D can

subsets of Z, of size r, and

compute the solution for at least J—Z—I—Tr—ﬂ formulas. This follows from the obser-
vation that each F that maps onto F' gives a different formula whose satisfying
assignment can be computed by D, given the formulas in ' and their satisfying
assignments.

Thus for any set Z C USAT™" of size greater than 4r, we can find a set of r — 1
formulas, with which we can compute the satisfying assignment of at least 1/2r of
the formulas in Z. We add this collection of formulas and their solutions to the
advice. Repeating this process & times, as shown in Fig. 4.1, we can construct
advice to recognize all but |USAT™"| x (1 —1/27)* strings in USAT™". If we choose

k =4 x n x r at most polynomially many (4r) formulas remain. We add these

44

and their solutions to the advice. Given this advice A =A\#...#A} a co-NP

machine, N, which works as follows, recognizes USAT.
Given a boolean formula F', of length n, as input

e If n < mg, use a table lookup to decide if F' € USAT.
e Check that F' has no more than one satisfying assignment.

o If F' and its satisfying assignment appear in the advice or for some j, D given

A and F computes s(F) then accept.

Hence USAT € co-NP /poly.

The above lemma implies the existence of independent formulas under the as-
sumption that USAT ¢ co-NP/poly. The following proposition shows that this is
as reasonable as the assumption that the Polynomial Hierarchy does not collapse

to its third level.
Proposition 5 If USAT € co-NP/poly then PH collapses to T5.
Proor. The proof of this proposition relies on the following two facts:

1. co-NP/poly is closed under disjunctive reductions.

2. SAT randomly reduces to USAT with a success probability of 1/4n [VV86].

If USAT € co-NP/poly, then by the second fact, SAT randomly reduces to some
language in co-NP /poly with a success probability of 1/4n. Using the first fact, by
repeated trials, we can randomly reduce SAT to another language in co-NP /poly
with a success probability of 1 — on’, Then, using techniques due to Bennett et
al[BG81], we can build advice such that SAT € (co-NP/poly)/poly = co-NP /poly.
This implies that NP /poly = co-NP /poly and PH collapses to % [Yap83]. Un-
der standard assumptions, the lemma shows that there are large collections of
equal sized boolean formulas whose satisfying assignments are independent, in the

sense that satisfying assignments of one provide no information about those of any

45

Z — UsaT™"
A — “null string” /* A is the advice string to be computed */
While | Z| > 4r do
begin
find ' C Z of size r — 1 such that |help=}(F')| > (|Z]| — 7)/r
Let F'={F\,... Fo_1}
/* One such F' exists by the proof */
Z « Z\ help~}(F")
A — F' s(F1),...,8(Fr-1)
A — A#A'#

end

A — A#7,5(21),5(Z32) ... 8(Zm)#
[* where Z = {Z1,Z3 ... Zn} */

Figure 4.1: Algorithm to construct advice for strings of length n

46

other. It is then possible to construct boolean formulas, with several satisfying
assignments, for which the different satisfying assignments are independent in the
above sense. We use the existence of such formulas to improve the lower bounds

for the number of counterexamples required for LEXMAXSAT.

Theorem 13 If for some € > 0, LEXMAXSAT € C[n'~¢], then the PH collapses to
L.

1-¢_counterexample protocol

ProoOFr. Fix an € > 0 and assume that there is an n
for LEXMAXSAT. Let D be the student in this protocol. Choose a polynomial 7(-)
such that ¢ x (n x r(n))!=¢ < r(n), for any constant c. For instance, we can choose
r(n) = netl. Letr = r(n). Define a polynomial time transducer D’ which on

input {F1,... Fr,y1,- - Yk—1, Yk+1- - - Yr} does the following:

o Checks each y; is a satisfying assignment of F}.

e D' simulates D on F = F1\/ ...\ F,. Whenever D presents a solution y to
the teacher, if y is a satisfying assignment of F}, then D’ outputs y and stops.
Otherwise D’ continues the simulation assuming that the teacher provided

the lexicographically smallest y; which is larger than y.

Let Fy,..., F}, be a collection of formulas from USAT™". Consider the formula
F = F1V ...\ F, where the variables of all the F;’s are the same. The only
satisfying assignments of F are s(F}),..., s(F,). Consider a teacher which provides
counterexamples as follows: Whenever the student presents a solution y of F, it
returns the lexicographically smallest s(F;) which is larger than y. The length of
F'is ¢ x n x r for some constant c¢. By assumption, D takes at most (¢ x n x r)1=¢
counterexamples to compute the largest satisfying assignment of F' against all
teachers. By choice of the polynomial 7(-), (¢ x n x r)!~¢ is less that r for large n.
This means that D, on input F, cannot follow the trivial strategy. Hence at some
point of time in the protocol D computes a new satisfying assignment for F' by

itself. Suppose that the first time this happened, s(F;) was produced. Then, by the

47

definition of D', D'(Fy, Fa,..., Fr,8(F1),...,8(Fi=1), 8(Fit+1),-- ., $(Fy)) outputs
s(F;). Thus the collection of formulas Fi,..., F, is dependent with respect to D'.

Using the student D we have constructed a transducer D' such that every r sized
collection is dependent with respect to D'. Hence by Lemma 2 and Proposition 5
the Polynomial Hierarchy collapses to its third level.

From the proof we can observe that, unless PH collapses, any student requires
at least 7(n) counterexamples where n is the number of variables of F. Thus, for all
polynomials r(-) there is no 7(n)-counterexample protocol where n is the number
of variables.

We can also observe the following.

Corollary 3 If the PH does not collapse to its third level, in any counterezample
protocol for LEXMAXSAT, the student can be forced to follow the trivial strateqy for

nl=¢ steps on infinitely many formulas, for all € > 0.

We now consider the traveling salesperson problem MINTSP. Since the standard
TSP is a minimization problem we define an equivalent maximization problem by
defining the cost of a tour to be the sum of the weights of the edges in the graph
minus the sum of the weights of the edges in the tour.

In order to establish lower bounds for MINTSP we use the language
UNIQOPTTSP = {G | G has a unique Hamiltonian tour of minimum size}.

UNIQOPTTSP is known to be NP-hard [Pap84] Thus, if it is in co-NP/poly then
the PH collapses.

Notation 2 For any graph G in UNIQOPTTSP, t(G) denotes its unique minimum

tour.

As in the case of LEXMAXSAT we say that a set of graphs G1i,...,G, in
UNIQOPTTSP™" are independent with respect to a transducer D if it does not
compute ¢(G;) on input { Gu,...,Gpn), tHG1),- -, H(Gj-1),H(Gjt1); -, t(Gp(m))

).

48

Lemma 3 Assume that there exists a polynomial time transducer, D, and a poly-
nomial r(-) such that, for all but finitely many n, every collection of r(n) graphs
in UNIQOPTTSP™" is dependent with respect to D. Then UNIQOPTTSP is in

co-NP/poly and hence the PH collapses.

PrROOF. Similar to the proof of Lemma 2.
Using this we establish the desired lower bound on the number of counterex-

amples required to compute MINTSP.
Theorem 14 If for some € > 0, MINTSP € C[n'~¢] then the PH collapses.

PrOOF. The proof is similar to that of Theorem 13. A sketch is given here.
Assume that there is an counterexample protocol for MINTSP which requires at

1-¢ counterexamples. Let D be the student in this protocol. Choose a

most n
polynomial r(-)such that ¢ x (n x 7(n))}=¢ < r(n) for any constant c¢. Define

transducer D' as follows:
D' on input {G1,Ga, ... Gy, t(G1) .-, t(Gr-1),H(Gry1) - - - U(Gr(n)) }

o Checks each t(G;) is a tour of Gj.

e D' constructs a new graph G from the input graphs G1,..., Gyr(n) and sim-
ulates D on G. Conceptually the new graph G can be thought of as a chain
G1-Go— -~ —G,.(n). The link between G and G is constructed as follows:
Let v € G; and v € G;41 be two vertices which are not part of any other
link. Substitute u with two copies of u, say «’ and «”, in G;, i.e., link ' and
u” to all the vertices to which u was linked keeping the edge weights same.
Also link ' and «” with a 0 weight edge. Do the same for v. Finally add
the 0 weight edges (u/,v') and (u”,v”). The remaining graphs are linked in
a similar fashion. Clearly |G| < ¢ x n x 7(n) for some constant ¢. By con-
struction every tour of G provides tours for each of the graphs G;. Moreover

given tours for Gy, ..., Gyy), one can build a tour for G. It is not hard to

49

show that if all the G;’s are in UNIQOPTTSP then so is G. In that case the
weight of the optimal tour of G is the sum of the weights of the optimal tours

of G;,1 <i<n.

D' then simulates D on G. Whenever D presents a solution S to the teacher,
D' finds the smallest j # k (if any), such that the tour of G; provided by D is
not minimum. D’ then constructs a better solution S’ by replacing the tour of
Gj in S by the optimal tour ¢(G;). D' then continues the simulation assuming
that the teacher T provided S’ as a counterexample. If D’ cannot improve S
in this way (i.e, it can’t find such a j), it then outputs the minimal tour of

Gy, from among all solutions output by D in previous rounds of interaction.

Now exactly as in Theorem 13, if D computes the unique optimal tour for G in
n1~¢ rounds then every collection of r(n) graphs in UNIQOPTTSP=" is dependent

with respect to D’ and hence by Proposition 5, the Polynomial Hierarchy collapses.

4.4 Tight Bounds for polynomial valued
problems

In the previous section we showed that if PH is infinite then LEXMAXSAT and
MINTSP do not have (n!~¢)-counterexample protocols. However, it is not known
whether these problems even have polynomial-counterexample protocols. In this
section we consider some NPO problems which have trivial n-counterexample pro-
tocols and establish strong lower bounds on the number of counterexamples re-
quired in any protocol computing their optimal solutions. In particular we con-
sider MAXCLIQUE, the problem MAXINDSET which is the problem of finding an
independent set of vertices of maximum cardinality in a given graph, and the max-
imization version of the problem MINCOVER which is the problem of finding a

vertex cover of minimum cardinality for a given graph.

50

In order to establish bounds for MAXINDSET we use the language
UNIQ_INDSET = {G | G has a unique independent set of maximum size}.

Since SAT can be parsimoniously reduced to the the independent set decision
problem [GJ79], there is a reduction from USAT to UNIQ_INDSET. Hence if
UNIQ_INDSET is in co-NP/poly then USAT € co-NP/poly and hence, by Propo-
sition 5, PH collapses. As in the case of LEXMAXSAT we establish the following

lemma to prove the result.

Notation 3 For any graph G in UNIQ_INDSET, «(G) denotes its unique mazimum
independent set. Also, UNIQ_INDSET™" denotes the set of all n-vertex graphs in

UNIQ_INDSET.

Lemma 4 Assume that there exists a deterministic transducer D and a polynomial
7(-) such that for all but finitely many n, for every set of graphs G1,. .. Grn) 0
UNIQ_INDSET™", there exists a j , 1< j < r(n), such that D when given the input
{ G1,..., Gy U(G1), -+ U Gj-1), U Gjg1), - - -, U(Grry) } and the size of «(Gj),
can compute 1(G;). Then the PH collapses.

PROOF. Suppose the hypothesis is true. We can construct, exactly asin Lemma 2,
a deterministic machine D and a polynomially long advice string S=S1#S53. .. # Sk,
such that for all graphs G in UNIQINDSET™", D given G, the advice S and
d = |1(G)| can compute the maximum independent set of G. Here each S; is the
encoding of r(n) — 1 n-vertex graphs and their unique maximum independent sets.

Then the following co-NP machine accepts UNIQ_INDSET.
Given a graph G with n vertices as input

e For each value of d from 1 to n, run D on the input graph G, the advice S
and assuming that |¢(G)| = d. If d = |+(G)| then D correctly computes the
largest independent set of G. Let [be the size of the largest independent set

for all values of d.

51

e Check that there is no more than one independent set of size [in G.

This implies that UNIQ_INDSET € co-NP/poly and hence, by Proposition 5,
that the PH collapses.

Using this we establish the desired lower bound on the number of counterex-

amples required to compute the maximum independent set of a graph.

Theorem 15 If for some € > 0, there is a protocol for MAXINDSET that requires

1—¢

at most n counterezamples for n-vertex graphs, then the PH collapses.

PrOOF. Assume that there is an counterexample protocol for MAXINDSET which
requires at most n!~¢ counterexamples on n-vertex graphs. Let D be the student
in this protocol. Let 7(n) be a polynomial such that c(n x 7(n))}~¢ < r(n). Define

a transducer D' as follows:

On input {G1, ..., Gy(n);S15- - -5 St=1, St4+1, - - -, Sp(n), k}, where each S; is a set of

vertices in the graph G; and k is an integer

e Checks each S; is an independent set of vertices in Gj.

o D' simulates D on G, the disjoint union of Gi,...,Gyp). Whenever D
presents a solution S to the teacher, if S contains at least k vertices of G;
then it outputs these vertices and stops. Otherwise it finds the smallest 7,
such that all vertices of S; do not appear in S, replaces the vertices of G
in S by S; and continues the simulation. In all other cases it outputs some

fixed string.

Now exactly as in Theorem 13, we can show that D' on input Gy,... ,Gr(n) 1D
UNIQ-INDSET and the solutions to all but G; and the size of the largest independent
set of Gj can compute +(Gj).

Using the same method we can show that other optimization problems such as
MAXCLIQUE, MINCOVER, MAXCYCLE require at least n!~¢ counterexamples for

all € > 0, on graphs of n vertices. These problems can be solved using by an

92

n-counterexample protocol in which the student adopts the trivial strategy. It is

surprising that this strategy is almost optimal.

4.5 Protocols with Randomness

So far, we have considered counterexample protocols in which the student is a
deterministic polynomial time machine. In this section, we shall examine coun-
terexample protocols in which the student also has access to a fair coin which can
be tossed polynomially many times during the entire protocol. The resulting pro-
tocol is called a probabilistic counterexample protocol. The probabilistic protocol
is similar to the deterministic counterexample protocol; the only difference being
that, in addition to the problem instance, the student receives a polynomial sized
string z which has been generated uniformly at random. The string z is provided
on a separate tape and is not considered as part of the input. The student is a
deterministic machine and as in the case of the deterministic protocol, repeatedly
provides feasible solutions to the teacher. The teacher either accepts the given
solution or provides a better solution as a counterexample. The student cannot
take more than a polynomial amount of time between two successive interactions
with the teacher. The protocol terminates when the teacher accepts. There is no
restriction on the amount of time the entire protocol takes.

One could alternately define a different type of probabilistic counterexample
protocol by allowing the student to be a polynomial time-bounded machine with
access to a fair coin. In that case, the number of times the student is allowed to toss
its coin during the entire protocol would depend on the number of interactions it has
with the teacher. Thus, if the protocol takes exponentially many counterexamples
for some input, then the student would be able to toss its coin exponentially many
times. However, it is important to note that the two definitions are equivalent with
respect to what a student can achieve in polynomially many interactions. Since

we are only interested in what can be done using polynomially many interactions,

33

we can use either definition. We choose the first definition because it simplifies the

analysis.

Definition 19 An optimization problem Q has a probabilistic f(n)-counterezample
protocol if there is a student, S, and polynomials sp(-) and tp(-), such that, for all
teachers T, S-T forms a probabilistic counterexample protocol for Q in which S,
in addition to the input instance of size n, receives a random string of size sp(n).
In addition, with probability > 1/tp(n), this protocol should require no more than

f(n)-counterexamples.

In the above definition, the probability is taken over the strings z of size s,(n)

which are provided to S uniformly at random.

Definition 20 PC[f(n)] is the class of all NP -optimization problems which have

a probabilistic f(n)-counterezample protocol.

Notice that the student is required to work within the counterexample bound
with a probability which can be as low as 1/n¢. For any NP-optimization problem,
there is always an O(1) counterexample probabilistic protocol which works within
the bound with inverse exponential probability. In this section we will show that
if the student is required to work with “significantly” better probability (such as
1/n®), then there are are NP-optimization problems which do not have probabilistic
nl~¢-counterexample protocols for any ¢ > 0, unless the PH collapses. We first

show that LEXMAXSAT is one such problem.

Lemma 5 Suppose there is a probabilistic polynomial time transducer P and poly-
nomials r(-) and p(-), such that for every collection Fy, ..., Fyyy in USAT™", there
is a j such that P given F1,. .., Fy(n), 8(F1), ..., 8(Fj-1), 8(Fj+1),- -, 8(Fyn)), can
compute s(Fj) with probability > 1/p(n). Then USAT € BP - (co-NP/poly).

ProoF. The proof of this lemma is a straightforward extension of the proof of

Lemma 2. In the proof Lemma 2, we showed how one can use the hypothesis of the

54

lemma to build adwvice such that a polynomial time machine, using advice, could
generate the satisfying assignment for any formula in USAT. In this case, one can
similarly build advice, such that a randomized polynomial time machine, using the
advice, can generate the satisfying assignment of any formula in USAT with prob-
ability 1/p(n). Using this machine, one can easily construct a randomized co-NP
machine, which given advice, accepts formulas in USAT with high probability and
always rejects formulas in USAT.

The following proposition shows a consequence of the assumption that USAT
is in BP - (co-NP/poly).

Proposition 6 If USAT € BP - (co-NP/poly) then the Polynomial Hierarchy col-

lapses.

PrROOF. The proof relies on the following facts

1. co-NP/poly is closed under majority reductions.

Proor. Given any language L define the languages:

MAJ(L) = {< z1,%2,...,22n4+1 > | a majority of the z}s arein L}

MIN(L) = {< 21,22,...,Z2n4+1 > | a minority of the z}s arein L}.

We have to show that for all L € co-NP/poly, MAJ(L) € co-NP/poly. Tt
is well known that a language L € co-NP/poly iff L € co-NP? for some
sparse set S. Now if L € co-NP® then T € NP¥ and, since NP? is closed
under majority reductions, MaJ(I) is in NP¥. As MAJ(L) = MIN(L) we
have MIN(L) € NP5 . Thus MIN(L) = MAJ(L) is in co-NP¥ and hence in
co-NP /poly.

2. There is a random reduction which reduces SAT to USAT with a two sided
error of at most 1/2 — 1/16n where n is the length of the string to which the

reduction is applied.

%)

PrROOF. Valiant et al (1986) showed that there is a one-sided random
reduction R which reduces SAT to USAT with probability 1/4n. That is
if € SAT then Prob[R(z) € UsAT| > 1/4|z| and if z ¢ SAT then the
probability that R(z) € USAT is one.

Define the reduction R’ as follows : On input z, |z| = n, R’ outputs a trivial
member of USAT with probability 1/2 — 1/16n. With remaining 1/2+1/16n
probability, R’ simulates the reduction R on z. Thus if z € SAT then the
probability that R’ outputs a string in USAT is at least (1/2—1/16n)+(1/2+
1/16n)(1/4n) which is at least (1/2+ 1/16n). If, on the other hand z ¢ SAT
then, by definition of R, we have Prob[R'(z) ¢ UsAT]=1/2+ 1/16n.

Proof of Proposition: Assume USAT € BP - (co-NP/poly). By Fact 1 and
Fact 2, this implies that SAT € BP - (co-NP /poly). Fact 1 also implies that BP -
(co-NP /poly) = co-NP/poly (see Schéning 1989). Therefore SAT € co-NP/poly
which implies that NP /poly = co-NP/poly and by a theorem of Yap(1983) PH
collapses to 3.

Using a proof similar to the deterministic case we can establish the following.
Theorem 16 Unless the PH collapses, Ve > 0, LEXMAXSAT ¢ PC[n!~¢].

PROOF. Assume that the Polynomial Hierarchy is infinite and there is a prob-
abilistic n!~¢-counterexample protocol for LEXMAXSAT. Let P be the student in
this protocol which works with probability 1/¢y(n). Define the polynomial r and a
transducer P’ exactly as in Theorem 3. Let g(n) = t,(r(n)*n?). From Lemma 4, for
p(n) = g(n)xr(n)xn there are infinitely many n’s such that there are 7(n) formulae
Fy, Fy, ... F(n) € USAT™" such that P’ given satisfying assignments for any r(n)—1
of these cannot compute the satisfying assignment for the remaining one with prob-
ability > 1/p(n). Asin Theorem 3, we consider the formula F = Fy V Fy...V Frn)
where the variables of all the F;’s are the same. Let z be the random input to P

where |z| = sp(|F|) = s(n) for some polynomial s. For every random input 2 to P,

56

such that P works within its counterexample bound, P cannot follow the trivial
strategy since (|F|)!~¢ < r(n). For each such 2, thereisan i, 1 < i < r(n) such that
with random input z, P'(F1, Fy, ..., Fupy, s(F1),- .., 8(Fi—1), 8(Fit1), - -+, $(Frn))
outputs s(F;). By definition, more than 1/¢(n) of all strings z of size s(n) cause
P to avoid the trivial strategy. A simple counting argument shows that there
is a j such that P'(F1, Fy,..., Fyn), 8(F1), ..., 8(Fj-1),8(Fjt1),- -, 8(Fy(n)) out-
puts s(F;) on more than 1/(gq(n) x r(n)) fraction of all 2’s of size s(n). There-
fore with probability > 1/(g(n) x r(n)) > 1/p(n), P' when given the input
(F1, Fay ooy Fynyy 8(F1), - -5 8(Fj=1), 8(Fjt1), - -+, 8(Fp(py), outputs s(Fj) contra-

dicting Proposition 6.

Using a combination of techniques used in Lemmas 2 and 4 and Theorems 13, 15

and 16 we can also prove the following theorem :

Theorem 17 If PH does not collapse, then for all € > 0, any probabilistic protocol
for MAXINDSET, MAXCLIQUE or MINCOVER requires more than n'~—¢ counterez-

amples on infinitely many n-vertex graphs.

Chapter 5

Approximation and

Counterexample Model?

5.1 Introduction

We continue our investigation of the difficulty of the NP-optimization problems in
the counterexample model. In this chapter we concern ourselves with approximat-
ing counterexample protocols - protocols where the student is required to compute
only an approximately optimal solution instead of an optimal solution.

We examine the complexity of approximating representative NPO problems
such as LEXMAXSAT and MAXCLIQUE in this model. Results about LEXMAXSAT
carry over to many NPO problems such as MINTSP in which the cost function
takes on exponentially many values. Similarly the results for MAXCLIQUE are
applicable to many problems in which the optimal cost is polynomially bounded.
One of the interesting result proved in this chapter pertains to the approxima-
bility of the much-studied NPo problem MAXCLIQUE[PS82,PR90,FGL*91,Blu91]
and strengthens the breakthrough result by Feige et al [FGL*91] that shows that
MAXCLIQUE cannot be approximated to within a factor of f; = 1 /21"91_5" in

polynomial time, unless NP is in quasipolynomial (2P°¥(1987)) time.

3joint work with Suresh Chari and Pankaj Rohatgi

57

58

This chapter is organized as follows. In the next section we define approxi-
mating counterexample protocols and prove lower bounds on the number of coun-
terexamples required to compute approximate solutions for representative NPO
problems under standard structural complexity theoretic assumptions . Section
5.3 addresses the question: Are there any problems where a non-trivial strategy
by the student will help in reducing the number of rounds of interaction? This
question was first raised in [KPS90]. We present an example where using a non-
trivial strategy to compute an approximate solution helps the student to reduce
the number of rounds of interaction by a factor of log n over the trivial strategy. In
section 5.4, we introduce protocols with guarantees. We again prove results which

have the flavor of “trivial is best”.

5.2 Approximating protocols and Lower
Bounds

Note that the standard counterexample protocol has two important features -
firstly, the student is required to compute an optimal solution to the given instance,
and secondly there are no guarantees on how much better the counterexample will
be. In this chapter we are interested in studying the complexity of NPO problems,
in terms of the number of counterexamples required, when we relax these condi-
tions. In this section we consider the case when the student is only required to
compute an approximate solution to the given instance. A protocol in which the
teacher accepts when the student computes an a-approximate solution is called an

a-approximating protocol.

Definition 21 A solution s to an instance z of an NPO problem is a-approzimate

if the relative error of the solution, £(z,s) <1 — a.

For definition of relative error see chapter 2.

59

Definition 22 An NPO problem P has an a-approzimating f(n)-counterezample
protocol if there is a student which computes an a-approximate solution using at

most f(n) counterexamples, on inputs of length n, against all possible teachers.

In section 5.4 we modify the second aspect and insist that the teacher provide
counterexamples which are guaranteed to be better than the student’s solution by
a predetermined amount.

In this section we establish lower bounds on the number of counterexamples re-
quired to compute approximate solutions for representative NP optimization prob-
lems, under usual structural complexity assumptions. Among exponential valued
problems we choose LEXMAXSAT as a representative. Recall that LEXMAXSAT is
the problem of computing the lexicographically largest satisfying assignment of a
boolean formula F(z1,...,z,). An assignment, A, of the variables z1,...,z,, is a
feasible solution if it satisfies F'. The cost of a feasible solution A is given by the
binary number A(z1)... A(zy). As a representative of polynomial valued problems
we use MAXINDSET, the problem of computing the largest sized independent set
in a given graph.

We use the following lemma to prove that approximate solutions for instances
of LEXMAXSAT can not be computed with n'~¢ rounds of interaction, for all € >
0. Recall the language UsSAT, the set of boolean formulas, F, having a unique
satisfying assignment, denoted by s(F'). It is well known that USAT is complete
for NP under randomized reductions[VV86]. We showed in chapter 4 that UsAT¢
co-NP /poly unless the Polynomial Hierarchy collapses.

Lemma 6 Assume USATZ co-NP/poly. Let D be any deterministic polynomial
time transducer and r any polynomial. Then for infinitely many n, there are boolean
formulas Fy,..., Fyy, of length n, in USAT, such that for all j, 1 < j < r(n),
D given {Fx,..., Frpy, $(F1), ..., 8(Fj-1), 8(Fj41),- .., 8(Fnn))} can not compute
s(Fj).

60

The existence of such “orthogonal” sets of formulas was used in [RCR91] to prove
that the optimum solution can not be computed for LEXMAXSAT using less than
n'~¢ rounds on inputs of length n. Using a novel construction, to build single
difficult instance from many orthogonal formulae, and techniques from [RCR91]
we can establish a lower bound the number of interactions needed to compute
approximate solutions.

The following construction is used in the proof: Let Fi,..., F,,) be formulas
of length n in USAT. Rename the variables so that only the variables z1,...,z,
appear in each formula. Choose new variables y1, ..., ys, where s = [log(r(n))]+1.
Let Y denote the concatenation of these variables. For any integer k, let k denote

the s-bit binary representation of k. Define the formula G as

[(Y=T)AR] V ... V [(Y=r(n))AFm]
The only satisfying assignments of G are assignments of z1, ..., z,, that satisfy
some F; with Y = 7. The variables of G are ordered Yly vy Ysy L1y« -+ L. G is of

length at most 2nr(n) and has exactly r(n) satisfying assignments.

Theorem 18 Let o be any constant. Unless PH collapses, a-approzimate solu-
tions can not be computed for instances of LEXMAXSAT in less than n'=¢ rounds,

for any € > 0.

ProoOF. Fix an ¢ > 0. Assume to the contrary that there is a protocol which
computes a-approximate solutions for LEXMAXSAT using at most n!~¢ rounds on
inputs of length n. Let D be the student in this protocol. Choose a polynomial
7(n) such that (2nr(n))'=¢ < ar(n). Note that this is possible for any constant
a. From D we construct a polynomial time machine D' which on input string

{Fl, e)Fr(n)’ S1yeee38j=1585415-- -, S,.(n)} works as follows:

o Checks that each s; is a satisfying assignment of the corresponding F;

61

e It simulates D on the input G which is constructed as described above from
Fi,..., Frn)- When D presents a solution A to the teacher, D' checks to
see if the last m bits of A form a satisfying assignment of F;. If so it
stops and outputs this assignment. If the last m bits of A form a satis-
fying assignment of some other formula F;, D' finds the least ¢ > ¢ such
that s¢ € {s1,...,85-1,8j+1,-- -, sr(n)}, constructs the corresponding assign-
ment of G and resumes simulation assuming that the teacher provided this

assignment. In all other cases D' outputs a default string and halts.

If PH does not collapse, by Lemma 1 for infinitely many n there are r(n)
formulas F1, ..., Fy(y), of length n, such that D’ given the formulas and the satis-
fying assignments s(F1),...,s(Fj-1), s(Fj+1),- .., 8(Fy(n)) can not compute s(F;)
for any j. Consider the formula G constructed from Fi, Fy, ... Fy(,) as described
above. The formula G is of length 2nr(n) and has r(n) satisfying assignments.
Since D computes an a-approximate solution it must compute a satisfying as-
signment whose last m bits are the satisfying assignment of F#; where | > ar(n).
Consider a teacher which provides satisfying assignments in lexicographic order.
By assumption, D computes an a-approximate solution of G, against this teacher,
with only |G|*~¢ i.e. (2n7(n))!~¢ rounds. By choice of r(n) this is less than ar(n).
Thus D must compute some satisfying assignment of G by itself. Assume that
the first time this happens the last m bits give a satisfying assignment of F;. By
definition D' on input F1, Fy, ... Fy(n), 8(F1),- -, 8(Fi—1), 8(Fig1), - -, S(Fy(y) will
compute the satisfying assignment of s(F;). This contradicts the choice of these

orthogonal formulas. [

We can extend this result to show that unless PH collapses, a-approximate
solutions for LEXMAXSAT can not be computed in n'~¢ rounds for any o > 1/p(n)
where p is any polynomial.

The cost function of LEXMAXSAT can have exponentially many values of some

instances. The technique used above only shows the existence of instances with a

62

sublinear number of independent satisfying assignments. We are unable to extend
the techniques used above to prove stronger lower bounds. In fact, in [KPS90] it is
shown that a superpolynomial lower bound on the number of rounds to compute the
optimum solution of LEXMAXSAT will show that the expressive powers of certain
theories of bounded arithmetic are different. For problems such as MAXINDSET
where the optimum value is linearly bounded we prove much tighter bounds. We
state a general lemma which will be used to show lower bounds on the number
of rounds required to compute approximate solutions for a variety of problems.
Let FP/poly denote the set of functions that are computable by a deterministic

polynomial time transducer with polynomial advice*

. We say that an optimiza-
tion problem P is a-approximable in FP /poly if there exists an a-approximation

algorithm for P in FP /poly.

Lemma 7 Let P be any optimization problem such that P is not a-approzimable in
FP/poly. Let D be any polynomial time transducer and v any polynomial. Then
there are infinitely many n and instances Iy, Iy, ..., L) of P, of size n, such
that D on input {I1, I3, .., Ipny, R(11), - - s A(Ij=1), A(Lj41), - - -, M(I))} cam not
compute an a-approzimate solution for the instance I;. Here h(I) is a canonical

optimal solution of the instance I.

PROOF. Assume to the contrary there is a deterministic polynomial time trans-
ducer D and a polynomial r(n) such that for all large n the above condition fails.

This means that one of the following conditions holds

* D given I1,Iy,...,I(n) and h(l2),...,h(Iyy)) computes an a-approximate

solution of I;.

* D given the input I1, Iy, ..., I(n) and h(I1), h(I3),. .., h(I.(n)) computes an

a-approximate solution of /.

A function f is in FP/poly if there is a function a : N' — E, such that | a(n) |< p(n)
for some polynomial p, and a function g computable in polynomial time such that for all z,

f(z) = g(z,a(| 2])).

63

o Dgiven Iy, Iy, ..., I () and h(I1),. .., h(Iyx)-1) computes an a-approximate

solution of I ().

Thus for any r(n) tuple (11, ..., Iy)) of instances of length n there is some j for
which D given the instances and A(Iy),...,h(lj-1),A(Lj+1), -, M{Ip(n))-

The proof of Lemma 2 is an extension of techniques in[RCR91] and is omitted.
We illustrate the lower bound technique for the optimization problem M AXINDSET.

The following is a simple extension of the results of [FGL*91].

Fact 2 Unless NP has quasipolynomial (2P'V1%8™)) sized circuits, MAXINDSET

can not be a-approzimated in FP [poly, where a > 1/21051_6" for any 6 > 0.

Theorem 19 Let o be a constant. Unless all languages in NP have quasipolyno-
mial sized circuits, a-approzimate solutions for MAXINDSET can not be computed

1—e¢

with less than n"~¢ rounds of interaction for all € > 0.

PRrOOF. For simplicity assume a = 1/t for some integer ¢. Assume to the
contrary that there is a protocol to compute a-approximate solutions using less
than N1=¢ on inputs of size N for some € > 0. Let D be the student in this
protocol. Choose a polynomial 7 such that 2n(nr(n))!~¢ < ar(n), for large
n. For instance let r(n) = n/3/<*1, From D we construct D’ which on input
G1,-. Gy, M(G1), -, M(G-1), M(Gs1), - - -, (G), where each G is a graph

of size n, works as follows:

1. Checks that each solution h(G;) is an independent set in the graph Gj.

2. Let N = nr(n). D' simulates D on the graph G, the disjoint union of
the graphs Gi,..., Gy for upto N 1-¢ rounds of interaction. Note that
any solution for G is the union of independent sets of the component graphs.
When D presents a solution Z, to the teacher, D’ finds the smallest k # 7 such

that the component of Z consisting of vertices in Gy, contains less than |h(Gy)|

64

vertices. It then replaces this component of Z with A(Gy) and continues the
simulation assuming that the teacher provided this solution. If no such &
exists or if N17¢ rounds have taken place, it outputs the largest independent

set of G; that it can identify from all rounds of interaction.

From Lemma 2 and Fact 1 we know that unless NP has quasipolynomial sized
circuits, for infinitely many n there are graphs G1, ..., Gy (), of size n, such that
D' given the graphs and solutions A(G1),..., (Gj-1),M(Gj+1),- -, "(Gry), can
not compute an a-approximate solution of Gj. Let G be the disjoint union of
these graphs. It has size N = nr(n) and its optimum solution is the union of the
optimal solutions of each of the component graphs. Consider a teacher which when
given a solution 7 finds the first graph G; for which the component of Z is not
of size |h(G;)| and replaces this in Z by h(G;). By assumption D works against
this teacher in N17¢ rounds. By choice of r(n), if D computes an a-approximate
solution of G it must compute an a-approximate solution of one the graphs for
which the teacher does not provide an optimal solution. Suppose this not the case.
Let k = N1~¢ and i;...,%; be the sizes of the optimal independent sets provided
by the teacher. It can be then shown that the solution computed by D has size at
most i1 + @2 + ... + ik + (@ig+1 — 1/t) + ... (adpp) — 1/t). Thus D computes a

solution of size at most

it it Qg+ F adpn) — (7(n) — k) /2

AN

z'1+...+z’k+a(i1+...+ir(n))—(T(n)—k)/t

IN

nk —(r(n) —k)/t +a iy + ... +ip(n))

< 2nk — r(n)/t + (21 + ...+ Zr(n))

< a(i1 +"'+ir(n))

since by choice of r, 2nk < r(n)/t. Thus if D computes an a-approximate solution

of G then it must compute an a-approximate solution of one of the graphs by itself.

Let the first graph for which it computes an a-approximate solution be G;. Then D’

65

by definition, when given G1,...,Gy(n), A(G1), ..., h(Gj-1), M(Gj+1), - - -, M(Gr(n))
computes an a-approximate solution of Gj. This contradicts the choice of the

graphs. O

By carefully analyzing the technique used in the proof of this theorem we can

prove the following:

Theorem 20 Unless all languages in NP can be recognized by quasipolynomial
sized circuits, there ezist infinitely many instances of the problem MAXINDSET for
which 1/ olog” "-approzimate solutions can not be computed with n/ 918”1 rounds of

interaction, where 1 > 6 > a > 0.

Feige et al [FGL191] show that MAXINDSET can not be approximated to within
a factor 1/ 21087 ynless all languages in NP can be recognized by quasipolynomial
time machines. The above theorem strengthens this by showing that MAXINDSET
can not be approximated to the factor 1/ 2108% 7 eyen allowed n/ 908’ 1ounds of
interaction where 3 > a. Since each interaction is guaranteed to result in a better
solution, in n/ 218”n 1ounds a trivial strategy results in a solution that is within
a factor 1 /21°gﬂ” of optimal. It is surprising that no strategy can improve this
slightly to get a solution that is within a factor f; of optimal. Thus the knowledge
of an independent set which is within a factor 1/ 9108° . is of no help in computing

one which is within a factor 1/21°%€" " of the optimal.

5.3 An example where suboptimal solutions
help

When studying optimization and approximation in the context of the counterexam-
ple model, a natural question that arises is: are there problems where a non-trivial

strategy helps in reducing the number of rounds required to compute the desired

answer?

66

In [KPS90] an artificial problem was presented where the trivial strategy re-
quires two rounds to compute the optimum, whereas using a non-trivial strategy
only one round is sufficient.

In this section we present an example of an optimization problem for which there
is a simple protocol to compute a 2/3-approximate solution with a sublinear number
of counterexamples. Further we show that there is a protocol that computes a-
approximate solutions using a sublinear number of rounds, for any a < 1. Since
following the trivial strategy requires linearly many rounds to do the same, this is
an example where a non-trivial strategy is provably better than the trivial strategy.

To our knowledge, this is the first example of such a problem. This also gives
some insight into how knowledge of some solutions may help in computing signifi-
cantly better solutions.

Informally, the problem is: Given a number n, find a divisor d of n such that
the size of d is as close to half the size of n as possible. Under the standard
cryptographic assumption that factoring is hard, it is not possible to compute
divisors in polynomial time. So, studying this problem in the counterexample
model is basically addressing the question: how many divisors do we need to know
before we know the complete factorization of a number? Formally we can define

the maximization problem MIDDLE_DIVISOR as follows:

INSTANCE: An integer n of length V.
SOLUTIONS: Integers d such that d|n.
CosT: o(n,d) = N/2 — |N/2 —|d||, where |d| denotes the size of d.

Fig 5.1 shows the cost function.

Note that, if we can compute a small divisor d of n we can also compute a large
divisor of n, namely n/d. Hence, the real difficulty lies in computing a divisor
whose size is close to half the size of the given number; hence the definition of o,
the cost function.

The optimal solution can clearly be computed in at most N/2 rounds using the

67

N/2 1

o(n,d)

0 N/2 N

|d| —

Figure 5.1: The cost function.

trivial strategy. On the other hand, the trivial strategy may require Q(N) rounds
in the worst case, even to compute an approximate solution. We present below a
2/3-approximating protocol for the above problem which uses at most O(N/log N)

rounds.

INPUT: An integer n of length N.

ProTocCoOL: The divisors of n are computed in stages. At each stage the divisor
computed will be of size at least log N more than that of the divisor in the previous
stage. Let s, denote the solution computed at the end of stage k& and t; the
counterexample provided by the teacher in stage k. Also since the cost of the
solutions d and n/d are the same we assume that the teacher always provides a
solution with size less than %’— Any divisor whose size is between]—;’— and % is a

2/3-approximate solution.

1. Let P={p; | i =1,...,m} be the set of primes of size at most log N. Let £3;
be the highest power of p; that divides n. Define § = IT™% p?,

STAGE 0: Compute P and S. If |S| > % then divide S by primes in P
till |S] < % The initial solution is s = S. Let ¢y be the counterexample

provided if any.

68

2. STAGE k > 1: sy, is defined as follows:

th—1 if |te—a| > &

Sk
lem(sg_1,tk—1) otherwise
where lem(a, b) = ab/ged(a,b). The solution sy is presented to the teacher

which either accepts or provides ¢; as a counterexample.

The protocol halts when the student has computed a 2/3-approximate solution.
The number of counterexamples is equal to the number of stages. The following

propositions imply that the number of stages is at most O(N/log V).
Fact 3 S divides sy, for all k.

Proor. If at the first stage |S| > N/3 it is accepted since it is a 2/3-
approximate solution. Otherwise at stage k we set sx = lem(sg—1,tx—1). Hence, if

S divides s;_; then it clearly divides s;. The proof follows by induction. a

Fact 4 If g=gcd(sg,tr) and |tx| > |sk|, then |tx| — |g| > log N.

PROOF. Assume to the contrary that the size of g is more than [tx| — log N.
Then t;/g has size less than log N and is relatively prime to sg/g. This implies
that there is a prime p of size less than log N which divides t;/g but not sz/g.
Thus there is a 3 such that p? divides ¢ but not sj which contradicts since S [sk
by Fact 2. a

Theorem 21 For all k, either § > |sp41] > |si| +log N or the solution sgiy is

a 2/3-approzimate solution.

69

ProOF. Since the solution provided by the teacher, ¢y, has cost greater than
sk and |sg| < %’— we have [sg| < |tg]. If |tx] > % then sg+1 = tg, which by
the assumption that the size of ¢; is at most %, is a 2/3-approximate solution.
Otherwise sgy1 = lem(sg, tx) and size of sgi1 is |sg| + |tx| — |g| where g is the ged
of s and t;. Since s and t; are both of size at most %, we have that |sg41]| < -23’37
Also by Fact 3 |sg41| > |sg| +log N. If sg4q is of size greater than %7— then it is
a 2/3-approximate solution. Otherwise its size is at most % This establishes the

theorem. O

The number of counterexamples required to compute a 2/3-approximate solu-
tion by this protocol is at most N/log N. In fact, using a slightly involved and
careful argument, we can show that for any a < 1 there is an a-approximating
protocol for MIDDLE_DIVISOR which runs in O(N/log N) rounds. The ba-
sic idea behind this protocol is that if s, the currently computed solution, is not
a-approximate, then within ¢, rounds the student can compute another solution
whose size is at least |s| + log IV if one exists. Here ¢, is a constant that depends
only on a. Thus the whole protocol needs at most ¢, N/log N rounds. The proto-
col computes the ged’s and lcm’s of the divisors provided as counterexamples and
takes their combinations to get a divisor with a better cost. The proof that the

protocol really works relies on the following lemma.

Lemma 8 (Sunflower lemma) For any a > 0 let cq, = 1/(1 —a) + 1. Letn be
any integer and {d1,...d.,} be divisors of n such that sizes of d;’s are strictly in-
creasing and none of the d;’s is an a-approzimate solution. Then one can compute

in polynomial time a divisor d of n with |d| > |d1| + log N.

The reason why this is called the sunflower lemma is that the worst case arises
when the divisors form a sunflower like structure with the common core represent-

ing the gecd of all the divisors.

70
The protocol is as follows:

INPUT: An integer n of length N.

ProTOCOL: Note that any divisor d whose size is between aN/2 and N/2 is an a-
approximate solution. Without loss of generality we can assume that « is less than
1 —1/log N. If not we can use the following protocol till we obtain a solution of
size (1—1/log N)N/2 and then use the trivial strategy to obtain an a-approximate

solution.

1. Let P={p; | i =1,...,m} be the set of small primes of size at most log N.
Let B; be the highest power of p; that divides n. Define S = Hg’;lp?i.

STAGE 0: Compute P and S. If |S| > & then divide S by primes in P
till |S| < N/2. The initial solution is s = S. Let tg be the counterexample
provided if any. As a simplifying assumption we assume that all the solutions

provided by the teacher contain all these small primes as factors.

2. STAGE k > 1: The algorithm works as follows: Given a set {d1,dy,...,dn},
of divisors of n, we construct from this a set R of relatively prime divisors of

n with the following properties:

¢ Each number in R divides some d;, and has size at least log N.
o At most one element of R divides all the numbers.

e If an element r does not divide d; then r and d; are relatively prime.

If any element r in R does not divide, and is hence relatively prime with, d;
then rd; is a new divisor of n. Further if the size of r is at most (1 —)N
then the new divisor has size at most aN/2+(1—a)N and since |r| is at least
log N, this gives us a solution which is of size log N greater than the previous
solution. If no such r exists, R is a set of relatively prime divisors of n each
of size at least (1 — o) N. But then there can be no more than 1/(1 — «) such

numbers. We show later that from {d;,...,d} we can construct R of size

71

Ri—l

i
k-1

Figure 5.2: R is the set consisting of the distinct regions . Intersection of two

regions is the gcd of the corresponding numbers.
at least m. Hence we need to consider only 1/(1 — &) + 2 solutions, before
we get an element of R of size less than (1 — a)N.

Let s, = sp_1 and R® = {s;_1}. Clearly R satisfies the required proper-

ties.

Repeat the following until a divisor of size |sx—1| + log N is found.

a. Present sijll to the teacher.
b. Let t};_l be the response of the teacher (if any).
c. From R*~1 we construct the new set of integers as follows
R ={z|z=ged(rti_,), if z#1,r€ R}
Ry ={z |z =r/ged(r,ti_,), if z # 1r € R}
Ri= R{U RS U{A} where A =t | /TI cpi-1ged(r, t5_1).
It can be verified that if R*~! satisfies the properties enumerated above
then so does R'. Figure 5.2 pictorially describes the construction. Think

of each number as the (multi)set of primes that are its factors. Then

the set R’ represents all non empty regions of the Venn diagram for the

72

numbers. Each region other than the intersection of all the sets is of
size at least log N because, by assumption, each solution provided by
the teacher has all the small prime powers as factors. Thus all small
prime powers are in the intersection of all sets and any other non empty

region has only large primes and is hence of size at least log N.

d. Compute the divisor with the largest cost that can be obtained as a

product of numbers in R’. Let s&_; be the solution thus found.

The following lemmas establishes a bound on the number of iterations in each

stage.
Lemma 9 At stage k, |RL| > 1.

Proor. This is proved by induction on 4. This is clearly true for ¢ = 1 since
the only element is 52_1. By definition of the protocol the Student finds the best
possible solution that can be obtained by multiplying numbers in R*~!. The best
such solution, s}'c_l is presented to the teacher. The new solution, ¢!, that is
provided by the teacher must have a cost better than that of 32—1‘ By definition of
R each number of R~ contributes to at least one unique element of R¥, |[RiUR}| >

|Ri~1|. Also one of the following cases must occur.

1. The new solutions is relatively prime to all the numbers in R*~!. In this case

R' = R*"1U {t{} and hence has one more element.

2. There is a number 7 € R*"! such that both ged(r,t%) and r/ged(r,ti) are

greater than 1. In this case R} U R} has at least one element more than Ri~1,

3. For no r are both ged(r,t%) and r/ged(r, i) greater than 1. Note that this
includes the first case. In this case the number A is not equal to 1. For
otherwise t}'c would just be a product of numbers from R*~!. Thus this

provides a new element in R’.

73

Hence for all 4, R* has at least i elements. O

Lemma 10 At each stage k the number of iterations is at most cq = 1/(1—a)+1

PROOF. By definition of R?, ged(ry,r9) =1 for all r1,79 € R'. If r € R and
r does not divide all the numbers in {s9_,,..., 32:11} then there exists a divisor
sf;_l such that 7'339_1 is a new divisor. Hence if |r| < (1 —)N the size of the new
solution is less than N/2 + (1 — a)N/2 as [s{:_l| < aN/2. Since the size of 7 is
at least log N this gives us the required improvement. If this is not the case each
r € R', except possibly the one element that divides all the numbers, is of size at
least (1 — a)N. By the above lemma there are at least ¢ — 1 such elements. Since
each such r divides n and the gcd of two such elements is 1, the product of all
these regions, which is of size at least (i — 1)(1 — a)N, divides n. Thus if i > ¢,

there must be an element of size less than (1 — a)N. O

The existence of a o(V) non-trivial protocol for MIDDLE_DIVISOR should
not be surprising. In fact, it reinforces the belief that factorization is easier than
the canonical NP-hard problems since none of these problems are known to be
solvable using o(N) rounds. We conjecture that using more sophisticated number

theoretic techniques it is possible to devise a more efficient protocol for MID-

DLE_DIVISOR.

5.4 Protocols with Guarantees

Until now, we have considered protocols in which the teacher T’ could provide any
better solution as a counterexample. Since there was no guarantee on the coun-

terexamples, the worst-case teacher could force the student to take many rounds

74

by providing least helpful and marginally better counterexamples. In this sec-
tion we impose restrictions on 7' by insisting that she provide significantly better
counterexamples, i.e., counterexamples whose cost is better than the cost of the
student’s solution by at least f(n) for some function f. This additive guarantee is
intended to model heuristics which improve the solution by at least f(n) whenever
they succeed. To take care of boundary conditions, we allow 7" to present the opti-
mal solution in the last round even though it may not be better than the student’s
solution by the required amount.

As usual, we shall measure the complexity of computing the optimal or ap-
proximate solutions to NPO problems in this model in terms of the number of
counterexamples required by the student given the least cooperative teacher. Our
results show that surprisingly, the student is unable to benefit from the substan-
tially improved solutions provided by the teacher and cannot do much better than
the trivial strategy.

Consider the NPO problem MAXCLIQUE. If there is an additive guarantee of
f(n) on the counterexamples provided by the teacher, then by using the trivial
strategy the student can compute the optimal solution using n/f(n) rounds of

interaction. The following theorem shows that the student cannot do much better.

Theorem 22 Unless PH collapses, no student can solve MAXCLIQUE using less
than n1=¢/ f(n) counterezamples for any e > 0, given an arbitrary teacher with an

f(n) additive guarantee on counterexamples.

Similarly, for any constant «, by following the trivial strategy a student can o-
approximate MAXCLIQUE using at most a*n/f(n) rounds. The following theorem

shows that this strategy is almost optimal.

Theorem 23 Unless NP has quasipolynomial sized circuits, no student can com-
pute a-approzimate solutions of MAXCLIQUE using less than n'=¢/ f(n) counterez-
amples for any € > 0, given an arbitrary teacher with an f(n) additive guarantee

on counterexamples.

75

It is possible to extend these techniques to prove slightly stronger results. One
can also prove lower bounds on the number of counterexamples required to com-
pute LEXMAXSAT in this model. However, as is the case with the earlier model,
these bounds are not tight. This is because LEXMAXSAT can have exponentially
many feasible solutions with different costs, whereas our techniques (see Theorem
18) are limited to formulas having sublinear number of widely spaced satisfying
assignments. For polynomially bounded f(n), we can modify the proof of Theorem

18 to obtain a lower bound of n!~¢. For large f(n), we can get a lower bound of

n'=¢/f(n).

Bibliography

[BG81]
[Blug1]
(Bus86]
[CK73]

[Coo71]

[CP8Y]

[Edm65)

[FagT74]

[FGL*91]

[GI76]

C.H. Bennett and J. Gill. Relative to a random oracle, P4 # NP4 +
coNPA. SIAM Journal on Computing, 10(1):96-112, 1981.

A. Blum. Algorithms for Approximate Graph Coloring. Ph.D. disserta-
tion, M.I.T., 1991.

S. Buss. Bounded Arithmetic. Studies in Proof Theory 3. Bibliopolis,
Naples, 1986.

C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amster-
dam, 1973.

S.A. Cook. The complexity of theorem proving procedures. In 3rd An-
nual ACM Symposium on Theory of Computing, pages 151-158. ACM,
1971.

P. Crescenzi and A. Panconesi. Completeness in approximation classes.
In Lectures Notes in Computer Science # 380, pages 116-126. Springer-
Verlag, 1989. Proceedings of the FCT.

J. Edmonds. Minimum partition of matroids into independent sets.
Journal of Research of the National Bureau of Standards(B), 69:67-72,
1965.

R. Fagin. Generalized first-order spectra, and polynomial-time recogniz-
able sets. In R.M. Karp, editor, Complezity and Computations. AMS,
1974.

U. Feige, S. Goldwasser, L. Lovdsz, S. Safra, and M. Szegedy. Approx-
imating clique is almost NP-complete. In 82nd Symposium on Founda-
tion of Computer Science, pages 2—-12, 1991.

M.R. Garey and D. Johnson. The complexity of near-optimal graph
coloring. Journal of the ACM, 23:43-49, 1976.

76

[GJ79]

[HS65)

[HS87]

[Imm80]

[Imm388|

[Joh74]

[JPY88]

[Kan92]

[Kar72]

[Kar86]

[KPS90]

[Kre88]

[KT90]

[KT91]

7

M.R. Garey and D. Johnson. Computers and Intractability. Freeman,
San Fransisco, 1979.

J. Hartmanis and R.E. Stearns. On the computational complexity of
algorithms. Transactions of the AMS, 117:285-306, 1965.

D. Hochbaum and D. Shmoys. Using dual approximation algorithms
for scheduling problems: theoretical and practical results. Journal of
the ACM, 34, 1987.

N. Immerman. First Order Ezxpressibility as a New Complexity Measure.
Ph.D. dissertation, Cornell University, [thaca, New York, August 1980.

N. Immerman. Nondeterministic space is closed under complement. In
Proceedings of Structure in Complexity Theory Third Annual Confer-
ence, pages 112-115. IEEE Computer Society Press, 1988.

D. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256-278, 1974.

D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local
search. Journal of Computer and System Sciences, 37:179-200, 1988.

V. Kann. On the Approximability of NP-complete Optimization Prob-
lems. Ph.D. dissertation, Royal Institute of Technology, Stockholm,
Sweden, May 1992.

R.M. Karp. Reducibility among combinatorial problems. In Complezity
of Computer Computations, pages 85—103. Plenum Press, 1972.

R.M. Karp. Combinatorics, complexity and randomness. Communica-
tions of the ACM, 29(2):98-109, February 1986. Turing Award Lecture.

J. Krajicek, P. Pudldk, and J. Sgall. Interactive computation of optimal
solutions. In Mathematical Foundations of Computer Science, Springer-
Verlag LNCS # 452, pages 48—60, 1990.

M.W. Krentel. The Complexity of Optimization. Journal of Computer
and System Sciences, 36:490-509, 1988.

P.G. Kolaitis and M.N. Thakur. Logical definability of NP-optimization
problems. Computer and Information Sciences Technical Report UCSC-
CRL-90-48, University of California, Santa Cruz, 1990.

P.G. Kolaitis and M.N. Thakur. Approximation properties of NP-
minimization classes. In Structure in Complezity Theory, Sizth Annual
Conference. IEEE Computer Society Press, 1991.

[Lin65]

[LK73]

[OMS7]

[Pap84]

[PM81]

[PR90]

[PS82]

[PY8S]

[RCRO1]

[Shad9]

[Sip92]

[Sze87]

[VN53]

78

S. Lin. Computer solutions of the traveling salesman problem. Bell
System Technical Journal, 44:2245-2269, 1965.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the
traveling salesman problem. Operations Research, 11:972-989, 1973.

P. Orponen and H. Mannila. On approximation preserving reductions:
complete problems and robust measures. Technical report, University
of Helsinki, 1987.

C. Papadimitriou. On the complexity of unique solutions. Journal of
the ACM, 31:392-400, 1984.

A. Paz and S. Moran. NP-optimization problems and their approxima-
tion. Theoretical Computer Science, 15:251-277, 1981.

A. Panconesi and D. Ranjan. Quantifiers and approximation. In 22nd
Annual ACM Symposium on Theory of Computing, pages 446-456.
ACM, 1990.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complezity. Prentice-Hall, Englewood Cliffs, New Jersey,
1982.

C. Papadimitriou and M. Yannakakis. Optimization, approximation
and complexity classes. In 208" ACM Symposium on Theory of Com-
puting, pages 229-234, 1988.

D. Ranjan, S. Chari, and P. Rohtagi. Improving known solutions is hard.
In Proceedings of the 18" ICALP, pages 381-392. Springer-Verlag, 1991.
Lecture Notes in Computer Science # 510.

C.E. Shannon. The synthesis of two terminal switching circuits. Bell
Systems Technical Journal, 28(1):59-98, 1949.

M. Sipser. The history and status of the P versus NP question. In
24th Annual ACM Symposium on Theory of Computing, pages 603—-618.
ACM, 1992. Invited Lecture.

R. Szelepcsényi. The method of forcing for nondeterministic automata.
The Bulletin of the European Association for Theoretical Computer Sci-
ence, 33:96-100, October 1987.

J. von Neumann. A certain zero-sum two-person game equivalent to the
optimal assignment problem. Contributions to the Theory of Games,
2:5-12, 1953.

[VV86]

[Yab59a]

[Yab59b]

[Yap83]

79

L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85-93, 1986.

S. Yablonski. The algorithmic difficulties of synthesizing minimal
switching circuits. In Problemy Kibernetiki 2, pages 75-121. Moscow,
Fizmatgiz, 1959. Translation in Problems of Cybernetics, Pergamon
Press, 401-457, 1961.

S. Yablonski. On the impossibility of eliminating brute force search in
solving some problems of circuit theory. Doklady AN SSSR, 124:44-47,
1959.

C. Yap. Some consequences of non-uniform conditions on uniform
classes. Theoretical Computer Science, 26(3):287-300, 1983.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif

