
EFFICIENT MULTI-OBJECTIVE SURROGATE
OPTIMIZATION OF COMPUTATIONALLY

EXPENSIVE MODELS WITH APPLICATION TO
WATERSHED MODEL CALIBRATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Taimoor Akhtar

August 2015



c© 2015 Taimoor Akhtar

ALL RIGHTS RESERVED



EFFICIENT MULTI-OBJECTIVE SURROGATE OPTIMIZATION OF

COMPUTATIONALLY EXPENSIVE MODELS WITH APPLICATION TO

WATERSHED MODEL CALIBRATION

Taimoor Akhtar, Ph.D.

Cornell University 2015

This thesis introduces efficient algorithms for multi-objective optimization of

computationally expensive simulation optimization problems. Implementation

of efficient algorithms and their advantage of use for calibration of complex and

deterministic watershed simulation models is also analyzed.

GOMORS, a novel parallel multi-objective optimization algorithm involv-

ing surrogate modeling via Radial Basis Function approximation, is intro-

duced in Chapter 2. GOMORS is an iterative search algorithm where a multi-

objective search utilizing evolution, local search, multi method search and

non-dominated sorting is done on the surrogate function to select numerous

points for simultaneous expensive evaluations in each algorithm iteration. A

novel procedure, ”multi-rule selection”, is introduced that simultaneously se-

lects evaluation points (which can be computed in parallel) within an algorithm

iteration through different metrics. Results are compared against ParEGO and

the widely used NSGA-II on numerous test problems including a hypothetical

groundwater PDE problem. The results indicate that GOMORS outperforms

ParEGO and NSGA-II within a budget of 400 function evaluations. The supe-

riority of performance of GOMORS is more evident for problems involving a

large number of decision variables (15-25 decision variables).

The second contribution (Chapter 3) to the thesis is a comparative analysis of



algorithms for multi-objective calibration of complex watershed models. Since

complex watershed models can be computationally expensive, we analyze and

compare performance of various algorithms within a limited evaluation budget

of 1000 evaluations. The primary aim of the analysis is to assess effectiveness of

algorithms in identifying ”meaningful trade-offs” for multi-objective watershed

model calibration problems within a limited evaluation budget. A new metric,

referred as the Distributed Cardinality index, is introduced for quantifying the

relative effectiveness of different algorithms in identifying ”meaningful trade-

offs”. Our results indicate that GOMORS (the algorithm introduced in Chapter

2), outperforms various other algorithms, including ParEGO and AMALGAM,

in computing good and meaningful trade-off solutions, within a limited simu-

lation evaluation budget.

The third and final contribution (see Chapter 4) to the thesis is MOPLS,

a Multi-Objective Parallel Local Stochastic Search algorithm for efficient opti-

mization of computationally expensive problems. MOPLS is an iterative al-

gorithm which incorporates simultaneous local candidate search on response

surface models within a synchronous parallel framework to select numerous

evaluation points in each iteration. MOPLS was applied to various test prob-

lems and multi-objective watershed calibration problems with 4, 8 and 16

synchronous parallel processes and results were compared against GOMORS,

ParEGO and AMALGAM. The results indicate that within a limited evaluation

budget, MOPLS outperforms ParEGO and AMALGAM for computationally ex-

pensive watershed calibration problems, when comparison is made in function

evaluations. When parallel speedup is taken into consideration and compari-

son is made in wall clock time, the results indicate that overall performance of

MOPLS is better than GOMORS, ParEGO and AMALGAM.
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CHAPTER 1

INTRODUCTION

Computationally expensive simulation models exist in high numbers. Some ex-

amples of such models are watershed simulations, groundwater model simula-

tions, crashworthiness of cars, etc. Computationally expensive models usually

act like black box functions, where the relationship between the model inputs

and outputs is hard to define. These models aim to mimic natural phenom-

ena, where the relationship between the varying inputs and outputs is highly

complex. Due to the complexity of these models, computing the output of each

simulation can be time-consuming. Models which take considerable time in

evaluation of one scenario are commonly referred to computationally expen-

sive simulations, or computationally expensive black box functions, since the

relationship between inputs and outputs are hard to define.

Simulation models are developed to understand relationships between cer-

tain parameters and model outputs. Based on the understanding of these rela-

tionships, analysis and forecasting exercises can be carried out, in order to make

informed and sophisticated decisions. Many situations exist where the aim is to

deduce parameters / model inputs / decisions which lead to optimized val-

ues of certain objectives e.g., costs, benefits etc. In order to deduce optimized

decisions / parameters, simulation models can be coupled with sophisticated

optimization algorithms.

Simulation optimization problems can be divided into 2 broad categories:

1) calibration optimization and 2) decision optimization. For example, decision

optimization involves the deduction of optimal decisions e.g., pumping rates for

groundwater contamination cleanup (the objectives could be cost minimization,
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cleanup maximization, etc.). Calibration optimization involves the deduction

of values for simulation model parameters (which are unknown and hard to

compute e.g., hydraulic conductivity in groundwater) that ensure that model

outputs are as close to observed data as possible.

Within the watershed modeling paradigm, multiple criteria can be consid-

ered important for the calibration process. Hence, the watershed model calibra-

tion problem can be formulated as a multi-objective optimization problem [3]

[2]. A multi-objective optimization problem can be solved by obtaining deci-

sion maker’s preference, aggregating criteria into a single criterion, and solving

a single-objective optimization problem to obtain a calibration. However, a pre-

defined user preference might lead to a significant loss of information regarding

trade-offs between conflicting objectives [3] [4]. A multi-objective optimization

problem can also be solved by employing a posteriori [1] optimization strategy,

where objectives are considered separately during the optimization process, and

the output of the optimization process is a set of trade-off solutions, also called

Pareto solutions. The availability of trade-offs provides added information to

decision makers.

This thesis tackles simulation optimization problems for calibration and de-

cision analysis within a multi-objective optimization framework. The simula-

tion models under discussion are computationally expensive. Hence, the aim of

this research is to 1) develop efficient algorithms for multi-objective optimiza-

tion of computationally expensive simulation optimization problems (discussed

in Chapters 2 and 4), and 2) apply efficient multi-objective optimization to as-

sess and analyze the effectiveness of the developed algorithms for calibration of

computationally expensive watershed models (Chapter 3).
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To achieve the desired efficiency, iterative surrogate approximations of the

objective functions are utilized and the algorithms are designed to be efficient

when computation is done in parallel. The algorithms developed are new be-

cause of the way they use a combination of previously evaluated points and the

surrogate approximations to select multiple points for simultaneous expensive

evaluations in the next algorithm iteration.
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CHAPTER 2

MULTI OBJECTIVE OPTIMIZATION OF COMPUTATIONALLY

EXPENSIVE MULTI-MODAL FUNCTIONS WITH RBF SURROGATES

AND MULTI-RULE SELECTION1

2.1 Introduction

Multi-objective optimization (MO) approaches involve a large number of func-

tion evaluations, which make it difficult to use MO in simulation - optimization

problems where the optimization is multi-objective and the nonlinear simula-

tion is computationally expensive and has multiple local minima (multi modal).

Many applied engineering optimization problems involve multiple objectives

and the computational cost of evaluating each objective is high (e.g minutes to

days per objective function evaluation by simulation) [14] [9]. We focus on spe-

cial algorithms that aim to produce reasonably good results within a limited

number of expensive objective function evaluations.

Many authors (for instance, Deb et al. [6] and Zhang et al. [53]) have success-

fully employed evolutionary strategies for solving multi-objective optimization

problems. Even with the improvement over traditional methods, these algo-

rithms require, typically, many objective function evaluations which can be in-

feasible for computationally expensive problems. Added challenges to multi-

objective optimization of expensive functions arise with increase in dimension-

ality of the decision variables and objectives.

The use of iterative response surface modeling or function approximation

1This Chapter has been published as a Journal Paper in [1].
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techniques inside an optimization algorithm can be highly beneficial in reduc-

ing time for computing objectives for multi-objective optimization of such prob-

lems. Since the aim of efficient multi-objective optimization is to identify good

solutions within a limited number of expensive function evaluations, approxi-

mating techniques can be incorporated into the optimization process to reduce

computational costs. Gutmann [17] introduced the idea of using radial basis

functions (RBF) [4] for addressing single objective optimization of computation-

ally expensive problems. Jin et. al. [20] appears to be the first journal paper to

combine a non quadratic response surface with a single objective evolutionary

algorithm by using neural net approximations. Regis and Shoemaker [38] were

the first to use Radial Basis Functions (not a neural net) to improve the efficiency

of an evolutionary algorithm with limited numbers of evaluations. Later they

introduced a non-evolutionary algorithm Stochastic-RBF [37] , which is a very

effective radial basis function-based method for single objective optimization of

expensive global optimization problems. These methods have been extended

to include parallelism [41]; high-dimensional problems [43]; constraints [39]; lo-

cal optimization [50] [51]; integer problems [33] [32] and other extensions [40]

[42]. Kriging-based methods have also been explored for addressing single ob-

jective optimization problems [18] [21] [12]. Jones et al. [21] introduced Efficient

Global Optimization (EGO), which is an algorithm for single objective global

optimization within a limited budget of evaluations.

Response surface methods have also become popular for multi-objective op-

timization problems, with kriging-surrogate techniques being the most popular.

Various authors have used kriging-based methods by extending the EGO frame-

work for multi-objective optimization of computationally expensive problems.

For instance, Knowles [23] combined EGO with Tchebycheff weighting to con-
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vert an MO problem into numerous single objective problems. Tsang et. al. [54]

and Emmerich et. al. [11] combined EGO with evolutionary search assistance.

Ponweiser et. al. [34] and Beume et. al. [3] explored the idea of maximizing

expected improvement in hypervolume. Authors have also explored the use

of other function approximation techniques inside an optimization algorithm,

including Radial Basis Functions (RBFs) [52] [15] [26] [46] [22], Support Vector

Machines [27] [44] and Artificial Neural Networks [8]. Evolutionary algorithms

are the dominant optimization algorithms used in these methods. Some papers

also highlight the effectiveness of local search in improving performance of re-

sponse surface based methods [25] [46] [22].

Various authors have indicated that RBFs could be more effective than other

approximation methods in multi-objective optimization of computationally ex-

pensive problems with more than 15 decision variables [10] [44] [31]. Various

authors have employed RBFs for surrogate-assisted multi-objective optimiza-

tion of expensive functions with focus on problems with more than 15 decision

variables. For instance, Karakasis and Giannakoglou [22] employ RBFs within

an MOEA framework and use an inexact pre-evaluation phase (IPE) to select a

subset of solutions for expensive evaluations in each generation of an MOEA.

They also recommend the use of locally fitted RBFs for surrogate approxima-

tion. Georgopoulou and Giannakoglou [15] build upon [22] by employing gra-

dient based refinements of promising solutions highlighted by RBF approxima-

tion during each MOEA generation. Santana et. al. [46] divide the heuristic

search into two phases where the first phase employs a global surrogate-assited

search within an MOEA framework, and rough set theory is used in the second

phase for local refinements.
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This paper focuses on the use of RBFs and evolutionary algorithms for multi-

objective optimization of computationally expensive problems, where the num-

ber of function evaluations are limited relative to the problem dimension (e.g.

to a few hundred evaluations for the example problems tested here). An added

purpose of the investigation is to be able to solve MO problems where the num-

ber of decision variables varies between 15 and 25.

To this effect we propose a new algorithm, GOMORS, that combines radial

basis function approximation with multi-objective evolutionary optimization,

within the general iterative framework of surrogate-assisted heuristic search al-

gorithms. Our approach is different from prevalent RBF based MO algorithms

that use evolutionary algorithms [52] [15] [26] [46] [22]. Most RBF based evolu-

tionary algorithms employ surrogates in an inexact pre-evaluation phase (IPE)

in order to inexpensively evaluate child populations after every MOEA gener-

ation. By contrast our proposed methodology employs evolutionary optimiza-

tion within each iteration of the algorithm framework to identify numerous po-

tential points for expensive evaluations. Hence, multiple MOEA generations

evolve via surrogated-assisted search in each algorithm iteration in GOMORS.

The novelty of the optimization approach is in the amalgamation of various

evaluation point selection rules in order to ensure that various value functions

are incorporated in selecting some points for expensive evaluations from the po-

tential points identified by surrogated-assisted evolutionary search during each

algorithm iteration. The combination of multiple selection rules targets a bal-

anced selection between exploration, exploitation and front diversification. The

selection strategy incorporates the power of local search and also ensures that

the algorithm can be used in a parallel setting to further improve its efficiency.
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2.2 Problem Description

LetD (domain space) be a unit hypercube and a subset of Rd and x be a variable

in the domain space, i.e., x ∈ [0, 1]d. Let the number of objectives in the multi-

objective problem equal k and let fi(x) be the iith objective. fi is a function of x

and fi :D 7→ R for 1 ≤ i ≤ k. The framework of the multi-objective optimization

problem we aim to solve is as follows:

minimize F(x) = [ f1(x), . . . , fk(x)]T

subject to x ∈ [0, 1]d
(2.1)

Our goal for the multi-objective optimization problem is (within a limited

number of objective function evaluations) to find a set of Pareto-optimal solu-

tions P∗ = {x∗i | x
∗
i ∈D, 1≤ i≤n}. P∗ is defined via the following definitions:

Domination: A solution x1 ∈D dominates another solution x2 ∈D if and only if

fi(x1) ≤ fi(x2) for all 1≤ i≤k, and fi(x1) < fi(x2) for at least one i ∈ {1, . . . , k}.

Non-Domination: Given a set of solutions S = {xi | xi ∈D, 1≤ i≤ n} , a solution

x∗∈S is non-dominated in S if there does not exist a solution x j∈S which domi-

nates x∗.

Pareto Optimality: A candidate solution x∗ ∈ S which is non-dominated in S is

called a globally Pareto-optimal solution if S = D, i.e., S is the entire feasible

domain space of the defined problem.
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2.3 Algorithm Description

2.3.1 General Framework

The proposed optimization algorithm is called Gap Optimized Multi-objective

Optimization using Response Surfaces (GOMORS). GOMORS employs the

generic iterative setting of surrogate-assisted algorithms in which the response

surface model used to approximate the costly objective functions is updated

after each iteration. Multiple points are selected for expensive function evalu-

ation in each iteration, evaluated in parallel, and subsequently used to update

the response surface model. The algorithm framework is defined below:

Step 0 - Define Algorithm Inputs:

M - Maximum number of expensive function evaluations

r - The Gap radius parameter used in Step 2.3

t - Number of expensive evaluations to be performed after each algorithm iteration

Step 1 - Initial Evaluation Points Selection: Select an initial set of points {x1, . . . , xm},

where xi ∈ D, for 1 ≤ i ≤ m, using an experimental design. Evaluate the objectives

F = [ f1, . . . , fk] at the selected m points, via expensive simulations. Let S m = {xi |

xi ∈ D, i = 1, . . . ,m} denote the initial set of evaluated points. Let Pm = {xi ∈ S m |

xi is non-dominated in S m} be the set of non-dominated points from S m.

Step 2 - Iterative Improvement: Run algorithm iteratively until termination condition

is satisfied:

While m ≤ M

Step 2.1 - Fit/Update Response Surface Models: Fit/update response surface

models for each objective based on the set of already evaluated simulation points

S m. Let F̂m(x) = [ f̂m,1, . . . , f̂m,k] be the inexpensive approximate objective functions
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obtained by fitting a response surface model on S m.

Step 2.2 - Surrogate Assisted Global Search: Use a multi-objective evolutionary

algorithm (MOEA) to solve the following optimization problem:

minimize: F̂m(x) = [ f̂m,1(x), . . . , f̂m,k(x)]T (2.2)

Let P̂A
m = {x1, . . . , xnA} denote the solutions obtained by solving Equation 2.2, i.e,

utilizing an MOEA for searching on the response surfaces.

Step 2.3a - Identify Least Crowded Solution:. Using the crowding distance cal-

culation procedure proposed by Deb et al. [6], identify the least crowded ele-

ment of the expensively evaluated non-dominated set, Pm. Let xcrowd be the least

crowded element of Pm (see definition in Table 4.1).

Step 2.3b - Local Search:. Use a multi-objective evolutionary algorithm in a small

neighborhood of xcrowd to solve the following optimization problem:

minimize: F̂m(x) = { f̂m,1(x), . . . , f̂m,k(x)}

subject to: (xcrowd − r) ≤ x ≤ (xcrowd + r)
(2.3)

The problem solved in Equation 2.3 we will call the ”Gap Optimization Problem”.

Let P̂B
m = {x1, . . . , xnB} denote the solutions obtained by solving Equation (2.3) ,i.e,

utilizing an MOEA for local search on the response surfaces, within a radius, r,

around the least crowded solution, xcrowd.

Step 2.4 - Select Points for Expensive Function Evaluations: Our evaluation

points are then selected from the sets P̂A
m and P̂B

m (from Equations 2.2 and 2.3, and

also called candidate points) based on the rules described in Section 2.3.4. Let

S curr = x1, . . . , xt be the set of t points selected for expensive evaluations in current

algorithm iteration. (Discussed in detail in Section 2.3.4)

Step 2.5 - Do expensive function evaluations and update Non-dominated so-

lution set: Evaluate costly functions, F, on the selected evaluation points, S curr.

Update S m, i.e., add the new expensively evaluated points to the set of already
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evaluated points. Consequently, m = m + t, S m = {S m} ∪ {S curr}. Update Pm, i.e.,

compute Pm = {xi∈S m | xi is non-dominated in S m}.

End Loop

Step 3 - Return Best Approximated Front: Return PM = {xi ∈ S M |

xi is non-dominated in S M} as an approximation to the globally optimal solution set,

i.e, P∗ = {x∗i | x
∗
i is non-dominated inD}.

The algorithm initiates with selection of an initial set of points for costly

function evaluations of the objective function set, F. Latin hypercube sam-

pling, a space-filling experimental design scheme proposed by McKay et al.

[28] is used for selection of the initial evaluation set. The iterative framework

of GOMORS (Step 2) follows, and consists of three major segments: 1) Building

a Response Surface Model for approximating expensive objectives (Step 2.1), 2)

Applying an Evolutionary algorithm for solving multi-objective response sur-

face problems (Steps 2.2 and 2.3) and 3) Selecting multiple points for expensive

evaluations from the solutions of the multi-objective response surface problems,

and evaluating them in parallel (Step 2.4). The algorithm terminates after M

expensive evaluations and the output is a non-dominated set of solutions PM,

which is an approximation to the true Pareto solution of the problem i.e P∗.

Sections 2.3.2-2.3.4 and Appendix B discuss details of the major steps of the al-

gorithm.

2.3.2 Response Surface Modeling

The first major component of the iterative framework is the procedure used for

approximating the costly functions, F, by the inexpensive surrogates, F̂m(x) =

12



Table 2.1: Definitions of Sets and Variables

Item Description

F(x) = [ f1(x), . . . , fk(x)] Expensive objectives for the multiple-objective

optimization problem

P∗ = {x∗1, . . . , x
∗
n} Set of Pareto-optimal solutions given the objectives F

S m = {x1, . . . , xm} Set of points which have been evaluated via costly

simulation until iteration m of the algorithm

F̂m(x) = [ f̂m,1, . . . , f̂m,k] f̂m,i is the inexpensive response surface approximation

of the ith objective, fi, generated using the points in S m

Pm = {x∈S m} The non-dominated solutions in S m based on expensive

evaluations

xcrowd = arg max
x∈Pm

[d(x)] The least crowded element in Pm, according to the

crowding definition, d(.), where d(x j) indicates the

function by Deb [7] to compute crowding distance

for x j given (x j, F(x j)) for all x j ∈ Pm

P̂A
m = {x1, . . . , xnA} Candidate points obtained by Surrogate-Assisted Global

Search on the approximate objective function

set F̂m (see Equation 2.2)

P̂B
m = {x1, . . . , xnB} Candidate points obtained by Gap Optimization of the

approximate objectives, F̂m (see Equation 2.3)

HV(P) Hypervolume [2] of the objective space dominated by

the objective vectors corresponding to the set P. The

hyperspace is such that a point y ∈ Rk in the hyperspace

is bounded by a reference vector b (See Figure 2.1).
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[ f̂m,1, . . . , f̂m,k]. A response surface model based on the evaluated points is gener-

ated in Step 2.1 of the algorithm and subsequently updated after each iteration.

For example artificial neural networks [36], Support Vector Machines (SVM)

[48], kriging [45], and radial basis functions (RBFs) [4][35] could be employed

to generate the response surface model.

While kriging has been used in MO [23] [54] [34], the number of parame-

ters to be estimated for kriging meta-models increases quickly with an increase

in the number of decision variables [19] [18], and hence, re-evaluating kriging

surrogates in each iteration of a kriging based algorithm may itself become a

computationally expensive step. Various authors [43] [31] including Manriquez

et. al [10] have reported that kriging-based surrogate optimization is not effec-

tive for high dimensional problems (approximately defined as problems with

more than 15 decision variables). In [10] they demonstrate the relative effective-

ness of RBF approximation in tackling such high dimensional problems. The

GOMORS algorithm proposed in this paper hence makes use of RBFs as the

surrogate model for approximating the costly functions, although other surro-

gate models could be used in the GOMORS strategy.

2.3.3 Evolutionary Optimization

The surrogate optimization problems defined in Steps 2.2 (Surrogate-assisted

global search) and 2.3 (Gap Optimization) aim to find near optimal fronts given

that the expensive functions, F(x), are replaced by the corresponding response

surface model approximations, i.e., F̂m(x) (see Table 4.1). In Steps 2.2 and 2.3,

two different multi-objective optimization problems are solved on the surrogate

surface.

Steps 2.2 and 2.3 solve the MO problems depicted in Equations 2.2 and 2.3
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respectively. Since the objective functions of these problems are derived from

the surrogate model, solving the MO problems is a relatively inexpensive step.

However, the MO problems of Equations 2 and 3 are not trivial and could po-

tentially have non-linear and multi-modal objectives. Hence, we employ evolu-

tionary algorithms for MO optimization of surrogates in Steps 2.2 and 2.3.

Three algorithm were considered as potential alternatives for optimization

of surrogates in Steps 2.2 and 2.3, namely, NSGA-II, [6], MOEA/D [53] and

AMALGAM [49]. NSGA-II handles the evolutionary search optimization pro-

cess by ranking and archiving parent and child populations according to a

non-domination sorting. MOEA/D [53] uses aggregate functions, and simul-

taneously solves many single-objective Tchebycheff decompositions of multi-

objective problems in an evolutionary generation. AMALGAM [49] is a multi-

method evolutionary algorithm, which incorporates search mechanics of var-

ious algorithms. Extensive computer experiments on test problems were per-

formed on GOMORS with either of NSGA-II, MOEA/D and AMALGAM as

embedded evolutionary schemes (see Section B.3 of Appendix B for a detailed

discussion on the experiments) and AMALGAM was identified as the best per-

forming evolutionary algorithm (although the differences were small) embed-

ded in GOMORS.

2.3.4 Expensive Evaluation Point Selection - Step 2.4

Step 2.4 of the GOMORS algorithm determines which of the candidate points

are evaluated by the expensive objective functions, F(x), within an algorithm

iteration. The candidate points are obtained from Steps 2.2 and 2.3, and are

denoted as P̂A
m and P̂B

m respectively. As mentioned earlier, selection of points for

expensive evaluation is a critical step in the algorithm because this is usually by
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far the most computationally expensive step.

A balance between exploration [21], exploitation and diversification [7] is crucial

for selecting points for expensive evaluations from candidate points, P̂A
m and P̂B

m.

Exploration of the decision space aims at selecting points in unexplored regions

of the decision space. Exploitation aims at exploiting the inexpensive response

surface approximations of Step 2.1 to assist in choosing appropriate points for

expensive evaluations. Diversification strives to ensure that the non-dominated

evaluated points are spread out in the objective space.

GOMORS employs a multi-rule based strategy for selection of a small sub-

set of candidate points (P̂A
m and P̂B

m) for actual functions evaluations (computing

F via simulation). The various ”rules” employed in the strategy target a bal-

ance between exploration, exploitation and diversification. A detailed framework

of Step 2.4 of the algorithm is given below which gives an overview of the se-

lection rules (The ith rule is referred as Rule i) (Refer Table 4.1 for definitions of

sets and symbols):

Details of Step 2.4 (in Section 2.3.1:)

Inputs from previous steps: (m, S m, Pm, P̂A
m, P̂B

m)

Evaluation Points selection: Select t =
∑4

i=0 ti points for expensive evaluations via rules

0-4. Let S curr be the selected points. So there are ti points generated using Rule i, where

the Rules are listed below.

Apply Rule 0 - Random Sampling: Pick t0 points for expensive function evaluation via

random sampling from a uniform distribution. Ensures exploration of decision space.

Apply Rule 1- Hypervolume Improvement: Use hypervolume improvement to choose

t1 points from the candidate points P̂A
m. Let HV (Pm) denote the hypervolume [2] of the

objective space dominated by the vectors in the set Pm (see Figure 2.1(a)). A new point

for expensive function evaluation is selected as follows (see Table 4.1 for definition of
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Figure 2.1: Visualization of a) Hypervolume and Uncovered Hypervol-
ume and b) Hypervolume Improvement employed in Rule 1
and Rule 4 of Step 2.4 (discussed in Section 2.3.4). Maximiza-
tion of Hypervolume Improvement implies selection of a point
for function evaluation that predicts maximum improvement
in hypervolume coverage of a non-dominated set as per RBF
approximation.

sets and variables):

x∗ = arg max
x j∈P̂A

m

[
HV (Pm ∪ x j) − HV (Pm)

]
(2.4)

Equation 2.4 exploits the RBF approximation and chooses a point for function evalua-

tion which maximizes the improvement in hypervolume in the objective space as per

the RBF approximations of the candidate points, as illustrated in Figure 2.1(b).

Apply Rule 2- Maximize Minimum Domain Euclidean Distance: Let xi,A ∈ PA
m and

x j ∈ S m. Choose t2 points for expensive evaluation such that the maximum of mini-

mum distances of each point from already evaluated points is maximized, i.e.:

x∗ = arg max
xi,A∈P̂A

m

[
min
x j∈S m

‖xi,A − x j‖

]
(2.5)

Apply Rule 3- Maximize Minimum Objective Space Euclidean Distance: Choose t3

points such that the maximum of minimum distances of each point from already eval-
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uated points, as per the objective function space, is maximized, i.e.:

x∗ = arg max
xi,A∈P̂A

m

[
min
x j∈S m

‖F̂m(xi,A) − F(x j)‖
]

(2.6)

Rule 2 and Rule 3 are a hybrid of exploration and exploitation.

Apply Rule 4 - Hypervolume Improvement in ”Gap Optimization” candidates: Use

”Rule 1” to select t4 points from the candidate points obtained via ”Gap Optimization”,

i.e, P̂B
m. Select points for expensive function evaluations as follows (See Table 4.1 for

definition of sets and variables):

x∗ = arg max
x j∈P̂B

m

[
HV (Pm ∪ x j) − HV (Pm)

]
(2.7)

The difference between (2.4) and (2.7) is that P̂A
m in (2.4) comes from Step 2.2 and P̂B

m in

(2.7) comes from Step 2.3.

The number of points to be selected for expensive evaluation via each rule

i.e, ti may vary. However, we performed all our computer experiments with

ti = 1, for Rules 1-4. A point is selected via Rule 0 in each algorithm iteration

with a probability of 0.1. Hence, either four or five points are selected for ex-

pensive function evaluations in each iteration of the algorithm. The expensive

evaluations of points are performed in parallel to further speed up the algo-

rithm.

In order to assess the individual effectiveness of the rules, we performed

computer experiments on eleven test problems with the exclusive use of all rules

(i.e, one point is selected from one rule, in all algorithm iterations). Furthermore,

we also performed experiments with the idea of cycling between all rules in sub-

sequent iterations of GOMORS framework. These different selection strategies

were compared against the multiple rule selection strategy for simultaneous
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selection of evaluation points (described above). Results of the computer exper-

iments indicated that if the value of parallelization is considered, the multiple

rule selection strategy outperforms the other strategies employed on our analy-

sis (See Section B.4 of Appendix B for details.). However, if GOMORS is used in

a serial setting, i,e, one point is evaluated in each algorithm iteration, cycling be-

tween rules, and use of Rule 3 are most beneficial (see Section B.4 of Appendix

B).

2.4 Test Problems

In order to test the performance of GOMORS, computational experiments were

performed on various test functions and a groundwater remediation problem.

Certain characteristics of various problems can lead to inadequate convergence

or poor distribution of points on the Pareto front. These characteristics include

high dimensionality, non-convexity and non-uniformity of the Pareto front [7],

the existence of multiple locally optimal Pareto fronts [5], low density of so-

lutions close to the Pareto front, and existence of complicated Pareto sets (this

implies that the Pareto solutions are defined by a complicated curve in the de-

cision space) [24]. We have employed eleven test problems in our experimental

analysis which incorporate the optimization challenges mentioned above. Five

test problems are part of the ZDT test suite [5], while six were derived from the

work done by Li and Zhang [24]. Mathematical formulations and optimization

challenges of the test problems are discussed in detail in Section B.2.1 of Ap-

pendix B. These problems are collectively referred as synthetic test problems in

subsequent discussions.
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Table 2.2: Two MO variants, GWDA and GWDM, of the groundwater op-
timization problem (Section 2.4.1). M is total number of finite
element grid nodes, N is the total number of wells, T is the to-
tal number of management periods, Xt is the pumping decision
in management period t, sm,t is the contaminant concentration at
grid m and at the end of the last time period T , and Ct(Xt) is the
cost of cleanup for the pumping decision Xt:

GWDA GWDM

minimize: f1(X) =
∑T

t=1 Ct(Xt) minimize: f1(X) =
∑T

t=1 Ct(Xt)

minimize: f2(X) =
∑M

m=1 sm,T (X)
M minimize: f2(X) = maxM

m=1 sm,T (X)

subject to: X ∈ [0, 1]N×T subject to: X ∈ [0, 1]N×T

2.4.1 Groundwater Remediation Design Problem

Optimization problems pertaining to groundwater remediation models usually

require solving complex and computationally expensive PDE systems to find

objective function values for a particular input [29]. The groundwater remedia-

tion problem used in our analysis is based on a PDE system which describes the

movement and purification of contaminated groundwater given a set of biore-

mediation and pumping design decisions [30]. Detailed description of the prob-

lem is provided in Section B.2.2 of Appendix B. The decision variables of the

problem are the injection rates of remediation agent at 3 different well locations

during each of m management periods. The input dimension size ranges be-

tween 6 and 36 variables, depending upon the number of management periods

incorporated in the numerical computation model.

The remediation optimization problem can be formulated as two separate

multi-objective optimization problems, called GWDA and GWDM (Table 2.2).
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In the first formulation, GWDM, the aim is to minimize the maximum contam-

inant concentration at the end of the pumping time, and to minimize the cost

of remediation. The second formulation, GWDA, aims to minimize the average

contaminant concentration, along with cost. The mathematical formulation of

GWDA and GWDM are depicted in Table 2.2.

2.5 Results and Analysis

2.5.1 Experimental Setup

We tested our algorithm on the test functions and groundwater problems

discussed in the previous section. The performance of GOMORS was com-

pared against the Non-Dominated Sorting Algorithm-II (NSGA-II) proposed by

Kalyanmoy Deb (2001) [6] (discussed in Section 2.3.3) and the kriging-based

ParEGO algorithm proposed by Knowles [23]. All three algorithms are quite

different. ParEGO is a multi-objective version of EGO [21] where the multi-

objective problem is converted into many single objective optimization prob-

lems through Tchebycheff weighting [47]. One single objective problem is cho-

sen at random from the predefined set of decomposed problems and EGO is

applied to it to for selection of one point for evaluation per algorithm itera-

tion. ParEGO is not designed for high dimensional problems (more than 15

variables). GOMORS on the other hand embeds RBFs within an evolutionary

framework, and selects multiple points (from various rules defined in Section

2.3.4) for simultaneous (parallel) evaluations in each iteration and is designed

for low and higher (15-25 decision variables) dimensional problems.

Since the objective of GOMORS is to find good solutions to MO problems

within a limited function evaluation budget, our experiments were restricted to
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400 function evaluations. Since all algorithms compared are stochastic, ten opti-

mization experiments were performed for each algorithm, on each test problem,

and results were compared via visual analysis of fronts and a performance met-

ric based analysis. A detailed description of the experimental setup, including

parameter settings for all algorithms and source code references for ParEGO

and NSGA-II, is provided in Section B.5 of Appendix B.

The uncovered hypervolume metric [2] was used to compare the perfor-

mance of various algorithms. Uncovered hypervolume is the difference be-

tween the total feasible objective space (defined by the reference and ideal

points in Figure 2.1(a)) and the objective space dominated by estimate of the

Pareto front obtained by an algorithm. A lower value of the metric indicates a

better solution and the ideal value is zero.

Results from the synthetic test problems were analyzed in combination

through the metric. Experiments were performed for each test problem with

8 decision variables, 16 decision variables and 24 decision variables to high-

light performance differences of GOMORS, ParEGO and NSGA-II with varying

problem dimensions. Results of all synthetic test problems were compiled for

analysis by summing the metric values of each of the ten optimization experi-

ments performed on each test problem. Since the uncovered hypervolume met-

ric values obtained for each individual test problem and algorithm combination

could be considered as independent random variables, a sum of them across a

single algorithm is another random variable which is a convolution of the inde-

pendent random variables. This convolution based metric summarizes overall

performance of an algorithm on all synthetic test problems and is used as basis

of our analysis methodology.

Results from the two variants of the groundwater remediation problem
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(GWDA and GWDM) were also analyzed through the uncovered hypervol-

ume metric in a similar manner. Experiments were performed with 6 decision

variables, 12 decision variables and 24 decision variables for each groundwater

problem. Results from individual subsequent experiments performed on each

problem were summed to obtain a convoluted metric analysis of the groundwa-

ter problems. Performance of GOMORS and ParEGO on the GWDM test prob-

lem was further assessed through visual analysis of non-dominated solutions

obtained from each algorithm (median solution). The numerical comparisons

are based on the number of objective function evaluations and hence do not in-

corporate parallel speedup. ParEGO does not have a parallel implementation

so its wall-clock time is much longer than GOMORS. However, the comparisons

here focus on the number of function evaluations and evaluate an estimate of

total CPU time. These comparisons do not consider the additional advantage of

GOMORS (parallel) in wall-clock time.

2.5.2 Results: Synthetic Test Problems

The metric analysis performed on the synthetic test problems is depicted via box

plots in Figure 2.2. The vertical axis in Figure 2.2 is the convoluted uncovered

hypervolume metric described in Section 2.5.1. The lower the uncovered hyper-

volume, the better is the quality of the Non-dominated Front that the algorithm

has found.

Figure 2.2 aims to 1) visualize speed of convergence of all algorithms (by

comparing results of 200 and 400 objective function evaluations) and 2) under-

stand the effect of increasing decision space dimensions on performance of al-

gorithms (by comparing problems with 8, 16 and 24 decision variables).The box

plot visualization of each algorithm within each sub-plot of Figure 2.2 corre-
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Figure 2.2: Synthetic Test Problems: Box plots of uncovered hypervolume
metric values summed over the eleven test problems. Axis
scales are identical across all sub-plots, which describe prob-
lems ranging from 8 to 24 decisions and from 200 to 400 func-
tion evaluations. Upper row is for 400 evaluations and lower
row is for 200 evaluations. In all cases lower values of uncov-
ered hypervolume are best.

sponds to the uncovered hypervolume metric values summed over the eleven

test problems (see Section 2.5.1). Lower values of the metric signify superiority

of performance and a lower spread within a box plot depicts robustness of per-

formance. Each sub-plot within Figure 2.2 compares performance of all three

algorithms for a specified number of decision variables (number of decision

variables vary between 8 and 24) and a fixed number of function evaluations

(either 200 or 400). Traversing from bottom to top, one can visualize the change

in performance of algorithms as function evaluations increase (from 200 to 400),

and a left to right traversal can help in visualizing performance differences with

an increase in decision space dimensions (8, 16 and 24 decision variables).
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Figure 2.2 clearly illustrates that GOMORS outperforms ParEGO for the 24

variable versions of the synthetic problems, both in terms of speed of conver-

gence (at 200 evaluations) and at algorithm termination after 400 function eval-

uations (see top right sub-plot of Figure 2.2). GOMORS’ convergence to a good

solution is faster than ParEGO for the 8 and 16 variable versions of the syn-

thetic test problems, but the difference is not as distinguishable (from Figure

2.2) as in the case of the 24 variable versions. The Wilcoxon rank-sum test [16]

(at 5 percent significance) confirms that performance of GOMORS is better than

ParEGO for the 8, 16 and 24 variable versions of the test problems after 100,

200 and 400 function evaluations. Figure 2.2 also indicates that both GOMORS

and ParEGO significantly outperform NSGA-II with reference to the synthetic

problems when evaluations are limited to 400.

2.5.3 Results: Groundwater Remediation Design Problem

The box-plot analysis methodology for the groundwater remediation problem

is similar to the one employed for the synthetic test problems and the analysis is

summarized in Figure 2.3. Results summarized in Figure 2.3 are consistent with

the findings observed with the synthetic test functions in Figure 2.2. GOMORS

and ParEGO both outperform NSGA-II for the two MO groundwater problems

defined in Table 2.2, GWDA and GWDM, when function evaluations are lim-

ited to 400. Performance of GOMORS (as per Figure 2.3) is superior to ParEGO

with application to the 12 and 24 variable versions of GWDA and GWDM, both

in terms of speed of convergence (at 200 evaluations) and upon algorithm ter-

mination after 400 function evaluations. The difference between GOMORS and

ParEGO is not visually discernible for the 6 variable versions of the problems,

but the rank-sum test (at 5 percent significance) confirms that performance of
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Figure 2.3: Groundwater application problems: Box plots of uncovered
hypervolume metric values summed over the two groundwa-
ter remediation design optimization problems, i.e GWDA and
GWDM. See Figure 2.2 caption for figure explanation.

GOMORS is better, which is supported by Figure 2.4.

Figure 2.4 provides a visual comparison of non-dominated trade-offs ob-

tained from GOMORS and ParEGO with application to the GWDM ground-

water problem. The red line within each sub-plot is an estimate of the Pareto

front of GWDM. Since knowledge of the true front is not known, we obtained

our estimate of true Pareto front through a single trial of NSGA-II with 50000

function evaluations. The green dots within each sub-plot correspond to the

non-dominated solutions obtained via application of the algorithm referenced

in the sub-plot. There are two sub-figures within Figure 2.4 and four sub-plots

within each sub-figure. Sub-figure 2.4a corresponds to the median (the fronts

ranked fifth in ten experiments of each algorithm) non-dominated fronts ob-
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Figure 2.4: Estimated Non-dominated Front for Groundwater Problem
GWDM: Visual comparison of median non-dominated fronts
(as per uncovered hypervolume) obtained from GOMORS and
ParEGO for GWDM with 6 and 24 decisions, and after 100 and
200 expensive function evaluations. Red line is result of 50,000
evaluations with NSGA-II. Green circles are non-dominated
solutions from GOMORS or ParEGO.

tained from each algorithm for GWDM with 6 decision variables and sub-figure

2.4b corresponds to the median fronts obtained from each algorithm for GWDM

with 24 decision variables. A clock-wise traversal of sub-plots within each

sub-figure depict results in the following order: 1) GOMORS after 100 evalu-

ations, 2) GOMORS after 200 evaluations, 3) ParEGO after 200 evaluations, and

4) ParEGO after 100 evaluations.

Figure 2.4 indicates that both algorithms seem to converge to the estimated

Pareto front and also manage to find diverse solutions on the front for the 6

variable version of GWDM. More diverse solutions are obtained from GOMORS

however, and with better speed of convergence than with ParEGO (depicted

by the 6 variable version results after 100 and 200 evaluations). Performance

of GOMORS is significantly better than ParEGO for the 24 variable version of

the problem both in terms of speed of convergence (depicted by 24 variable

GWDM version results after 100 and 200 evaluations) and diversity of solutions.
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In case of computationally expensive real-world problems it may not be possible

to run multiple MO experiments. Hence, we also visually analyzed trade-offs of

worst case solutions (as per uncovered hypervolume) obtained from GOMORS

and ParEGO for both GWDM and GWDA. The visualizations are provided in

Section B.6 of Appendix B. After performing a metric based analysis and a

visual analysis, it can be concluded that performance of GOMORS is superior to

ParEGO on the test problems examined here, especially on the relatively higher

dimensional problems.

2.6 Conclusion

GOMORS is a new parallel algorithm for multi-objective optimization of black

box functions that improves efficiency for computationally expensive objective

functions by obtaining good solutions with a relatively small number of evalua-

tions (less than 500). GOMORS accomplishes this with the construction in each

iteration of a surrogate response surface based on all the values of the objec-

tive functions computed in the current and previous iterations. Then evolution

and non-dominated sorting are applied to the inexpensive function describing

this surrogate surface. It is then possible to evaluate a large number of points

on the surrogate inexpensively so multiple Rules can be used to select a diver-

sity of points for expensive evaluation on parallel processors. The use of these

multiple Rules is the innovative aspect of GOMORS and contributes to its ef-

fectiveness and robustness with limited numbers of evaluations (less than 500).

GOMORS is very different from ParEGO, which solves multiple single objective

problems.

Our numerical results indicate that GOMORS was significantly more effec-

tive than ParEGO when the number of evaluations was quite limited relative
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to the difficulty of the problem (Figures 2.2-2.4) for both the test functions and

the groundwater partial differential equation models. Computational demands

for nonlinear optimization will grow rapidly as the dimension increases, so the

effectiveness of GOMORS becomes more obvious on higher dimensional prob-

lems, as is evident in Figures 2.2-2.4.

There are many real application models with computational times that are so

large that the evaluations will be greatly limited, especially for multi-objective

problems. For example, analysis of a carbon sequestration monitoring prob-

lem required global optimization with seven decisions of a nonlinear, multi-

phase flow transient PDF model that took over 2 hours per simulation [13]. So

even 100 evaluations for a problem like this is probably more evaluations than

are feasible. Hence the GOMORS approach to multi-objective optimization is

a contribution in the area of surrogate-assisted multi-objective optimization of

objective functions based on computationally expensive, multimodal, black box

models.
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CHAPTER 3

MEANINGFUL MULTI OBJECTIVE PARAMETER ESTIMATION OF

COMPUTATIONALLY EXPENSIVE WATERSHED MODELS WITH

SURROGATE ALGORITHMS AND THE DISTRIBUTED CARDINALITY

INDEX

3.1 Introduction

Watershed simulation models typically involve, (a) physical parameters that are

difficult to measure directly, and/or (b) conceptual parameters that are impossi-

ble to measure. Conceptual parameters stem from considerable simplifications

employed in modeling of the natural processes within the watershed. Model

calibration is a process that can be employed to adjust values of such parame-

ters, where the aim is to mimic reality, via comparison of model response to his-

torically observed measurements. Traditional calibration methodologies typi-

cally involve manual trial-and-error, with expert opinion of a hydrologist within

an interactive calibration framework. The value of expert opinion cannot be dis-

regarded; however, manual methodologies can be extremely time consuming

and complicated.

A bulk of prior and contemporary research has focused on automatic cali-

bration schemes involving single objective optimization, e.g, [8, 26, 34, 52]. The

simulation-optimization problem for a complex watershed model formulated

within the automatic calibration framework is typically non-linear and proba-

bly has multiple local minima (i.e. is ”multi-modal”) [53], and various studies

have employed heuristic search techniques in a search for the globally optimal

solution.

However, watershed calibration based on a single aggregated calibration
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performance metric could lead to a significant loss of information within the

calibration process. The calibration process could be highly sensitive to various

factors, especially the proposed objective function used to assess the adequacy

of a set of parameter values.

The advent of multi-objective optimization has added a new dimension to

the hydrological model calibration process. Gupta et al. [21] mention that the

multi criteria approach is a potential way forward towards automatic calibra-

tion where the process of automatic calibration can emulate the manual calibra-

tion process by simultaneously incorporating numerous measures for assessing

model performance. Many recent studies have focused on employing multi-

objective optimization for watershed model calibration [16], highlighting the

effectiveness of multi-objective analysis in deducing various ”Pareto” optimal

calibrations [33, 64], providing added insight into model ambiguity resulting

from model imperfections and parameter uncertainty [59] and understanding

modeling limitations [22]. Efstratiadis and Koutsoyiannis [17] discuss the simi-

larities between the ”Pareto dominance” concept inherent in multi-objective cal-

ibration, and the ”equifinality” concept inherent in the GLUE framework [6, 39],

highlighting the ability of multi-objective calibration to help understand model

uncertainties.

Numerous research contributions have been made in proposing algorithms

for multi-objective optimization, within the simulation-optimization frame-

work [10, 13]. Various algorithmic contributions, within the water resources

community have also been made, focusing primarily on evolutionary strategies

[43, 46, 53, 54]. Evolutionary strategies are frequently referred as multi-objective

evolutionary algorithms (MOEA) in contemporary literature. Tang et al. [53]

provide a comparative analysis of various evolutionary algorithms, in order to
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deduce their effectiveness in hydrological model calibration.

While prior research and current industry calibration techniques indicate

the inherent multi-criteria nature of the hydrological model calibration prob-

lem [8, 22, 32], the computational complexity of distributed hydrological mod-

els pose a huge challenge to the use of multi-criteria optimization algorithms in

the calibration process.

It should be noted that the calibration optimization problem can be a compu-

tationally expensive simulation optimization problem, since the objective func-

tion(s) are evaluated via simulation and a simulation evaluation for watershed

models can take a very long time. Hence, algorithms that require fewer model

evaluations to produce good trade-off solutions, are desirable.

The use of surrogate models within an optimization algorithm can be highly

effective in reducing time for computing objectives for multi-objective calibra-

tion of complex watershed problems. (The terms surrogate, response surface

and meta model are all used to describe the use of existing information to build

an approximation of the objective function, which then guides the optimiza-

tion search.) Surrogate based single optimization algorithms have been widely

used in water resources calibration applications. Most optimization methods

used in these applications include Radial Basis Function (RBF) based methods

[23, 47, 48] , Kriging based methods [25] and Artificial Neural Network (ANN)

[67, 69] based methods. Some of these methods have been extended to incorpo-

rate parallelism [49]; local optimization [50, 61, 62]; integer problem handling

[35, 36] etc. The prevalent calibration application areas in prior research incor-

porating the use of surrogate optimization methods predominantly include wa-

tershed model calibration [7, 27, 45, 52], groundwater model calibration [37, 38]

and carbon sequestration model calibration [18, 19]. Razavi et al. [44] provide a
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comprehensive review of literature on the use of surrogates in water resources.

Surrogates have also been used in application of multi objective optimization

to complex water resources problems. [31] combine an ANN with an evolution-

ary algorithm for multi objective calibration of a rainfall-runoff model. Bau and

Mayer [3] employ kriging based surrogates within a multi objective framework

for optimal design of groundwater (pump-and-treat) remediation systems. Be-

hzadian et al. [4] combine a multi objective evolutionary algorithm (MOEA)

with an ANN to efficiently deduce optimal sampling locations of pressure log-

gers for a water distribution system. di Pierro et al. [15] explore the use of sur-

rogate based MO algorithms with application to water distribution network de-

sign. Castelletti et al. [9] incorporate the use of numerous surrogate methods for

efficient multi objective optimization with application to water quality planning

in reservoirs and lakes.

This study aims at understanding the value of surrogates in efficient multi

objective calibration of computationally expensive watershed models via a com-

prehensive comparison of numerous surrogate and non-surrogate based algo-

rithms. The algorithms compared in this study include the widely used non-

dominated sorting genetic algorithm (NSGA-II) [14], the multi-objective evolu-

tionary algorithm with decomposition (MOEA/D) [65] and AMALGAM [60],

which are popular evolutionary algorithms that have been applied to water re-

sources problems.

In order to assess the ability of surrogate methods to improve the compu-

tational efficiency of multi-objective, watershed calibration, we compare these

non surrogate algorithms against two response surface-assisted optimization

methods, namely GOMORS [1] and ParEGO [28]. Both GOMORS and ParEGO

build new approximations after each iteration in which new expensive evalu-
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ations of the objective functions are completed. ParEGO converts the multi-

objective problem into a series of single objective functions, whereas GOMORS

solves the multiple objective problem using non-dominated sorting and a set of

rules for selecting the next expensive function evaluation. Our focus is on multi-

objective optimization of relatively computationally expensive objectives, so we

have a limited evaluation budget (less than 1000 evaluations). We also introduce

a new metric, referred as the Distributed Cardinality index which is designed

for evaluating performance of algorithms in terms of their effectiveness in wa-

tershed model calibration.

Our results indicate that GOMORS outperforms all other algorithms within

a limited model evaluation budget (less than 1000), when used to calibrate flow

parameters of two distributed SWAT watershed model case studies, namely the

Townbrook SWAT Model, and the Cannonsville Swat Model, developed by Tol-

son and Shoemaker [56]. Hence this analysis is focused on different kinds of

problems than the comprehensive analysis in Tang et al. [53] that compares per-

formance of various evolutionary algorithms MOEAs, for a large simulation

evaluation budget (up to 100,000 evaluations), which is not a feasible number

for a large watershed like the Cannonsville.

3.2 Multi-Objective Calibration Decision Analysis

The multi-objective calibration framework discussed in this study, can be for-

mulated as a box-constrained optimization problem:

min
θ

F(θ) = [ f1(θ), . . . , fk(θ)]T (3.1)

subject to θmin
i ≤ θi ≤ θ

max
i , i = 1 . . . n

42



Where θ = [θ1 . . . θn] is the vector of decisions, or more specifically, the vector

of model parameters to be calibrated, bounded by the vectors θmin and θmax. F(θ)

is the vector of calibration objectives, which can be subjectively defined by a cal-

ibration expert. In order to evaluate the objective F(θ) for a candidate decision

vector θ, a computationally expensive run of the watershed simulation model is

to be performed. Hence, a desirable property of an optimization methodology

is the ability to produce good solutions within a limited budget of simulation

evaluations. The budget on simulation evaluations depends on the computation

time of a model and the total time available for the calibration process.

3.3 Optimization Algorithms

Within the water resources literature, several recent studies have shown that

in general, watershed model calibration problems can be highly multi-modal,

and existence of false non-dominated Pareto fronts (locally optimal fronts) can

pose a huge threat to the addedaccuracy of the optimization process [30, 46].

Hadka and Reed [24] state that multi-modality is a severe challenge for most

multi-objective evolutionary algorithms (MOEAs). In our analysis, we aim to

compare optimization algorithms with varying search capabilities in order to

understand their capabilities in tackling the numerous optimization challenges

of watershed calibration within a very limited simulation evaluation budget.

3.4 Multi-Objective Evolutionary Algorithms (MOEAs)

The optimization literature contains various multi-objective optimization al-

gorithms, specifically for tackling simulation optimization problems. These

search based meta-heuristics are dominated by multi-objective Evolutionary Al-
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gorithms (MOEAs). Deb [13] and Coello et al. [10] suggest that use of MOEAs

can be highly beneficial, since the population based structure of an evolution-

ary algorithm can be exploited to simultaneously converge towards the Pareto

front, and maintain a diverse set of trade-offs.

Various search methodologies within evolutionary optimization can be em-

ployed to tackle the two-fold aim of multi-objective optimization. Local search,

decomposition of the objective vector into multiple single objective optimiza-

tion problems, and employing multi-method search are some of them. Three

multi-objective evolutionary algorithms (MOEAs) are used for comparison in

this study. They are discussed in Sections 3.4.1 - 3.4.3.

3.4.1 Non-Dominated Sorting Genetic Algorithm -II

NSGA-II, proposed by Deb et al. [14] is a revolutionary and extremely popular

multi-objective (MOEA) . NSGA-II has been applied to various applied engi-

neering problems across numerous disciplines [10] including water resources

[5]. NSGA-II handles the evolutionary search optimization process by ranking

and archiving parent and child populations according to a non-domination sort-

ing (a measure of convergence), and crowding distance, which is a measure of

diversity of a solution, on a particular front. The NSGA-II is a posteriori algo-

rithm [10], aimed at using Pareto-dominance to move the the non-dominated

front towards convergence, during the search process.
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3.4.2 Multi Objective Evolutionary Algorithm -Decomposition

(MOEA/D)

Aggregate functions can also be used in the multi-objective optimization pro-

cess in order to convert a multi-objective problem into many single-objective

problems. The aggregate methodology falls under a separate class of MOEAs

within the classification of Coello et al. [10], where the aim is to solve many

single objective optimization problems, with different aggregation priorities, to

converge to the Pareto front, and maintain divergence. The MOEA/D [65] uses

aggregate functions, and simultaneously solves many single-objective Tcheby-

cheff decompositions of multi-objective problems in a single run. Tchebycheff

decomposition is a preference based aggregation method for converting a vector

of objectives into a single objective. The MOEA/D is an established benchmark

algorithm and has won the 2009 IEEE Congress on Evolutionary Computation

(CEC 2009) competition, which allowed a large number of function evaluations.

3.4.3 AMALGAM - A Multi-algorithm Genetically Adaptive

Multi-Objective Optimization Method

AMALGAM [60] is a multi-method evolutionary algorithm, which incorporates

search mechanics of various algorithms. The key feature of AMALGAM is si-

multaneous multi-method search and the search mechanism selection is self-

adaptive. AMALGAM incorporates four candidate MOEAs, NSGA-II, Par-

ticle Swarm Optimization (PSO), Differential Evolution (DE), and Adaptive

Metropolis Search (AMS). Recent watershed literature has seen various appli-

cations of AMALGAM, including the work of Zhang et al. [68] which includes

application of AMALGAM for multi-site calibration and comparison against
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SPEA2 and NSGA-II.

3.5 Surrogate Assisted MO Optimization

Since we are interested in efficient multi-objective calibration of expensive wa-

tershed models, incorporation of surrogate assisted optimization methodolo-

gies is important in this analysis. Surrogate assisted search methods typically

employ computationally inexpensive response surface models (or ”surrogate”

models), within the iterative search process, in order to guide search towards

optimal solutions. While surrogate based single objective optimization has been

successfully used within the water resources research community [37, 52], use of

surrogate assistance in multi-objective applications is scarce. Within the context

of model calibration the only application of surrogate assisted MO optimization

we found in prior literature is the work by Liong et al. [31] who incorporate

an ANN with an MOEA for calibration of a rainfall-runoff model. In our com-

parative analysis, we compare two surrogate based algorithms (ParEGO and

GOMORS), along with the evolutionary algorithms mentioned above for water-

shed model calibration. This is the first published application of either ParEGO

or GOMORS on a watershed model calibration problem.

3.5.1 ParEGO

ParEGO [28] uses a Kriging-based [51] surrogate surface for multi-objective op-

timization, and it is specifically designed for applications involving a very lim-

ited evaluation budget. ParEGO is an iterative search method, which uses ag-

gregate function to divide a multi-objective optimization problem into several

single objective problems. During each iteration of the algorithm, a subproblem
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is chosen randomly and solved via the Efficient Global Optimization (EGO) al-

gorithm proposed by Jones et al. [25]. Applications of ParEGO to test problems

and comparison against NSGA-II show very promising results within a limited

evaluation budget.

3.5.2 GOMORS - Gap Optimized Multi-Objective Optimiza-

tion with Response Surfaces

GOMORS [1] is another iterative scheme which employs Radial Basis Functions

(RBF) as a surrogate model to guide multi-objective search towards the optimal

set of solutions. GOMORS embeds surrogate approximation via RBFs, within

an MOEA, in order to improve algorithm efficiency.

During each iteration of GOMORS, an RBF based surrogate model (fitted

from already evaluated points) is used to approximate the expensive objective

functions. An evolutionary algorithm is subsequently applied to the surrogate

model for identification of new potential points for expensive evaluation. How-

ever, not all solutions of the surrogate evolutionary optimization are actually

evaluated, and only some solutions are selected for expensive function evalua-

tions in each algorithm iteration. A novel methodology (referred as multi-rule

selection) is introduced that simultaneously selects multiple evaluation points

through different rules including Approximate Hypervolume Improvement,

Maximizing minimum domain distance, Maximizing minimum objective space

distance, and surrogate-assisted local search.

GOMORS differs from ParEGO in that GOMORS solves the multi-objective

problem directly while ParEGO converts the MO problem into multiple single

objective problems.
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Application of GOMORS to a hypothetical groundwater remediation design

problem depict promising results, where GOMORS outperforms ParEGO and

NSGA-II with 100, 200 and 400 evaluations for a 6 dimensional problem, a 12

dimensional problem and a 24 dimensional problem [1].

3.6 Calibration Formulations

The intensified interest in multi-objective calibration within the hydrological

model calibration research community results from the realization that multiple

criteria should be considered within the calibration process (for instance, vol-

ume error, low flow calibration, peak flow calibration, seasonal calibration etc

are all reasonable criteria). Recent research efforts [5, 22, 53, 64] have indicated

that significant conflicts and trade-offs might exist between calibration criteria

and that visualization of trade-offs can assist decision makers in understanding

model limits and choosing appropriate calibrations. Numerous performance

metrics can be employed to quantify the potentially conflicting calibration crite-

ria. The Nash-Sutcliffe Efficiency (NSE) [40], bias and mean absolute error [22]

are some of the metrics that can be used as objective functions in multi-objective

optimization formulations. Two multi-objective flow calibration formulations

are used in this study, with the formulation focus on visualizing trade-offs be-

tween conflicting objectives.

3.6.1 Formulation 1 - Threshold Based Flow Separation (2-

objective)

This formulation aims at highlighting the trade-off between high flow calibra-

tion and moderate/low flow calibration. The relative importance of different
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hydrological processes varies between high flow and low flow situations so a

given set of model parameters might do relatively well at matching data under

high flow conditions and relatively poorly under low flow conditions (or vice

versa). Hence it is reasonable to consider the goals of getting adequate fits to the

data under low and high flow conditions as two different objectives for which

there will be a tradeoff.

The measured data is divided into two categories, ”high flow observations”

and ”non-high flow observations”. The data is segregated via identification of

a flow threshold, beyond which all observations are tagged as ”high flow cal-

ibrations”. The flow threshold is typically identified by a decision maker. By

dividing the data into various categories, we can devise various objectives for a

multi-objective optimization formulation:

f1(θ) =
∑
i∈N1

[yi − ŷi(θ)]2 , where N1 = {i | yi≤Y, 1≤ i≤n}

f2(θ) =
∑
i∈N2

[yi − ŷi(θ)]2 , where N2 = {i | Y≤yi, 1≤ i≤n}
(3.2)

Equation 3.2 describes the objectives used in our first formulation, ”Formula-

tion 1”, where yi and ŷi are the measured and simulated flows on day i, and Y is

the flow threshold (identified by decision maker). The two objectives in this for-

mulation are ”1) High Flow Sum of Squared Errors ( f2(θ))” and ”2) Moderate-to-

Low Flow Sum of Squared Errors ( f1(θ))”. Previous research efforts have shown

that a significant trade-off exists between varying flow regimes [30]. The flow

threshold values, Y , employed in all our case studies are the 95-th percentile

values of the calibration data sets.
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3.6.2 Formulation 2 - Decomposition of NSE of Flow (3-

objective)

Gupta et al. [20] highlight that the Nash-Sutcliffe Efficiency (NSE) criterion can

be decomposed into three components, 1) linear correlation, 2) relative bias,

and 3) relative variability, where each component focuses on calibrating a dif-

ferent and potentially conflicting aspect of flow. The relative bias component

of the criterion tends to minimize volume balance errors, the relative variability

tends to mimic the flashiness of the hydrograph, inherently focusing on captur-

ing extreme flows, while the correlation criterion, in combination with relative

variability tends to capture the shape of the hydrograph. The potential for con-

flict between the decomposed NSE metrics is acknowledged by Gupta et al. [20].

The multi-objective calibration formulation of the three objective NSE decompo-

sition [20] is employed as ”Formulation 2” in our algorithm comparison effort,

and is as follows:

f1(θ) = [r − 1]2 , where r =
∑n

i=1 yobs,iysim,i − nµ̄obsµ̄sim

(n − 1)σ̄obsσ̄sim

f2(θ) = [α − 1]2 , where α = σ̄sim/σ̄obs

f3(θ) = [β − 1]2 , where β = µ̄sim/µ̄obs

(3.3)

where yobs,i and ŷsim,i are the measured and simulated flows on day i, µ̄obs and

µ̄sim are the estimated mean values of measured and simulated flows, and σ̄obs

and σ̄sim are the estimated values of standard deviation of measured and sim-

ulated flows. Both multi-objective formulations employed in this study are de-

signed for calibration of the model to measured data obtained from a single

location/site. However, approach can be extended to multi-site calibration for-

mulations.
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3.7 Case Studies

The two Watershed Model case studies used in our analysis are derived from

the Cannonsville Watershed modeling case study, by Tolson and Shoemaker

[55]. The Soil and Water Assessment Tool (SWAT) [41, 42] is used for model

development. SWAT is a physically based, deterministic and semi-distributed

watershed modeling tool.

3.7.1 Case Study I: Cannonsville Watershed

Tolson and Shoemaker [56] introduce two scaled variations of the Cannonsville

SWAT model, as flow calibration case studies. Case Study I incorporates a com-

putationally expensive calibration model (a single simulation run takes around

2-3 minutes for a 10 year simulation period), which constitutes 43 subbasins and

predicts flow within the Cannonsville Watershed. The model calibration exer-

cise is carried out at the Walton flow monitoring location, which drains upto

860 km2 of the watershed. A preliminary sensitivity analysis of the model flow

parameters is discussed by Tolson and Shoemaker [55]. While some of the pa-

rameters are spatially variable, scaling factors are employed to correlate such

parameters, and subsequently reduce the number of parameters to be calibrated

[56]. Tolson and Shoemaker [56] identify 15 parameters, that are to be calibrated,

for flow prediction in Case Study I. Case Study I employs a 9 year time period,

for daily flow calibration at the Walton flow monitoring station.

3.7.2 Case Study II: Townbrook

Townbrook is a subwatershed within the Cannonsville Watershed , covering an

area of around 37 km2. Case Study II is derived from the single subbasin Town-
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Table 3.1: The flow calibration test case suite employed in comparative al-
gorithm analysis with formulations defined in Section 3.6.1 and
3.6.2

Problem
Formulation

Case Decisions
Objectives

Simulation

Name Study Variables Time/Eval(s)

SW-2 1. Threshold II 15 2 10

SW-3 2. NSE II 15 3 10

FW-2 1. Threshold I 15 2 150

FW-3 2. NSE I 15 3 150

brook SWAT model developed by Tolson and Shoemaker [56]. The Townbrook

SWAT model is a relatively inexpensive model (one simulation run takes up to

10 seconds for a 10 year modeling period), and can be used extensively for algo-

rithm comparison. The model predicts flow within the Townbrook watershed,

and is employed as a flow calibration case study. The Townbrook subwatershed

is monitored for flow by USGS, and Case Study II employs a 10 year time pe-

riod, for daily flow calibration of 15 parameters of the Townbrook SWAT model.

Given two calibration formulations, and two case studies, we developed 4

watershed calibration test case studies, as our test suite, for comparative algo-

rithm analysis. The nomenclature used for the test case studies, along with a

brief overview of the problems, is provided for reference in table 3.1. SW is

an abbreviations for ”Sub-Watershed”, which is a reference to the Townbrook

sub-watershed case study (Case Study II). FW is an abbreviation for ”Full-

Watershed”, which is a reference to the Cannonsville cast study (Case Study

I).

52



3.8 Algorithm Comparison Methodology

The effectiveness of a multi-objective optimization algorithm can be assessed

via analysis of algorithm ”efficiency”. Efficiency corresponds to the effective-

ness of an algorithm in identifying a set of good ”quality” trade-off solutions,

quickly and within a limited simulation evaluation budget. Due to the stochas-

tic nature of all algorithms compared in this analysis, it is also important to

understand and compare algorithm ”reliability”, i.e the ability of an algorithm

to produce good ”quality” solutions, consistently over multiple trial runs.

Deb [13] defines ”quality” of a multi-objective solution (also called approx-

imate front and non-dominated front) to be a combination of two (potentially

conflicting) properties: 1) ”convergence” and 2) ”diversity”. Convergence can

be described as the proximity of an algorithm’s solutions, to the Pareto front,

and ”diversity” is the extent of the true trade-off represented by an algorithm’s

solutions (see Figure 3.1 for illustration).

A visual comparison of trade-off solutions (commonly referred as the

Pareto front) obtained via different algorithms is the most common compari-

son methodology employed in prior literature [13, 53, 66]. Efforts have also

been employed to quantify ”quality” of trade-off solutions, within a single per-

formance measure [2, 58]. In our analysis, we employ a combination of visual

trade-off analysis, and performance metric based analysis, in order to under-

stand and compare performance of algorithms on the test suite.

We also compare the ability of algorithms in terms of identification of ”mean-

ingful” trade-offs / calibrations from multi-objective optimization, within a lim-

ited evaluation budget. The definition of ”meaningful” trade-offs is discussed

in Section 3.8.3.
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Figure 3.1: Illustration of the meanings of convergence and diversity. The
red arrow is a depiction of convergence, i.e., the progress of
an approximate front towards the Pareto front. The yellow line
depicts diversity, i.e., extent of trade-off captured by an approx-
imate front.

3.8.1 Experimental Setup

We initiated the algorithm comparison methodology by deducing suitable val-

ues for parameters of all algorithms under discussion. A small trial-and-error

exercise was performed to tune population sizes for all multi-objective evolu-

tionary algorithms (MOEAs). Since performance of MOEAs is highly depen-

dent on population sizes, we ran multiple trials of NSGA-II, MOEA/D and

AMALGAM on the Townbrook (sub-watershed) test case studies, SW-2 and

SW-3, with population sizes of 20, 50, 100 and 200, and an evaluation limit of

1000. The initial trial-and-error analysis showed that within the limited evalu-

ation budget of 1000, a population size of 20 was desirable for all MOEAs, in

the case of the bi-objective Townbrook case study, SW-2, and a population size

of 50 was desirable for all MOEAs, in the case of the 3-objective Townbrook
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case study, SW-3. The same population sizes were used for the respective Can-

nonsville case studies, FW-2 and FW-3. ParEGO’s configuration recommended

by Knowles [28] was employed, and the GOMORS configuration recommended

byAkhtar and Shoemaker [1] was used.

Due to the stochastic nature of all algorithms, multiple trial runs were per-

formed for all watershed case studies. We performed 10 trials for each algorithm

with 1000 function evaluations for all case studies. Our analysis was focused at

comparing algorithms’ performances, in terms of efficiency and effectiveness,

within a simulation evaluation budget of 1000.

Efficiency of all algorithms was compared via plotting uncovered hypervol-

ume (see section 3.8.2) performance metric values (averaged over multiple trial

runs) against number of function evaluations. These plots are called progress

graphs in our discussion. A visual illustration of the uncovered hyervolume met-

rics is provided in Figure 3.2. Section 3.9 provides a discussion on comparative

efficiency of all algorithms (as per the uncovered hypervolume metric), upon

application to the watershed calibration case studies discussed in this study.

For the two three-objective test problems (SW-3 and FW-3), effectiveness of

algorithms was compared within the context of watershed model calibration,

via the meaningful trade-off analysis (see Section 3.8.3). Section 3.10 discusses

the performance of GOMORS, ParEGO and AMALGAM in terms of their ability

in identifying meaningful and diverse calibrations, within a limited evaluation

budget. The Distributed Cardinality performance index is introduced (see Sec-

tion 3.8.3) for analyzing algorithm performance in this context.

For the two bi-objective test problems (SW-2 and FW-2), effectiveness of al-

gorithms was compared via a visual comparison of best and worst trade-offs

obtained through each algorithm after a fixed number of function evaluations.
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The best and worst trade-offs obtained by an algorithm refer to the best and

worst approximations of the Pareto front obtained by an algorithm in multi-

ple trials, according to the uncovered hypervolume metric value. The best and

worst trade-off approximations obtained from each algorithm were also plot-

ted against the approximated true Pareto front, in order to visually assess the

level of convergence and diversity attained by each algorithm within a limited

evaluation budget. This comparative analysis was performed for GOMORS,

ParEGO and AMALGAM. Section 3.11 provides details of the findings of the

visual trade-off analysis.

3.8.2 The Uncovered Hypervolume Metric

The uncovered hypervolume [2] metric has been used to compare algorithm

performance in Section 3.9. Figure 3.2 provides a visual illustration of the mean-

ing of the uncovered hypervolume metric. Let P (illustrated in Figure 3.2) be

the set of non dominated solutions obtained as an approximation to the Pareto

front from an algorithm. Let P∗ be the ideal solution(s) of the multi-objective

optimization problem being solved. The ”ideal solution” of a multi-objective

optimization problem is the vector depicting minimum attainable values of all

objectives. In our case studies, all objectives are measures of error. Hence, the

”ideal point” for all the watershed problems is the zero vector. The ”reference

point” depicted in Figure 3.2 is the worst attainable solution of the optimiza-

tion problem. Since, the worst attainable values are not known in the problems

discussed in this study, the ”reference point” vector is estimated by the worst

values of all objectives obtained in our computer experiments. Hence, the total

feasible objective space is bounded by the reference and ideal points.

The Uncovered hypervolume [2] is the difference between the total feasible
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Figure 3.2: Illustration of the Uncovered Hypervolume metric which pro-
vides a comprehensive quantification of algorithms’ conver-
gence and diversification abilities.

objective space (defined by the reference and ideal points in Figure 3.2(a)) and

the objective space dominated by estimate of the Pareto front (depicted as P in

the figure) obtained by an algorithm. A lower value of the uncovered hypervol-

ume index indicates a better solution and the ideal value is zero. The uncovered

hypervolume metric incorporates both convergence to the ideal front as well as

diversity of solutions on the front.
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3.8.3 Meaningful Trade-offs and the Distributed Cardinality

Index

The term ”meaningful trade-off” has been defined and used by various authors

in the water resources literature [6, 17, 30]. A ”meaningful trade-off” essen-

tially refers to a trade-off (non-dominated) solution obtained by multi-objective

optimization, which is acceptable as a calibration. Hence, the definition of a

meaningful trade-off is subjective. Prior literature includes various techniques

for identification of a meaningful trade-off [6, 17, 46].

The meaningful trade-off analysis is performed for the two three objective

calibration problems, i.e, SW-3 and FW-3. Bounds (or value ranges) are defined

for each objective function to identify meaningful solutions from trade-offs ob-

tained from different algorithms. Solutions on the Pareto Front which lie within

the defined bounds are collectively referred as the bounded Pareto Front, or

alternatively as the set of meaningful trade-offs. The heavy line in Figure 3.3

illustrates the bounded Pareto Front (for a hypothetical problem).

The three objectives for test problems SW-3 and FW-3 are based on the de-

composition of NSE (see Section 3.6.2 and Equation A.8) with correlation (r),

relative variability (α), and relative bias (β) as key components of each objec-

tive. We define three levels of meaningfulness in our analysis by delineating

three sets of bounds on the three objectives. All trade-off solutions with corre-

lation greater than 0.7, relative variability less 15 percent, and relative bias less

than 10 percent, are defined as Level-I meaningful trade-offs. The corresponding

objective function ranges for Level-I meaningful trade-offs are [0-0.09], [0-0.0225]

and [0-0.01] respectively. Trade-off solutions with correlation greater than 0.75,

relative variability less than 15 percent, and relative bias less than 8 percent,

are defined as Level-II meaningful. Consequently, the corresponding objective
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Figure 3.3: Illustration of a meaningful trade-off between two objectives,
relative bias and relative variability. Bounds on each objective
functions (identified by the green arrows) are defined accord-
ing to user preference and solutions in the trade-off set which
are within the defined bounds, are called meaningful.

function ranges / bounds for Level-II meaningful solutions are [0-0.0625], [0-

0.0225] and [0-0.0064] respectively. Trade-off solutions with correlation greater

than 0.8, relative variability less than 15 percent and relative bias less than 8 per-

cent are defined as Level-III meaningful with [0-0.04], [0-0.0225] and [0-0.0064]

being the respective objective function ranges / bounds for Level-III meaningful

solutions. (See Table 3.2 for definitions of meaningful levels). It should be noted

that a higher meaningful level inherently describes a higher aspiration level in

terms of the quality of calibrations desired.

Various authors [30, 57] show that while many trade-off solutions might ex-

ist between competing objectives for hydrological model calibration, the num-

ber of meaningful trade-off solutions might be very limited. This is illustrated

in the trade-offs obtained in our analysis as well. Figure 3.4, for instance, plots

simulated hydrographs of trade-off calibration solutions obtained via a single
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Figure 3.4: Simulated hydrographs and corresponding calibration alterna-
tives obtained from multi-objective optimization (Problem FW-
3) via GOMORS after 500 function evaluations (single trial): a)
Hydrographs visualized for all non-dominated calibrations (89
ND calibrations found), b) Hydrographs visualized for Level-
I meaningful ε-box non-dominated calibrations (19 ND cali-
brations found), c) Hydrographs visualized for Level-III mean-
ingful ε-box non-dominated calibrations (3 ND calibrations
found), d) Meaningful calibrations associated with the hydro-
graphs of (b), e) Meaningful calibrations associated with the
hydrographs of (c).

run of GOMORS (after 500 function evaluations), for problem FW-3. As is illus-

trated, Figure 3.4(a) visualizes hydrographs of all non-dominated calibrations,

3.4(b) visualizes hydrographs of level-I meaningful calibrations and 3.4(c) plots

hydrographs of level-III meaningful calibrations. While 89 non-dominated cali-
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brations are identified via GOMORS, only 3 of these calibrations achieve level-III

meaningfulness. Please note that the solutions shown in Figure 3.4(b-e) corre-

spond to ”ε-box” non dominated calibrations (definition of ε-box non domina-

tion is provided later in this section).

Figure 3.4 illustrates that within the context of watershed model calibration,

a good measure of effectiveness of multi-objective optimization algorithms is

their ability in identifying meaningful non-dominated calibrations, within a

limited evaluation budget. A quantifiable measure in this regard is the num-

ber of meaningful non-dominated calibrations obtained by an MO algorithm

within a limited evaluation budget. It is also important that the meaningful

non-dominated calibrations obtained by an algorithm are significantly different

from each other (or diverse).

We introduce a new metric, Distributed Cardinality, denoted as |ND(L, ε)|, to

measure the success of the MO search given a meaningfulness specified by level

L. The set ND(L, ε) is the collection of all ε-box non dominated solutions obtained

from an MO algorithm that are meaningful at a Level L. |ND(L, ε)| is then the

cardinality of the set ND(L, ε).

Meaningful levels are essentially user-defined bounds on the Pareto set, and

a calibration expert may subjectively define meaningful levels. (See Table 3.2

for the meaningful levels defined for our case studies.)

The ε in the set ND(L, ε) is based on the concept of ε-box dominance archiving

used by Deb et al. [12] and Kollat and Reed [29]. The ε-box dominance archiv-

ing concept divides the m-dimensional objective space into hypercubes / boxes

of size ε (which is a user-defined vector, i.e, ε = [ε1, . . . , εm]). If there are mul-

tiple non-dominated solutions inside a box, then only one of the solutions is

retained in the ε-box dominance archive.The lowest objective function value of a

61



box (lowest left corner) represents its ε-non domination value. Hence, if a box is

dominated by another box (as per the ε-non domination value), non-dominated

solutions residing in the dominated box are removed from the ε-box dominance

archive. The purpose of this sorting procedure is to identify diverse solutions

from the set of meaningful non-dominated solutions. More details are given in

Deb et al. [12] and Kollat and Reed [29].

The distributed cardinality index is a performance metric that we define to

be the number of ε-box dominance archiving points that are also meaningful solu-

tions. Hence a higher value of the distributed cardinality index for Algorithm

A than for Algorithm B indicates that Algorithm A has been successful at find-

ing more solutions that are both meaningful and diverse. As explained earlier,

”meaningful” is user defined, so in this analysis we consider three definitions of

”meaningful” called Level-K, K=1,2,3. The size of the ε vector is also user-defined

and in this analysis ε = [0.002, 0.001, 0.0001]. Discussion of results pertaining to

meaningful calibrations is in Section 3.10.

Table 3.2: Definitions of the three levels of meaningful solutions employed
in the meaningful trade-off analysis

Meaningful
Correlation (r)

Relative Relative

Level Variability (α) Bias(β)

Level-I ≥ 0.70 ≤ 15% ≤ 10%

Level-II ≥ 0.75 ≤ 15% ≤ 8%

Level-III ≥ 0.80 ≤ 15% ≤ 8%
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3.9 Results and Analysis - Hypervolume Metric

3.9.1 Progress Graphs

The relative efficiency of the algorithms discussed in this analysis can be sum-

marized by progress graphs. Progress graphs plot values of the uncovered hyper-

volume metric against number of function evaluations, to visualize algorithm

progress with time. Before moving towards a detailed discussion of compara-

tive performance of the algorithms, we summarize their relative performances

on all watershed test problems in Figure 3.5 through progress graphs.

Each sub-figure corresponds to one watershed test problem and provides

visualizations of algorithm progress with number of function evaluations ac-

cording to the uncovered hypervolume metric. As was mentioned earlier, the

uncovered hypervolume metric tends to highlight both convergence and diver-

sification and lower values of the metric are desirable.

Two deductions are evident from the analysis in Figure 3.5: 1) Overall av-

erage performance of GOMORS is better than all other algorithms for all wa-

tershed test problems within a limited watershed simulation evaluation budget

of 1000 and 2) NSGA-II and MOEA/D are the least efficient algorithms for all

watershed test problems within a limited evaluation budget of 1000.

The progress graphs clearly indicate that average performance of GOMORS is

better than that of ParEGO and AMALGAM. The progress graphs also indicate

relative superiority of GOMORS, ParEGO and AMALGAM over NSGA-II and

MOEA/D for a limited evaluation budget of 1000.
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Figure 3.5: Progress Graphs for all case studies (Table 4.1): Progress
graphs with plots of average uncovered hypervolume values
against number of function evaluations, averaged over 10 tri-
als, with application to: A) Problem SW-2, B) Problem SW-3,
C) Problem FW-2 and D) Problem FW-3. The error bars show
standard deviations for each algorithm. Lower curves are best.

3.9.2 Statistical Analysis

In order to analyze the difference in performance between GOMORS, ParEGO

and AMALGAM in further detail, the Mann-Whitney Rank Sum test [11] was

performed over the uncovered hypervolume metric values obtained for each

algorithm in multiple trials. The Rank Sum test is a non-parametric statistical

hypothesis test for deducing whether results obtained from one algorithm in

multiple trial runs are significantly different from results obtained from another
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algorithm in multiple trials. The algorithms are compared in pairs, the uncov-

ered hypervolume metric value is used as the performance quality measure and

the Rank Sum Test is performed for all watershed problems after 200, 500 and

1000 evaluations of each algorithm are complete. Hence, there are 24 Rank Sum

tests for each algorithm, 6 for each test problem.

A summary of the Mann-Whitney Rank Sum Test is provided in figure 3.6.

The columns headings of all tables in the figure depict the algorithms that were

compared against each other and the corresponding entries of the columns

show the results of the Rank Sum Test for 200, 500 and 1000 evaluations. The

indicated results in the table cells are the p-values of the Rank Sum Test.

The p-value is positive if the first algorithm listed is better than the second

for some significance level. The p given indicates that the alternative hypothesis

(that the first algorithm has a better mean than the second algorithm) is accepted

at the significance level indicated by the p-value. The statistical evidence that

the first algorithm is better than the second algorithm, is strongest if the p value

is small.

We see in Figure 3.6, that for the tests with GOMORS listed first the p-values

are less than 0.1 (indicating GOMORS is better than the alternative algorithm at

a 10 percent significance level) in 21 our of 24 cases. In the remaining 3 cases the

p is positive so none of alternatives to GOMORS is better than GOMORS, but

the advantage of GOMORS is not statistically significant.

Figure 3.6 has positive p-values for all the tests where GOMORS is listed

first, indicating that none of the algorithms is shown to be statistically better

than GOMOR for any of the 12 combinations of problem (SW-2, SW-3, FW-2,

FW-3) and numbers of evaluations (200, 500, or 1000). For 10 out of the 12 cases

of GOMORS versus AMALGAM comparison, the p value is very low (less than
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Figure 3.6: Summary of statistical comparison via Mann-Whitney Rank
Sum Test applied to GOMORS, ParEGO and AMALGAM, ac-
cording to uncovered hypervolume metric. Columns in all ta-
bles correspond to the pair of algorithms which are compared,
and rows correspond to the number of function evaluations
after which algorithms are compared. Table cells correspond
to the p-values obtained from the Rank Sum Test. Small and
positive p-values strongly support the hypothesis that the first
algorithm (listed in column head) is better than the second al-
gorithm.

0.009), indicating the hypothesis that GOMORS is better than AMALGAM at a

98 percent significance level, which is a very strong result. The overall perfor-

mance of GOMORS is better than ParEGO since all the p values in the GOMORS
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versus ParEGO tests are positive and 7 out of 12 are below 0.05 (95 percent sig-

nificance level).

While ParEGO’s performance may not be as good as GOMORS but it is dis-

tinctly better than AMALGAM as indicated by the positive p values in 11 out of

the 12 cases (in the ParEGO-AMALGAM columns in Figure 3.6). GOMORS,

ParEGO and AMALGAM all decisively outperform NSGA-II and MOEA/D

(see Fig. 3.5). Hence, NSGA-II and MOEA/D were not included in the rank

sum test analysis. Our analysis highlights that GOMORS frequently outper-

forms AMALGAM and ParEGO. However, none of the other algorithms out-

performs GOMORS on any case study.

3.10 Meaningful Trade-off Analysis

3.10.1 Algorithm Comparison

The analysis from section 3.9 indicates that the surrogate based search algo-

rithm GOMORS performs well across all case studies in terms of robustness

and efficiency, and its overall performance is better than all other algorithms

discussed in this study. The analysis also highlights that surrogate based al-

gorithms (GOMORS and PArEGO) and multi method evolutionary algorithms

(AMALGAM) can be more efficient than traditional MOEAs, for hydrological

model calibration within a limited simulation evaluation budget. In order to

further assess the comparative effectiveness of GOMORS, ParEGO and AMAL-

GAM, within the context of watershed model calibration, we employ the mean-

ingful trade-off analysis discussed in Section 3.8.3.

We investigate the ability of GOMORS, AMALGAM and ParEGO, to pro-

duce acceptable or meaningful solutions, by analyzing the bounded Pareto
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Fronts obtained from each algorithm. This excludes solutions the user defines

to not be desirable. The meaningful trade-off analysis is performed for the SW-3

and FW-3 problems (NSE decomposition formulations).

As discussed in Section 3.8.3, the first step in this process is to define bounds

for 1) correlation between observed data and simulated model output, 2) rela-

tive bias of simulated data and observed data, and 3) relative variability of sim-

ulated data and observed data. Three sets of bounds are defined in our analysis,

and are referred as level-I, level-II and level-III meaningful bounds respectively

(see Table 3.2 for definitions of meaningful levels).

Table 3.3: Distributed cardinality index values for comparing performance
of all algorithms in terms of identifying level-I, level-II and level-
III meaningful and diverse trade-offs (highest median values of
|ND(L, ε)| are best) within 500 simulation evaluations - Problem
SW-3

Meaningful
Algorithm

|ND(L, ε)| Index

Level Min Median Max

Level-I

GOMORS 3 5 10

ParEGO 1 5 10

AMALGAM 1 3 9

Level-II

GOMORS 1 3 5

ParEGO 0 0 1

AMALGAM 0 0 0

Level-III

GOMORS 0 0 0

ParEGO 0 0 0

AMALGAM 0 0 0
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Table 3.4: Distributed cardinality index values for comparing performance
of all algorithms in terms of identifying level-I, level-II and level-
III meaningful and diverse trade-offs (highest median values of
|ND(L, ε)| are best) within 500 simulation evaluations - Problem
FW-3

Meaningful
Algorithm

|ND(L, ε)| Index

Level Min Median Max

Level-I

GOMORS 6 13.5 19

ParEGO 2 7 12

AMALGAM 3 6.5 11

Level-II

GOMORS 5 8 14

ParEGO 2 6 11

AMALGAM 2 3.5 7

Level-III

GOMORS 0 4 9

ParEGO 0 2.5 11

AMALGAM 0 1 7

As is discussed in Section 3.8.3, the distributed cardinality index is intro-

duced for comparison of GOMORS, ParEGO and AMALGAM in terms of pro-

ducing meaningful trade-offs. The distributed cardinality index (also referred

as |ND(L, ε)|) is an indicator of the number of meaningful and diverse (diver-

sity is addressed through the concept of ε-box non domination) non-dominated

calibrations identified by an algorithm. Hence, higher values of the metric are

desirable. Table 3.3 provides a performance metric summary (in terms of pro-

ducing meaningful and diverse trade-off solutions) of algorithms on a limited

evaluation budget of 500 evaluations, with application to the SW-3 test problem.
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The metric analysis shows that GOMORS is significantly better than ParEGO

for identification of level-II meaningful calibrations. While ParEGO fails in iden-

tifying even a single level-II meaningful calibration in 9 out of 10 algorithm runs,

GOMORS successfully identifies at least one level-II meaningful calibration in

10 algorithm runs. GOMORS and ParEGO perform reasonably well, though, in

terms of identifying level-I meaningful calibrations.

Performance of GOMORS is better than AMALGAM in terms of producing

level-I and level-II meaningful calibrations. None of the algorithms is able to

produce even a single level-III meaningful calibration in multiple trials. This

may be due to the structural deficiencies inherent in the structure of the simu-

lation model (Section 3.10.2 discusses the insights that may be derived from the

distributed cardinality index at different meaningful levels).

Table 3.4 provides a similar metric analysis summary for the FW-3 case

study. Table 3.4 also shows that GOMORS is more effective than both ParEGO

and AMALGAM, within a limited evaluation budget, in the ability to produce

meaningful and diverse trade-offs / calibrations. It can be noted that the num-

ber of meaningful and diverse calibrations (deduced through the distributed

cardinality index) obtained from each algorithm decrease with an increase in

the meaningful level. This is logical since a higher meaningful level signifies

a higher level of aspiration towards obtaining good quality solutions in terms

of all objectives (via administration of stricter bounds on the non-dominated

front).

While the distributed cardinality index is a good measure for comparing

effectiveness of different algorithms within the context of watershed model cal-

ibration, it can also be used to derive numerous insights during the multi objec-

tive calibration process. The next section provides a short illustration of how the
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distributed cardinality index (|ND(L, ε)|) may be effectively used by a calibration

expert in deriving insights from the multi-objective calibration process.

3.10.2 Deriving Insights from the Distributed Cardinality in-

dex

Numerous studies have highlighted the value of multi criteria analysis in

watershed model calibration in terms of identification of structural inade-

quacies, model limitations, parameter sensitivity, parameter uncertainty etc

[8, 16, 17, 22, 59]. This section analyzes multi objective calibration results of all

non dominated calibrations and meaningful calibrations (deduced via the dis-

tributed cardinality index) obtained via GOMORS to derive insights on some

of the aspects mentioned above. For this purpose, we use the median solutions

(as per uncovered hydervolume) obtained via GOMORS (after 500 evaluations),

for both three objective case studies, i.e, SW-3 and FW-3.

Figure 3.7 provides an insightful illustration of the value of information pro-

vided by multi-objective calibration analysis and the distributed cardinality in-

dex for the SW-3 case study. Figure 3.7(a) provides a visualization of the sim-

ulated hydrographs of all non dominated calibrations obtained via GOMORS

(after 500 evaluations), plotted against the observed hydrograph. The uncer-

tainty associated with the multi objective trade-off is evident here. An insight

that can be derived from Figure 3.7(a) is that the model does not adequately

capture the flashiness and shape of the observed hydrograph. This could be a

result of model limitation / structural inadequacy.

Figure 3.7 also gives an illustration of how a small set of equally good cali-

bration alternatives may be identified by the the distributed cardinality index.
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Figure 3.7: Simulated hydrographs and corresponding calibration alter-
natives obtained from multi-objective optimization (Problem
SW-3) via GOMORS after 500 function evaluations (median
trial): a) Hydrographs visualized for all non-dominated cali-
brations (54 ND calibrations found), b) Hydrographs visual-
ized for Level-I meaningful ε-box non-dominated calibrations
(10 ND calibrations found), c) Hydrographs visualized for
Level-II meaningful ε-box non-dominated calibrations (4 ND
calibrations found), d) Meaningful calibrations associated with
the hydrographs of (b), e) Meaningful calibrations associated
with the hydrographs of (c).

For instance, visualization of hydrographs of the level-II meaningful calibrations

(see Figure 3.7(c)) depicts a narrow band of uncertainty. (Four level-II meaning-

ful calibrations are identified by the distributed cardinality index). Further-

more, sensitivity of the model parameters can also be assessed by visualizing

the equally good parameter sets (see Figure 3.7(e)). For instance, Figure 3.7(e)
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illustrates that SURLAG is a sensitive model parameter and BD F is not a very

sensitive model parameter for the SW-3 case study.

Figure 3.4 provides an illustrative view of the value of information that can

be extracted from multi objective calibration and the distributed cardinality in-

dex for the FW-3 case study. Visualization of simulated hydrographs of all non

dominated calibrations (from the median run of GOMORS after 500 evalua-

tions) plotted against the observed hydrograph (see Figure 3.4(a)) depicts the

uncertainty associated with the multi objective trade-off. Here we observe that

the uncertainty band of the simulated hydrographs adequately encapsulates the

shape of the observed hydrograph (apart from the rising limb on the hydro-

graph in some instances). Hence, an insight that may be derived from Figure

3.4(a) is that the model structure adequately simulates flow for the FW-3 case

study.

The distributed cardinality index is effective in identifying a small set of

meaningful calibration alternatives for the FW-3 case study. Figures 3.4(b) and

3.4(c) illustrate how the uncertainty in simulations is reduced by identification

of meaningful calibrations via the distributed cardinality index. At level-III

meaningfulness, the distributed cardinality index identified three calibration

alternatives for the FW-3 case study. Figure 3.4(e) plots these calibration al-

ternatives together to illustrate the inherent uncertainty and sensitivity of the

model parameters. For instance, Figure 3.4(e) illustrates that CN2 F is a sensi-

tive model parameter and SURLAG is not a sensitive model parameter.

The illustrative analysis of Figures 3.4 and 3.7 highlights the potential ad-

vantages of efficient multi-objective calibration of computationally expensive

models and the value of information that can be derived from multi objective

calibration and the distributed cardinality index. GOMORS is an efficient multi-
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objective optimization algorithm which can be effectively used in combination

with the distributed cardinality index by modeling experts in the process of

model calibration.

3.11 Visual Trade-off Analysis

Section 3.10 provides a comprehensive assessment of effectiveness of algorithms

in terms of their ability to identify meaningful calibrations, with reference to

the two three-objective test problems. For comparing algorithms’ effectiveness

with reference to the two bi-objective test problems, we use the visual trade-off

analysis (since it is easy to visualize and analyze bi-objective trade-offs).

Figure 3.8 provides a comparison of GOMORS, ParEGO and AMALGAM

with 500 or 1000 evaluations, against the estimated Pareto front (estimated via a

single run of AMALGAM with 10,000 evaluations) for the SW-2 problem. Parts

A-C of Figure 3.8 visualize the best and worst trade-offs obtained by each algo-

rithm after 500 function evaluations, and D-F depict best and worst trade-offs

obtained after 1000 evaluations. The best and worst trade-off solutions corre-

spond to the best and worst runs of each algorithm in multiple trials and are

determined by the uncovered hypervolume metric value. The red line in each

subfigure depicts the trade-off obtained via AMALGAM after 10,000 function

evaluations, which is assumed to be the estimated Pareto optimal trade-off.

The figure indicates that while all algorithms tend to converge quickly, the

convergence efficiency obtained via GOMORS is the best since it does best for

500 evaluations. The closeness of the best and worst trade-off curves obtained

via GOMORS, also supports reliability of the algorithm. Reliability here means

that there is less variability in algorithm results on one problem over multi-

ple trials. Figure 3.8 shows that the best solutions obtained via all algorithms
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Figure 3.8: Problem SW-2: Comparison of best and worst trade-offs ob-
tained via GOMORS, ParEGO and AMALGAM in 10 trials,
plotted against the ”estimated true” Pareto front, approximate
via an AMALGAM run with 10,000 evaluations: A) GOMORS
trade-offs after 500 evaluations, D) GOMORS trade-offs after
1000 evaluations, B) ParEGO trade-offs after 500 evaluations,
E) ParEGO trade-offs after 1000 evaluations, C) AMALGAM
trade-offs after 500 evaluations, and F) AMALGAM trade-offs
after 1000 evaluations.

after 1000 evaluations compare well against the estimated Pareto front, with

ParEGO’s performance being the best. However, ParEGO’s worst trade-off so-

lution depicts relatively poor performance, indicating that the algorithm is not

as reliable as GOMORS, in terms of application to the SW-2 case study.

Figure 3.9 provides a similar comparison for the FW-2 case study. It is

evident from Figure 3.9 as well, that GOMORS converges more quickly than

ParEGO and AMALGAM at both 500 and 1000 evaluations, and produces more

diverse solutions within a limited evaluation budget. Furthermore GOMORS is
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Figure 3.9: Problem FW-2: Comparison of best and worst trade-offs ob-
tained via GOMORS, ParEGO and AMALGAM in 10 trials,
plotted against the ”estimated true” Pareto front, approximate
via an AMALGAM run with 10,000 evaluations: A) GOMORS
trade-offs after 500 evaluations, D) GOMORS trade-offs after
1000 evaluations, B) ParEGO trade-offs after 500 evaluations,
E) ParEGO trade-offs after 1000 evaluations, C) AMALGAM
trade-offs after 500 evaluations, and F) AMALGAM trade-offs
after 1000 evaluations.

relatively more reliable than ParEGO, and has the ability to produce compara-

ble solutions to AMALGAM (after 10,000 function evaluations), with 90 percent

fewer function evaluations. AMALGAM was selected to estimate the Pareto op-

timal front based on a 10,000 evaluation test run, because both GOMORS and

ParEGO are specifically designed for a limited evaluation budget only.
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3.12 Conclusion

This study provides a brief introduction to various popular and state-of-the art

algorithms, including MOEAs and surrogate assisted search methods, and un-

derstands their relative effectiveness in hydrological model calibration, within

a limited budget of simulation evaluations. We introduce a new multi-objective

algorithm, GOMORS, and compared it two older multi-objective algorithms

(AMALGAM and ParEGO) that have been shown in previous papers to be more

efficient than the widely used NSGA-II. GOMORS and ParEGO make use of a

surrogate surface to enhance computational efficiency. AMALGAM is an evo-

lutionary algorithm with no surrogate surface.

The algorithms were applied to the multi-objective calibration of a large wa-

tershed SWAT model using many years of flow data. AMALGAM and ParEGO

have been used in water resources applications, but GOMORS has not been

applied previously in water resources [15, 63]. This study has focused on multi-

objective optimization of costly watershed models for which it is not feasible to

do thousands of simulations. Hence, the performance of the algorithms were

compared on budgets of 500 and 1000 evaluations. Furthermore, the effective-

ness of all algorithms were evaluated in terms of their ability to reliably pro-

duce trade-off solutions with good convergence and diversification capabilities,

within a limited evaluation budget.

A statistical testing analysis shows that GOMORS is not outperformed by

any algorithm, within an evaluation budget of 1000, after application to 4 wa-

tershed calibration case studies. Further analysis also shows that GOMORS,

ParEGO and AMALGAM are significantly more efficient that NSGA-II and

MOEA/D.

A further analysis, with identification of meaningful trade-offs only, also

77



shows that the two surrogate methods GOMORS and ParEGO are successful in

producing various meaningful calibration alternatives within a limited evalua-

tion budget. The performance of GOMORS is better than ParEGO in this regard.

A new performance, referred as the |ND(L, ε)| index is used for this analysis. In

this analysis we have also illustrated how the |ND(L, ε)| index can be used for

deriving numerous insights from efficient multi objective calibration.

We also visually compare the non dominated fronts (for bi-objective case

studies) obtained by GOMORS, ParEGO and AMALGAM after 1000 evalua-

tions with an approximation of the true Pareto Front (approximated via AMAL-

GAM solutions obtained after 10,000 evaluations). This analysis shows that

solutions obtained by GOMORS converge more quickly to the approximated

Pareto front than ParEGO and AMALGAM. Hence the comparison depicts that,

even within a limited evaluation budget, GOMORS can converge quickly, and

provide an acceptable set of calibration alternatives.

Given the computational burden associated with multi-objective calibra-

tion of large semi-distributed watershed models, computationally efficient al-

gorithms can be employed to produce good and meaningful calibration al-

ternatives within a very limited simulation evaluation budget. The surrogate

methods GOMORS and ParEGO are very promising algorithms, which can be

used more frequently to efficiently calibrate watershed models. While both al-

gorithms are very promising, GOMORS can be easily modified to incorporate

modest parallelization, and hence can be more efficient in producing good cal-

ibration alternatives. Due to the increasing complexity of watershed models,

GOMORS can be efficiently employed within the calibration process to produce

good and meaningful calibration alternatives.
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CHAPTER 4

EFFICIENT MULTI-OBJECTIVE OPTIMIZATION THROUGH PARALLEL

SURROGATE ASSISTED LOCAL SEARCH

4.1 Introduction

It is the purpose of this paper to describe a new algorithm for multi objec-

tive optimization that is more efficient because it uses surrogate response sur-

faces as well as a parallel surrogate-assisted local search mechanism. Use

of non-surrogate hybrid algorithms for multi-objective optimization, and the

recent surge in development of multi-objective optimization algorithms (for

simulation-optimization) has been dominated by multi-objective Evolutionary

Algorithms (MOEA) [5]. The population based structure of evolutionary algo-

rithms assists in maintaining convergence and diversity for multi-objective op-

timization [9]. Additionally, evolutionary algorithms can be easily parallelized

using a simple synchronous master-slave framework [13] [22] (described in Sec-

tion 4.3.2), and can significantly increase efficiency in solving computationally

expensive simulation-optimization problems.

Local search methodologies have also been used frequently within hybrid

evolutionary strategies and can be especially beneficial for specific problems [5].

Coello et al. (2007) [5] discuss the inherent advantages of incorporating local

search schemes (for instance, hill climbing, simulated annealing, Tabu search,

etc.) in hybrid algorithms and their success in terms of improving convergence,

diversity, robustness and efficiency in multi-objective optimization.

While focus on local search for multi-objective optimization has signifi-

cantly increased, there has been little progress in exploiting surrogate assis-

tance in local search. Regis and Shoemaker (2007) [27] introduced the concept
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of surrogate-assised candidate search for computationally expensive single ob-

jective optimization. Application of their work to various test problems and

watershed calibration problems showed very promising results for a limited

simulation evaluation budget [27]. Wild and Shoemaker [38] employed surro-

gate assistance within a trust region framework to assist in efficient optimization

of computationally expensive problems.

We propose a ”Multi-Objective Parallel Local Surrogate-Assisted” search al-

gorithm (MOPLS) for efficient multi-objective optimization of computationally

expensive simulation optimization problems. The primary aim of this study

is to exploit the powers of a synchronous master-slave parallel framework,

and surrogate-assisted local search for optimization within a limited budget of

evaluations. An additional motivation of the study is to highlight the power

of surrogate-assisted local search in terms of its potential advantages of hy-

bridization with multi-method evolutionary algorithms (for example AMAL-

GAM [36], Borg [16]). Vrugt et al. (2007) [36] propose the multi-method evo-

lutionary strategy AMALGAM, which has been successfully applied in water-

shed model calibration studies [39] [22]. Hadka et al. (2007) [16] apply Borg, an

auto-adaptive hybrid evolutionary algorithm for multi-objective optimization,

to rainfall-runoff model calibration and groundwater monitoring problems with

promising results in terms of scalability and robustness [26]. Five test problems

and the watershed calibration test suite from Chapter 3 were used to compare

performance of MOPLS with ParEGO [19], AMALGAM [36] and GOMORS on

a limited budget of evaluations (less than 1000).
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4.2 Problem Description

Let D (decision space) be a unit hypercube and a subset of Rd and x be a vari-

able in the decision space, i.e., x ∈ [0, 1]d (Any hyperrectangular domain can be

mapped into the unit hypercube). Let the number of objectives equal k and let

F(x) = { f1(x), . . . , fk(x)} be the vector of objectives such that F(x) ∈ F (objective

space). So fi denotes the ith objective, where fi is a function of x and fi :D 7→R

for 1≤ i≤k. The framework of the multi-objective optimization problem we aim

to solve is as follows:

minimize F(x) = [ f1(x), . . . , fk(x)]T

subject to x ∈ [0, 1]d
(4.1)

Note that any box-constraint domain can be normalized to a unit hypercube.

The above problem can be solved by aggregating the objective vector by as-

signing weights to each objective and thereby converting the problem into a

single objective optimization problem. However, this approach only yields one

solution (determined by the weights chosen) and does not provide trade-off

information of Pareto optimal solutions. Our focus is on employing a poste-

riori [6] preference optimization, where the purpose of the multi-objective op-

timization problem is to find a set of Pareto-optimal (or trade-off) solutions,

P∗ = {x∗ | x∗∈D}.

Definition 1 . A solution x1 ∈D dominates another solution x2 ∈D (x1 � x2) if and

only if fi(x1) ≤ fi(x2) for all 1≤ i≤k, and fi(x1) < fi(x2) for some 1≤ i≤k.

Definition 2 Given a set of solutions S = {x | x∈D} , a subset of solutions S ∗ = {x∗ |

x∗ ∈S } is non dominated in S if there does not exist a solution x∈S which dominates

x∗∈S ∗, i.e, S ∗ = {x∗∈S | @x∈S , x� x∗}.
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Definition 3 A set of solutions P∗ = {x∗ ∈D} which is non-dominated in the decision

space, i.e,D is called a Pareto optimal set. Hence, P∗ = {x∗∈D | @x∈D, x� x∗}.

As per the above definitions, the aim of a multi-objective optimization algo-

rithm is to find the set of Pareto optimal solutions P∗. The set of objective vectors

corresponding to P∗ is called the the Pareto front and is denoted as P∗f ront. Since

computation of the objective function vector is expensive, the aim of our anal-

ysis is to deduce a set P∗approx which closely approximates P∗, within a limited

number of function evaluations.

4.3 Surrogate-assisted - Multi-objective Parallel Local Search

(MOPLS)

The key elements of a search algorithm for multi-objective optimization are con-

vergence to the true front and diversity with respect to the objective space. Var-

ious algorithms address the issue of establishing convergence and maintaining

diversity. Elitism, diversity maintenance through crowding distance, hypervol-

ume metric, IGD metric, and indicator-based evolutionary methods are some

mechanisms employed in past literature, for assistance in the search for a good

approximation of P∗. (For a detailed discussion on different search mechanisms,

see [5] and [16].)

We are, however, interested in multi-objective optimization of computation-

ally expensive functions, where the number of simulation evaluations available

is limited, and hence, MOPLS employs surrogate- assisted search within a syn-

chronous parallel framework in order to achieve good convergence and diver-

sity within a limited number of simulations. When employing response surfaces

(surrogate models) within the search mechanics, it is important that the search
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maintains a balance between exploration and exploitation [17] within the decision

space. Exploration aims to ensure that the search remains global by moving in

unexplored areas of the decision space. Exploitation tends to exploit the nature

of the (inexpensive) surrogate model to guide the search towards potentially

optimal solutions.

The synchronous Mater-slave parallel framework of MOPLS (described in

Section 4.3.2) does not require derivative information and is suitable for com-

putationally expensive functions, where computation times of the expensive

functions do not vary across the decision space. We assume that there are Nc

processors available and simulation times for functions evaluations are roughly

the same. The search mechanics for exploration, convergence and diversity are

highly sensitive to Nc, and the balance of exploration and exploitation is obtained

via maintenance of a tabu archive [12]. The general framework of the algorithm,

and details of the search mechanism and tabu archive maintenance are provided

in Sections 4.3.1 - 4.3.4.

4.3.1 General Algorithm Framework

The expensive optimization problem is solved via a simultaneous surrogate-

assisted local candidate search (discussed further in Section 4.3.4) around vari-

ous evaluated points, called center points. The parallel surrogate-assisted search

methodology is iterative and the algorithm terminates after a fixed number of

function evaluations. The master process controls other processes called slaves.

The algorithm is divided into three major sections, namely 1) Initialization, 2)

Iterative improvement and 3) Termination. The general framework of the algo-

rithm and each of its major segments is as follows (see Table 4.1 for definitions

of sets and variables):
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Step 0 - Define Algorithm Inputs:

ET - Maximum number of expensive function evaluations

EI - Number of initial expensive evaluations

rinit - The initial local search radius (discussed in Step 2.2 of the algorithm)

Nc - Number of center points for simultaneous surrogated-assisted local search

Step 1 - Initial Evaluation Points Selection: The master task is initialized, and selects,

using an experimental design, an initial set (ordered) of points {x1, . . . , xm}, where xi∈D,

for 1≤ i≤m, and m = EI . The master initiates Nc slave tasks and evenly distributes func-

tion evaluation tasks to the slaves. The slaves evaluate the objectives F = [ f1, . . . , fk]T at

the selected EI points, via expensive simulations, and return results to the master.

Let {y1, . . . , ym} be the objective evaluations corresponding to {x1, . . . , xm}, i.e, yi =

F(xi) for 1 ≤ i ≤ m. The master initiates the memory structures (as lists) {r1, . . . , rm},

{c1, . . . , cm} and {c
′

1, . . . , c
′

m}, where ri = rint, ci = 0 and c
′

i = 0 for 1 ≤ i ≤ m. Let S m =

{z1, . . . , zm} be defined as a multi-attribute ordered set, where zi = (xi, yi, ri, ci, c
′

i), and yi,

ri, ci, and c
′

i are the objective functions values (yi) and memory attributes (ri, ci and c
′

i)

corresponding to xi for 1≤ i≤m. The master also initializes S taboo = {}, where S taboo is the

set of evaluated points not considered for local search within the iterative framework

of the algorithm (Step 2 below). Let Pm= {zi ∈S m | xi is non-dominated in {x1, . . . , xm}} be

the set of non-dominated points from S m.

Step 2 - Iterative Improvement: Run algorithm iteratively until termination condition

is satisfied:

While m ≤ ET

Step 2.1 -Select Center Points: The master task selects Nc center points from S m

based on non-dominated sorting and hypervolume contributions (discussed in

Section 4.3.3 and Algorithm Step 2.1). Let Icen = {ind1 . . . indNc} be the indices of

the selected centers corresponding to the ordered set S m.
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Step 2.2 - Parallel Surrogate-Assisted Local Candidate Search: Let S cen denote

the set of evaluated points chosen as center points in Step 2.1, i.e, S cen = {zi ∈ S m |

j∈ Icen, i= j,1≤ j≤Nc}. The master initiates Nc slave tasks and sends a center point,

zi ∈ S cen to each slave task, i, where 1≤ i≤ Nc:

For i = 1, . . . ,Nc

The slave task, i, performs a Surrogate-Assisted Local Candidate Search

(discussed in detail in Section 4.3.4 and Algorithm Step 2.2) around the se-

lected center point zi ∈ S cen and selects (and evaluates) a point , x∗i , for ex-

pensive function evaluation. The slave, i, returns z∗i to the master task. Note

that z∗i = (x∗i , y
∗
i , r
∗
i , c
∗
i , c
∗′

i ) is a multi attribute element, where x∗i is the point

selected for expensive evaluation, y∗i = F(x∗i ), and r∗i , c
∗
i , and c∗

′

i are memory

attributes corresponding to x∗i .

End Loop

Let the ordered set S curr = {z∗1 . . . z
∗
Nc
} correspond to all the evaluated points ob-

tained from the parallel surrogate-assisted local search.

Step 2.3 - Update Tabu List and Memory archive: The tabu list, i.e, S taboo is up-

dated. For i = 1, . . . ,m, the memory attributes i.e, ri, ci and c
′

i , of zi = (xi, yi, ri, ci, c
′

i)

are updated, where zi ∈ S m. Details on the procedure for updating the tabu list

and the memory attributes, are discussed in Section 4.3.5 and Algorithm Step 2.3.

Step 2.4 - Update the evaluated set and the non-dominated set: The set of eval-

uated points is updated , i.e, S m = {S m} ∪ {S curr} and m = m + Nc. Update the non-

dominated set Pm, i.e, compute Pm= {zi∈S m | xi is non-dominated in {x1, . . . , xm}}.

End Loop

Step 3 - Return Best Approximated Front: Return Papprox = {xi | xi is non-dominated in {x1, . . . , xm}}

as an approximation to the globally optimal solution set, i.e, P∗ = {x∗i |

x∗i is non-dominated inD}.
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Table 4.1: Definitions of Sets and Variables

Item Description

F(x) = [ f1, . . . , fk] Expensive objectives for the multiple-objective optimization problem

zi = (xi, yi, ri, ci, c
′

i ) A multi-attribute element where xi is the decision variable, yi is the objective

function vector corresponding to xi, ri is the local search radius of xi, and ci

and c
′

i are the failure count and tabu count, respectively, of xi.

S m = {z1, . . . , zm} Multi-attribute ordered set corresponding to all points, {x1, . . . , xm}, which have

been evaluated via costly simulation until iteration m of the algorithm.

S cen = {z1, . . . , zNc } The subset of evaluated points (S cen ⊂ S m) chosen as center points in Step 2.1.

z∗i = (x∗i , y
∗
i , r
∗
i , c
∗
i , c
∗′

i ) A multi-attribute element, where x∗i is the point selected for expensive

evaluation after surrogate-assisted local search around the center point, xi,

in Step 2.2 (xi is an attribute of zi ∈ S cen), y∗i = F(x∗i ), r∗i = rinit, c∗i = 0, and c∗
′

i = 0.

S curr = {z∗1 . . . z
∗
Nc
} Multi-attribute ordered of all evaluated points obtained from the parallel

surrogate-assisted local search in Step 2.2.

S taboo The subset of evaluated points (S taboo ⊂ S m) which are in the taboo archive.

The taboo archive is updated in Step 2.3.

Pm = {z∈S m} The non-dominated solutions in S m based on expensive evaluations.

The search mechanics of MOPLS is dependent upon numerous parameters

which are listed and defined in Table 4.2.

The algorithm initialization phase (Step 1) starts off with sampling of EI

points x1 . . . xEI from decision space,D, via an experimental design method. We

use Latin hypercube sampling to generate the initial sample points [21]. Ex-

pensive simulation is employed to evaluate the values of all objectives for the

initially sample points. Step 2, i.e, the iterative loop is the core component of

the algorithm and is discussed in detail in Section 4.3.2 below.

4.3.2 Iterative Improvement

According to the search classifications discussed by Coello et al. [5], MOPLS

falls under the category of Pareto sampling techniques, where the primary ob-

jective of the search is to move the set of non-dominated points towards the
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Table 4.2: Definitions of Algorithm Parameters

Item Description

EI The number of initial expensive evaluations.

ET The number of total expensive evaluations.

Nc The number of center points (assumed to be equal to the number of available processors) to

be employed for simultaneous local surrogate-assisted candidate search in each algorithm

generation / iteration.

rinit Search parameter which controls the size of the local search neighborhood, and the dynamics

of the tabu list, and will be discussed further in section 4.3.2.

Pareto front and maintain diversity amongst the non-dominated set. This is

done by performing simultaneous local searches around a subset of evaluated

points (also called center points) in each algorithm iteration.

Step 2 of the algorithm constitutes the iterative framework of MOPLS. The

iterative loop begins with selection of center points (Step 2.1), which is based

on ranking of evaluated points in terms of their convergence and diversity po-

tential (discussed in detail in Section 4.3.3). The process of selection of center

points within the MOPLS iterative framework is synonymous with the process

of selection of the parent population in an evolutionary algorithm. Selection

of center points (or parent population) is followed by simultaneous surrogate-

assisted local searches (Step 2.2) around each point within the population (dis-

cussed in detail in Section 4.3.4). A memory archive and tabu list are also main-

tained, and updated (Step 2.3) in each algorithm iteration / generation. The

memory archive adaptively changes the local search neighborhood of the eval-

uated points. The tabu list is a secondary memory archive, which prohibits the

inclusion of certain evaluated points, in the population of center points. The

procedure of maintaining and updating the memory archive and tabu list is dis-

cussed in detail in Section 4.3.5.
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The iterative improvement loop within MOPLS, hence, includes three ma-

jor components, i.e, 1) selection of population of center points for local search,

2) simultaneous surrogate-assisted local searches around population of center

points to choose and evaluate new points, and 3) updating of a memory archive

and a tabu list of center points. The master process within the synchronous par-

allel framework selects the population of center points and maintains the tabu

list, while the slave processes perform surrogate-assisted local search, evaluate

new points, and send the information back to the master process. The archive of

evaluated points, S m, is subsequently updated by the master process along with

the set of non-dominated points, Pm, and a new iteration of the improvement

loop is initiated.

4.3.3 Selection of Center Points

The iterative framework (Step 2) of MOPLS incorporates simultaneous

surrogate-assisted local searches around a subset of already evaluated points,

S m. This subset of points, denoted as S cen (where S cen ∈ S m), is referred as the

set of center points or the parent population in subsequent discussions. Nc is an

algorithm parameter, which denotes the number of center points (or population

size) chosen for parallel local search in each algorithm iteration. Algorithm Step

2.1 provides a detailed account of the procedure for selection of S cen.

As mentioned in the previous sections, center points for local search are

ranked, and subsequently selected, based on their convergence and diversity

potential. Goldberg [13] suggested the use of non-dominated ranking. Deb et al.

[8] built upon Goldberg’s idea by introducing non-dominated sorting [9]. The non-

dominated sorting algorithm computes the non-dominated solutions in the eval-

uation set (S m), assigns them the highest rank, removes them from contention,
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and assigns the next rank to the non-dominated solutions amongst the remain-

ing evaluated solutions. This process is repeated to rank all solutions (See Figure

4.2(a) for visual illustration of non-dominated sorting).
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F 2(x
)
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Figure 4.1: Visualization of a) Hypervolume and b) Hypervolume Im-
provement employed in Step 2.2 for selection of new evalua-
tion points (discussed in Section 4.3.4).

While non-dominated sorting helps in ranking evaluated solutions according

to their contribution towards convergence, it provides no information regarding

a solution’s contribution towards diversity. Furthermore, non-dominated sorting

does not differentiate between solutions which have the same non-dominated

ranking. Various metrics have been discussed in past literature that provide

a measure of diversity contribution, and, in conjunction with non-dominated

sorting, these metrics can provide a unique ranking of evaluated solutions ac-

cording to convergence and diversity. Some of the metrics include crowding

distance [8], niching [9], indicator based contribution, [5] etc. Hence, typically,

search-based multi-objective optimization algorithms employ a two-layered

strategy to rank evaluated solutions and subsequently guide the search process.
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MOPLS also employs a two-layered strategy to rank evaluated solutions and

subsequently choose center points (controlled by the master process) for simulta-

neous surrogate-assisted local search (performed by slave processes). While the

first layer of ranking is based on non-dominated sorting, the second layer involves

ranking all solutions within a front according to their hypervolume (also called

S -Metric) contributions [23] [42].

Definition 4 Let X = {x1, . . . , xn} be a set of ordered solutions and let Y =

{F(x1), . . . , F(xn)} be the corresponding set of objective vectors. The hypervolume of

the set X is the volume of region of the objective space dominated by Y . Hypervolume

is denoted as HV(Y). The objective space is bounded by a reference vector, b (see Figure

4.1(a) for illustration).

Definition 5 Let X = {x1, . . . , xn} be a set of non-dominated solutions and let Y =

{F(x1), . . . , F(xn)} be the corresponding set of objective vectors. The hypervolume con-

tribution of a point xi ∈ X (denoted as HCi) is the difference in hypervolume of Y and

hypervolume of Y excluding the objective vector F(xi), i.e, HCi = HV(Y) − HV(Y\F(xi))

(see Figure 4.2(b) for illustration).

The detailed algorithmic framework of the center selection step , i.e, Step

2.1, (including inputs and outputs) of MOPLS is provided in Algorithm Step

2.1 above. As depicted in Algorithm Step 2.1, the center selection strategy em-

ploys two layers in order to rank quality of already evaluated solutions (S m), 1)

non-dominated sorting (line 6) and 2) hypervolume contributions-based rank-

ing (lines 7 and 8) (illustrated in Figure 4.2).

One major advantage of ranking solutions (within a non-dominated front)

via the hypervolume contribution metric lies in the ability of the metric to quan-

tify both convergence and diversity of a particular solution. However, compu-

100



Algorithm Step 2.1: Center Selection

Input : 1) Nc - Number of centers per generation.
2) S m - Set of evaluated points.
3) S taboo - Set of taboo evaluated points. S taboo ⊂ S m.
4) dthresh - Scalar value defined in Step 2.1 on page 131.

Output: 1) Icen - Indices of the selected centers that correspond to the ordered
archive of evaluated points, S m.

1 begin
2 S = S m;
3 S cen = {};
4 while |S cen| ≤ Nc do
5 X = {xi | (xi, yi, ri, ci, c

′

i)∈S , 1≤ i≤|S |} ;
6 S ∗ = {(xi, yi, ri, ci, c

′

i)∈S | xi is non-dominated in X};
7 HC = HypervolumeContributions(S ∗);
8 S ∗ = SortFront(S ∗,HC);
9 for i = 1 to |S ∗| and (xi, yi, ri, ci, c

′

i) ∈ S ∗ do
10 Let zi = (xi, yi, ri, ci, c

′

i) ;
11 if zi < S taboo then
12 if |S cen| == 0 then
13 S cen = {S cen} ∪ {zi};
14 else if |S cen| ≤ Nc then
15 for j = 1 to |S cen| and (x̂ j, ŷ j, r̂ j, ĉ j, ĉ

′

j) ∈ S cen do
16 if ||x̂ j − xi|| ≤ r̂ j ∗ dthresh then
17 go to line 9;

18 S cen = {S cen} ∪ {zi};

19 S = {S }\{S ∗};
20 Icen = {i | ai∈S m, b j∈S cen, ai = b j, 1≤ j≤Nc};

1 Procedure HypervolumeContributions(S ∗)
2 Y∗ = {yi | (xi, yi, ri, ci, c

′

i)∈S ∗, 1≤ i≤|S ∗|} ;
3 for i = 1 to |Y∗| and yi ∈ Y∗ do

4 HCi =

[
HV (Y∗) − HV ({Y∗}\{yi})

]
;

5 return HC;

1 Procedure SortFront(S ∗,HC)
2 Sort (descending order) the elements of S ∗ according to the hypervolume

contribution values recorded in HC;
3 return S ∗;
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Figure 4.2: Illustration of how centers are chosen in Step 2.2 of MOPLS:
a) The selection routine starts with Non-Dominated sorting of
evaluated solutions, b) Centers from within a front are selected
from the Non-Tabu set on the front, based on their hypervol-
ume contributions to the front.

tation of hypervolume contribution is an NP-Hard problem [3], and the com-

putational intensity increases exponentially with an increase in the number of

objectives. Figure 4.2 provides a visual depiction of the two-layered center selec-

tion strategy. As can be seen, the hypervolume contribution metric is essentially

an integral. To reduce computational effort, we employ a Monte Carlo experi-

ment to efficiently calculate hypervolume contributions. (For further discussion

on hypervolume computations, see [2]).

Selection of centers based purely on their ranking is a greedy approach. Such

an approach could bias the search towards exploration and exploitation around

good quality solutions only, and hence could lead to convergence to what is

only a locally optimal front.

In order to avoid such a scenario, MOPLS maintains a list of tabu solutions

(S taboo), which cannot be selected as centers. The procedure for updating the
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tabu list is discussed in Section 4.3.5 and Algorithm Step 2.3. Figure 4.2, de-

picts the tabu solutions in blue, and the center selection algorithmic framework

incorporates the tabu list within the selection mechanism (see line 11 of Algo-

rithm Step 2.1). In addition to maintenance of a tabu list, the center selection

strategy also ensures that a point that is close to another selected center (in the

current iteration) is not considered for selection (see lines 15-18 of Algorithm

Step 2.1), since a local search will be performed around the other center any-

way. The closeness is deduced by a threshold, dthresh (where dthresh = 1 − m−EI
ET−EI

),

and the local search radius ri. At the beginning of the algorithm the value of

dthresh is equal to 1. Hence, points which lie within the search neighborhoods of

already selected center points, are not considered for selection as centers. How-

ever, this value is reduced to 0, as the algorithm progresses, in order to allow

points which are close to each other in the decision space to be selected as cen-

ter points simultaneously. This enables concentrated local search for improved

diversification.

4.3.4 Parallel Surrogate-Assisted Local Candidate Search

Surrogate-assisted optimization has been extensively used in single objective

simulation optimization problems. Jones et al. [17] proposed Efficient Global

Optimization (EGO), employing kriging [32] as a surrogate model in order to

guide the search process. Radial Basis Functions (RBF) [4] [15] [14] [29] [27] have

also been widely used for efficient simulation optimization, within a limited

evaluation budget.

Surrogate-assisted search methods have also been incorporated into multi-

objective optimization (MO) [19] [23] [40] [18]. Some authors have also

employed local search within surrogate-assisted MO algorithms. For in-
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stance, Georgopoulou and Giannakoglou [11] use gradient based refinements of

promising solutions highlighted by RBF approximation during each algorithm

generation. Santana et. al. [33] divide the heuristic search into two phases

where the first phase employs a global surrogate-assited evolutionary search,

and the second phase employs rough set theory for local refinements. The local

search mechanism employed in MOPLS is considerably different from the lo-

cal search methodologies employed in previous surrogate-assisted algorithms.

Surrogate-assisted local search is employed exclusively in MOPLS, within a syn-

chronous parallel framework, to select multiple new points for expensive eval-

uation in each algorithm generation.

The surrogate-assisted local search mechanism employed in Step 2.2 of

MOPLS is inspired from the works of Regis and Shoemaker [27] [30]. These

works [27] [30] demonstrate the effectiveness of surrogate-assisted local search

in efficient single objective optimization by employing a Radial Basis Function

(RBF) based surrogate model within a multi start local search mechanism. Ad-

ditionally, they also demonstrated that the methodology could be parallelized

to further improve efficiency.

Step 2.2 of MOPLS also employs a parallel surrogate-assisted local search

to choose new points for expensive evaluations. As is depicted in the gen-

eral algorithm framework, the master process sends one point each from the set

(or parent population) of center points to each slave process in Step 2.2. Each

slave process selects a new point for expensive evaluation after performing a

surrogate-assisted search in the local neighborhood of the center point (sent by

the master process). The slave process subsequently evaluates the selected point

via expensive evaluation and sends the evaluated point back to the master pro-

cess. The procedure adopted by the slave process in selection and evaluation of
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the new point is depicted in Algorithm Step 2.2 and discussed below.

Response Surface Model

The first major task of the slave process is approximation of the costly functions,

F, via the inexpensive surrogates, F̂(x) = [ f̂1, . . . , f̂k] (line 4 of Algorithm Step

2.2). Various approximation methods, including artificial neural networks [25],

Support Vector Machines (SVM) [34], kriging [32], and radial basis functions

(RBFs) [4][24] could be employed to fit the response surface model.

Various authors [31] [10] demonstrate the relative effectiveness of RBF ap-

proximation in tackling high dimensional problems (approximately defined as

problems with more than 15 decision variables). The slave process of MOPLS

hence employs RBFs as the surrogate modeling methodology for approximating

the costly functions.

The training set (denoted as S ) used for fitting the RBF model is a subset of

expensively evaluated points (denoted as S m). The training set, S , includes up

to 500 points which are closest (as per euclidean distance) to the center point

(denoted as xcen) in the decision space. The size of the training set is kept limited

to avoid excessive computational burden of fitting the RBF model. Hence, the

surrogate model is referred as local surrogate model in subsequent discussions.

Generation of Random Candidate Points

Fitting of the local surrogate model is followed by random generation of nu-

merous points around the center point (see line 5 of Algorithm Step 2.2). These

randomly generated points are referred as Candidate points in subsequent dis-

cussions. Regis and Shoemaker [27] introduced the idea of generating candidate

points via a Gaussian perturbation of the center point, i.e., xcand,i ∼ N(xcen, σ
2Id),
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Algorithm Step 2.2: Surrogate-Assisted Candidate Search

Input : 1) S m - Set of evaluated points.
2) zcen ∈ S m - Evaluated point selected for local search in Step 2.1.
Please note that zcen = (xcen, ycen, rcen, ccen, c

′

cen)
3) Pm - Set of non-dominated evaluated points. Pm ⊂ S m.

Output: (x∗, y∗, r∗, c∗, c∗
′

) - Point selected for evaluation and evaluated via expensive simulation.
1 begin
2 p1 = generate a uniformly distributed real number in [0, 1];
3 if p1 ≤ probcand then perform surrogate-assisted search
4 F̂ = FitRbfModel(xcen, S m);
5 Xcand = GenerateCandidates(xcen, rcen);
6 X∗cand = {x∈Xcand | x is non-dominated in Xcand as per the approximate function F̂};
7 p2 = generate a uniformly distributed real number in [0, 1];
8 if p2 ≤ probhv then
9 x∗ = BestHypervolume(X∗cand, Pm);

10 else
11 x∗ = MaxMinMethod(X∗cand, S m);

12 else mutate center
13 x∗ = mutate(xcen) ;

14 y∗ = F(x∗), r∗ = rinit, c∗ = 0, c∗
′

= 0 ;

1 Procedure FitRbfModel(xcen, S m)
2 Choose a subset, S , from already evaluated solutions, S m, which are closest to xcen, as per

euclidean distance ;
3 Fit response surface models (RSM) for each objective based on a set S . Let F̂(x) = [ f̂1, . . . , f̂k]

denote the inexpensive RSMs ;
4 return F̂;

1 Procedure GenerateCandidates(xcen, rcen)
2 Xcand = {}, p = generate a uniformly distributed real number in [0, 1];
3 if p ≤ 1

2 then */ perform hyper-spherical local search */
4 σ = rcen ;

5 else /* perform hyper-eliptical local search */
6 σ = |a|, where a ∼ N(σ,σ2/4) and N denotes the normal distribution ;

7 Ncand = 500 ∗ d, where d is the number of decision variables;
8 for i = 1 to Ncand do generate candidate points
9 xcand,i = xcen + z where z is a random vector s.t z ∼ N(0, σ2Id);

10 Xcand = {Xcand} ∪ {xcand,i} ;

11 return Xcand ;

1 Procedure BestHypervolume(Xcand, Pm)
2 Ym = {yi | (xi, yi, ri, ci, c

′

i )∈Pm, 1≤ i≤|Pm|} ;

3 x∗ = arg maxx j∈X∗cand

[
HV (Ym ∪ F̂(x j)) − HV (Ym)

]
;

4 return x∗;

1 Procedure MaxMinMethod(X∗cand, S m)
2 Xm = {xi | (xi, yi, ri, ci, c

′

i )∈S m, 1≤ i≤|S m|} ;
3 x∗ = arg maxxi∈X∗cand

[
minx j∈Xm ‖xi − x j‖

]
;

4 return x∗;

1 Procedure mutate(xcen)
2 Generate a point x∗ ∈ D via either gaussian mutation or uniform mutation (with equal

probability) of xcen;
3 return x∗;
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where xcand,i is a candidate point. If a randomly generated candidate point is out

of the unit hypercube bounds, it is forced to a corner point. Hence, candidate

points are concentrated in a hypersphere around the center point (as depicted

in Figure 4.3(A)).

MOPLS employs a similar candidate generation methodology. Please note

that the standard deviation of the gaussian perturbation, σ, is equal to the mem-

ory variable rcen. The memory variable, rcen, hence corresponds to the local

search neighborhood of the center point, xcen. Every evaluated point xi in the

set S m includes an associated memory variable ri, which denotes the standard

deviation of the gaussian perturbation for generating candidate points in the

neighborhood of xi. ri is a dynamic variable which is initialized to be equal to

rinit, and is updated in Step 2.3 of MOPLS as per the procedure described in

Algorithm Step 2.3 and Section 4.3.5.

We also propose a variation of the original candidate generation methodol-

ogy in MOPLS, i.e, xcand,i ∼ N(xcen, |N(σ,σ/2)|). With this variation, candidates

are concentrated in a hyperellipse and search concentration varies across the

decisions. Such a search methodology might be particularly useful in the pres-

ence of varying sensitivities of decision variables. The difference between the

two search strategies is depicted in Figure 4.3. In each iteration of MOPLS, each

slave chooses one of the two candidate generation methodologies with equal

probability.

The number of candidate points generated by the slave process is equal to

500 ∗ d, where d denotes the number of decision variables. After generation

of the candidate points the local surrogate model is used to approximate their

objective functions. The candidate points approximated by the surrogate model

in the vicinity of the center point which are non-dominated (as per the surrogate

107



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

(A) − “HyperShperical” Candidate Search 

 

 
Candidates
Center

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

X
2

(B) − “Hyperelliptical” Candidate Search

 

 
Candidate Points
Center Point

Figure 4.3: An example illustrating the local candidate points genera-
tion methodology proposed by [27]: a) The ”Hyperspherical”
search mechanism originally proposed by [27], b) The ”Hyper-
elliptical” search mechanism proposed in this study. The algo-
rithm generates candidates from either mechanism with equal
probability

approximation), are identified (see line 6 of Algorithm Step 2.2), and a new point

is subsequently chosen for evaluation.

Selection of Expensive Evaluation Point

Let X∗cand denote the set of non-dominated candidate points (as per the surrogate

approximation). A new point for expensive evaluation is selected from the set

X∗cand. Selection of a new point for actual evaluation is based on one of two

strategies, namely, hypervolume improvement and Max-Min method (see Lines

7-11 of pseudo-code of Step 2.2).

The hypervolume improvement selection method computes the approxi-

mate hypervolume improvement (we use the word approximate since objec-

tive function values are approximated by the surrogate model) of every RBF
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approximated non-dominated candidate solution, and chooses the one with the

best hypervolume improvement. Pseudo code for this method is depicted in the

procedure ”BestHypervolume” of Algorithm Step 2.2 and is illustrated in Fig-

ure 4.1(b). Hypervolume improvement is calculated via a Monte Carlo experi-

ment, in order to reduce computational burden.The approximate hypervolume

improvement can quantify the potential value added by a candidate in terms of

both convergence and diversity, and hence, selection based on approximate hy-

pervolume is purely based on exploitation of the surrogate model within the lo-

cal search. Hypervolume improvement based selection is used in various other

surrogate and non-surrogate optimization algorithms [2].

The Max-Min selection methodology is depicted in the procedure ”MaxMin-

Method” of Algorithm Step 2.2. As per the max-min method, an RBF-

approximated non-dominated candidate point (with an RBF-approximated ob-

jective function) which is furthest from already evaluated points is selected for

function evaluation. While the candidate is chosen from amongst the approxi-

mated non-dominated set, i.e, X∗cand (hinting at exploitation), it is relatively fur-

thest from the already evaluated points (hinting at exploration). Hence, the

max-min selection method incorporates both exploration and exploitation. The

probability of hypervolume improvement based candidate selection (denoted

as probhv in Algorithm Step 2.2) is set to 0.65, for all experiments.

Mutation

The methodology for surrogate-assisted local search is depicted in lines 3-11 of

Algorithm Step 2.2. As is evident from the pseudo code depicted in Algorithm

Step 2.2, selection of a new point for expensive evaluation is not necessarily

based on surrogate-assisted local search. The slave process employs surrogate-
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assisted local search with a probability, probcand ,where the value of probcand is set

as 0.9 for all computational experiments. The slave process employs mutation

as the alternative to surrogate-assisted local search, for selecting a new point for

expensive evaluation.

The use of mutation is a critical feature in evolutionary algorithms, ensuring

that the search remains global and has the potential to move to any point in the

decision space. Mutation is employed in MOPLS (see line 13 of Algorithm Step

2.2) to ensure that the search mechanics remains global. We employ a Gaussian,

and a uniform mutation within the selection methodology.

After the slave process selects a new point for expensive evaluation (via ei-

ther surrogate-assisted local search or mutation), the slave expensively evalu-

ates the selected point (see line 14 of Algorithm Step 2.2). Furthermore, the

memory attributes of the newly evaluated point are also initiated (see line 14 of

Algorithm Step 2.2) and the newly evaluated point is sent to master process.

4.3.5 Tabu List and Memory Archive

In Section 4.3.1, we defined the ordered set of evaluated points as S m = {zi | zi =

(xi, yi, ri, ci, c′i), 1 ≤ i ≤ m}, where zi is a multi-attribute element of S m, xi is the ith

decision variable, yi is the objective vector corresponding to xi, and ri, ci and c′i

are memory attributes corresponding to xi. ri, ci and c′i (for 1 ≤ i ≤ m) are col-

lectively referred as the memory archive of the evaluated set, S m. The memory

attribute ri is generically referred as the ”local search radius” and corresponds

to the standard deviation of gaussian perturbations that generate the candidate

points of Step 2.2 (discussed previously in Section 4.3.4). The memory attribute

ci is generically referred as the ”failure count”, and is discussed further later in

this section. The memory attribute c′i is generically referred as the ”tabu count”,
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and is also discussed further later in this section. The Step 2.3 of the general

algorithm framework of MOPLS updates the memory archive, after new points

have been selected and evaluated via the parallel local search of Step 2.2. The

procedure for updating the memory archive is depicted in Algorithm Step 2.3.

Algorithm Step 2.3: Update Memory Archive

Input : 1) S m - Ordered set of points evaluated before current algorithm generation.
2) Icen - Indices of the centers chosen for parallel local search that correspond to the
ordered archive of evaluated points, S m.
3) S curr - New points selected (via parallel local search around centers) and evaluated
in Algorithm Step 2.2.
4) S taboo - Set of taboo evaluated points. S taboo ⊂ S m.
5) Pm - Subset of non-dominated in S m.

Output: 1) S m - Ordered set of points evaluated before current algorithm generation, with
updated memory attributes.
2) S taboo - Updated list / set of taboo evaluated points. S taboo ⊂ S m.

1 begin
2 for k = 1 to |S curr | and (x∗k , y

∗
k, r
∗
k , c
∗
k, c
′∗
k ) ∈ S curr and jk ∈ Icen do

3 Ym = {yi | (xi, yi, ri, ci, c
′

i )∈Pm, 1≤ i≤|Pm|} ;

4 HIk =

[
HV (Ym ∪ y∗k) − HV (Ym)

]
;

5 if HIk == 0 then
6 i = jk;
7 zi = (xi, yi, ri, ci, c

′

i ) ∈ S m, i.e, xi is the center point (step 2.1) around which local
search (Step 2.2) was performed to obtain the new evaluated point x∗k ;

8 ri =
ri
2 ;

9 ci = ci + 1 ;

10 for i = 1 to |S m| and (xi, yi, ri, ci, c
′

i ) ∈ S m do
11 Let zi = (xi, yi, ri, ci, c

′

i ) ;
12 if c

′

i > 0 then
13 c

′

i = c
′

i − 1 ;
14 if c

′

i == 0 then
15 S taboo = {S taboo}\{zi};

16 else if ci > cthresh then
17 c

′

i = ctenure;
18 ri = rinit;
19 ci = 0;
20 S taboo = {S taboo} ∪ {zi};

The process of updating the memory archive is divided into two phases. In

the first phase (depicted by lines 2-9 of Algorithm Step 2.3) we traverse through

the list of center points that were chosen for local search in Step 2.1 of current

MOPLS iteration, and assess the performance of local search around each center
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point. Performance of a center point is assessed by computing the hypervolume

improvement registered by the new point generated from local search around

the center point (see line 4 of Algorithm Step 2.3). If a hypervolume improve-

ment is not registered, the ”local search radius” (ri) is reduced by half, and the

”failure count” (ci) is incremented by one. Hence, it can be intuitively said that

the ”failure count”, ci, archives the number of times a local search around xi did

not contribute to an improvement in the non-dominated solution set. When the

”failure count” of a point exceeds the number, cthresh, the center is added to the

Tabu list, S taboo (discussed further in the following paragraph).

As mentioned earlier, the memory attribute c′i is referred as the ”tabu count”

and corresponds to the number of algorithm iterations remaining for which a

point xi will remain in the tabu list, S taboo. A non-zero value of ”tabu count”,

thus, implicitly means that the point is in the taboo list. In the second phase

of the memory archive update procedure (depicted in lines 10-20 of Algorithm

Step 2.3) we traverse through all evaluated points (not including the points eval-

uated in the current algorithm generation) to 1) update the tabu list, and 2) up-

date the tabu count. For all points which are in the tabu list the ”tabu count” is

reduced by one. If the ”tabu count” for a point in the tabu list is reduced to zero,

the point is removed from the tabu list. For points which are not in the tabu list,

we check if the ”failure count” exceeds the number, cthresh. If this is the case, the

point is added to the tabu list (S taboo), the ”tabu count” is set equal to the num-

ber, ctenure, the ”failure count” is reset to zero, and the ”local search radius” is set

equal to the initial search radius, rinit (Please note that rinit is an input parameter

for MOPLS). It can be deduced from the above discussion that ctenure is the tabu

tenure for a point that is added to the tabu list.

The self-adaptive failure count method (inspired by Regis and Shoemaker
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[27]) ensures that the algorithm does not get stuck in searching around locally

optimal solutions, and tends to promote exploration within the search mechan-

ics. Since our parallel search methodology revolves around effective selection

of centers, exploration within center selection could be vital to maintain a global

search. However, we would not like to discard a center forever, hence. after a

fixed number of algorithm iterations, ctenure, a tabooed center is removed from

the tabu list. In all our experiments, cthresh and ctenure are set to 3 and 5, respec-

tively.

Multi-objective Parallel Local Surrogate-Assisted Search (MOPLS) is a

stochastic metaheurisitc algorithm aimed at efficient optimization of computa-

tionally expensive multi-objective optimization problems. The algorithm aims

to maintain an efficient and dynamic search mechanism by 1) exploiting local

surrogate models for efficient convergence, 2) maintaining exploration through

mutation and 3) maintaining a balance between exploration, exploitation, con-

vergence and diversity through Tabu assisted selection of simultaneous local

search centers.

4.4 Computational Experiments

Assessing the performance of a multi-objective optimization algorithm is con-

siderably more challenging than assessing the performance of a single-objective

optimization algorithm both because there are more factors to evaluate for a

MO problem and because each trial is more computationally expensive. Coello

et al. [5] recommend that the quality of a multi-objective optimization algo-

rithm be assessed via two major factors: efficiency and effectiveness. Efficiency

signifies the speed with which the algorithm obtains good quality solutions,

and effectiveness measures the quality of solutions, addressed in terms of both
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convergence and diversity (See Figure 3.1 for an illustration of convergence and

diversity). Since MOPLS is a stochastic algorithm, it is important that the relia-

bility of the algorithm is also assessed, i.e., the algorithm’s ability to consistently

produce good solutions.

Comparison against some benchmark algorithms and application to vari-

ous test problems can help in assessing the strengths and weaknesses of an al-

gorithm. In the following section, we summarize the experimental setup em-

ployed to assess the performance of MOPLS, which includes a brief overview

of benchmark algorithms, test problems, and the methodology employed to as-

sess effectiveness and efficiency of MOPLS when applied to the various test

problems and compared against benchmark algorithms.

4.4.1 Alternate Algorithms

The performance of MOPLS is compared to GOMORS, ParEGO [19] and

AMALGAM [37]. GOMORS is our own algorithm, introduced in [1] and Chap-

ter 2 of this thesis. ParEGO [19] is a kriging based efficient multi-objective

optimization algorithm, which is discussed in Chapters 2 and 3. AMALGAM

is a multi-method evolutionary algorithm, which employs various search me-

chanics for efficient evolutionary optimization of multi-objective problems. Our

analysis in Chapter 3 clearly indicated that the performance of GOMORS,

ParEGO and AMALGAM is superior to other benchmark MOEAs, namely

NSGA-II and MOEA/D, when evaluation budget is limited to less than 1000.

Since in this analysis we are interested in comparing algorithm performance

within a limited evaluation budget (1000), we consider comparison against

GOMORS, ParEGO and AMALGAM only.

Three different versions of MOPLS are employed in the analysis; MOPLS-
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4, MOPLS-8 and MOPLS-16, where the N in MOPLS-N refers to the number

of simultaneous centers. Hence, MOPLS-16 employs 16 simultaneous centers

(i.e, 16 synchronous parallel processes within each algorithm iteration), and lo-

cal surrogate-assisted search is performed around each center. Please note that

theoretically, a synchronous master-slave parallel framework could allow N si-

multaneous local searches to be executed (if N cores are available).

4.4.2 Test Problems

We have chosen five unconstrained (or box constrained) test problems for al-

gorithm performance analysis. All of the test problems chosen pose different

challenges to the search optimization process. Hence, if performance of an al-

gorithm is consistently good across all problems, one can be more confident of

the algorithm’s capabilities.

The first two test problems, ZDT3 and ZDT6 are part of the Deb et. al’s ZDT

test suite [7]. ZDT3 has a disconnected Pareto front, and ZDT6 has a low density

of solutions, around the Pareto front. Additionally, the distribution of solutions

on the ZDT6 Pareto front is non-uniform, and the Pareto front is non-convex.

The next three test problems used in our study (UF1, UF2 and UF3) were

proposed by Li et al. [20], and highlighted by [41], as potentially hard multi-

objective optimization problems, where the Pareto-optimal sets are complicated

and difficult to find. Additionally, it should be noted that UF3 has many locally

optimal fronts.

All test problems have two objectives and the number of decision variables

can vary between 2 and 30. Mathematical formulations and optimization chal-

lenges of the test problems are discussed in detail in Section B.2.1 of Appendix

B. We test and compare performance of MOPLS on the test problems with 8 and
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16 decision variables. This is done to assess the differences in performance of

MOPLS with other algorithms on low (less than 10 decision variables) and high

(greater than 10 decision variables) dimensional problems. In order to differ-

entiate between the same test problem’s 8 and 16 variable versions, we use the

convention ’NAME-D’ to refer to the test problem, where ’D’ corresponds to the

number of decision variables of the test problem. Consequently, the two vari-

ants of, for instance, ZDT3 are referred as ZDT3-8 and ZDT3-16 in subsequent

discussions.

4.4.3 Watershed Model Calibration Test Suite

In Chapter 3, we discussed the development of a Watershed Model Calibra-

tion test suite, comprising of two bi-objective optimization problems, and two

3-objective optimization calibration problems. These test problems were part of

two watershed model case studies, Town Brook, and Cannonsville. In an effort

to analyze the performance of MOPLS on real world problems, we employ the

watershed model calibration test suite for comparative analysis against bench-

mark algorithms. (For further discussion on the test suite, refer to Chapter 3 of

the thesis.)

4.4.4 Comparison Methodology

We have defined a set of benchmark algorithms for comparison against MOPLS,

and a set of test problems on which the algorithm performance will be assessed.

As part of this comparison methodology, it is important to incorporate compre-

hensive testing of algorithm effectiveness and efficiency.
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Table 4.3: The flow calibration test case suite employed in comparative al-
gorithm analysis

Problem
Formulation

Case Decisions
Objectives

Simulation

Name Study Variables Time/Eval(s)

TBROOK1 Threshold II 15 2 10

TBROOK2 NSE II 15 3 10

CVILLE1 Threshold I 15 2 150

CVILLE2 NSE I 15 3 150

Experimental Setup

Since all algorithms are stochastic, we have performed multiple trial runs of

each algorithm on all test problems and the watershed calibration suite. 10 tri-

als each were performed for all algorithms on the test problems and the wa-

tershed test suite. Algorithm performance comparison is limited to a maxi-

mum of 400 function evaluations per algorithm for the test problems and 1000

function evaluations per algorithm for the watershed calibration problems. For

the test problems, performance of MOPLS is compared against GOMORS and

ParEGO only, whereas, for the watershed calibration problems, performance of

MOPLS is compared against GOMORS, ParEGO and AMALGAM. Since eval-

uation budget is limited to 400 function evaluations for the test problems and

AMALGAM is a non-surrogate based algorithm which is not designed for a

small evaluation budget, we do not include AMALGAM in the comparison of

test problems.
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Table 4.4: Parameter Settings for MOPLS

Name Description Setting

EI The number of initial expensive evaluations 2d + 2

ET The number of total expensive evaluations 400 or 1000

Nc The number of center points 4, 8 or 16

rinit Candidate / local search parameter /radius 0.2

Algorithm Parameters

Our algorithm comparison methodology incorporates the use of suitable values

for parameters of all algorithms under discussion with the aim of conducting a

fair comparison. ParEGO’s parameter configuration recommended in Chapter

2 and Section B.5.2 is employed, and the GOMORS configuration recommended

in Chapter 2 and Section B.5.3 is used. A small trial-and-error exercise was per-

formed to tune population sizes for AMALGAM. Since performance of MOEAs

is highly dependent on population sizes, we ran multiple trials of AMALGAM

on the watershed calibration test suite, with population sizes of 20, 50, 100 and

200, and an evaluation limit of 1000. The trial-and-error analysis showed that

within the limited evaluation budget of 1000, a population size of 20 is desirable

in the case of the bi-objective watershed problems (TBROOK1 and CVILLE1),

and a population size of 50 is desirable in the case of the 3-objective watershed

problems (TBROOK2 and CVILLE2). The remaining parameters of AMALGAM

were set as per the recommendations provided in [36].

As mentioned in Table 4.2, there are four parameters in the MOPLS algo-

rithm. MOPLS’ parameter configuration is provided in Table 4.4. The number

of initial function evaluations is fixed at (2d + 2) as per the recommendations

provided by Regis and Shoemaker [28], where d is the number of decision vari-
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ables. This is equal to the number of initial function evaluations of GOMORS

and ParEGO. Since MOPLS, GOMORS and ParEGO use an experimental de-

sign for sampling of initial points, the fairest way to compare them is to have

the same number of initial sampling points for all of them (for a particular prob-

lem). Hence, the same number of samples are used for MOPLS, GOMORS and

ParEGO on each problem tested.

In case of the five test problems, function evaluations for MOPLS (and all

other algorithms) are limited to 400, while for the watershed calibration test

suite, the function evaluations are limited to 1000. As mentioned earlier, three

different versions of MOPLS are analyzed, i.e, with 4, 8 and 16 center. Value

of the candidate search radius / parameter, rinit, for MOPLS is set to 0.2 for all

test instances. This value of the search radius is recommended by Regis and

Shoemaker [28].

Visual Comparison of Trade-offs

The comparison methodology includes a visual comparison of non-dominated

solutions obtained via each algorithm. This is possible since our analysis is

limited to 2-objective and 3-objective test instances. For the 3-objective test

instances non-dominated solutions are compared in two dimensions and re-

sults are displayed in three sub-figures, i.e, trade-offs between two objectives

are compared in one sub-figure. The visual comparisons are performed after a

fixed number of function evaluations and are supported by box plots (for water-

shed problems only) for performance metrics (metrics used in our analysis are

discussed below). This comparison helps in visualizing the effectiveness of all

algorithms in producing good solutions within a prescribed evaluation budget.
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Performance Metrics

The performance metrics employed in the analysis include 1) the uncovered hy-

pervolume metric and 2) the Inverses Generational Distance metric. Figure 4.4

gives a visual illustration of the meaning of the performance metrics. Let P

(in Figure 4.4) be the set of non dominated solutions obtained as an approxi-

mation to the Pareto front from an algorithm and let P∗ be the set of ideal solu-

tion(s) of the multi-objective optimization problem being solved. The ”ideal so-

lution(s)” of a multi-objective optimization problem is the Pareto front, if known

(the Pareto front is known for the test problems), or the vector depicting mini-

mum attainable values of all objectives. In our watershed calibration problems,

all objectives are measures of error. Hence, the ”ideal solution(s)” for all the wa-

tershed calibration problems is the zero vector. The ”reference point” depicted

in Figure 4.4 is the worst attainable solution of the optimization problem. Since,

the worst attainable values are not known in the problems discussed in this

study, the ”reference point” vector is estimated as the worst values of all objec-

tives obtained in our computer experiments. Hence, the total feasible objective

space is the volume bounded by the reference point and ideal solution(s).

The Uncovered hypervolume [2] is the difference between the total feasible

objective space (defined by the reference and ideal solution(s) in Figure 4.4(a))

and the objective space dominated by estimate of the Pareto front (depicted as P

in Figure 4.4) obtained by an algorithm. A lower value of the index indicates a

better solution and the ideal value is zero. The uncovered hypervolume metric

incorporates both convergence to the ideal solution(s) as well as diversity of

solutions within a single metric.

The The Inverse Generational Distance (IGD) [35] metric (defined by the

equation depicted in Figure 4.4(b)) is the minimum distance of estimate of the
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Figure 4.4: Illustration of performance metrics used in analysis: a) The Hy-
pervolume provides a comprehensive quantification of algo-
rithms’ convergence and diversification abilities, b)The Inverse
Generational Distance (IGD) (from ideal point) is a good mea-
sure of convergence. c) The Generational Distance (GD) also
predominantly captures convergence

Pareto front obtained by an algorithm, P, from the ”Ideal Solution(s)”, P∗. The

IGD metric is a good measure of convergence of an algorithm to the ”Ideal So-

lution(s)”.

Progress Plots

The performance metrics incorporated in our analysis are also used to analyze

the relative efficiency of MOPLS. This is done through progress plots of the mean

metric values plotted against the number of function evaluations. Since the

focus of our analysis is on optimization of problems with computationally ex-

pensive objectives, the evaluation time is dominated by the number of func-

tion evaluations. Hence, progress plots analyze the relative efficiency of the

algorithms by plotting the average metric-based performance of each algorithm

121



against the number of function evaluations. With progress plots one can easily

see the impact total evaluations has on the quality of the convergence and how

well for a fixed limit on number of evaluations, each algorithm performs.

Wall Clock Time

The comparison methodology depicted above focuses on comparing algo-

rithm performance in function evaluations. However, an advantage inherent

in MOPLS is the added efficiency that might be obtained via parallelization.

Hence, we also use wall clock time to effectively compare performance of algo-

rithms in a parallel setting. Our definition of wall clock time is defined in the

following paragraph. Please note that this definition is valid with the assump-

tion that function evaluations are computationally expensive.

Lets assume that that computation time for each function evaluation is con-

siderably high such that other computational overheads arising, for example,

from updating the response surface, are negligible. Furthermore, we also as-

sume that N, i.e, the number of expensive function evaluations being evaluated

in one algorithm iteration can be evaluated simultaneously. This means that if

Ncore is the number of cores available for parallel computing, Ncore ≥ N. Given

these assumptions, one unit of wall clock time is equivalent to one algorithm

iteration.

The algorithm comparison in wall clock time is done for MOPLS, GOMORS

and ParEGO and for all problems tested. Since the initial number of function

evaluations for these algorithms is equal, the time required for initial sampling

and evaluation is not included in the wall clock time budget. We set the maxi-

mum wall-clock time to be 60 units. The total number of function evaluations

will consequently be equal to (2d + 2) + 60 ∗ N, where d is number of decision
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variables of the problem, (2d + 2) is the number of initial function evaluations

and N is the number of expensive function evaluations being evaluated in one

algorithm iteration.

ParEGO is a serial algorithm. Hence, N = 1 for ParEGO. GOMORS is a

parallel algorithm where four expensive evaluations are performed in each al-

gorithm iteration. Hence, N = 4 for GOMORS. In case of MOPLS-4, MOPLS-8

and MOPLS-16, N = 4, 8 and 16, respectively. Our wall clock time analysis for

all problems includes visual comparison of non-dominated solutions obtained

via each algorithm after 60 wall clock time units, and progress plots of the mean

uncovered hypervolume metric values plotted against the number of wall clock

time units.

4.5 Results and Discussion

4.5.1 Test Problems

Analysis in Function Evaluations

The algorithms were first tested on the five test problems. Each test problem

has two objectives and poses a different optimization challenge (discussed in

Section 4.4.2). The number of decision variables for each test problem is set to 8

or 16. Hence, comparison was performed on two instances of each test problem.

In order to account for the stochastic search nature of all algorithms, 10 trials

were performed for each algorithm (on each problem instance), with a budget

of 400 objective function evaluations per trial.

Figures 4.5 - 4.9 provide summaries of performance of all algorithms, for

10 trial runs of 400 evaluations each. Each figure depicts results obtained for
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Figure 4.5: Test Problems ZDT3-8 and ZDT3-16: Comparison of algorithm
results after 400 function Evaluations: (a and d) Visualization
of non-dominated solutions with worst hypervolume metric
value in 10 trials and after 400 function evaluations, (b and
e) Hypervolume progress plots, (c and f) Progress plots with
mean IGD values. Vertical error bars indicate standard devia-
tion.

the two variants of each test problem (i.e, with 8 and 16 decision variables).

The summarized analysis of Figures 4.5 - 4.9 includes 1) visualization of worst

trade-offs (according to hypervolume metric) obtained in 10 trials by each al-

gorithm after 400 evaluations (see sub-figures (a) and (d)), 2) progress plot of

mean hypervolume metric value for 10 trials (see sub-figures (b) and (e)), and 3)

progress plot of mean IGD metric value for 10 trials (see sub-figures (c) and (f)).

The trade-off visualization gives a visual depiction of convergence and diver-

sity of all algorithms, and the progress plots depict relative average efficiency of

all algorithms. The solid red lines in all Pareto front approximation plots depict
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Figure 4.6: Test Problems ZDT6-8 and ZDT6-16: Comparison of algorithm
results after 400 function Evaluations: (a and d) Visualization
of non-dominated solutions with worst hypervolume metric
value in 10 trials and after 400 function evaluations, (b and
e) Hypervolume progress plots, (c and f) Progress plots with
mean IGD values. Vertical error bars indicate standard devia-
tion.

the known Pareto front.

Figure 4.5 provides a summary of the performance of all algorithms after 400

function evaluations on the ZDT3-8 and ZDT3-16 test problems (8 and 16 sig-

nify number of decision variables). The optimization challenge of ZDT3 is that

the known Pareto front (depicted in red) is disconnected. In case of the ZDT3-8

test problem, visualizations of the worst trade-offs obtained by each algorithm

after 400 evaluations, and the metric progress plots indicate that all algorithms

converge to the Pareto front. However, GOMORS and MOPLS-4 seem to per-

form better in terms of speed of convergence as per the progress plots (Figures
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Figure 4.7: Test Problems UF1-8 and UF1-16: Comparison of algorithm re-
sults after 400 function Evaluations: (a and d) Visualization
of non-dominated solutions with worst hypervolume metric
value in 10 trials and after 400 function evaluations, (b and
e) Hypervolume progress plots, (c and f) Progress plots with
mean IGD values. Vertical error bars indicate standard devia-
tion.

4.5(b) and 4.5(c)). Furthermore, analysis of the worst Pareto Approximation

plot, i.e, Figure 4.5(a) depicts that MOPLS-4 is better than GOMORS in terms of

producing a diverse trade-off set.

For the higher dimensional variant of ZDT3, i.e, ZDT3-16, performance of

GOMORS is clearly better than that of all other algorithms in terms of both

speed of convergence as depicted in Figures 4.5(e) and 4.5(f), and in terms of

obtaining a trade-off which is close to the Pareto Front as depicted in Figure

4.5(d). Hence, overall serial performance of GOMORS is better than other algo-

rithms for the low and high dimensional variants of the ZDT3 test problem. The
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Figure 4.8: Test Problems UF2-8 and UF2-16: Comparison of algorithm re-
sults after 400 function Evaluations: (a and d) Visualization
of non-dominated solutions with worst hypervolume metric
value in 10 trials and after 400 function evaluations, (b and
e) Hypervolume progress plots, (c and f) Progress plots with
mean IGD values. Vertical error bars indicate standard devia-
tion.

overall serial performance of ParEGO is the worst.

Figure 4.6 provides a summary of performance of all algorithms after 400

function evaluations for ZDT6-8 and ZDT6-16. Results are inconclusive in terms

of identifying the best algorithm for the ZDT6 test problems. As per the IGD

metric (see Figure 4.6(c) and 4.6(f)) GOMORS is clearly more efficient in terms

of speed of convergence to the Pareto front. However, as per the uncovered

hypervolume metric (see Figure 4.6(b) and 4.6(e)) MOPLS-4 seems slightly bet-

ter than GOMORS in terms of both speed of convergence and quality of Pareto

front approximation after 400 function evaluations. Furthermore, the Pareto ap-
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Figure 4.9: Test Problems UF3-8 and UF3-16: Comparison of algorithm re-
sults after 400 function Evaluations: (a and d) Visualization
of non-dominated solutions with worst hypervolume metric
value in 10 trials and after 400 function evaluations, (b and
e) Hypervolume progress plots, (c and f) Progress plots with
mean IGD values. Vertical error bars indicate standard devia-
tion.

proximation plots of ZDT6-8 and ZDT6-16 (see Figure 4.6(a) and 4.6(d)) depict

that MOPLS-4 is most effective in producing a diverse set of trade-off solutions.

Performance of ParEGO for the ZDT6 test problems is worse than the other al-

gorithms.

Figure 4.7 shows the results of serial comparison (i.e, in function evaluations)

of all algorithms for the UF1 test problems. The results here clearly indicate the

relative superiority of ParEGO, especially with application to UF1-16. UF1-8

and UF1-16 are the only test problems where performance of ParEGO (in func-

tion evaluations) is better than all other algorithms.
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Figure 4.8 shows the results of serial comparison (in function evaluations)

of all algorithms for the UF2 test problems. The comparative results for the

UF2 test problems are very similar to the results observed for the ZDT3 test

problems. In case of UF2-8 (see Figures 4.8(a), 4.8(b) and 4.8(c)) MOPLS-4 has

the best performance, however, marginally. In case of UF2-16 (see Figures 4.8(d),

4.8(e) and 4.8(f)) GOMORS clearly has the best performance.

For the two variants of the UF3 test problem (see Figure 4.9), performance

of GOMORS is better in terms of speed of convergence as is depicted in sub-

figures 4.9(b) and 4.9(d). However the difference is not discernible as per the

Pareto approximation depicted in sub-figures 4.9(a) and 4.9(c).

Our analysis of the results obtained from all test problems (in function eval-

uations) shows that overall performance of GOMORS is best amongst all algo-

rithms, especially for the higher dimensional test problems (16 variables). In

case of the lower dimensional test problems, both GOMORS and MOPLS-4 per-

form reasonably well. ParEGO’s performance is best only for the UF1 test prob-

lems only.

Analysis in Wall Clock Time

The analysis depicted in Figures 4.5 - 4.9 focuses on comparing algorithm per-

formance in function evaluations. However, since a potential advantange of

MOPLS and GOMORS is the added efficiency that might be obtained via par-

allelization, it is important to analyze performance of algorithms in wall clock

time (see Section 4.4.4 for our definition of wall clock time). The following anal-

ysis focuses on analyzing comparative performance of algorithms in wall clock

time for the five test problems, ZDT3, ZDT6, UF1, UF2 and UF3.

Figures 4.10 - 4.14 provide a comparative analysis of all algorithms in wall
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Figure 4.10: Test Problems ZDT3-8 and ZDT3-16: Comparison of algo-
rithm results in wall clock time: (a and c) Visualization of non-
dominated solutions with worst hypervolume metric value in
10 trials and 60 wall clock time units, (b and d) Hypervolume
progress plots for up to 60 wall clock time units. Vertical error
bars indicate standard deviation.

clock time, for 10 trial runs of 60 units of wall clock time each. Each figure

depicts results obtained for the two variants of each test problem, i.e, with 8 and

16 decision variables. The summarized analysis of Figures 4.10 - 4.14 includes 1)

visualizations of worst trade-offs (according to hypervolume metric) obtained

in 10 trials by each algorithm after 60 units of wall clock time (see sub-figures
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Figure 4.11: Test Problems ZDT6-8 and ZDT6-16: Comparison of algo-
rithm results in wall clock time: (a and c) Visualization of non-
dominated solutions with worst hypervolume metric value in
10 trials and 60 wall clock time units, (b and d) Hypervolume
progress plots for up to 60 wall clock time units. Vertical error
bars indicate standard deviation.

(a) and (c)), and 2) progress plots of mean hypervolume metric value for 10

trials (see sub-figures (b) and (d)). The trade-off visualization gives a visual

depiction of convergence and diversity of all algorithms in wall clock time, and

the progress plots depict relative average efficiency of all algorithms in wall

clock time. The solid red lines in all Pareto front approximation plots depict the
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Figure 4.12: Test Problems UF1-8 and UF1-16: Comparison of algorithm
results in wall clock time: (a and c) Visualization of non-
dominated solutions with worst hypervolume metric value in
10 trials and 60 wall clock time units, (b and d) Hypervolume
progress plots for up to 60 wall clock time units. Vertical error
bars indicate standard deviation.

known Pareto front. Please note that for sub-figures (a) and (c) the best solution

is the line closest to the red line and for sub-figures (b) and (d) the best line is

the lowest line.

Figures 4.10 - 4.14 clearly indicate the relative superiority of MOPLS-16 over

all other algorithms for all test problems in wall clock time and in terms of both
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Figure 4.13: Test Problems UF2-8 and UF2-16: Comparison of algorithm
results in wall clock time: (a and c) Visualization of non-
dominated solutions with worst hypervolume metric value in
10 trials and 60 wall clock time units, (b and d) Hypervolume
progress plots for up to 60 wall clock time units. Vertical error
bars indicate standard deviation.

speed of convergence (as depicted by the progress plots) and the Pareto approx-

imation obtained after 60 wall clock units. While our comparison in function

evaluations depicted that overall performance of GOMORS is best and perfor-

mance of ParEGO is best for the UF1 test problem variants, Figures 4.10 - 4.14

show that MOPLS-16 clearly has the best overall performance when comparison
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Figure 4.14: Test Problems UF3-8 and UF3-16: Comparison of algorithm
results in wall clock time: (a and c) Visualization of non-
dominated solutions with worst hypervolume metric value in
10 trials and 60 wall clock time units, (b and d) Hypervolume
progress plots for up to 60 wall clock time units. Vertical error
bars indicate standard deviation.

is performed in wall clock time.

In case of both the 8 and 16 variable versions of ZDT6, UF1, UF2 and UF3 (see

Figures 4.11 - 4.14) performance of MOPLS-16 is the best amongst all algorithms

compared. For the ZDT3 problems, performances of MOPLS-16 and GOMORS

are comparable (see Figure 4.10). The wall clock time analysis also shows that
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performance of MOPLS-8 is better than other algorithms (apart from MOPLS-

16) for four out of five test problems (ZDT6, UF1, UF2 and UF3). Hence, the

wall clock analysis indicates that increasing the number of centers results in im-

proved performance of MOPLS in wall clock time and performance of MOPLS

is best amongst all algorithms with application to the test problems when com-

parison is made in wall clock time.

4.5.2 Watershed Calibration Test Suite

This section provides an analysis of the effectiveness and efficiency of MOPLS

in producing good trade-off solutions within a limited evaluation budget when

applied to the Watershed Calibration Test Suite (described in detail in Chapter

3). Our analysis with test problems (Section 4.5.1) indicates that increasing the

number of simultaneous local search centers in MOPLS results in improved al-

gorithm performance when results are analyzed in wall clock time. An increase

in the number of centers also results in an increase in the number simultane-

ous local searches in different regions of interest, and subsequently increases

the potential global nature of the search. Given the potential increase in the

global nature of the search and benefits of parallelization, we focus on analyz-

ing performance of MOPLS on the watershed problems with 4, 8 and 16 simul-

taneous centers. As mentioned earlier, these versions of the algorithm are called

MOPLS-4, MOPLS-8 and MOPLS-16 respectively.

Analysis in Function Evaluations

The evaluation budget for the analysis is restricted to 1000 (The number of func-

tion evaluations means the number of objective vector evaluations), and results

are compared against GOMORS, ParEGO and AMALGAM, for comparative
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analysis. Due to the stochastic nature of all algorithms, 10 trial runs were per-

formed for each algorithm, on all watershed test problems (See section 3.7 for a

detailed discussion on development of the Watershed Test Suite).

Performance of all versions of MOPLS was assessed via 1) a visual depiction

of trade-offs obtained by the worst trials of all algorithms (according to uncov-

ered hypervolume metric value), 2) box plot comparison of the quality of trade-

off solutions obtained by all algorithms, and 3) progress plots of the hypervol-

ume quality metric and the IGD metric, depicting the mean hypervolume and

IGD values plotted against number of function evaluations. The visual compar-

ison of trade-offs provides a depiction of the effectiveness of all algorithms in

producing good solutions within a limited simulation evaluation budget. The

box plot analysis helps in analyzing reliability of algorithms in consistently pro-

ducing good solutions within a limited evaluation budget. The progress plot

analysis compares the efficiency of all algorithms in their ability to converge as

the algorithm search progresses.

Figures 4.15 - 4.18 provide a summary of the visual trade-off comparison

and box plot analysis with application to the watershed calibration test suite.

For the two bi-objective watershed problems, TBROOK1 and CVILLE1 (see Fig-

ures 4.15 and 4.17) ,the worst trade-offs obtained from all algorithms (identified

by the algorithm trial with worst hypervolume metric value) after 200, 500 and

1000 simulations, respectively, are shown in subfigures (A-C). The correspond-

ing box plots in subfigures (D-F) show the variations in hypervolume metric

across multiple trial runs. It should be noted that the hypervolume metric cor-

responds to the uncovered hypervolume illustrated in Figure 4.4, and a lower

value of the hypervolume metric is desirable.

For the two 3-objective watershed problems, TBROOK2 and CVILLE2 (see
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Figure 4.15: TBROOK1: Comparison of algorithm results after 200, 500,
and 1000 function Evaluations (10 trials): (a-c) Visualization
of non-dominated solutions obtained from worst trials of each
algorithm, (d-f) Box Plot algorithm comparison of the uncov-
ered hypervolume metric.
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Figure 4.16: TBROOK2: Comparison of algorithm results after 1000
function Evaluations (10 trials): (a-c) Visualization of non-
dominated solutions obtained from worst trials of each algo-
rithm (two Objectives at a time), (d) Box Plot algorithm com-
parison of the uncovered hypervolume metric.

Figures 4.16 and 4.18) ,the worst trade-off obtained from all algorithms (iden-

tified by the algorithm trial with worst hypervolume metric value) after 1000

simulations, respectively, is visualized in subfigures (A-C). Trade-off between

two objectives is visualized in each subfigure. The corresponding box plot in

subfigure (D) shows the variations in hypervolume metric across multiple trial

runs after 1000 function evaluations.

Figures 4.15 - 4.18 consistently indicate that the performance of GOMORS,
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Figure 4.17: CVILLE1: Comparison of algorithm results after 200, 500, and
1000 function Evaluations (10 trials): (a-c) Visualization of
non-dominated solutions obtained from worst trials of each
algorithm, (d-f) Box Plot algorithm comparison of the uncov-
ered hypervolume metric.
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Figure 4.18: CVILLE2: Comparison of algorithm results after 1000 func-
tion Evaluations (10 trials): (a-c) Visualization of non-
dominated solutions obtained from worst trials of each algo-
rithm (two Objectives at a time), (d) Box Plot algorithm com-
parison of the uncovered hypervolume metric.

MOPLS-4, MOPLS-8 and MOPLS-16 is good in terms of efficiency and relia-

bility, for all watershed test problems. The comprehensive analysis of Chap-

ter 3, which included a statistical comparison of performance of GOMORS,

ParEGO and AMALGAM (Figure 3.6), indicated that GOMORS either outper-

forms ParEGO and AMALGAM with statistical significance, or, it is not out-

performed by any other algorithm with respect to application to the watershed

calibration test suite. This notion is echoed in Figures 4.15 - 4.18. Addition-

ally, this analysis also indicates that the performance of MOPLS-4, MOPLS-8,
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and MOPLS-16 is comparable to that of GOMORS for all watershed calibration

problems. The box-plot analysis of CVILLE1 and CVILLE2 further indicates

that MOPLS-4, MOPLS-8 and MOPLS-16 are more reliable than GOMORS and

consistently produce relatively good trade-off solutions.
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Figure 4.19: Comparison of efficiency of algorithms for the Watershed cal-
ibration test suite: Hypervolume metric averaged over mul-
tiple trials, as a function of number of function evaluations
(iterations). Vertical error bars indicate standard deviation.

The efficiency of algorithms is also analyzed for the watershed calibration

test suite. Figures 4.19 and 4.20 depict the efficiency of all algorithms via

progress plots of mean metric values plotted against the number of function
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Figure 4.20: Comparison of efficiency of algorithms for the Watershed cal-
ibration test suite: IGD metric averaged over multiple trials,
as a function of number of evaluations (iterations). Vertical
error bars indicate standard deviation.

evaluations. A clear indication from both progress plot figures is that GOMORS,

MOPLS-4, MOPLS-8 and MOPLS-16 outperform ParEGO and AMALGAM in

terms of their efficiency of convergence. Additionally, the visual trade-off com-

parison of Figures 4.15 - 4.18 showed that GOMORS, MOPLS-4, MOPLS-8 and

MOPLS-16 are effective in producing diverse trade-offs.

The comprehensive analysis of Figures 4.15 - 4.20 indicates that GOMORS,

MOPLS-4, MOPLS-8 and MOPLS-16 are efficient, effective and reliable, in
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comparison to ParEGO and AMALGAM, with application to all problems in

the watershed calibration test suite. Furthermore, MOPLS could outperform

GOMORS in wall clock time if the speed-ups obtained via parallelization are

considered. A performance analysis in wall clock time is also performed and

discussed later in our analysis. Another critical observation of this analysis is

that the performance of MOPLS remains consistent with an increase in the num-

ber of centers. This indicates that the algorithm could have immense potential

to be highly parallelized. This observation does make sense, because increasing

the number of centers, increases the number of simultaneous local searches, re-

sulting in a more global search within each algorithm iteration. However, the

value of adding centers could be highly sensitive to the dynamics of the problem

being solved.
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Figure 4.21: Problem TBROOK1: Comparison of algorithm results in wall
clock time: (a) Visualization of non-dominated solutions with
worst hypervolume metric value in 10 trials and after 60 wall
clock time units, (b) Hypervolume progress plots for 60 wall
clock time units. Vertical error bars indicate standard devia-
tion.
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Figure 4.22: Problem TBROOK2: Comparison of algorithm results in wall
clock time: (a-c) Visualization of non-dominated solutions
with worst hypervolume metric value in 10 trials and after
60 wall clock time units (2 Objectives at a time), (d) Hypervol-
ume progress plots for 60 wall clock time units. Vertical error
bars indicate standard deviation.

Analysis in Wall Clock Time

The following analysis focuses on analyzing comparative performance of algo-

rithms in wall clock time for the watershed calibration test suite. This com-

parative analysis is performed for MOPLS-4, MOPLS-8, MOPLS-16, GOMORS

and PArEGO. Since MOPLS (all three versions, i.e, MOPLS-4, MOPLS-8 and

MOPLS-16) clearly outperforms AMALGAM in terms of function evaluations,
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within a budget of 1000 evaluations, AMALGAM is not included in the wall

clock time analysis.
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Figure 4.23: Problem CVILLE1: Comparison of algorithm results in wall
clock time: (a) Visualization of non-dominated solutions with
worst hypervolume metric value in 10 trials and after 60 wall
clock time units, (b) Hypervolume progress plots for 60 wall
clock time units. Vertical error bars indicate standard devia-
tion.

Figures 4.21 - 4.24 provide a comparative analysis of all algorithms in wall

clock time, for 10 trial runs of 60 units of wall clock time each. Each figure

depicts results obtained for a watershed calibration test problem. The summa-

rized analyses of Figures 4.21 - 4.24 include 1) visualizations of worst trade-offs

(according to hypervolume metric) obtained in 10 trials by each algorithm after

60 units of wall clock time, and 2) progress plots of mean hypervolume met-

ric value for 10 trials. Please note that for figures depicting visualizations of

trade-offs, the best trade-off line is the one that is closest to the zero vector (i.e,

lower left corner of figure) and is diverse, and for figures showing uncovered

hypervolume progress plots, the best line is the lowest line.

Figures 4.21 and 4.23 depict results for the two bi-objective watershed prob-
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Figure 4.24: Problem CVILLE2: Comparison of algorithm results in wall
clock time: (a-c) Visualization of non-dominated solutions
with worst hypervolume metric value in 10 trials and after
60 wall clock time units (2 Objectives at a time), (d) Hypervol-
ume progress plots for 60 wall clock time units. Vertical error
bars indicate standard deviation.

lems, i.e, TBROOK1 and CVILLE1. Each figure has two sub-figures. Sub-

figure(a) depicts a visual comparison of the worst non-dominated solutions (in

terms of uncovered hypervolume) obtained from each algorithm after 60 wall

clock time units. Sub-figure(b) depicts a comparison of algorithms via progress

plot of uncovered hypervolume plotted against wall clock time. The compara-

tive analysis of both TBROOK1 and CVILLE1 (as depicted in Figures 4.21 and

4.23) in wall clock time clearly shows that MOPLS-16 outperforms all other algo-
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rithms in terms of both speed of convergence and quality of trade-offs obtained

after 60 wall clock time units.

Figures 4.22 and 4.24 show results for the two 3-objective watershed prob-

lems, i.e, TBROOK2 and CVILLE2. Each figure has four sub-figures. Sub-

figures(a-c) provide a visual comparison of the worst non-dominated solutions

(in terms of uncovered hypervolume) obtained from each algorithm after 60

wall clock time units. Sub-figure(d) shows a comparison of algorithms via

progress plot of uncovered hypervolume plotted against wall clock time. The

comparative analysis of TBROOK2 and CVILLE2 (as depicted in Figures 4.22

and 4.24) also shows that performance of MOPLS-16 is better than all other al-

gorithms. Hence, it can be concluded that in terms of application to test prob-

lems and the watershed calibration test suite, MOPLS is an efficient, effective

and reliable algorithm, especially when its potential for parallelization is taken

into consideration.

4.6 Conclusion

Expensive multi-objective optimization problems, involving many decisions

(more than 10) can benefit from surrogate-assisted local search. In Chapter 2,

we incorporated surrogate-assisted local search with global surrogate search to

guide the heuristic search process. Our results indicated that local surrogate-

assisted search (also called Gap Optimization in Chapter 2) could assist in effi-

cient multi-objective optimization of computationally expensive problems.

Regis and Shoemaker [27] introduced the idea of local candidate search, by

incorporating radial basis functions as surrogates to assist in efficient single ob-

jective optimization. Their results were promising for optimization within a

very limited evaluation budget.
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In this chapter, we expanded on the local candidate search idea proposed

by Regis and Shoemaker [27] to develop a Multi-Objective Parallel Local Sur-

rogate Search (MOPLS) algorithm. The development and subsequent perfor-

mance analysis of MOPLS shows that the algorithm produces promising results

within a limited evaluation budget. The algorithm analysis on a limited bud-

get of 400 evaluations with application to various test problems, shows that

the algorithm compares well against other surrogate-assisted search algorithms,

namely GOMORS and ParEGO. With incorporation of the speed-ups obtained

via parallelization of MOPLS (analyzed in terms of wall clock time), we show

that the algorithm’s performance is either comparable or superior to other sur-

rogate based search algorithms.

Application of MOPLS to a watershed flow calibration test suite shows even

better results. The algorithm compares well against GOMORS, ParEGO and

AMALGAM within a limited budget of 1000 evaluations. Furthermore, MOPLS

is superior to GOMORS and ParEGO when algorithm comparison is performed

in wall clock time (see Section 4.4.4 for our definition of wall clock time).

Since there is an increased interest in multi-method search algorithms for

efficient multi-objective optimization of computationally expensive problems,

a local surrogate-assisted search can be incorporated into multi method algo-

rithms to further improve optimization efficiency. The synchronous parallel

framework of MOPLS makes it an attractive search methodology for implemen-

tation on cloud clusters. While this analysis gives an indication of the immense

promise of MOPLS and parallel local surrogate-assisted search, especially with

application to computationally expensive watershed calibration problems, fur-

ther innovations can be introduced to make the algorithm efficient and effective

for many-objective (more than three) optimization of computationally expen-
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sive problems.

149



4.7 References

[1] Taimoor Akhtar and Christine A. Shoemaker. Multi objective optimization

of computationally expensive multi-modal functions with rbf surrogates

and multi-rule selection. Journal of Global Optimization, pages 1–16, 2015.

[2] Johannes M. Bader. Hypervolume-Based Search for Multiobjective Optimiza-

tion: Theory and Methods. CreateSpace, Paramount, CA, 2010.

[3] Karl Bringmann and Tobias Friedrich. Approximating the least hypervol-

ume contributor: Np-hard in general, but fast in practice. In Matthias

Ehrgott, CarlosM. Fonseca, Xavier Gandibleux, Jin-Kao Hao, and Marc

Sevaux, editors, Evolutionary Multi-Criterion Optimization, volume 5467 of

Lecture Notes in Computer Science, pages 6–20. Springer Berlin Heidelberg,

2009.

[4] Martin D Buhmann. Radial Basis Functions. Cambridge University Press,

New York, NY, USA, 2003.

[5] C.A. Coello Coello, G.L. Lamont, and D.A. van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary

Computation. Springer, Berlin, Heidelberg, 2nd edition, 2007.

[6] Jared L. Cohon and David H. Marks. A review and evaluation of multi-

objective programing techniques. Water Resources Research, 11(2):208–220,

1975.

[7] Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties

and construction of test problems. Evol. Comput., 7(3):205–230, September

1999.

150



[8] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast

elitist non-dominated sorting genetic algorithm for multi-objective opti-

mization: Nsga-ii. In Proceedings of the 6th International Conference on Paral-

lel Problem Solving from Nature, PPSN VI, pages 849–858, London, UK, UK,

2000. Springer-Verlag.

[9] Kalyanmoy Deb and Deb Kalyanmoy. Multi-Objective Optimization Using

Evolutionary Algorithms. Wiley, 1 edition, June 2001.

[10] Alan Diaz-Manriquez, Gregorio Toscano-Pulido, and Wilfrido Gomez-

Flores. On the selection of surrogate models in evolutionary optimization

algorithms. IEEE Congress of Evolutionary Computation (CEC), pages 2155–

2162, June 2011.

[11] Chariklia A. Georgopoulou and Kyriakos C. Giannakoglou. A multi-

objective metamodel-assisted memetic algorithm with strength-based local

refinement. Engineering Optimization, 41(10):909–923, 2009.

[12] Fred Glover, Manuel Laguna, and Rafael Mart. Tabu search, 1997.

[13] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1st edition, 1989.

[14] H Gutmann. On the Semi-norm of Radial Basis Function Interpolants. Jour-

nal of Approximation Theory, 111(2):315–328, August 2001.

[15] H.-M. Gutmann. A radial basis function method for global optimization. J.

of Global Optimization, 19:201–227, March 2001.

[16] David Hadka and Patrick Reed. Borg: An auto-adaptive many-objective

151



evolutionary computing framework. Evol. Comput., 21(2):231–259, May

2013.

[17] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global

optimization of expensive black-box functions. J. of Global Optimization,

13(4):455–492, December 1998.

[18] Marios K Karakasis and Kyriakos C Giannakoglou. On the use of

metamodel-assisted , multi-objective. Engineering Optimization, 38(8):941–

957, 2006.

[19] J. Knowles. ParEGO: a hybrid algorithm with on-line landscape approxi-

mation for expensive multiobjective optimization problems. IEEE Transac-

tions on Evolutionary Computation, 8(5):1341–66, February 2006.

[20] Hui Li and Qingfu Zhang. Multiobjective optimization problems with

complicated pareto sets, moea/d and nsga-ii. Trans. Evol. Comp, 13(2):284–

302, April 2009.

[21] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three

methods for selecting values of input variables in the analysis of output

from a computer code. Technometrics, 21(2):pp. 239–245, 1979.

[22] John Nicklow, Patrick Reed, Dragan Savic, Tibebe Dessalegne, Laura Har-

rell, Amy C. Hilton, Mohammed Karamouz, Barbara Minsker, Avi Ostfeld,

Abhishek Singh, and Emily Zechman. State of the Art for Genetic Algo-

rithms and beyond in Water Resources Planning and Management. Journal

of Water Resources Planning and Management, 1(1):27, 2009.

[23] Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze.

Multiobjective optimization on a limited budget of evaluations using

152



model-assisted s-metric selection. In Proceedings of the 10th international

conference on Parallel Problem Solving from Nature: PPSN X, pages 784–794,

Berlin, Heidelberg, 2008. Springer-Verlag.

[24] M. J. D. Powell. The Theory of Radial Basis Function Approximation in 1990,

pages 105–210. Oxford University Press, USA, May 1992.

[25] Kevin L. Priddy and Paul E. Keller. Artificial Neural Networks: An Introduc-

tion. SPIE Press, 2005.

[26] P. M. Reed, D. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat. Evolu-

tionary multiobjective optimization in water resources: The past, present,

and future. Advances in Water Resources, 51:438–456, January 2013.

[27] R Regis, C Shoemaker, and A. stochastic radial basis function method for

the global optimization of expensive functions. INFORMS J. of Computing,

19:497–509, 2007.

[28] R Regis, C Shoemaker, and A. stochastic radial basis function method for

the global optimization of expensive functions. INFORMS J. of Computing,

19:497–509, 2007.

[29] R.G. Regis and C.a. Shoemaker. Local Function Approximation in Evolu-

tionary Algorithms for the Optimization of Costly Functions. IEEE Trans-

actions on Evolutionary Computation, 8(5):490–505, October 2004.

[30] Rommel G Regis and Christine A Shoemaker. Parallel Stochastic Global

Optimization Using Radial Basis Functions. INFORMS J. of Computing,

21(3):411–426, 2009.

[31] Rommel G Regis and Christine A Shoemaker. Combining Radial Basis

Function Surrogates Dynamic Coordinate Search in High Dimensional Ex-

153



pensive Black-box Optimization. Engineering Optimization, 45(5):529–555,

2013.

[32] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. De-

sign and Analysis of Computer Experiments. Statistical Science, 4(4):409–

423, November 1989.

[33] L.V. Santana-Quintero, V.A. Serrano-Hernandez, Carlos A. Coello Coello,

A.G. Hernandez-Diaz, and J. Molina. Use of radial basis functions and

rough sets for evolutionary multi-objective optimization. In Computational

Intelligence in Multicriteria Decision Making, IEEE Symposium on, pages 107–

114, April 2007.

[34] Vladimir N. Vapnik. Statistical learning theory. Wiley, 1 edition, September

1998.

[35] David A. Van Veldhuizen and David A. Van Veldhuizen. Multiobjective

evolutionary algorithms: Classifications, analyses, and new innovations.

Technical report, Evolutionary Computation, 1999.

[36] Jasper a Vrugt and Bruce A Robinson. Improved evolutionary optimization

from genetically adaptive multimethod search. Proceedings of the National

Academy of Sciences of the United States of America, 104(3):708–11, January

2007.

[37] Jasper a Vrugt and Bruce a Robinson. Improved evolutionary optimization

from genetically adaptive multimethod search. Proceedings of the National

Academy of Sciences of the United States of America, 104(3):708–11, January

2007.

154



[38] Stefan M Wild, Rommel G Regis, and Christine A Shoemaker. ORBIT: op-

timization by Radial Basis Function Interpolation in Trust-Regions. SIAM

Journal of Scientific Computing, 30(6):3197–3219, 2007.

[39] Raghavan Srinivasan Xuesong Zhang and Michael Van Liew. On the use

of multi-algorithm, genetically adaptive multi-objective method for multi-

site calibration of the swat model. Hydrological Processes, 24:955–969, 2010.

[40] Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Ex-

pensive multiobjective optimization by MOEA/D with Gaussian process

model. IEEE Trans. Evol. Comp, 14(3):456–474, June 2010.

[41] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai Nagaratnam

Suganthan, and Wudong Liu. Multiobjective optimization Test Instances

for the CEC 2009 Special Session and Competition. Mechanical Engineering,

pages 1–30, 2009.

[42] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The Hypervolume

Indicator Revisited: On the Design of Pareto-compliant Indicators Via

Weighted Integration. In Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni,

Tomoyuki Hiroyasu, and Tadahiko Murata, editors, Evolutionary Multi-

Criterion Optimization, volume 4403 of Lecture Notes in Computer Science,

chapter 64, pages 862–876. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007.

155



CHAPTER 5

CONCLUSION

This research was aimed at introducing methods for tackling calibration prob-

lems, within a Multi-Objective Optimization framework. Multi-objective meth-

ods have recently attracted a high level of interest across various applied

disciplines[2], and have been in focus in this thesis. The multi-objective problem

proposes a set of alternative or trade-off solutions to the decision maker, after

which he/she can make an informed decision.

Within the hydrological model calibration literature, various authors have

identified the need to employ multi-objective methods [4] [8] [12] [3] to identify

alternate calibrations. Given the computational burden associated with evalu-

ation of objectives through complex models, our focus has been on developing

algorithms for efficient calibration of computationally expensive hydrological

models. This requires that good solutions be obtained within a limited number

of evaluations. Chapters 2 and 4 of the thesis discuss details of the developed

algorithms, and document their effectiveness in producing reasonable calibra-

tion alternatives within a limited evaluation budget. The work depicted in the

thesis also highlights the value that can be added, within meta-heuristics search

methodologies, by incorporating surrogate assistance, especially, when evalu-

ation of objectives is very time consuming. Furthermore, Radial Basis Func-

tions can be used effectively as surrogates for problems with more than 10 de-

cision variables. The analysis in Chapter 4 also highlights the advantage of in-

corporating surrogates within a local search based synchronous parallel opti-

mization framework to efficiently solve expensive multi-objective optimization

problems.
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The aim of an effective multi-objective calibration analysis is not the identi-

fication of many trade-off solutions but the identification of meaningful trade-

off solutions [7] (also referred as behavioral solutions in prior literature [1]).

Identification of meaningful calibration solutions can assist decision makers in

understanding and quantifying model uncertainties (The GLUE framework is

an example [1] [3]). Furthermore, the existence of numerous meaningful solu-

tions could also highlight structural imperfections of a model, and help decision

makers in understanding model limitations.

Since, the focus of our research has been on efficient multi-objective opti-

mization of watershed calibration problems, a critical question within the anal-

ysis is ”Can we obtain meaningful trade-offs within a limited evaluation bud-

get?”. Chapter 3 of the thesis introduces a new metric for this purpose, Dis-

tributed Cardinality, that defines and identifies distributed meaningful trade-

offs and also quantifies an algorithm’s effectiveness in producing meaningful

trade-offs. Furthermore, the analysis in Section 3.10 (based on the Distributed

Cardinality index) shows that GOMORS is more effective than ParEGO [6] and

AMALGAM [11] in identifying meaningful solutions for multi objective water-

shed model calibrations problems.

This thesis depicts a significant progress towards efficient multi-objective

optimization of watershed calibration problems. We have successfully high-

lighted the value of surrogate assisted search in multi-objective optimization,

and its potential application to expensive multi-objective simulation optimiza-

tion problems. We showed that meaningful calibrations could be obtained

within a limited evaluation budget through efficient optimization, for models

based on the Soil and Water Assessment Tool (SWAT) [10] and [9]. Overall,

this thesis contributes to multi-objective calibration of watershed models, by
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proposing algorithms for efficient calibration, and by proposing a new metric

for comparing performance of algorithms in terms of producing meaningful

calibrations.

In addition to the aim of providing insights through current work, this

thesis also opens up avenues of further research in various directions. While

surrogate-assisted search has been discussed extensively in prior literature, the

potential for its hybridization with other meta-heuristics has not been explored

extensively. Recent heuristic algorithm development research efforts have

shown interest in hybridized algorithms [2]. AMALGAM [11] and Borg[5] are

amongst some recent algorithms that incorporate multi method search within

the optimization process. While these algorithms are efficient, and effective,

their effectiveness could further improve by incorporation of surrogate assis-

tance in the search process. MOPLS can be employed within a Multi-method

search for efficient optimization. Given the recent advances in cloud comput-

ing, MOPLS could be effectively used in multi-method search optimization of

computationally expensive Multi-criteria problems.

The optimization formulations incorporated in this research typically em-

ploy two or three objectives. However, our algorithms can be modified to han-

dle many objectives. This might be critical within the calibration framework.

Our focus has been on calibration of a single constituent i.e flow. However, mul-

tiple constituents could be incorporated into the calibration analysis, resulting

in an increase in the number of calibration objectives. Hence, another avenue

of future research could include incorporation of many objectives in the cali-

bration analysis, and assessing if any modifications in the proposed algorithms

described in this thesis are necessary for improving computational efficiency in

order to analyze many objectives.
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APPENDIX A

WATERSHED MODEL CALIBRATION THROUGH MULTI-OBJECTIVE

OPTIMIZATION

A.1 Introduction

Watershed model calibration is a process that has evolved into a critical exercise

in the development of effective deterministic models for prediction and forecast-

ing of watershed behaviors. These models are employed to assess watershed

(quality and quantity) response to prevalent and varying management practices

and climate patterns [1]. Numerous watershed modeling methodologies are

prevalent in the research world and industry today, which include distributed

and lumped models, physically based models, stochastic models, deterministic

models, event-based models, etc. [25]

Recent advances in computing power have led to development of complex,

physically based models to encapsulate finer details of flow and transport be-

havior at very large spatial scales and smaller time steps. Even with the comput-

ing capabilities available to us today, such models can be computationally ex-

pensive [39] [29], and incorporate a significant number of parameters [46] [12]

which are either impossible to measure, or hard to understand, or both. The

process of identification of suitable values for these parameters has been a crit-

ical topic of research studies and comes under the realm of model calibration.

The calibration process essentially incorporates comparison of model response

with historical measured data. In situations where historical data is not avail-

able, calibrated parameter values of watersheds with similar physical attributes

to the one under consideration, are used as a benchmark for calibration. This

study focuses on model calibration with available historical watershed response
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data.

”Manual methodologies versus automatic strategies” for watershed model

calibration is a topic of immense debate amongst researchers and practition-

ers. Manual methodologies typically employ expert opinion of hydrologists

coupled with a hit and trial scheme [15][4] to ensure that model predictions

replicate measured reality as closely as possible. Boyle et al. (2000) [4] highlight

the importance and complexity of the process of replicating reality as closely as

possible. Manual methodologies employ various techniques simultaneously in

the process of replication, for instance goodness of fit measures [17] [31], visual

hydrograph analysis, understanding of hydrology, etc. [37]

Automatic calibration strategies employ use of optimization techniques to

propose an automatic alternative to the process of replicating measured real-

ity. Goodness of fit measures are typically used as calibration optimization ob-

jectives and are often the sole criterion for assessing calibration quality [14].

Since the watershed model calibration problem can essentially be viewed as

a simulation-optimization problem, search based algorithms have been domi-

nantly used in development of automatic calibration strategies. The key chal-

lenge in the optimization process is tackling computational complexity of sim-

ulation models by devising efficient algorithms which produce good solutions

within a limited number of simulation evaluations. The Dynamically Dimen-

sioned Search Algorithm proposed by Tolson and Shoemaker (2007) is a compu-

tationally efficient search algorithm for automatic watershed model calibration

[41].

Historically, single objective optimization techniques have been prevalent

in the automatic calibration process. However, the calibration problem itself

is inherently a multi-objective optimization problem, where the objectives are
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to minimize the absolute difference between each observation and correspond-

ing simulated output, assuming that there is no measurement error. Yapo et al.

(1998) [47] and Gupta et al. (1998) [17] highlight the inherent multi-objective na-

ture of a watershed model calibration problem, indicating that a single numer-

ical performance criterion seldom ensures overall closeness of simulated data

with measured data. While various performance criteria have been identified

as suitable for automatic calibration of watershed models, no single criterion

ensures overall optimality in the true sense. Hence, hydrologists prefer a man-

ual approach towards calibration, where the inherent multi-objective nature of

the calibration process can be highlighted through an interactive, subjective and

complex decision making process. The inherent multi-objective nature of a cal-

ibration problem adds new challenges namely 1) numerical formulation of ob-

jectives and 2) computational complexity of multi-objective optimization.

While a manual methodology has the advantage of use of visual and hydro-

logical analysis, flexibility, and availability of expert opinion in the process of

calibration, it can be cumbersome, time-consuming and requires expert human

interaction. On the other hand, automatic techniques are computationally effi-

cient and may not require human interaction in the calibration process. Qual-

ity of single objective-based automatic strategies, however, relies heavily on the

calibration optimization objective which might not be desirable. Multi-objective

strategies can bridge the gap between automatic and manual calibration tech-

niques [27] [4], but may be limited by computational complexity of simulation

models [39], and the added need of a strategy for choosing a parameter combi-

nation from a set of equally optimal parameter combinations.

The aim of this study is to analyze and understand some of the major, afore-

mentioned challenges of calibrating computationally expensive hydrological
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models involving numerous unmeasurable parameters, and subsequently, to

propose a generic calibration strategy to counter the identified major challenges.

We proposed a ”Hybrid Automatic Manual Strategy” (HAMS) for watershed

model calibration. The proposed strategy focuses on calibration via a multi-

objective optimization framework. A novel efficient surrogate model based op-

timization algorithm is employed for multi-objective optimization, and a novel

technique for selection of a parameter combination from various equally opti-

mal combinations, is proposed.

A.2 Calibration Problem Description

Calibration of any models is an effort in tweaking unmeasurable and /or un-

known parameters of a model, such that model predictions are as close to reality

as is possible. A popular way employed in the process of calibrating a model is

to involve historical measurements in order to guide the process of calibration.

While recent advances in research have led to development of highly sophisti-

cated watershed models, completely accurate replication of reality has not been

achieved. Errors within models originate from assumptions made during model

development and through errors in model input. If historical measurements are

employed to guide the model calibration process, one should also be aware of

the existence of measurement errors.

In this analysis, our focus is on calibration of deterministic watershed flow

models, meaning the model output is fixed for a given input. Additionally, we

do not consider measurement error in the calibration process, and hence assume

that historical measurements depict reality.

Let D (domain space) be a hypercube and a subset of Rd and θ ∈ D, where

θ = {θ1, . . . , θd} represents the d model parameters that require calibration. Let

164



Y = {y1, . . . , yn} be the vector that denotes observed watershed responses mea-

sured at one location and n different times. Let Ŷ(θ) = {̂y1(θ), . . . , ŷn(θ)} be the

vector that denotes the corresponding response of the simulation model. Since

measurement error is not considered in the parameter calibration process, the

calibration problem can be depicted as follows:

{θ∗ ∈ D : Ŷ(θ∗) ≈ Y} (A.1)

”≈” is a measure of closeness of simulated output to measured output, and con-

sequently indicates model performance against historical measured information.

Hence, based on the discussed assumptions, the focus of our calibration study

is to deduce a parameter combination or a set of parameter combinations such

that Equation A.1 is satisfied.

A.2.1 The Manual Calibration Process

Boyle et. al. (2000) [4] define manual calibration as a 3-stage process. Stage-0 in-

corporates identification of prior uncertainty bounds on the model parameters

to be calibrated. Stage-I involves refinement of model parameter ranges via as-

sessing effects of individual parameters, on model performance. This assessment

typically entails a trial and error scheme, where parameters are individually

tweaked to re-assess model performance and its sensitivity to individual parame-

ters. Stage-II employs parameter interactions within a more sophisticated and

complex decision framework to further refine parameter ranges and further im-

prove model performance.

The manual calibration process essentially aims at solving the problem de-

picted in equation A.1. However, manual calibration is subjective and varies

according to the preferences of the calibration expert. Calibration experts make
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use of information regarding the proposed use of the model, a detailed under-

standing of the model, and various techniques for evaluating model performance

(for instance visual hydrograph analysis, goodness of fit measures, etc.) to in-

teractively adjust parameter values.

While the manual calibration process is thorough and interactive, it can be

highly inefficient and requires high level human expert opinion which might

not be readily available. The time constraint in the calibration process has

emerged as a critical issue in recent history due to the advent of highly so-

phisticated distributed and semi-distributed models. Depending on the scale

and complexity of the underlying watershed, the computational cost of a sim-

ulation, using the new and improved models, can be extremely high (order of

minutes and hours). Hence, it is desirable that the calibration process produce

good results within a limited number of simulation evaluations.

A.2.2 Automatic Calibration

Automatic calibration techniques assume logical equivalence of the ”≈” mea-

sure (equation A.1) to a goodness of fit measure, in order to convert the close-

ness of simulated output to measured data, into a single quantifiable perfor-

mance measure. Subsequently it is assumed that:

Ŷ(θ) ≈ Y := max
θ

f (θ) (A.2)

where f (θ) is a goodness of fit measure prescribed for the automatic calibration

process. Automatic optimization techniques have emerged as an alternate to

the manual calibration process, where sophisticated search methods can be em-

ployed to calibrate a model to a predefined objective, i.e., f (θ). Various single

objective optimization algorithms have been used in prior research as well as
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in industry either to assist in, or serve as an alternative to, manual calibration

[18]. Evolutionary search algorithms, simulated annealing and tabu search [9]

are some of the many algorithms that have been used for automatic calibration

of watershed flow models through single objective optimization. Considerably

efficient algorithms have been proposed recently in order to tackle the computa-

tional intensity of contemporary simulation models. [42] proposed the Dynam-

ically Dimensioned Search algorithm for efficient calibration of parameters of

large watershed models. Surrogate model based optimization algorithms have

also been proposed to further speed up the automatic calibration process [19]

[36].

Since single objective techniques are heavily dependent on the objection

function chosen, practitioners generally prefer manual techniques. However,

some prior research indicates better performance via automatic single objective

techniques than manual calibration strategies [24]. While single objective auto-

matic calibration has been very popular in past literature, recent studies have

also highlighted the advantages of using them iteratively to replicate the man-

ual calibration process [20].

A.2.3 Multi-Objective Calibration Decision Analysis

Despite all the advantages of automatic techniques, e.g., their ease of use, com-

putational efficiency, and ability to produce results without high level knowl-

edge from hydrologists, manual calibration is the preferred methodology in in-

dustry today. Since hydrologists consider various aspects / criteria during the

calibration process, automatic strategies especially single-objective automatic

strategies are not preferred by many. While automatic optimization strategies

have the advantage of finding near-optimal solutions for a particular objective
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within a limited budget of simulation evaluations (a methodology which might

be considerably efficient compared to hit and trial techniques employed in man-

ual calibration), they only consider a single objective in deducing a parametric

combination during the calibration process.

Various authors ([13], [47] and [17]) highlight the inherent multi-objective

nature of a calibration problem, emphasizing that one particular parameter

combination might not be the optimal calibration for a particular model. Gupta

et al. (1998) [17] aptly identify that a model calibration problem as prescribed

by equation A.1 is essentially a multi-objective optimization, where, ideally, the

calibration process aim is to subsequently minimize the difference between each

measured observation and corresponding simulation response. Equation A.3

provides a mathematical representation of the ”ideal” equivalence (signified by

”≡”) of the calibration problem to multi-objective optimization.

{
θ∗ ∈ D : Ŷ(θ∗) ≡ Y

}
:= min

θ

{
|y1 − ŷ1(θ)| , . . . , |yn − ŷn(θ)|

}
(A.3)

Assuming that a simulation model can replicate reality accurately and accu-

rate historical data is available (assuming there is no measurement error), solv-

ing the ”ideal” multi-objective problem depicted in equation A.3 could produce

the optimal calibration. However, watershed simulation model development is

based on various assumptions which tend to simplify natural phenomena, and

it is highly unrealistic to assume existence of a single optimum solution of the

”ideal” multi-objective problem. Multi-objective optimization problems tend to

produce a set of equally optimal solutions upon solving. This solution set is also

referred as a pareto optimal set or a set of trade-off solutions. Let P∗ be the pareto

optimal set for the ”ideal” multi-objective calibration problem:

P∗ =
{
θ ∈ D : min

θ
{ |y1 − ŷ1(θ)| , . . . , |yn − ŷn(θ)| }

}
(A.4)
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It is safe to assume that P∗ realistically contains more than one pareto optimal

solution. ”Ideal” equivalence of the calibration problem to multi-objective op-

timization, as depicted in equations A.3 and A.4, signifies the immense advan-

tage of incorporating multi-objective optimization in the watershed calibration

process. However, the ”ideal” multi-objective optimization problem typically

incorporates a large set of objectives, and hence cannot practically be solved,

even via use of efficient optimization techniques (discussed further in section

A.5).

The ”ideal” multi-objective calibration can be subjectively re-defined to con-

siderably reduce the number of competing calibration objectives. If the number

of objectives is reduced to one, the methodology essentially becomes an auto-

matic scheme, as depicted in equation A.2. Even with a subjective redefinition

of the ”ideal” calibration formulation, multi-objective optimization can be criti-

cal in visualization of trade-offs between competing calibration objectives, and

assist practitioners in choosing a calibration combination accordingly. Bekele et

al. (2007) [2] indicate that a particular calibration combination might be optimal

or near optimal according to a particular objective (e.g., peak events), but might

be less than satisfactory for other objectives (e.g., drought events), signifying

the underlying trade-off between two objectives.

A well established calibration consideration amongst hydrologists is the pro-

posed application of a model (for instance prediction of total pollutant loading

at a point). Madsen et al. (2003) [27] emphasize the advantage of using multi-

objective analysis for calibration according to the proposed application of the

model. This consideration is the primary focus within the prevalent manual

calibration methodology. The importance of using multi-objective optimization

in bridging the gap between automatic and manual techniques for calibration
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has been further highlighted by [4]. Khu et al. (2008) [23] propose strategies for

incorporating multi-objective optimization into calibration of watershed mod-

els involving measurement information at multiple sites.

The existence of multiple trade-off solutions for the ”ideal” multi-objective

calibration problem reveals the inherent structural ambiguity of the simulation

model. Gupta et al. [15] highlight the use of multi-objective optimization in

quantifying structural ambiguity of model predictions, which can be critical

to the eventual selection of a calibration combination. Tolson and Shoemaker

[43] highlight the concept of ”equifinality” in the calibration process, where it is

noted that various calibration combinations could be equally good. The ”equifi-

nality” concept is further used to quantify uncertainty in model response. Vrugt

et al. [44] emphasize the importance of measurement error in uncertainty quan-

tification, highlighting the importance of parametric uncertainty in the process.

Muleta et al. employ the GLUE methodology to quantify model uncertainty

[30].

While multi-objective optimization can provide added trade-off information

(in comparison with automatic single objective techniques) to practitioners dur-

ing the process of calibration, effectiveness of the multi-objective approach is

highly dependent on various factors. Some of these include: 1) choice of ob-

jectives in the multi-objective problem formulation, 2) choice and efficiency of

the optimization algorithm, and 3) a methodology for choosing an appropriate

calibration combination from alternatives obtained via multi-objective analysis.

Prior research methodologies focus on some of these aspects separately. For in-

stance Fenicia et al. (2007) [11] emphasize use of a step-wise, single-objective

optimization approach and compare with a multi-objective optimization ap-

proach, emphasizing that the multi-objective approach can help in highlighting
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structural uncertainty of the underlying model. We propose a Hybrid Auto-

matic Manual Strategy (HAMS), which employs multi-objective optimization

within a hybrid calibration strategy.

A.2.4 A Hybrid Automatic Manual Strategy - HAMS

Posteriori [7] Multi-objective strategies consider multiple objectives in an auto-

matic optimization process and can provide a set of solutions which are equally

optimal as per the objectives specified (quantification of objectives is the criti-

cal process). However, there is an added challenge of deciding what calibration

combination amongst the pareto optimal solutions is best suited for a particular

model and its proposed use. In this paper we propose a hybrid multi-objective

strategy that can be employed to 1)Deduce a set of parameter combinations suit-

able for a particular model, and 2) Decide upon a single parameter combina-

tion as the best possible calibration for a particular model, a decision contingent

upon the proposed use of the model and the results obtained through the multi-

objective optimization process. This strategy aims at bridging the gap between

automatic and manual methods for calibration and is called HAMS. Figure 1

provides a flow description of the proposed strategy.

As depicted by Figure A.1, HAMS is a sequential methodology which is ini-

tiated by 1) formulating a calibration problem in a multi-objective framework,

2) efficiently solving the multi-objective calibration problem via surrogate based

optimization and 3) using an interactive analysis as well as an expert analysis

(automatically mimicking manual calibration) for choosing a calibration com-

bination from various alternatives identified by multi-objective optimization.

Sections A.5 - A.8 discuss HAMS in detail and describe how the strengths of

automatic and manual calibration are incorporated into the Hybrid Automatic
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Figure A.1: Flow chart of the Hybrid Automatic Manual Scheme for Wa-
tershed model calibration

Manual Strategy for watershed flow calibration of the Cannonsville Reservoir

SWAT model, developed to simulate flow, sediment and phosphorus transport,

to the Cannonsville Reservoir. Results are discussed during discussion of the

hybrid strategy. Sections A.3 and A.4 briefly discuss the case studies used in

172



analyzing the proposed calibration strategy.

A.3 Case Study I: Cannonsville Watershed

[25] provides a brief introduction to the different types of watershed model-

ing methodologies prevalent in the research world and industry today, which

include distributed and lumped models, physically based models, stochastic

models, deterministic models, event-based models, etc.

Various authors [35] [22] discuss the varying nature of the calibration process

for lumped, distributed and semi-distributed models. Distributed models tend

to involve a large set of parameters that might need calibration. Considerable

work has been done to identify sensitive parameters in distributed models, for

an effort to reduce parametric dimensionality. Werkhoven et al. (2009) [46]

discuss a methodology for reducing parametric dimensionality via sensitivity

analysis.

The Cannonsville Watershed SWAT Model is the primary case study used

in analyzing the HAMS calibration strategy. Tolson and Shoemaker (2007) [40]

discuss the development of the Cannonsville Watershed Model through the Soil

and Water Assessment Tool (SWAT).

The Soil and Water Assessment Tool is a physically based, deterministic,

semi-distributed watershed model [33] and [32]. The aim of modeling the Can-

nonsville Watershed through SWAT is to predict phosphorus loading into the

Cannonsville Reservoir, which is a direct water supply source for New York

City. The modeling prediction exercise through SWAT is carried out to forecast

phosphorus loading into the watershed sink and introduce best management

practices if the forecast indicates significant deterioration in watershed quality.

In this study our focus is only on the calibration of flow parameters of the model.
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A preliminary sensitivity analysis of the model flow parameters is discussed in

[40] and the final number of parameters to be calibrated is 15.

A.4 Case Study II: Townbrook

Townbrook is one of 43 sub-basins of the Cannonsville Watershed in upstate

New York, also modeled via SWAT. The primary aim of proposing new best

management practices for the Townbrook and Cannonsville Watersheds is re-

ductions of pollutant loading at the least cost. Hence, the primary aim of a

SWAT model that can assist in analyzing alternate BMPs is good prediction

of pollutant loading. Our aim in this study is to calibrate the two models for

flow, since flow predictions dictate pollutant loading predictions. The advan-

tages and importance of introducing new BMPs are highlighted by [13]. Since

the Townbrook model is relatively inexpensive, in terms of computational cost

(computational time of a single run is in the order of seconds), we use the Town-

brook model to compare the efficiency of our optimization strategy in Stage-II

of HAMS (see Figure A.1), to various other algorithms.

A.5 Stage I: Calibration Optimization Formulation

The aim of Stage 1 (see Figure A.1) of the Hybrid Automatic Manual Strategy for

watershed flow calibration is to formulate the calibration problem as a multi-

objective optimization problem. As mentioned previously, the ”ideal” multi-

objective optimization problem depicted in equation A.3 typically involves a

large number of objectives (equal to the number of observations, i.e., n) which

could potentially be highly correlated. Due to the dimensional complexity of

calibration problems and computational complexity of simulation models, the
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”ideal” multi-objective problem is virtually unsolvable. Additionally, multi-

collinearity between competing objectives make the ”ideal” problem undesir-

able [17]. Since the ”ideal” problem is practically unsolvable, we can subjec-

tively choose potentially unrelated calibration criteria to formulate a reduced

multi-objective calibration optimization problem. Based on a subjectively de-

fined multi-objective formulation, we can assume logical equivalence to the ”≈”

measure in equation A.1:

{
θ∗ ∈ D : Ŷ(θ∗) ≈ Y

}
:= min

θ

{
f1(θ), . . . , fk(θ)} (A.5)

Once the purpose or planned use of a model is known, hydrologists focus on

various aspects / criteria in the model calibration process, which typically in-

clude: 1) Volume Flow Calibration, 2) Base Flow Calibration, 3) Peak Flow Cal-

ibration, 4) Hydrograph Shape Calibration. There are many subjective and ob-

jective methods that have been used in prior research and in practice to ana-

lyze the quality of calibration, and calibrate according to the above-mentioned

objectives. Objective metrics for quality analysis include statistical criteria, for

instance R squared value, the Nash-Sutcliffe Efficiency [31], Bias, mean absolute

error, etc. [17], and can all be used as objective functions in single or multi-

objective optimization algorithms. Subjective criteria are employed, especially,

to calibrate models for shape and to capture extreme events more accurately.

A.5.1 Threshold Based Formulation

In this analysis we investigate three multi-objective calibration formulations,

the first one being ”threshold based formulation”. In this formulation, the mea-

sured data is analyzed in order to segregate the observations based on thresh-

olds.
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Figure A.2: Cannonsville Measured Data Distribution and ananlysis

Figure A.2 depicts the distribution and empirical CDF of the measured data

available for calibration of the Cannonsville Watershed Flow model. The mea-

sured data can be divided into various categories (for instance peak flow obser-

vations, low flow observations, etc.), upon subjective identification of thresh-

olds, as depicted in the right side of figure A.2. By dividing the data into various

categories, we can devise various objectives, for our multi-objective optimiza-

tion formulation.

f1(θ) =
∑
i∈N1

[yi − ŷi(θ)]2 , where N1 = {i | yi≤ymax, 1≤ i≤n}

f2(θ) =
∑
i∈N2

[yi − ŷi(θ)]2 , where N2 = {i | ymax≤yi, 1≤ i≤n}
(A.6)

Equation A.6 describes the objectives used in the first formulation (Formulation

1) proposed for HAMS. The two objectives in this formulation are ”1) Peak Flow

Sum of Squared Errors” and ”2) Other Flow Sum of Squared Errors”. This for-

mulation is not used in the HAMS analysis, but has only been used to briefly

demonstrate the efficiency of the novel multi-objective algorithm used in stage-

II of the proposed calibration strategy.

For the second formulation, the measured data is divided into three cate-
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gories. The first category is low flows, second is medium flows and third is

high flows. Since the high flows significantly impact overall error (if a single

objective sum of squared formulation is employed), and low flow calibration

is critical to overall volume errors, separating these flows through thresholds

allows the performance of the model within each flow range to be considered

as a separate objective in a multi-objective optimization problem. Figure A.2

depicts the subjectively identified thresholds obtained in this analysis, from the

empirical distribution of the measured data for the Cannonsville Model. Conse-

quently, a three objective threshold based formulation is devised and is depicted

in equation A.7.

f1(θ) =
∑
i∈N1

[yi − ŷi(θ)]2 , where N1 = {i | yi≤ymin, 1≤ i≤n}

f2(θ) =
∑
i∈N2

[yi − ŷi(θ)]2 , where N2 = {i | ymin≤yi≤ymax, 1≤ i≤n}

f3(θ) =
∑
i∈N3

[yi − ŷi(θ)]2 , where N3 = {i | ymax≤yi, 1≤ i≤n}

(A.7)

A.5.2 Decomposition of NSE

The third calibration formulation (Formulation 3) discussed in our analysis is

inspired by the work done by Gupta et al. (2009) [16] in identifying various com-

ponents of the Nash Sutcliffe Efficiency (NSE) [31] criterion. As per the analysis

of Gupta et al. [16], the NSE criterion can be divided into three components,

1) relative bias, 2) relative variability, and 3) linear correlation. The relative bias

component of the criterion tends to minimize volume balance errors, the relative

variability tends to mimic the flashiness of the hydrograph, inherently focusing

on capturing extreme flows, while the correlation criterion, in combination with

relative variability, tends to capture the shape of the hydrograph.

As is mentioned by Gupta et al. [16], there is an inherent disadvantage of
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using all three criteria as a combination in the NSE component. Since the NSE

component describes relative bias as a fraction of measured data variability, us-

ing the NSE as a single objective gives less weight to the objective of minimizing

model bias, potentially resulting in significant volume errors. Gupta et al. [16]

also show that within the NSE metric relative variability is always bounded by

the correlation, which is always less than unity, and hence, NSE tends to un-

derestimate the variability of flows. While the KGE metric proposed by Gupta

et al. [16] can be used as an alternative, to automatically calibrate the model

via single objective optimization, it devoids the calibration process of analysis

of the interplay between these objectives, which can potentially be conflicting.

The advantage of using this methodology is that one does not need to define

thresholds as in Formulations 1 and 2. The mathematical description of the

three objectives for Formulation 3 are as follows:

f1(θ) = [r − 1]2 , where r =
∑N

i=1(yobs,i − µ̄obs) ∗ (ysim,i − µ̄sim)√∑N
i=1(yobs,i − µ̄obs)2 ∗

∑N
i=1(ysim,i − µ̄sim)2

f2(θ) = [α − 1]2 , where α = σ̄sim/σ̄obs

f3(θ) = [β − 1]2 , where β = µ̄sim/µ̄obs

(A.8)

Table A.1 briefly describes the multi-objective optimization calibration prob-

lems used in our analysis. Note that TBROOK1 is only used to briefly depict the

relative efficiency of the multi-objective optimization algorithm used in stage 2

of HAMS.

A.6 Stage II: Efficient Multi-Objective Optimization

Prior research has primarily focused on using evolutionary algorithms for

multi-objective calibration of watershed models [38] [34]. Tang et al. (2006)

[39] assess the effectiveness of evolutionary algorithms towards multi-objective
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Table A.1: List of multi-objective problems used in this paper for analysis
of HAMS

Problem Name Description

TBROOK1 Formulation 1 applied to the town brook case study

TBROOK2 Formulation 2 applied to the town brook case study

CVILLE1 Formulation 1 applied to the Cannonsville case study

CVILLE2 Formulation 2 applied to the Cannonsville case study

CVILLE3 Formulation 3 applied to the Cannonsville case study

calibration of distributed watershed models with large parameter sets. While

the use of evolutionary algorithms for multi-objective calibration of distributed

watershed models has been extensively explored, surrogate model-based algo-

rithms have not been tested extensively in this regard [21]. It is highlighted in

various texts [39], that use of evolutionary strategies could be computationally

very expensive and is largely dependent on the calibration problem at hand.

Surrogate model-based algorithms could significantly reduce the computational

complexity of the multi-objective optimization process. HAMS introduces the

use of GOMORS, which is a surrogate model-based multi-objective optimiza-

tion algorithm aimed at finding good approximations to the Pareto front within

a limited budget of simulations of a complex, distributed watershed model. We

further discuss the algorithm in this section and also discuss results of GOMORS

in comparison with AMALGAM [45] for the TBROOK1 problem formulation

described in Table A.1.

The proposed strategy, GOMORS is iterative, and the response surface

model, which is used to approximate the costly objective functions, is updated

after each iteration. Radial Basis Function Approximation [5] [6] is employed
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for development of the surrogate model / response surface model. One point is

selected for function evaluation in each iteration and subsequently used to up-

date the response surface model. Selection of the evaluation point is based on

a trade-off between three criteria, namely 1) selected point should not be very

close to already evaluated points, 2) selected point should be close to or amongst

the points that form a near-optimal front on the response surface model, and 3)

selected point should be picked such that unexplored areas on the response sur-

face model close to the near-optimal front are explored.

GOMORS consists of 4 major segments: 1) Picking initial sample points, 2)

Response Surface Model, 3) Evolutionary algorithm for solving multi-objective

problem and 4) Picking additional points from estimated pareto front estab-

lished on approximated functions . The algorithm output is a non-dominated

set of solutions Pbest which is an approximation to the true pareto solution of the

problem i.e P∗. The algorithm framework allows for picking multiple points at

one instance for simultaneous simulation evaluation. Hence, a modestly paral-

lel version (involving up to 4 cores) of the algorithm was developed particularly

for this study to further improve algorithm efficiency.

A.6.1 Algorithm Comparison

Table A.1 provides a list of case studies / test problems used in the analysis

of HAMS. Stage-II of the strategy employs GOMORS, an efficient strategy for

multi-objective optimization of the calibration formulation developed in Stage-

I. In this section we analyze the algorithmic efficiency of GOMORS by assess-

ing its application to TBROOK1 (see Table A.1). Furthermore, performance

of GOMORS is compared against AMALGAM and NSGA-II. AMALGAM is

a hybrid algorithm proposed by Vrugt et al. [45] as a relatively efficient multi-
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method evolutionary strategy. NSGA-II [8] is a well known and widely used

evolutionary algorithm for multi-objective optimization.
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Figure A.3: Visual Pareto Approximation Comparison - GOMORS,
AMALGAM and NSGA-II: a) Comparison for TBROOK1
problem after 500 simulation evaluations, b) Comparison for
TBROOK1 problem after 1000 simulation evaluations

We performed 10 test runs of each of the algorithms for TBROOK1. Each test

run was terminated after 1000 simulation evaluations. Figure A.3 provides a vi-

sual comparison of the best fronts attained for each algorithm after 10 test runs

(front quality was gauged via Inverse Generational Distance (IGD) metric anal-

ysis). Algorithm performance is also visually compared after completing 1000

simulation evaluations. Figure A.3 clearly indicates that GOMORS converges

to a better set of non-dominated solutions than both AMALGAM and NSGA-II

after a limited number of evaluations. AMALGAM tends to perform better than

NSGA-II; howeve,r it is relatively inefficient in comparison to GOMORS for the

TBROOK1 test problem.

The relative inefficiency of AMALGAM in comparison to GOMORS can be
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Figure A.4: Time Analysis via pareto set performance metrics - GOMORS
and AMALGAM a) Hypervolume Metric Comparison for
TBROOK1 problem after 500 simulation evaluations, b) IGD
metric Comparison for TBROOK1 problem after 500 simula-
tion evaluations

further illustrated through a progress plot, where the performance metric value

obtained for an algorithm is plotted against the number of function evaluations.

In this analysis we employ the IGD metric and the hypervolume index for a time

comparison of the quality of different algorithms. Note that a lower value of

the IGD metric is desired and a high value of the hypervolume index is desired.

Figure A.4 provides a visual summary of the progress plot analysis of GOMORS

and AMALGAM. The red and blue lines in each subplot indicate metric values

averaged over 10 test runs for each algorithm. The error bars correspond to

the variation in each quality metric estimate. Figure A.4 clearly indicates that

GOMORS converges quickly to a better solution, within a limited evaluation

budget of 500 simulations, as per the performance metrics used in this analysis.
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A.6.2 Parametric Sensitivity Analysis

In the previous section, we established the relative efficiency of GOMORS, by

testing the algorithm on TBROOK1 and CVILLE1 (see table A.1). These test

problems were primarily established to compare algorithm performance. In this

section we focus on analyzing the results of Stage-II of the HAMS strategy, i.e.,

the multi-objective optimization. Our analysis focus is on Case Study - I: flow

parameter calibration of the Cannonsville Reservoir SWAT model. Furthermore,

we analyze multi-objective optimization results for two formulations discussed

previously, CVILLE2 and CVILLE3. GOMORS was applied to the two different

formulations and algorithm was terminated after 500 simulation evaluations.

The idea behind stage-II of HAMS is to produce a set, P, of alternative

calibration combinations which are equally optimal (or non-dominated), via

multi-objective optimization. The set, P, is generated through application of

GOMORS. A visual analysis of parameter interactions and trade-offs between

competing objectives for the CVILLE2 problem is depicted in Figure A.5.

The figure depicts very interesting trade-offs between competing objectives.

Note that the multi-objective formulation for CVILLE2 is the three objective

threshold based formulation depicted in equation A.7, which lumps the obser-

vations into categories of low flow, average flow and peak flow observations.

Figure A.5 indicates that while there is a significant trade-off between the sum

of squared errors (SSE) of low flow and average flow observations, and peak

flow and average flow observations, a significant trade-off between peak flow

SSE and low flow SSE does not exist. Since we use historical rainfall informa-

tion (indicating that rainfall errors might not be significant) as simulation input

during calibration, a better low flow calibration could essentially lead to better

prediction of peak flows as well. Hydrologists tend to fit base flow or low flow
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observations to ensure better encapsulation of variation in flow hydrology.
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Figure A.5: Visual Pareto Analysis and Parametric Sensitivity Analysis:
Formulation CVILLE2 - Cannonsville Reservoir SWAT Model

Figure A.5(b) depicts the range of parameters on the optimal front. Addi-

tionally, the figure depicts parameter calibration combinations for extreme so-

lutions on the optimal front. For instance the green lines in Figure A.5(b) de-

picts parameter combination values for best peak flow solutions obtained via

GOMORS. Figure A.5(b) highlights a significant interplay between between the

parameters LATTIME and SMFMX when different parts of the hydrograph are

being fitted. LATTIME affects recharge from groundwater, and hence can be

critical in fitting low flow events. SMFMX on the other hand, affects snowmelt

and can be critical in fitting other flow regimes. Note that while parameter val-

ues of SMFMX and LATTIME for best low flow and peak flow calibration are

similar, corresponding values for best average flow calibrations are significantly

different. This interplay could be further explored by hydrologists to assist in
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the calibration process.

The CVILLE3 problem, which incorporates the decomposed objectives of

NSE proposed by Gupta et al. [16] was also analyzed via HAMS. Figure A.6

provides a visual depiction of the set, P, of alternative calibrations obtained via

HAMS stage-II application of multi-objective optimization to CVILLE3. Fig-

ure A.6(a) is a visualization of trade-offs between competing objectives. A

significant trade-off exists between correlation error and bias, and correlation

error and relative variability, indicating that a correlation-based calibration of

the model could result in relatively high volume balance and variability errors.

The variability errors could indicate poor peak flow and low flow calibration.

Hence, Stage-II of HAMS provides important information to hydrologists in

choosing a parameter set for their desired model application.

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

Correlation Error

R
e
la

ti
v
e
 V

a
ri
a
b
ili

ty

 

 

All Pareto Solutions

Sub−Pareto Solutions

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5
x 10

−3

a) Formulation 2: Pareto Analysis

Correlation Error

R
e
la

ti
v
e
 B

ia
s

 

 

All Pareto Solutions

Sub−Pareto Solutions

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5
x 10

−3

Relative Variability

R
e
la

ti
v
e
 B

ia
s

 

 

All Pareto Solutions

Sub−Pareto Solutions

SFTMP SMTMP SMFMX TIMP SURLAG GW_DELAY ALPHA_BF GWQMN LAT_TIME ESCO CN2_f DEPTH_f BD_f AWC_f KSAT_f
0

0.2

0.4

0.6

0.8

1

b) Parameter Sensitivty on Front

Parameter Name

P
a
ra

m
e
te

r 
V

a
lu

e

 

 

Parameter Range

Best Correlation Solutions

Best Relative Variability Solutions

Best Relative Bias Solutions

Figure A.6: Visual Pareto Analysis and Parametric Sensitivity Analysis:
CVILLE3 - Cannonsville Reservoir SWAT Model

Figure A.6(b) depicts the range of parameter values in the approximately op-
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timal set of solutions generated by Stage-II multi-objective optimization applied

to the CVILLE3 problem formulation (the NSE decomposition). Furthermore,

the figure provides a view of parameter combinations which are best for each

individual objective of the CVILLE3 formulation (3 best combinations for each

objective are visualized). The figure indicates that different parameter combi-

nations seem to produce good volume balance or bias (illustrated by the green

lines), and consequently shows that different parameter combinations can pro-

vide reasonable goodness of fit values for a particular objective.

Stage-II of HAMS provides a set of parameter combinations, P, which are

equally good (non-dominated) as per a prescribed multi-objective calibration

formulation developed in Stage-I. The application of GOMORS to CVILLE2

produces 60 alternative parameter calibrations, while application to CVILLE3,

produces 39 alternative parameter calibrations. In an effort to tackle the cali-

bration problem, as depicted by equation A.1, Stage-II of HAMS produces a set

of reasonable alternatives, P, which could satisfy the ”≈” measure of closeness

( referred in Equation A.1) in a subjective sense. However, in a more practical

setting, a single parameter combination might be desired. Stages III and IV of

HAMS, discuss a methodology for selecting one calibration combination from

P.

A.7 Stage III: Reduction of Alternates

The selection of a single parameter combination from a set of alternatives ob-

tained via multi-objective optimization is a critical topic which has been ex-

plored in previous research studies. Dumedah et al. (2010) [10] make use of a

clustering methodology to automatically choose a solution from a set of optimal

alternatives. Shrestha et al. (2008) [34] make use of fuzzy preference selection,
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in conjunction with multi-objective optimization, to completely automate the

selection process of a calibration parameter from a set of non-dominated solu-

tions. Some studies prefer a manual approach to the selection of an alternative,

where trade-offs between competing objectives are visualized and an alterna-

tive is chosen via subjective preference. Madsen et al. (2000) [26] suggest a

manual selection procedure, based on knowledge of purpose or proposed use

of model. This knowledge is critical in the selection process. For instance, if the

model purpose is to eventually predict pollutant loading at specific locations

in the watershed, the primary aim of flow calibration would be to minimize

volume balance errors.

Given the importance of model purpose, Stage-III of HAMS employs two

different strategies for reducing the number of reasonable alternatives. Reduc-

ing the number of alternatives (rather than selecting one) provides a calibration

expert with a small set of alternatives, after which a visual calibration analysis

can be performed on a manageable set of alternatives to select a suitable param-

eter combination.

A.7.1 Interactive Decision Support System

Coon et al. (2008) [37] provide a practitioners’ methodology for manual calibra-

tion of watershed flow parameters. After an understanding of model purpose

is established, a practitioners’ calibration strategy typically aims at focusing on

the following criteria in the model calibration process: 1) Volume Calibration, 2)

Base Flow Calibration, 3) Peak Flow Calibration and 4)Hydrograph Shape Cal-

ibration. As highlighted by Boyle et al. (2000) [4], an intelligent and interactive

hit and trial methodology can be employed in the manual calibration frame-

work to satisfy various calibration criteria simultaneously. We propose the use
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of an Interactive Graphical User interface to mimic the interactive process fol-

lowed by practitioners in Stage-III of HAMS. This version of HAMS is called

HAMS-IS.

HAMS-IS aims at reducing the set of alternative, P, to a smaller (sub)set,

R, through an interactive elimination process. As defined earlier, manual flow

calibration focuses on 1) volume balance, 2) base flow calibration, and 3) peak

flow calibration. We use the same strategy within an interactive framework to

reduce the set, P, of solutions obtained in Stage-II of HAMS, to a smaller set of

alternatives, R.
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Figure A.7: Range of statistical values for different statistics: Formulation
CVILLE2: Cannonsville Reservoir Model

Goodness of fit measures are employed in the interactive analysis, to ensure

good 1) volume balance, 2) base flow calibration, 3) peak flow calibration and

4) average flow calibration. Relative bias and mean percent error are statistics

used to ensure good volume balance, while the Nash Sutcliffe Efficiency (NSE)
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and Correlation Coefficient, R, are used to assess the calibration quality of the

different flow regimes. The interactive scheme starts with visualization of an

initial range (i.e, over all calibration alternatives in P) of values for each good-

ness of fit measure and then allows the user to define a more narrow range for

each measure. The user can specify a desired range for each measure (based on

knowledge of model purpose) interactively, and is subsequently notified of the

number of alternatives in the reduced set, R, for the specified ranges defined for

each measure. Within this interactive interface, subjective analysis can be em-

ployed by a user to reduce the initial set of alternatives to a reduced set, after

which a visual analysis can be performed to select one suitable alternative.

When applied to CVILLE2, Stage-II of HAMS-IS produced 60 alternative pa-

rameter combinations. Figure A.7 provides a visual snippet of the final range

of acceptable values, after application of the interactive system, via Stage-III of

HAMS-IS. A total of sixteen goodness of fit measures are employed in Stage-III

of HAMS to assess performance of calibration alternatives in terms of volume

balance (four measures are used and the ranges are visualized in the four sub-

figures of the first row from the top in Figure A.7), base flow calibration (four

measures are used and the ranges are visualized in the four sub-figures of the

second row from the top in Figure A.7), peak flow calibration (four measures are

used and the ranges are visualized in the four sub-figures of the third row from

the top in Figure A.7) and average flow calibration (four measures are used and

the ranges are visualized in the four sub-figures of the fourth row from the top

in Figure A.7). The red lines depict the range of goodness of fit measures for

each of the 16 measures. The blue line depicts a trend of the goodness of fit val-

ues in the set P. Since the purpose of the Cannonsville Model is the prediction

of phosphorus loading in the Cannonsville reservoir, higher preference is given
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to volume error minimization during the interactive alternatives reduction pro-

cess. The number of solutions in the reduced set, R, is seven. We can also reduce

the number of solutions in the set, R, to one and choose a single solution from

amongst the various alternatives through the HAMS-IS interactive analysis.
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Figure A.8: Range of statistical values for different statistics: CVILLE3:
Cannonsville Reservoir Model

Stage-II of HAMS-IS when applied to CVILLE3, produced 39 alternative pa-

rameter combinations. Figure A.8 provides a visual snippet of the final range

of acceptable values, after application of the interactive system in Stage-III of

HAMS-IS (arrangement of sub-figures in Figure A.8 is identical to the arrange-

ment of sub-figures in Figure A.7). The number of solutions in the reduced set,

R, is ten. A visual analysis is performed in stage-IV of HAMS-IS to choose one

solution as the best calibration combination.
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A.7.2 Knowledge Based Strategies

As discussed earlier, while knowledge based strategies, multi-objective opti-

mization, automatic single objective optimization and manual calibration have

separately been employed in deducing values of uncertain parameters in dis-

tributed watershed models, a hybrid comprehensive strategy which uses the

strengths of each can further improve the calibration process. Madsen et al.

(2002) [28] compare knowledge based methods with single and multi-objective

calibration strategies, indicating that no method is superior in terms of all per-

formance metrics. While such a strategy can be desirable when expert opinion

is not available, an alternative strategy could be employed to reduce the set

of alternatives to a small number through automatic expert analysis or fuzzy

preference. We suggest an alternative to the HAMS-IS, which is the HAMS-ES.

Stage-III of HAMS-ES differs from HAMS-IS, where instead of using manual

interaction, we use an expert system-based methodology to mimic the manual

alternatives reduction process and subsequently reduce alternatives to a smaller

number for further manual analysis or choose the best according to the expert

analysis ranking systems. This process is not very different from the fuzzy pref-

erence methodology proposed by Shrestha et al. (2008) [34]; however, we use a

conditional elimination system prevalent in expert analysis.

Figure A.9 describes the automatic alternative reduction scheme, prescribed

by HAMS-ES. The results obtained via application of HAMS-ES to CVILLE2

and CVILLE3, were very similar to the results obtained via HAMS-IS, indicating

that an automatic expert analysis strategy can be an efficient alternative to the

HAMS-IS methodology.
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STAGE 0 - OBTAIN ALTERNATIVES AND KNOWLEDGE BASE

STAGE 3: REGULAR FLOW ERROR ANALYSIS

Define Metric 

Ranking Table
Pareto Optimal 

Alternatives: P
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Optimization
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IF ALL 
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STAGE 4: PEAK FLOW ERROR ANALYSIS
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Figure A.9: Flow description of the Knowledge Based Pareto Reduction
Scheme in HAMS-ES

A.8 Stage IV: Manual Decision Analysis

The final stage of the HAMS strategy is choosing one calibration alternative

from amongst a very small set obtained through the first three stages of the

hybrid strategy. Various multi-objective analysis research efforts highlight that

manually choosing a solution from various alternatives is considerably simple,

if the number of alternatives is less than 10.

Application of HAMS to CVILLE2 results in 7 alternatives, after Stage-III of
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Figure A.10: Best Solution Selected after manual evaluation: CVILLE2 -
Cannonsville Reservoir

the proposed strategy. In Stage-IV of HAMS, we employ a decision support sys-

tem to assist in manually choosing one calibration alternative. Our decision sup-

port system visually depicts the hydrograph and various other statistics for all

calibration alternatives identified by the first three stages of HAMS. Figure A.11

depicts the best calibration obtained via HAMS for CVILLE2 and also shows the

other alternatives, identified after Stage-III.

Application of HAMS to CVILLE3 results in 10 alternatives, after Stage-III

of the proposed strategy. A single calibration can be identified after analyzing

each of the 10 alternatives through the decision support system of Stage-IV. Fig-

ure A.11 depicts the best calibration obtained via HAMS for CVILLE3 and also

shows the other alternatives, identified after Stage-III.
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Figure A.11: Best Solution Selected after manual evaluation: CVILLE3 -
Cannonsville Reservoir

A.9 Validation

In order to analyze the effectiveness of the HAMS strategy, we employed the

best calibration obtained via manual analysis in Stage-IV during a validation

period in order to visualize the robustness of the calibration. Additionally, we

employ the reduced solutions obtained via Stage-III of HAMS in order to assess

the ambiguity in model prediction resulting from choosing any calibration from

those identified in Stage-III. This analysis was carried out for the CVILLE2 flow

formulation, i.e., the threshold based formulation.

Figure A.12 provides a visual summary of simulation forecasts obtained

from the seven reduced calibrations deduced by HAMS for CVILLE2, forecasted

for a 2-year period. Figure A.12 (b) provides a visualization of the hydrographs

obtained through the 7 reduced solutions, and a hydrograph visualization of the

calibration deduced by the Dynamically Dimesnioned Search (DDS) algorithm
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Figure A.12: Validation Phase: Best Solution Selected after manual evalu-
ation: Formulation 2 - Cannonsville Reservoir

proposed by Tolson and Shoemaker (2007) [42]. Prediction bounds [43] [3] can

also be obtained for the flow time series. They are determined by independently

deducing the maximum and minimum flow values predicted by the alterna-

tive HAMS calibrations at each time step (daily). Figure A.12 (a) provides a

visualization of the prediction bounds obtained through the non-dominated so-

lutions of Stage-II (pink shaded region) and the 7 reduced solutions of Stage-III

(green shaded region). The automatic calibration via DDS minimizes the Sum of

Squared Errors to deduce a single calibration via single objective optimization,

and the result depicted in the figure is obtained after 1000 simulation runs with

DDS. The validation analysis depicted in Figure A.12 sheds light on the added

information obtained via a multi-objective calibration analysis, highlighting the

ambiguities within the model through prediction bounds.

Furthermore, we can analyze model ambiguity by observing the variations

in predicted values of key statistics, for instance, relative bias, and mean per-

centage error, as depicted by Figure A.13. This information can assist decision

makers in understanding model ambiguity, and consequently help in the man-

agement decision making process.
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Figure A.14: Validation Phase: Best Solution Selected after manual evalu-
ation: Formulation 2 - Cannonsville Reservoir

A.10 Conclusion

Figure A.14 provides a summary of the simulation forecast obtained via the cal-

ibration deduced by HAMS, for a 2-year period. Our results indicate a good
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visual fit, which in turn depicts that the calibration obtained via multi-objective

analysis is comparable to the automatic calibration obtained via DDS. Added

information is provided as well, within the same simulation evaluation bud-

get, and hydrologists can actively participate in the calibration process to de-

duce suitable calibrations, in accordance with the proposed use of the model.

Hence, the HAMS strategy is a promising methodology which can be employed

to bridge the gap between manual and automatic calibration methodologies.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR MULTI OBJECTIVE OPTIMIZATION

OF COMPUTATIONALLY EXPENSIVE MULTI-MODAL FUNCTIONS

WITH RBF SURROGATES AND MULTI-RULE SELECTION1

B.1 Introduction

This appendix is a supplement to Chapter 2 of this document (Chapter 2 will be

referred as the main paper in subsequent discussions). The primary purpose of

the supplementary material within this appendix is to provide an elaborate dis-

cussion on the use of 1) Alternative algorithms for embedded evolutionary opti-

mization in Steps 2.2 and 2.3 of the GOMORS Algorithm Framework described

in Section 2.3.1 of the main paper, and 2) Multiple Selection rules employed

within the GOMORS algorithm for selection of points for expensive evaluations.

Furthermore, this supplement also provides a description of the Test Problems

used for comparison of GOMORS with ParEGO and NSGA-II, and a description

of the algorithm parameters employed for GOMORS, ParEGO and NSGA-II.

Section B.3 provides a summary of computer experiments performed with

different evolutionary algorithms for solving the embedded global optimization

problems in Steps 2.2 and 2.3 of the Algorithm (defined in Section 2.3.1 of the

main paper). Section B.4 provides a summary of the results obtained from com-

puter experiments performed for analyzing the comparative advantage of using

multiple selection rules for selection of points for expensive evaluation (espe-

cially, if they are used to select multiple points in a single algorithm iteration for

evaluation in parallel). Section B.2 provides a description of the Synthetic Test

Problems used for comparing algorithms, as well as an elaborate description

1This Appendix has been published as an ’Online Supplement’ to [1].
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of the Hypothetical Groundwater Remediation Problem used in the computer

experiments. Section B.5 provides the parameters used for all algorithms com-

pared in this study, which include NSGA-II, ParEGO and GOMORS. Section B.6

provides additional figures for comparative analysis of GOMORS and ParEGO.

B.2 Test Problems

B.2.1 Synthetic Test Suite

The performance of GOMORS was tested via computational experiments per-

formed on eleven continuous test functions (collectively referred as the Syn-

thetic Test Suite). Five of the test functions employed in the experiments are

part of the ZDT test suite [17], while the remaining six are derived from the

work of Li and Zhang [8]. The problems incorporated in the synthetic test suite

are not expensive to evaluate. However, they incorporate various optimiza-

tion challenges (for instance multi modality, non-convexity of the Pareto Front,

complicated Pareto Sets etc) inherent in real world multi objective optimization

problems.

The ZDT test problems proposed by Zitzler et. al [17] include five contin-

uous multi-objective optimization test problems all of which propose different

challenges in converging to the Pareto optimal front. These challenges, along

with mathematical descriptions of the ZDT optimization problems, are pro-

vided in Table B.1.The Pareto fronts for the five test problems are known. Mean-

ingful comparisons of relative performance of different algorithms on these test

problems can be based on how the quality of optimization solutions increases as

the number of function evaluations increase, rather than on the actual running

time of the algorithms (since purpose of comparison is evaluation of algorithm
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Table B.1: Description of the ZDT Test Functions

Name Mathematical Description Problem Challenge

f1(x) = x1

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

ZDT1 where g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1)

x ∈ [0, 1]n

n may vary between 2 and 30

f1(x) = x1

f2(x) = g(x)[1 − ( f1(x)/g(x))2]

ZDT2 where g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1) The Pareto Front is non-convex.

x ∈ [0, 1]n

n may vary between 2 and 30

f1(x) = x1

f2(x) = g(x)[1 −
√

f1(x)/g(x) − f1(x)
g(x) sin(10πx1)] The Pareto front is disconnected

ZDT3 where g(x) = 1 + 9(
∑n

i=2 xi)/(n − 1) and has several noncontiguous

x ∈ [0, 1]n convex parts.

n may vary between 2 and 30

f1(x) = x1

f2(x) = g(x)[1 −
√

f1(x)/g(x)]

ZDT4 where g(x) = 1 + 10(n − 1) +
∑n

i=2[x2
i − 10 cos(4πxi)] 219 locally optimal fronts exist.

x1 ∈ [0, 1], xi ∈ [−5, 5],∀i ∈ {2, . . . , n}

n may vary between 2 and 30

f1(x) = 1 − exp(−4x1) sin6(6πx1)

f2(x) = g(x)[1 − ( f1(x)/g(x))2] The search space is non-uniform,

ZDT6 where g(x) = 1 + 9[(
∑n

i=2 xi)/(n − 1)]0.25 and distribution of solutions on

x ∈ [0, 1]n the Pareto front is non-uniform.

n may vary between 2 and 30

performance for computationally expensive problems).

Prior literature on the design of suitable test problems indicate that compli-

cated shapes of Pareto Fronts add to the challenges of solving multi objective op-

timization problems via heuristics [8]. The ZDT test functions incorporate some

of these challenges, including non-convex Pareto Fronts, disconnected Pareto

fronts etc. However, the shapes of Pareto Sets for the ZDT functions are very

simple. The Pareto Set of a problem refers to the set of Pareto optimal solutions

of the problem in the decision space that corresponds to the Pareto Front. Pareto
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Table B.2: Description of the LZF Test Functions

Name Mathematical Description Problem Challenge

f1(x) = x1 +
2
|J1 |

∑
j∈J1 [x j − sin(6πx1 +

jπ
n )]2

f2(x) = 1 −
√

x1 +
2
|J2 |

∑
j∈J2 [x j − sin(6πx1 +

jπ
n )]2, where The Pareto Set is a non-linear

LZF1 J1 = { j | j is odd and 2 ≤ j ≤ n}, curve. Problem is also referred as

J2 = { j | j is even and 2 ≤ j ≤ n}, and F2 in [8].

x ∈ [0, 1] x [−1, 1]n−1

f1(x) = x1 +
2
|J1 |

∑
j∈J1 y2

j

f2(x) = 1 −
√

x1 +
2
|J2 |

∑
j∈J2 z2

j , where

J1 = { j | j is odd and 2 ≤ j ≤ n}, The Pareto Set is a non-linear

LZF2 J2 = { j | j is even and 2 ≤ j ≤ n}, curve. Problem is also referred as

y j = x j − [0.3x2
1 cos(24πx1 +

4 jπ
n ) + 0.6x1] cos(6πx1 +

jπ
n ), F5 in [8].

z j = x j − [0.3x2
1 cos(24πx1 +

4 jπ
n ) + 0.6x1] sin 6πx1 +

jπ
n ),

and x ∈ [0, 1] x [−1, 1]n−1

f1(x) = x1 +
2
|J1 |

[4
∑

j∈J1 y2
j − 2

∏
j∈J1 cos( 20y jπ

√
j

) + 2]

f2(x) = 1 −
√

x1 +
2
|J1 |

[4
∑

j∈J1 y2
j − 2

∏
j∈J1 cos( 20y jπ

√
j

) + 2] Many locally optimal fronts

LZF3 where J1 and J2 are the same as in LZF1, exist. Problem is also referred as

y j = x j − x
0.5(1+ 3( j−2)

n−2 )
1 , and F8 in [8].

x ∈ [0, 1]n

f1(x) = x1 +
2
|J1 |

∑
j∈J1 h(y j)

f2(x) = 1 − x2
1 +

2
|J2 |

∑
j∈J2 h(y j), where

J1 = { j | j is odd and 2 ≤ j ≤ n}, Pareto Front is non-convex and

LZF4 J2 = { j | j is even and 2 ≤ j ≤ n}, Pareto Set is non-linear. The

y j = sin(6πx1 +
jπ
n ), Problem is referred as UF4 in .

h(t) =| t | /(1 + 2e2|t|), and

. x ∈ [0, 1] x [−2, 2]n−1

f1(x) = x1 +
2
|J1 |

∑
j∈J1 [x j − 0.8x1 cos(6πx1 +

jπ
n )]2

f2(x) = 1 −
√

x1 +
2
|J2 |

∑
j∈J2 [x j − 0.8x1 sin(6πx1 +

jπ
n )]2 The Pareto Set is a non-linear

LZF5 J1 = { j | j is odd and 2 ≤ j ≤ n} curve. Problem is also referred as

J2 = { j | j is even and 2 ≤ j ≤ n} F3 in [8].

x ∈ [0, 1] x [−1, 1]n−1

f1(x) = x1 +
2
|J1 |

∑
j∈J1 [x j − 0.8x1 cos(

6πx1+
jπ
n

3 )]2

f2(x) = 1 −
√

x1 +
2
|J2 |

∑
j∈J2 [x j − 0.8x1 sin(6πx1 +

jπ
n )]2 The Pareto Set is a non-linear

LZF6 J1 = { j | j is odd and 2 ≤ j ≤ n} curve. Problem is also referred as

J2 = { j | j is even and 2 ≤ j ≤ n} F4 in [8].

x ∈ [0, 1] x [−1, 1]n−1
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Sets for the ZDT problems are line segments. It is highly unlikely for real world

problems to have such simple Pareto Sets.

Li and Zhang [8] introduced a general class of continuous multi objective

optimization test problems where Pareto Sets could be defined arbitrarily. Fur-

thermore, Li and Zhang [8] proposed nine specific test problems from the gen-

eral class of problems introduced. We have incorporated five of these test in our

synthetic test suite. We will refer these test problems as the LZF test functions

for future discussion reference. The LZF test suite also includes a test prob-

lem which was proposed in the CEC 2009 MOEA competition [14]. This test

function (LZF4) is also from the general class of optimization problems intro-

duced by Li and Zhang. The LZF test problems propose different optimization

challenges. These challenges, along with mathematical descriptions of the LZF

optimization problems, are provided in Table B.2.

The ZDT and LZF functions will collectively be referred as the Synthetic Test

Suite (eleven test problems) in future discussions. While Synthetic Test Suite

identified for performance analysis addresses most of the optimization chal-

lenges discussed, some additional optimization challenges have been left un-

explored, for instance, constraint handling, and testing on problems with more

than two objectives.

B.2.2 Groundwater Remediation Design Problem

The test problems employed in our computer experiments also include a com-

plex model describing the detoxification of contaminated groundwater using

aerobic bioremediation [9]. Aerobic bioremediation is a decontamination pro-

cess that involves the injection of electron acceptors (e.g. oxygen) or nutrients

(e.g. nitrogen and phosphorus) into the groundwater to promote the growth of
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microorganisms that can transform the contaminant into a harmless substance.

Cleaning up contaminated groundwater is financially expensive and the cost

could run into tens of millions of dollars. Hence, the use of a complex model

describing the decontamination process, coupled with an efficient global opti-

mization algorithm could assist in devising cleanup strategies that may yield

huge savings for environmental cleanup.

The groundwater remediation model used in our experiments considers a

hypothetical contaminated aquifer with characteristics that are symmetric about

a horizontal axis. We assume that there are 6 injection wells in the contami-

nated aquifer, the locations of which have been fixed. 84 monitoring wells are

also assumed which measure the concentration of the contaminant at specified

time periods. The aquifer is discretized using a two-dimensional finite element

mesh. It is assumed that the injection wells and monitoring wells are located at

the nodes of the mesh and these wells are also symmetric about the horizontal

axis. A two-dimensional finite element simulation model called Bio2D [11], is

used to describe groundwater flow and the changes in the concentrations of the

contaminant, oxygen, and biomass. The model equations are nonlinear because

the growth equations for the microorganisms represent Monod kinetics.

The optimization process considers the problem of deciding the pumping

rates for injection wells, which are used to supply oxygen into the groundwater.

Due to the symmetry of the contaminated area, we only need to make pumping

decisions for the 3 injection wells on one side of the axis of symmetry. The plan-

ning time period is divided into multiple management periods, and pumping

rates remain constant in each management period. We use 2, 4 and 8 manage-

ment periods in our computer experiments which correspond to 6, 12 and 24

decision variables, respectively. Because the pumping of oxygenated water is
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expensive, our goal is to determine the pumping rates for each injection well

at the beginning of each management period that minimize the total pump-

ing cost and the contaminant concentration at the monitoring wells. Yoon and

Shoemaker [13] incorporated the minimization of contaminant concentration,

into the total pumping cost objective by means of a penalty term. This resulted

in the formulation of the groundwater remediation design problem as a single

objective global optimization problem.

We visualize the groundwater remediation design problem as a multi objec-

tive optimization problem where the conflicting objectives of the problem are

1) minimization of remediation cost and 2) minimization of contaminant con-

centration. The decision variables of the problem are the injection rates at 3

different well locations during each of m management periods. The number

of decision variables vary between 6 and 24 (as discussed above), depending

upon the number of management periods incorporated in the numerical com-

putation model. The groundwater problem can be formulated as two separate

multi-objective optimization problems. In the first formulation, the first objec-

tive is minimization of the cost of remediation, and the second objective is min-

imization of the maximum contaminant concentration recorded at the 84 mon-

itoring wells at the end of the planning time. This formulation is referred to

as the GWDM problem in the main paper and in this document. In the second

formulation, the first objective is minimization of the cost of remediation and

the second objective is minimization of the average contaminant concentration

recorded at the 84 monitoring wells at the end of the planning time. This for-

mulation is referred to as the GWDA problem in the main paper and in this

document. Mathematical formulations of the two multi objective variants of the

groundwater remediation design problem are provided in Table 2.2 of the main

211



paper.

The simulation times for groundwater remediation problems can vary be-

tween minutes and hours depending on the complexity of the model and the

size of the modeled region. This example uses a relatively coarse grid and re-

quires only about 0.5 sec. to run each simulation on a 1.3 GHz Intel Core i5 ma-

chine. However, it is representative of the type of multi objective optimization

formulations used in more complex and computationally expensive groundwa-

ter bioremediation problems.

B.3 Alternative Methods for Embedded Evolutionary Opti-

mization

Section 2.3.1 of the main paper defines the general framework of the GOMORS

algorithm where surrogate optimization problems defined in Steps 2.2 and 2.3b

of the algorithm framework are solved within each algorithm iteration. The

primary purpose of the surrogate optimizations is to find near optimal fronts

given that the expensive functions, F(x), are replaced by the corresponding re-

sponse surface model approximations. Evaluation points are subsequently cho-

sen from the solutions obtained via the surrogate optimizations (also referred as

candidate solutions or candidate populations) during each algorithm iteration.

Step 2.2 performs a global surrogate assisted search and hence, solves a

surrogate multi objective optimization problem over the whole decision space,

while Step 2.3b performs a local surrogate assisted search and hence, solves a

surrogate optimization problem within a localized neighborhood of the least

crowded solution on the expensively evaluated non-dominated front (see Step

2.3a of the algorithm framework defined in Section 2.3.1 of the main paper).
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While solving them may be relatively inexpensive, the surrogate optimization

problems are not trivial (since surrogates can be multi modal).

The optimization literature indicates that Multi Objective Evolutionary Al-

gorithms (MOEAs) are a revolutionary heuristic approach for solving non triv-

ial and multi modal multi objective optimization problems. Deb at al. [6] and

Coello et al. [4] suggest that use of MOEAs can be highly beneficial, since the

population based structure of an evolutionary algorithm can be exploited to si-

multaneously converge towards the Pareto front, and maintain a diverse set of

trade-offs. Since the surrogate optimization problems defined in Steps 2.2 and

2.3 of the algorithm framework could potentially have non-linear and multi-

modal objectives, and our aim is to find good approximate solutions of the sur-

rogate problems (both in terms of convergence and diversity), we make use of

evolutionary optimization for solving the surrogate problems within each iter-

ation of GOMORS. In this regard, we performed computer experiments with

either NSGA-II [5], MOEA/D [15], or AMALGAM [12] as evolutionary algo-

rithms for solving the surrogate optimization problems within each iteration of

the GOMORS algorithm framework. The purpose of these experiments was to

identify one of these algorithm as most suited for surrogate optimization within

GOMORS. Please note that surrogate optimization with reference to GOMORS

is also referred as embedded evolutionary optimization in subsequent discus-

sions. The evolutionary algorithms mentioned above are described briefly in

sub sections B.3.1 - B.3.3. The experimental setup employed for comparison of

performance of these algorithms within the GOMORS framework, and pertain-

ing results are discussed in sub sections B.3.4 and B.3.5.
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B.3.1 Non Dominated Sorting Genetic Algorithm - II (NSGA-

II)

NSGA-II, proposed by Deb et al. [5] is a revolutionary and extremely popu-

lar multi-objective (MOEA), and has been applied to various applied engineer-

ing problems across numerous disciplines [4] [3]. NSGA-II handles the evolu-

tionary search optimization process by ranking and archiving parent and child

populations according to a non-domination sorting (a measure of convergence),

and crowding distance, which is a measure of diversity of a solution, on a par-

ticular front. The NSGA-II aims at using Pareto-dominance to move the the

non-dominated front towards convergence, during the search process, and can

handle highly non-linear and multi modal objectives.

B.3.2 Multi Objective Evolutionary Algorithm - Decomposi-

tion (MOEA/D)

Aggregate functions can also be used in the multi-objective optimization pro-

cess in order to convert a multi-objective problem into many single- objective

problems. The aggregate methodology falls under a separate class of MOEAs

within Coello et al.’s [4] classification, where the aim is to solve many single

objective optimization problems, with different aggregation priorities, to con-

verge to the Pareto front, and maintain divergence. The MOEA/D [15] uses ag-

gregate functions, and simultaneously solves many single-objective Tchebycheff

decompositions (Tchebycheff decomposition is a preference based aggregation

method for converting a vector of objectives into a single objective) of multi-

objective problems in a single run.The MOEA/D is an established benchmark

algorithm and has won the 2009 IEEE Congress on Evolutionary Computation
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(CEC 2009) competition.

B.3.3 AMALGAM - A Multi Algorithm Genetically Adaptive

Multi-Objective Optimization Method

AMALGAM [12] is a multi-method evolutionary algorithm, which incorporates

search mechanics of various algorithms. The key feature of AMALGAM is si-

multaneous multi-method search and the search mechanism selection is self-

adaptive. AMALGAM incorporates four candidate MOEAs, NSGA-II, PSO,

DE, and AMS. Recent literature has seen various applications of AMALGAM

including Zhang et al.’s work [16], which includes application of AMALGAM

for multi-site calibration, with comparison against SPEA2 and NSGA-II.

B.3.4 Experimental Setup

The relative performance of NSGA-II, MOEAD and AMALGAM as embedded

MOEAs within the GOMORS algorithm framework was assessed on the syn-

thetic test suite. Number of decision variables for all test problems were fixed at

eight. All parameter settings of GOMORS were kept constant. The parameter

settings of GOMORS used in the comparative analysis of the embedded MOEAs

are defined in Table B.6 and Section B.5.3. The only change in GOMORS was the

use of either of the three embedded MOEAs for solving the embedded optimiza-

tion problems defined in Steps 2.2 and 2.3b of the algorithm framework (see

Section 2.3.1 of the main paper).Ten optimization experiments were performed

for each of the three modified versions of GOMORS, on each test problem and

function evaluations were limited to 200. The same Latin hypercube samples

were used for corresponding trials of each version of GOMORS, on each test
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Figure B.1: Comparative analysis of evolutionary algorithms embedded
into GOMORS - Box plots of uncovered hypervolume metric
values obtained after 200 function evaluations with application
of GOMORS using either of NSGA-II, MOEAD or AMALGAM
as embedded evolutionary optimization algorithms . Results
for the six LZF functions with 8 decision variables are shown
in each subplot. In all cases lower values of uncovered hyper-
volume are best.

The uncovered hypervolume metric [2] was used to compare the perfor-

mance of the three versions of GOMORS with different MOEAs. Uncovered

hypervolume is the difference between the total feasible objective space (illus-

trated in Figure 2.1(a) of the main paper) and the objective space dominated

by estimate of the Pareto front obtained by an algorithm. A lower value of the

index indicates a better solution and the ideal value is zero. The next section

discusses the results obtained from the experiments with different MOEAs.
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B.3.5 Results and Analysis

The uncovered hypervolume metric values obtained after performing optimiza-

tion experiments on the LZF problems with application of GOMORS with the

three alternative embedded MOEAs, is depicted via box plots in Figure B.1.

Each of the six sub plots of the figure display the results pertaining to each of

the six LZF problems. Lower values of the metric signify superiority of perfor-

mance and a lower spread within a box plot depicts definiteness of performance.
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Figure B.2: Comparative analysis of evolutionary algorithms embedded
into GOMORS - Box plots of uncovered hypervolume metric
values summed over the six LZF problems, and obtained after
200 function evaluations with application of GOMORS using
either of NSGA-II, MOEAD or AMALGAM as embedded evo-
lutionary optimization algorithms. In all cases lower values of
uncovered hypervolume are best.

The first conclusion that can be drawn from the results depicted in Figure

B.1 is that it is hard to identify the difference between performance of all three

embedded MOEAs. This is true especially in the case of LZF2, LZF5 and LZF6.
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However, in the case of LZF1, LZF3, and LZF4, it can be seen that the overall

performance of AMALGAM (as embedded MOEA of GOMORS) is better than

NSGA-II and MOEAD, both in terms of attainment of lower median metric val-

ues and lower spread in the box plots. After an overall analysis of the box plots

of Figure B.1, it can concluded that performance of AMALGAM is slightly better

than NSGA-II and MOEAD as an embedded MOEA for GOMORS.

Results of all synthetic test problems were also compiled for analysis by sum-

ming the metric values of each of the ten optimization experiments performed

on each test problem. The uncovered hypervolume metric value obtained from

every trial of each individual test problem and algorithm combination could be

considered as a random sample from an unknown distribution. Assuming that

the unknown distributions of each individual test problem and algorithm com-

bination are independent across a single algorithm, a sum of metric values of

each trial across a single algorithm is another random sample from an unknown

distribution which is a convolution of the independent unknown distributions.

This convolution based metric summarizes overall performance of an algorithm

on all synthetic test problems and is depicted in Figure B.2 for comparison of

performance of embedded MOEAs across all synthetic test functions.

Figure B.2 also highlights that performance of all embedded MOEAs is com-

parable with reference to their application to the eleven synthetic test functions

(and considering that results are shown as a convolution across all test prob-

lems). However, Figure B.2 also indicates that performance of AMALGAM is

slightly better than NSGA-II and MOEAD. The worst attained convoluted met-

ric value from AMALGAM is significantly lower than the worst attained con-

voluted metric values of NSGA-II and AMALGAM. Based on the results de-

picted in Figures B.1 and B.2, we used AMALGAM as the embedded MOEA
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in GOMORS. However, it is worth mentioning that performances of the tested

embedded MOEAs were close.

B.4 Experimental Assessment of Selection Rules

Section 2.3.4 of the main paper provides a discussion on the various selection

rules employed within the GOMORS algorithm for selection of points for ex-

pensive evaluations within each algorithm iteration. Points for expensive eval-

uations are selected from the candidate points obtained after embedded opti-

mizations of Steps 2.2 and 2.3 of the algorithm framework (defined in Section

2.3.1 of the main paper). The selected points are subsequently evaluated by the

expensive objective functions, F(x), within an algorithm iteration.

Selection of points for expensive evaluations is a critical step in the algo-

rithm because evaluation of selected evaluations points is usually, by far, the

most computationally expensive step of the algorithm, when applied to a com-

putationally expensive problem. Furthermore, (as is discussed in Section 2.3.4

of the main paper) the strategy for selection of evaluation points is important

for retraining of the surrogate functions in subsequent algorithm iterations, and

can have a significant impact on the search dynamics of the algorithm. Major

decisions pertaining to deduction of an appropriate selection strategy include

the rule(s) for selection of evaluation point(s) and the number of points to be

selected for expensive evaluation in each algorithm iteration.

Section 2.3.4 of the main paper proposes five selection rules which are em-

ployed to choose points for expensive evaluations in each iteration of GOMORS.

In Section 2.3.4 of the main paper it is stated that GOMORS chooses one point

for expensive evaluation in each algorithm iteration from four of the five rules

stated (Rules 1 to 4), while one point for expensive evaluation is chosen from
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Rule 0 with a probability of 0.1. Hence either 4 or 5 points are selected for

expensive evaluations in each iteration of GOMORS. In order to deduce the

above-mentioned strategy for selection of evaluation points, we performed var-

ious computer experiments with alternate evaluation point selection strategies.

A total of six alternate selection strategies were compared in our analysis. The

six selection strategies are discussed in Sections B.4.1 - B.4.6. The experimental

setting for comparison of the selection strategies is discussed in Section B.4.7.

Results obtained from the computer experiments are discussed in Section B.4.8.

B.4.1 Hypervolume Improvement

The first evaluation point selection strategy makes use of Rule 1 (described on

Section 2.3.4 of the main paper) to select one point for expensive evaluation in

each iteration of GOMORS from the candidate solutions obtained from the sur-

rogate optimization depicted in Step 2.2 of the algorithm framework (see Section

2.3.1 of the main paper for algorithm framework). Rule 1 tends to choose a point

from the candidate points obtained via global surrogate-assisted evolutionary

optimization in Step 2.2, such that approximate improvement in hypervolume

coverage is maximized. (see Figure 2.1 of the main paper for illustration of hy-

pervolume improvement). This selection strategy, where one point is chosen for

expensive evaluation via Rule 1 in each iteration of GOMORS, is referred as the

Hypervolume Improvement strategy in subsequent discussions. Please note

that a second point for expensive evaluation may be selected in this selection

strategy via random sampling (Rule 0), with a probability of 0.1.
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B.4.2 Decision Space Euclidean Distance

The second point selection strategy analyzed in our computer experiments

makes use of Rule 2 (described in Section 2.3.4 of the main paper) to select one

point for expensive evaluation in each iteration of GOMORS from the candi-

date solutions obtained from the surrogate optimization depicted in Step 2.2

of the algorithm framework (see Section 2.3.1 of the main paper for algorithm

framework). Rule 2 selects a point from the candidate points obtained via global

surrogate-assisted evolutionary optimization in Step 2.2, such that the mini-

mum euclidean distance (with respect to the decision space) from already evalu-

ated points is maximized. This selection strategy, where one point is chosen for

expensive evaluation via Rule 2, is referred to as the Decision Space Euclidean

Distance strategy in subsequent discussions. Please note that a second point

for expensive evaluation may be selected in this selection strategy via random

sampling (Rule 0), with a probability of 0.1.

B.4.3 Objective Space Euclidean Distance

The third evaluation point selection strategy analyzed in our computer exper-

iments makes use of Rule 3 (described in Section 2.3.4 of the main paper) to

select one point for expensive evaluation in each iteration of GOMORS from

the candidate solutions obtained from the surrogate optimization depicted in

Step 2.2 of the algorithm framework (see Section 2.3.1 of the main paper for an

overview of the algorithm framework). Rule 3 selects a point from the candi-

date points obtained via global surrogate-assisted evolutionary optimization in

Step 2.2, such that the minimum euclidean distance (with respect to the objec-

tive function space) from already evaluated points is maximized. This selection

strategy, where one point is chosen for expensive evaluation via Rule 3, is re-
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ferred as the Objective Space Euclidean Distance strategy in subsequent discus-

sions. Note that a second point for expensive evaluation may be selected in this

selection strategy via random sampling (Rule 0), with a probability of 0.1.

B.4.4 Local Surrogate Assisted Search

The fourth evaluation point selection strategy analyzed in our computer ex-

periments for comparing different selection strategies makes use of Rule 4 (de-

scribed in Section 2.3.4 of the main paper) to select one point for expensive eval-

uation in each iteration of GOMORS from the candidate solutions obtained from

the surrogate optimization depicted in Step 2.3b of the algorithm framework

(see Section 2.3.1 of the main paper for an overview of the algorithm frame-

work). Evaluation point selection based on Rule 4 is similar to Rule 1. How-

ever an evaluation point is selected from the candidate points obtained via local

surrogate-assisted (or embedded) evolutionary optimization depicted in Step

2.3b. This selection strategy, where one point is chosen for expensive evaluation

via Rule 4 in each iteration of GOMORS, is referred to as the Local Surrogate

Assisted Search strategy in subsequent discussions. Note that a second point

for expensive evaluation may be selected in this selection strategy via random

sampling (Rule 0), with a probability of 0.1.

B.4.5 Rule Cycling

The fifth evaluation point selection strategy selects one point for expensive eval-

uation in each iteration of GOMORS by cycling between the four point selec-

tion rules mentioned in the previous sections, i.e, hypervolume improvement,

maximizing minimum euclidean distance in the decision space from previously
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evaluated points, maximizing minimum objective space difference from previ-

ously evaluated points, and surrogate-assisted local search. This selection strat-

egy, where only a single point is chosen for expensive evaluation via cycling

between selection rules, is referred as the rule cycling selection strategy in sub-

sequent discussions. Please note that a second point for expensive evaluation

may be selected in this selection strategy via random sampling (Rule 0), with a

probability of 0.1.

B.4.6 Parallel Selection

The sixth and final evaluation point selection strategy analyzed in our computer

experiments selects one point each from Rules 1 to 4 (described on Section 2.3.4

of the main paper) for simultaneous expensive evaluations during each itera-

tion of GOMORS. The primary purpose of investigating this strategy is to target

an improvement in efficiency of GOMORS through parallel evaluation of ex-

pensive objectives in each algorithm iteration. This selection strategy, where

four points are selected for expensive evaluation via Rules 1 to 4, is referred as

the parallel selection strategy in subsequent discussions. Please note that a fifth

point for expensive evaluation may be selected in this selection strategy during

each algorithm iteration via random sampling (Rule 0), with a probability of 0.1.

B.4.7 Experimental Setup

The relative performance of the alternate evaluation point selection strategies

of GOMORS was assessed on the synthetic test suite. Number of decision vari-

ables for all test problems were fixed at eight. All other parameter settings of

the algorithm, for instance the choice of embedded MOEA, and related param-
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Table B.3: The alphanumeric codes assigned to each selection strategy for
Figures 3 and 4

Strategy Name Code

Approximate Hypervolume Improvement HYP

Decision Space Euclidean Distance D-DS

Objective Space Euclidean Distance D-OS

Surrogate-assisted Local Search LS

Rule Cycling CYC

Parallel Selection with 200 expensive evaluations P200

Parallel Selection with 400 expensive evaluations P400

eters, were the same in all experiments. The parameter settings are provided in

Table B.6 and Section B.5.3. The only change in the algorithm was the use of the

alternate evaluation point selection strategies.

Ten optimization experiments were performed for each strategy, on each test

problem and the same Latin hypercube samples were used for corresponding

trials of each strategy (in an effort to ensure that the analysis is as fair as possi-

ble). The function evaluations were limited to 200 for all strategies. However,

for the parallel selection strategy, we also performed experiments with a limit

of 400 evaluations, in order to analyze the advantage, if any, of simultaneous

selection and evaluation of expensive objectives in each algorithm iteration, in

terms of speed of convergence of the algorithm.

The uncovered hypervolume metric [2] was used to compare the perfor-

mance of the alternate selection strategies. As discussed earlier, Uncovered hy-

pervolume is the difference between the total feasible objective space (illustrated

in Figure 2.1(a) of the main paper) and the objective space dominated by esti-

224



mate of the Pareto front obtained by an algorithm. A lower value of the index

indicates a better solution and the ideal value is zero. Figures B.3 and B.4 sum-

marize the results obtained from the experiments. These are discussed further

in the next section. Please note that alphanumeric codes are used to identify the

different selection strategies in Figures B.3 and B.4. Table B.3 provides the selec-

tion strategy names corresponding to the alphanumeric codes used in Figures

B.3 and B.4. We refer the alphanumeric during our discussion or the results in

the next section.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF1   

0

0.02

0.04

0.06

0.08

0.1

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF2   

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF3   

0.1

0.15

0.2

0.25

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF4   

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF5

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LS HYP D−DS D−OS CYC P200 P400

Selection Rule

U
n
c
o
v
e
re
d
 H
y
p
e
rv
o
lu
m
e

LZF6

Figure B.3: Comparative analysis of selection strategies for LZF functions
- Box plots of uncovered hypervolume metric values obtained
after 200 function evaluations (400 in case of P400) through ap-
plication of GOMORS with alternate evaluation point selection
strategies. Results for the six LZF functions with 8 decision
variables are shown in each subplot. In all cases lower values
of uncovered hypervolume are best.
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Figure B.4: Comparative analysis of election strategies - Box plots of un-
covered hypervolume metric values summed over the eleven
synthetic test functions, and obtained after 200 function eval-
uations (400 in case of P400) through application of GOMORS
with alternate evaluation point selection strategies. In all cases
lower values of uncovered hypervolume are best.

B.4.8 Results and Discussion

The purpose of this section is to evaluate the performance of GOMORS with

the different evaluation point selection strategies discussed in Sections B.4.1 to

B.4.6. This is done to analyze the difference in performance of GOMORS when

only one of four selection rules is employed for evaluation point selection, when

cycling between the rules is employed for evaluation point selection and when

all rules are employed simultaneously in each algorithm iteration to select mul-

tiple points for expensive evaluations. The purpose of the analysis is to under-

stand the advantage (if any) of using multiple rules to select multiple points for

simultaneous evaluations in each algorithm iteration.

The uncovered hypervolume metric values obtained after performing opti-

mization experiments on the LZF problems with application of GOMORS with
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the alternate selection strategies, are depicted via box plots in Figure B.3. The

six sub plots in the figure display the results pertaining to each of the six LZF

problems. Lower values of the metric signify superiority of performance and a

lower spread within a box plot depicts definiteness of performance.

We first analyze the performance of the first four selection strategies, where

a selection rules is exclusively used to select one point for expensive evalua-

tion in each algorithm iteration. An interesting observation in this regard is that

none of these four selection strategies (i.e, LS, HYP, D-DS and D-OS) clearly

outperforms the others for all LZF test functions. However, it can be observed

that performance of LS and HYP is relatively poor when considering the re-

sults on all LZF functions. The performance of LS is relatively poor for LZF1,

LZF2, LZF3 and LZF4, and performance of HYP is relatively poor for LZF1,

LZF2 , LZF3 and LZF5. The relatively poor performance of LS, where only a

surrogate-assisted local search is performed to select an evaluation point in each

algorithm iteration, is understandable. The relatively poor performance of HYP

may be a consequence of errors in RBF approximation due to the existence of

complicated Pareto sets in the LZF functions. Performance of D-DS and D-OS

is comparable, and relatively better than the LS and HYP selection strategies.

Since D-DS and D-OS select evaluation points based on maximization of min-

imum euclidean distance from already evaluated points (in the decision space

and objective space respectively), they tend to maintain a balance between ex-

ploration and exploitation during the surrogate-assisted search. This might be

the reason behind their relatively superior performance on the LZF functions

where the Pareto sets are formed by complicated curves in the decision space.

The rule cycling (CYC) selection strategy also performs adequately on the

LZF functions. The most interesting finding though is the performance of the
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Parallel selection strategy (P200 and P400) where multiple points (one point

each from Rules 1 to 4) are simultaneously selected for expensive evaluations in

each algorithm iteration. Hence, four points are selected for simultaneous eval-

uations (a fifth point may be selected via random sampling with probability of

0.1). The primary motivation behind this strategy is to enable the GOMORS to

evaluate expensive function in parallel during each algorithm iteration in order

to improve performance in terms of speed of convergence.

Results for the Parallel selection strategy with a limit of 400 evaluations

(P400) are particularly interesting in this regard. Results of the P400 selection

strategy depicted in Figure B.3 indicate that performance of the P400 strategy

is either comparable or better than the other selection strategies. If the value

of parallelization is considered, the P400 selection strategy produces compa-

rable results to the other selection strategies with approximately 100 effective

expensive function evaluations since four points may be evaluated in parallel

during each algorithm iteration (Our approximation of 100 effective evaluations

is made with the assumption that the communication time overhead is incon-

sequential in comparison to the computational cost of an expensive function

evaluation).

Results of all synthetic test problems (including the ZDT functions) were also

compiled for analysis by summing the metric values of each of the ten optimiza-

tion experiments performed on each test problem. The resulting box-plots are

depicted in Figure B.4, and are consistent with the observations deduced from

Figure B.3. Figure B.4 indicates that results from the parallel selection strategy

after 400 function evaluations (P400) are considerably better than the other se-

lection strategies after 200 function evaluations. If the value of parallelization

is considered, Figure B.4 implies that the parallel selection strategy with 100
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effective function evaluations (since 4 points may be evaluated in parallel dur-

ing each algorithm iteration) outperforms the other selection strategies with 200

function evaluations.

Hence, in the main paper (Section 2.3.4) we recommend the use of a Multi-

Rule selection strategy where selection rules 1 to 4 are employed to select four

points for simultaneous evaluations in each iteration of GOMORS (A fifth point

may be selected via Rule 0 with a probability of 0.1). If a serial implementation

of GOMORS is employed, we recommend the use of either CYC or D-OS as the

selection strategy, based on the results obtained from experiments performed

on the synthetic test suite (see Figure B.4).

B.5 Parameter Settings

In order to evaluate and compare the performance of GOMORS, ParEGO and

NSGA-II on the synthetic test suite and the groundwater remediation problems,

ten optimization experiments were performed for each algorithm, on each test

problem. As mentioned in Section 2.5.1 of the main paper, multiple experi-

ments were performed on each test problem, since all algorithms are stochastic.

Furthermore, the evaluation budget was limited to four hundred, since the pur-

pose of the experiments was to evaluate algorithm performance within a limited

evaluation budget. Parameters for the algorithms were set such that the com-

parison be as fair as possible.

Parameter settings for each algorithm are discussed in sections B.5.1 - B.5.3.

The initial Latin hypercube sample sizes for GOMORS and ParEGO were fixed

at 2d + 2, where d is the number of decision variables. Since both GOMORS and

ParEGO use Latin hypercube sampling for initiation, the fairest way to compare

them is to have trial j for both algorithms have the same Latin hypercube for j =
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Table B.4: Parameter Settings for NSGA-II

Parameter Name Setting

Population Size 20

Maximum Generations 19

Crossover Probability 0.9

Real-value SBX parameter 20

Polynomial mutation parameter 20

1, . . . ,N (when a particular problem is tested). Hence, the same Latin hypercube

samples were used for corresponding trials of GOMORS and ParEGO on each

test problem.

B.5.1 NSGA-II

We used a MATLAB implementation of the NSGA-II, coded by Aravind Se-

shadri. This implementation is available on the MATLAB Central File Exchange

and is based on the algorithm description provided by Deb. et. al. [5]. Default

settings of the algorithm parameters were used with the exception of the pop-

ulation size and the number of generations. We experimented with population

sizes of 10, 20, 50 and 100, on the test functions, with an evaluation budget limit

of four hundred. Results from the experiments indicated that a population size

of 20 was most feasible in terms of algorithm performance. Hence, a population

size of 20 was used and the number of generations deduced were 19. Table B.4

summarized the parameter settings used for NSGA-II.
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Table B.5: Parameter Settings for ParEGO

Parameter Name Setting

No. of initial Latin hypercube samples 2d + 2

No. of maximum evaluations 400

No. of scalarizing vectors 11(k = 2)

Scalarizing function type Augmented Tchebycheff

Internal GA population size 20

Internal GA generations 10000

Crossover Probability 0.9

Real-value SBX parameter 10

Real-value mutation probability 1/d

Polynomial mutation parameter 50

B.5.2 ParEGO

The implementation code for ParEGO was obtained from the research web page

of Joshua Knowles (first author of [7]). Default settings of the algorithm param-

eters, as prescribed in [7] were used with the exception of the number of initial

Latin hypercube samples. Knowles [7] recommend 11d − 1 as the number of

initial Latin hypercube samples. However since our computer experiments in-

corporate problems with up to 24 decision variables with an evaluation budget

of 400, an initial sample size of 11d − 1 would result in a large initial sample

relative to the evaluation budget. Consequently, we used an initial Latin hyper-

cube sample size of 2d + 2, as per the recommendations provided by Regis and

Shoemaker [10]. Table B.5 summarized the parameter settings used for ParEGO

( Please note that k is the number of objective functions).
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B.5.3 GOMORS

GOMORS was implemented in MATLAB version 2012b. For the embedded

optimization, MATLAB implementation codes for NSGA-II, MOEA/D and

AMALGAM were obtained externally. The implementation for NSGA-II, coded

by Aravind Seshadri, is available on the MATLAB Central File Exchange and

is based on the algorithm description provided by Deb. et. al. [5]. The im-

plementation for MOEA/D was obtained from Qingfu Zhang’s research web

page (Qingfu Zhang is the first author of MOEA/D [15]). The implementa-

tion code for AMALGAM was obtained from Jasper Vrugt through an email

request (Jasper Vrugt is the first author of AMALGAM [12]). Default settings

of the embedded algorithms were used in the analysis discussed in Section B.3.

Subsequent to the analysis AMALGAM was highlighted as an appropriate em-

bedded evolutionary algorithm for use within GOMORS. Default settings of

AMALGAM were used within the embedded optimizations of Steps 2.2 and

2.3b of GOMORS (please refer to Section 2.3.1 of the main paper for reviewing

the algorithm framework). Table B.6 summarized the parameter settings used

for GOMORS.

Additionally, it should be noted that one point each is selected for expensive

evaluation from rules no. 1 to 4, during each algorithm iteration (all selection

rules are described in Section 2.3.4 of the main paper), in the final implementa-

tion of GOMORS. Furthermore, a point is selected via rule no. 0, during each

algorithm iteration, with a probability of 0.1 (Please note that rule 0 is selection

through random sampling). Hence, in this application of GOMORS only 4 or 5

points are selected for parallel evaluation in each algorithm iteration. However,

more points could be selected from each rule during an algorithm iteration and

more rules could be incorporated in the algorithm in future, resulting in an in-
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Table B.6: Parameter Settings for GOMORS

Parameter Name Setting

No. of initial Latin hypercube samples 2d + 2

No. of maximum evaluations 400

Local Search / Gap radius 0.1

Random selection probability 0.1

Embedded global MOEA population size 100

Embedded global MOEA generations 25

Embedded local MOEA population size 100

Embedded local MOEA population size 25

crease in the number of simultaneous evaluations in each algorithm iteration.

The parallel properties of GOMORS are discussed briefly in Section B.4. The

MATLAB implementation of GOMORS will soon be available on the research

webpage of Christine Shoemaker.

B.6 Additional Results

Additional results pertaining to Non-Dominated Front visualizations for the

two groundwater problems are provided in this section. There are two fig-

ures (B.5 and B.6) corresponding to the worst solutions (as per uncovered hy-

pervolume) obtained from multiple experiments performed via GOMORS and

ParEGO on the GWDA and GWDM groundwater problems. The red line within

each sub-plot of the figures is an estimate of the Pareto front. This estimate

was obtained (for both GWDM and GWDA) through a single trial of NSGA-

II with 50000 function evaluations. The green dots within each sub-plot cor-
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respond to the non-dominated solutions obtained via application of the algo-

rithm referenced in the sub-plot. There are six sub-figures within each figure

and two sub-plots within each sub-figure, depicting the difference in perfor-

mance of GOMORS and ParEGO. Each sub-figure corresponds to the worst non-

dominated fronts obtained from each algorithm for a different number of deci-

sion variables (6 and 24) and after a fixed number of function evaluations (100,

200 and 400). A bottom to top traversal of each figure provides a visualization

of the change in performance of algorithms as function evaluations increase,

and a left to right traversal assists in visualizing performance differences when

decision variables increase.

Figures B.5 and B.6 are consistent with the conclusions drawn in Section

2.5 of the main paper, and depict that performance of GOMORS is superior to

ParEGO even in the worst case scenario. GOMORS is able to produce diverse

trade-offs in the worst case scenario for the 24 variable problems, while ParEGO

fails to obtain diverse solutions. This notion is true for both GWDA and GWDM.
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Figure B.5: Estimated Non-dominated Front for Groundwater Problem
GWDM: Visual comparison of worst non-dominated fronts ob-
tained from GOMORS and ParEGO for GWDM with 6 and 24
decisions, and after 100, 200 and 400 expensive function eval-
uations. Red line is result of 50,000 evaluations with NSGA-II.
Green circles are non-dominated solutions from GOMORS or
ParEGO.
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Figure B.6: Estimated Non-dominated Front for Groundwater Problem
GWDA: Visual comparison of worst non-dominated fronts ob-
tained from GOMORS and ParEGO for GWDA with 6 and 24
decisions, and after 100, 200 and 400 expensive function eval-
uations. Red line is result of 50,000 evaluations with NSGA-II.
Green circles are non-dominated solutions from GOMORS or
ParEGO.
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