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Service providers face the risk of losing revenue if physical capacity does not match 

the demand requiring its use, so operating with the optimal physical supply profile is 

essential to maximizing revenue.  Research on how to determine this physical supply 

has not always accounted for the space required to house it, and has typically assumed 

that:  the optimal supply mix can be accommodated by the available space, the 

existing number of inventory units within the space is appropriate, and inventory units 

are homogeneous in terms of the space they occupy.  The research that has addressed 

the use of space in Revenue Management sometimes incorporates space as a constraint 

to the problem, but other times uses space as the decision variable.  Therefore, testing 

whether there is a revenue difference between these two space outlooks in situations 

where these key assumptions do not hold is warranted.   

 

A simulation model using data from a casual, full-service restaurant was developed to 

compare the impact of incorporating space in these two ways into the Revenue 

Management problem.  A full-factorial experimental design created 36 distinct 

simulation scenarios, with these two space outlooks serving as the primary factor, and 

three other factors providing a range of operating conditions.  For each scenario, all 

possible table mixes were enumerated, simulated, and ranked according to total 

revenue.  The top revenue-generating table mix under the two space methods were 

paired at every level of the other factors and revenue differences were analyzed.  

 



  

 

Results from the simulation experiment did not reveal any systematic revenue 

difference between the two space methods when the tables used at a restaurant were of 

standard size or larger.  When the tables were smaller than standard size and the 

restaurant experienced extremely high demand, using space as the decision variable 

generated a significant revenue benefit over incorporating space as a constraint.  To 

make these findings accessible to practitioners and because published means for 

determining the optimal physical supply profile do not always recommend table mixes 

that fit in the available space, table mix heuristics developed by Kimes and Thompson 

(2005) were modified to account for both methods of incorporating space.  The size of 

the tables used by the restaurant and the seating rules followed affected which 

heuristic recommended the most lucrative supply mix. 
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CHAPTER 1:  INTRODUCTION AND RESEARCH OBJECTIVES 

 

In general, managing the capacity of a service operation entails using available supply 

to satisfy the needs of customers in a profitable manner.  One aspect of supply is the 

physical inventory units put into operation to fulfill requests for service, generate 

revenues, and fit into the actual space available to process customers.  Ensuring that 

the optimal amount and mix of this physical capacity put into use is an essential 

component in maximizing the revenue potential of service, and understanding how to 

determine this level and mix of supply is the broad topic of this study.  This chapter 

provides background for this research problem in terms of how it is connected to the 

field of Revenue Management; the real-world context in which this study is conducted 

is also described.  Three specific research questions are posed that, once answered 

through experimentation and analysis of results, will give insight into the impact on a 

service system of operating with the most advantageous, realistic level and mix of 

physical supply.  The organization of this dissertation is also presented, including a 

brief synopsis of the content covered in each of the chapters. 

 

Research Background 

Many service-based businesses operate with a supply base that contains a mix of 

physical and nonphysical resources.  The physical inventory of a service � rooms at a 

hotel, vehicles of a car rental company, treatment rooms in a spa, or tables at a 

restaurant � is used in conjunction with employees and atmosphere to fulfill the needs 

of customers.  Once established, the amount and type of physical inventory used by a 

service is often inflexible and can constrain the output the system can produce since 

no inventory buffers exist between what customers want and what service companies 

provide (Sasser, 1976; Talluri and van Ryzin, 2005).  For instance, a hotel built with 
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100 rooms can sell a maximum of 100 rooms per night, regardless of the availability 

of nonphysical resources such as employees or computing power.   

 

Therefore, a service provider faces the risk of not capturing all potential revenue if the 

physical capacity it has available does not match the demand requiring its use.  At a 

specific point in time, each physical inventory unit has a revenue-generating 

opportunity that, in most cases, will be lost forever if not used since services cannot be 

inventoried for sale at another time (Kimes and Chase, 1998).  Additionally, revenue-

producing requests for a service are oftentimes forfeited if no accompanying physical 

inventory component is readily available.  To manage a potential imbalance between 

supply and demand, service companies often use demand and capacity management 

practices to influence how and when service requests materialize and how requests are 

processed as they arrive.   

 

Revenue Management (RM) is a well-known and widely-used field that combines 

elements of both demand and capacity management to address service situations in 

which limited supply is available to fulfill demand from a variety of customer 

segments.  The principal goal of RM is to maximize the possible revenue that can be 

generated by a set of physical inventory units over a certain time period (Kimes, 

1989).  An RM system operationalizes this goal by allocating physical supply to 

demand categories that are differentiated by various combinations of price, physical 

inventory features, and intangible operating policies (Kimes, 1989; Kimes and Chase, 

1998).  These supply categories are then used to serve multiple segments of customers 

with different needs.  
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For instance, hotel RM systems distribute rooms to various rate and length of stay 

buckets that are also differentiated by qualities such as room type and cancellation 

policy.  As such, the same hotel room is used to serve business or leisure guests, short- 

or long-term customers, and discount or convenience-oriented patrons in a way that 

maximizes the revenue brought to the property.  In a similar manner, restaurants use 

their available dining room to accommodate different types of customers, such as 

parties of two or parties of eight and business meetings or romantic couples.   

 

Generally, the smallest and most frequently occurring physical inventory unit of a 

particular service operation serves as the basis for allocating the existing total supply 

into these demand-based categories (Kimes, 1989; Talluri and van Ryzin, 1998).  

Examples of the smallest inventory unit are coach seats on an aircraft, standard rooms 

of a hotel, and chairs or seats in a restaurant.  Many times, however, seemingly 

identical physical inventory units are not actually homogeneous.  Standard hotel 

rooms have differing numbers and types of beds, such as one king, one queen, or two 

doubles.  Likewise, seats in a restaurant dining room are situated at a variety of table 

types such as banquettes and rounds and numerous table sizes, ranging from one-tops 

to twelve-tops or larger.   

 

An additional characteristic that further makes these physical inventory units non-

homogeneous is the amount of space required to accommodate each unit of inventory.  

For example, a Cadillac Escalade takes up more area on a rental car lot than does a 

BMW Mini Cooper.  Similarly, an eight-top table at a restaurant occupies more space 

than a two-top.  Therefore, a restaurant using a dining room area that cannot be easily 

expanded or altered may be able to capture more revenue if it has the number and mix 

of tables and seats available that best accommodates its customer base.   
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In these types of service situations where standard inventory units are spatially non-

homogeneous, traditional capacity and revenue management techniques may produce 

the maximum possible revenue for the inventory units in operation, but not for the 

total potential revenue-generating space of the business under study.  The overriding 

purpose of this research is to therefore understand how incorporating space into the 

revenue management problem impacts the supply profile of an operation and its ability 

to produce the highest possible expected revenue.   

 

Research Context 

Exploring this units-versus-space inventory issue requires comparing the performance 

of a system in which physical units are the basis of inventory allocation to the 

performance of the same system but with space as the basis for inventory allocation.  

The system under study consequently needs to use a mix of spatially non-

homogeneous, perishable, and relatively inflexible physical inventory within a mostly 

fixed area.  Additionally, the system should either currently use Revenue Management 

or have the characteristics necessary to be able to properly use RM, such as stochastic 

demand, demand that is easy to segment, and fairly low marginal costs (Kimes, 1989).  

Several service businesses including hotels, rental cars companies, airlines, casinos, 

and restaurants fit this description.   

 

Of these service systems, a restaurant is chosen as the context in which to study the 

units-versus-space inventory problem.  A restaurant can more easily alter the level and 

mix of its physical inventory � seats at tables � than a hotel can add or subtract beds in 

rooms or an airline can change the mix of seats it offers on planes.  While all of the 

services mentioned can benefit from this type of research in the earliest phases of 
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capacity planning, a restaurant can more immediately use the results of this study to 

improve operations since the cost to modify the seats and tables in dining room is not 

exorbitant (�Tables and Bases,� 2008; Kimes, 2004; Kimes and Thompson, 2004). 

 

Restaurateurs have long expressed interest in managing both their kitchen and dining 

room capacities to serve as many guests as possible while maintaining the desired 

level of customer service (Muller, 1999; Sill and Decker, 1999).  Recently, restaurant 

operators have begun experimenting with capacities of their establishments in order to 

best move customers through the dining experience (Prewitt, 2007).  Operators are 

particularly interested in understanding how capacity can be changed to minimize 

occupancy costs, maximize revenue-generating space, or both (Prewitt, 2007).  

 

Researchers have already published several studies providing tools and techniques 

helpful in managing a restaurant�s existing dining room capacity.  Thompson (2002) 

examined the capacity of a restaurant in terms of the level of flexibility to combine 

smaller tables to fit large parties that would capture the most revenue.  Kimes and 

Thompson (2004) studied the mix of capacity at a full-service restaurant and found 

that better matching physical supply to customer demand positively impacted revenue.  

They found that allocating the existing number of seats to the mix of 2-top, 4-top, 6-

top, and 8-top tables that best matched demand for tables of those sizes, regardless if 

the restaurant currently owned that particular mix of tables, was a profitable venture.   

 

In these studies, the authors were interested in determining how to serve more 

customers without increasing the number of seats in the subject facilities.  Therefore, 

the optimal mix of capacity was based on the pre-determined level of capacity in the 

restaurant.  Additionally, supply was assumed to be spatially homogeneous in that all 
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seats required the same amount of dining room space, regardless of the table size to 

which they were allocated.  While these studies are seminal in examining how to best 

use the existing physical capacity of a service, this type of supply research could be 

augmented by taking space considerations into account at the earliest stages of 

capacity allocation and also simultaneously determining the physical capacity level 

and mix of a service business that optimizes revenue potential. 

 

Research Questions 

A number of questions arise when comparing a restaurant situation from a perspective 

of space instead of the established viewpoint of seats as the basic physical inventory 

unit.  The following questions give insight into the broad impact of this comparison:   

 

1. To what extent is revenue impacted if capacity is allocated based on space 

instead of inventory units?  

 

Basic physical inventory units, such as seats at a restaurant, appear identical but are, in 

fact, spatially diverse depending on how they are allocated to various revenue-

generating entities, such as restaurant tables.  Published capacity allocation research 

recognizes this issue and handles it by allowing slightly-below-optimal solutions to be 

adopted (Kimes, 2004; Kimes and Thompson, 2004; Kimes and Thompson, 2005).  

This adjustment is the result of allocating the existing number of seats to different 

tables without initially taking into account whether or not the table mix can actually fit 

in the dining room space available.  Factoring in space considerations before 

allocating inventory units may alleviate or reduce this problem and result in a table 

mix that better accommodates customers and thus generates more money.  It may also 

lead to a capacity level that is better matched to the level of demand.   
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2. How is existing capacity changed when supply is measured by space instead of 

units?   

 

Allocating space to tables in a restaurant entails determining the net amount of space 

that is available to seat customers and then establishing the best mix of physical 

supply to meet demand.  By using a space-as-inventory outlook, the current number of 

seats used by a restaurant may change as the operation is now constrained by available 

space instead of existing seats.  An increase in the number of seats would expectedly 

lead to a categorical increase in revenue as more customers could be served in the 

same time frame.  However, the optimal table mix under a space allocation rule could 

possibly use fewer seats than its seat inventory counterpart.  This situation leads to the 

third research question.    

 

3. Can revenue actually increase if the number of physical capacity units in 

operation is decreased? 

 

Some restaurant chains have begun decreasing the size of their facilities � in terms of 

both space and number of seats � with the results of maintaining and sometimes even 

increasing revenues (Prewitt, 2007).  However, no mention is made if these higher 

profits were achieved by simply cutting out excess capacity.  Restaurants operating at 

high utilization rates do not have excess capacity, especially during peak periods.  

Owners and operators of capacity-constrained facilities could more confidently 

participate in the trend to downsize if the optimal table mix produced under a space 

allocation rule were to use fewer seats but achieve higher revenue.  
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Organization of the Dissertation 

In this chapter, the background leading to this research, including ties to several fields 

within Operations Management, was presented.  Details regarding why a restaurant 

operation was chosen as the context for this study were also provided.  Three specific 

questions that give insight into the affect on a restaurant operating system of 

redefining inventory as space instead of units serve as the basis for this study and will 

be answered through controlled experiments.   

 

Chapter 2 provides a review of the literature pertaining to both the broad issues and 

specific subjects associated with this research.  Aspects of many different research 

streams are relevant to this problem; capacity planning, capacity management, revenue 

management, and restaurant revenue management literature are discussed. 

 

The research methods used to address the objectives of this study are described in 

Chapter 3.  A simulation model is developed to mimic the operations of a real-world 

test site, and is validated using actual operational data.  A full-factorial experimental 

design is proposed, as are the statistical methods to be used to analyze the simulation 

output. 

 

The results of the simulation experiment and accompanying analyses are presented in 

Chapter 4.  Insights gained from the findings are linked to existing restaurant revenue 

management research in Chapter 5, which details the primary contribution of this 

study.  Chapter 6 then presents the conclusions of the study, including additional 

contributions of the research to the Service Operations Management and Revenue 

Management literature, the implications of the study findings for practitioners, and the 

limitations of this study and how they provide avenues for future research.  
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CHAPTER 2:  LITERATURE REVIEW 

 

The goal of this research is to determine if defining the physical inventory of a service 

operation as space instead of capacity units, such as seats in a restaurant, leads to 

changes in revenues and total capacity.  Aspects of many different research streams 

are relevant to this problem, and literature associated with each topic is reviewed in 

this chapter.  Capacity planning and its relationship to capacity management are 

discussed.  The importance and complexity of concurrently managing the supply and 

demand of a service business are presented, as is an overview of the Revenue 

Management tools and techniques that have emerged to take advantage of supply and 

demand imbalances.  Literature pertaining to Revenue Management aspects of 

restaurants is also covered since a restaurant provides the research context for this 

study.  Lastly, a review of how space has been considered in Revenue and Operations 

Management problems is given.   

 

Capacity Defined 

At first glance, capacity seems to be a straightforward notion where the total capacity 

of a system is the realistic amount of output its operations can produce (Klein and 

Long, 1973).  However, several ways of defining and measuring capacity exist, 

making it a complex and longstanding focus of research.  Various disciplines employ 

more specific definitions of capacity to reflect the unique characteristics of their fields.  

For instance, telecommunications uses channel capacity (Verdu and Han, 1994) and 

tourism considers carrying capacity (Lindberg et al., 1997).  Further, total capacity can 

be determined by different methods such as the point at which full inputs are required 

or the point at which a bottleneck develops (Klein and Long, 1973).   
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Because of their perishable nature, services generally define total capacity as the 

maximum output that can be produced in a specified time period given a predefined 

level of all relevant inputs (Lovelock, 1992).  Total capacity of a service is therefore a 

function of several factors, including the space available to build and maintain an 

operation, the physical and non-physical resources required to execute the service 

offerings, and the time allotted to provide the service (Lovelock, 1992; Klassen and 

Rohleder, 2001).  As such, measuring total service capacity and how well it is utilized 

has often been done by focusing on the smallest unit of inventory for sale, such a hotel 

room or a restaurant seat. 

 

Capacity Planning 

In broad terms, capacity planning entails determining the supply profile of a business 

so as to best accommodate expected customers.  This long-term planning occurs in the 

earliest stages of building or remodeling a business (Bahl et al., 1987) as well as 

throughout the lifetime of an ongoing operation (Olhager et al., 2001).  The objective 

of capacity planning is to establish the appropriate types and levels of supply that 

minimize the costs of operating a business while still satisfying demand for goods or 

services (Eppen et al., 1989).   

 

Capacity planning is often classified as the first stage of a two-stage stochastic 

decision problem (Fine and Freund, 1990; Bish and Wang, 2004).  In this stage, a 

business makes risky, long-term, and costly investment decisions based upon 

uncertain demand forecasts and vague expectations of future operating conditions 

(Dangl, 1999; Olhager et al., 2001).  The second stage of the stochastic decision 

problem is capacity management; literature on this subject is discussed later in this 

chapter.  
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Facets of Capacity Planning 

Research in capacity planning has largely focused on helping businesses determine 

where and how to efficiently and inexpensively create or assemble products 

(Koopmans, 1951; Eppen et al., 1989; Fine and Freund, 1990; Jordan and Graves, 

1995).  As such, much capacity planning literature pertains to large-scale issues 

including the number and location of production or service facilities (Eppen et al., 

1989; ReVelle and Eiselt, 2005) as well as the physical size of each location 

(Paraskevopoulos et al., 1991).  An over-investment in facilities leads to idle capacity 

if actual demand falls below what is expected, while under-investing in supply results 

in foregone revenues if a higher level of demand materializes (Balachandran et al., 

1997; Gu, 2003).   

 

Capacity planning also involves designing the actual service or production system to 

be housed by the facilities.  The design of a system entails establishing how inputs will 

be transformed into outputs, and businesses often struggle with balancing costs, 

quality, and productivity when planning these production processes (Banker and 

Morey, 1993; Armistead and Machin, 1998).  Process design entails combining 

aspects of marketing, operations, product design and mix, human resources, materials 

procurement and handling, customer relationship management, and sales into a 

functioning system (Chase, 1981; Delaunay, 1999; Pullman and Moore, 1999; Olhager 

et al., 2001).  It also entails configuring the layout of a facility to optimize the way in 

which raw materials flow through the production process so all aspects of the physical 

facility are utilized in the most profitable manner and customers (Tompkins and Reed, 

1976; Bozer et al., 1994; Pagell and Melnyk, 2004).   
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A significant aspect of process design and planning is determining the amount of 

flexibility that should be built into the delivery system.  Flexibility is often defined as 

the extent to which resources can be shared in the production of a variety of goods or 

services (Fine and Freund, 1990).  Because operating with flexible resources is costly, 

the most beneficial level of flexibility for an operation is one in which the trade-off 

between higher production costs is offset by the potential benefits of being able to 

react to changes in the level or mix of demand (Jordan and Graves, 1995; van 

Mieghem, 1998).  When resources have a high level of commonality, optimizing the 

use of the resource is more lucrative than trying to minimize the production costs 

(Balachandran et al., 1997). 

 

Capacity Planning for Services 

For a service operation, the combination of physical and nonphysical supply 

determines the total capacity of a service operation.  Many capacity planning 

researchers have focused on nonphysical supply, or the role that employees play in 

service capacity planning (Hueter and Swart, 1998; Sill and Decker, 1999; Thompson, 

1998; Thompson, 1999).  Research regarding the physical supply of services is often 

concerned with service process design and engineering Back-of-House (BOH) 

operations for maximum efficiency (e.g. Levitt, 1972; Collier, 1995; Bowen and 

Youngdahl, 1998; van Merode et al., 1998; Pagell and Melnyk, 2004) or revising 

Front-of-House (FOH) operations for optimal customer response (Bitner, 1992; Ward 

et al., 1992; Robson, 1999; Namasivayam and Lin, 2004; Hassanien and Baum, 2002; 

Hill et al., 2002).  There is limited research, however, on developing the physical 

supply of a service facility.   

 

 



  

13 

Physical Supply of Services 

In a service operation, the size of a service facility is typically determined by corporate 

standards, site-specific qualities, best practices benchmarking, or competitor profiles 

(Banker and Morey, 1993; Bradach, 1997; Phillips and Appiah-Adu, 1998; Tzeng et 

al., 2002).  Capacity planning for services involves also involves determining the 

appropriate level and mix, as well as configuration, of physical supply units that will 

be made available to accommodate customer demand (Mabert, 1986).  For instance, a 

hotel must determine how many square feet of real estate it will occupy, as well as the 

total number of rooms it will offer, and how many of these rooms should have one or 

two beds.  Decisions regarding physical supply units define the number and type of 

customers that can be served and are critical in setting both the maximum profits a 

business can achieve and the expectations of customers in terms of operating qualities 

such as wait time and crowdedness (Banker and Morey, 1993).   

 

Level of Physical Supply 

Researchers disagree on the amount of physical capacity that is optimal for a service 

operation.  Wenders (1971) posited that excess capacity serves to stave off 

competition, while Ng et al. (1999) and Ittig (2002) argued that operating with unused 

capacity aids in attracting new customers and satisfying current ones.  Alternatively, 

Lovelock (1984) and Desiraju and Shugan (1999) contended that insufficient capacity 

can lead to increased profits with proper management of prices.  Regardless of the 

view on the advantages of excessive demand or supply, taking strategic, proactive 

measures in planning and managing capacity is crucial for long-term business success. 

 

Very few academic studies have been published that specify tools and techniques to 

help service operations determine the appropriate amount of physical supply.  Mabert 
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(1986) developed a linear program to determine the amount of equipment required to 

operate a check processing center.  Berman et al. (1993), Berman and Kim (1999), and 

Berman and Sapna (2000) studied the allocation of predetermined inventory to 

automotive repair bays, but stopped short of determining the optimal number of these 

service areas.  Pak et al. (2003) modeled a flight segment that had a shifting level of 

capacity instead of a fixed number of seats and found that revenues increased when 

seat supply was flexible.  

 

Determining the optimal amount of total physical supply is especially crucial for 

service businesses that cannot readily alter the physical aspect of their operation (Cook 

et al., 1999).  For instance, a hotel cannot easily build an additional room to house one 

more guest, and a casino cannot add another blackjack table to its gaming floor if 

governing regulations do not allow it.  Conversely, some service operations have a 

higher level of flexibility in physical supply and can more easily alter total capacity to 

accommodate customers.  A restaurant would likely be able to add another table to its 

dining room or a spa could use a facial room to deliver a massage if necessary.  

Incorporating flexibility into capacity planning adds complexity as it requires 

determining the extent to which different physical supply units can be used to 

accommodate a variety of demand (Fine and Freund, 1990).  

 

Mix of Physical Supply 

The mix of different physical supply units offered affects both revenue and customer 

behavior (Netessine et al., 2002; Pak et al., 2003; Kimes and Thompson, 2004).  

Service businesses that do not operate with the supply mix that best matches their mix 

of expected demand often have to use costlier inventory to satisfy less profitable 

demand.  For instance, a rental car company that cannot accommodate a reservation 



  

15 

for a compact car must upgrade the customer to a mid-sized vehicle.  The company 

forgoes the higher profit that could be made from renting out the more expensive car 

to another customer and possibly damages customer expectations as customers may 

begin to change booking behavior in anticipation of free upgrades. 

 

As such, services may use different techniques to ensure that the mix of physical 

supply units in operation is appropriate.  Owners and operators of hotels and resorts 

choose their room mix primarily based on the mix offered by direct competitors and 

secondarily on the mix of guests expected, such as families or single business 

travelers.  Some airlines use adjustable curtains to change the mix of economy and 

business class inventory (Ringbom and Shy, 2002) to match demand and thus increase 

revenue and improve resource utilization.  Many restaurants, however, choose a 

supply mix that creates the image and atmosphere suitable for an operation (Katsigris 

and Thomas, 1999; Baraban and Durocher, 2001) instead of a supply mix that best 

accommodates demand. 

 

As discussed in the previous chapter, Kimes and Thompson (2004) addressed the 

supply mix problem for restaurants and used simulation to determine the optimal mix 

of tables to maximize Revenue per Available Seat Hour (RevPASH).  They found that 

allocating the total number of seats to the different-sized tables in a manner that 

matched the supply mix to the demand mix allowed more customers to be served, 

decreased pre-service wait times, and ultimately generated an increase in revenues of 

over 3 percent.  In a subsequent study, Kimes and Thompson (2005) tested numerous 

heuristics designed to facilitate the application of their supply mix research.    
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For any service, however, optimizing the supply mix may not maximize revenues if 

the amount of physical supply in use is not optimal itself.  The appropriate method for 

determining the total amount of physical inventory units to offer is to vary the number 

and mix of units until return on investment or net present value goals are achieved 

(Ozer, 1996; Stephani K. Robson, personal communication, December 2007).  This 

method is complex, since space and inventory units of an operation are simultaneously 

established, and costly, since specialized consulting firms are typically involved in 

performing this type of capacity analysis. 

 

Link between Capacity Planning and Capacity Management 

Capacity planning is directly linked to capacity management, as the long-term 

decisions related to the amount and type of physical supply units to offer drive real-

time capacity management.  Ideally, a business could add the appropriate supply to its 

physical capacity during high demand periods and reduce supply accordingly during 

low ones (Ng et al., 1999).  Since this is unrealistic, short-term control of supply is 

vital in ensuring realistic resource utilization and profit potential (Fine and Freund, 

1990; van Mieghem, 1998; van Mieghem, 2003).   

    

Capacity Management 

Capacity management is considered the second stage of the two-stage decision 

problem that is often used to model resource investment and execution (Fine and 

Freund, 1990; van Mieghem, 1998; Bish and Wang, 2004).  Capacity management 

literature focuses on using the supply established in the planning phase to efficiently 

and profitably produce goods or services once demand is realized.  Traditional 

capacity management research concentrates on manufacturing problems such as 
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production sequencing (Karmakar, 1987; Brennan et al., 1992), lot sizing (Karmakar, 

1987), and material requirements planning (Billington et al., 1983).   

 

More recently, capacity management studies have focused on the dynamic and 

simultaneous interaction, rather than sequential connection, between supply decisions 

and demand realizations (Olhager et al., 2001; van Mieghem, 2003).  This perspective 

of capacity management is more relevant to services because of their immediacy and 

inherent lack of inventory (Sasser, 1976).  Simultaneously matching the supply and 

demand of a service requires using techniques that manipulate how and when demand 

materializes and tools that recommend how much and what kind of capacity is made 

available to serve that demand.   

 

Managing Supply 

The goal of supply management is to utilize established capacity to accommodate 

demand as it materializes in real-time (Klassen and Rohleder, 2001).  When supply is 

managed well, a service�s current delivery system is able to generate incremental 

profit or accommodate incremental demand without compromising service standards 

(Sill, 1991).  Two strategies for supply management � chase and constant � are 

frequently cited in the literature as the options available for controlling supply.   

 

The chase strategy entails capitalizing on the flexibility of capacity to respond to 

demand (Sasser, 1976).  Using shared equipment, scheduling short-term employees, 

and incorporating guest participation in the service delivery process are trademark 

chase management techniques (Sasser, 1976; Larsson and Bowen, 1989; Johnston, 

1999).  The constant strategy involves operating a fixed level of capacity that 

effectively provides an inventory cushion and protects an operation from ever turning 
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away customers (Sasser, 1976; Crandall and Markland, 1996; Olhager et al., 2001).  A 

business using a constant strategy functions under a long-run outlook and employs 

skilled, non-transitory employees (Sasser, 1976). 

 

Because of the extreme nature of strictly following either the chase or the constant 

strategy, some researchers have recommended mixing aspects of both methods (van 

Mieghem, 2003).  Sasser (1976) and Betts et al. (2002) argued that effectively mixing 

the strategies can decrease overhead costs but still provide an agile service system that 

can react to variable demand and better use resources.  Likewise, Olhager et al. (2001) 

proposed a supply tracking strategy that incorporated capacity investment decisions 

into supply management and essentially added a supply cushion to the chase method.   

 

Managing Demand 

Demand management practices are concerned with influencing the type and timing of 

requests for services and essentially entail shifting demand to periods and products 

that are either more profitable for the operation or less taxing on the operating system 

(Shemwell and Cronin, 1994; Klassen and Rohleder, 2001).  These practices are often 

used reactively, when demand exceeds supply, resulting in marked productivity, 

quality, and profit declines (Rhyne, 1988) or proactively, affording operators more 

control over the service process (Sasser, 1976).  The key to demand management is 

accurate forecasting to maximize predictability and minimize explainable variability in 

peak, shoulder, and off-peak demand periods (Lovelock, 1984; Rhyne, 1988).  

Examples of demand management practices include taking reservations, which gives 

an operation control over the arrival of demand to a service system and allows for 

controlled queuing is a way to inventory demand for a service, and adjusting pricing 
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and product offerings at certain times, which defers demand to shoulder and off-peak 

periods (Lovelock, 1984; Radas and Shugan, 1998; Sill, 1999).   

 

Jointly Managing Supply and Demand 

Because of the instantaneous interaction between supply and demand in service 

businesses, a systems approach to managing capacity is often recommended, with the 

goal of balancing potentially conflicting supply and demand objectives (Rhyne, 1988; 

Crandall and Markland, 1996; Pullman and Thompson, 2003).  A service system is 

directly exposed to fluctuations in demand, while the efficient operation of the system 

directly impacts customer perceptions of the service outcome and future demand 

(Rhyne, 1988; Showalter and White, 1991; Klassen and Rohleder, 2001).  Many 

researchers have proposed strategies for this joint supply-demand management 

problem that both accounted for the capacity of an operation and the influence a 

business can have on demand (Crandall and Markland, 1996; Klassen and Rohleder, 

2002; Pullman and Thompson, 2003).   

 

Revenue Management 

Revenue Management (RM) combines elements of both supply and demand 

management to address situations in which demand outstrips supply.  On the supply 

side, RM is concerned with maximizing the revenue of an operation on a granular 

level by focusing on the current and potential revenue generated by each unit of 

capacity for a specified time frame (Talluri and van Ryzin, 2005).  To do so requires 

not only knowledge of the level, patterns, segments, and value of demand but also an 

understanding of how to maintain customer satisfaction while influencing customer 

behavior and manipulating price (Weatherford and Bodily, 1992; Kimes and Wirtz, 

2003).  Businesses that benefit from the use of RM have relatively high fixed costs 
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with relatively low variable costs, perishable supply, moderately fixed capacity, and 

demand patterns that are time-variable, predictable, and easy to segment (Kimes, 

1989).  The following sections briefly summarize the literature pertaining to the 

strategy, technical, and operational components of an RM system, with particular 

attention given to how capacity is defined and managed.      

 

Revenue Management Strategy 

The practice of RM is rooted in the uncertainty associated with selling decisions about 

when to sell, what to sell, and how much to charge (Talluri and van Ryzin, 2005).  In 

essence, using RM gives businesses a framework for balancing available supply with 

expected demand (Upchurch et al., 2002).  The goal of an RM program is to capture 

the maximum possible revenue for a generally fixed set of physical inventory units 

over a certain time period by determining which customers to serve with the limited 

capacity (Kimes, 1989).  Operations with variable, demand-based pricing and 

predictable, or preferably fixed, service duration are best situated to take advantage of 

the principles of RM (Kimes and Chase, 1998).   

 

Technical Aspects 

The technical issues of RM, and the majority of this research can be categorized into 

forecasting, optimization, and overbooking categories.  The focus of this study relates 

closely to the optimization literature and loosely to the overbooking research since 

both of these streams relate to the optimal use of capacity, but it does not relate well to 

the forecasting publications.  Topics associated with forecasting research include 

demand modeling (Talluri and van Ryzin, 2004), techniques for unconstraining 

demand (McGill, 1995; Orkin, 1998), and various forecasting methods (Weatherford 



  

21 

and Kimes, 2003; Boyd and Bilegan, 2003).  A comprehensive review of forecasting 

literature is offered by McGill and van Ryzin (1999). 

 

Overbooking 

Overbooking is concerned with determining the amount to which the total number of 

physical capacity units should be artificially inflated when planning for an operational 

period, such as a flight leg or a hotel night.  Mathematical models to calculate the 

appropriate level of overbooking are found in Rothstein (1971), Ladany (1976), 

Liberman and Yechiali (1978), Bitran and Gilbert (1996), Chatwin (1998), 

Subramanian et al. (1999), and Karaesmen (2004).  Overbooking essentially optimizes 

the volume rather than mix of sales, since the optimal mix of customers would not 

include cancels or no-shows (Talluri and van Ryzin, 2005).  In this respect, 

overbooking can be costly if the total capacity of a service is comprised of a mix of 

capacity units that have different revenue-generating abilities (Desiraju and Shugan, 

1999; Pak et al., 2003).  Additionally, the negative outlook customers associate with 

overbooking stresses the importance of setting the correct number of capacity units 

that should be made available for sale (Bailey, 2007; Wangenheim and Bayon, 2007).   

 

Allocation 

The optimization/allocation component of RM is concerned with partitioning the 

physical supply of a service to various demand categories differentiated by price, 

physical inventory features, and intangible operating policies (Kimes and Chase, 

1998).  The objective of the allocation element in an RM program is to determine the 

timing and number of inventory units that should be made available to these demand 

categories in a way that optimizes revenue.  By doing this, a business is able to control 
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which requests for service to accept and which to reject, thus essentially optimizing its 

demand mix (Talluri and van Ryzin, 2005). 

 

Much of the optimization/allocation literature presents mathematical models with an 

array of assumptions and solution approaches to determine the optimal way to allocate 

supply.  For a discussion of these models, refer to Glover et al. (1982), Belobaba 

(1987), Kimes (1989), Brumelle et al. (1990), Curry (1990), Brumelle and McGill 

(1993), Bodily and Weatherford (1995); Talluri and van Ryzin (1998), Subramanian 

(1999), van Ryzin and McGill (2000), Zhao and Zheng (2001), and deBoer et al. 

(2002).   

 

A common assumption of these allocation models is that most capacity units are 

homogeneous (Curry 1990; Bodily and Weatherford, 1995; Talluri and van Ryzin, 

1998; Talluri and van Ryzin, 2005; Cooper et al., 2006).  In reality, service capacity 

units are all heterogeneous since they can command different prices from different 

customers (Talluri and van Ryzin, 2005).  As such, the menu, or mix, of service 

products and the physical resources required for the delivery of different services, 

offered to diverse segments of customers is vital to the RM problem (Gallego and van 

Ryzin, 1997; Kimes and Thompson, 2004).  This study directly addresses the impact 

that non-homogeneous inventory has on maximum achievable revenue.   

 

Revenue Management in Operation 

Many companies in various service-based industries successfully use RM strategies in 

all or parts of their operations.  Airlines traditionally used RM on a leg-by-leg basis 

but have only more recently adopted practices to maximize revenues for origin-

destination pairs which represent a more system-wide approach to RM (Boyd and 
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Bilegan, 2003).  The hotel industry uses RM to allocate rooms supply to consumer 

demand, but most hotels have not applied RM principles to ancillary revenue-

generating functions such as meeting rooms (Kimes and McGuire, 2001).  

Furthermore, golf courses (Kimes, 2000), non-profit organizations (Metters and 

Vargas, 1999), and restaurants (Kimes et al., 1998; Kimes et al., 1999), and have 

successfully implemented individual RM programs.  As a restaurant is the setting for 

this study, restaurant RM literature is discussed in depth below.   

 

Restaurant Revenue Management 

Like most industries, the restaurant industry often faces an imbalance between supply 

and demand.  When demand is too low to fill available seats, restaurants must try to 

attract additional customers, but when demand exceeds capacity, the problem becomes 

more complicated as the operation would like to serve as many of the most profitable 

customers as possible.  A Restaurant Revenue Management (RRM) program shares 

the same overall goal and structure of the more widespread airline and hotel RM 

programs in that historical data is used to develop strategies that will allow the 

restaurant to capture the maximum possible revenue over a certain time period using 

its existing physical capacity (Kimes, 1989; Kimes et al., 1998).   

 

The techniques used to deploy RRM largely involve modifying operations and policies 

to make duration more predictable (Sill and Decker, 1999; Noone et al., 2007), finding 

ways to make price more variable (Kimes and Wirtz, 2003; Susskind et al., 2004), and 

altering the level and mix of capacity units made available to accommodate demand 

(Thompson, 2002; Kimes and Thompson, 2004; Kimes and Thompson, 2005).  

Additionally, a restaurant provides a functional service (a meal is purchased and 

consumed), but it also fulfills social and cultural needs of customers, adding a 
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behavioral dimension to restaurant services (Robson, 1999; Andersson and Mossberg, 

2004).  Common practices associated with RRM include couponing (Taylor and Long-

Tolbert, 2002), time-based discounting (Susskind et al., 2004), understanding and 

controlling service duration (Noone et al., 2007), and optimizing the way in which 

supply is utilized to meet demand (Kimes and Thompson, 2004). 

 

Restaurant Supply and Related Research 

Following the definition of total service capacity used by Lovelock (1992), the total 

capacity of a restaurant can be defined as the maximum number of diners that can be 

served at a dinner period given predetermined levels of all the resources required to 

process customers.  These resources include the FOH employees needed to serve 

customers, the availability of ingredients to make menu items, the ability of the 

kitchen facilities and employees to produce timely and quality food, the actual space 

devoted to seating customers, and the amount and type of tables and chairs offered 

(Sill, 1999; Robson and Kimes, 2004).  The research relevant to this study pertains to 

how the capacity units within the given space are best used to generate revenue.   

 

As previously discussed, Kimes and Thompson (2004; 2005) addressed how the mix 

of tables impacted achievable revenue and developed models to help operations 

determine their optimal table mix.  Analogous to this work is the research of Bertsimas 

and Shioda (2003) in matching customers to supply through allocation of arrivals to 

tables.  They tested several different optimization-based RRM models to control the 

arrival of customers to a restaurant and determined that violating the customary first-

come-first-served (FCFS) seating rule for walk-in customers increased revenues 

without increasing wait times.   
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Research Gaps 

Most of these studies have addressed the lack of research directly related to RRM and 

the fact that while the number of RRM publications has been growing, research 

opportunities still exist (Robson, 1999; Bertsimas and Shioda, 2003; Kimes and 

Thompson, 2004).  One such gap in the literature pertains to capacity planning and 

determining how many physical capacity units should be put into operation.  While 

Kimes and Thompson (2005) and Bertsimas and Shioda (2003) used capacity 

management techniques to deploy the existing number of seats to any table mix (not 

the existing one), they assumed the number of seats that could be used was given and 

fixed at the current number in operation.   

 

Another gap in the literature relates to the non-homogeneity of physical capacity units 

used by a service.  As previously discussed, the common assumption of many RM 

models that capacity units are homogeneous is not realistic; identical units can have 

different revenue-generating abilities, so the way in which these units are used to serve 

customers impacts profitability (Talluri and van Ryzin, 2005).  In most restaurant 

environments, seats � the most granular unit of capacity, since each customer occupies 

one seat for the duration of service � are all the same.  In fact, from an operator�s 

viewpoint, the true measure of restaurant inventory, however, is the availability of a 

seat for the duration of a meal experience (Kimes et al., 1998).  However, these seats 

are situated at non-homogeneous tables that differ in shape, location, and most 

importantly, size since table size determines the number of customers that can be 

accommodated for the duration of a meal.   

 

The research that has been published regarding how to ensure that tables are optimally 

used has thus far assumed that each table size is proportional to its number of seats 
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(Bertsimas and Shioda, 2003; Kimes and Thompson, 2004).  This assumption does not 

always hold, as different table sizes often use different amounts of space per seat.  For 

instance, a 2-top table at a restaurant usually requires more room on a per person basis 

than does a 4-top table (Stephani K. Robson, personal communication, May 2006).  

This study addresses this issue of the non-homogeneous spatial requirements for 

different table sizes. 

 

Use of Space 

In general, Operations Management research regarding the use of physical space has 

been largely concerned with capacity planning issues such as sizing a new facility 

(Banker and Morey, 1993; Bitran and Caldentey, 2003), expanding an existing 

operation (Luss, 1982), or configuring a given facility in a way that maximizes 

throughput (Smith and Daskalaki, 1988).  Capacity management problems, 

specifically those associated with Revenue Management, also have a space 

component.  Space (e.g., square footage) is the common element among spatially-

diverse capacity units (e.g., restaurant tables or hotel rooms), and as such, focusing on 

space may provide new insight into how an operation can effectively use its most 

basic supply resource. 

 

A few RM studies have given notable consideration to the use of space in the Revenue 

Management problem.  As previously discussed, Pak et al. (2003) determined how 

utilizing airline capacity that could be physically converted between economy or 

business-class seats impacted revenues on a flight segment.  Essentially, the authors 

studied how redefining flight capacity to include the amount of space required to 

house diverse inventory units had a beneficial effect on revenue.  Additionally, Kimes 

and McGuire (2001) used space as a component in studying the revenue management 
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of hotel meeting rooms.  They determined that space was an integral aspect of this 

specific RM problem because of the opportunity cost associated with using of a 

portion of a divisible meeting room and obstructing the potential sale of the entire 

space.  Further, Kimes and Robson (2004) began exploring how to determine the 

optimal layout of restaurant tables in a given space of a restaurant and found that both 

table location and type impacted service duration and customer spending. 

 

Another area of RM in which the role of space has been explicitly studied is revenue 

management of cargo and retail businesses.  These types of operations use physical 

space as the inventory unit allocated to different categories of demand.  In cargo RM, 

the available shipping space is partitioned to demand based on the weight, volume, 

and position of freight that needs to be accommodated (Kasilingam, 1996; Billings et 

al., 2003).  Similarly, retail RM allocates the total shelf space of a store to product 

categories, each of which does not necessarily require an amount of space proportional 

to its size or profitability.  Product category shelf space is subsequently allocated to 

individual items that also are not always identical in size or revenue contribution 

(Yang and Chen, 1999).  No published studies have applied the idea of using space as 

the basic inventory unit allocation unit to pure services, such as restaurants and hotels. 

 

Connecting ideas from these studies leads to the premise that space is a basic resource 

that should be taken into account in the Revenue Management problem, especially 

when physical capacity units are non-homogeneous in terms of the amount of space 

they require to be put into use to generate revenue.  A restaurant environment is a 

good testing ground for studying this, as restaurant tables are non-homogeneous in 

both size and space required per person.  Additionally, because space has been treated 

differently in RM literature � merely a component of meeting room RM versus the 
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inventory unit under study in cargo and retail RM � testing whether there is a revenue 

difference between these two space outlooks is warranted.   

 

Summary 

This chapter has presented an extensive review of the existing literature related to the 

research problem addressed in this study.  As this problem focuses on the use of 

supply in a restaurant setting, many aspects of capacity were reviewed, including 

capacity planning, capacity management, and balancing supply and demand.  A 

discussion of Revenue Management, the specific field of capacity management 

designed to take advantage of supply-demand imbalances, and the application of 

Revenue Management to restaurant operations were also presented.  Finally, the scant 

literature pertaining to space in the context of capacity management or Revenue 

Management was reviewed.  The following chapter explains the methodology used in 

determining how space should be included in the Restaurant Revenue Management 

problem. 
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CHAPTER 3:  METHODOLOGY 

 

Service operators strive to optimize their service delivery systems to create the most 

profit possible while satisfying and delighting their customers.  Both physical 

inventory and the actual space that accommodates this inventory comprise the material 

Front-of-House component of a service operation.  Determining the level and mix of 

inventory that produces the maximum revenue and advantageously uses the available 

space is integral in optimizing a service delivery system.   

 

In this chapter, a simulation model is developed to examine how differing definitions, 

levels, and mixes of spatially non-homogeneous inventory impact the operations of a 

restaurant system.  Results from the simulation address the three specific research 

questions posed in Chapter 1:  (1) How is revenue impacted if capacity is allocated 

based on space instead of inventory units?  (2) To what extent is existing capacity 

changed when supply is measured by space instead of units?  (3) Can revenue actually 

increase if capacity is decreased? 

 

Simulation 

Simulation is an appropriate method to use when the economic or opportunity costs of 

experimenting in a live environment are too high.  Repeatedly altering the established 

system to test different research scenarios is intrusive and impractical.  A computer 

simulation replicates the system and allows for the assessment of various operational 

changes without disrupting the actual business and creating confusion.   

 

Simulation can mimic the complex, unpredictable, stochastic events, such as customer 

and employee behavior, which comprise a multifaceted service system like a 
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restaurant.  By randomly sampling from distributions based on observed patterns from 

actual operations, simulation can actually model variable service processes quite 

closely.  Additionally, operational aspects not related to the proposed research 

questions can be controlled so that alternate systems can be tested and compared on an 

equal basis. 

 

Simulation studies based on empirical problems found in service organizations allow 

researchers to examine realistic situations, evaluate the impact of different practices, 

and provide managers with practical solutions without interrupting the current service 

process (Shafer and Smunt, 2004).  Simulation modeling has been successfully used to 

study operational issues in a variety of service situations, such as optimal location of a 

city�s ambulance service (Savas, 1969) and network design at a shipping company 

(Cheung et al., 2001).   

 

The complex interaction of supply and demand that characterizes effective capacity 

management of a service business makes simulation an especially attractive analytical 

tool for testing capacity management techniques.  Brennan et al. (1992) examined how 

several operational procedures impacted a health facility�s ability to effectively use 

available capacity to process patients in a way that minimizes wait time.  Pullman and 

Thompson (2003) used simulation to determine the profit impact of upgrading and 

expanding capacity at a ski resort while simultaneously securing more control over 

customer demand.  Pagell and Melnyk (2004) simulated the supply layout of a health 

clinic and tested various alternatives to maximize efficiency and decrease variability.   

 

The established use of simulation to evaluate capacity management techniques in a 

dynamic service environment indicates that simulation is an appropriate research 
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method for this study.  The focus of the study is a full-service restaurant, which is 

characterized by multiple interactions among and between employees, customers, and 

physical surroundings.  The overall project plan for this simulation study has five 

steps: 

1. Identify the system components to include in the model and determine the 

performance measures to be collected; 

2. Design the baseline model, accounting for key steps as well as assumptions of 

the restaurant system, and code the model using empirical data collected from 

the test restaurant; 

3. Validate the baseline model to ensure it matches the operation of the actual 

restaurant system; 

4. Develop and simulate alternate scenarios; and 

5. Analyze outputs of alternate scenarios. 

 

System Components and Performance Measures 

This simulation study is based on the operation of an anonymous, full-service, well-

established, casual restaurant located in an urban area of southern New York State.  

The outlet is open seven days a week for dinner service and is also open for brunch on 

Sunday.  It has 32 tables, a sizeable and popular bar, and a moderately-sized kitchen.  

Currently, the restaurant has a total of 116 seats; its table mix is comprised of ten 2-top 

tables, nineteen 4-tops, two 6-tops, and one 8-top. 

 

The simulation models dinner service on both Friday and Saturday since the restaurant 

is typically operating at or near capacity at those times.  The simulation is terminating 

and does not use a warm-up time in order to best reflect the immediacy and variability 

of restaurant operations.  The model has a random duration that begins when the 
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restaurant opens for dinner at 5:00 pm and ends when all tables are empty, which is 

generally at least an hour after the kitchen stops serving at midnight. 

 

Model Inclusions and Exclusions 

The focus of this study is how revenue-generating space and the tables and seats it 

situated within the space is used and reused at the restaurant during peak operating 

periods.  The flow of customers dictates when and for how long space is occupied, so 

customer movement through the restaurant serves as the base of the simulation.  The 

model accounts for both the seating and bussing processes, which together essentially 

account for the set-up time required to prepare the dining room space to be utilized. 

 

Although the actions of hosts, wait staff, and bussers are contained in the model, these 

employee resources are not explicitly modeled.  In reality, the number of employees 

available to perform FOH functions rarely impedes the flow of customers to tables 

because floor managers at the test restaurant regularly greet and seat guests, deliver 

food and drinks, and clear and reset tables.  Since the number and availability of FOH 

employees is not central to the problem of space usage, specifically modeling them in 

the simulation is effectively redundant and would only add unnecessary complexity. 

 

Back-of-House (BOH) operations are also not explicitly included in the simulation.  

Kitchen operations are assumed to vary proportionally with Front-of-House (FOH) 

business.  Further, customers are not involved in the BOH, so omitting this area from 

the simulation allows the focus of the model to remain on the flow customers through 

the restaurant and how effectively space is used to accommodate them. 
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Performance Measures 

Several measures must be collected to assess the performance of the simulation 

against actual operations and to also evaluate different scenarios against each other.  

The performance measures collected in this study are: 

1. Total revenue; 

2. Total number of customers served; 

3. Total number of customers lost; 

4. Table utilization (occupancy) � total and by table type; 

5. Seat utilization (occupancy) � total and by table type; 

6. Hourly RevPASH (Revenue per Available Seat Hour); 

7. Hourly RevPAST (Revenue per Available Space-Time Unit, here it is Revenue 

per Available Net Square Foot Hour); 

8. Average wait time of customers by party size; and 

9. 85th percentile of customer wait times. 

 

The principal measure used to both benchmark the baseline model against actual 

operations and compare alternate systems is total revenue, as generating the highest 

revenue possible is the foundation of a profit-seeking business.  The customers served 

and lost measures serve as gauges to ensure the simulated systems are practical and 

reasonable.  The occupancy, RevPASH, and RevPAST metrics give an indication of 

how effectively the restaurant is using its supply to satisfy demand and generate 

revenue.  Customer management is represented by the wait measures collected.        

 

Design, Assumptions, and Coding of Baseline Model 

The model was built and run in ServiceModel (2005), a simulation product directed at 

service businesses.  ServiceModel was chosen as the software for this study primarily 
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because it has the capability to dynamically change inputs for different simulation 

runs, but also because users can tailor the software by building additional code on top 

of the existing program.  ServiceModel is flexible enough to allow for all key 

processes of the restaurant system to be modeled.  This software is also accessible, 

cost effective, and user-friendly so models and results can be understood and used by 

academic researchers, industry analysts, or knowledgeable practitioners. 

 

Operational data from the test restaurant served as the basis for much of the input data 

for the model.  Transaction records for over 1580 parties gathered from the 

restaurant�s Point-of-Sale (POS) system on seven different weekends were used to 

calculate party size, spend data, and duration figures.  Timing studies of 160 tables 

done on two separate weekends provided the data for the bussing times used.  

 

Simulation models do not need to exactly replicate the system they model.  Rather, 

they should mimic the system under study to the extent that results in the live envi-

ronment will be equivalent to those found in the simulation (Naylor and Finger, 1967).  

Building too much detail into the simulation may be unnecessarily time consuming 

and add irrelevant complexity to the model.  Thus, simplifying assumptions are made 

to create a manageable, focused model that ensures accurate results.   

 

The baseline model represents the flow of customers through the restaurant.  Four 

distinct, consecutive stages � Arrival, Seating, Dining, and Exit � ultimately combine 

to form the restaurant system.  These stages comprise the movement of customers 

through the outlet and represent when seats and tables are in use by either customers 

or employees.  Figure 3.1 is a schematic of how customers move through these four 

stages; design, assumption, and coding decisions for each stage follow. 
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Figure 3.1:  Model Schematic 

 

Stage 1 � Arrival of Customers to the Restaurant 

Design and Assumptions.  The rate at which customers arrive to the outlet over a 

typical Friday-Saturday night period is unknown.  One way to approximate customer 

arrival times is to use the time at which a server opens a check in the POS system.  

However, this method proves to be inappropriate for this study due to the limited 

number of weekends for which data is available.  Additionally, the restaurant reports 

that the wait time for a table during peak hours on Friday and Saturday nights typically 
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ranges from 5 to 45 minutes, so the time a party�s check is opened in the POS system 

is not indicative of the time party arrived at the outlet.  A known non-stationary 

Poisson process is used instead to model the arrival rates of customers.   

 

A non-stationary Poisson process is often used to approximate arrivals to a system that 

is characterized by time-of-day effects, with greater or fewer arrivals occurring during 

different time periods (Green and Kolesar, 1991; White, 1999).  Additionally, 

simulation studies in the field of Operations Management often include models built 

either partly or fully with empirically-based, but ultimately artificially generated, data 

(Shafer and Smunt, 2004).  Assumed input data does not compromise the validity of a 

model or impede in the comparison of alternate systems as long as the data is 

representative of the service system under study and provided that results are proven 

to be statistically significant (Klassen and Rohleder, 2002).   

 

The arrival process used in this model replicates the flow of customers into the estab-

lishment over 15-minute increments.  Arrival rates vary by time, but the same rates are 

used for both Friday and Saturday nights.  The arrival rates assumed for the simulation 

are generated based on a reasonable pattern for dinner service on a typical weekend at 

this particular establishment.  This pattern is derived based on conversations with a 

panel of professionals familiar with restaurant operations, including an employee of 

the test restaurant, two managers from similar establishments, a 20-year veteran res-

taurant owner, two hospitality educators with a combined 14 years experience in 

teaching, consulting, and researching, and an independent restaurant consultant 

specializing in balancing operational efficiency with customer service.   
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`Figure 3.2 graphs the arrival rates used.  The rate of arriving parties starts small at the 

5:00 pm opening of the restaurant, gradually increases to the peak period occurring 

from 7:15 pm to 8:30 pm, and declines slowly at first and then rapidly at later hours in 

the night.  The most popular arrival time is between 7:45 pm and 8:00 pm, while the 

least popular time is between 11:45 pm and 12:00 am, just before the kitchen closes.  

  Figure 3.2:  Non-Stationary Poisson Arrival Rate Function 

 

Parties are assumed to arrive with all members ready to be seated and served.  In 

reality, parties may arrive piecemeal, go directly to the bar instead of the host stand, 

balk, or not wait if they are considered a VIP.  All arriving parties are processed on a 

first-come-first-served (FCFS) basis; reservations and call-ahead seating are not used. 

 

Coding.  The simulation code mimics the thinning method for generating a non-

stationary Poisson process (Lewis and Shedler, 1979).  Parties enter the system 

according to an exponential distribution and are accepted into the system with a 
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probability based on their time-dependent arrival rate.  Parties that are rejected at the 

arrival stage never fully enter the system and do not affect any performance measure.   

 

Each arriving party is randomly assigned a party of size 1, 2, 3, 4, 5, 6, 7 or 8 accord-

ing to the restaurant�s current distribution of party sizes, given in Table 3.1.  Over 

60% of the restaurant�s customers are in parties of one or two and fewer than 2% are 

in parties with seven or eight.  Parties larger than 8 are not included in this model as 

they provide only a miniscule amount of business at the test restaurant.   

    Table 3.1:  Customers by Party Size  

 

 

 

 

 

 

 

 

 

Stage 2 � Seating Parties at Available Tables 

Design and Assumptions.  The seating process at the restaurant is straightforward; a 

party enters the outlet and proceeds to a table if an appropriately-sized one is 

immediately available.  If an appropriately-sized table is not available, the party waits 

until one becomes available; at that time, the party moves to its table.  A table sits idle 

while waiting for its assigned party to be seated.  Parties are seated at available tables 

with consideration of fitting party size to table size.  For instance, a party of two is 

Party Size Percentage of Total Parties 

1 11.2% 

2 52.9% 

3 16.2% 

4 12.2% 

5 3.9% 

6 2.0% 

7 1.0% 

8 0.7% 
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given preference to be seated at a two-top, but would be seated at a four-top if no two-

tops are available; however, the party would likely never be seated at an eight-top 

since the large table would overwhelm the party size.   

 

The time it takes to seat customers once a table becomes available is variable.  The 

seating process depends on several factors, including the speed at which patrons and 

employees walk, the crowdedness of the restaurant at the time of seating, the number 

of people in the party that must be gathered and led through the restaurant, and the 

location of the table being seated.  Table 3.2 gives the durations for the seating process 

used in the simulation model.  These times are assumed, as they are derived from a 

simple observation of the seating process at the test restaurant over two nights.   

   Table 3.2:  Seating Duration by Party Size 

 

Since the restaurant is empty at the beginning of each night of operation, customers 

arriving in the first few hours are usually seated immediately with no wait.  Once 

tables fill and customers are required to wait, some decide to renege, or wait awhile 

but leave before being seated and served.   

 

Coding.  Tables are assigned according to the rules given in Table 3.3, with priority 

given to seating a party at a table best matching the party�s size.  In the model, all 

Party Size 
Average 

Seating Duration 
(minutes) 

Standard Deviation of  
Seating Duration 

(minutes) 
1 or 2 1.5 1.0 
3 or 4 2.0 1.5 
5 or 6 2.5 1.5 
7 or 8 3.0 2.0 
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parties are processed on a strict FCFS basis.  In reality, hosts have discretion over 

what party to seat at which table and may not exactly follow these assignment rules. 

    Table 3.3:  Table Assignment Rules 

 

Each party is assigned a random duration for the seating process.  This assignment is 

based on a lognormal distribution with the average and standard deviation parameters 

given above.  A lognormal distribution has been shown to be a good approximation for 

service times (De Kok and Tijms, 1985; Brown et al., 2005) and is therefore assumed 

to be a reasonable distribution to use for this seating process. 

 

Some parties that arrive at the restaurant do not get seated since they choose to renege, 

or abandon the queue after waiting for a certain amount of time.  According to Hwang 

and Lambert (2005), restaurant customers will wait for around 48 minutes before 

becoming so dissatisfied that they either contact a manager to complain or simply 

leave.  The number of people in a party would likely influence this threshold time.  It 

is therefore assumed that the higher the number in a party, the longer the party will 

wait before potentially reneging because more people have invested time in the dining 

experience.   

 

Party Size Priority Table Size Allowable Table Sizes 
1 2 2, 4 
2 2 2, 4, 6 
3 4 4, 6 
4 4 4, 6, 8 
5 6 6, 8 
6 6 6, 8 
7 8 8 
8 8 8 
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The simulation is coded to randomly assign each party a renege time from a uniform 

distribution based on the times and assumed standard deviations given in Table 3.4.  A 

coefficient of variation of 0.2 is selected as the basis for the standard deviation 

calculations because it gives a realistic range of wait time thresholds within one 

standard deviation.  For instance, the threshold for a party of four is between 42 and 

63 minutes.  Several other values for the CV are considered, but they give either too 

tight of a wait threshold range to be realistic or too large of a number at the high end 

of the range to be reasonable.  

   Table 3.4:  Wait Threshold by Party Size 

 

It is assumed that half of all parties reaching their threshold renege time will leave, 

while the other half will complain to a manager but continue waiting until their table is 

ready.  This 50-50 split of the renege/continue-to-wait option was chosen because it 

provides a realistic balance between wait times and the number of customers that 

renege due to a long wait.  A higher renege percentage leads to an unrealistic number 

of customers that enter, wait, and eventually leave, while a lower renege percentage 

leads to unrealistic average wait times.    

Standard Deviation  
of Wait Threshold (in minutes) 

based on Different CVs 
Party 
Size 

Average 
Wait 

Threshold 
(in minutes) CV = 0.1 CV = 0.2 CV = 0.3 CV = 0.4 

1 45.5 4.55 9.10 13.65 18.20 
2 47.9 4.79 9.58 14.37 19.16 
3 50.3 5.03 10.06 15.09 20.12 
4 52.8 5.28 10.56 15.84 21.12 
5 55.5 5.55 11.10 16.65 22.20 
6 58.2 5.82 11.64 17.46 23.28 
7 61.1 6.11 12.22 18.33 24.44 
8 64.2 6.42 12.84 19.26 25.68 
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Stage 3 � Dining  

Design and Assumptions.  Once a party is seated, it occupies the table for the duration 

of a meal.  The data used to calculate dining duration in this study is from the Point-

of-Sale (POS) system.  Dining duration is calculated from the time a check is opened 

in the system to the time it is closed by running a credit card or accepting a cash 

payment.  Although dining duration can be affected by a number of factors, including 

the experience level of the server, the staffing levels on the floor, the load on the 

kitchen, and the preferences of the customers in the party, it is assumed that all of 

these factors were accounted for in the overall dining duration from the POS data.   

 

Dining duration by party size is given in Table 3.5.  The data was checked for extreme 

outliers, such as cases when a server neglected to close the check for several hours, or 

if a check was opened and then closed within several minutes.  As expected, larger 

parties tend to have longer dining durations than smaller parties.  The average duration 

for parties of one or two is just over 1 hour, while parties of eight average about 90 

minutes.  High variability characterizes the dining duration for all party sizes. 

 Table 3.5:  Dining Duration by Party Size 

Party Size 
Average Dining 

Duration 
(in minutes) 

Standard Deviation of 
Dining Duration 

(in minutes) 

1 68.8 31.7 

2 63.0 20.7 

3 67.4 21.0 

4 73.3 22.6 

5 81.2 23.0 

6 86.5 29.4 

7 78.1 23.3 

8 90.9 30.8 
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Duration times calculated by POS data are not completely accurate.  At the beginning 

of the meal, it takes time for the server to approach a table, take drink orders, and enter 

relevant data into the POS.  At the end of the meal, diners may linger after they have 

paid.  Thus, a party may be sitting at the table longer than the POS data indicates.   

 

To better reflect the amount of time a table is occupied, pre-dining duration times are 

included in the simulation.  The activities occurring at a table after a party is seated but 

before the party�s check is opened in the POS system include being greeted by the 

server, receiving water, hearing nightly specials, and placing drink orders.  Table 3.6 

shows pre-dining duration times used in the simulation.  These times are assumed; 

they are derived from a simple observation of the dining process at the test restaurant 

over two nights. 

   Table 3.6:  Pre-Dining Duration by Party Size 

 

The amount of revenue generated by each customer depends on party size.  Smaller 

parties tend to have both a slightly higher and more variable average per person than 

larger parties.  Table 3.7 gives the average spend per person data for the test site.  

Party Size 
Average 

Pre-Dining Duration 
(in minutes) 

Standard Deviation of  
Pre-Dining Duration       

(in minutes) 

1 or 2 2 1.0 

3 or 4 3 1.5 

5 or 6 4 2.0 

7 or 8 5 2.5 
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 Table 3.7:  Average Spend per Person by Party Size 

 

Coding.  Every party that is seated receives three randomly assigned variables � pre-

dining duration, dining duration, and spend per person.  Since pre-dining duration data 

is assumed, its actual distribution is unknown.  Therefore, a lognormal distribution is 

used to model the pre-dining process; as stated earlier, a lognormal distribution 

approximates service times reasonably well.  Distributions by party size are fitted to 

duration to model the amount of time a party uses a table.  Likewise, distributions by 

party size are fitted to per person spend to model the revenue each customer in the 

party generates.  These distributions, given in Table 3.8, are calculated by Stat::Fit, the 

statistical fit software attached to ServiceModel.  An Anderson-Darling goodness of fit 

test is used to assess the hypothesized distributions against the observed data. 

 

Party Size Average 
Spend per Person 

Standard Deviation of 
Spend per Person 

1 $23.74 $14.57 

2 $23.73 $11.37 

3 $22.85 $10.61 

4 $24.54 $10.93 

5 $22.64 $9.57 

6 $22.73 $10.64 

7 $21.92 $8.60 

8 $22.07 $8.27 
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 Table 3.8:  Distributions Used for Modeling Duration and Spend 

 

All of the goodness-of-fit p-values for both duration and per person spend are well 

above a 0.10 alpha value, indicating that there is no evidence to reject the hypotheses 

that the data come from the distributions in Table 3.8.     

 

Stage 4 �Exiting of Customers; Preparing Tables to be Reseated 

Design and Assumptions.  At this stage of the operation, customers have already dined 

and paid and are simply exiting the dining room.  Once a party vacates its table, 

however, the table is not immediately available to be put back in use.  The table must 

be cleared, cleaned, and set with plates and silverware rollups before it is ready to be 

reseated.    

 

The time it takes to prepare a table to be reseated is shown in Table 3.9.  These figures 

represent the time between customer departure and the time a table is ready to be 

reseated, and include notifying a host of the empty table.  Bussing durations were 

gathered from a time study of 160 tables over two different weekends.  Since these 

timings reflect bussing operations during peak periods when customers are waiting, it 

Party 
Size 

Dining 
Duration 

Goodness-of-fit 
p-value 

Spend per 
Person 

Goodness-of-fit 
p-value 

1 Lognormal 0.959 Lognormal 0.811 

2 Loglogistic 0.449 Gamma 0.211 

3 Lognormal 0.911 Gamma 0.746 

4 Lognormal 0.989 Gamma 0.900 

5 Weibull 0.993 Beta 0.949 

6 Weibull 0.924 Beta 0.774 

7 Lognormal 0.982 Normal 0.959 

8 Lognormal 0.940 Weibull 0.978 
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is rare that a table sits empty and dirty for a significant amount of time before it is 

cleared and cleaned. 

 Table 3.9:  Bussing Duration by Table Size 

 

As would be expected, smaller tables take a shorter amount of time to clear and prep 

than larger tables.  All tables have a high variation in bussing time, due largely to the 

amount of pre-bussing, or the clearing of dishes and accompaniments, that is 

completed by the table�s server before the party departs.   

 

Coding.  Once a party leaves, each empty and dirty table receives a random bussing 

duration.  This duration differs by table size and is based on the average and standard 

deviation parameters given previously.  All bussing durations are also assumed to be 

lognormally distributed.   

 

Model Verification and Validation 

To effectively test alternate supply-demand scenarios, a baseline simulation model 

must first perform similarly to the real restaurant.  The model must accurately 

represent both the inputs to and the outputs from the system under study.  Verification 

of a baseline model occurs once the simulation code is free of bugs and input 

parameters for the model correspond equivalently to actual system inputs.  This 

Table Size 
Average 

Bussing Duration 
(in minutes) 

Standard Deviation of 
Bussing Duration 

(in minutes) 

2 2.57 2.08 

4 3.24 3.87 

6 3.74 4.11 

8 4.36 4.74 
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baseline model is verified; it has been thoroughly debugged and produces average 

figures for party size, dining duration, average spend, and bussing duration that match 

the actual data gathered from the test restaurant.   

 

Input-Output Validity 

A baseline model is considered valid if it is an accurate representation of the actual 

operating system.  Validation of a model occurs if key outputs from the simulation 

match actual operating data, demonstrating that the structure of the model translates 

inputs to outputs similarly to the way the actual system operates.  To validate the 

baseline model for this study, multiple replications (104), representing the weekend 

dinner operation of the test restaurant over one year, were run. 

 

As shown below in Table 3.10, the simulation model is validated since the structure of 

the model produces outputs that correspond closely to outputs from the actual 

operating system.  Total revenue, the primary performance measure being used to 

compare alternate systems, falls within 0.5 percent of the actual revenue generated 

over an average Friday-Saturday night dinner service.  Also, the total number of 

customers served, another performance measure, generated by the baseline model falls 

within 0.2 percent of the actual number of customers served over the operating period 

at the sample site.   

Table 3.10:  Validation of Baseline Model 

 Model Actual Hypothesis Test Conclusion 
 

Total Revenue 
 

$14,183 
 

$14,114 
 

H0:  Revenue = 14,114 
HA:  Revenue ≠ 14,114 

 

 
Fail to reject H0 

at α = 0.05 

 
Total 

Customers 
Served 

 
608 

 
609 

 
H0:  Customers = 609 
HA:  Customers ≠ 609 

 

 
Fail to reject H0 

at α = 0.05 
 



  

48 

 

These null hypotheses characterize a valid model; if the data generated from the 

simulation model can be used to accept the null hypothesis, then the output measures 

produced from the model are consistent with the output generated by the actual 

system.  Hypothesis tests for both the total revenue and total customer measures 

indicate a failure to reject the null hypotheses at a conservative alpha of 0.05.  The 

power of the test for both measures exceeds 0.90, signifying that the probability of 

accepting an invalid model is low.  Therefore, the baseline simulation model is 

considered an accurate representation of the restaurant operations under study and can 

be used confidently to test alternate systems. 

 

Face Validity 

The other seven metrics included in this study (total customers lost, table utilization, 

seat utilization, RevPASH, RevPAST, average wait by party size, 85th percentile of 

customer waits by party size) are used to establish the face validity of the model, as 

most cannot be directly compared to actual operating results due to the lack of data.  

The tables below illustrate that all of these measures are reasonable and have at least 

face validity.  

 

Table 3.11 shows that the total number of customers lost over the Friday-Saturday 

night dinner service is around two percent of the total amount of customers who enter 

the restaurant system.  The panel of industry professionals previously described agree 

that this number of reneges is realistic for peak operating periods over two nights. 
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          Table 3.11:  Total Customers Lost � Baseline Model  

 

Table occupancy rates generated by the baseline model for all table types used at the 

sample restaurant are given in Figure 3.3.  These occupancies are both logical and 

realistic; overall table occupancy climbs during the first two hours of service, peaks at 

90 percent within the 8-9PM hour, and gradually declines afterwards.   
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Figure 3.3:  Table Occupancy � Baseline Model  

Party Size Customers Served Customers Lost 
1 26 1 
2 245 6 
3 114 2 
4 114 2 
5 48 1 
6 30 0 
7 17 0 
8 14 0 

Total 608 12 
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Figure 3.4 shows the seat occupancy rates generated by the baseline simulation for the 

test restaurant.  These rates also appear to have face validity, as they reflect typical 

seat occupancies for a weekend dinner service.  As expected, seat occupancies are 

systematically lower than table occupancies, reflecting the seating rules outlined 

previously and the fact that the restaurant only uses tables with an even-number of 

seats, but serves both even-numbered parties and parties with an odd-number of 

guests.  

 

Figure 3.4:  Seat Occupancy � Baseline Model  

 

The baseline output for hourly RevPASH is given in Table 3.12.  RevPASH is 

calculated by dividing the number of available seats into the revenue generated over 

an hour.  Comparing the baseline RevPASH to the actual numbers calculated from the 

POS data for Friday and Saturday night dinner service confirms face validity.  
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Hypothesis testing of RevPASH would be redundant; RevPASH is derived from total 

revenue, which has already been shown to validate the baseline model.   

   Table 3.12:  RevPASH � Baseline Model 

 

 

 

 

 

 

 

 

Table 3.13 shows the results from the baseline model for the RevPAST performance 

measure.  Two RevPAST measures are provided, as RevPAST can be calculated by 

either dividing the number of square feet available for accommodating tables into the 

revenue generated over an hour or by dividing the number of square feet used to 

accommodate tables into the revenue generated.  Only estimates for the square footage 

of the test restaurant, its tables, and its seats are available, so the RevPAST from the 

model cannot be directly compared to the actual RevPAST.  Additionally, RevPAST 

is currently not a standard Revenue Management metric, making it impossible to 

gauge if the baseline output is reasonable and realistic.  RevPAST, however, is 

generated from total revenue, which has validated the simulation model.  This 

indicates that RevPAST figures are likely credible, at least for comparison purposes 

across simulation scenarios.   

 

 

Hour Model 
RevPASH 

Actual 
RevPASH Difference 

5 � 6 PM $5.38 $5.07 -$0.31 

6 � 7 PM $10.33 $10.66 $0.33 

7 � 8 PM $12.42 $12.20 -$0.22 

8 � 9 PM $10.94 $11.59 $0.65 

9 � 10 PM $10.03 $10.34 $0.31 

10 � 11 PM $5.69 $6.50 $0.81 

11 � 12 AM $2.73 $3.69 $0.96 
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   Table 3.13:  RevPAST � Baseline Model  

 

 

 

 

 

 

 

 

Table 3.14 gives the average and 85th percentile of customer waits generated by the 

baseline simulation.  Of the industry professionals consulted, three are familiar with 

the test restaurant and agree that these wait time results seem plausible, but low.  Since 

actual wait times are unknown and since this performance measure is calculated in the 

same manner for each simulation scenario tested, a low baseline result does not 

impede in the ability to compare the effects of alternate systems. 

           Table 3.14:  Average and Maximum Wait � Baseline Model  

 

 

 

 

 

 

 

 

 

Hour 

Model 
RevPAST 

(calculated using 
square feet available) 

Model 
RevPAST 

(calculated using 
square feet used) 

5 � 6 PM $0.41 $0.42 
6 � 7 PM $0.87 $0.89 
7 � 8 PM $0.99 $1.02 
8 � 9 PM $0.94 $0.97 

9 � 10 PM $0.84 $0.87 
10 � 11 PM $0.53 $0.54 
11 � 12 AM $0.30 $0.31 

Party Size Average Wait 
(in minutes) 

85th Percentile of Wait 
Times 

(in minutes) 
1 5.72 13.00 
2 6.04 13.19 
3 6.31 14.33 
4 5.68 13.12 
5 6.15 15.59 
6 4.91 0.00* 
7 6.54 0.00* 
8 5.92 0.00* 

*Because of the small number of large parties and the existing number of large 
tables at the test restaurant, the 85th percentile of waits for parties of 6-8 is 0. 
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Develop and Simulate Alternate Scenarios 

The power of simulation as a research tool lies in being able to change key elements of 

the existing system and scientifically gauge how the chosen performance measures 

will react.  Classic, statistical experimental design is employed to develop the alternate 

scenarios that will be tested to answer the research questions at hand.  

 

A simulation experiment with only one varied input factor is unrealistic, as the results 

produced will only be valid under the assumed operating conditions.  Therefore, 

creating and using a more complex experimental design introduces random variation 

which in turn produces results that are robust across a range of reasonable and realistic 

operating characteristics modeled by the simulations (Kleijnen et al., 2005).  A robust 

statistical design approach for simulation experiments entails determining which input 

factors are important to an experiment and to what extent these input factors should be 

varied (Kleijnen et al., 2005).   

 

Inputs considered important are those that are central to the purpose of the research 

and that, when moderately and realistically changed, significantly affect output 

measures among the alternative scenarios simulated (Kelton, 2000).  The levels of 

important input factors represent the reasonable changes that could be expected of 

these inputs in the realistic operating environment depicted in the simulation.  Inputs 

that impact output measures in a similar manner across all scenarios can be fixed at a 

reasonable level and considered model assumptions or parameters.   

 

Full-Factorial Design 

The inputs to the simulation experiments used in this study fall into three categories:  

supply, demand, and customer/operational behavior.  As matching supply and demand 
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is the purpose of this research, the inputs associated with supply and demand are the 

important factors that are varied.  The inputs related to the behaviors of customers and 

operations, including arrival patterns, seating rules, duration measures, and spend 

figures, are held constant at reasonable levels and considered assumptions.  

 

This experiment has a four-factor (2x3x2x3) full-factorial design.  Supply-related 

factors are method of inventory allocation and table size proportion.  Demand-related 

factors are level of peak demand and demand mix.  Details regarding each of the four 

input factors are provided in following sections, but are briefly given here to establish 

the study�s experimental design: 

• Supply-related factors �  

1. Method of inventory allocation refers to the way in which inventory is 

defined and distributed in the test restaurant.  The two methods 

considered are seats-to-tables (with space constraint) and space-to-

tables.  In the seats-to-tables method, seats are considered the smallest 

common inventory unit and are apportioned to tables of differing sizes.  

In the space-to-tables method, square footage is the smallest common 

inventory element and is allocated to tables of various sizes. 

2. Table supply proportion denotes the amount of space taken up by 

differently-sized tables.  Standard, narrow, and wide levels of 

proportion are considered.   

• Demand-related factors �  

1. The peak demand input factor, representing the amount of demand 

realized at the test restaurant over Friday and Saturday dinner periods, 

is tested at its current level and at 117.645% of the current level. 

2. Demand mix, which refers to the composition of party sizes at the test 
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site, is evaluated at its current party size mix, a mix skewed to smaller 

party sizes, and a mix skewed to larger party sizes. 

 

The primary concern for this study is the impact of method of inventory allocation on 

service operations, so the total revenue produced by the two methods serves as the 

basis for comparison.  Each simulation run is differentiated by its supply mix and 

whether this mix is determined by the space-to-tables or seats-to-tables allocation 

method.  The supply mix scenario producing the highest revenue for every 

combination of the table size proportion, demand level, and demand mix inputs is 

determined.  This revenue is compared for the two inventory allocation methods to 

evaluate if one method consistently outperforms the other.  Figure 3.5 is a visual 

representation of the total revenue comparison resulting from this experimental design.   

Figure 3.5:  Comparison of Allocation Methods 
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revenue 
difference 

revenue 
difference 

revenue 
difference 100% 

Current 
revenue 

difference 
revenue 

difference 
revenue 

difference 117.6%

revenue 
difference 

revenue 
difference 

revenue 
difference 100% 

Skewed 
smaller revenue 

difference 
revenue 

difference 
revenue 

difference 117.6%

revenue 
difference 

revenue 
difference 

revenue 
difference 100% 

D
em

an
d 

M
ix

 

Skewed  
larger revenue 

difference 
revenue 

difference 
revenue 

difference 117.6%

D
em

and level 

  Standard Narrower Wider   

  Table Space Proportion   



  

56 

The additional eight performance measures (total number of customers served, total 

number of customers lost, table utilization � total and by table type, seat utilization � 

total and by table type, hourly RevPASH, hourly RevPAST, average wait by party 

size, 85th percentile of waits by party size) from the top revenue-generating scenarios 

for both inventory allocation methods are also collected and compared for every 

combination of the other three input factors.  In all, this experimental design produces 

162 comparisons that indicate how using a seat allocation rule or a space allocation 

rule impacts system performance under a variety of operating conditions. 

 

Experimental Factors 

Method of Inventory Allocation 

As previously stated, the two methods of inventory allocation tested are seats-to-tables 

and space-to-tables.  The seats-to-tables method is the current inventory allocation 

approach used by researchers and practitioners employing RRM.  Seats are the basic 

inventory unit and are distributed to tables of varying sizes according to the demand 

pattern of the restaurant.  The space-to-tables method, however, allocates the net 

square footage required by a table to different sizes of tables.  Square feet are the 

inventory units to be allocated to tables of different sizes.  

 

Seats-to-Tables (with Space Constraint) Method:  Under this inventory allocation 

method, the theoretical capacity of the test restaurant is distributed to tables.  

Theoretical capacity refers to the existing number of seats that are available to serve 

customers, which currently totals 116.  The purpose of testing differing table mixes is 

to determine the mix that best accommodates demand and thus generates the most 

revenue.   
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Finding this optimal table mix required testing every possible supply profile.  

MATLAB (2005) software was used to generate all table configurations using tables 

of two, four, six, and eight.  The number of scenarios produced was 1735.   

 

However, all of these supply scenarios using the full complement of 116 seats may not 

fit into the dining space of the test restaurant.  The dining room area available to seat 

customers is determined based on the physical space occupied by a restaurant, as well 

as the theme and décor of the establishment.  On average, the dining room of a full-

service, upscale casual outlet has 1 square foot of useable dining space for each 0.265 

square foot space used elsewhere in the front-of-house, such as in the restroom or coat 

check areas.  This is known as the FOH gross factor (Stephani K. Robson, personal 

communication, July 2006); the FOH gross factor used for this study is this standard 

1.265 measure.  Useable dining space corresponds to space net of all stairs, poles, and 

other impediments.   

 

The restaurant used in this study has a total useable FOH area of 1800 square feet; 

applying the FOH gross factor described above indicates that the facility has 1423 net 

square feet of dining space.  While the actual dining room was not specifically 

measured, a tour of the restaurant and discussions with the industry professionals 

consulted confirmed that this is a reasonable figure to use.     

 

Table 3.15 gives the standard square footage requirements to accommodate different 

table types.  These figures represent the full planning square required for each table 

size.  A planning square includes the physical size of a table top, the size and number 

of chairs at a table, the area needed to accommodate patrons in the chairs at the table 

when occupied, and the area needed for staff to circulate the table during service.  The 
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test site operates with typical, commonplace restaurant tables and chairs; these 

standard figures are representative of its space requirements and thus appropriate to 

employ. 

  Table 3.15:  Standard Square Footage Requirements 

 

 

 

 

 

Each of the 1735 table mixes was checked for spatial-feasibility to determine which 

mixes actually fit in the square footage available for seating.  Under the seats-to-tables 

method, 43 percent, or 744 mixes, used the total existing theoretical capacity (116 

seats) and had a total square footage that is less than or equal to the 1423-square-foot 

dining area.  To keep the focus of this study on inventory units and maximum 

achievable revenue, the physical arrangement of tables was not considered.   

 

The majority of all supply scenarios that used the total 116 seats are not spatially 

feasible.  Over 57 percent, or 991, of the table mixes generated exceeded the square 

footage of the dining area.  Because these scenarios could represent high revenue-

generating supply profiles, they must be adjusted to fit into the available dining space.  

While adjusting these scenarios will decrease the existing total capacity at the test 

outlet, the seats may be used more often and thus contribute more to total profit.   

 

A logical way to modify the table mixes of these scenarios is to use a simple heuristic 

designed to give a spatially-feasible result for each initial table mix that is spatially-

Table Size Square Feet  
2-top 31.50 
4-top 43.75 
6-top 78.63 
8-top 81.00 

Source: S.K. Robson, personal communication, July 2006 
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infeasible.  Essentially, this heuristic applies consistent rules for determining which 

tables to remove from a mix in order to create a supply profile that maximizes the total 

square footage available.  The heuristic used is given by the following integer-program 

(IP). 

Variable: seats  with  tablesof # ixi =  

Parameters: pi = required space for a table with i seats 

P = total dining room space available 

yi = # of tables with i seats given by enumeration 

 
Maximize: ∑

i
ii xp                                                                        (1) 

Subject to: ∑
i

ii xp ≤ P                                                                  (2)

 iyx ii     ∀≤                                                                 (3) 

 ixi  integer   ,0 ∀≥                                                       (4) 

 

When applied to the 991 seats-to-tables scenarios that were initially spatially-

infeasible, the heuristic provided 456 unique, spatially-feasible table mixes.  These 

reworked scenarios use between 90 and 114 seats and between 1346.2 and 1423 

square feet of available dining space.   

 

Based on the initial spatially-feasible enumerated scenarios and the scenarios made 

feasible through the heuristic, a total of 1200 supply profiles are simulated for the 

seats-to-tables (with space constraint) inventory allocation method. 

 

Space-to-Tables Method:  Instead of distributing the total number of seats to different-

sized tables, the space-to-tables inventory allocation method allocates the available 
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dining space to tables.  Under this method, the existing total square footage available 

to accommodate the planning squares required for tables of various sizes is distributed 

to every possible table mix.  The feasible set of table mixes is defined as the mixes of 

space in which the square footage allocated to different table sizes sum to the usable, 

available square foot capacity of the dining area.  The purpose of testing differing 

table mixes is to determine the mix that best accommodates demand and thus 

generates the most revenue. 

 

Finding this optimal table mix requires testing every possible supply profile.  As space 

is the unit being allocated, the spatial feasibility issue in the seats-to-tables method is 

not a concern.  However, requiring the supply mixes to perfectly sum to the available 

square footage of the dining area would likely lead to no feasible mixes.  To alleviate 

this problem, a range of space is used to determine feasible options.  Clearly, an 

operation would like to accommodate its highest revenue-producing table mix.  

Therefore, the maximum space that can fit tables is the total net dining space, which 

has been previously given as 1423 square feet for the test restaurant.  A supply mix 

that takes up too little space is also problematic since useable space that could 

generate revenue at some times would be left empty.  Therefore, to ensure that all 

available space is used, feasible supply mixes under the space-to-tables allocation 

method are those that never leave as much free space as would fit the smallest table.  

The minimum space that can fit tables in the test restaurant is thus 1391.5 square feet. 

 

Using the average planning square figures given previously in Table 3.15 and a total 

space range of 1391.5 � 1423 square feet, 2115 supply profiles are generated using 

MATLAB software.  These scenarios use table combinations comprised of between 90 

and 140 seats.   
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This enumeration of table mixes based on space requirements will be completed a total 

of three times.  As stated, these initial 2115 supply profiles are based on the average 

planning square figures presented previously in Table 3.15.  The table space 

proportion input factor, described in the following section, involves changing these 

planning square figures to accommodate tables that are either narrower or wider than 

average.  Because table mixes under the space-to-tables allocation method depends on 

the space each table type requires, all possible mixes must be generated for each table 

space proportion tested.   

 

Table Space Proportion 

The table space proportion input factor accounts for how close table sizes are to being 

proportional to the number of seats that comprise each table.  This proportionality is 

measured by space per person.  Industry professionals often discuss public restaurant 

space requirements in terms of space per person and gross dining room space 

requirements in terms of space per seat (Baraban and Durocher, 2001; Hesser, 2000).  

These per person or seat figures vary widely based on the type, atmosphere, location, 

and price point of an individual restaurant.  Allotments range from 8 to 20 square feet 

per seat for a casual, mid-priced, sit-down outlet like the restaurant used in this study 

(Baraban and Durocher, 2001; S.K. Robson, personal communication, July 2006). 

 

However, these per person or per seat numbers assume that the space required by 

various table sizes is proportional to the number of seats comprising each table size.  

Under this assumption, a restaurant using a spatial requirement of 15 square feet per 

person would have 2-top tables that take up 30 square feet, 4-top tables that take up 60 

square feet, and 6-tops that take up 90 square feet.  Restaurants with perfectly 
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proportional spatial requirements for tables commonly use one or two different table 

sizes and combine adjacent tables as needed to accommodate differing party sizes.   

 

Whether taking into account space requirements per person, the dimensions of 

different-sized table tops, or the full and actual space needed for different tables sizes, 

smaller tables generally require more space per person than larger tables.  As 

previously described, this actual space is the planning square for tables of different 

sizes and includes not only the actual size of the table and chairs, but also the area 

around the table used by either customers or employees.  No industry standard exists 

for the exact size of planning squares for various-sized tables.  Like the per person seat 

figures described above, the amount of space required for planning squares depends on 

a restaurant�s operating and marketing characteristics, such as service style, location, 

and industry segment (S.K. Robson, personal communication, July 2006).   

 

To account for the impact that different planning square sizes may have on optimal 

seat or space inventory allocation, table space proportion is varied at three levels.  The 

first level represents supply situations in which the space needed to accommodate 

different-sized tables is not proportional to the seats at tables; instead, it is an average 

amount for a mid-priced, casual, full-service restaurant (S.K. Robson, personal 

communication, July 2006).  Another level corresponds to supply scenarios with 

differing table space requirements that are nearly proportional to the number of seats 

at a table.  Conversely, the third table space proportion input level relates to supply 

situations in which space requirements for different table sizes are far from 

proportional to the number of seats that comprise a table.  The proportionality of table 

spaces used for each level of this input is included in Table 3.16. 
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Table 3.16:  Table Space Proportions  

 

As previously stated, all possible table mixes are generated under the space-to-tables 

allocation method for each of the average, nearly proportional, and far from 

proportional table space scenarios.  The number of scenarios simulated under the 

average planning square proportion is 2115, while the scenarios simulated for the 

nearly proportional and far from proportional planning square requirements number 

1133 and 3764, respectively.   

 

Under the seats-to-tables method, the enumeration step is completed only once.  

However, each supply enumeration is tested for initial spatial feasibility and then run 

through the IP heuristic three separate times.  The resulting number of table mixes to 

be simulated is 1200 for the average planning square table space proportion scenarios, 

509 for the nearly proportional table space proportion scenarios, and 1620 for the far 

from proportional table space proportion scenarios. 

 

 

 Average Amount  
Scenario* 

Nearly Proportional 
Scenario/Wider Tables* 

Far from Proportional 
Scenario/Narrower Tables* 

Table 
Type 

Planning 
Square 

Size 

Per 
Person 
Space 

% of 
Per 

Person 
Space 

of  
2-top 

Planning 
Square 

Size 

Per 
Person 
Space 

% of  
Per 

Person 
Space of 

2-top 

Planning 
Square 

Size 

Per 
Person 
Space 

% of  
Per  

Person 
Space 

 of 2-top 

2-top 31.50 15.75 100% 30.00 15.00 100% 31.00 15.50 100% 

4-top 43.75 10.94 69.4% 56.00 14.00 93.3% 32.00 8.00 51.6% 

6-top 78.63 13.11 83.2% 87.00 14.50 96.7% 60.00 10.00 64.5% 

8-top 81.00 10.13 64.3% 110.00 13.75 91.7% 79.00 9.88 63.7% 

*Sizes are given in square feet 
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Peak Demand 

To capture the demand aspect of the problem entailing matching supply to demand in 

a stochastic service operating environment, demand is varied at two levels.  Since 

capacity management techniques such as those associated with Revenue Management 

are beneficial under conditions in which demand exceeds supply, only peak nights of 

Friday and Saturday are modeled.  As discussed previously, the restaurant has fairly 

high table utilization during the busiest hours of these nights, so the operating system 

can be considered strained under the current supply condition in which tables are of 

standard size.  It follows that the operating system is also taxed under the current 

demand level when tables are close to proportional, or effectively larger than the ones 

currently used, since fewer tables will be able to fit in the given space.  However, 

when tables are far from proportional, a greater number of tables can fit in the 

available dining room space.  Because of this, the current level of demand will likely 

not constrain supply and should therefore be artificially inflated to ensure that the 

operating system is taxed.  For the scenarios in which the table space proportion factor 

is far from proportional, the 100% level of demand is adjusted to be 115% of current 

demand.  

 

The current, observed level of demand on these peak nights serves as the first level of 

demand tested.  Kimes and Thompson (2004) found that the optimal capacity mix 

under a seat to table allocation method without space constraint varied under differing 

demand volumes, so a demand increase of 17.645% from the current level is also 

tested for all table space proportions.  This percentage increase is derived from 

published studies that test, to some degree, how a service business reacts to increases 

in demand.  Kimes and Thompson (2004), Pullman and Thompson (2002), and Radas 
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and Shugan (1998), all tested the impact on a customer-based service operating system 

to a demand increase ranging from 5 to 20 percent.   

 

While 17.645% is an ample increase in demand, a supply configuration which better 

matches demand should be able to either accommodate additional demand or decrease 

current wait times during peak times in which capacity is already constrained (Kimes 

and Thompson, 2004; Pagell and Melnyk, 2004).  The reaction of both the seats-to-

tables and space-to-tables allocation methods to this demand increase will give an 

indication of the sensitivity of these allocation options to possible changes in demand. 

 

Demand Mix 

The best mix of supply for different-sized inventory units will likely vary with the mix 

of demand for the range of sizes.  Therefore, three party size mixes mix are tested for 

each of the allocation methods.  Thompson (2002) and Kimes and Thompson (2005) 

altered the overall average party size to test different party size mixes.  For this 

research, the different levels for mix of demand are determined by benchmarking the 

distribution of party sizes of several outlets similar to the test restaurant.  Aside from 

using the current party size mix as one level of the demand mix input variable, two 

other demand mix scenarios are tested.  Based on the demand mixes from the five 

benchmarked outlets, one level is skewed to having an additional number of smaller 

party sizes than the current demand mix and the third level is skewed to having an 

additional number of larger party sizes than the current mix.  Table 3.17 shows the 

derivation of the demand mixes. 
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Table 3.17:  Demand Mix Inputs 

 

Replications and Runs 

Accounting for the two supply inputs (method of inventory allocation and table space 

proportion) and the two demand inputs (level and mix of demand), 62,046 unique 

scenarios are run through the simulation model for 104 replications each.  All 

replications use common random numbers for the various simulation components and 

all replications have the same initial conditions. 

 

Each run of the model takes 30 seconds on a Windows-based personal computer with 

a 2.0 GHz processor.  Using three dedicated computers, the total run time for the 

simulation study is just over seven days. 

 

Output Analysis 

The table mixes for each of the two methods of inventory allocation, at every 

combination of factor levels for the other three inputs, are ranked according to the 

Party 
Size 

Outlet 
1 

Outlet 
2 

Outlet 
3 

Outlet 
4 

Outlet 
5 

Current 
Level 

More 
Smaller 
Parties 

More 
Larger 
Parties 

1 7.5% 17.7% 10.0% 8.0% 6.6% 11.2% 13.0% 8.0% 
2 59.9% 51.9% 63.7% 50.2% 66.0% 52.9% 58.0% 52.0% 
3 16.0% 15.4% 14.8% 17.2% 9.7% 16.1% 14.0% 16.0% 
4 10.3% 9.0% 6.9% 16.0% 11.7% 12.2% 10.5% 16.0% 
5 3.4% 2.7% 2.7% 4.2% 2.5% 3.9% 2.5% 3.5% 
6 1.6% 1.7% 0.8% 2.5% 2.2% 2.0% 1.0% 2.5% 
7 0.5% 0.8% 0.4% 0.8% 0.7% 1.0% 0.5% 1.0% 
8 0.8% 0.8% 0.7% 0.9% 0.6% 0.7% 0.5% 1.0% 

Average 
Party 
Size 

2.53 2.39 2.36 2.73 2.50 2.58 2.39 2.72 
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average total revenue generated over the 104 replications run.  All performance 

measures are collected for the top performing mix for each of the 36 scenarios.  Since 

all scenarios and simulation runs are independent and a full-factorial experimental 

design is used, all observations are independent and from a normally distributed 

population of responses.  Thus, statistical inference procedures are suitable for 

analyzing the simulation output data. 

 

A point estimate for the difference in each pair of means for the top total revenue table 

mix scenario is calculated and a 95% confidence interval is established, yielding a set 

of 18 confidence intervals.  Intervals including zero show that no difference in revenue 

exists between the two methods of inventory allocation for the given levels of the table 

space proportion, level of demand, and mix of demand factors.  For the family of 

intervals not including zero, the sample means are further analyzed using a multiple 

comparison procedure to determine whether or not one of the inventory allocation 

methods is statistically better than the other. 

 

To concurrently examine all the data for all of the scenarios comprising the total 

experiment, a four-way ANOVA is calculated.  The response variable is total revenue 

and the four main factors are method of inventory allocation, table space proportion, 

demand level, and demand mix.  A multi-factor ANOVA is an appropriate method to 

model observations that result from an experiment that has a randomized design, 

produces multiple replications, and has factors that possibly interact in a non-additive 

manner.  Pairwise comparisons and linear contrasts are used to investigate the 

significant and interesting results arising from the ANOVA.  In total, these output 

analyses are designed to provide a full complement of metrics that show how the two 

inventory allocation methods affect the operating characteristics of the test restaurant 
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and whether one method consistently outperforms the other across a variety of 

conditions.   

 

Summary 

The chapter detailed the methodology proposed to determine the revenue impact of 

managing the physical space of a service business instead of the physical inventory.  

The simulation and experimental design together produce a 95% confidence interval 

for the difference in mean total revenue between a space allocation rule and an 

inventory allocation rule.  The next chapter presents the results of executing the 

simulation study presented and analyzing the data according to the methods discussed 

above.   
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CHAPTER 4:  RESULTS 

 

The focus of this chapter is to analyze the simulation results in a way that fully 

explores the general purpose of this study, which is to determine how revenue is 

impacted by defining inventory in terms of space instead of units.  The specific 

research questions posed in Chapter 1 are addressed: 

1. To what extent is revenue impacted if capacity is allocated based on space 

instead of inventory units?  

2. How is existing capacity changed when supply is measured by space instead of 

units?   

3. Can revenue actually increase if capacity is decreased? 

 

This chapter begins with a statistical analysis of the total revenue generated through 

simulation by the two methods of inventory allocation under study:  the seats-to-tables 

method (hereafter abbreviated �SEATS�) and the space-to-tables method (hereafter 

abbreviated �SPACE�).  The statistical significance of these revenue findings is then 

discussed, followed by an analysis of how the two allocation methods impact capacity.  

The other eight performance measures collected from the simulation are then 

compared for SEATS and SPACE.   

 

Running the Simulation Model 

The simulation model designed and validated in Chapter 3 was used to mimic 

restaurant operations according to a four-factor, full-factorial experimental design.  

The factors included in the study � method of inventory allocation, table space 

proportion, demand level, and demand mix � were varied at different levels to account 

for a range of operating conditions, thus creating 36 distinct simulation scenarios.  
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Recall from the previous chapter that the method of inventory allocation is the primary 

factor under study.  SEATS considered seats to be the unit of inventory in a restaurant, 

and all possible table mixes were determined by allocating the existing number of 

seats at the test restaurant to 2-top, 4-top, 6-top, and 8-top tables.  SPACE considered 

the space required by tables to be the unit of inventory, and thus determined possible 

table mixes by allocating the existing amount of square footage in the dining room to 

the various table sizes. 

 

The additional three factors tested in the simulation were included to ascertain how 

different operating scenarios affected the simulation results.  The demand-related 

factors included two demand levels (for standard and close to proportional space 

scenarios, 100% and 115%; for far from proportional table space scenarios, 117.645% 

and 132.645%).  In addition, three different levels of party size mix (the current party 

size mix, a mix skewed towards more smaller parties, and a mix skewed from its 

current state towards more larger parties) were tested. 

 

The table space proportion factor was less straightforward; three different levels were 

used to test the extent to which results were impacted when tables accommodated the 

same number of people, but required different amounts of space.  The complexity of 

this factor was due to how these space requirements were determined; in essence, the 

three levels of table space proportion tested � standard, far from proportional, and 

close to proportional � all used approximately the same size 2-top table.  However, the 

sizes of the 4-top, 6-top, and 8-top tables varied due to how close the table sizes were 

to being proportional to the number of seats that comprise each table.  Therefore, the 

far from proportional level used the smallest 4-tops, 6-tops, and 8-tops, the standard 

proportional level used slightly larger tables, and the close to proportional level used 
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the largest tables.  For clarity, the table space proportions will henceforth be called 

�standard,� �far/small,� and �close/large.� 

 

All feasible table mixes, determined for each of the 36 simulation scenarios through 

the enumeration procedures described in Chapter 3, were run through the appropriate 

scenarios and replicated 104 times.  The complete simulation experiment therefore 

contained 62,046 runs and over 6.4 million replications of a two-night dinner service 

at the test restaurant.  Appendix A provides a summary of input factors and the 

combinations tested for each scenario.  For every run of the simulation, the nine 

performance measures � total revenue, customers served, customers lost, table 

occupancy, seat occupancy, RevPASH, RevPAST, average wait by party size, and 

85th percentile of waits by party size � were collected and averaged over the 104 

replications.  For each of the 36 scenarios, the simulation runs were then ranked 

according to average total revenue, and the top revenue-producing table mix for every 

factor level combination was identified.   

 

These top revenue scenarios were then paired by the inventory allocation factor so 

one-to-one comparisons could be made between SEATS and SPACE at every level of 

the demand, demand mix, and table space proportion factors.  For example, Scenario 

Pair 1&19 represents a comparison of the top performing table mix generated by 

SEATS (Scenario 1) and SPACE (Scenario 19) under the current level of demand, the 

current mix of demand, and the current table space proportion.  Table 4.1 gives the top 

table mix and its associated revenue and capacity measures under the two methods of 

inventory allocation for each pair of simulation scenarios. 
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Revenue Comparison between Inventory Allocation Methods  

Figure 4.1 contains the point estimate and confidence interval for the difference in 

mean revenue generated by the top-revenue producing table mix under each SEATS 

and SPACE pair under all factor levels.    

 

Figure 4.1:  95% Confidence Intervals for the Difference in Mean Revenue 

between SEATS and SPACE 

 

SEATS SPACE SEATS SPACE SEATS SPACE

Scenario 1 Scenario 19 Scenario 7 Scenario 25 Scenario 13 Scenario 31

Scenario 4 Scenario 22 Scenario 10 Scenario 28 Scenario 16 Scenario 34

Scenario 2 Scenario 20 Scenario 8 Scenario 26 Scenario 14 Scenario 32

Scenario 5 Scenario 23 Scenario 11 Scenario 29 Scenario 17 Scenario 35

Scenario 3 Scenario 21 Scenario 9 Scenario 27 Scenario 15 Scenario 33

Scenario 6 Scenario 24 Scenario 12 Scenario 30 Scenario 18 Scenario 36

100%

115%

Point Estimate = $0 Point Estimate = -$392

95% CI = (-$283,$181)

Point Estimate = -$43

Point Estimate = -$411 Point Estimate = -$32

100%

115%

100%

115%

Skewed 
larger

95% CI = (-$584,-$182)

95% CI = (-$698,-$123)95% CI = N/A

95% CI = (-$324,$272)
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Point Estimate = $0
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Close/LargerFar/SmallerStandard
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95% CI = (-$284,$205)
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The top-performing table mix was identical between SEATS and SPACE in five 

instances; further, nine of the confidence intervals include zero.  These results indicate 

that no statistically significant difference in revenue exists between the two inventory 

allocation methods for the levels of the table space proportion, amount of demand, and 

mix of demand characterized by these fourteen scenario pairs.  However, the 95% 

confidence intervals for Scenario Pairs 9&27 through 12&30 were all less than zero, 

indicating that SPACE generated revenues that were statistically greater than revenues 

produced by SEATS.  The approximate revenue benefit under SEATS and the 

operating characteristics that produce this revenue benefit are as follows: 

• For Scenario Pair 9&27, the revenue gain under SEATS was approximately 

$123 to $698.  The test restaurant used far from proportional, or effectively 

smaller/more closely situated tables, experienced demand at 115% of the 

current amount of demand, and had a demand mix skewed towards a greater 

number of larger parties, with an average party size of 2.72. 

• For Scenario Pair 10&28, the revenue gain under SEATS was approximately 

$555 to $1,123.  The test restaurant used far from proportional, or effectively 

smaller/more closely situated tables, experienced demand at roughly 132% of 

the current amount of demand, and had a demand mix based on the existing 

mix, with an average party size of 2.58.  

• For Scenario Pair 11&29, the revenue gain under SEATS was approximately 

$182 to $584.  The test restaurant used far from proportional, or effectively 

smaller/more closely situated tables, experienced demand at roughly 132% of 

the current amount of demand, and had a demand mix skewed towards a 

greater number of smaller parties, with an average party size of 2.39. 

• For Scenario Pair 12&30, the revenue gain under SEATS was approximately 

$904 to $1,464.  The test restaurant used far from proportional, or effectively 
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smaller/more closely situated tables, experienced demand at roughly 132% of 

the current amount of demand, and had a demand mix skewed towards a 

greater number of larger parties, with an average party size of 2.72. 

 

There are two explanations for the significant revenue differences observed for these 

four Scenario Pairs; one relates to the combination of factor levels used in these 

particular Scenario Pairs, while the other pertains to the table mixes tested by the 

simulation.  In regard to the factor levels, for these four Scenario Pairs, the table space 

proportion was at the far/smaller level, so the number of seats that can fit in the 

restaurant is at its maximum.  The SEATS scenarios (9, 10, 11, and 12) were all 

constrained by the 116 seats currently used at the test site whereas the SPACE 

counterparts (scenarios 27, 28, 29, and 30) were able to use many more seats.   

 

Additionally, the gross amount of demand introduced into the operating system was at 

its highest for these four instances.  For Scenario Pair 9&27, although the demand 

level was at its current state (recall that 115% was used as the base case for the 

far/small table space proportion scenarios), the demand mix was skewed towards 

larger parties.  For the other three scenario pairs, the demand level was at its increased 

state (recall that 132% was used as the higher demand case for the far/small table 

space proportion scenarios).  Therefore, the combination of using smaller tables and 

experiencing extremely high demand magnifies the difference in the number of seats 

put into use between the two methods of inventory allocation and results in the 

SPACE method outperforming the SEATS method under these circumstances. 

 

In regard to the table mixes tested by the simulation, an explanation as to why there is 

no difference between revenue under SEATS and SPACE for fourteen scenario pairs � 
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and why there is a revenue difference for Scenario Pairs 9&27 through 12&30 � 

concerns the table mixes input into the simulation for each scenario.  If the same or 

very similar table mixes are tested for each method of inventory allocation, then it is 

not unexpected that the output would be the same or similar.  As shown in Table 4.2, 

the number of unique mixes for the SEATS never surpassed 10 percent of the total 

table mixes tested in all scenarios.   

Table 4.2:  Similarity of Table Mixes Input into Simulation 

 

SEATS SPACE

1 & 19 270 $14,453 - $14,729 51.1% 2.6% 46.3%

2 & 20 270 $13,484 - $13,728 48.1% 5.2% 40.0%

3 & 21 270 $15,165 - $15,493 40.7% 5.9% 42.2%

4 & 22 270 $16,633 - $17,040 56.3% 4.1% 33.7%

5 & 23 271 $15,685 - $16,068 61.3% 3.7% 32.1%

6 & 24 270 $17,353 - $17,842 48.9% 3.3% 35.9%

7 & 25 515 $14,546 - $14,767 0.0% 6.0% 90.9%

8 & 26 515 $13,537 - $13,757 5.0% 9.7% 76.7%

9 & 27 515 $15,287 - $15,604 0.0% 8.2% 91.8%

10 & 28 515 $17,067 - $17,376 0.0% 0.0% 99.6%

11 & 29 515 $15,943 - $16,222 0.8% 5.0% 91.1%

12 & 30 515 $17,915 - $18,277 0.0% 0.0% 100.0%

13 & 31 138 $14,096 - $14,431 31.9% 4.3% 42.0%

14 & 32 138 $13,287 - $13,708 33.3% 1.4% 50.7%

15 & 33 138 $14,704 - $15,131 26.1% 5.8% 47.8%

16 & 34 138 $15,726 - $16,340 43.5% 3.6% 44.2%

17 & 35 138 $15,160 - $15,710 39.1% 2.9% 43.5%

18 & 36 138 $16,300 - $16,847 40.6% 5.8% 40.6%
*Similar is defined as any pair of table mixes, with one mix from each inventory allocation method, that meet two requirements: 
1. The net  difference between the total seats is between 0 and 4 .
2. Only one set of consecutive table sizes constitute this difference.  
Examples of pairs of similar table mixes (in the format of 2s/4s/6s/8s) are: 14/15/3/2 & 14/14/3/2; 13/15/2/2 & 13/14/3/2
Examples of pairs of dissimilar table mixes are:  10/10/3/5 & 10/10/3/6; 11/11/4/2 & 11/13/4/1

Percentage Unique to Allocation 
Method

8.7%

14.5%

13.0%

0.0%

21.7%

14.5%

20.3%

8.5%

0.0%

0.4%

3.1%

5.9%

3.0%

11.9%

3.1%

11.1%

Scenario Pairs
Total Number of 

Mixes in Top 10%, 
Ranked by Revenue 

Percentage Similar* for 
Both Allocation 

Methods

0.0%

6.7%

Percentage Identical 
for Both Allocation 

Methods

Within the Top 10% of All Table Mixes

Revenue Range

SEATS SPACE Sum SEATS SPACE

1,200 2,115 3,315 583 1,498 2,698

1,620 3,764 5,384 1,385 3,529 5,149

509 1,133 1,642 243 867 1,376

Number of Unique Mixes

13 to 18 and 31 to 36

Total Number of Table Mixes Enumerated Number of Identical 
Mixes between Two 
Inventory Allocation 

Methods

617

235

266

7 to 12 and 25 to 30

Scenarios

1 to 6 and 19 to 24

Actual Total 
Number of 

Mixes Tested

Of the Total Table Mixes Enumerated
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At least half of the table mixes simulated for the standard and close/large table space 

proportions (Scenarios 1 � 6 and 9 � 24 and Scenarios 13 � 18 and 31 � 36) were 

either identical or notably similar.  However, when the tables were of far/small 

proportion, very few of the top 10 percent of table mixes tested were identical or even 

similar between SEATS and SPACE, and for five of the six far/small proportion 

scenarios, over 90 percent of the top performing table mixes were unique to the 

SEATS factor.  Table 4.2 above recaps the table mixes simulated for all three table 

space proportions, and summarizes the top 10 percent of table mixes, as ranked by 

total revenue, simulated for both SEATS and SPACE. 

 

Sensitivity of Simulation Output 

An important observation that emerged over the course of conceptualizing and running 

these simulations relates to the demand level factor.  As previously described, the 

current demand/100% level had to be augmented for the far from proportional 

scenarios to ensure that the restaurant system was truly taxed and thus operating under 

excess demand/constrained supply, which are the principal conditions necessary to 

benefit from Revenue and Capacity Management techniques.  The current demand 

level/100% for the standard and close to proportional scenarios was assumed to be 

sufficient to strain the system and create the excess demand/constrained supply 

conditions.   

 

However, when some of these scenarios were rerun with different random number 

seeds, the simulation results changed, meaning that the top-performing table mixes 

and associated revenues for the scenarios varied from that given in Table 4.1.  

Although the change in revenue was less than 1 percent, this indicates that there is 

some lack of stability in the top-performing table mix at low demand levels which 
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could be alleviated in further research by increasing the current/100% level for all 

table space proportions. 

 

Full Experimental Analysis 

A four-way ANOVA, with total revenue as the response variable, was calculated to 

further understand how and when the revenue produced under SEATS and SPACE 

differed statistically.  This type of full experimental analysis served to concurrently 

examine all simulation scenarios and determine if any of the individual factors, or a 

combination of some or all of them, impacted revenue.   

 

The standard procedure for analyzing an ANOVA was followed, starting with initially 

testing all interactions and factor effects using separate F tests, continuing with testing 

significant interactions starting at the highest order, and ending with further 

exploration of all interesting and significant findings.  Since 15 separate F tests were 

computed simultaneously when determining the p-value for each interaction and factor 

in the general ANOVA table, Kimball�s inequality was used to ensure that the error 

rate for this family of F tests does not exceed a reasonable rate.  The Kimball 

inequality indicates that each individual F-test must be analyzed at a significance level 

of 0.007 to ensure that error rate for the overall experimentwise error does not exceed 

0.10.  Results from the ANOVA are in Table 4.3. 
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Table 4.3:  Four-way ANOVA 

 

The individual F tests indicated that no third-order interaction is present; one second-

order interaction (MethodofAllocation-TableSpaceProportion -DemandLevel) was 

significant at p<0.007.  The interaction plots for the factors of this second-order 

interaction are in Figure 4.2.  The plots do not display much deviation from parallel 

curves, suggesting that the significance of this interaction may be due to a difference 

in scale.  To test this, log and square root transformations of the data were completed; 

both transformations made this second-order interaction insignificant at p<0.007.   

Source      DF   Seq SS   Adj SS Adj MS F P 
Method of Allocation  
(SEATS, SPACE)                       1 36181104 36181104 36181104 29.78 0.000 

TableSpaceProportion 
(standard, far, close)                     2 6985616579 6985616579 349280829

0 
2875.

18 0.000 

DemandLevel 
(100%, 115%) 1 4756561080 4756561080 475656108

0 
3915.

47 0.000 

DemandMix 
(current, skew small, skew large)  2 1654307509 1654307509 827153755 680.8

9 0.000 

Method*TableSpaceProportion    2 52871909 52871909 26435955 21.76 0.000 
Method*DemandLevel    1 7235795 7235795 7235795 5.96 0.015 
Method*DemandMix             2 4663591 4663591 2331795 1.92 0.147 
TableSpaceProportion* 
DemandLevel 2 75644453 75644453 37822227 31.13 0.000 

TableSpaceProportion* 
DemandMix                 4 33779363 33779363 8444841 6.95 0.000 

DemandLevel*DemandMix 2 1958516 1958516 979258 0.81 0.447 
Method*TableSpaceProportion*
DemandLevel  2 16004731 16004731 8002365 6.59 0.001 

Method*TableSpaceProportion*
DemandMix  4 12008537 12008537 3002134 2.47 0.043 

Method*DemandLevel* 
DemandMix  2 1471548 1471548 735774 0.61 0.546 

TableSpaceProportion* 
DemandLevel*DemandMix   4 5315328 5315328 1328832 1.09 0.358 

Method*TableSpaceProp* 
DemandLevel*DemandMix           4 1600678 1600678 400169 0.33 0.858 

Error               370 4504525054 4504525054 1214813 

Total 374
3   

1814974577
6   

S = 1102.19 R-Sq = 75.18%    R-Sq(adj) = 74.95% 
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Figure 4.2:  Interaction Plot for Method of Allocation & Table Space 

Proportion & Demand Level Interaction 

 

The ANOVA also indicated that three first-order interactions (MethodofAllocation 

and TableSpaceProportion; TableSpaceProportion and DemandLevel; TableSpace-

Proportion and DemandMix) were significant at p<0.007.  The same data 

transformations were completed to determine the importance of these interactions.  

The TableSpaceProportion and DemandMix interaction was transformable and thus 

insignificant.  However, the MethodofAllocation and TableSpaceProportion inter-

action and the TableSpaceProportion and DemandLevel interaction were nontrans-

formable and both remained significant at p<0.001, indicating that the nature of these 

interaction effects must be fully investigated.  The interaction plots for these two 
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factor pairs are included in Figure 4.2 above; these interactions are nontransformable, 

so their logarithm-transformed plots are identical in scope to their original plots.  

 

Statistical Comparisons and Contrasts 

The nature of each of the two significant interactions is revealed through comparisons 

and contrasts of treatment means.  An explanation of the six pairwise comparisons 

calculated, the estimated treatment means used in the calculations, and the confidence 

intervals for the comparisons are provided in Appendix B.  As these comparisons were 

not determined prior to conducting the experiments of this study, Scheffé�s method is 

appropriate to use to control experimentwise error rate.   

 

The 95% confidence intervals for the family of comparisons associated with the 

MethodofAllocation-TableSpaceProportion interaction indicate that more revenue is 

generated under the SPACE method for tables that are far from proportional/smaller, 

whereas no statistical revenue difference exists between the two methods at the other 

two table space proportions.  This finding is expected, as SPACE is unconstrained by 

the number of seats it can use and effectively operates with more supply than does 

SEATS and can serve a larger number of customers that generate additional revenue.  

The 95% confidence intervals for the family of comparisons associated with the 

TableSpaceProportion-DemandLevel interaction indicate that for all table space 

proportions, mean revenue when demand is at its current level is lower than mean 

revenue when demand increases by 17.645%.  Expectedly, the restaurant makes more 

money under high demand conditions, regardless of the sizes of the tables used.   

 

Linear contrasts are used to determine which table space proportion benefits the most 

from higher demand.  A description of the three contrasts calculated, the point 
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estimates used in the calculations, and the confidence intervals for the contrasts are in 

Appendix C.  Scheffé�s method is used again to control overall error rate when calcu-

lating these contrasts.  The linear contrasts reveal that the gain in revenue for higher 

demand situations is greatest for far/small tables and lowest for close/large tables. 

 

Summary of Statistical Analyses 

The simulation experiment revealed that the table space proportion factor determined 

whether a consistent and systematic revenue difference existed between the SEATS 

SPACE methods of inventory allocation.  More specifically, for standard-sized tables 

and close/large tables, there is no revenue advantage between SEATS and SPACE, 

regardless of the level of demand or how party sizes generating roughly the same 

average party size are skewed.  The same conclusion does not hold for far/small 

tables, especially under high demand conditions in which additional customers are 

introduced to the system either via a skew towards larger party sizes or a strict 

increase in all arriving parties. 

 

Impact on Capacity Level and Mix 

For all scenario pairs, the maximum difference in the total number of tables is 3 

(Scenario Pair 18&36), the maximum difference in the total number of seats is 44 

(Scenario Pair 9&27), and the maximum difference in the total square footage used is 

133 (also Scenario Pair 9&27).  Table 4.4 highlights the maximum difference in these 

three capacity measurements for each of the table space proportions tested.  It is 

interesting to note how little the number of tables used differs between SEATS and 

SPACE, even in the majority of the far/small scenarios where the number of seats and 

square footage used differs dramatically.   
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Additional Performance Measures 

Eight additional performance measures � number of customers served, number of 

customers lost, RevPASH, RevPAST, table occupancy, seat occupancy, average wait 

by party size, and 85th percentile of waits by party size, were collected for each top 

revenue-performing scenario.  While total revenue is the primary performance 

measure used to characterize and rank all table mixes simulated for all scenarios in 

this experiment, the operating conditions produced by the top revenue generating table 

mixes must be feasible and realistic.  Notable observations on each of the performance 

measures associated with the top total revenue scenario under both methods of 

inventory allocation are provided below; the eight performance measures for all 

scenarios can be found in Appendix D.   

 

Number of Customers Served 

In 67% of the scenarios, the difference in the number of customers served under both 

SEATS and SPACE is marginal and ranges from 0 to 4 customers.  This result is 

mostly expected, since the number of customers served logically follows the amount 

of revenue generated, and revenue does not differ either practically or statistically for 

over three quarters of the scenario pairs.  All of the scenarios exceeding a difference of 

4 customers served used tables that were far from proportional/smaller.  In each of 

these instances, a generally sizeable amount of additional seats was used under 

SPACE to accommodate these additional customers, although difference in the 

number of tables used was not substantial.   

 

Number of Customers Lost 

The number of customers lost under SEATS and SPACE differs by over 5 customers 

in five of the six scenario pairs which use far from proportional tables.  In all of these 
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cases, SPACE turns away fewer customers, even though the total number of tables 

used by both allocation methods is similar.  The most interesting observations related 

to lost customers are Scenario Pairs 9&27 through 12&30; in these cases, the number 

of tables used under SPACE is greater than the tables used under SEATS by only 1 or 

2, whereas between 12 and 37 additional customers are lost under SEATS. 

 

RevPASH 

RevPASH is higher for SEATS scenarios in which the number of seats used is lower 

than the seats used in the corresponding SPACE scenarios (Scenario Pairs 1&19, 

6&24, and 7&25 through 12&30), regardless of the revenue benefit seen from using 

the space method.  This is expected, as the fewer number of seats used to generate 

roughly the same amount of revenue would each have to contribute more money to the 

total.  Additionally, the instances in which RevPASH under SPACE method is higher 

than RevPASH for SEATS (Scenario Pairs 14&32 and 16&34 through 18&36) are 

expected since SPACE revenue is slightly higher under these scenarios, while the 

number of seats used is the same.   

 

RevPAST 

The RevPAST performance measure is calculated in two ways; one way assesses how 

the total 1422.925 square feet of dining room space available is used to generate 

revenue over two nights of a 7-hour dinner service.  The other method follows the how 

RevPASH is measured in that the total square feet of dining room space actually used 

serves as the basis of the calculation.  In regards to the first calculation, overall 

RevPAST does not differ between SEATS and SPACE by more than once cent for 

Scenario Pairs 1&19 through 8&26 and Scenario Pairs 13&31 through 18&36 because 

the revenues generated for these scenario pairs do not significantly differ between the 
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two methods of inventory allocation.  As expected, RevPAST is higher under SPACE 

for the scenario pairs that exhibited a revenue difference between SEATS and SPACE 

(Scenario Pairs 9&27 through 12&30).  Looking at RevPAST from the standpoint that 

includes the space actually used also yields expected results.  When the amount of 

space used differs considerably for paired scenarios, RevPAST is higher for the 

scenario using less space, whether or not its revenue is significantly lower.   

 

Table Occupancy 

In general, the table occupancy performance measure does not yield unexpected 

results.  For the scenario pairs using tables of standard or larger proportion, occupancy 

rates are higher for the allocation method that uses fewer tables.  For the scenarios 

using smaller tables, peak table occupancy is generally higher under SPACE, 

regardless of the number of tables used, because a significantly greater number of 

seats are used in these scenarios, allowing more customers to be processed and fewer 

customers to be turned away.  While all table occupancies are close to 90 percent or 

higher for all scenarios during the peak operating hour, total occupancy for either 

method of allocation rarely surpasses 95 percent.  This indicates that the test restaurant 

may be able to process more demand; however, a greater number of reneges would 

also result which could lead to potentially negative consequences. 

 

Seat Occupancy 

Seat occupancies are generally higher under SEATS.  This is an expected result, as 

SEATS scenarios often use fewer seats to process basically the same number of 

customers.  This finding is most pronounced when far/smaller tables are used, even 

though considerably fewer customers are processed under SEATS; in these scenario 

pairs the SPACE method uses between 8 and 44 additional seats.   
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Average Wait by Party Size 

The average wait times by party size are quite similar under the two inventory 

allocation methods for most scenarios.  The average wait time is consistently lower 

under SPACE for Scenario Pairs 8& 26 through 12&30 because the number of tables 

in use is greater under SPACE.  Wait times are lower under SEATS in Scenario Pairs 

14&32 and 17&34 for the same reason, although on a smaller scale.  Neither method 

produced unrealistic or infeasible average wait times in any operating condition. 

   

85th Percentile of Wait by Party Size 

The results for the 85th percentile of wait times by party size follow the exact same 

trend as the findings associated with the average wait times.  As expected, when more 

tables are available, fewer parties experience a longer wait.  Due to the seating rules 

used and the priority given to matching party sizes with the appropriate table size, 

large parties rarely wait for more than a few minutes under any operating conditions. 

 

Summary 

The results of performing the simulation study proposed in the Methodology section 

were detailed in this chapter.  Based on these findings, revenue and capacity are not 

significantly impacted when restaurant capacity is allocated based on space instead of 

seats and tables are of standard proportion or larger.  However, when tables are 

smaller than standard, the SPACE method outperforms the SEATS method.  The 

following chapter specifically answers the three research questions at the center of this 

research and translates the insights gained from the simulation experiment into both 

practical and academic contributions.  
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CHAPTER 5:  DISCUSSION 

 

Based on the analyses presented in Chapter 4, the questions serving as the premise of 

this research are answered.  The insights gathered from these answers are then 

translated into a useful research contribution by augmenting two table mix models 

developed by Kimes and Thompson (2005) to account for space.  Both of these 

models are modified in two ways, and the recommended table mixes are compared for 

all eighteen operating scenarios.  This chapter concludes with a discussion of which 

modified table mix model ultimately produces the most lucrative table mix.  

 

Research Questions Answered 

To what extent is revenue impacted if capacity is allocated based on space instead of 

inventory units?  

When the tables used in a restaurant are of standard size or larger, revenue is not 

significantly impacted when capacity is allocated based on a space-as-inventory rule 

instead of a seats-as-inventory rule.  These findings are not entirely unexpected; space 

was accounted for as an after-the-fact constraint in the SEATS method.  When the 

number of seats used in the top-performing table mix under SPACE was close to the 

current number of seats used in the restaurant, using the SPACE method with a before-

the-fact constraint had no significant benefit.   

 

When the tables used are smaller than standard size, the results are not as 

straightforward.  In these instances, when demand is heightened through either a strict 

increase in the number of arriving parties or an increase in the amount of larger parties 

introduced into the operating system, the SPACE method produces a table mix that 

generates a statistically higher amount of revenue than the table mix garnered from the 
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SEATS method.  Although the number of tables used does not differ dramatically 

between SEATS and SPACE in these cases, the number of seats put into operation 

under SPACE is considerably higher, thus allowing more customers to be served and 

fewer customers to be turned away.  However, when the number of customers 

introduced into the system is not increased to a very high level, this benefit of 

employing additional seats is lost, as there was no statistically significant difference in 

revenue between SEATS and SPACE.    

 

In general, it appears that the SPACE method outperforms SEATS when the top 

revenue table mixes between the two differ, with this revenue benefit most apparent 

for the far/small table space proportion scenarios.  However, for all but four of these 

scenarios, because there is no statistically significant revenue difference between 

SEATS and SPACE, the apparent superiority of the SPACE method may disappear 

when the scenarios are re-simulated using different random number streams or an 

exorbitant number of replications.  Rerunning the far/small scenarios with a ten-fold 

increase in the number of replications and new seeds for the random number streams 

confirmed this.  

 

How is existing capacity changed when supply is measured by space instead of units?   

Comparing the top-performing table mixes under SEATS and SPACE to the existing 

table mix can only be done for the first scenario pair since it reflects the current 

operating conditions of the test site.  Recall that the baseline capacity for the restaurant 

is comprised of (in the format of 2-tops/4-tops/6-tops/8-tops) 10/19/2/1, which totals 

116 seats at 32 tables that occupy 1384.5 square feet of space.  When supply is 

allocated based on units-as-inventory (SEATS), the top-performing table mix is 

19/9/0/5, with a total of 114 seats at 33 tables that take up 1397.3 square feet.  In 
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comparison, when supply is allocated based on a space-as-inventory rule (SPACE), 

the top table mix is 14/15/0/4, with 120 seats at 33 tables using 1421.3 square feet.   

 

Both the SEATS and SPACE recommend table mixes that are quite different from the 

current one, and both generate a statistically significant amount of additional revenue 

($506 under SEATS and $546 under SPACE).  However, there is no significant 

revenue difference between the two methods, which indicates that there is not just one 

table mix that maximizes revenue of the restaurant.   

 

Examining the capacity differences between the two methods for the other scenarios 

reveals that the table mixes generated under SEATS and SPACE are often quite 

different, even if the differences in table, seat, and space capacity are minimal.  This 

observation supports the research of Kimes and Thompson (2004 and 2005) that 

operating with the appropriate mix of tables is important.  However, it suggests that 

there is not necessarily a single optimal table mix for an operation, but instead a 

selection of different table mix options that produce statistically equal revenue; the 

practical implications of this conclusion are discussed in the following chapter. 

 

Can revenue actually increase if capacity is decreased? 

Comparing the revenue and capacity measures of each scenario pair reveals that 

operating with more seats, more tables, or more dining room space does not guarantee 

higher revenue.  While Scenario Pairs 9&27 through 12&30 indicates a correlation 

between additional capacity and higher revenue, the absence of a significant revenue 

difference in the other fourteen scenarios pairs do not support this.  However, for the 

same reason, revenue does not categorically increase with a decline in capacity either.   
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An interesting observation related to this research question is seen in the far/small 

table space proportion scenarios.  In all of these cases, the amount of dining room 

space used varies greatly between SEATS and SPACE even though the number of 

tables does not differ notably for any of the scenarios, including the significant 

Scenario Pairs 9&27 through 12&30.  This finding indicates that although the tables in 

a restaurant are the actual capacity units that process parties of customers, the number 

of seats and the amount of space used are the critical factors in determining the 

capacity of a restaurant in terms of the number and mix of tables that should be 

offered. 

 

Research Insight � Modified Table Mix Models 

The insights gained from answering these research questions confirm that when 

inventory is perishable, operating with the mix of inventory that not only matches 

demand but also appropriately uses available space positively impacts revenue.  This 

finding is translated into a useful academic and practical contribution by building on 

the research conducted by Kimes and Thompson (2005).  The remainder of this 

chapter describes how published table mix models were modified to account for space 

and which models yielded the best results in differing situations. 

 

Existing Table Mix Model:  NaïveIP-A 

Kimes and Thompson (2005) tested a number of heuristics designed to make 

determining the optimal table mix of a restaurant accessible for operators to use and 

implement.  While these heuristics ranged in complexity, the simplest model, NaïveIP-

A, produced robust results, with revenues within 1% of maximum.  This NaïveIP-A 

model, reproduced below, recommends a table mix that minimizes the deviation 
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between the number of seats that ideally matches demand and the actual number of 

seats put into operation. 

 
NaïveIP-A Model 
 
Variables: 

−
is = shortage of seats between the actual and ideal number allocated to 

each table size, where i = 2, 4, 6, or 8 
 

+
is = surplus of seats between the actual and ideal number allocated to each 

table size, where i = 2, 4, 6, or 8 
 

ix = number of tables with i seats, where i = 2, 4, 6, or 8 
 
Parameters: 

Seats  =  total number of seats available for use 
 
NDBIdealSeatsi  =  ideal number of seats for each table size i, determined 

by estimating the proportion of Total Demand from customers 
entering the restaurant system for i under seating rules in which each 
party is seated at the smallest table size that can accommodate the 
party.  The calculation for NDBIdealSeatsi, where j = 2, 4, 6, or 8, is:  

 

         Seats* ( )∑
j

i* i 
ii
at  seated be  toDemand Total of %

at  seated be  toDemand Total of %*  

 
 

Minimize: ∑ +− +
i

ii )s(s                                                                                 (5) 

 

Subject to: =−+ +−
iii ssix  NDBIdealSeatsi       i   ∀                                                        (6) 

  

∑
i

iix ≤ Seats                                                                             (7) 

 ixi  integer   ,0 ∀≥                                                                     (8) 
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Several modifications to this Naïve model that included duration and value 

information were tested, but none of these more complex models resulted in table 

mixes that produced significantly higher revenue.  However, the authors suggested 

that accounting for missing factors such as table assignment rules could enhance the 

model.  One factor not tested was space and how incorporating the available dining 

room space and the space required by each different table size impact the usefulness 

and results of the model.  In fact, after running the NaïveIP-A model for every 

combination of the demand level-demand mix-table space proportion factors, the 

importance of including space was underscored as none of the recommended table 

mixes fit in the allowable dining room space for 12 of the 18 operating scenarios. 

 

Modified NaïveIP-A Table Mix Models 

To determine the best manner in which to incorporate space into the model, the 

NaïveIP-A heuristic was modified and tested in two ways.  The NaïveIP-A(1) model 

has the same objective function and constraints, but includes an added constraint that 

implicitly ensures that the sum of the space used by each recommended table fits into 

the space available.  The NaïveIP-A(2) model is similar in structure to the original 

model, but explicitly considers space in the objective function instead of in a 

constraint.  This model variation uses the square footage of the planning square for 

each table size, which includes the space taken up by the table top, accompanying 

chairs, and necessary area for movement, as the decision variables.  As such, the 

objective of this model variation is to minimize the deviation between the number of 

square feet that ideally matches demand and the actual number of square feet put into 

operation.  Accordingly, the NaïveIP-A(2) model does not have a constraint regarding 

the number of seats that can be used.  Both full models are given below: 
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NaïveIP-A(1) Model 
 
Additional Parameters: 

Space = total amount of dining room square footage available for use 
 
pi = square footage of the planning square required to fit each table size i, 

where i = 2, 4, 6, or 8  
 
 

Minimize: (5) 

Subject to: (6), (7), (8) 

 
 

∑
i

ii px ≤ Space                                                                   (9) 

 
NaïveIP-A(2) Model 
 
Variables: 

−
iss = shortage of space between the actual and ideal amount allocated to 

each table size, where i = 2, 4, 6, or 8 
 

+
iss = surplus of space between the actual and ideal amount allocated to 

each table size, where i = 2, 4, 6, or 8 
 
Additional Parameter: 

NDBIdealSpacei = ideal amount of space for each table size i, determined 
by estimating the proportion of Total Demand from customers 
entering the restaurant system for i under seating rules in which each 
party is seated at the smallest table size that can accommodate the 
party.  The calculation for NDBIdealSpacei, where j = 2, 4, 6, or 8, is:  

 

          Space * ( )∑
j

i

i

i* p 
ip
at  seated be  toDemand Total of %

at  seated be  toDemand Total of %*
 

 
 

Minimize: ∑ +− +
i

ii ssss )(                                                                       (10) 

Subject to: (8), (9) 
 

=−+ +−
iii ssssix  NDBIdealSpacei       i   ∀                                        (11) 
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The results of running the NaïveIP-A(1) and NaïveIP-A(2) models for the three 

different demand mixes and three different table space proportions tested are provided 

in Table 5.1 below.  Because these models do not account for demand level, the table 

mixes are the same for the two levels of demand under each of the table space 

proportions, but the revenue given by the simulation differs. 

 

When the recommended table mixes vary between the two models (16 scenarios), the 

NaïveIP-A(2) model outperforms the NaïveIP-A(1) model in 15 instances and 

produces 4.3% higher revenues on average.  Additionally, under the existing operating 

conditions of the test site (Scenario 1), the revenue associated with the table mix 

identified by NaïveIP-A(2) model is $154 higher than the revenue generated by the 

restaurant�s current table mix, while revenue produced by the table mix recommended 

by the NaïveIP-A(1) model is $612 lower.   

 

However, concluding that restaurateurs should use the NaïveIP-A(2) model to 

explicitly consider space when determining the table mix of a restaurant is not 

defendable.  The table mixes recommended by the model are markedly different from 

the top-performing table mixes as determined through complete enumeration.  More 

importantly, the accompanying revenues are significantly below the maximum 

revenues yielded by enumeration, with the NaïveIP-A(2) revenue averaging only 

92.6% of maximum.  These revenue differences are included in Table 5.1 below, and 

the differences in the recommended table mixes can be found in Appendix E.  The 

suboptimal revenues produced by the modified NaiveIP-A models indicate that further 

examination and modification of existing heuristics is warranted; the following section 

explores if including duration in the heuristics produces table mixes and associated 

revenues that more closely match the results of enumeration and simulation. 
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Existing Table Mix Model:  NaïveIP-B 

An explanation for the revenue differences observed between the NaiveIP-A model 

variations and the maximum revenue achieved through complete enumeration is that 

both NaïveIP-A variations consistently include more 2-tops and fewer 8-tops in their 

recommended table mixes than complete enumeration does.  Kimes and Thompson 

(2005) addressed this effect in their NaïveIP-B model by accounting for differences in 

dining duration, or the time parties of varying sizes require the use of a table.  The 

NaïveIP-B model somewhat reduced the tendency of the NaïveIP-A model to not 

exclude larger tables, even when the demand mix is heavily skewed towards smaller 

parties.  While this model underperformed its simpler counterpart, it still produced 

table mixes that generated revenue within 1.5% of the maximum.  With the exception 

of the first constraint, the NaïveIP-B model is the same as the NaïveIP-A model. 

 
NaïveIP-B Model 
 
Altered Parameter: 

DBIdealSeatsi = ideal number of seats for each table size i, determined by 
estimating the proportion of total demand � adjusted for duration � for i 
under seating rules in which each party is seated at the smallest table size 
that can accommodate the party.  The calculation for DBIdealSeatsi, 
where j = 2, 4, 6, or 8, is:  

 

         Seats * 
∑
∑

zj,

zzii

zzii

) sizeparty  ofduration  Average *  from for  Demand Total of %*(

) sizeparty  ofduration  Average *  sizeparty  from for  Demand Total of %
z

(*
 

 
 

Minimize: (5) 

Subject to: (7), (8) 
 

=−+ +−
iii ssix  DBIdealSeatsi       i   ∀                                                 (12) 
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Modified NaïveIP-B Table Mix Models 

Not all of the table mixes recommended by the existing NaïveIP-B model fit in the 

allowable dining room space.  Two variations of the NaïveIP-B model that incorporate 

the available dining room space were tested. 

 
NaïveIP-B(1) Model 
 
Minimize: (5) 

Subject to: (8), (9), (12) 
 

=−+ +−
iii ssix  DBIdealSeatsi       i   ∀                                           (13) 

 

 
NaïveIP-B(2) Model 
 
Altered Parameter: 

DBIdealSpacei = ideal amount of space for each table size i, determined by 
estimating the proportion of total demand � adjusted for duration � for i 
under seating rules in which each party is seated at the smallest table size 
that can accommodate the party.  The calculation for DBIdealSpacei, 

where j = 2, 4, 6, or 8, is:  
 

Space * 
∑
∑

zj,

i

zzi
i

p

zzip

) sizeparty  ofduration  Average *  from for  Demand Total of %*(

) sizeparty  ofduration  Average *  sizeparty  from for  Demand Total of %
z

(*
 

 
 
Minimize: (10) 

Subject to: (8), (9) 
=−+ +−

iii ssssix  DBIdealSpacei            i   ∀                                          (14) 
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Running the NaïveIP-B(1) and NaïveIP-B(2) models for the three different demand 

mixes and three different table space proportions had the desired result of including 

fewer smaller tables and a greater number of larger tables; Table 5.2 provides these 

results.  When the recommended table mixes varies (16 scenarios), the NaïveIP-B(2) 

model consistently produces higher revenues than the NaïveIP-B(1) model, with an 

average revenue benefit of 5.2%.  However, the revenues generated from the table 

mixes produced by the NaïveIP-B(2) model are below the revenues yielded by 

enumeration, with the NaïveIP-B(2) revenue averaging 96.0% of maximum.  The 

differences between the NaïveIP-B(2) model and the results from complete 

enumeration are included in Appendix E.  Because a considerable amount of revenue 

is unclaimed if this model is used as it currently stands, additional model 

modifications must be tested to determine a more compelling and useful heuristic.  

The following section explores if including practical seating rules in the heuristics 

produces table mixes and associated revenues that more closely match the results of 

enumeration and simulation.
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Further Model Modification � Seating Assignment Rule 

The extenuating reason that the results from the NaïveIP models vary so significantly 

from the complete enumeration results is due to seating assignment rules.  All of the 

NaïveIP models operate under the assumption of strict table assignment, meaning that 

party sizes are only seated at their closest matching table size.  Specifically, these 

strict assignment rules dictate that parties of 1-2 sit only at 2-tops, parties of 3-4 sit 

only at 4-tops, parties of 5-6 only sit at 6-tops, and parties of 7-8 only sit at 8-tops. 

 

While seat assignment rules are not the focus of this research, to further gauge the 

usefulness of adding a space factor into a functional table mix heuristic, seating rules 

had to be addressed.  In fact, Kimes and Thompson (2005) suggested that different 

seating rules may have an impact on their NaïveIP models.  They accounted for the 

possibility that parties can be seated at any table size larger than the party in their 

calculation of the ideal number of seats for each table size.  For instance, parties of 2 

can be accommodated by 2-tops, 4-tops, 6-tops, or 8-tops, but parties of 6 can only be 

seated at either 6-tops or 8-tops.   

 

Realistically, restaurant operators give preference to matching party and table size and 

rarely use certain table sizes to fit certain party sizes (for instance, a party of 1 would 

not be seated at an 8-top).  These proclivities were reflected in the simulation model 

and consequently the top-performing table mixes.  This more feasible type of seating 

assignment was translated into the NaïveIP models through the use of decreasing 

constants in calculating the ideal number of seats (for NaïveIP-1 variations) and the 

ideal amount of space to be allocated to each table size (for NaïveIP-2 variations).  

Table 5.3 gives the specific seating rules followed in the simulations, as well as the 

constants assigned to each party size at each table type used in the NaïveIP models.  
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Table 5.3:  Party Size Constants to Account for Realistic Seating Rules 

 

 

 

 

 

 

 

These constants were integrated into the NaïveIP model variations through the 

parameter that accounts for the ideal number of seats or the ideal amount of space 

allocated to each table size.  The calculations of these updated parameters are: 

 
NDBIdealSeatsRULE2i  =  ideal number of seats for each table size i under 

the revised seating rules, where i = 2, 4, 6, or 8; party size z = 1, 2, . . ., 8; 
j = 2, 4, 6, or 8; and  Ciz = constants provided in Table 6.3:   

 

         Seats * 

∑ ∑

∑










j z
iz

iz

z)* (C* i 

zCi

 from Demand Total of %

) from Demand Total of %*(*
z  

 
NDBIdealSpaceRULE2i = ideal amount of space for each table size i under 

the revised seating rules, where i = 2, 4, 6, or 8; party size z = 1, 2, . . ., 8; 
j = 2, 4, 6, or 8; and  Ciz = constants provided in Table 6.3: 

 

         Space * 

∑ ∑

∑










j z
izi

z
izi

z)* Cp 

zCp

 from Demand Total of %(*

) from Demand Total of % **
 

 Table Size 
Party Size 2-top 4-top 6-top 8-top 

1 1 0.5 0 0 
2 1 0.5 0.25 0 
3 0 1 0.5 0 
4 0 1 0.5 0.25 
5 0 0 1 0.5 
6 0 0 1 0.5 
7 0 0 0 1 
8 0 0 0 1 
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DBIdealSeatsRULE2i = ideal number of seats for each table size i � adjusted 
for duration � under the revised seating rules, where i = 2, 4, 6, or 8; 
party size z = 1, 2, . . ., 8; j = 2, 4, 6, or 8; and  Ciz = constants provided in 
Table 6.3: 

 

Seats*

∑ ∑

∑












j z
iz

iz

z)*z* (C* i 

zzCi

 sizeparty  ofduration  Avg. from Demand Total of %

) sizeparty  ofduration  Avg.* from Demand Total of %*(*
z  

 
DBIdealSpaceRULE2i = ideal amount of space for each table size i � adjusted 

for duration � under the revised seating rules, where i = 2, 4, 6, or 8; 
party size z = 1, 2, . . ., 8; j = 2, 4, 6, or 8; and  Ciz = constants provided in 
Table 6.3: 

 

Space*

∑ ∑

∑












j z
izi

izi

z)*z* (C* p 

zzCp

 sizeparty  ofduration  Avg. from Demand Total of %

) sizeparty  ofduration  Avg.* from Demand Total of %*(*
z  

 

Accounting for the revised seating rules did not change the structure of the four 

models; one part of a constraint in each was simply replaced with the appropriate new 

Ideal Seats or Space parameter.  The model names and constraint numbers are 

amended to reflect the use of updated seating rules; the altered constraints are: 

- NaïveIP-A(1.2) � constraint (6) is replaced with: 

 =−+ +−
iii ssix  NDBIdealSeatsRULE2i          i   ∀                                            (6.2) 

- NaïveIP-A(2.2) � constraint (11) is replaced with: 

 =−+ +−
iii ssix  NDBIdealSpaceRULE2i          i   ∀                                           (11.2) 

- NaïveIP-B(1.2) � constraint (13) is replaced with: 

 =−+ +−
iii ssix  DBIdealSeatsRULE2i                i   ∀                                           (13.2) 

- NaïveIP-B(2.2) � constraint (14) is replaced with: 

 =−+ +−
iii ssix  DBIdealSpaceRULE2i                i   ∀                                          (14.2) 
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All four modified NaïveIP models were rerun with the revised constraint; the results 

are provided below in Tables 5.4 and 5.5.  For the NaïveIP-A.2 variations, the 

revenues of the top-performing table mix for each operating scenario generated by 

either model averaged within 3.0% of the maximum revenues, and ranged from 88.7% 

to 98.9% of the maximums.  For four of the eighteen scenarios, the recommended 

table mix was identical for both NaïveIP-A(1.2) and NaïveIP-A(2.2).  In eight of the 

scenarios, the NaïveIP-A(2.2) outperformed the NaïveIP-A(1.2) model by an average 

of 3.8%, while the NaïveIP-A(1.2) model recommended table mixes that produced an 

average of 2.4% greater revenues in the remaining six scenarios.  The differences 

between the NaïveIP-A(1.2) and the NaïveIP-A(2.2) models and the results from 

complete enumeration are included in Appendix F.   

 

Results from the NaïveIP-B.2 model variations were somewhat similar; the top-

performing table mix for each operating scenario generated by either model averaged 

within 4.2% of the maximum revenues, and ranged between 88.5% and 98.5% of the 

maximums.  The recommended table mix was identical under both model variations 

for two of the eighteen scenarios.  In eleven scenarios, the NaïveIP-B(2.2) model 

outperformed the NaïveIP-B(1.2) by an average of 2.9%, while the NaïveIP-B(1.2) 

model recommended table mixes that produced an average of 2.5% greater revenues in 

five scenarios.  



   

105

   
 T

ab
le

 5
.4

:  
R

es
ul

ts
 o

f t
he

 N
aï

ve
IP

-A
(1

.2
) a

nd
 N

aï
ve

IP
-A

(2
.2

) T
ab

le
 M

ix
 M

od
el

s w
ith

 R
ev

is
ed

 S
ea

tin
g 

R
ul

es
 

    
 

 

N
aï

ve
IP

-A
(1

.2
)

N
aï

ve
IP

-A
(2

.2
)

Sc
en

ar
io

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

Se
at

s
Ta

bl
es

To
ta

l S
F

R
ev

en
ue

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

Se
at

s
Ta

bl
es

To
ta

l S
F

R
ev

en
ue

1
12

11
6

1
11

2
30

14
12

.0
3

$1
4,

44
1

12
11

6
1

11
2

30
14

12
.0

3
$1

4,
44

1
$1

4,
72

9
2

18
15

2
0

10
8

35
13

80
.5

1
$1

3,
21

9
13

11
5

1
10

8
30

13
64

.9
0

$1
3,

51
7

$1
3,

81
2

3
11

11
6

1
11

0
29

13
80

.5
3

$1
5,

26
2

11
11

6
1

11
0

29
13

80
.5

3
$1

5,
26

2
$1

5,
49

3
4

12
11

6
1

11
2

30
14

12
.0

3
$1

6,
69

3
12

11
6

1
11

2
30

14
12

.0
3

$1
6,

69
3

$1
7,

04
0

5
18

15
2

0
10

8
35

13
80

.5
1

$1
5,

46
3

13
11

5
1

10
8

30
13

64
.9

0
$1

5,
69

6
$1

6,
06

8
6

11
11

6
1

11
0

29
13

80
.5

3
$1

7,
36

0
11

11
6

1
11

0
29

13
80

.5
3

$1
7,

36
0

$1
7,

84
2

7
12

11
6

1
11

2
30

11
63

.0
0

$1
6,

69
3

14
13

7
1

13
0

35
13

49
.0

0
$1

7,
02

0
$1

7,
37

6
8

14
11

6
1

11
6

32
12

25
.0

0
$1

5,
90

7
16

13
7

1
13

4
37

14
11

.0
0

$1
6,

04
1

$1
6,

22
2

9
11

11
6

1
11

0
29

11
32

.0
0

$1
7,

36
0

13
13

7
2

13
6

35
13

97
.0

0
$1

8,
05

5
$1

8,
27

6
10

12
11

6
1

11
2

30
11

63
.0

0
$1

8,
20

1
14

13
7

1
13

0
35

13
49

.0
0

$1
9,

57
8

$2
0,

15
4

11
14

11
6

1
11

6
32

12
25

.0
0

$1
7,

75
2

16
13

7
1

13
4

37
14

11
.0

0
$1

8,
57

6
$1

9,
02

4
12

11
11

6
1

11
0

29
11

32
.0

0
$1

8,
63

0
13

13
7

2
13

6
35

13
97

.0
0

$2
0,

64
5

$2
1,

23
2

13
12

11
5

0
98

28
14

11
.0

0
$1

3,
87

1
10

9
5

1
94

25
13

49
.0

0
$1

3,
76

4
$1

4,
43

1
14

14
11

3
1

98
29

14
07

.0
0

$1
3,

32
2

12
9

5
1

98
27

14
09

.0
0

$1
3,

29
1

$1
3,

70
8

15
11

11
4

1
98

27
14

04
.0

0
$1

4,
87

2
9

9
5

1
92

24
13

19
.0

0
$1

4,
46

0
$1

5,
13

1
16

12
11

5
0

98
28

14
11

.0
0

$1
5,

96
1

10
9

5
1

94
25

13
49

.0
0

$1
5,

39
5

$1
6,

34
0

17
14

11
3

1
98

29
14

07
.0

0
$1

5,
41

1
12

9
5

1
98

27
14

09
.0

0
$1

5,
10

9
$1

5,
70

9
18

11
11

4
1

98
27

13
81

.0
0

$1
6,

62
8

9
9

5
1

92
24

13
19

.0
0

$1
5,

73
9

$1
6,

84
7

M
ax

im
um

 
A

ch
ie

va
bl

e 
R

ev
en

ue
, 

de
te

rm
in

ed
 b

y 
C

om
pl

et
e 

E
nu

m
er

at
io

n



   

106

   
 T

ab
le

 5
.5

:  
R

es
ul

ts
 o

f t
he

 N
aï

ve
IP

-B
(1

.2
) a

nd
 N

aï
ve

IP
-B

(2
.2

) T
ab

le
 M

ix
 M

od
el

s w
ith

 R
ev

is
ed

 S
ea

tin
g 

R
ul

es
 

     

N
aï

ve
IP

-B
(1

.2
)

N
aï

ve
IP

-B
(2

.2
)

Sc
en

ar
io

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

Se
at

s
Ta

bl
es

To
ta

l S
F

R
ev

en
ue

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

Se
at

s
Ta

bl
es

To
ta

l S
F

R
ev

en
ue

1
11

11
6

1
11

0
29

13
80

.5
3

$1
4,

41
8

11
10

6
2

11
4

29
14

17
.7

8
$1

4,
48

6
$1

4,
72

9
2

13
11

5
1

10
8

30
13

64
.9

0
$1

3,
51

7
12

11
6

1
11

2
30

14
12

.0
3

$1
3,

51
8

$1
3,

81
2

3
10

10
6

2
11

2
28

13
86

.2
8

$1
5,

07
5

10
10

6
2

11
2

28
13

86
.2

8
$1

5,
07

5
$1

5,
49

3
4

11
11

6
1

11
0

29
13

80
.5

3
$1

6,
37

8
11

10
6

2
11

4
29

14
17

.7
8

$1
6,

53
3

$1
7,

04
0

5
13

11
5

1
10

8
30

13
64

.9
0

$1
5,

69
6

12
11

6
1

11
2

30
14

12
.0

3
$1

5,
64

3
$1

6,
06

8
6

10
10

6
2

11
2

28
13

86
.2

8
$1

7,
22

0
10

10
6

2
11

2
28

13
86

.2
8

$1
7,

22
0

$1
7,

84
2

7
11

11
6

1
11

0
29

11
32

.0
0

$1
6,

37
8

13
13

7
2

13
6

35
13

97
.0

0
$1

7,
02

3
$1

7,
37

6
8

13
11

6
1

11
4

31
11

94
.0

0
$1

5,
69

1
15

13
7

1
13

2
36

13
80

.0
0

$1
5,

95
3

$1
6,

22
2

9
10

11
6

2
11

6
29

11
80

.0
0

$1
7,

39
2

12
13

7
2

13
4

34
13

66
.0

0
$1

8,
00

3
$1

8,
27

6
10

11
11

6
1

11
0

29
11

32
.0

0
$1

7,
88

2
13

13
7

2
13

6
35

13
97

.0
0

$1
9,

54
6

$2
0,

15
4

11
13

11
6

1
11

4
31

11
94

.0
0

$1
7,

55
9

15
13

7
1

13
2

36
13

80
.0

0
$1

8,
49

3
$1

9,
02

4
12

10
11

6
2

11
6

29
11

80
.0

0
$1

8,
94

1
12

13
7

2
13

4
34

13
66

.0
0

$2
0,

57
6

$2
1,

23
2

13
11

10
6

0
98

27
14

12
.0

0
$1

3,
81

4
9

9
5

1
92

24
13

19
.0

0
$1

3,
74

8
$1

4,
43

1
14

12
11

5
0

98
28

14
11

.0
0

$1
3,

01
2

11
9

5
1

96
26

13
79

.0
0

$1
3,

12
2

$1
3,

70
8

15
10

10
5

1
98

26
14

05
.0

0
$1

4,
59

2
8

9
5

2
98

24
13

99
.0

0
$1

4,
68

5
$1

5,
13

1
16

11
10

6
0

98
27

14
12

.0
0

$1
5,

60
7

9
9

5
1

92
24

13
19

.0
0

$1
4,

46
0

$1
6,

34
0

17
12

11
5

0
98

28
14

11
.0

0
$1

4,
88

8
11

9
5

1
96

26
13

79
.0

0
$1

4,
80

3
$1

5,
70

9
18

10
10

5
1

98
26

14
05

.0
0

$1
6,

43
6

8
9

5
2

98
24

13
99

.0
0

$1
5,

76
6

$1
6,

84
7

M
ax

im
um

 
A

ch
ie

va
bl

e 
R

ev
en

ue
, 

de
te

rm
in

ed
 b

y 
C

om
pl

et
e 

E
nu

m
er

at
io

n



  

 107

Recommended Table Mix Heuristics 

Of the modified NaïveIP table mix models that account for revised seating rules, the 

NaïveIP-A.2 variations outperformed their NaïveIP-B.2 counterparts in the majority of 

operating scenarios.  While the NaïveIP-B(2.2) model produced the top-performing 

table mix in four instances, the revenue benefit over a NaïveIP-A.2 model was not 

statistically significant.  It is therefore recommended that a modified NaïveIP-A 

heuristic be used to determine a table mix that best uses a restaurant�s resources to 

accommodate its demand.  Table 5.6 contains the revenues associated with each model 

variation for all scenarios, as well as how the heuristics compare to the maximum 

revenues from complete enumeration.   

Table 5.6:  Revenue Comparison of All NaïveIP.2 Model Variations  

 

 

Scenario NaïveIP-
A(1.2)

NaïveIP-
A(2.2)

NaïveIP-
B(1.2)

NaïveIP-
B(2.2)

Top Revenue-
Producing Model

Revenue Difference 
between Top and 

Recommended 
Models*

Recommended 
Model Revenue as 

% of Maximum

1 $14,441 $14,441 $14,418 $14,486 B(2.2) $44 98.0%

2 $13,219 $13,517 $13,517 $13,518 B(2.2) $1 97.9%

3 $15,262 $15,262 $15,075 $15,075 A(1.2) and A(2.2) $0 98.5%

4 $16,693 $16,693 $16,378 $16,533 A(1.2) and A(2.2) $0 98.0%

5 $15,463 $15,696 $15,696 $15,643 A(2.2) and B(1.2) $0 97.7%

6 $17,360 $17,360 $17,220 $17,220 A(1.2) and A(2.2) $0 97.3%

7 $16,693 $17,020 $16,378 $17,023 B(2.2) $3 98.0%

8 $15,907 $16,041 $15,691 $15,953 A(2.2) $0 98.9%

9 $17,360 $18,055 $17,392 $18,003 A(2.2) $0 98.8%

10 $18,201 $19,578 $17,882 $19,546 A(2.2) $0 97.1%

11 $17,752 $18,576 $17,559 $18,493 A(2.2) $0 97.6%

12 $18,630 $20,645 $18,941 $20,576 A(2.2) $0 97.2%

13 $13,871 $13,764 $13,814 $13,748 A(1.2) $0 96.1%

14 $13,322 $13,291 $13,012 $13,122 A(1.2) $0 97.2%

15 $14,872 $14,460 $14,592 $14,685 A(1.2) $0 98.3%

16 $15,961 $15,395 $15,607 $14,460 A(1.2) $0 97.7%

17 $15,411 $15,109 $14,888 $14,803 A(1.2) $0 98.1%

18 $16,628 $15,739 $16,436 $15,766 A(1.2) $0 98.7%

*Recommended models are A(2.2) for Scenarios 1-12 and 
A(1.2) for Scenarios 13-18
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The size of tables used in an operation, tested in this experiment as the table space 

proportion factor, appeared to have an impact on which NaïveIP-A.2 variation 

recommended the best table mix.  When tables were either standard-size or smaller, 

the NaïveIP-A(2.2) model produced table mixes that generated revenues within 2.1% 

of the maximum, but the NaïveIP-A(2.1) model performed within 4.6% of the 

maximum.  Further, when the table mix generated by the two heuristics was different 

(8 of the 12 scenarios), the revenue benefit of using the NaïveIP-A(2.2) model ranged 

from $134 to $2015; this revenue difference was statistically significant for 7 of the 8  

scenarios.  This finding indicates that in many instances, the NaïveIP-A(2.2) model 

produces table mixes that generate statistically higher revenues than any other of the 

NaïveIP models tested, furthermore, in the cases in which it does not generate a 

statistically significant revenue benefit, it does not recommend a table mix associated 

with a revenue disadvantage.  Therefore, if using complete enumeration and 

simulation is inaccessible, the NaïveIP-A(2.2) model is the space-inclusive table mix 

heuristic recommended to determine the top-performing table mix for a restaurant 

using tables of standard size or smaller. 

 

Conversely, when tables were close to proportional/larger than standard, the NaïveIP-

A(1.2) model produced the top-performing table mixes, with revenues within 2.3% of 

the maximum revenues.  For these scenarios, the revenues associated with the 

NaïveIP-A(2.2) recommended table mix models averaged 4.7% short of the maximum 

achievable revenues.  Additionally, the revenue under the NaïveIP-A(1.2) model was 

greater than the corresponding NaïveIP-A(2.2) revenue for every scenario.  This 

revenue benefit ranged from $31 to $890 and was statistically significant in 4 

scenarios.  Therefore, if using complete enumeration and simulation is inaccessible, 

the NaïveIP-A(2.1) model is the space-inclusive table mix heuristic recommended to 
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determine the top-performing table mix for a restaurant using tables of larger than 

standard size. 

 

The reason for the discrepancy between the NaïveIP-A.2 heuristics for the different 

table space proportions/table sizes is because given the same demand conditions, when 

tables are larger, fewer can fit into a given space and are thus at a premium.  By 

allocating seats instead of space, the NaïveIP-A(1.2) model forced more seats and 

consequently more tables to be used than did the NaïveIP-A(2.2) model.  Outlets with 

larger tables need the revenue-producing ability of each table more, and thus require 

the use of a heuristic that has seats as the decision variable to ensure that more tables 

are put into use.  Conversely, outlets with smaller, and thus more tables, do not need to 

give as much consideration to the number of seats or tables when determining their 

table mix and instead should use the heuristic that has space as the decision variable, 

as it produced a more lucrative table mix in the majority of operating scenarios. 

 

Summary 

Because the published table mix heuristics do not always produce table mixes that can 

actually fit into the dining room space available, modifications of these existing 

heuristics that account for the amount of space tables require were tested.  It was 

determined that incorporating practical seating rules in a heuristic was important since 

using a strict rule in which each party was only seated at the smallest table size that 

can accommodate it resulted in unrealistic table mixes that did not maximize revenues.   

The following chapter discusses the implications of these results and additional 

findings of this study for practitioners and academics; it also describes the limitations 

of this research and outlines several options for future study. 
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CHAPTER 6:  CONCLUSIONS, IMPLICATIONS, AND FURTHER 

RESEARCH 

 

Service capacity � the number of customers that can be processed by a service facility 

in a certain amount of time � is a function of several factors including availability of 

employees (is a clerk on duty to check in a customer?) and physical capacity units (is a 

car available to be rented out?).  Each physical capacity unit, at a specific point in 

time, has a revenue-generating opportunity; if a request for a service cannot be 

accommodated by the physical capacity, then this revenue is lost forever (Kimes and 

Chase, 1998).  As such, ensuring that the amount, type, and mix of physical capacity 

that is put into use is essential to maximizing revenues. 

 

In many instances, physical capacity is comprised of a variety of inventory units; 

many Revenue Management models account for diverse inventory through demand 

categorization and supply allocation methods (Weatherford and Bodily, 1992; Talluri 

and van Ryzin, 2005; Kimes and Thompson, 2005).  However, these RM programs 

operate under the assumptions that:  (1) the number of inventory that can be put into 

use is fixed, and (2) all standard inventory units are homogeneous in terms of the 

amount of physical space each requires.  These assumptions do not hold for all service 

environments, including restaurants since the number of physical capacity units 

(tables) put into operation is somewhat flexible, and these physical units are not 

homogeneous in the amount of space each occupies (2-tops require less space than 6-

tops).  Therefore, this study was conducted with the overall objective of understanding 

the role of physical space in Restaurant Revenue Management. 
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The specific research questions were: (1) How does revenue react when physical 

capacity units are redefined as space instead of inventory units?; (2) How does total 

capacity change when physical capacity is measured by space instead of units?; and 

(3) Can revenue increase if physical capacity decreases?  These questions were tested 

by simulating and comparing restaurant operations in which physical inventory was 

defined and allocated as either the amount of space each table required or the number 

of seats each table used.  Space was accounted for by both definitions; the difference 

in the SEATS and SPACE methods lied in how space was incorporated into the 

allocation problem �as the decision variable or as a constraint.   

 

In the following sections, the contributions of this research to the Service Operations 

and Revenue Management literature and the implications of the study findings for 

practitioners are discussed.  The limitations of this study and areas for future research 

are also addressed. 

 

Research Contribution 

The active role of space in capacity planning and capacity management has received 

limited attention in the Services Operations Management and Revenue Management 

literature.  In particular, the impact on revenues of operating with spatially non-

homogeneous physical inventory units within a fixed amount of space has not been 

established.  Therefore, this study contributes to the existing literature in several ways. 

 

From a broad perspective, this study is unique in that it included space as a factor in 

the revenue management problem whereas the majority of RM research has only 

considered duration and price as the critical strategic levers that can be manipulated to 

maximize revenue (e.g., Kimes, 1989).  This study incorporated space in two different 
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ways, and although that neither method produced statistically better results in every 

operating circumstance, both methods did recommend levels and mixes of physical 

capacity that not only fit into the available dining space of the test restaurant, but also 

yielded significantly higher revenues than achieved with the current physical 

inventory profile.   

 

This research also addressed the fact that physical capacity units used in the delivery 

of a service are not always spatially homogeneous.  While it has been long recognized 

that different capacity types hold different values for an operation in terms of the 

revenues they can generate (Talluri and van Ryzin, 2005), few studies have included 

space as an explicit differentiating factor when determining the level and mix of 

physical capacity to offer.  In a restaurant environment, the literature regarding the use 

of physical capacity has assumed that each table size is proportional to its number of 

seats (Bertsimas and Shioda, 2003; Kimes and Thompson, 2004), even though this 

assumption does not always hold as different table sizes usually use different amounts 

of space per seat.  The findings of this study underscored the importance of 

determining the optimal mix of physical inventory at a restaurant (Kimes and 

Thompson, 2003; Kimes and Thompson, 2004), but also showed that accounting for 

the amount of space required by non-homogeneous physical capacity units affects the 

level of supply to offer. 

 

Another contribution to the existing literature pertains to the simultaneous planning 

and managing of the physical capacity units of a service that occurs when total 

available space and the spatial requirements of diverse inventory units are accounted 

for in the Restaurant Revenue Management problem.  The studies that have addressed 

physical capacity have assumed that the number of inventory units put into operation 
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had an upper limit of the number of seats already in use, even if this capacity was 

somewhat flexible in terms of how it was best configured and deployed (Kimes and 

Thompson, 2003; Thompson, 2002; Pak et al., 2003).  A significant portion of this 

study did not assume that the number of seats in a restaurant was predetermined and 

instead tested how concurrently establishing the amount and mix of tables impacted 

revenue.  The findings indicated that this assumption was actually critical to include 

when operations used physically large tables, but should be relaxed for restaurants 

using tables that are of standard proportion or smaller. 

 

The primary contribution of this research, however, was more specific than these 

broad topics and involved augmenting existing table mix heuristics developed by 

Kimes and Thompson (2005) to include a space component.  Chapter 5 detailed the 

process followed in adjusting and testing these modified models.  The heuristic that 

produced the top revenue-generating table mix depended both on the physical size of 

tables and the table assignment rules used.  Operations using essentially larger tables 

that allotted more space per person were better served by a model that incorporated 

space as a constraint, while a model using space as the decision variable was 

recommended for restaurants operating with essentially smaller tables that gave 

customers fewer square feet per person.  Additionally, incorporating practical table 

assignment rules into these models was essential to them producing viable results.  

This particular finding validated the assertion made by both Kimes and Thompson 

(2004 and 2005) and Bertsimas and Shioda (2003) that seating rules play a crucial role 

in maximizing the revenues that can generated by a non-homogeneous supply base. 

 

Implications for Practitioners  

The insights brought about by this research regarding the impact of incorporating 
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space into revenue management have practical implications for service providers, 

especially restaurateurs.  First, neither of the two ways in which space was accounted 

for � as a constraint or as the decision variable � significantly outperformed the other 

when the tables used by a restaurant were of standard size or larger.  However, when 

essentially smaller tables were used, accounting for space as the decision variable 

produced statistically significant higher revenues when the operating system was 

inundated with demand.  The consequence of this finding is that operators have 

options for determining the amount and mix of physical capacity units to offer, which 

subsequently influences how total revenue-generating space is used at a facility.  For 

instance, in one of non-significant scenarios (Scenario Pair 8&26), the top-revenue 

generating table mix under SEATS was 24/7/4/2, which put 116 seats into use at 37 

tables and occupied 1366 square feet of dining room space.  Alternatively, the table 

mix that generated the maximum revenue under SPACE was 24/11/0/4, which put 124 

seats at 39 tables and occupied 1412 square feet of space.  Obviously, these are two 

extremely different options for using the space at the restaurant; and a restaurateur can 

choose to either put the maximum number of tables into operation (the SPACE option) 

or can offer fewer tables (the SEATS option) and use surplus square footage for other 

strategic purposes such as a bakery or home-meal-replacement counter.  In effect, 

operators can determine the highest and best use of their total space while still 

providing a number and mix of physical inventory units that maximizes revenues.         

 

Additionally, similar insight applies to the two heuristics recommended in Chapter 5.  

These heuristics themselves were initially developed to translate research findings into 

useful models for practitioners; they were augmented by this study to provide an 

accessible way in which to determine a table mix that can actually fit into the dining 

room space available.  Applying the same reasoning as above, the heuristics allow 
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operators to have more options when determining the physical supply that captures the 

most revenue possible.  For the same scenario discussed above, the recommended 

NaïveIP-A(2.2) model produced a 16/13/7/1 table mix that uses 134 at 37 tables and 

occupies 1411 square feet of dining room space.  The NaïveIP-A(1.2) model yielded a 

14/11/6/1 table mix that uses 116 seats, 32 tables, and 1225 square feet.  Because there 

was not significant difference in the revenue generated by these two table mix options, 

restaurateurs are again provided alternatives for their physical supply profile.  The 

primary implication of this insight is that restaurant owners can use theoretically-

based, user-friendly models to help make determinations regarding the use of space 

and the physical capacity profile to offer.  These important capacity decisions have 

traditionally been delegated to service facility designers and managerial judgments, 

and while not made in a vacuum, have not been completed with analytical support. 

 

Study Limitations and Directions for Future Research 

The structure and findings of this study provide a number of avenues for future 

research that address the limitations of this work.  As occurs when using simulation, 

assumptions made to put boundaries on the model may not always hold; testing 

different assumptions for their affect on output measures such as revenue would 

extend and strengthen this study.  Additionally, the results and insights of this work 

provide a foundation for future cross-disciplinary research between Service Operations 

Management and Environmental Psychology. 

 

It was assumed in this study that the current level of demand for peak hours at the test 

site sufficiently taxed the system.  While management reported and data confirmed 

that the system was operating at capacity under the existing conditions, simultaneously 

altering the demand and supply profiles resulted in several instances, specifically those 
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associated with using smaller tables, in which the system was not truly stressed.  

Having an excess demand/constrained capacity situation is critical to the usefulness of 

Revenue and Capacity Management practices.  Therefore, the simulation model 

should be tested at higher demand levels to ensure that these conditions are maintained 

and to determine if there are any differences in the two inventory allocation methods 

when the operating system is extremely stressed.  Additionally, as previously stated, 

using different random number seeds in the simulation changed the top-performing 

table mix and associated maximum revenue for two scenarios.  Although the revenue 

was not significantly different (within 1 percent), this finding indicates that the 

simulation model may be unstable in certain conditions. 

 

The assumptions related to how customers arrive to and enter the restaurant may not 

reflect the true arrival process.  As explained in the Methodology section, data from 

Point of Sale systems has customarily been used to model arrivals to a service system 

(cite).  Because this data does not reflect the real arrival time of a party to the 

restaurant, but instead gives the time the party�s check was opened in the POS, arrivals 

were approximated by a known non-stationary Poisson process.  While modeling 

arrivals in this way yielded results similar to actual operations of the restaurant under 

study, testing the effect of POS data on simulation performance measures or collecting 

actual arrival data and using it to simulate restaurant operations would provide a more 

insightful picture as to how the timing of requests for tables of different sizes impacts 

the revenues associated with various table mixes.   

 

Clearly, table assignment rules affect how well the existing and proposed table mix 

models work, and more research on seating rules and how they impact a restaurant�s 

optimal table mix is warranted (Kimes and Thompson 2005).  Bertsimas and Shioda 
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(2003) studied how to best violate the first-come-first-served rule when matching 

arriving customers to available tables, but they did not consider optimal table mix and 

also did not translate their findings into accessible models that could actually be used 

by practitioners.  Another aspect related to seating rules and their impact on the best 

table mix that was not addressed in this study is table combinability, which impacts 

both revenue and capacity (Thompson 2002).  Many restaurants opt to combine 

smaller tables to accommodate larger parties, and incorporating this factor into 

research on the use of revenue-generating space would strengthen this study. 

 

A number of additional assumptions that merit further testing to determine their effect 

on revenue and capacity when including space in the revenue management problem 

include the order in which parties are processed, the conditions under which customers 

leave before being served, and the Back-of-House operations.  It was assumed that 

neither reservations nor call-ahead seating were used.  In reality, many restaurants use 

one or both of these practices, which affect the order of arriving customers and 

possibly the amount and mix of tables available to seat them.  The renege process used 

in this study also does not reflect the true nature of restaurant operations, as parties 

have varying levels of tolerance for waits and may even balk before joining the queue.  

Although collecting actual renege and balk data for a service operation is difficult, 

incorporating more accurate lost customer information into the revenue management 

problem would lead to a greater understanding of how well revenue-generating space 

is used.  It was also assumed that the facility�s Back-of-House operations were in 

proportion to the Front-of-House requirements in that the kitchen would not serve as a 

bottleneck to serving any number or mix of customers.  This assumption served to 

isolate the problem under study to the Front-of-House.  However, a true systems 

approach to determining the best way to use available space warrants not only 
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consideration of the amount of total space allocated to BOH functions, such as kitchen 

and storage, but also how the kitchen production reacts to changes in FOH capacity.  

 

Replicating this type of study for other restaurant sites would serve to strengthen the 

results related to the field of Service Operations Management and extend the findings 

into other fields such as Environmental Psychology.  The restaurant used as the testing 

ground was mid-sized, mid-priced, and casual, and catered to a generally adult 

customer base with its ambiance and menu.  A different type or size of restaurant 

would possibly impact the recommended table mix because the demand base would 

differ; for instance, a large, family-oriented restaurant would likely have more large 

parties in its customer mix and thus require more large tables.   

 

Moreover, the physical sizes of tables used by a restaurant, incorporated into this study 

via the table space proportion factor, vary based on the size and type of facility.  Three 

levels of table space proportion were tested in this research, with each level using 

roughly the same size 2-top table but differing sizes for 4-top, 6-top, and 8-top tables.  

The physical size of tables used by a restaurant is a function of the type of food 

served, along with the associated plate sizes, accompaniments, and utensils associated 

with the menu, and the desired atmosphere which can range from small plate tapas to 

candlelit intimate to family-style dining.  As such, testing different table space 

proportions in relation to 2-tops, as well as testing smaller and larger 2-top table sizes, 

may impact the table mixes recommended by the NaïveIP-A(2) and the NaïveIP-B(2) 

models and more importantly may impact which of the two table mix models yields 

the best results for the table sizes under study.   
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Further research related to how the physical size and space proportionality of tables 

used affects the best use of space would also expand the refine the findings of this 

study as they relate to the field of Environmental Psychology.  Just as atmospheric 

lighting and sound influence customer responses in a restaurant (Robson, 1999), 

certain table sizes, table assignment rules, and the amount of space allotted to each 

customer at a table may impact customer reactions in terms of spend and satisfaction.  

Therefore, determining the optimal table sizes and table space proportions would be a 

highly beneficial augmentation to this research since more accurate space 

requirements per table type would be input into either of the modified NaïveIP 

heuristics. 

 

One other facet of Environmental Psychology not addressed in this study but likely to 

have an impact on the amount and mix of table inventory that should be used is how 

tables are situated in the given space.  Research has shown that the placement and 

configuration of tables on a dining room floor influences both duration and spend 

(Kimes and Robson, 2004).  Since service facilities have been finding new and 

innovative ways to fit in more revenue-producing supply units and subsequently serve 

more customers; for example, urban hotels offer sleeping pods and some restaurants 

use communal tables, understanding customer perceptions of these practices is 

imperative.  Determining whether or not customers are willing to pay for more 

personal space would impact the supply profile of a restaurant. 

 

Summary 

In a service operation, the level and mix of physical inventory units put into use to 

serve customers is crucial to maximizing revenue.  Since businesses operate within a 

fixed area, a factor associated with diverse physical inventory units is the amount of 
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space each type occupies and how these potentially non-homogeneous spatial 

requirements impact the physical capacity profile.  This study tested two ways in 

which space could be incorporated into the revenue management problem faced by a 

typical casual, full-service restaurant and established that the size of tables used in an 

operation was the determining factor for which method recommended the number and 

mix of tables that produced the highest revenues.  Existing heuristics were modified to 

provide practitioners with the actual means to apply these findings; they also afford 

restaurateurs with options in terms of choosing the physical capacity profile that best 

serves customers, aligns with strategic objectives, and uses available space. 

 

Although this study was grounded in Service Operations Management and Revenue 

Management literature and conducted based on conventional research and statistical 

methods, it had several limitations that warrant future research.  Augmenting the 

structure of the simulation model used to incorporate table combinability, kitchen 

operations, and staffing requirements would provide a more holistic approach to 

overall service capacity.  Additionally, testing more table sizes would expand the 

application of this research to a wider variety of restaurants since not every facility 

uses the table sizes and table space proportions used in this study.  Further, connecting 

these findings to Environmental Psychology research would give a more accurate 

picture of how design and layout of a dining room impacts the physical capacity tools 

recommended by this research. 
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Appendix A:  Summary of Simulation Scenarios 

Input Factor 

Scenario 

Number 
of Table 
Mixes 
Run 

Method of 
Inventory 
Allocation 
(2 Levels) 

Table Space 
Proportion 
(3 Levels) 

Demand 
Level 

(2 Levels) 

Demand  
Mix 

(3 Levels) 

1 1200 Seats Standard 100% Current 
2 1200 Seats Standard 100% Skewed Small 
3 1200 Seats Standard 100% Skewed Large 
4 1200 Seats Standard 115% Current 
5 1200 Seats Standard 115% Skewed Small 
6 1200 Seats Standard 115% Skewed Large 
7 1620 Seats Far from proportional 100% Current 
8 1620 Seats Far from proportional 100% Skewed Small 
9 1620 Seats Far from proportional 100% Skewed Large 

10 1620 Seats Far from proportional 115% Current 
11 1620 Seats Far from proportional 115% Skewed Small 
12 1620 Seats Far from proportional 115% Skewed Large 
13 509 Seats Close to proportional 100% Current 
14 509 Seats Close to proportional 100% Skewed Small 
15 509 Seats Close to proportional 100% Skewed Large 
16 509 Seats Close to proportional 115% Current 
17 509 Seats Close to proportional 115% Skewed Small 
18 509 Seats Close to proportional 115% Skewed Large 
19 2115 Space Standard 100% Current 
20 2115 Space Standard 100% Skewed Small 
21 2115 Space Standard 100% Skewed Large 
22 2115 Space Standard 115% Current 
23 2115 Space Standard 115% Skewed Small 
24 2115 Space Standard 115% Skewed Large 
25 3764 Space Far from proportional 100% Current 
26 3764 Space Far from proportional 100% Skewed Small 
27 3764 Space Far from proportional 100% Skewed Large 
28 3764 Space Far from proportional 115% Current 
29 3764 Space Far from proportional 115% Skewed Small 
30 3764 Space Far from proportional 115% Skewed Large 
31 1133 Space Close to proportional 100% Current 
32 1133 Space Close to proportional 100% Skewed Small 
33 1133 Space Close to proportional 100% Skewed Large 
34 1133 Space Close to proportional 115% Current 
35 1133 Space Close to proportional 115% Skewed Small 
36 1133 Space Close to proportional 115% Skewed Large 
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Appendix B:  Pairwise Comparisons of Means 

 

For the TableSpaceProportion-DemandLevel interaction, a comparison of treatment 

means estimates how the mean revenue of the test restaurant fluctuates when the top-

performing table mix is determined by the SEATS method and the SPACE method 

when the table sizes used have either the standard, far from/narrower, or close to/wider 

space proportion per person.  A total of three confidence intervals for differences in 

mean revenue generated under the two levels of inventory allocation and the three 

table space proportions provide these estimations.  The factor level means used in the 

calculation of these three pairwise mean comparisons are found in Table B1. 

 

Likewise, a comparison of treatment means for the TableSpaceProportion-

DemandLevel interaction estimates how the mean revenue of the test restaurant differs 

between current and high demand situations when its table mix is comprised of tables 

with either standard, narrower, or wider space proportion per person.  A total of three 

confidence intervals for differences in mean revenue generated under the table space 

proportions and demand levels provide these estimations.  The factor level means used 

in the calculation of these three pairwise mean comparisons are found in Table B2. 

 

Table B3 provides the confidence intervals for the six comparisons made to test the 

nature of the two separate interactions.  Differences 1-3 evaluate the relationship 

between the MethodofAllocation and TableSpaceProportion factors, while Differences 

4-6 do so for the relationship between the TableSpaceProportion and DemandLevel 

factors. 
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Table B1:  Estimated Factor Level Means for MethodofAllocation and 

TableSpaceProportion Factors 

 Method of Allocation  

Table Space Proportion Level 1 (SEATS) Level 2 (SPACE) 

Level 1 (Standard Proportion) ⋅⋅11Y = 15820 ⋅⋅21Y = 15831 

Level 2 (Narrower Tables) ⋅⋅12Y = 18182 ⋅⋅22Y = 18714 

Level 3 (Wider Tables) ⋅⋅13Y = 15314 ⋅⋅23Y = 15361 

 

Table B2:  Estimated Factor Level Means for TableSpaceProportion and 

DemandLevel Factors 

 Demand Level  

Table Space Proportion Level 1 (100%) Level 2 (115%) 

Level 1 (Standard Proportion) ⋅⋅11Y = 14671 ⋅⋅12Y = 16979 

Level 2 (Narrower Tables) ⋅⋅21Y = 17162 ⋅⋅22Y = 19734 

Level 3 (Wider Tables) ⋅⋅31Y = 14396 ⋅⋅32Y = 16279 

 

 

 

 

 

 



   

124

 T
ab

le
 B

3:
  9

5%
 C

on
fid

en
ce

 In
te

rv
al

 C
al

cu
la

tio
ns

 fo
r 

M
ul

tip
le

 C
om

pa
ri

so
ns

 o
f T

re
at

m
en

t M
ea

ns
 

Po
in

t E
st

im
at

e 
V

ar
ia

nc
e 

Sc
he

ff
é�

s S
 

95
%

 C
on

fid
en

ce
 In

te
rv

al
 

[
}

D
Ss

{
D

�
�

±
] 

⋅⋅
⋅⋅
−

=
21

11
1�

Y
Y

D
= 

-1
1 

=
=

=
}

�
{

}
�

{
}�

{
3

2
2

2
1

2
D

s
D

s
D

s
 

]
)1

(
)1[(

2
2

−
+

nc
d

M
SE

 =
 3

89
3.

63
 

=
=

=
3

2
1

S
S

S
 

]
)1

(,1
;

1[
)1

(
ab

cd
n

ab
F

ab
−

−
−

−
α

= 
3.

32
90

5 

-2
19

 ≤
⋅⋅

⋅⋅
−

21
11

µ
µ

≤ 
19

7 

⋅⋅
⋅⋅
−

=
22

12
2�

Y
Y

D
= 

-5
32

 
38

93
.6

3 
3.

32
90

5 
-7

40
 ≤

⋅⋅
⋅⋅
−

22
12

µ
µ

≤ 
-3

24
 

⋅⋅
⋅⋅
−

=
23

13
6�

Y
Y

D
= 

-4
7 

38
93

.6
3 

3.
32

90
5 

-2
55

 ≤
⋅⋅

⋅⋅
−

23
13

µ
µ

≤ 
16

1 

⋅
⋅

⋅
⋅

−
=

12
11

4�
Y

Y
D

= 
-2

30
8 

}
�

{
}

�
{

}
�

{
6

2
5

2
4

2
D

s
D

s
D

s
=

=
= 

]
)1

(
)1[(

2
2

−
+

na
d

M
SE

 =
 3

89
3.

63
 

=
=

=
6

5
4

S
S

S
 

]
)1

(,1
;

1[
)1

(
ab

cd
n

bc
F

bc
−

−
−

−
α

= 
3.

32
90

5 

-2
51

6 
≤

⋅
⋅

⋅
⋅

−
12

11
µ

µ
≤ 

-2
10

0 

⋅
⋅

⋅
⋅

−
=

22
21

5�
Y

Y
D

= 
-2

57
3 

38
93

.6
3 

3.
32

90
5 

-2
78

0 
≤

⋅
⋅

⋅
⋅

−
22

21
µ

µ
≤ 

-2
36

5 

⋅
⋅

⋅
⋅

−
=

32
31

6�
Y

Y
D

= 
-1

88
2 

38
93

.6
3 

3.
32

90
5 

-2
09

0 
≤

⋅
⋅

⋅
⋅

−
32

31
µ

µ
≤ 

-1
67

5 



   

125

 

A
pp

en
di

x 
C

:  
C

al
cu

la
tio

n 
of

 L
in

ea
r 

C
on

tr
as

ts
 

T
ab

le
 C

1:
  D

es
cr

ip
tio

n 
of

 C
on

tr
as

ts
 o

f T
re

at
m

en
t M

ea
ns

 

C
on

tr
as

t 
E

xp
la

na
tio

n 
Po

in
t E

st
im

at
e 

)
(

)
(

�
11

12
21

22
1

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

−
−

−
=

Y
Y

Y
Y

L
 

G
ai

n 
in

 re
ve

nu
e 

ba
se

d 
on

 h
ig

he
r d

em
an

d 
fo

r n
ar

ro
w

er
 v

s. 
st

an
da

rd
 ta

bl
es

 
25

73
 �

 2
30

8 
= 

26
5 

)
(

)
(

�
31

32
11

12
2

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

−
−

−
=

Y
Y

Y
Y

L
 

G
ai

n 
in

 re
ve

nu
e 

ba
se

d 
on

 h
ig

he
r d

em
an

d 
be

tw
ee

n 
st

an
da

rd
 v

s. 
w

id
er

 ta
bl

es
 

23
08

 �
 1

88
2 

= 
42

6 

)
(

)
(

�
31

32
21

22
3

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

−
−

−
=

Y
Y

Y
Y

L
 

G
ai

n 
in

 re
ve

nu
e 

ba
se

d 
on

 h
ig

he
r d

em
an

d 
be

tw
ee

n 
na

rr
ow

er
 v

s. 
w

id
er

 ta
bl

es
 

25
73

 �
 1

88
2 

= 
69

1 

T
ab

le
 C

2:
  J

oi
nt

 9
5%

 C
on

fid
en

ce
 I

nt
er

va
ls 

fo
r 

Fa
m

ily
 o

f T
hr

ee
 C

on
tr

as
ts

 o
f T

re
at

m
en

t M
ea

ns
 

Po
in

t E
st

im
at

e 
V

ar
ia

nc
e 

Sc
he

ffé
�s

 S
 

95
%

 C
on

fid
en

ce
 

In
te

rv
al

 [
}

L
Ss

{
L

�
�

±
] 

1� L
= 

26
5 

}
�

{
}

� {
}

� {
3

2
2

2
1

2
L

s
L

s
L

s
=

=
= 

]
)1

(
)1(

)1
(

)1[(
2

2
2

2
−

+
−

+
+

na
d

M
SE

 =
 7

78
7.

26
 

=
=

=
9

8
7

S
S

S
 

]
)1

(,1
;

1[
)1

(
ab

cd
n

bc
F

bc
−

−
−

−
α

= 
3.

32
90

5 

 
-1

29
 ≤

1L
≤ 

55
9 

2� L
= 

42
6 

77
87

.2
6 

3.
32

90
5 

13
2 
≤

2L
≤ 

72
0 

3� L
= 

69
1 

77
87

.2
6 

3.
32

90
5 

39
7 
≤

3L
≤ 

98
5 



   

126

 

A
pp

en
di

x 
D

:  
Si

m
ul

at
io

n 
O

ut
pu

t f
or

 E
ig

ht
 P

er
fo

rm
an

ce
 M

ea
su

re
s 

 T
ab

le
 D

1:
  C

us
to

m
er

s S
er

ve
d,

 C
us

to
m

er
s L

os
t, 

R
ev

PA
SH

, a
nd

 R
ev

PA
ST

 fo
r 

T
op

 R
ev

en
ue

-P
ro

du
ci

ng
 T

ab
le

 M
ix

es
 

G
en

er
at

ed
 b

y 
E

ac
h 

Sc
en

ar
io

  

 1 
vs

. 1
9

62
7

62
6

2
3

$9
.2

0
$8

.7
7

$0
.7

4
$0

.7
4

$0
.7

5
$0

.7
4

2 
vs

. 2
0

58
4

58
4

2
2

$8
.6

5
$8

.6
5

$0
.6

9
$0

.6
9

$0
.7

0
$0

.7
0

3 
vs

. 2
1

65
8

65
8

2
2

$9
.8

8
$9

.8
8

$0
.7

8
$0

.7
8

$0
.7

8
$0

.7
8

4 
vs

. 2
2

72
5

72
5

14
14

$1
0.

68
$1

0.
68

$0
.8

6
$0

.8
6

$0
.8

6
$0

.8
6

5 
vs

. 2
3

67
8

67
8

2
2

$1
0.

43
$1

0.
43

$0
.8

1
$0

.8
1

$0
.8

1
$0

.8
1

6 
vs

. 2
4

75
8

75
6

21
16

$1
1.

16
$1

0.
80

$0
.8

9
$0

.9
0

$0
.9

1
$0

.9
0

7 
vs

. 2
5

72
7

73
9

10
4

$1
0.

53
$7

.9
6

$0
.8

6
$0

.8
7

$0
.9

3
$0

.8
7

8 
vs

. 2
6

68
1

68
8

3
1

$9
.9

4
$9

.3
4

$0
.8

1
$0

.8
1

$0
.8

4
$0

.8
2

9 
vs

. 2
7

76
0

77
8

16
4

$1
1.

00
$8

.1
6

$0
.9

0
$0

.9
2

$1
.0

1
$0

.9
3

10
 v

s. 
28

82
4

85
7

45
12

$1
1.

89
$9

.1
1

$0
.9

7
$1

.0
1

$1
.0

5
$1

.0
2

11
 v

s. 
29

78
7

80
3

17
5

$1
1.

47
$9

.5
7

$0
.9

4
$0

.9
6

$0
.9

9
$0

.9
6

12
 v

s. 
30

85
2

90
1

54
17

$1
2.

34
$9

.9
8

$1
.0

1
$1

.0
7

$1
.1

2
$1

.0
8

13
 v

s. 
31

61
4

61
4

10
10

$1
0.

52
$1

0.
52

$0
.7

2
$0

.7
2

$0
.7

3
$0

.7
3

14
 v

s. 
32

57
6

58
0

2
2

$9
.9

0
$9

.9
9

$0
.6

8
$0

.6
9

$0
.6

9
$0

.7
0

15
 v

s. 
33

64
4

64
4

16
16

$1
0.

78
$1

1.
03

$0
.7

6
$0

.7
6

$0
.7

6
$0

.7
7

16
 v

s. 
34

69
8

69
6

40
40

$1
1.

89
$1

1.
91

$0
.8

2
$0

.8
2

$0
.8

2
$0

.8
3

17
 v

s. 
35

66
4

66
8

12
17

$1
1.

41
$1

1.
45

$0
.7

9
$0

.7
9

$0
.7

9
$0

.8
0

18
 v

s. 
36

71
7

71
8

57
57

$1
2.

25
$1

2.
28

$0
.8

4
$0

.8
5

$0
.8

5
$0

.8
6

Sc
en

ar
io

s

SP
AC

E
SE

AT
S

SP
AC

E
SE

AT
S

T
ot

al
 N

um
be

r o
f 

C
us

to
m

er
s L

os
t

O
ve

ra
ll 

R
ev

PA
ST

 fo
r F

rid
ay

-
Sa

tu
rd

ay
 D

in
ne

r S
er

vi
ce

   
   

 
(c

al
cu

la
te

d 
us

in
g 

sq
ua

re
 fe

et
 

us
ed

)

SE
AT

S
SP

AC
E

T
ot

al
 N

um
be

r o
f 

C
us

to
m

er
s S

er
ve

d

SP
AC

E
SE

AT
S

O
ve

ra
ll 

R
ev

PA
ST

 fo
r F

rid
ay

-
Sa

tu
rd

ay
 D

in
ne

r S
er

vi
ce

   
   

 
(c

al
cu

la
te

d 
us

in
g 

sq
ua

re
 fe

et
 

av
ai

la
bl

e)

SE
AT

S
SP

AC
E

O
ve

ra
ll 

R
ev

PA
SH

 fo
r F

rid
ay

-
Sa

tu
rd

ay
 D

in
ne

r S
er

vi
ce



   

127

    T
ab

le
 D

2:
  P

ea
k 

O
pe

ra
tin

g 
H

ou
r 

T
ab

le
 U

til
iz

at
io

n 
fo

r 
T

op
 R

ev
en

ue
-P

ro
du

ci
ng

 T
ab

le
 M

ix
es

 fo
r 

E
ac

h 
Sc

en
ar

io
  

  

T
ot

al
2-

to
ps

4-
to

ps
6-

to
ps

8-
to

ps
T

ot
al

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

1 
vs

. 1
9

93
.0

%
91

.3
%

97
.5

%
N

/A
91

.1
%

93
.2

%
92

.2
%

94
.7

%
N

/A
91

.2
%

2 
vs

. 2
0

92
.6

%
90

.7
%

98
.1

%
96

.5
%

90
.2

%
92

.6
%

90
.7

%
98

.1
%

96
.5

%
90

.2
%

3 
vs

. 2
1

93
.0

%
89

.9
%

97
.3

%
94

.6
%

92
.7

%
93

.0
%

89
.9

%
97

.3
%

94
.6

%
92

.7
%

4 
vs

. 2
2

94
.7

%
94

.2
%

94
.5

%
98

.1
%

94
.9

%
94

.7
%

94
.2

%
94

.5
%

98
.1

%
94

.9
%

5 
vs

. 2
3

94
.0

%
92

.8
%

97
.3

%
93

.8
%

91
.3

%
94

.0
%

92
.8

%
97

.3
%

93
.8

%
91

.3
%

6 
vs

. 2
4

94
.8

%
91

.5
%

97
.6

%
99

.1
%

96
.8

%
93

.5
%

90
.3

%
96

.1
%

N
/A

98
.8

%
7 

vs
. 2

5
92

.3
%

89
.6

%
95

.9
%

96
.9

%
96

.1
%

93
.8

%
98

.1
%

95
.1

%
88

.2
%

94
.1

%
8 

vs
. 2

6
92

.2
%

91
.8

%
95

.3
%

92
.9

%
84

.8
%

91
.4

%
91

.2
%

94
.8

%
N

/A
83

.0
%

9 
vs

. 2
7

94
.2

%
91

.4
%

96
.9

%
99

.1
%

97
.6

%
95

.3
%

99
.7

%
96

.0
%

93
.2

%
91

.9
%

10
 v

s. 
28

94
.9

%
92

.6
%

97
.7

%
99

.7
%

98
.5

%
95

.0
%

97
.0

%
95

.2
%

93
.9

%
91

.9
%

11
 v

s. 
29

94
.2

%
91

.9
%

98
.6

%
99

.4
%

95
.1

%
95

.2
%

94
.8

%
96

.7
%

91
.0

%
89

.3
%

12
 v

s. 
30

95
.5

%
93

.3
%

97
.5

%
99

.7
%

99
.4

%
96

.3
%

95
.6

%
96

.7
%

97
.7

%
93

.5
%

13
 v

s. 
31

94
.6

%
91

.9
%

98
.8

%
98

.8
%

96
.3

%
94

.6
%

91
.9

%
98

.8
%

98
.8

%
96

.3
%

14
 v

s. 
32

90
.6

%
89

.8
%

92
.0

%
92

.2
%

88
.2

%
94

.8
%

94
.2

%
97

.4
%

96
.7

%
86

.0
%

15
 v

s. 
33

94
.8

%
93

.0
%

97
.0

%
N

/A
95

.7
%

95
.8

%
93

.6
%

98
.4

%
99

.4
%

95
.6

%
16

 v
s. 

34
94

.3
%

91
.5

%
97

.6
%

99
.5

%
97

.6
%

96
.3

%
94

.9
%

97
.4

%
99

.9
%

97
.4

%
17

 v
s. 

35
93

.6
%

91
.4

%
97

.7
%

95
.9

%
96

.8
%

95
.0

%
92

.9
%

98
.3

%
99

.4
%

95
.2

%
18

 v
s. 

36
94

.8
%

91
.8

%
98

.5
%

99
.4

%
99

.6
%

97
.2

%
96

.0
%

97
.9

%
99

.9
%

98
.4

%

SP
A

C
E

T
ab

le
 U

til
iza

tio
n 

- P
ea

k 
O

pe
ra

tin
g 

Pe
rio

d 
(8

:0
0P

M
 - 

9:
15

PM
)

Sc
en

ar
io

s
SE

A
TS



   

128

    T
ab

le
 D

3:
  P

ea
k 

O
pe

ra
tin

g 
H

ou
r 

Se
at

 U
til

iz
at

io
n 

fo
r 

T
op

 R
ev

en
ue

-P
ro

du
ci

ng
 T

ab
le

 M
ix

es
 fo

r 
E

ac
h 

Sc
en

ar
io

  

  

T
ot

al
2-

to
ps

4-
to

ps
6-

to
ps

8-
to

ps
T

ot
al

2-
to

ps
4-

to
ps

6-
to

ps
8-

to
ps

1 
vs

. 1
9

73
.6

%
83

.0
%

78
.2

%
N

/A
61

.2
%

72
.6

%
84

.2
%

71
.7

%
N

/A
63

.8
%

2 
vs

. 2
0

71
.7

%
82

.2
%

64
.5

%
68

.4
%

68
.4

%
71

.7
%

82
.2

%
64

.5
%

68
.4

%
68

.4
%

3 
vs

. 2
1

78
.1

%
83

.9
%

79
.8

%
72

.8
%

74
.6

%
78

.1
%

83
.9

%
79

.8
%

72
.8

%
74

.6
%

4 
vs

. 2
2

74
.4

%
85

.7
%

69
.9

%
72

.8
%

72
.6

%
74

.4
%

85
.7

%
69

.9
%

72
.8

%
72

.6
%

5 
vs

. 2
3

77
.0

%
84

.1
%

76
.3

%
68

.0
%

67
.9

%
77

.0
%

84
.1

%
76

.3
%

68
.0

%
67

.9
%

6 
vs

. 2
4

77
.1

%
85

.3
%

77
.2

%
74

.8
%

71
.8

%
74

.9
%

84
.4

%
77

.3
%

N
/A

67
.5

%
7 

vs
. 2

5
75

.6
%

81
.6

%
77

.0
%

71
.7

%
68

.0
%

71
.4

%
89

.6
%

74
.3

%
62

.1
%

67
.9

%
8 

vs
. 2

6
74

.4
%

83
.1

%
69

.0
%

68
.4

%
65

.2
%

72
.9

%
82

.7
%

67
.5

%
N

/A
62

.4
%

9 
vs

. 2
7

78
.2

%
85

.4
%

78
.6

%
74

.7
%

72
.9

%
75

.2
%

93
.1

%
77

.2
%

69
.5

%
70

.4
%

10
 v

s. 
28

77
.8

%
84

.4
%

75
.3

%
75

.0
%

76
.9

%
72

.1
%

88
.4

%
71

.6
%

69
.9

%
69

.1
%

11
 v

s. 
29

78
.0

%
83

.4
%

78
.1

%
72

.6
%

71
.7

%
74

.9
%

86
.1

%
74

.7
%

65
.6

%
64

.5
%

12
 v

s. 
30

80
.4

%
87

.2
%

79
.5

%
76

.3
%

77
.3

%
76

.0
%

89
.3

%
76

.6
%

73
.7

%
67

.1
%

13
 v

s. 
31

76
.2

%
83

.8
%

79
.5

%
68

.7
%

71
.6

%
76

.2
%

83
.8

%
79

.5
%

68
.7

%
71

.6
%

14
 v

s. 
32

75
.2

%
81

.2
%

72
.7

%
70

.4
%

68
.7

%
76

.1
%

85
.4

%
74

.7
%

67
.5

%
64

.1
%

15
 v

s. 
33

76
.1

%
87

.0
%

77
.7

%
N

/A
65

.9
%

77
.0

%
87

.4
%

77
.5

%
71

.7
%

69
.4

%
16

 v
s. 

34
78

.7
%

83
.6

%
78

.2
%

75
.8

%
77

.8
%

77
.4

%
86

.7
%

74
.5

%
74

.6
%

71
.9

%
17

 v
s. 

35
78

.2
%

83
.0

%
78

.1
%

70
.6

%
73

.8
%

76
.3

%
84

.4
%

74
.8

%
71

.2
%

66
.8

%
18

 v
s. 

36
81

.6
%

85
.9

%
82

.8
%

77
.2

%
81

.1
%

79
.0

%
89

.6
%

76
.5

%
75

.1
%

74
.0

%

Sc
en

ar
io

s
SE

A
TS

SP
A

C
E

Se
at

 U
til

iza
tio

n 
- P

ea
k 

O
pe

ra
tin

g 
Pe

rio
d 

(8
:0

0P
M

 - 
9:

15
PM

)



   

129

  T
ab

le
 D

4:
  A

ve
ra

ge
 W

ai
t T

im
e 

by
 P

ar
ty

 S
iz

e 
fo

r 
T

op
 R

ev
en

ue
-P

ro
du

ci
ng

 T
ab

le
 M

ix
es

 G
en

er
at

ed
 fo

r 
E

ac
h 

Sc
en

ar
io

  

   

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1 
vs

. 1
9

3.
84

3.
76

3.
89

3.
74

3.
89

3.
62

3.
23

2.
65

3.
93

3.
79

3.
76

3.
89

3.
60

3.
67

3.
50

3.
05

2 
vs

. 2
0

4.
97

5.
12

5.
12

5.
12

5.
09

4.
07

3.
23

3.
03

4.
97

5.
12

5.
12

5.
12

5.
09

4.
07

3.
23

3.
03

3 
vs

. 2
1

4.
66

4.
76

4.
65

4.
80

4.
21

5.
05

4.
74

4.
71

4.
66

4.
76

4.
65

4.
80

4.
21

5.
05

4.
74

4.
71

4 
vs

. 2
2

11
.4

5
11

.3
9

11
.8

1
12

.0
0

11
.7

6
10

.7
8

11
.4

1
10

.2
8

11
.4

5
11

.3
9

11
.8

1
12

.0
0

11
.7

6
10

.7
8

11
.4

1
10

.2
8

5 
vs

. 2
3

5.
73

5.
88

6.
14

5.
87

6.
00

6.
92

4.
66

3.
89

5.
73

5.
88

6.
14

5.
87

6.
00

6.
92

4.
66

3.
89

6 
vs

. 2
4

13
.4

2
12

.7
1

13
.2

0
13

.0
1

12
.4

9
13

.6
9

13
.3

0
12

.0
6

11
.4

5
11

.2
6

11
.3

7
11

.3
4

11
.4

5
11

.4
7

12
.7

2
10

.6
7

7 
vs

. 2
5

7.
23

7.
37

7.
30

7.
44

8.
04

7.
24

8.
42

6.
26

5.
38

5.
31

5.
35

5.
28

5.
39

5.
10

5.
48

4.
14

8 
vs

. 2
6

5.
02

5.
30

5.
33

5.
29

5.
49

5.
08

4.
33

3.
74

2.
83

2.
83

2.
78

2.
57

2.
99

1.
88

2.
42

1.
93

9 
vs

. 2
7

10
.5

1
10

.6
2

10
.6

2
11

.0
3

10
.6

5
10

.8
1

10
.0

0
10

.4
1

6.
40

6.
49

6.
63

6.
70

7.
20

6.
32

5.
59

5.
17

10
 v

s. 
28

15
.8

2
16

.6
4

16
.9

7
16

.6
8

17
.3

3
15

.8
4

18
.3

7
14

.2
9

11
.4

5
12

.1
1

12
.1

7
11

.9
4

12
.0

8
11

.4
8

12
.6

0
9.

45
11

 v
s. 

29
11

.0
0

11
.1

3
11

.1
2

11
.5

5
11

.7
8

10
.7

7
9.

74
9.

66
7.

97
8.

24
8.

34
8.

13
7.

70
8.

56
5.

95
5.

88
12

 v
s. 

30
17

.9
5

18
.2

8
18

.7
6

18
.7

8
18

.7
3

20
.0

4
19

.2
5

20
.7

5
12

.1
0

12
.3

6
12

.3
8

12
.4

2
12

.6
2

12
.6

9
13

.8
7

13
.1

7
13

 v
s. 

31
9.

43
9.

58
9.

60
9.

35
9.

87
10

.1
5

8.
83

5.
89

9.
43

9.
58

9.
60

9.
35

9.
87

10
.1

5
8.

83
5.

89
14

 v
s. 

32
3.

26
3.

24
3.

29
3.

10
3.

08
3.

50
3.

19
2.

00
5.

44
5.

76
5.

66
6.

03
5.

59
6.

00
4.

55
2.

57
15

 v
s. 

33
11

.0
9

10
.6

0
11

.3
3

10
.7

0
11

.2
1

11
.4

7
11

.0
7

11
.9

5
11

.5
7

12
.6

0
12

.4
8

12
.5

3
12

.6
4

13
.3

5
11

.1
9

13
.8

1
16

 v
s. 

34
15

.7
7

15
.8

7
16

.0
8

16
.5

5
16

.3
8

16
.6

5
13

.6
1

11
.7

3
16

.4
1

17
.4

6
17

.4
2

17
.6

8
18

.6
4

18
.2

2
17

.8
5

15
.1

6
17

 v
s. 

35
9.

57
9.

67
9.

92
9.

57
9.

46
9.

54
7.

30
7.

01
12

.4
5

12
.9

6
13

.4
4

13
.6

3
12

.3
5

12
.8

0
11

.0
0

8.
36

18
 v

s. 
36

17
.5

3
18

.3
8

18
.8

0
18

.7
7

18
.5

1
19

.2
2

21
.9

3
18

.4
5

18
.5

1
19

.7
7

19
.1

3
19

.9
5

20
.2

0
20

.9
5

19
.3

2
20

.9
2

Sc
en

ar
io

s
SE

A
TS

SP
A

C
E

A
ve

ra
ge

 W
ai

t (
in

 m
in

ut
es

) b
y 

Pa
rt

y 
Si

ze



   

130

  T
ab

le
 D

5:
  8

5t
h 

Pe
rc

en
til

e 
of

 W
ai

t T
im

es
 fo

r 
T

op
 R

ev
en

ue
-P

ro
du

ci
ng

 T
ab

le
 M

ix
es

 G
en

er
at

ed
 fo

r 
E

ac
h 

Sc
en

ar
io

 

   

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1 
vs

. 1
9

10
.0

2
9.

46
9.

94
9.

72
10

.5
1

0
0

0
9.

76
9.

64
9.

59
9.

83
9.

49
0

0
0

2 
vs

. 2
0

14
.3

8
14

.9
0

14
.9

8
14

.2
1

13
.5

4
0

0
0

14
.3

8
14

.9
14

.9
8

14
.2

1
13

.5
4

0
0

0
3 

vs
. 2

1
12

.5
3

13
.5

6
13

.1
1

13
.3

1
11

.7
0

14
.8

2
0

0
12

.5
3

13
.5

6
13

.1
1

13
.3

1
11

.7
0

14
.8

2
0

0
4 

vs
. 2

2
29

.5
8

29
.6

1
30

.8
7

31
.2

6
32

.7
3

29
.9

8
0

0
29

.5
8

29
.6

1
30

.8
7

31
.2

6
32

.7
3

29
.9

8
0

0
5 

vs
. 2

3
16

.6
2

16
.8

8
17

.5
0

16
.8

0
0

0
0

0
16

.6
2

16
.8

8
17

.5
0

16
.8

0
0.

00
0

0
0

6 
vs

. 2
4

34
.3

4
33

.2
6

34
.4

7
34

.5
0

32
.2

3
36

.9
4

0
0

29
.8

9
30

.0
5

30
.8

0
30

.8
3

31
.8

1
0

0
0

7 
vs

. 2
5

20
.0

4
20

.5
8

20
.7

6
20

.5
8

23
.6

3
0

0
0

14
.7

4
14

.0
2

14
.6

1
14

.1
0

14
.4

5
15

.2
5

0
0

8 
vs

. 2
6

14
.2

9
15

.0
9

15
.3

4
15

.5
8

16
.6

4
0

0
0

6.
60

6.
59

6.
90

5.
08

8.
43

0
0

0
9 

vs
. 2

7
28

.7
3

29
.2

0
29

.1
1

31
.1

1
29

.3
1

0
0

0
17

.8
5

18
.4

5
18

.4
0

19
.3

2
19

.3
1

17
.8

7
0

0
10

 v
s. 

28
38

.0
4

40
.1

2
41

.0
7

41
.2

6
41

.2
3

41
.3

6
0

0
29

.6
6

30
.7

6
30

.6
4

30
.6

1
31

.2
5

31
.4

1
0

0
11

 v
s. 

29
29

.6
5

30
.2

1
30

.7
1

31
.4

1
32

.0
7

0
0

0
22

.1
8

23
.0

7
23

.3
2

22
.4

8
21

.9
0

25
.8

5
0

0
12

 v
s. 

30
40

.5
7

41
.4

0
42

.6
0

43
.4

7
44

.7
9

45
.1

0
0

0
31

.0
0

31
.8

3
31

.6
5

31
.8

5
33

.0
5

32
.6

6
0

0
13

 v
s. 

31
25

.4
1

26
.4

7
27

.5
2

26
.3

3
27

.0
5

0
0

0
25

.4
1

26
.4

7
27

.5
2

26
.3

3
27

.0
5

0
0

0
14

 v
s. 

32
8.

14
7.

73
7.

71
7.

50
0

0
0

0
15

.2
7

16
.6

2
17

.0
5

17
.1

1
18

.3
6

0
0

0
15

 v
s. 

33
29

.4
3

29
.0

7
30

.1
9

30
.0

7
29

.7
9

31
.3

7
0

0
31

.6
9

32
.9

7
33

.4
4

32
.4

6
33

.1
7

37
.8

2
0

0
16

 v
s. 

34
37

.7
2

38
.1

5
38

.7
0

40
.1

0
41

.2
3

41
.2

9
0

0
38

.8
9

40
.8

1
40

.6
41

.8
5

42
.9

42
.9

1
0

0
17

 v
s. 

35
32

.1
1

32
.4

7
33

.9
1

34
.9

5
31

.4
4

0
0

0
32

.1
1

32
.4

7
33

.9
1

34
.9

5
31

.4
4

0
0

0
18

 v
s. 

36
41

.5
5

42
.6

4
44

.8
0

44
.4

3
44

.3
4

45
.8

6
0

0
42

.4
4

44
.6

1
44

.5
9

46
.1

1
45

.2
1

0
0

0

Sc
en

ar
io

s
SE

A
TS

SP
A

C
E

85
th

 p
er

ce
nt

ile
 o

f W
ai

t T
im

es
 (i

n 
m

in
ut

es
) b

y 
Pa

rt
y 

Si
ze



  

131 

Appendix E:  Comparisons of NaïveIP Model Variations and Complete 

Enumeration Results 

 

Table E1:  Complete Enumeration vs. NaïveIP-A(2) 

  

 

 

 

 

 

 

 

Difference between NaïveIP-A(2) and Complete Enumeration Results 

Scenario 2-tops 4-tops 6-tops 8-tops Seats Tables Total SF Revenue
NaïveIP-A(2) 

Revenue as a % of 
Maximum 

1 +9 -5 +2 -3 -14 +3 -21.04 -$1,226.64 96.9%
2 +10 +2 0 -5 -12 +7 -2.47 -$1,534.34 92.3%
3 +6 +1 -2 -1 -4 +4 -5.49 -$1,397.04 96.0%
4 +9 -3 -1 -1 -8 +4 -7.34 -$1,561.14 95.0%
5 +7 0 -1 -2 -8 +4 -20.17 -$1,830.68 90.4%
6 +5 0 +2 -4 -10 +3 -9.29 -$1,661.55 93.9%
7 +23 -11 -6 0 -34 +6 +1.00 -$883.45 94.7%
8 +7 0 +1 -4 -12 +4 -39.00 -$1,518.43 90.6%
9 +24 -13 -3 -2 -38 +6 -10.00 -$1,432.57 92.7%

10 +23 -14 -3 -1 -36 +5 +6.00 -$1,638.65 92.4%
11 +17 -9 -2 -2 -30 +4 -39.00 -$2,389.43 87.4%
12 +18 -11 -1 -2 -30 +4 -12.00 -$2,163.12 90.5%
13 +5 +4 -2 -2 -2 +5 -20.00 -$2,390.28 92.7%
14 +9 0 -1 -2 -4 +6 -37.00 -$1,778.53 90.9%
15 +7 +2 0 -3 -2 +6 -8.00 -$2,595.75 92.2%
16 +7 0 0 -2 -2 +5 -10.00 -$2,219.51 93.1%
17 +8 -1 0 -2 -4 +5 -36.00 -$1,790.21 90.9%
18 +7 0 0 -2 -2 +5 -10.00 -$2,999.83 94.7%

Overall Average:
92.6%
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Table E2:  Complete Enumeration vs. NaïveIP-B(2) 

 

 

 

 

 

 

 

 

 

 

Difference between NaïveIP-B(2) and Complete Enumeration Results 

Scenario 2-tops 4-tops 6-tops 8-tops Seats Tables Total SF Revenue
NaïveIP-B(2) 

Revenue as a % 
of Maximum 

1 +8 -4 +2 -3 -12 +3 -8.79 -$515 96.5%
2 +8 +2 +1 -5 -10 +6 +13.16 -$686 95.0%
3 +4 +2 -2 -1 -4 +3 -24.74 -$531 96.6%
4 +8 -2 -1 -1 -6 +4 +4.91 -$642 96.2%
5 +5 0 0 -2 -6 +3 -4.54 -$600 96.3%
6 +3 +1 +2 -4 -10 +2 -28.54 -$989 94.5%
7 +21 -11 -5 0 -32 +5 -1.00 -$544 96.9%
8 +5 0 +2 -4 -10 +3 -41.00 -$1,027 93.7%
9 +22 -12 -2 -2 -32 +6 +20.00 -$656 96.4%

10 +21 -14 -2 -1 -34 +4 +4.00 -$954 95.3%
11 +15 -9 -1 -2 -28 +3 -41.00 -$1,028 94.6%
12 +16 -10 0 -2 -24 +4 +18.00 -$1,036 95.1%
13 +3 +3 -2 -1 -2 +3 -26.00 -$404 97.2%
14 +7 0 0 -2 -2 +5 -10.00 -$626 95.4%
15 +5 +1 0 -2 -2 +4 -14.00 -$469 96.9%
16 +5 -1 0 -1 -2 +3 -16.00 -$603 96.3%
17 +6 -1 +1 -2 -2 +4 -9.00 -$418 97.3%
18 +5 -1 0 -1 -2 +3 -16.00 -$450 97.3%

Overall Average:
96.0%
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