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Abstract

Recently, F.A. Longstaff and E.S. Schwartz proposed a Monte-Carlo method for the
computation of American option prices, based on least squares regression. Under fairly
general conditions, we prove the almost sure convergence of the algorithm. We also deter-
mine the rate of convergence and further prove that the normalized error is asymptotically

Gaussian.
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1 Introduction

The computation of American option prices is a challenging problem, especially when several
underlying assets are involved. The mathematical problem to solve is an optimal stopping
problem. In classical diffusion models, this problem is associated with a variational inequality,
for which, in higher dimensions, classical PDE methods are ineffective.

Recently, various authors introduced numerical methods based on Monte-Carlo tech-

niques (see, among others, [1, 2, 3, 5]). The starting point of these methods is to replace the
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time interval of exercise dates by a finite subset. This amounts to approximating the Ameri-
can option by a so called Bermuda option. The solution of the corresponding discrete optimal
stopping problem reduces to an effective implementation of the dynamic programming prin-
ciple. The conditional expectations involved in the iterations of dynamic programming cause
the main difficulty for the development of Monte-carlo techniques. One way of treating this
problem is to use least squares regression on a finite set of functions as a proxy for conditional
expectation. This is the method used by Longstaff and Schwartz [3]. Another type of least
squares regression is proposed by Tsitsiklis and Van Roy [5].

The purpose of this paper is to analyze the Longstaff-Schwartz algorithm, which seems
to have become popular among practitioners. More precisely, we will prove the convergence
of the algorithm and establish a type of central limit theorem for the rate of convergence,
thus providing the asymptotic normalized error. We note that partial convergence results
are stated in [3], together with excellent empirical results, but with no study of the rate of
convergence. On the other hand, convergence (but not the rate nor the error distribution) is
provided in [5] for a somewhat different algorithm.

The paper is organized as follows. In Section 2, a precise description of the Longstaff-
Schwartz algorithm and the notation is established. In Section 3, we prove the convergence

of the algorithm. In Section 4, we study the rate of convergence.

2 The Longstaff-Schwartz algorithm and notations

2.1 Description of the algorithm

As mentioned in the introduction, the first step in all probabilistic approximation methods is
to replace the original optimal stopping problem in continuous time by an optimal stopping
problem in discrete time. Therefore, we will present the Longstaff-Schwartz algorithm in the

context of discrete optimal stopping.

We will consider a probability space (€2, A, IP), equipped with a discrete filtration (F;);=o,...

Here, the positive integer L denotes the (discrete) time horizon. Given an adapted payoff
process (Z;);—o,..,L, Where Zy, Z1,..., Z, are square integrable random variables, we are
interested in computing

sup IEZ,,
TE%,L

where 7; 1, denotes the set of all stopping times with values in {j,...,L}.



Following classical optimal stopping theory (for which we refer to [4], chapter 6), we
introduce the Snell envelope (Uj);—o,...,r, of the payoff process (Z;);-o,..., 1, defined by
Uj=ess- sup E(Z; | F;), j=0,...,L.
TE€T;,L

The dynamic programming principle can be written as follows:

UL=1721
Uj :maX(Zj,E(Uj_H |.7:j)), 0<j<L-1.

We also have U; = IE (ZTj \ fj), with
7; = min{k > j | Uy = Zy}.

In particular EUy = sup, ¢y, , [EZ; = [EZ,,.
The dynamic programming principle can be rewritten in terms of the optimal stopping

times 7;, as follows:

7, = L

7 = 1Yz 2 B2, |7y T T Yz <m (2, 7y TS L
This formulation in terms of stopping rules (rather than in terms of value functions) plays
an essential role in the Longstaff-Schwartz method.

The method also requires that the underlying model be a Markov chain. Therefore, we
will assume that there is an (F;)-Markov chain (X;);—o,..,. with state space (E, ) such that,
for j=0,...,L,

Zj = £ (3, X;5),
for some Borel function f(j,:). We then have U; = V(j, X;) for some function V(j,-) and
FE (ZTJ.Jr1 |.7-"j) =F (ZT].Jr1 |Xj). We will also assume that the initial state Xo = z is
deterministic, so that Uy is also deterministic.

The first step of the Longstaff-Schwartz algorithm is to approximate the conditional
expectation with respect to X; by the orthogonal projection on the space generated by a
finite number of functions of X;. Let us consider a sequence (ex(z))r>1 of measurable real
valued functions defined on E and satisfying the following conditions:

A;: For j =1 to L — 1, the sequence (%(Xj))kzl is total in L?(a(X;)).

As: Forj=0to L—1and m>1, ifZ)\kek(Xj) =0 a.s. then Ay, =0 for k =1 to m.
k=1



For j = 1 to L — 1, we denote by P/* the orthogonal projection from L?(2) onto the

vector space generated by {ei(X}),...,en(X;)} and we introduce the stopping times 'rj[m]:

A

7™ = j1 +7i1 , j<L—1,

{Z,>P (Z m )} {Z]<P (Z tm )}
J+1 ]+1
From these stopping times, we obtain an approximation of the value function:
Ugn = max (Z(), EZT[m]) . (21)
1

Recall that Zy = f(0,z) is deterministic. The second step of the algorithm is then to
evaluate numerically IEZ i) by a Monte-Carlo procedure. We assume that we can simulate
N independent paths (X; ( )) -5 (Xj (-n)) (X (-N)) of the Markov chain (X;) and we denote
by Z(- ") the associated payoff for j =0 to Landn =1to N (Z(n) f(j,X( ))) For each

path n, we then estimate recursively the stopping times ( [m ]) by:

Tg’m’N =L
n,m,N . n,m,N .
T, =71 +7.201 <L-1
j J {Z;n)Za](.m’N)-em(X;n))} j+1 {Z(n)<a(m N g ](m)}’ J= ’
Here, z-y denotes the usual inner product in IR™, €™ is the vector valued function (eq, ..., €n)
and ag-m’N) is the least square estimator:

Ti+1

(m.N) _ o () m(x )
a; = arg min anN—a-e (X)),
1

,m,N

Remark that for j =1 to L — 1, a( N e mm. Finally, from the variables T” , we derive

the following approximation for Uj":
UMY = max <ZO, Z Z(Q)m N) . (2.2)

In the next section, we prove that, for any fixed m, Ug" N converges almost surely to UJ" as
N goes to infinity, and that Uj® converges to Uy as m goes to infinity. Before stating these

results, we devote a short section to notation.

2.2 Notation

For m > 1 we denote by e™(x) the vector (e1(z),...,en(z)) and for j =1 to L — 1 we note:
Pi(Z m)) = of* - €™(Xj) (2.3)
Tjt1



We remark that the m dimensional parameter " has the explicit expression:

o' = (A7) E(Z 1 ™ (X;)), (2.4)

Tj+1

for j =1to L — 1, where A7" is an m X m matrix, with coefficients given by

(AT)1<ki<m = Eer(X;)e(X;)). (2.5)

Similarly, the estimators al™N)

> are equal to

o) — (AN~ @ wem(x™), (2.6)

— J+1

Mz

for j =1 to L — 1, where A;m’N) is an m X m matrix, with coefficients given by

N
N 1
(A i<m = ¥ 2 ex(X{)er(XM). (2.7)
n=1
We note o™ = (af?,...,a ;) and a™N) = (agm’N), e ,a(L"i’{V)).
Given a parameter a” = (af*,...,af" ;) in IR™ x ... x IR™ and deterministic vectors

z=(21,...,21) € R* and x = (z1,...,21) € E*, we define a vector field F = (F},..., Fr)
by:

Fr(a™,z,z) = zL
Fj(ama = 'T) = Zjl{ZjZa;”-em(wj)} + Fj—l—l(ama zax)l{zj' <a;”-em(wj)}7 forj=1,...,L -1
We have
L—1
Fy(a™, z,x) = zjlp: + > zilp;. B, B +201B;..B, )
i=j+1
with

Bj ={z < a;-n e (z4)}.

We remark that Fj(a™, Z, X) does not depend on (af’,...,a ) and that we have

Fj(a™, Z, X) = Zm

J
Fi(amM, zm xm) = z®

n,m,N *
J

For j = 2 to L, we denote by G; the vector valued function

Gj(a™,z,z) = Fj(a™, z,z)e™ (z;_1),



and we define the functions ¢; and v; by
¢i(a™) = IEF;(a™, Z, X) (2.8)
pj(a™) = IEG;(a™, Z, X). (2.9)

Observe that with this notation, we have
offt = (A7) " Mpjga (™), (2.10)

and similarly, for j =1 to L — 1,

N
o) — (A~ Z (@M Zm) xm)gm(x (M), (2.11)
n:l

3 Convergence

The convergence of Uj" to Uy is a direct consequence of the following result.
Theorem 3.1 Assume that Ay is satisfied, then for j =0 to L we have

mgm E(Z [m]|'7:) (Z’T]|f])a
in L2.
Proof: We proceed by induction on j. The result is true for j = L. Let us prove that if it
holds for j + 1, it is true for j (j < L — 1). Since
ZTJ[m] = Zjl{ZjZa;.".em(Xj)} + ZT][T]ll{Zj<a;.".em(Xj)}a
for j < L — 1, we have
BE(Z m = Zry|Fj) = (Zj = B(Zr 1] F5) (1{sza;n-em<Xj)} — Lz>m(z, +1u~3)})
+E(ZTJ[T1 - ZT]‘+1 |‘7:j)1{Zj<a;”-em(Xj)}-
By assumption, the second term of the right side of the equality converges to 0 and we just

have to prove that BJ" defined by

B = (Zj — (2,1 |7) (1z5am-em(xy)) — Uzy2 B2,y 7)) )

converges to 0 in L?. Observe that

1B = 12 — B(Zy; | F)I (2., 1F73)> 25 >am-em (X)) — Lam-em(X;)>2; > B(Zr, | 7))
< NZj = B(Zy | FIY 2,-B(20, 7)< 0l em (X)) ~B( 20y 4 17}
< ot - e™(X;) — E(Zr,,|F)]
< ot - e™(X;) = PP (Zry | Fi))| + | PIE(Zy 1| Fj)) — I (Zgy | F5))-

6



But

m Y m — m .
of - "(Xy) = P (Z,m)) = PIN(B(Z 1 1 F5);

and consequently

1Bl < E(Z, 1m [ 75) = B(Zrya [F)llz + (1] (B 2y 1| 5)) = B (Zry | F5) -
J

The first term of the right side of this inequality tends to 0 by the induction hypothesis and

the second one by A;.

In what follows, we fix the value m and we study the properties of Uy" N as N the
number of Monte-Carlo simulations, goes to infinity. For notational simplicity, we drop the

superscript m throughout the rest of the paper.

Theorem 3.2 We assume Ay, Ay and that for j =1 to L — 1, IP(cj - e(X;) = Z;) = 0.

Then Uy" A converges almost surely to Uj® as N goes to infinity.
Note that with the notation of the preceeding section, we have to prove that
1N
lim = Y Fy (o), 2™ xM)) = : 3.1
11{[11 N nz::l 1((1 ’ ) ) ¢1 (Ot) ( )
The proof is based on the following lemmas.

Lemma 3.1 For j =1 to L, we have :

L L—-1
|Fj(a, Z,X) — F(b, Z,X)| < Z | Z;] Z 1412, —b;-e(X:) <|ai—bi|e(X3)]} -
i=j i=j

Proof : Let Bj = {Z; > a;j - e(X;)} and B; = {Z; > b; - e(X;)}. We have :

Fj(a, Z,X) — Fj(b, Z,X) = Zj(]-BJ- — 155])
L—-1
+ > Zi(lp;. BB — 15, B 5e)
i=j+1
+Z1(pe..B;_| — 13;___32_1).
But
11p; — léj| = Laje(x))<7i<be(X;)} — Lbje(X;)< 75 <a;e(X))}

- |1{bj'e(Xj)<ZjSaj'€(Xj)} - l{aj'e(Xj)<Zijj'€(Xj)}|

l{bj e(X;)<Zj<aj-e(X;)} T l{aj -e(X;)<Z;j<bj-e(X;)}

IN

14125 —b;-e(X;) | <laj—b;|[e(X;)[}

7



Moreover

IN

i
> g, — 15|+ 1 — 1B§|
P

%
= z |1Bk -1
k=j

|1B -B;_1B; _]'B B’L—léf‘

this gives

70,2, %) — B0, 2,X)| < 3121 Y 15, — 1

Combining these inequalities, we obtain the result of Lemma 3.1.

Lemma 3.2 Assume that for j =1 to L — 1, IP(a; - e(X;) = Z;) = 0 then agN) converges

almost surely to ;.

Proof: we proceed by induction on j. For j = L — 1, the result is a direct consequence of the
law of large numbers. Now, assume that the result is true for i = j to L — 1. We want to

prove that it is true for j — 1. We have
o) (a1 Ly
ai] = A Z z(n) X( ))

)

By the law of large numbers, we know that A;JXI converges almost surely to A;_; and it
N
remains to prove that + Z Gj(a(N), Z™, X(M) converges to j(a). From the law of large

n=1
N

numbers, we have the convergence of & Z (a, 2™, X)) to 1;(a) and it suffices to prove

that :

1 N
lim (G](a , 2", X)) — Gi(a, 2, X )) =0.

We note Gy = + ( oMz xm)y Gj(a,Z("),X("))). We have :

N
N
Gyl < &Y [e(X)IIF; (@™, 20, X)) — Fj(a, 2™, X™))
n=1
S le(x )37 |20
< 1 n n n n -
< n;l|€ |Z|Z \ Z L1129 —ase(X) <10 g (X M) }
Since, for i = j to L — 1, a(N) converges almost surely to oz(-N), we have for each € > 0 :
: (n)
hmsup |GN| < thUP N nzl | | Z |Z ‘ Z 1{\Z(n) o X(n))\<e\e(X(n))\}
L

= Ele(X; 1) 312 Z 12 a-e(X0)|<ele(X0)}
i=j i=j



where the last equality follows from the law of large numbers. Letting € go to 0, we obtain

the convergence to 0, since for j = 1 to L — 1, IP(c; - e(X;) = Z;) = 0.
The proof of Theorem 3.2 is similar to the proof of Lemma 3.2.

4 Rate of convergence of the Longstaff-Schwartz algorithm
4.1 Tightness

In this section we are interested in the rate of convergence of % Z ZEZ?N, for 5 =1 to L.

n=1 7
Recall that m is fixed.
We assume that :
H;: The random variable Z and the functions eq,..., e, are bounded.

P(|Z;—aj-e(X;) <¢)
€

=0.

Hj: Vj=1,...,L -1, limsup,_,,
Note that H, implies that IP(Z; = a; - e(X;)) = 0 and, consequently, under Hy we know

N
from Section 3 that +- Z Fj(a(N), Z™_ X™) converges almost surely to ¢;(a). Remark too

n=1

that Hy is satisfied if the random variable (Z; — ;- e(X;)) has a bounded density near zero.
N

Theorem 4.1 Under Hy and Hy, the sequences <\/1N Z o)z xm)y ¢j(a))>
n=1 N>1

(j=1,...,L) and (\/N(ag-N) —aj))n>1 (=1,...,L —1) are tight.
The proof of Theorem 4.1 is based on the following Lemma.

Lemma 4.1 Let (U(”)) be a sequence of identically distributed random variables such that

: PUWM|<e)
limsup ———= < 400,
e—0 €

and (On) a sequence of positive random variables such that (V NOy) is tight, then the sequence

N
(V_IN Z 1{|U(n)|§0N}> is tight.
n=1

N>1

N
Proof: We note oy (0 % Z (U™ |<ox} Observe that o is a non decreasing function



of 6. Let A > 0, we have

P(O’N(QN) > A)

IN

P(on(0n) > A,V/NOy < B) + IP(vV/NOy > B)
P(on(Fs) > A) + IP(VNOy > B)

LEon( )+P(\/_0N>B)

= EP(uW| < L)+ P(VNOy > B).

= ﬂ\m ﬂ‘

From the assumption on (U() and the tightness of (vV N0y ), we deduce easily the tightness

of O'N(ON).

Proof of Theorem 4.1: We know from the classical Central Limit Theorem that the

sequence (1/v/N) Z( (o, zm x(m)y_ ¢(a)) is tight and it remains to prove the tightness

n=1

of — Z zm x(n )) — Fj(c, Z("),X("))), for j = 1 to L. Similarly, to prove the
;-N) — o))N>1, for j =1 to L — 1, we just have to prove the tightness of

\/— Z Nz x ))—Gj(a, Z("),X("))) (see Section 2 for the notation). We proceed

tlghtness of (f(

by induction on j. The tightness of jﬁ o™z x™)) _ F(a, 2™, X™)) and
n:l

(VN (oz(L]\i)1 —ap-1)) is straightforward.
Assume that \/» Z Z™, xM) — Fi(a, 2™, X™)) and (\/N(az(z_vl) —a;-1)) are
tight for ¢ = j to L. We set

Fy = \/_Z T oM,z x 0 ))—Fj_l(a,Z(”),X(”))).
Now from Lemma 3.1, we have :
N L-1
=CUN nzllgzll 12" —az-e(X[)|<lai—a{™]||e]| o}

from Lemma 4.1 and by the induction hypothesis, we deduce that Fy is tight. In the same
way, we prove that (\/N(agjg — aj_9)) is tight.

4.2 A central limit theorem

We prove in this section that under some stronger assumptions than in section 4.1, the

N
vector | —— Z (Z)N —IEZ converges weakly to a Gaussian vector. With the
VN 1 7 ’ 7;
n= j_17 7L

10



preceding notation, we have
N
Z nN —EZ [m = Z ZM XM — $i(a)). (4.1)

In the following, we will denote by Y the couple (Z, X) and by Y the couple (Z(™, X)),
We make some more hypothesis:
H5: For j = 1 to L — 1, there exists a neighborhood Vj of «; such that for a; € Vj,
Zj—a;-e(X;) admits a density f,; near 0, such that, for somen >0, sup  fq;(2) < +o0.
aj €V, 2|<n

Hj: For j =1to L — 1, ¢; and 1, are C! in a neighborhood of a.

Observe that Hj is stronger than Ho.

Theorem 4.2 Under Hi, H3, H3, the vector
( 1 S~y ™)
—= > (Z Wy — BZ 1),V N(aj ' - aﬂ)
VN = g ! j=lyes =1
converges in law to a Gaussian vector as N goes to infinity.

To prove Theorem 4.2, we use the following decomposition :
1 N 1 N)
78 S E Y = gi@) = 75 3 (B )~ Fi(, Y ™) = (¢5(e™) — 45(a)
n=1 =1
N
e Y (B0 V™) = () + VN (g5(0™) = by (o).
n=1

N
From the classical Central Limit Theorem, we know that ( Z (a, (M) — ¢j(a )))

j=1,,L
converges in law to a Gaussian vector. Moreover, we have :

\/JV(ag-N) — o) = -N Z ( (e, v ) — 1/’j+1(04))
~( n—lf (AN — 4) (AN Ly (@),

where A;-N) converges almost surely to A; and v N (A;N) — A;) converges in law. From these
decompositions, it is straightforward to check that Theorem 4.2 is a consequence of the

differentiability of the functions ¢ and 1 and of the following theorem.

Theorem 4.3 Under Hi, H5, H3, the variables
1 N
78 2 (Be™.Y0) ~ Fia,Y®) — (950 - ¢5(a)))

11



and
N
= 2 (G @Y ) = Gy, V) = (1 (a) = 1 ()
n=1

converge to 0 in L?, for j =1 to L — 1.

The proof of Theorem 4.3 requires some Lemmas. In the following, we denote by I(Y;, a;,€)

the function
I(Y,ai,€) = 1{|7,—a;-e(X3)|<||¢]|ooe} - (4.2)
Note that I(Y;,a;,€) < I(Y;, b;, € + |b; — ag|).

Lemma 4.2 For j =1 to L — 1, and a,b in (IR™)X~!, we have under H;

L—-1
|Fj(a,Y) = F;(b,Y)| < |Z]loo Y I(Yiai, la; — bil)
Y L—1
Gj(a,Y) = G;(,Y)] < |IZlloollello D I(Y5ai, lai — bi)
i=j

This result follows easily from Lemma 3.1.
Lemma 4.3 Assume Hy and Hj, then for j =1 to L — 1, we have, for all § > 0,

lim NP(|o!Y)

N-+oo ;o —lz0)=0.

Proof: Let us recall that if (Uy,), is a sequence of i.i.d. bounded variables, we have

N
v§>0, | lim NP (%zUi—zEUﬂ 25) =0 (4.3)
=1
Observe that
) My 1 &
a;  —aj = (4; )‘IN S (G (@™ Y ™) — i1 (@)
n=1
—(A) 1AM — 4)(AM) 4 (a),

We note Qf = {||A§-N) — Aj|| < €} and we choose € such that ||(A§-N))_1|| < 2||(4;)7 on
Q5. From (4.3), we know that NIP((£25)€) tends to 0, for j =1 to L — 1 and that, on €,
() R
oy —ay] < K' N Z(Gj+1(04(N)>Y(")) —Pjt1(a))| + Ke.

n=1

12



Now, since Gr,(aM), Y (™) = Zg")e(X](J"_)l), we deduce that

lim NP — > 6) = 0.
Ny (| —ag_1| > 6)

Assume now that the result of Lemma 4.3 is true for j + 1,...,L — 1. We will prove that
lim N]P(|a —oej| >0)=0.

N—+00
We have
1N N
N Y (Ga (@™ Y ™) — 4 (a Z 4@, Y ™) — G (a, Y™))
n=1 n:l
1 XN
t Y (G, YM) — i (o).
n=1
From Lemma 4.2, we obtain on ,
K N Lol
laj |<K6+—Z Z I(Y, ai,|ai—a§N)|)
n=1:=5+1
KII
N 5" (G Y) — pya(a))]
n=1

The last term can be treated using (4.3). Therefore, it suffices to prove that

Vé >0 lim NIP(Sy >4§)=0,

N—+o00

~

N L—1
where Sy = + Z Z I(Yi(n),ai, |y — az(-N)|). But
i=j+1

[y

n=

1 N L-1
P(SN25)§P(NEZI(Z-()%, >5>+Z (lof™ =il > €) .

n=1:=5+1 1=7+1

By assumption, for i = j + 1 to L — 1, we have lim NIP(|o (N) _ a;| > €) = 0. Moreover

N—+o0

L—-1
we know from Hj that Z IEI(Y;(TL), aj, €) goes to 0 as € tends to 0, so for € small enough we
i=j+1
L1 N L-1
have 65— 3 EI(Y™,ai,¢) > 0and from (4.3), we see that NP [ & Z S IV, ai,6) > 6
i=j+1 n=1li=j+1
tends to 0 as NV goes to infinity. This completes the proof of Lemma 4.3.

We now state a technical Lemma which requires some more notation. Given C and C’

L-1

two constant vectors in Ri_l and a € (IR™)" ', we define a sequence of random vectors

13



UDN=2-K) for k=0to L —2 by

uN M, clha) = Yt
I 2 —
u](N—?—k)(C’C/’a) — WJ W] Z Z ( ; ,a;,U (N 2 k)(C’C”a,)),

for j =1,...,L — 2. Note that UN=27k) is o(Y(D), ..., Y(N=2-k)) measurable.

Lemma 4.4 Assume Hy and H}, then for all C,C" € Ri_l and 7 =1 to L — 2, there exist

some constant K such that

(N—2) N-2), - K
By (C,C", oY) < ¥

Proof : For j =1 to L — 2, we will prove by induction on k, 1 < k < L — 1 — 5 that there
exist Cj(k) and Cj(k) in IR} " such that

- - K Lo
BUN (0, ¢ e D) < T+ K ZkE”N > P(Ci(k), O} k), o2 B,
=75+

We have

] ? ’L

C: Cl_ N-2 L-1
EUJ(N_@(C,CI,CY(N*Q)): J + J Z EI(Y() (N 2)’ui(N_2))

n=1 ¢=j+1
c; G = - - -
=2+ I -2 Y BIYY, oy,
i=j+1

But I(Y, "2, oV ™2y < 17 V2 oV VD 4 16V _ oV As in the

7 bl

proof of Lemma 4.3, we can choose Qx such that NP(QS) goes to 0 as N goes to infinity

and such that on Qy

N 2 N-3 _
|a ) a(L—l )‘ < IjV -
(N-2)  (N-3) G GRS G ) (N8 (N2 (N-3)
|aj -y | < ¥t I(Yz 1 @ ’lai % |)
n=1 i=j5+1

So, on Qy, there exist C(1) and C'(1) in ]Rf__1 such that, fori =j+1to L — 1,

UM, ) 410 = Y <y NV (0), (1), 0 ).

2

Consequently, we obtain

C
BN va N -2) Z EI (Y2, ulM (c(1), ¢ (1), 6N ))
1=j+1
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Conditioning on o(Y ™, ..., Y(¥=3)) and using HZ, we finally get

L—1
+k Y BuNY(C(1), (1), V).
i=j+1

EuN 7, ¢, aN¥D) <

2=

This proves the step k& = 1 of the induction. We prove the implementation from &k to &k + 1

in a similar way. Applying this result to k = L — 1 — j gives Lemma 4.4.

Lemma 4.5 Fori,57 =1 to L —1, we have, under H,, HJ,

lim N 1 (¥, 0", ol = ol ) 1 (v, 0, la™ = )] = 0

] ’ 7

tim N [1 (Y, 0", o™ — o™ )) 1 (v, 0,05 — )] =0

Proof: We choose Qp such that NP(Q) tends to 0 as N goes to infinity and such that, on
QNa

N N-2 Cr_
|0‘(L—)1 - O‘(L—1 )| < ?v :
(N) _ (N=2)| G GNS N py® gD ) _ ()
o5 = TV < FAF D 2 I e e — e ),
n=1 i=j+1

for j =1 to L — 2. Now, with the notation UN=2) = yy(N-2)(C, ', a(N=2)), we remark that

forj=1to L—1, |a§-N) — a§-N72)\ < U}Nﬁ) on QN. Define
QO = & ({le® — a] < 6} {1a®2 — a| <n}.

From Lemma 4.3, NIP(Q2%) tends to 0. Now we have

(N-2)

NE[1 (VM0 1o — o)) 1 (v, 05, 10{™) — 4]) 10,]

J

< NE [I (Y;(N—l),aZ(N—2)’ Ui(N_2)) T (Yj(N),aj, 5) 1{\a(N’2)*Ot|S77}] .

But
E [I (Y].(N), a;, 5) yY®m, ... ,Y<N—1)] < 03,

and, from H3,

E [I (Y(N—l)’a(N—Z),UZ_(N—Z)) 1{|a(N,2)_a|§n}|Y(1),___,Y(N—z)} < CUi(N—2)’

]

15



this gives

NE [I (Y;(N_D,a,(N—z), |a§N) — aEN—2)|) I (Yj(N),ag', |a§.N) _ aj|) 1QN] < CNlE’UZ.(N_Q)(S_

Applying Lemma 4.4, we know that ]E'Ui(N_Q) < K/N and Lemma 4.5 is proved.

Proof of Theorem 4.3: We prove that

1
lip 75 2 (B0, Y) = By, Y) = (44(a) = g5(0)) =0
in L2. The proof is similar for the second term of the Theorem. We introduce the notation

Aj(a,b,Y) = Fj(a,Y) — F;(b,Y) — (¢j(a) — ¢;(b)). We have to prove that

N 2
lim %E (Z Aj(a(N),a,Y(n))) =0.

n=1
Remark that for n = 1 to N, the couples (™), V(™) and (™), V(1)) have the same law,
and for n # m, (@™, Y™, Y(™)) and (oM, Y)Y (N-1)) have the same distribution. So

we obtain
F¥EQ A0 0, Y2 = BAZH o), a, YD)
+(N = 1D)EA; (™, a0, YN A; (o), a,YM).

But |A;(@™),,YM)| < 4||Z]|c. Since the sequence (a(¥)) goes to a almost surely and
P(Z; = aj-e(X;)) =0 for j =1 to L by assumption, we deduce that Aj(a(N), a, Y1) goes
to 0 almost surely. Consequently, we obtain that EA? (a(N ) a, Y(l)) tends to 0. It remains

to prove that
lij{{nNEAj(a(N),a,Y(N_l))Aj(a(N),a,Y(N)) =0. (4.4)

We observe that
E (Aj(a(NJ)’a,Y(N)Ny(l)’ o Y(Nﬂ)) o,

since IE (Fj(a(N_Q), Yy, .. ,Y(N_l)) = ¢j(a!N=2)) almost surely. This gives
EA; (0™, 0, YN)A; (0N, 0, YY) =0,
and we just have to prove that

lim NIE (Aj(aUV), a, YY" NA; (@™, a, Y)Y = A; (@™ 2,0, YDA (oD, Y(N))) =0.
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We have the equality

Aj(a(N), a, Y(N_l))Aj(a(N) ,a, YNy — Aj (V=2 q, Y(N_l))Aj(a(N_Q), a, YV =

We want to prove that limpy_,o NEAj(a(N), a(N_2),Y(N_1))Aj(a(N),a, Y)Y = 0 and
limy 00 NIEA; (aN=2) q, Y(N_l))Aj (M), o(N=2) 'y (N)) = 0. Both equalities can be proved
in a similar manner. We give some details for the first one. Using Lemma 4.2 and Lemma 4.4,
we see that there exists a subset Qy such that limy_,o, NIP(2%;) = 0, on which
‘Fj(a(N)’Y(N—l)) _ Fj(a(N—Q)’Y(N—l))| < CLZ_II (Yi(N—l)’aZ(N—Q)’ Ui(N—Q)) ’
i=j
with Ui(N_Q) = Z/{Z-(N_Q) (Cs,C, aN=2)) for some constant vectors C;, C}. We may also assume

that, for a given § > 0, with a proper choice of 2y, we have, on Qy,

L-1
o7 <O T (7 008)+ o, 6190

i:] ‘/370‘|§6

We now condition with respect to o(Y (1), ..., Y(N=2)) to obtain
E|F;(@™),yN 1) - £ y WD) A (M), 0, YY) < p(0) BUN T + o(1/N),
where limg_,q p(d) = 0. It follows that

lim NE ‘ Fj(a®™, y (V-1 _ Fj(a(N—2)’y(N—1))‘ ‘ Aj(am),a,yw))‘ = 0.

N—oo

It remains to show that

lim NIE ‘¢j(a<N)) - ¢j(a(N*2>)‘ ‘Aj(a““, a,Y‘N))\ = 0.

N—oo

We can find Qpy such that limy_,oo NIP(Q4) = O, on which
L-1
[6:(a™) = ;™) <3 |afM - o).
k=g

Here, we use the fact that ¢; is C! near a. If j = L — 1, the right handside can be estimated
by C/N (on a suitable Q). For j < L — 1, it can be controlled by
o N=2 L-1

I(Y™ o= (M) _ ((N-2))
N ngl k:;rl ( ko k k )
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and the expectation can be estimated in the same way as above.
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