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Abstract 

The transmission dynamics of HIV /AIDS, and of sexually transmitted diseases (STDs) in general, 

is highly dependent on the population social/sexual mixing structure, i.e., how many partners and who 

they are. STD epidemic models require mathematical descriptions of mixing which must satisfy 

various natural constraints. A few such solutions to the homosexual mixing problem have been found, 

and there has been some confusion as to which is the "correct" one to use. In this note we encapsulate 

our solution to the mixing problem for homosexual and heterosexual mixing populations and show how 

it reduces the problem of choosing a mixing function to one of choosing parameters. 
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The development of predictive models of the transmission dynamics of HIV, gonnorhea, syphilis, 

etc. has been severly hampered by the lack of a mathematical framework allowing a realistic 

description of social/sexual mixing. This is true both of one-sex (homosexual) and two-sex 

(heterosexual) epidemics. The problem has been discussed in detail in the literature (Barbour, 1978; 

Nold, 1980; Anderson et.al., 1987, 1989; Blythe and Castillo-Chavez, 1989; Hyman and Stanley, 1989; 

Castillo-Chavez and Blythe, 1989; Jacquez et.al., 1989; Sattenspiel, 1989; Busenberg and Castillo­

Chavez, 1989, 1991, Castillo-Chavez and Busenberg 1991, Castillo-Chavez et al. 1991, Blythe 1991, and 

Blythe et al. 1991) and arises because descriptions of mixing (who everyone's partners are) are specified 

only by a set of constraints (eg. Castillo-Chavez and Blythe, 1989). In a one-sex population with N 

distinct groups, if Pij(t) is the mixing function (fraction of partners taken by people in group i among 

those in group j at time t), then the constraints amount to making the {Pi/t)} a set of probabilities, 

conserving the rate of partnership acquisition between each pair of groups, and ensuring that no one 

can take partners from an empty group. Following Busenberg and Castillo-Chavez (1989, 1991), we 

describe this mixing/pair-formation framework using two continuosly distributed variables; 

chronological age and risk. Risk is a measure of the degree of sexual activity. 

The mixing, contact, or pair-formation function describes the proportion of "dates" between 

individuals in distinct groups or sexual partnerships or sexual contacts between these individuals per 

unit time. It can be generalized to include the geographical distribution or movement of individuals by 

interpreting it as the proportion of partnerships formed between individuals from clearly defined groups 

(socially, demographically, etc.) at a particular geographical location and then linking the local 

geographical heterogeneities through the specification of migration or movement matrices as was done 

in Sattenspiel (1987a, b) and Sattenspiel and Simon (1988). Applications to vector-host interactions 

and population genetics mating systems are also possible (see Blythe et al. 1991.) In this note, 

however, we concentrate on the characterization of localized mixing functions in the context, implicit or 

explicit, of sexually-transmitted diseases. 

Consider the interactions of a single, socially-homogeneous group of individuals who are 

structured according to age = a; and sexual activity or risk level = r . T(r,a,t) denotes the total 

population density per unit age and activity, at time t, the sexual mixing is defined through the mixing 

function 

p(r,a,r',a') ::: the proportion of partners of an (r,a) individual (i.e., a person of activity level r at 
age a), with (r',a') individuals, 

and the sexual activity is specified by the nonegative function 

C(r,a, W(T(.,.,t))) :::the expected or average number of partners per unit time of an (r,a) 
individual given that the "effective" population size is W(T(.,.,t)) at time t. 

The following natural conditions characterize the mixing function, that is, the probability that a 
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"typical" (a,r)-individual mixes with a "typical: (a', r') given that they have mixed: 

(i) p ;:::: 0, 

(ii) J~ J~p(r, a, r', a', t)dr'da' = 1, ifC(r, a, W(T( ·,·,t)))T(r, a, t) i= 0, 

(iii) p(r,a,r',a', t)C(r,a, W(T(., ., t)))T(r,a,t) = p(r',a',r,a,t)C(r',a', W(T(.,.,t)))T(r',a',t), 

(iv) C(r,a, W(T(.,.,t)))T(r,a,t)C(r',a', W(T(.,.,t)))T(r',a',t) = 0 => p(r,a,r',a',t) = 0. 

Conditions (i) and (ii) imply that p is a conditional probability density, condition (iii) states that the 

rate at which (r,a) individuals mix with (r',a') individuals equals the rate at which (r',a') individuals 

mix with(r,a) individuals (all of this per unit of age), and condition (iv) expresses the fact that there is 

no mixing in the age and activity levels where there are no active individuals, that is, on the set 

<S = {(r,a,r',a'): C(r,a,W(T(.,.,t)))T(r,a,t)C(r',a',W(T(.,.,t)))T(r',a',t) = 0}. 

To consider mixing functions p, which are Dirac delta functions (see Blythe and Castillo-Chavez 

1989) or more general distributions, we modify properties (i) and (iv) by choosing appropriate spaces of 

test functions. whose generic elements we denote by f, replacing them with: 

(i') p > 0 in the sense of distributions; i.e., 

0000 

J J p(r,a,r',a')f(r',a')dr'da' > 0 for all f;:::: 0, and 

0 0 

(iv') p = 0 on a set <S, which means 

J J p(r,a,r',a')f(r',a',r,a)dr'da' drda = 0 for all f. 

<S 

In writing the conditions characterizing p we have suppressed, for notational convenience, their 

dependence on t and T. In Busenberg and Castillo-Chavez (1989) the following result was established: 

Theorem 1. The only separable mixing function p satisfying conditions (i)-(iv) is the total 

proportionate (that is, random mixing in age and risk) mixing function p given by (1). 

C( r' ,a')T( r' ,a', t) p( r ,a,r' ,a', t) = --=00.----_:__.:.__;~~--=-...:.......-

J J C(u,v)T(u,v,t)dudv 

0 

(1) 

Busenberg and Castillo-Chavez (1991) characterized all solutions to conditions (i)- (iv) through 
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the following representation theorem: 

Theorem 2. Let <P: c:R:.t-+ c:R:. be measurable and jointly symmetric: ¢(r,a,r1,a1) = ¢(r1,a1,r,a), and 

suppose that 00 

and 

Let 

then 

J J p(r1,a1)¢(r,a,r1,a1)dr1da1 ~ 1, 
0 

00 

p1(r,a) = 1- J J p(r1,a1)¢(r,a,r1,a1)dr1da1, 

0 

( 1 1) -( 1 1) [ PI (r,a)pl (r1,a1
) A-( 1 1)] p r,a, r ,a = p r ,a 00 00 + VJ r,a,r ,a 

J J p(r1,a1)p1 (r1,a1)dr1da1 

0 0 

(2) 

(3) 

is a mixing function. Conversely, for every mixing function p there exists a ¢ that satisfies the 

hypotheses of the theorem such that p is given by (2) with p1 defined by (3). Time-dependence on ¢ 

has been suppressed. In general ¢will be given by an explicit or implicit function of time. 

A variety of special mixing functions have been used in the past; examples in the context of 

STD's models are found in Blythe and Castillo-Chavez (1989), Castillo-Chavez and Blythe (1989), 

Hyman and Stanley (1989)), Castillo-Chavez et al. (1991), and others. Particular mixing functions 

have been used extensively in age-structured epidemic models (see Dietz and Schenzle 1985, Anderson 

and May 1985, Castillo-Chavez et al. 1988, 1989, and references therein.) Theorem 2 provides the 

relationship between all these mixing solutions and the underlying mixing assumptions. A further 

subdivision between pair-formation models (see Dietz and Hadeler 1988, Castillo-Chavez et al. 1991, 

and references therein) and contact models (see Hethcote and Yorke and references therein) has also 

been emphasized. Theorem 2 allows for the incorporation of contact and pair-formation mixing 

functions within a single modeling framework (see Castillo-Chavez et al. 1991); Equation (3) reduces 

the mixing problem to that of estimating ¢. This estimation problem may be as technically difficult as 

the original mixing problem, however, it is conceptually simpler. In the remainder of this note, we 

illustrate the flexibility of Equation (3) by showing how some of the most popular, and a few new 

mixing functions, fit into this framework. 

(I) Proportionate mixing in the age variable only . 

Individuals in the (r,a) class, when choosing partners, do not show preference for any age group, 

that is, the proportion of contacts of an (r,a) individual (per capita of active population) with 
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(r',a') individuals is of the general form at timet, 

C(r',a')T(r',a' ,t) 
p( r ,a,r') 'J"oo=--'----'___.:..--'----'----'--~- , 

0 C( r' ,a')T( r' ,a', t )da' 

where p(r,a,r') is a function of three variables that is only constrained by axioms (i)- (iv). 

(II) Proportionate mixing in both the age and partner variables . 

p(r,a,r',a') = P(r,a,a') 
C( r' ,a')T( r' ,a') 

J ~ J ~ C( r' ,a')T( r' ,a')da' dr' 

(I) and (II) assume that the persons selecting partners have criteria of selection which depend on the 

class to which they belong. Situations where this is not the case are found in Busenberg and Castillo­

Chavez (1991). 

(III) Assortative or like-with-like mixing on only one of the variables (risk or age). 

p(s, r) = (1-a) Joo + 0' o(s-r). 
C(u)T(u)du 

0 

C(r)T(r) 

Here o denotes the Dirac delta function (see Castillo-Chavez and Blythe 1989). Assortative mixing 

is given as a the convex linear combination of the Dirac delta (a mixing function) and 

proportionate mixing. 

A large class of mixing functions is given by the following corollary to Theorem 3. 

Corollary: Let ¢ > 0, ¢ :~2-+~ + be jointly even: ¢(r,a) = ¢( -r,-a), and suppose that for some a > 0, 

Then 

00 

a J J p(r',a')¢(r-r',a-a')dr'da' < 1, for r,a E [O,oo) . 
0 

[ 

p (r,a)p (r',a') ] p(r,a,r',a') = p(r',a') 00 
1 1 + a¢(r-r',a-a') 

J J p(r,a)p1(r,a)drda 

0 
is a mixing function, where 

(4) 
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00 

p1(r,a) = 1- a f f p(r',a')¢(r-r',a-a')dr'da'. 
0 

Equation ( 4) includes the mixing functions used by Blythe and Castillo-Chavez (1989), Castillo-Chavez 

and Blythe (1989), and Hyman and Stanley (1989). Equation ( 4) models like-with-like or assortative 

mixing by age and risk. 

Several mixing matrices (discrete number of groups) have also been found. Four solutions Pij(t) to 

the one-sex discrete (multigroup) mixing problem are described in Table I. The earliest, best known 

and most widely used is ((A) in Table I) proportionate or random mixing (see Barbour 1977, Nold 

1980; Hethcote and Yorke 1984; and references therein), where mixing among groups occurs in 

proportion to the total number of partnerships formed by all the people in each group (also see 

Equation 1.) 

In "preferred mixing" ((B) in Table I, the PijCt) are formed by having the members of each group 

reserve a constant fraction of their partners among themselves, the rest being spread randomly over all 

groups (see Nold, 1980; Hethcote and Yorke, 1984; Jacquez et.al., 1988). Koopman et.al. (1989) also 

present a mixing model ((C) in Table I) which includes Morris' (Skokloster Workshop 1990) solution 

(set ci = c for all i and fij =is a set of appropriate constants.) The fourth solution, ((D) in Table I) is 

generalized mixing, that is, the one-variable discrete version of Equation (3). Naturally all other 

discrete solutions may be written in this form, i.e., as multiplicative perturbations of random mixing. 

The key to (D) is the set of parameters {¢ij}. If the {¢ij} are constants, then since they determine the 

nature of the multiplicative perturbation, they prescribe, in some sense, the degree of affinity ( ¢ 

budgets partner acquisition rates) between individuals of groups i and j (see Blythe et al. 1991.) 

Explicit relationships between (D) and other solutions require finding a set of { ¢ij} which recover 

them. The third column in Table I lists appropriate { ¢ij} for the various solutions. The relationship 

is non-unique, there exist many distinct sets of { ¢ij}, which will recover any particular solution. This 

is particularly clear for proportionate mixing. The equivalent { ¢ij} for "preferred mixing" (B) are 

frequency-dependent and hence time-dependent. This is not surprising as the reserved fractions do not 

depend on group population sizes. If the general solution to the mixing problem is assumed to have 

the form Pij(t) = Oij(t)pj(t) (8, unspecified), then (C) can be written as 

then (5) is in this very general sense a representation of all solutions. However, this representation 

makes the {fij} time-dependent in an arbitrary manner (e.g. Koopman et.al., 1989). 

The source of the problem may be made abundantly clear as follows. Suppose (as do Koopman 
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et.al., 1989, and Morris, Skokloster Workshop, 1990.) that sexual interaction is comprised of two 

separate processes. First, individuals mix socially, so that we have a "pre-cursor" social mixing matrix, 

{p .. (1)} say. Then, individuals who have met decide whether or not to have sex, according to some set 
lJ 

of rules which may be summed up in some matrix. Combining these two processes produces a sexual 

mixing matrix, say {Pij (2)}. This has two effects: first, the number of sexual contacts per unit time 

for each individual becomes, in general, a function of time (less than or equal to the number of social 

contacts in the "pre-cursor" mixing); this presents no problems. However, arbitrary choice of sexual 

acceptance parameters has a second effect, namely that because such a description does not take 

account of group-size changes with time (or does so at best in an ad hoc manner), the overall mixing 

process {Pij (2)} in a sense decouples individual behavior from population dynamics. For example, the 

implication is that if a group i and a group j person meet, their overall probability of becoming sexual 

partners is unrelated to the abundance or scarcity of individuals in those, or any other, groups (or 

related in an ad hoc manner, c.f. Koopmen et.al., 1989). 

We feel that selection of sexual partners from social contacts will depend on the relative 

abundance of perceived groups; for example, people becoming more selective if a desirable group is 

abundant, and vice ~· If we, for example, assume constant { 4>ij}, then we establish an underlying, 

invariant structure of mutual absolute preferences or affinities amongst all the groups in the population 

and, consequently, constant </>-matrix gives a large class of useful and biologically transparent mixing 

functions because Equation (D) in Table I can be interpreted easily. Individuals in group i have a total 

rate of pair-formation Ci Ti(t) or Ci(t) Ti(t) which they budget among all groups. CiTi(t)tflij{t)Pij(t) 

is budgeted for group-j mixing (j= 1,2,3, .. N) while the remainder Ci Ti(t) [1 - Ri} is budgeted at 

random (proportionate mixing) among all groups (see Blythe et al. 1991) and, conesquently, the matrix 

4> provides a measure of social/sexual affinity between groups. These considerations motivate the 

following definition. 

A heterogeneous sexually-active mixing population has a fixed or invariant affinity mixing 

structure if 4> is a matrix of constants. 

We cannot generate all possible social/sexual mixing structures through Equation (D) with 

constant matrix </>. However, changes in activity (the { ci(t)}) and/or group sizes (the {Ti(t)}) have no 

effect on this absolute, albeit not completely general, affinity structure. 

The empirical approach of Gupta et al. (17), where the {Pij(t)} are held constant at their initial 

(t=O) values by judiciously altering the group activity levels ( {ci(t)} in Table I), does maintain an 

invariant social structure (constant distance from proportionate mixing), but only at the cost of 

altering the proportionate mixing functions ( {pi(t)} in Table I) themselves through their assumption of 

adaptive sexual behavior change. 

In the absence of social/medical factors which cause a change in absolute preference, individuals 
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m the population have some ranking of other individuals 2 priori as regards desirability for forming 

sexual partnerships (an apriori fixed budgeting of pair-formation rates among groups through the ¢­

matrix), then a constant {¢ij} description should be (at least approximately) correct and, Equation (3) 

will provide a large class of useful mixing matrices. The alternative representation (using { fij}) is fine 

if the {fi/t)} are known for all time but in that case no advantage is to be gained from not using (D) 

directly. In the apparently beguiling case where the {fi} are constructed from behaviors in a 

succession of mixing steps (a la Koopman et.al., 1989; Morris Skokloster Workshop 1990), the process 

of decoupling the steps (e.g. meet, talk, have sex) removes any invariance in the underlying structure of 

preference for sexual partners 0§: se. The implications of this approach for parameter estimation are 

discussed in Blythe, Castillo-Chavez, and Casella (1991.) 

Finally, we use the set of mixing probabilities {pij(t) and qji(t): i = 1, ... ,1 and j 

describe the mixing/pair formation in a heterosexually active population. We let 

Pij(t) :fraction of partnerships of males in group i with females in 

group j at time t, 

qji(t) : fraction of partnerships of females in group j with males in 

group i at time t, 

Tim(t) : male population size of group i at time t, 

T/(t) : female population size of group j at timet. 

ci :average (constant) number of female partners per unit time 

of males in group i, or the ith_group rate of (male) pair-formation, 

bj : average (constant) number of male partners per unit time 

of females in group i, or the jth_group rate of (female) pair-formation, 

and define a two-sex mixing matrix as follows: 

l, ... ,N} to 

Def (Pi/t),qji(t)) is called a mixing/pair-formation matrix iff it satisfies the following properties (at 

all times): 

(A1) 

(A2) 

(A3) 

(A4) 

0 < p .. < 1, - 1J -

N L 

0 s q .. s 1, 
J1 

I: p .. = 1 = I: q .. ' . 1 1J . 1 J1 J= 1= 

c.T.mp .. = b.T.fq .. , i = 1, .. ·, L, j = 1, .. ·, N. 
1 1 1J J J Jl 

If for some i, 0 < < Land/or some j, 0 s j s N we have that cibj TimT/= 0, then we 

define Pij = qji = 0. 
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All solutions to the two-sex mixing problem can be represented as tP-perturbations (see Castillo-Chavez 

and Busenberg 1991) of the Ross solutions (familiar from the study of vector-host interactions see 

Roos 1911 and Lotka 1925): 

b.T.f 
- J J 
P· = L 
J m 

I:c·T· 
i=1 1 1 

c.T.m 
1 1 . 

N , 
2:::: b.T.f 

. 1 J J J= 

j = 1, ···, N and i = 1, ···, L. 

Ross solutions (and their tP-multiplicative perturbations) make the relationship betwee pair-formation 

and contact models clear (see Castillo-Chavez et al. 1991.) The general representation solution for 

heterosexual populations allows for the systematic generation of mixing or pair-formation or mating 

solutions which we are currently studying. The main objective of this note is to point out these 

formulae and their relationship to the current theory hoping to increase interest on the study of the role 

of pair-formation in epidemiology, demography, sociology, and genetics. The mixing problem, 

eloquently expressed by Parlett in the title of his 1972 article: 1s there a marriage function?, and 

studied by many theoreticians, remains still open 

Useful solutions to this question are of theoretical and practical value. The role of social structure 

in disease dynamics needs to be seriously studied in light of the devastating HIV f AIDS epidemics. 

Long-term forecasting of HIV prevalence cannot be provided seriously without clear understanding of 

social dynamics. At present, we would suggest that while there is a great deal of choice for solutions of 

the mixing axioms, for descriptive modeling or parameter estimation the general representation 

solution (D) is the only one that makes sense under all contingencies. 
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Table I 

Relationship Between Mixing Functions 

Mixing function 

(A) 

(B) 

Proportionate 
mixinga 

Preferred 
mixingb 

(1-f.)p·(t) 
c .. f. + (1-f.) n J J 

IJ I I L (1-fk)I>k(t) 
k=l 

a:, all i, j 
0<o:<1 

c .. f.fp.(t) IJ I I 

(C) Koopman et.al. 
f .. p.(t) 
IJ J 

(D) General 

solution 

[ 
Ri(t)RjCt) l 

P· n + ¢··(t) 
J LP (t)R (t) IJ 

k=l k k 

Any ¢ij(t) such that Ri(t) :2:: 0, all i 

and t, ¢ij(t) = ¢ji(t), all i, j, t. 

Particular solutions (A-C) and the general solution (D) to the N-group one-sex mixing problem. 
The {Pr(t)} is the mixing matrix or function itself (explanation in text), and ¢r(t) are parameters 
used in ~he General Solution to recover the particular solutions. J 

a c.(t) and Ti(t) are respectively the number of new partners taken by an individual per unit 
tlme and the total population of group i. 

b cij = 1 if i = j, zero elsewhere 
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