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ABSTRACT

Homologous pairing during meiosis is an important process for the fidelity of 

recombination and chromosome segregation.  The activity of homologous pairing has 

been linked to events that occur  during the early stages of recombination, namely 

double strand break formation and single end invasion.  The exact activities that 

regulate the genetic network of homologous pairing are not completely understood.  The 

first chapter of this dissertation provides a review of research regarding homologous 

pairing. To understand more about the activity, a forward genetics approach was used to 

identify two mutants of maize, segII and dsyCS.  Cytological characterization of these 

mutants and mapping the genetic lesion underlying each of their phenotypes comprise 

the second and third chapters. 

Combining FISH and immunolocalization studies, the segII mutant displays 

abnormalities beginning at the leptotene stage of meiosis, which result in reduced 

installation of DSB repair proteins, non-homologous pairing, reduced chiasmata, and 

crossovers between non-homologous chromosomes.  Application of cisplatin to segII 

mutants to induce double strand breaks at leptotene partially rescues repair protein 

installation, suggesting that a lack of DSBs underlies the abnormal meiotic phenotype of 

segII.  Analysis of the segII mutant also indicates that maize displays crossover 

homeostasis through its reduced single end invasion events.  The number of chiasmata 

is disproportionally reduced when compared to the number of SEI: 26% versus 2% 

respectively. 

The dsyCS mutant was also analyzed using FISH and immunolocazliation studies.  It 

displays a similar repair protein abnormality to segII, a more severe pairing phenotype 

than segII and, most notably, a high rate of anaphase bridges.  A FISH probe to the 



telomeres reveals interchromosomal connections at diakinesis, which suggests that 

improper telomere repair is at least partially responsible for the bridges.  dsyCS displays 

non-homologous crossovers, and together with segII and the previously characterized 

zmRad51 mutant, suggests that maize has at least three genetic paths to create non-

homologous chiasmata.  
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CHAPTER 1

Cytogenetics of Homologous Chromosome Pairing in Plant Meiosis

Abstract

Three activities serve to hallmark meiotic cell division: homologous chromosome 

pairing, synapsis, and recombination.  Recombination and synapsis are well-studied but  

the activity of homologous pairing still has not been fully elucidated. Many studies in 

plants have yielded insights into the mechanisms of chromosome pairing interactions.  

Research in several plant species showed the importance of clustering of telomeres on 

the nuclear envelope (telomere bouquet formation) in facilitating alignment of 

homologous chromosomes.  Homologous pairing was also shown to be tied to the early 

stages of recombination by mutant analyses in Arabidopsis and maize.  In contrast, little 

is known about the mechanisms that guide homolog interactions after their rough 

alignment by the bouquet and before the close-range recombination-dependent 

homology search.  The relatively large and complex genomes of plants may require 

additional mechanisms that are not needed in small genome eukaryotes, to distinguish 

between local homology of duplicated genes or transposable elements and global 

chromosomal homology.  Plants provide an excellent large genome model for the study 

of homologous pairing and dissection of this system.

Introduction

Homologous chromosome pairing, which encompasses interactions between 

chromosomes that lead to juxtaposition of the homologs, is one of the least understood 

meiotic processes.  Chromosome pairing takes place during the early stages of meiotic 
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prophase I and coincides with two other major meiotic processes: recombination and 

synapsis.  Recombination starts with formation of double-strand breaks (DSBs) in 

chromosomal DNA, which are later repaired, leading to crossovers between a single 

sister chromatid of each homologous chromosome.  Synapsis involves the installation of 

a protein that bridges the gap between homologs to hold them together.  Pairing, 

synapsis, and recombination not only occur concurrently but there is also a great deal of 

coordination between the three processes (Pawlowski and Cande, 2005).

Plants have been at the forefront of homologous pairing research for several 

decades (Maguire 1967, Burnham et al. 1972, Maguire 1984, Maguire 1994, Franklin et 

al. 1999, Pawlowski et al. 2003).  Good genetic tools, particularly in Arabidopsis thaliana 

and  Zea mays, facilitate identifying genes regulating pairing and elucidation of their 

functions.  Additionally, plants, unlike many other taxa, do not have meiotic checkpoints 

that arrest the progression of meiosis upon signs of recombination or synapsis 

abnormalities.  This enhances the dissection of the functions of the mutated gene(s) by 

allowing examination of downstream effects of the mutations.  

To understand the complexity of homologous pairing, one needs to consider the 

obstacles that homologs must overcome to pair.  (i) Homologous loci may be spatially 

separated by relatively large distances in the nucleus at the start of meiosis.  (ii) 

Compact heterochromatin may create difficulties in accessing an orthologous locus for 

homology recognition.  (iii) Repetitive DNA sequences, such as transposable elements 

and large gene families, may obscure proper homology and lead to ectopic pairing 

interactions. Consequently, homologous chromosome pairing must include several 

distinct stages.  First, homologous chromosomes must be co-aligned and brought into 
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close proximity.  The existence of homology between the partners must then be 

established via a sequence-based homology search.  Finally, ectopic pairing 

interactions involving members of gene families, transposable elements, and other 

repetitive DNA sequences must be eliminated so that true homology can be established 

along the entire chromosome.  

Pre-meiotic chromosome pairing

In plants, homologous pairing of entire chromosomes is uniquely tied to meiosis.  

However, evidence exists that specific chromosome regions can, in some cases, form 

homology-based pairing associations in pre-meiotic nuclei.  Specifically, studies of 

Arabidopsis interphase nuclei show that high copy number repeats tend to cluster 

together, even though the arrangement of chromosome arms is largely random 

(Schubert et al., 2007).  There is also evidence that heterochromatic regions of 

homologous chromosomes associate closely before meiosis in maize (Maguire, 1967).  

In polyploid wheat containing the Ph1 gene, somatic association of centromeres has 

been reported (Martinez-Perez et al., 2001).  Thus there may be some activities prior to 

meiosis that favor homologous pairing.  However, the intimate association of meiotic 

chromosomes along their entire length in plants, as well as in most other taxa, is always  

formed de novo during early meiotic prophase I.  

The telomere bouquet and co-alignment of chromosomes

Homologous chromosome pairing in early meiotic prophase is accompanied by 

dynamic repositioning of chromosomes in the nucleus and formation of a cytological 
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structure called the telomere bouquet.  The bouquet consists of telomeres from all 

chromosomes clustered on the nuclear envelope.  In most species, including maize, 

wheat, and rye, the bouquet forms in late leptotene and persists until early pachytene 

(Golubovskaya et al., 2002; Harper et al., 2004).  Bouquet formation has been observed 

in many plant species, as well as animals and fungi, with a notable exception being 

Arabidopsis (however, see below).  The timing of telomere bouquet formation just 

before the onset of chromosome pairing suggests that the bouquet may play a role in 

pairing.  Indeed mutants defective in bouquet formation show slowed and inefficient 

chromosome pairing (Golubovskaya et al., 2002; Harper et al., 2004; Niwa et al., 2000).  

The formation of the telomere bouquet proceeds in two distinct stages.  First, the 

telomeres attach to the nuclear envelope in late leptotene (Figure 1.1b). They then slide 

to one location, close to the nucleolus, which in late leptotene migrates from the center 

of the nucleus to its periphery (Golubovskaya et al., 2002; Harper et al., 2004).  

Clustering of the telomeres is thought to be an active and sudden process (Bass et al., 

1997). 

64



Figure 1.1. Meiosis overview and telomere bouquet formation. a. Diagram illustrating 

meiosis with important processes noted at each stage. Green represents spindle fibres. 

b. cartoon depicting attachment and movement of telomeres along the nuclear 

periphery to produce the telomere bouquet in c.   

 
b. c.
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Bouquet formation, which juxtaposes chromosomes, and chromosome pairing 

appear to be linked, however the molecular nature of this link is far from certain.  It has 

been proposed that the bouquet affects pairing by (i) generating a telomere – 

centromere polarization, which leads to a rough co-alignment of homologs, and (ii) 

confining chromosomes to a limited nuclear space, which shortens the distances 

between chromosomes across which the homology search must operate (Scherthan, 

2001).  This model implies that chromosome pairing starts at telomeres, which seems to 

be the case, at least in plants (Bass et al., 2000).  An alternative model for the bouquet 

function has recently been proposed in budding yeast and suggests that the bouquet 

affects early stages of meiotic recombination, which are known to be directly linked to 

the progression of homologous chromosome pairing (Wu and Burgess, 2006).

Little is known about factors that affect bouquet formation.  The physical end of 

the chromosome is, interestingly, not required for attachment to the nuclear envelope 

because ring chromosomes in maize participate in bouquet formation (Carlton et al., 

2003).  However, studies in yeast suggest that the protein complex normally present at 

the telomeres is required for telomere attachment to the nuclear envelope (Harper et al., 

2004).  Species-specific factors also affect the bouquet; Bass et al. showed that maize 

chromosomes in oat-maize addition lines (42 oat chromosomes plus 2 maize 

chromosomes) exhibit the bouquet dynamics typical for oat rather than maize (Bass et 

al., 2000).  Research using yeast (S. cerevisiae) and mouse models showed that 

progression through early stages of recombination also affects telomere clustering 

(Liebe et al., 2006; Pandita et al., 1999). 
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At the mechanistic level, the bouquet formation is best understood in yeast 

Schizosaccharomyces pombe.  A number of genes encoding structural bouquet proteins 

have been identified in this species, and mutants in these genes allowed the study of 

specific functions of these proteins (Chikashige et al., 2006; Harper et al., 2004).  

However, very few of these genes have apparent sequence homologs in other groups of 

eukaryotes, including plants, suggesting that even though the overall bouquet structure 

is conserved, specific aspects of telomere clustering evolve more quickly.  In plants, 

several mutants showing bouquet defects are known, including pam1, dy1, dsy1, afd1, 

and phs1 in maize, and sy1 and sy9 in rye (Bass et al., 2003; Golubovskaya et al., 

2006; Golubovskaya et al., 2002; Pawlowski et al., 2004; Sosnikhina et al., 2005).  

However, since the causes underlying nearly all these mutations are unknown, it is not 

clear which of these mutants represent specific bouquet defects and which are primarily 

defective in other meiotic processes, such as recombination, but also affect telomere 

clustering.  A bona fide telomere clustering mutation and the best studied of these is the 

pam1 mutation in maize (Golubovskaya et al., 2002).  In the pam1 mutant, telomeres 

attach to the nuclear envelope but fail to cluster.  This leads to defects in many 

downstream meiotic processes, such as chromosome pairing and synapsis.  On the 

other hand, the initiation and early progression of meiotic recombination are normal.  

Eventually, the defects in the pam1 mutant make meiosis progression slow and 

inefficient.  However, some cells complete meiosis, suggesting that telomere clustering 

is not absolutely required for successful completion of meiosis.  

Although the vast majority of eukaryotes show the presence of a telomere 

bouquet, Arabidopsis thaliana is one of the few exceptions.  However, it has been 

  
7



observed that, instead, Arabidopsis telomeres cluster around the nucleolus in the pre-

meiotic interphase, which may serve a similar function to that of the bouquet in other 

species (Armstrong et al., 2001).  

Meiotic recombination and chromosome pairing

Meiotic recombination serves two purposes: to create genetic diversity and to 

provide mechanical stability for the paired chromosomes after the synaptonemal 

complex (SC) disintegrates and until chromosomes segregate in anaphase I.  Extensive 

data suggest that a subset of meiotic recombination activities is also essential to 

promote pairing of homologous chromosomes in plants, as well as fungi and mammals, 

but, interestingly, not in Caenorhabditis elegans or Drosophila (Dernburg et al., 1998; 

McKim et al., 1998).   

Meiotic recombination

The earliest recombination step is formation of double-strand breaks (DSBs) in 

the chromosomal DNA.  The DSBs are resected from 5’ to 3’ to leave 3’ single-stranded 

DNA (ssDNA) overhangs.  ssDNA is then bound by proteins that promote homologous 

recombination.  The meiotic recombination pathway eventually leads to formation of 

crossover and non-crossover (gene conversion) events.  

Meiotic DSBs in plants, as in all species examined thus far, are created by 

SPO11, a member of the type II topoisomerase protein family (Keeney et al., 1997).  

Unique from other taxa, plants possess multiple copies of SPO11: Arabidopsis and 

maize have three, while the rice genome contains four (Grelon et al., 2001) (Pawlowski 
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et al., unpublished).  Of the three Arabidopsis homologs, only SPO11-1 and SPO11-2 

have a meiotic function (Grelon et al., 2001; Stacey et al., 2006) and the phenotypes of 

Arabidopsis spo11-1 and spo11-2 mutants appear to overlap considerably.  Neither are 

able to create crossovers to physically connect chromosomes, nor are they able to 

synapse chromosomes, which causes metaphase I to have entirely univalent 

chromosomes.

 Once the DSBs are created, they are acted upon by the MRN protein complex, 

consisting of MRE11, RAD50, and NBS1 (Bleuyard et al., 2004; Bundock and 

Hooykaas, 2002; Puizina et al., 2004; Waterworth et al., 2007).  Arabidopsis meiocytes 

deficient in MRE11 and RAD50 show chromosome breakage and meiotic sterility as a 

result of being unable to repair SPO11-induced DSBs (Bleuyard et al., 2004; Bundock 

and Hooykaas, 2002; Puizina et al., 2004).  

 Following the resection of the DSBs, a 3’ ssDNA overhang is generated.  This 

overhang is bound by two recombination proteins, RAD51 and DMC1, which promote 

homologous recombination through single end invasion (SEI) of homologous double-

stranded DNA.  RAD51 exhibits both vegetative DNA repair and meiotic function while 

DMC1 is meiosis-specific (Doutriaux et al., 1998; Klimyuk and Jones, 1997).  rad51 

mutants in Arabidopsis show univalent chromosomes instead of bivalents at metaphase 

I caused by chromosome pairing defects and absence of chiasmata (Li et al., 2004).  In 

addition, they also exhibit chromosome breakage as a result of DSBs being unrepaired.  

In maize, plants deficient in RAD51 activity also exhibit chromosome breakage, as well 

as non-homologous synapsis and, most strikingly, chiasmata between non-homologous 

chromosomes (Li et al., 2007).  In contrast to the rad51 mutant, DMC1-defective 
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Arabidopsis plants do not show chromosome fragmentation (Siaud et al., 2004).  These 

observations indicate that DSB repair using the homologous chromosome as template 

is chiefly the responsibility of DMC1.  RAD51 predominantly repairs meiotic DSBs using 

a sister chromatid as template, instead of the homologous chromosome. 

Studies of yeast and mice show that, following SEI, the meiotic recombination 

pathway splits into two parallel branches: one leading to crossovers (COs) and one to 

non-crossovers (NCOs) (Allers and Lichten, 2001; Guillon et al., 2005; Hunter and 

Kleckner, 2001).  Crossovers are reciprocal recombination events that lead to the 

exchanges of chromosome arms.  Non-crossovers (gene conversions) are generated 

through a non-reciprocal repair of DSBs, without a double Holliday junction 

intermediate.  The presence of separate CO and NCO pathways may be universal in all 

meiotic species, including plants, although this has not been confirmed in all model 

species yet. 

Steps of meiotic recombination that affect chromosome pairing

A number of studies in a variety of species, including maize and Arabidopsis  

thaliana, indicate that homologous chromosome pairing is tightly linked to the 

progression of meiotic recombination.  A strong connection between pairing and 

recombination exists also in mammals and fungi (Pawlowski and Cande, 2005).  In 

contrast, chromosome pairing does not depend on recombination in C. elegans and 

Drosophila (Dernburg et al., 1998; McKim et al., 1998).  

Numerous plant mutants in early recombination genes show defects in 

chromosome pairing in addition to their recombination defects, indicating that pairing 
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requires initiation of meiotic recombination and progression though early steps of the 

recombination pathway (Hamant et al., 2006; Pawlowski and Cande, 2005).  In contrast, 

mutant studies show that late recombination steps, such as crossover formation, are not 

required for homologous pairing (Higgins et al., 2004; Jackson et al., 2006).  Even 

though the pairing-recombination link has been well established, the nature of this 

interaction has not yet been resolved.  It is possible that chromosome pairing utilizes the 

recombination pathway DNA intermediates.  Alternatively, some recombination proteins 

may have dual functions, affecting both pairing and recombination.  Homologous pairing 

in plants, as in mammals and fungi, requires recombination initiation.  Arabidopsis 

mutants in the SPO11-1 and SPO11-2 genes, which fail to create DSBs, do not pair or 

synapse (Grelon et al., 2001; Stacey et al., 2006).  This is also true for the DSB 

resection step: atmre11 mutants are unable to pair homologs in about 90% of meioses 

(Puizina et al., 2004).  

The strongest evidence linking recombination and pairing, however, is derived 

from the SEI step of meiotic recombination, which is facilitated by a protein complex that 

includes RAD51 and DMC1.  In most meiotic species, these proteins form numerous 

foci on meiotic chromosomes in early meiotic prophase I (Figure 1.2) (De Muyt et al., 

2007; Franklin et al., 1999; Pawlowski et al., 2003; Terasawa et al., 1995).  Franklin et 

al. suggested, based on the observations in maize, that the number of RAD51 foci 

vastly exceeds what is required for formation of COs and proposed that the extra foci 

are utilized for the chromosome homology search (Franklin et al., 1999).  In vitro studies 

show that RAD51 and DMC1 coat the ssDNA overhangs, forming nucleoprotein 

filaments.  In order for this short range mechanism of DMC1/RAD51 mediated 
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homology search to be effective, the homologs must be in a close alignment. Evidence 

from yeast studies indicates that a resected ssDNA may extend to approximately 2 kb 

(Lee et al., 1998).  Each nucleotide contributes about 0.6 nm to the length of a DNA 

strand (Murphy et al., 2004).  Assuming that binding of RAD51 and DMC1 discourages 

DNA secondary structure, a linear nucleoprotein filament of 2 kb will extend to about 

1,200 nm.  This is sufficient to bridge the roughly 400 nm distance between 

chromosomes brought together by an initial “rough” alignment prior to pairing (Tesse et 

al., 2003).  In the small genome budding yeast, the length of a RAD51/DNA filament 

would even be adequate to span the ~ 1µm-wide telomere cluster (Trelles-Sticken et al., 

1999).  However, this mechanism would not be effective in bringing the homologs into 

the pre-pairing alignment in large genome species, such as maize, where the bouquet 

cluster is approximately 7 µm in diameter (Carlton et al., 2003).
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Figure 1.2. Distribution of RAD51 foci in wild-type maize meiocytes.  Dynamic changes 

of RAD51 localization in meiotic prophase I, coincide with homologous chromosome 

pairing, which supports the proposed role of RAD51 in homology recognition.  (a) 

Leptotene.  (b) Mid-zygotene.  (c) Late zygotene.  (d) Pachytene.  Red: chromatin, 

green: RAD51.  Images are flat projections from several consecutive optical sections 

through 3-dimensional nuclei.  Bar = 10 µm.  Reprinted from Pawlowski et al.: Altered 

nuclear distribution of recombination protein RAD51 in maize mutants suggests 

involvement of RAD51 in the meiotic homology recognition.  Plant Cell 8:1807-1816  

(2003). 
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Coordination of pairing and recombination

Mutational analyses have not, thus far, uncovered any plant genes participating 

in the chromosome homology search that act completely independently of 

recombination.  However, a small group of genes has been identified, which encode 

proteins that are not primarily involved in DSB repair, but instead coordinate pairing and 

recombination.  Mutants in these genes show a phenotype where homologous 

chromosome pairing is replaced by associations between non-homologous partners 

(Figure 1.3).  In plants, this gene group contains Phs1 described in maize (Pawlowski et 

al., 2004), and HOP2 and MND1, which were first identified in yeast (Leu et al., 1998; 

Tsubouchi and Roeder, 2002) but recently also shown to have homologs in several 

other species, including plants (Domenichini et al., 2006; Kerzendorfer et al., 2006; 

Panoli et al., 2006; Schommer et al., 2003).  Studies in Arabidopsis, yeast and mouse 

showed that HOP2 and MND1 form a heterodimer that is able to interact with DMC1 to 

stimulate its homology search activity (Petukhova et al., 2005; Pezza et al., 2006; 

Vignard et al., 2007).  In Arabidopsis, HOP2/MND1 localize to chromatin from leptotene 

through pachytene (Vignard et al., 2007).  This localization is not dependent on the 

SPO11-generated DSBs and does not significantly overlap with the DMC1 foci.  Mutants 

lacking HOP2 or MND1 in Arabidopsis, yeast, and mouse are unable to proceed beyond 

DMC1/RAD51 loading and exhibit univalents at metaphase I (Domenichini et al., 2006; 

Kerzendorfer et al., 2006; Leu et al., 1998; Petukhova et al., 2003; Tsubouchi and 

Roeder, 2002).  In the hop2 mutant in yeast approximately 60% of synapsis takes place 

between non-homologous chromosomes (Leu et al., 1998).  The molecular mechanism 

of action of the HOP2/MND1 complex is not yet clear.  While several authors proposed 
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that its primary role is to directly facilitate the SEI invasion process (Chen et al., 2004; 

Tsubouchi and Roeder, 2002), Zierhut et al. suggested that it may have a more general 

function in affecting chromatin and/or higher order chromosome structures of the 

homologous target (Zierhut et al., 2004).  
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Figure 1.3.  Homologous pairing in a wild-type maize meiocyte in pachytene (a) and a 

pairing-like association of non-homologous chromosome association in a maize meiotic 

mutant segII at the same stage of meiosis (b).  Red: chromatin, green and marked with 

white arrows: 5S ribosomal RNA loci on maize chromosome 2.  Images are flat 

projections from several consecutive optical sections through 3-dimensional nuclei.  Bar 

= 10 µm.
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The maize phs1 mutant also exhibits a severe pairing phenotype with 95% of 

chromosome pairing-like associations forming between non-homologous partners 

(Pawlowski et al., 2004).  However, in this mutant, RAD51 fails to load on the sites of 

meiotic DSBs, suggesting that PHS1 acts earlier in meiosis than HOP2/MND1.  

Synapsis and homologous pairing

Synapsis is the process of installing the central element (CE) between two paired 

chromosomes.  Although synapsis normally takes place between homologs, aberrant 

meiosis can produce associations between non-homologous chromosomes, which 

become synapsed together.  Such abnormal synapsis has been observed in haploids 

(De Jong et al., 1991) and in meiotic mutants defective on homology recognition (Leu et 

al., 1998; Pawlowski et al., 2004).  This would suggest that synapsis is more of a 

“default” process that does not take into account homology and will take place between 

non-homologous chromosomes if homologs are not available.  However, unlike other 

models, Arabidopsis mutants lacking the CE demonstrate the ability to associate non-

homologous chromosomes as bivalents at metaphase I (Higgins et al., 2005), 

suggesting that synapsis may be important for homology recognition.  

Chromosome pairing in polyploids

The complexity of chromosome pairing increases dramatically in polyploid 

species harboring genomes with similar (homeologous) chromosomes. To deal with this 

issue, polyploid species have evolved genetic systems controlling recognition of 

homologous versus homeologous chromosomes.  The best known such system exists 
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in hexaploid bread wheat (Triticum aestivum) which possesses three highly similar 

genomes, A, B, and D.  Proper homology recognition, which ensures that, for example, 

chromosomes from the A genome pair with their A genome homologs and not with 

homeologs from the B or D genome, is controlled by the Pairing homeologous (Ph1) 

locus (Riley and Chapman, 1958).  The Ph1 locus is likely to exert its influence by 

regulating the chromatin structure (Prieto et al., 2004) but the exact mechanism of its 

action remains unknown.  It has been proposed that the action of Ph1 results in 

disruption of pre-meiotic associations of centromeres of chromosomes from different 

genomes (Martinez-Perez et al., 2001).  However, a counter-argument stating that the 

Ph1 acts during meiosis has also been made (Corredor et al., 2007).

Cloning of the Ph1 locus has proved difficult due to limited allelic diversity.  The 

only Ph1 mutations are deletions and generating new alleles through EMS mutagenesis 

has not been possible (Wall et al., 1971).  Recent work has narrowed Ph1 to a 2.5 Mb 

region containing a structure consisting of a segment of subtelomeric heterochromatin 

that inserted into a cluster of cdc2-related genes after polyploidization (Griffiths et al., 

2006).  

Outlook

Even though elucidating the chromosome behavior and interactions that lead to 

homologous pairing has been a research goal for many decades, there are still many 

unanswered questions.  The area of most progress in understanding pairing in plants is 

the link between the homology search step and the progression of meiotic 

recombination.  This research is facilitated by the fact that recombination proteins are 
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some of the most evolutionary conserved proteins involved in meiosis and it has been 

possible to utilize knowledge from small genome meiotic model systems, such as yeast, 

to understand the processes in plants.  However, SEI mediated by the RAD51/DMC1 

protein complex is unlikely to fully explain the process of pairing of homologous 

chromosomes, especially in complex genome species such as most plants.  Such 

genomes most certainly require mechanisms that would prevent ectopic pairing 

interactions between repetitive DNA sequences.  Consequently, it is likely that some 

mechanisms regulating pairing in plants are different from those in small genome 

eukaryotes.  This underscores the need for original gene discovery to identify plant-

specific pairing regulators.  An example of validity of this approach is the identification 

and cloning of Phs1 in maize, which does not have obvious sequence homologs in 

species outside of the plant kingdom (Pawlowski et al., 2004).  Another process, where 

finding plant-specific genes may be expected is telomere bouquet formation, since it 

appears that very few of the known yeast bouquet genes have sequence homologs in 

plants.  

In addition to the plant-specific, or complex genome-specific aspects of pairing, 

there are remaining questions concerning the chromosome pairing mechanisms that are 

shared by all, or most, species.  The first is the mechanism of alignment of homologous 

chromosomes within the effective range for SEI, part of which is undoubtedly the 

function of the telomere bouquet.  The second is the coordination of SEI with other 

prophase I processes.  In elucidating both these processes, research using plants can 

certainly play a major role.  
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Chapter 2

 Mapping and Cytological Characterization of the Maize segII Mutant 

Abstract

Pairing of homologous chromosomes during prophase of meiosis is essential for 

accurate segregation of genetic material and successful gamete production.  While 

other mechanisms of meiosis, such as recombination, are well explored, homologous 

pairing remains the least understood meiotic activity.

A forward genetic approach was used to find genes affecting homologous pairing and to 

define their roles within the genetic network regulating pairing.  Screening a collection of 

meiotic mutants in maize revealed a novel homologous pairing-defective mutant, segII, 

which was found in a Mu-tagging population. Initially, the mutant presented univalent 

chromosomes at metaphase I, which implies deficient crossover formation. To 

understand the nature of the defect, segII was examined by fluorescent in situ 

hybridization (FiSH) for pairing at the 5S rRNA locus and found to have significant 

pairing defects.  The overall level of mispairing, 72%, is distinct from previous mutants 

which generally voided pairing altogether or, in the case of the maize mutant, phs1, 

showed 5% of normal levels. 

In order to further characterize the activity of segII and to define its position in the 

genetic network regulating pairing, I examined the initiation of meiotic recombination 

(formation of double-strand breaks), the installation of proteins thought to be primarily 

involved in the homology search and DNA repair, the number and nature of 

chromosomes at metaphase I, and positionally mapped the gene underlying the 
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phenotype.  Based on the results of the characterization, I also pursued complementing 

the phenotype by chemically inducing DSBs and looking for the mutant’s response 

through immunolocalizing repair proteins.  

The segII mutant mispairs chromosomes 72% of the time at the 5S locus and regularly 

creates non-homologous crossovers.  segII’s earliest observed phenotype appears to 

be s deficiency in DSB formation based on γ-H2AX phosphorylation and failure to install 

large amounts of DSB repair proteins.  A consequence of the segII mutation in 

pachytene is that synapsis is delayed.  Chemical induction of DSBs at least partially 

restores the installation of one of these proteins, RAD51. The number of chiasmata in 

segII was reduced to 26% as opposed to the reduction of repair proteins which was 2%.  

This aspect of segII’s phenotype demonstrates that maize possesses a crossover 

homeostasis mechanism, though co-localization analysis indicates it is not achieved by 

increased RAD51 and DMC1 localization.  Observation of the segII phenotype inspires 

a model linking mispairing in DSB mutants to chromosome movements in meiosis.

Introduction

Homologous pairing during prophase I of meiosis is one of the least studied aspects of 

reproduction.  While the biochemical activities of recombination are relatively well 

analyzed and conserved recombination proteins have been identified as also playing a 

role in homologous pairing, the interplay between chromosome movements, 

recombination proteins, and the ultimate result of homologous chromosome 

juxtaposition are not well understood (Sheehan and Pawlowski, 2008). 
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Identifying new mutations that affect homologous pairing is an important method to 

completely define all the elements that interact to create the pairing process  The 

prevalent system controlling pairing in organisms from yeast to higher eukaryotes 

involves intermediates of the recombination pathway.  Recombination defects starting 

as early as double strand break (DSB) production are known to significantly affect 

homologous pairing (Romanienko et al. 2000, Grelon et al. 2001, Stacey et al. 2006).  

The identification of mutations that negatively affect DSB formation and repair has 

shown that pairing in recombination-dependent pathway organisms is significantly 

reliant on the efficient formation of a 5-20x excess of DSBs as compared to crossover 

events (Franklin et al. 1999, Plug et al. 1996, Bishop et al. 1994). 

Due to meiotic DSBs being the result of small deletions, their repair necessitates at 

least a short synthesis from a homologous template in order to restore genome integrity 

(Neale et al. 2005). Due to a temporary block to sister chromatid repair, shown to be 

mediated by components of the axial element, chromosomes must seek their homolog 

for repair prior to the release of this block (Xu et al. 2005).  This requires chromosomes 

to align within repair distance of their homolog in order for the nucleoprotein filament 

formed by RAD51/DMC1 to physically interact with the homologous template.  It is 

hypothesized that the search for a homologous template at the DSB site controls 

homologous pairing of entire chromosomes.  Based on an analysis of RAD51 foci 

dynamics in zygotene and pachytene, Franklin et al. (1999) proposed that the RAD51 

nucleoprotein filament is an important biochemical mechanism driving homologous 

pairing.  
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Examining full knockouts for DSBs has greatly informed homologous pairing research 

by indicating that the absence of proper DSB formation and repair leads to chromosome 

pairing defects.  Thus, DSBs are the launching point to investigating homologous 

pairing.  In spo11 knockouts of Arabidopsis and mouse the restoration of pairing, repair 

protein installation, and synapsis has been accomplished by complementing the 

phenotype through chemical DSB induction (Libby et al. 2003, Romanienko et al. 2000, 

Sanchez-Moran et al. 2008).  One study induced a single DSB through usage of a VDE 

endonuclease in a spo11 knockout of yeast.  The single DSB proved insufficient to 

stimulate pairing and synapsis (Neale et al. 2002). 

Previous reports investigating hypomorphic DSB phenotypes have only been conducted 

in yeast.  For example, Henderson et al. (2004) assembled a collection of yeast mutants 

representing a DSB gradient from wild type down to null phenotypes.  However,  the 

analysis was limited to synaptic initiation without regard to pairing fidelity or crossover 

analysis.  Martini et al. (2006) assembled a set of hypomorphic DSB mutants to 

examine crossover homeostasis and the results indicated that viability of progeny 

spores in yeast is affected below 80% of wild type DSB activity, although cytology of 

meiosis I was not examined.     
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Results

Identification of the segII mutant and mapping the segII gene

segII was one of several mutants isolated from the maize meiotic mutant collection 

initially characterized as male and female sterile.  It was selected for analysis by a 

subsequent screen for univalents at metaphase I, and RAD51 foci abnormalities at the 

zygotene stage (Pawlowski et al. 2003).  RAD51 is a homolog of the bacterial 

recombinase RecA and, along with meiosis specific DMC1, works to provide double 

strand break repair from homologous chromosome templates during meiosis.  Abnormal 

foci numbers for RAD51 indicate a problem in recombination and homologous pairing. 

The phenotype initially appeared similar to a previously identified mutant of maize, phs1 

(Pawlowski et al. 2004).  To understand this similarity, I conducted a semi-quantitative 

RT-PCR examining Phs1 expression to determine whether segII is a hypomorphic allele 

of phs1.  Analysis using the intensity function of ImageJ of the RT-PCR shown in Figure 

2.1 indicates that the segII mutant transcribes Phs1 at 90% of the wt level.  Thus, the 

segII mutation does not represent a hypomorphic allele of the Phs1 gene that could 

cause the observed phenotype. 

  
31



38

Figure 2.1. Semiquantitative RT-PCR analysis of ZmPhs1 expression in the segII 

mutant.    ImageJ analysis of band intensity confirms that segII is not a hypomorphic 

allele of Phs1. Ladder sizes are given in bp.
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Initial cloning efforts for segII were based on a hypothesis underlying the generation of 

the mutant, which originated in a Mutator transposon population, ergo Mu activity is 

likely the cause for the mutation. This topic is reviewed in Lisch and Jiang (2009)  

Accordingly, I employed a strategy attempting to use Mu to identify the gene underlying 

the segII mutation. This strategy was to digest genomic DNA with different combinations 

of restriction enzymes and perform a Southern blot analysis with 32P labeled 

oligonucleotide probes to internal elements of the highest probability Mu elements 

responsible.  This would cause Mu elements to segregate at different sizes, and any 

bands representing Mutator elements that are exclusively present in mutants could be 

identified.  Since segII is a recessive mutation and segregates in a 3:1 ratio, all mutants 

must be homozygous for any causative Mu insertion.  Comparing Mu elements of 

mutants against Mu elements of genotyped-by-progeny wild-type and heterozygous 

plants would point to any Mutator elements that underly the segII phenotype.  Using 

multiple combinations of restriction enzymes allows resolution of different regions of the 

genome.  This was important since the resolution of the gels was limited to fragments 

≤10kb.

I created initial blots for each Mu element with different enzyme digestions using a small 

test population before moving to a larger sample.  This was done by digesting genomic 

DNA from 3 homozygous mutants, 3 homozygous wild-types, and 3 heterozygotes with 

11 unique double enzyme digests.  These blots were probed for the most commonly 

found Mutator elements; 1, 6, 8, and MuDR, and then analyzed for bands segregating 

only with heterozygotes and homozygous mutants (Lisch and Jiang 2009).  Two Mu1 

33



40

bands segregated on the tester population using a Sal1/EcoR1 restriction enzyme 

combination and were analyzed on a larger population of 18.  These Mu1 elements 

were both found in homozygous wild-type plants in the larger population, eliminating 

them as candidates for the mutation.  The lack of a Mutator element responsible has 

two plausible explanations.  The segII mutation could be the result of a Mu deletion 

rather than an insertion, thus the putative Mu1 element from the tester population may 

have been a spurious correlation.  A second possibility is that there is a Mu element 

which migrated at the same size generated in the background of the wild-type plants 

that were used to reject the potential Mu elements. 

Following the Southern blot approach, a map based cloning approach was used.  As the 

maize genome sequence became publicly available, a map-based approach became 

feasible (Schnable et al. 2009).  Previous mapping, using markers from across the 

genome, indicated linkage of the segII phenotype to markers on the short arm of 

chromosome 5 or the short arm of chromosome 3.  DNA-based markers were selected 

in both regions from the maize genetic map and were evaluated to determine which 

region exhibited bona fide linkage.  

The segII mutation had previously been crossed as a heterozygote to the B73 and the 

Mo17 inbred maize backgrounds.  Progeny were selfed to produce segregating lines for 

mapping.  These two inbred backgrounds display a high rate of DNA marker 

polymorphisms and were advantageous when searching for polymorphisms between 

the segII background and either of these diverse parents.  Two markers of those 
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selected on chromosome 5 (5.1.2 and 5.0.2) were found to display polymorphism in the 

Mo17 crossed mutants and showed linkage (8cM) in a test population (n=12).  Further 

markers were selected on chromosome 5 in the region.  

Using the most recent version of the maize sequence (release 5b.60: http://

maizesequence.org), I defined the segII region proximally by marker IDP3110 at a 

physical location of 9,951,826 and distally by marker IDP3664 at a physical location of 

8,698,384.  Table 1 shows individuals used in the tester population at polymorphic 

markers in the region.  It is notable that the distal portion of the shown genotypes are 

predominantly homozygous wild type.  This is representative of the proximity to the 

telomere and the observation that a significant amount of recombination happens at the 

distal-most portion of chromosomes.

The ZmSpo11-1 gene is located near the mapping interval and was a logical candidate 

to examine based on its known function in other species and specific aspects of the 

phenotype.  Sequencing of the full length Spo11-1 genomic sequence, including several 

hundred bases beyond the 5’ and 3’ UTRs, revealed no detectable sequence 

abnormalities that would explain the phenotype.  Screens for Mu insertions were 

conducted using a primer to the terminal inverted repeat (TIR) of Mu combined with 

primers spaced regularly throughout Spo11-1 exons.  These screens revealed no Mu 

elements in Spo11-1.  Quantitative real time PCR analyzed using Bio-Rad iQ5 Version 

1.0 software was also used to confirm that there were no abnormalities in Spo11-1 

expression due to any disrupted distant promoters in segII mutants. 
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The mapping interval on the most recent maize sequence draft contains 30 candidates 

(Table 2).  None of these candidates represents a homolog of a known meiotic gene 

(Table 3).    
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Table 2.1.  The segII mapping interval.  +/+ denotes a homozygous wild type allele 

pattern at the marker, +/- denotes heterozygous allele pattern, -/- denotes homozygous 

mutant allele pattern.  Grey boxes denote that the genotype for that individual at that 

marker was indeterminable.

Physical 
Location  
(in Mb)

6.15 6.86 8.70 9.95 11.40 13.05 28.45

Marker 
Name

IDP4720 IDP9016 IDP3664 IDP3110 IDP8393 IDP9255 IDP2139

individuals

943a +/+ +/+ -/- -/- +/- -/- +/-
943b +/+ +/+ -/- -/- -/- +/- +/-
943d +/+ +/- -/- -/- -/- -/-
943e +/+ +/+ -/- -/- -/- +/- -/-
943f +/+ +/+ -/- -/- -/- -/-
943g +/+ +/+ -/- -/- -/- -/- -/-
943h +/+ +/+ -/- -/- +/- -/-
943i +/+ +/- +/- +/- +/-
943j +/+ -/- -/- -/- -/-
943k +/+ -/- -/- -/- -/-
943l +/+ -/- +/- -/- +/-
944a +/+ +/+ +/- -/- -/- -/-
944b +/- +/+ -/- -/- -/- -/-
944c +/+ +/+ -/- -/- +/- +/-
944f +/+ +/- -/- +/- +/- +/-
944g +/+ +/- -/- -/- -/- -/-
944h +/+ +/- -/- -/- -/- +/-
944i +/+ +/- +/- -/- -/- +/-
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Table 2.2. Candidate genes in the segII mapping interval on chromosome 5.  

Physical Distance 
covered

Genes in Physical distance Identified domains

8698384-8800000 No genes

8800000-8900000 GRMZM2G019958 Uncharacterized protein
GRMZM2G019945 A domain for membrane and nuclear functions. 

8900001-9000001 No genes

9000002-9100002
GRMZM2G701333 S-cleavage site

9100003-9200003 GRMZM2G385543 Helix-Loop-Helix DNA binding domain
GRMZM2G129554 DNA/RNA Helicase 
GRMZM2G129681 Helix Hairpin Helix DNA binding Domain & POA allergen C
GRMZM2G129700 DNA-J protein targetting to mitochondria

9200004-9300004 GRMZM2G005365 Fanconi Anemia WD repeats & Zn finger RING

9300005-9400005 GRMZM2G122863 Uncharacterized protein
GRMZM2G164470 Putative membrane function (DUF domain)

9400006-9500006 GRMZM2G152466 Tubulin/alpha/beta/delta Tub & Tub FtsZ GTPase

9500007-9600007 No genes

9600008-9700008 GRMZM2G082293 DUF
GRMZM2G082343 Helix-Loop-Helix DNA binding domain
GRMZM2G160664 DNA dependant ATPase Mini chromosome maintenance
GRMZM2G461145 Metallo-dependent phosphatase
GRMZM2G160619 Leucine rich repeat and kinase domain
GRMZM2G160611 Uncharacterized protein
GRMZM2G160606 ITP-ase like domain
GRMZM2G461119 Molybdenum binding / E2 Binding
GRMZM2G145935 Short domain similar to a pre-mRNA interacting protein

9700009-9800009 GRMZM2G415791 Uncharacterized protein
GRMZM2G380291 Uncharacterized protein
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Physical Distance 
covered

Genes in Physical distance Identified domains

GRMZM2G396565 Nucleotide  diphospho sugar transferase

9800010-9900010 GRMZM2G104316 Uncharacterized protein
GRMZM2G104332 Uncharacterized protein

9800010-9900010 GRMZM2G104342 GRAS transcription factor
GRMZM2G543920 Uncharacterized protein

9900011-9950000 GRMZM2G096596 Adenylate cyclase associated CAP-C
GRMZM2G096591 Glucoside hydrolase
GRMZM5G878347 Uncharacterized protein
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Table 2.3. Locations of maize homologs of previously identified meiotic genes in plants.  All genes listed 
on chromosome 5 are outside the mapping interval.

Chromosome Homolog Name
Protein Name 

DSB creation
PRD1 9 GRMZM2G308884_P01

PRD2 (MPS1) 4 GRMZM2G133969_P02

PRD3 9 GRMZM2G055899_P06

SPO11-1 5 GRMZM2G129913_P04

SPO11-2 1 GRMZM2G052581_P01

SPO11-3 1 GRMZM2G052581_P01

DSB Detection & 
Resection
MRE11A 2 GRMZM2G106056_P02

MRE11B 4 GRMZM2G309109

RAD50 4 GRMZM2G030128_P01  
NBS1 5 GRMZM2G006246_P01

ATM 3 GRMZM2G464523_P01

ATR 5 GRMZM2G128938_P01

RPA1 4 GRMZM2G115013_P01

RPA2 6 GRMZM2G076329_P01

DSB protein loading 
and repair
BRCA1-1 6 GRMZM2G080314_P01

BRCA1-2 8 GRMZM2G052688_P01

BRCA2 10 GRMZM2G134694_P01

RAD51A1 7 GRMZM2G121543_P02

RAD51A2 3 GRMZM2G084762_P01

RAD51C 3 GRMZM2G123089_P02

DMC1 3 GRMZM2G109618_P01

Inter Homolog 
Repair Bias
RAD54 5 GRMZM2G083138_P01

HOP2 5 GRMZM2G177942_P01

MND1 2 GRMZM2G102242_P02  

Axial element/
Lateral element/SC
AFD1 6 GRMZM2G059037_P04

ASY1 2 GRMZM2G035996_P01

MER3 4 GRMZM2G346278_P01

ZYP1 10 GRMZM2G324390_P01
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Cytological characterization of the segII mutant

Homologous Pairing

Initial characterization of the segII mutant was aimed at determining the extent of any 

homologous pairing deficiency.  In order to establish whether homologous portions of 

the genome are aligning, I used a fluorophore conjugated DNA probe targeting the 5S 

rRNA locus. This locus contains a highly repetitive sequence allowing for a robust signal 

and clear visualization using fluorescent in situ hybridization (FISH).  The 5S rRNA locus 

is located on the long arm of chromosome 2 and is easily visualized in the early sub-

stages of prophase I. 

In prophase I, the pachytene stage represents the ideal time to assay pairing since all 

chromosomes are normally synapsed with a partner to form bivalent chromosomes. The 

cytology at this stage in maize is excellent and bivalent chromosomes are 

distinguishable from univalents by thickness.  In some situations where the 

chromosome twist causes the 5S locus to lie perpendicular to the plane of view, the 5S 

probe on each member of the bivalent is visible. 

In the leptotene stage, chromosomes appear as unpaired univalents and the 5S signals 

generally appear well separated from each other in the nucleus. Later, in zygotene and 

pachytene, if pairing occurs properly, the paternal and maternal 5S loci are juxtaposed 

and appear as one FISH signal on a bivalent chromosome.  Mispairing in pachytene 

would result in two foci appearing on separate bivalents (Figure 2.2a).  
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segII chromosomes display a 72% rate of mispairing at pachytene (n=32).  This result 

confirms that the segII mutation is affecting homologous pairing and that further 

characterization is required to determine the meiotic mechanisms through which segII 

influences pairing. 
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Figure 2.2. Chromosome pairing. a. A cartoon depicting homologous pairing in a 

nucleus with two chromosome pairs. b. Flat projection of a 3-dimensional image 

showing pairing of the 5S rRNA loci in pachytene nuclei of wild-type and c. segII 

meiocytes. Red: DAPI stained chromosomes, Green: 5S rRNA probe. Scale bar 

represents 5 μM.

a.
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Telomere bouquet

The telomere bouquet is a cytological structure observed in many organisms that is 

thought to play a role in pairing. The telomere bouquet occurs early in zygotene at the 

time when chromosomes begin to pair.  Observations of the pam1 mutant of maize 

indicate that the primary defect of this mutant is the formation of the bouquet 

(Golubovskaya et al. 2002). The result is desynchronization of meiocyte development 

and meiosis progression in pam1 anthers, and reduction of homologous pairing to 41%. 

This study has determined that bouquet formation is critical for successful homologous 

pairing of maize.   Observations of segII’s telomere bouquet, through FISH probes 

specific to the telomeres, indicate no perturbations in the progression or timing of 

bouquet formation. 

γ-H2AX phosphorylation

Knowing that homologous pairing is highly impaired, but not abolished, I asked whether 

DSB formation might be a cause of the phenotype.  In mutants where DSBs are 

completely abolished, homologous pairing is also defective (Romanienko 2000, Grelon 

et al. 2001, Stacey et al. 2006).  I wanted to determine whether significantly decreased 

production of DSBs might be responsible for the observed significant reduction in 

homologous pairing.

DSBs in DNA are identified by phosphorylation of the histone subunit H2AX, at residue 

S139 (for review see Fillingham, 2006).   Examination of γ-H2AX phosphorylation has 

been used previously to determine whether meiotic DSBs are created during meiosis in 
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Arabidopsis, human, and mouse (Uanschou et al. 2007, Chicheportiche et al. 2007, 

Sanchez-Moran et al. 2008, Paull et al. 2000, Mahadevaiah et al. 2001, Kumar et al. 

2010).  To investigate DSB formation in the segII mutant I conducted immunolocalization 

of the phosphorylated γ-H2AX variant histone during meiosis.  A commercial antibody to 

γ-H2AX was used to stain prophase 1 chromosomes of wild type and segII meiocytes 

(figure 2.3).  The staining displayed two classes of γ-H2AX foci: less intense ‘s’ foci and 

more intense, larger ‘l’ foci.  
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Figure 2.3. γ-H2AX staining in segII and wild-type meiocytes.  a,b and c are images of 

wild-type meiocytes in leptotene, early, and late zygotene, respectively.  d, e, and f are 

images of segII meiocytes in leptotene, early, and late zygotene, respectively. Scale 

bars represent 5 μM.
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Table 2.4.  Numbers of γ-H2AX foci in wild-type and segII meiocytes. 

s-foci Leptotene Early Zygotene Late Zygotene

Wt 299 (n=13, SD=236) 483 (n=19, SD=238) 549 (n=22, SD=208)

segII 88.2 (n=5, SD=37.5) 146 (n=16, SD=119) 205 (n=10, SD=52)

l-foci Leptotene Early Zygotene Late Zygotene

Wt 82 (n=15, SD=62) 220 (n=18, SD=142) 120 (n=21, SD=67)

segII 17.6 (n=5, SD=16.7) 11 (n=16, SD=12) 68 (n=12, SD=32)
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As shown in Table 3, segII exhibits a smaller number both small and large γ-H2AX foci 

during all stages observed compared to wild type meiocytes.  Despite an overall lower 

foci count, the segII mutant displays a relative increase in both foci in late zygotene as 

compared to early zygotene.  Previous studies have reported presence of γ-H2AX foci 

in spo11-/- meiocytes and suggested that it may be an uncharacterized chromatin 

remodeling, late replicating DNA, or chromosome damage unrelated to recombination 

(Chicheportiche et al. 2007, Libby et al. 2003).  Chicheportiche et al. (2007) were able 

to draw conclusions for repaired/repairing status of small and large γ-H2AX foci in 

mouse, however their findings do not match well with what is observed in maize.  This 

indicates that γ-H2AX follows different dynamics in maize after installation. 

ASY1 installation

To further characterize the segII mutant, I looked at the installation of the ASY1 protein 

involved in chromosome axis formation in early prophase.  ASY1 is a homolog of yeast 

HOP1, which is a component of the axial element (Caryl et al. 2000).  Aberrant 

chromosome structure would indicate that the gene underlying the segII mutation acts 

prior to DSB formation.  In wild-type, ASY1 installs along all chromosome axes prior to 

DSB formation and is visualized as bright continuous stretches along unsynapsed 

chromosomes (Golubovskaya et al. 2006).  In segII, the appearance of ASY1 does not 

differ significantly from wild type siblings during leptotene. 
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ZYP1 installation

Following DSB repair, chromosomes become synapsed together.  The synapsis of 

chromosomes is accomplished by the recruitment and installation of ZYP1 to bridge the 

gap between members of what will be a bivalent by interacting with the axial element on 

both members.  In yeast this occurs at the sites of DSB repair and crossover formation, 

based on work associating ZYP1 at synapsis initiation complexes (SICs) (Fung et al. 

2004).   Studies of the relative positions of synapsis initiation and crossover distributions 

have previously suggested ZYP1 installs at DSB repair sites in maize. (Burnham et al. 

1972, Anderson et al. 2003, Maguire 1972, Maguire 1994)  Maize and other large 

chromosome plants have been shown to initiate synapsis at more sites than there are 

crossovers (Gillies 1985).  This could reflect a requirement for efficient synapsis set by 

the chromosome size increase between higher plants and yeast.  The installation of 

ZYP1 at sites of SEI repair events is an intuitive mechanism of the pairing process; 

repair events normally only occur from a homologous template. 

My immunolocalization experiments in maize indicate that staining of ZYP1, the central 

element, and ASY1, a component of the axial element, are generally mutually exclusive.  

Since ZYP1 interacts with the axial element to form the synaptonemal complex, it is 

possible that ZYP1 occludes the antigenic site of ASY1.  At pachytene, wild-type cells 

are at or near complete synapsis, showing ZYP1 staining along all chromosomes with 

ASY1 staining occasionally seen in small segments. 
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 At pachytene in the segII mutant, a delay in ZYP1 staining is seen along with 

persistence of long stretches of ASY1 staining, and late pachytene meiocytes eventually 

install ZYP1 along the full length of bivalents (Figure 2.4). This delayed ZYP1 

installation indicates that segII chromosomes install ZYP1 at a slower rate than in wild 

type.  This could be due to segII having a defect in chromosome structure, resulting in 

inefficient polymerization of ZYP1.  However, the existence of a structural phenotype 

that displays pleiotropic effects from leptotene to pachytene and yet does not otherwise 

alter the articulated chromosome structure is unlikely.  More simply, if there are fewer 

DSBs as γ- H2AX staining suggests, and there are fewer crossovers, then a delay in 

synapsis would be a logical consequence of fewer SICs.  
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Figure 2.4.  ASY1 and ZIP1 installation. a. wild type meiocyte at pachytene, no ASY1 

signal (green) is visible along chromosome axes. b. segII meiocyte at pachytene 

displays stretches of ASY1 staining along chromosome axes.   Blue: DAPI staining of 

chromosomes, Red: ZYP1, Green: ASY1
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Univalent and bivalent counts

In order to determine whether crossovers are affected in the segII mutant, I looked at 

the downstream effects of the mutation.  Crossovers are important structurally in 

meiosis for the fidelity of chromosome segregation since without crossovers to preserve 

bivalent partners following synaptonemal complex dissolution, chromosomes segregate 

randomly at metaphase I.  Since presence of bivalents in late prophase I requires 

crossovers, distinguishing univalents and bivalents at metaphase I allows an estimate of 

the number of crossovers that are generated in segII.  

Using acetocarmine staining of metaphase I meiocytes, (Figure 2.5) I observed that wild 

type cells show all chromosomes aligning on the metaphase plate, indicating that every 

chromosome pair possesses at least one crossover.  segII displays between 14 and 15 

chromosomes at metaphase I (n=24, SE=2.0).  Counting this many chromosomes 

indicates that there are 5 bivalents and so between 5 and 10 crossovers form in segII 

meiocytes, assuming one crossover per chromosome arm. 
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Figure 2.5.  Presence of univalents and bivalents in segII mutant meiocytes at 

metaphase I. a. Wt meiocyte stained with acetocarmine at metaphase I.  b.  segII 

meiocyte stained with acetocarmine at metaphase I.  Arrow heads represent the 

metaphase plate, arrows represent univalents. Chromosomes (dark staining bodies) 

that are lined up at the middle of the cell represent bivalents, while those that are off-

center are univalents.
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In wild-type cells, the number of crossovers can be determined by counting chiasmata 

using a chromosome spreading technique.  Chromosomes with two chiasmata appear 

as ring structures, while chromosomes with one chiasma appear as V or Y shaped 

structures.  Using this method, 16.8 (n=9, SE=0.5) chiasmata were observed in wild type 

maize.  In 30% of cells chromosome 10, the shortest chromosome of maize, was seen 

to have no chiasmata as it was observed separated from its homolog.  Interestingly, in 

hundreds of wild type meiocytes visualized using acetocarmine, none displayed 

obviously univalent chromosomes failing to line up at metaphase I.  This indicates that 

the spread technique results in an underestimatation (~0.3 fewer) of the number of 

crossovers. 

In segII meiocytes, I used chromosome squashes to count chiasmata, as the spreading 

technique did not provide sufficient chromosome separation (Figure 2.6).  Crossover 

counts using this method at diakinesis yielded 4.3 (n=9, SE=0.47) crossovers per 

meiocyte.  The acetocarmine method likely underestimates the number of crossovers 

since only cells which contain well separated chromosomes can be counted.  This 

would explain the disparity between the observed 4.3 crossovers than the bivalent/

univalent estimate of 5 crossovers.

While slightly lower than expected, the crossover counts at diplotene/diakinesis confirm 

that the segII mutation results in many fewer crossovers than wild type (a 74% 

decrease).  Bivalents are the result of the obligate crossover rather than the norm of 
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one crossover per arm. This result suggests that while not all chromosomes show a 

crossover, all chromosomes are synapse.  
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Figure 2.6. Presence of univalents and bivalents in diakinesis.  Meiocytes of segII 

stained with acetocarmine and visualized using a bright light microscope.  Arrows 

indicate bivalents that are held together by chiasmata.
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Crossovers between non-homologous chromosomes

Since I observed non-homologous pairing at pachytene, I wanted to investigate whether 

these mispaired chromosomes could generate non-homologous crossovers in the segII 

mutant.  In addition to 4',6-diamidino-2-phenylindole (DAPI) to visualize chromosome 

structure at diplotene/diakinesis, probes to 5S rRNA and centromere 4 were used to 

assess whether crossovers were exclusively between homologous chromosomes 

(Figure 2.7).  Any bivalents at these stages must be held together by crossovers, ergo 

any bivalents containing only one of the 4 signals (two pairs) must have a non-

homologous crossover. 

In many spreads of segII at this stage, all four probe signals were present on entangled 

chromosomes and as such, homologous/non-homologous status was indeterminable.  

Nevertheless, in 4 of 42 spreads, bivalent chromosomes carrying the FISH signals were 

separated from the chromosome amalgam. In each of these four cases, the bivalants 

consisted of non-homologous chromosomes.  This was determined through possession 

of one signal from the two probe pairs, or was determined to be non-homologous by the 

size differences between the partner chromosomes (heteromorphic bivalents).
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Figure 2.7. Non-homologous crossovers in the segII mutant. The bottom bivalent 

contains chromosome 2 and an unidentified smaller chromosome, while the top bivalent 

is heteromorphic. Blue - DAPI stained chromosomes. Red - 5S probe.  Non-

homologous pairs are outlined in white.   Arrows indicate the position of the 5S probe.   

58



65

RAD51 and DMC1 localization

To investigate the non-homologous pairing and crossovers in segII, I looked to the 

installation of two proteins known to be crucial to the fidelity of repair, pairing, and 

crossovers: RAD51 and DMC1.  These proteins are both homologs of the bacterial 

recombinase RecA.  Rad51 is expressed in somatic and meiotic cells for homologous 

template based DNA repair, while Dmc1 is specifically expressed during prophase I of 

meiosis.  During meiosis, RAD51 and DMC1 are installed in numbers several fold 

greater than crossovers, which reflects the number of DSBs created (Terasawa et al. 

1995).

The initial characterization of segII by Pawlowski et al. (2003) demonstrated that RAD51 

is installed at ~2% of wildtype; however, the association of DMC1 with RAD51 was not 

examined at that time.  In order to look at the installation of DMC1, I raised an antibody 

against a peptide synthesized to match the most distinct site of DMC1 as compared to 

RAD51. 

Using this antibody in conjunction with the anti-RAD51 antibody, I found that RAD51 

and DMC1 recruitment was significantly decreased in segII at early zygotene (Figure 

2.8b). In early zygotene, the time when the numbers of RAD51 and DMC1 foci are at 

their peak, segII mutant meiocytes showed installation of ~2% for both RAD51 and 

DMC1 foci.
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Figure 2.8.  RAD51 and DMC1 localization.  Flattened projections of 3D images. a. Wt 

nucleus at early zygotene displays many foci of both RAD51 and DMC1 b. segII nucleus  

at early zygotene displays few foci, indicated by arrows.  Autofluorescence from the 

nucleolus appears bright due to segII’s weaker staining and the Deltavision RT’s auto-

adjustment.  Blue: DAPI staining of chromosomes, Red: DMC1, Green: RAD51
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Table 2.5. RAD51 and DMC1 foci numbers in segII and wild-type meiocytes. 

Early 
Zygotene RAD51 DMC1

% DMC1 
Co-Localized with 

RAD51
Wt 466 (n=12, SE=35) 203 (n=11, SE=47) 57% (n=11, SE=10)

segII 10.9 (n=31, SE=1.8) 5 (n=31, SE=0.8) 69% (n=28, SE=7)

% of Wt 2.3% 2.4%

Late 
Zygotene

Wt 86.5 (n=30, SE=15) 24.2 (n=30, SE=6) 32% (n=21, SE=7)

segII 4.5 (n=20, SE=1.0) 2.05 (n=20, (0.8) 34% (n=9, SE=15)

% of Wt 5.2% 8.4%
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Cisplatin treatment

The phenotype with regards to γ-H2AX foci and RAD51/DMC1 installation suggests that 

the primary defect in the segII mutant could be DSB formation.  To examine this 

hypothesis, I attempted to complement the segII mutant phenotype by chemically 

inducing double strand breaks.  

cis-diamminedichloroplatinum(II) (cisplatin) is a chemical that is capable of forming 

adducts with DNA bases.  These chemical bonds are removed by excision of the 

nucleotides to which cisplatin is bonded, and repaired through RecA activity (Kartalou & 

Essigmann 2001).  The excision of bases from dsDNA is very similar to the DSBs 

generated by SPO11, and these DSBs have been shown to undergo meiotic repair and 

recombination (Hanneman et al. 1997).  

Several studies have reported that cisplatin successfully complements DSB deficient 

mutants in mouse and Arabidopsis.  Treatment with cisplatin has been shown to cause 

increased synapsis, RAD51 and DMC1 foci restoration, and progression past meiotic 

checkpoints. (Romanienko et al. 2000, Libby et al. 2003, Sanchez-Moran et al. 2008) 

Rad51 and Dmc1 are the hallmarks of single end invasion (SEI) based homologous 

repair in meiosis.  Following cisplatin treatment, an increase in their installation indicates  

that the cisplatin is successfully creating DSBs, and that DSBs in the segII mutant are 

able to be resected.  Cisplatin was dissolved in Artificial Pond Water (APW) and used to 

treat cut tassels.  The treatment is stressful, and due to the limited amount of control 
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over viability of specific portions of maize tassels treated, and the developmental 

gradient of the tassel, not all anthers harvested are able to yield cells that are viable for 

immunolocalization (see Methods and Materials).  Wild-type cells treated with APW in 

early zygotene and segII cells treated with APW in late zygotene were not available for 

data collection. 
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Table 2.6.  RAD51 and DMC1 foci numbers in wild-type and segII meiocytes following 

cisplatin treatment.

Early Zygotene

RAD51 DMC1

Wt-untreated 466 (n=12, SE=35) 203 (n=11, SE=47)

Wt-APW n/a n/a

segII-untreated 10.9 (n=31, SE=1.8) 5 (n=31, SE=0.8)

segII-APW 1.87 (n=39, SD=0.4) 0 (n=39)

segII-Cisplatin 99.5 (n=6, SE=19) 2 (n=6, SE=0.9)

Late Zygotene

RAD51 DMC1

Wt-untreated 86.5 (n=30, SE=15) 24.2 (n=30, SE=6)

Wt-APW 39 (n=17, SE=8) 0.35 (n=17, SE=0.2)

segII-untreated 4.5 (n=20, SE=1.0) 2.05 (n=20, (0.8) 

segII-APW n/a n/a

segII-Cisplatin 36.5 (n=11, SE=9) 0 (n=11)
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Data from these experiments are presented in Table 5.  DMC1 localization is restored to 

a lower degree than RAD51 by the treatment.  DSBs caused by cisplatin in segII 

meiocytes are unable to recruit DMC1.  It is presumed that  this reflects the stressful 

nature of cisplatin treatment, as the observed meiocytes were administered cisplatin at 

the time when DSBs normally occur.  Despite the greater number of potential sites to 

install DMC1, DMC1 foci decrease in the segII mutant with cisplatin treatment (2) versus 

untreated segII cells (5) at the same stage of prophase I.  Additionally, based on the Wt-

APW (lacking cisplatin) control versus Wt-untreated at late zygotene, DMC1 is much 

more heavily affected by experimental conditions than RAD51, as its installation is 

reduced to 1.4% of normal vs. RAD51’s 45% installation. However, the data indicate 

that that the cisplatin treatment is able to induce DSBs.  At early zygotene, cisplatin 

treated segII meiocytes have at least 10 fold more DSBs compared to untreated 

meiocytes, based on induced RAD51 foci.  The recruitment of RAD51 to cisplatin 

generated DSBs indicates that resection likely occurs in segII. 

Discussion

The segII phenotype is unlike other meiotic mutants identified to date in that it displays a 

strong deficient pairing phenotype: 72% of pairing interactions are between non-

homologous chromosomes.  Only the dsy2 mutant of maize has been shown to have a 

similar level of non-homologous pairing (75%), but dsy2 differs significantly from segII in 

that it displays 10 fold more RAD51 foci, the majority of which form thread-like 

structures, and displays limited synapsis indicating a problem with ZYP1 recruitment or 

polymerization while segII can fully synapse, albeit slowly (Franklin et al. 2003, 
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Golubovskaya et al. 2011).  Curiously, segII has synapsis across all ten bivalents even 

though only five SEI containing DMC1 occur throughout the genome. 

I attempted to discern the nature of the segII mutation through cytological examination 

of events in prophase I.   No published study has described a DSB hypomorph with 

regards to the cytology of repair proteins or crossovers (Neale et al. 2002, Henderson et 

al. 2004, Martini et al. 2006).  In particular, those authors assumed chiasmata to be 

exclusively between homologous chromosomes in spo11 hypomorphs.  Because of this 

recombination was only assayed with molecular, rather than cytological, methods and 

so non-homologous crossovers were not detectable.  This is the first report of non-

homologous crossovers in a DSB hypomorph.  Although I do report evidence that a 

reduced number of DSBs is directly responsible for the presence of non-homologous 

chromosome associations and crossovers, I propose an explanation regarding pseudo-

homology. 

The earliest observable meiotic phenotype in segII is the strong decrease in γ-H2AX 

phosphorylation.  While small and large foci are observed in the segII mutant, they are 

both significantly reduced in overall number at each stage of prophase examined.  S-

foci are only at 30% by the normal time of DSB induction.  L-foci vary much more 

strongly; from as low as 20% of wt levels in leptotene to over 50% at late zygotene.   γ-

H2AX foci persist throughout the repair stages, indicating that they are not removed 

synchronously with repair and/or that there may be a small amount of ongoing DNA 

damage during meiosis.  The latter claim is supported by spo11, mei1, and mei4 
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mutants of mouse, which despite being deficient in DSB production, display some γ-

H2AX foci at zygotene and pachytene (Chicheportiche et al. 2007, Libby et al. 2003, 

Kumar et al. 2010).

Aside from the overall reduction of γ-H2AX foci in the segII mutant, the mutant displays 

a significant increase in the γ-H2AX foci number at late zygotene.  This observation 

could indicate that there is a delay in creation DSBs or their phosphorylation in the segII  

mutant, or that the rate of repair of the few existing DSBs is slow and so they 

accumulate.  

To examine the late γ-H2AX foci and determine whether they are the result of delayed 

DSBs, I immunolocalized RAD51 at pachytene in the segII mutant to see if this DNA 

damage was being repaired by homologous repair processes.  The observations for 

segII are interesting in that there appear to be two different types of meiocytes at 

pachytene.  The first type, a minority of observed cells, displays a 10-20 fold increase 

over wild-type (and the second type) in RAD51 foci at pachytene; average 229 (n=4, 

SE=68).  The second type displays a wild-type number of RAD51 foci averaging at 11 

(n=16, SE= 3.4), Previous characterization of wild-type maize at pachytene indicates that 

7-22 foci are normal at this stage (Franklin et al. 1999).  The presence of the first type of 

meiocytes suggests that RAD51 could experience delayed installation in a subset of 

segII meiocytes, or that a subset of cells experienced a late wave of DSBs. However, if 

segII generates DSBs at late zygotene, chromosomes are already paired as bivalents 

and synapsing at this time.  The late timing of these breaks precludes any potential 
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DSBs formed or phosphorylated at pachytene from contributing to homologous pairing.  

Consequently, the late forming DSBs are unable to rescue segII meiocytes, as 

evidenced by the lack of viable pollen.  This raises the question of whether the segII γ-

H2AX foci at the leptotene and early zygotene stages are the result lack of DSBs or a 

delayed installation of RAD51.   The RAD51 localization at cisplatin induced DSBs 

addresses this issue.  Cisplatin is able to restore RAD51 protein installation at early 

zygotene in segII meiocytes, which means that there is not a delay in phosphorylation or 

processing of DSBs.   The subset of cells generating late-forming breaks are an 

unexpected feature of segII, and could represent late SPO11 complex activity, or 

possibly apoptosis. 

DSB deficient mutants, which create no SPO11-complex-induced DSBs, are expected 

to install undetectable amounts of RAD51 and DMC1 (Chicheportiche et al. 2007, Libby 

et al. 2003, Kumar et al. 2010).  However,  in segII meiocytes, RAD51 and DMC1 are 

both installed at ~2% of wild type, indicating that there is a very low level of DSB 

creation.  It is interesting that γ-H2AX signals 20% of wt activity in segII, but that repair 

proteins are installed at a significantly lower level.  The disparity between γ-H2AX and 

repair protein levels could indicate a problem with resection, although unlike segII, 

resection mutants display chromosome fragmentation.  Additionally, cisplatin treatment 

of segII meiocytes induces significant numbers of foci for RAD51.  The ability to restore 

RAD51 foci through DSB induction also indicates that resection is not defective
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 Crossover homeostasis is exhibited in segII

Crossover homeostasis is an important phenomenon demonstrated in yeast and 

mouse, which is defined as the ability to sacrifice non-crossovers in favor of crossovers 

under limiting SEI conditions, and is associated with crossover assurance (Yanowitz 

2010).   Prior to these results, crossover homeostasis has not been demonstrated in 

maize.   Without homeostasis, based on the number of RAD51 and DMC1 foci observed 

in the segII mutant one should expect only about 2% of the normal number of 

crossovers: less than 1 per meiocyte.  However, I observed substantially more 

crossovers: 26% of the wild-type number.  These data substantiate the idea that 

crossover homeostasis occurs in maize.  

The segII mutant is an excellent tool to study crossover homeostasis since the number 

of DSBs and subsequent crossover-competent SEI events (containing both RAD51 and 

DMC1) are significantly fewer than the number of bivalents.  DSB mutants in higher 

eukaryotes (spo11, mei1, and atprd1, atprd2, atprd3) examined prior to this have been 

null mutants or have had significantly more SEI than segII (de Muyt et al. 2007, de Muyt 

et al. 2009).  

Since there appear to be a limited number of DSBs in segII, I hypothesized that one 

mechanism for crossover homeostasis (CH) could involve a higher co-localization of 

RAD51 and DMC1 at DSBs.  However, while I observed that the DMC1 co-localization 

level in the mutants appears increased compared with wt (69% vs. 57% respectively), it 

is not statistically significant as determined by Welch’s unpaired t test (p > .05).  RAD51 
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co-localization was also tested and found not to be significant).  Crossover homeostasis 

in C. elegans functions through the RTEL-1 protein, such that all SEI are able to form 

crossovers until RTEL-1 forces dissolution of “extra” SEI events (Youds et al. 2010).  

The data gathered here from maize is compatible with the RTEL-1 mechanism of C. 

elegans and an RTEL-1 type mechanism may be the method that maize mediates 

crossover homeostasis.

 A biological imperative for a multitude of SEI 

The rad51 and dmc1 mutants from multiple model species demonstrate that either 

protein alone is insufficient to create SEI that are competent to complete homologous 

pairing and crossing-over genome wide (Li et al. 2007, Siaud et al. 2004, Shinohara et 

al. 1997).  A question previously raised regarding DSBs, is whether one repair event per 

chromosome successfully fills the minimal requirement for pairing and the obligate 

crossover, or whether many repair events, both crossovers and non-crossovers, from a 

consistent partner are required to successfully complete meiosis. Though the minimum 

number of SEI events required to satisfy the requirements of the homology search 

cannot be determined, a model can be proposed as to why the requirement is greater 

than 1.  

The maize genome contains a high number of repetitive elements in addition to many 

duplicated genes, due to an ancient genome duplication. (Schnable et al. 2009, Blanc 

and Wolfe 2004)  This means that the genome contains a number of sites that have 

multiple matches for homologous repair (pseudo-homology).  SEI repair for any site, 
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homologous or ectopic, requires physical connection with another chromosome.  Maize 

chromosomes have been observed to undergo significant movement in early meiosis. 

These movements would allow pseudo-homologous regions to interact and it is 

proposed that this is the case and continued movement is a mechanism that prevents 

ectopic recombination (Sheehan and Pawlowski 2009).  This model implies that there is 

either a method to slow down chromosome movements to allow homologous 

recombination, or that homologous recombination (as compared to ectopic) is stronger 

than chromosome arm movements. 

Observations of segII led to consideration of how a hypomorphic DSB mutant would 

affect chromosome movement.  I propose that a multitude of SEI events are responsible 

for slowing down chromosome movement.  That is, many SEI occur between a 

homologous pair of chromosomes, which slows down movement of both partners of the 

future-bivalent.   This would stabilize juxtaposition of homologous chromosomes versus 

non-homologous chromosomes for pairing and synapsis.  Single ectopic recombination 

sites would not have a sufficiently strong effect to slow down both members of the 

ectopic pair during zygotene.  As meiosis proceeds to pachytene, chromosomes are 

observed to slow down (Sheehan and Pawlowski 2009).  In this model, the pre-

pachytene period would accommodate a DSB hypomorphic mutant, granting the ability 

for the few SEI to overcome the weaker movement forces, thus allowing for pairing and 

synapsis of chromosomes. However, the few SEI created by a hypomorph would be 

able to secure both homologous and ectopic recombination interactions, which 

undermines the fidelity of the process. 
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Future directions

Cloning the segII gene.

In order to complete the work and identify the gene underlying the segII mutation 

several steps are necessary.  The first would be to continue to create markers in the 

interval on chromosome 5 while identifying more mutants that are recombinant in the 

region, allowing the candidates and region to be narrowed. Second, the genes 

remaining could be prioritized for analysis by examining the characterized expression of 

homologs in Arabidopsis (Libeau et al. 2011).  At this point, genes would be sequenced 

in order from highest meiotic expression to lowest to identify any sequence alterations 

that could give rise to the mutation.  Identified sequence aberrations would then be 

corroborated by examining all available segII mutant plants (~400) for the mutation 

while an allele is pursued for complementation testing.  

In order to confirm the identified gene through allelism testing, crosses made to an Ac/

Ds line available through the Brutnell lab could be screened (Kolkman et al. 2005).  In 

2010, 3 Ac/Ds lines became available that had insertions at 7.26, 7.69, and 7.98 Mb into 

chromosome 5 (I.S06.0320, I.S08.1100, and B.W06.0457 respectively). Based on data 

at the time, these were all inside the mapping interval.  These lines were used to cross 

with phenotypically wild type plants in families segregating for the segII phenotype, 

which results in crosses to both heterozygotes and homozygous wt plants. Crosses 

specifically to heterozygotes (as identified by interval markers) can be screened for 

complementation of the segII phenotype, though the likelihood is low since Ac/Ds works 
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best within 2 cM.  However, all crosses could be submitted to a PCR screen to identify 

transpositions closer or inside the mapping interval for future crosses.

Cytological investigations

Investigating the late forming DSBs in the subset of segII meiocytes using an alternative 

to γ-H2AX, annexin-V, for apoptosis recognition may clarify the excess DSBs in these 

meiocytes (O’Brien et al. 1997).  Production of a triple mutant of segII and rad51 

(Rad51A and Rad51B)  in maize would also help to clarify the segII phenotype.  

Alleviation of the fragmentation seen in the rad51A and rad51B double mutant would 

provide support for segII as a hypomorphic DSB mutant.  

Experiments to generate information from other maize mutants can be conducted using 

the DMC1 antibody generated here.  Immunolocalizing DMC1 in the rad51 mutant of 

maize would provide information about the similarities of maize and Arabidopsis DMC1 

localization, the latter of which is reduced to 20% installation in atRad51 mutants 

(Vignard et al. 2007).  Correlating DMC1 foci in this mutant could provide insights into 

the contribution of DMC1 to crossover homeostasis in the absence of RAD51.  

Localization of γ-H2AX and DMC1 in the phs1 maize mutant would address questions 

raised about Phs1 function in pairing and recombination. (Edlinger et al. 2011, Kumar et 

al. 2010)      
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Materials and methods

anti-DMC1 antibody generation

The zmDMC1 antibody was created by Custom Polyclonal Antibody production at 

Rockland Immunochemicals (Gilbertsville, PA).  Antibodies raised against full length 

DMC1 or RAD51 have the potential to crossreact with the other RecA homolog (Neyton 

et al. 2004). To avoid this, the sequence of a DMC1-unique 18 aa peptide located at the 

N terminus, MAPTRHADEGGQLQLIDA was selected.  Guinea pigs were given a 

primary injection and three booster shots to foster antibodies in their system.  After 

harvesting the guinea pigs, the antibody was affinity-purified using the ZmDMC1 

peptide.

Immunolocalization

Immunolocalization experiments were performed and foci counted as previously 

described (Golubovskaya et al. 2006, Pawlowski et al. 2003).  Co-localization was 

determined by signals overlapping or appearing within 3 pixels of each other at the 

Deltavision RT workstation’s most powerful resolution (200 nanometers).  

Immunolocalization was conducted using the following antibodies: rabbit anti-AtASY1 

(Armstrong et al. 2002) diluted 1:500, guinea pig anti-ZmZYP1, diluted 1:500, rabbit 

anti-hsRAD51 (Terasawa et al. 1995), diluted 1:500, guinea pig anti-DMC1 used at 1:50, 

mouse anti-H2AX (commercial) used at 1:400. 
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Cisplatin treatment

This is the first report of cisplatin in maize and several methods of cisplatin delivery 

were attempted to minimize stress to the meiocytes.  The successful method involved 

harvesting the tassel by severing the fourth visible node from the rest of the plant under 

water with a sharp blade.  Successive portions of stalk, sheath, and attached leaves 

were removed under water until only 2-3 leaves surrounded the immature tassel.  The 

remaining tassel was then placed in a 50mL falcon with 5-10 mL of cisplatin solution 

(see below) so that the base of the stalk remained in solution.  The portion of the tassel 

that emerged from the falcon tube was wrapped in parafilm to prevent evaporation of 

the solution and desiccation of the tassel.  A preliminary time course indicated that a 

minimum of 10 hours was required for uptake of the cisplatin solution to reach the top of 

the tassel. Cisplatin treatment ran for approximately 15 hours at which point tassels 

were moved into an APW 50mL falcon for another 10-20 hours.  Tassels and meiocytes 

became visibly stressed if soaked in cisplatin for the entire time course.  The tassel 

becomes limp and discolored and any meiocytes extruded from anthers appear 

shriveled.  The chromosomes in shriveled meiocytes do not display meiotic structure 

when stained and imaged with either acetocarmine or DAPI.  Time courses were 

intended to allow anthers to receive cisplatin treatment during leptotene and allow 

harvest in zygotene. This was based on duration of meiotic stages described in Hsu et 

al. 1988. (leptotene: 43 hours, zygotene: 31 hours)
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Cisplatin solution

Based on the previous report of cisplatin complementation in Arabidopsis, we used 2.5 

mg/mL cisplatin (Sanchez-Moran et al. 2007).  The cisplatin solution was made up in 

APW.  APW was used previously to maintain maize anthers for chromosome movement 

studies (Sheehan and Pawlowski 2009) and contains salts, which assist in maintaining 

cisplatin in solution.  Two to three drops of blue food coloring were added so that 

delivery of the solution could be tracked through vascular elements.  Vascular elements 

displayed differing affinities for transport of the cisplatin solution as determined by the 

intensity of blue stain (Figure 2.9).  As a result some flowers received amounts of 

cisplatin that induced apoptosis, while others received amounts that complemented the 

phenotype.  It is possible that some anthers received little to no cisplatin, and that the 

exact amount of foci restored is an underestimate since anthers from multiple flowers 

were used to create pads for analysis.
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Figure 2.9. Monitoring of cisplatin uptake into tassels using a food coloring dye.  Cross-

section of the tassel stalk.  Dark blue spots, as indicated by white arrows, are vascular 

elements stained with the food-coloring dye following cisplatin treatment.  scale bar is 

1mM.
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FISH
Maize 5s rRNA and centromere 4 (Cent4) repeats were labeled with fluorescein 

isothiocyanate (FITC) –dUTP using nick translation (Roche) to create FISH probes.  A 

cyanine-3 labeled oligonucleotide (CCCTAAA) was used to detect telomeres for 

bouquet analysis. FISH and 3-D microscopic imaging were carried out as previously 

described (Golubovskaya et al. 2002, Pawlowski et al. 2003)

Acetocarmine staining

Anthers were fixed as in Li et al. (2007) for staging. They were squashed and stained 

with acetocarmine following the procedure of Dempsey (1994). 

Chromosome spreads

Whole anthers were harvested fixed and stored in 3:1 ethanol to acetic acid. To initiate 

the spread procedure they were washed in 1x citric buffer on ice.  Anthers were then 

added to a structural weakening buffer at 37C for 40 minutes.  The reaction was 

stopped by adding cold 1x TE followed by 3 rinses in 100% EtOH.  EtOH was allowed to 

evaporate and 35 uL of 3:1 acetic acid: methanol (95:5 in the most aggressive case) 

was added to the anthers on a microscope slide.  Anthers were then cut and the 

meiocytes extruded into the solution as quickly and carefully as possible.  The solution 

containing the meiocytes was dropped onto glass slides in 8uL aliquots from a height of 

no less than 8 inches (additional height did not provide better spreading).  Slides were 

allowed to dry in a humid chamber (standing water in the bottom of a container 

containing a platform for slides).  Chromatin was crosslinked to slides by exposure to 

120 mJ per cm2. 
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Probe hybridization of chromosome spreads

Slides were either stored at -20C or used immediately following UV crosslinking.  Upon 

use the slides were hybridized with probe as in Birchler et al. (2007) with two 

exceptions:  spreads were marked with permanent marker on the opposite side from the 

spread so the breathing procedure was unnecessary and I used a DABCO solution that 

also contained DAPI to mount the slides. 

Semiquantitative RT-PCR

Rt-PCR was conducted using the SuperScript III One-Step RT-PCR System with 

Platinum Taq DNA polymerase (Invitrogen Cat. No. 12574-018).  1 ug of total RNA was 

used as the template.  Conditions were as described in Pawlowski et al. 2004. 
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Chapter 3 

 Mapping and Cytological Characterization of the Maize dsyCS Mutant 

Introduction

To study the role of RAD51 in homologous pairing and chromosome recombination, 

Pawlowski et al. (2003) examined a number of maize meiotic mutants for localization of 

the RAD51 recombination protein. One of the mutants that was introduced in this study 

was dsyCS, which was found to install RAD51 at 2% of wild-type levels.  This indicated 

that the the gene underlying dsyCS acts at or prior to double strand break repair.  There 

are several notable events affecting meiotic recombination prior to RAD51 installation, 

including chromosome axis element installation, DSB creation, DSB signaling, DSB 

resection, and the traffic of the proteins to and from the sites of breaks at each of these 

steps. Investigation into the RAD51 localization pattern of dsyCS led Pawlowski et al. 

(2003) to propose potential mechanisms responsible for the meiotic defect in the dsyCS 

mutant.  The first was that this mutant may be impaired in DSB formation, the second 

was that it may be impaired in loading of RAD51. 

In the first scenario, mutants that abolish DSB formation exhibit univalents at 

metaphase I, and an absence of synapsis and crossovers (deMuyt et al. 2009, Libby et 

al. 2003, Romanienko et al. 2000, Sanchez-Moran et al. 2008, Stacey et al. 2006).  In 

the second case, mutants of the MRE11-RAD50-NBS1 (MRN) complex have been 

shown to display different phenotypes depending on the member affected in 

Arabidopsis.  rad50 and mre11 mutants of Arabidopsis display genome fragmentation in 

the presence of SPO11-induced DSBs (Puizina 2004, Bleuyard et al. 2004).  The maize 
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genome has two copies of Mre11 and at the time of writing, mutants in only one of the 

copies have been examined, leaving open the question of the phenotype of a double 

mutant (Altun 2008).  The nbs1 mutant of Arabidopsis does not display a meiotic 

phenotype, suggesting that it is not conserved as a required complex member for 

resection in Arabidopsis (Waterworth et al. 2007). 

Results

Identification and mapping of dsyCS

dsyCS was one of several mutants initially isolated from the maize meiotic mutant 

collection as male and female sterile.  It was selected for analysis by a subsequent 

screen for univalents at metaphase I, and RAD51 foci abnormalities at zygotene 

(Pawlowski et al. 2003).  This phenotype initially appeared similar to a previously 

identified mutant of maize, phs1 (Pawlowski et al. 2004).  Consequently, I conducted a 

semi-quantitative RT-PCR assay of Phs1 expression to determine whether dsyCS was a 

hypomorphic allele of phs1.  Analysis of the image in Figure 3.1, using the intensity 

function of ImageJ software, reports that dsyCS expresses Phs1 at 90% of wild type.  

This result indicates that the dsyCS mutation is not a severe hypomorphic allele of 

Phs1. 
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 Figure 3.1. Semiquantitative RT-PCR analysis of zmPhs1 expression in the dsyCS 

mutant.  At far left is wild type, the second lane is dsyCS.  The ladder bands in lane four, 

are, from top: 500, 400, 300, 200, and 100 (faintly visible).  ImageJ analysis of band 

intensity confirms that dsyCS is not a hypomorphic allele of Phs1.

Wild-type           dsyCS      
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dsyCS originated in a Mutator transposon population and I used the same strategy to 

create Southern blots as in chapter 2 of this thesis.  Though some Mu elements showed 

appropriate linkage on the small tester population, when taken to a larger population of 

34, no Mu element consistently segregated with the mutant phenotype. 

The dsyCS mutation had previously been introduced into the B73 and the Mo17 inbred 

backgrounds. These two inbred backgrounds display a high rate of DNA marker 

polymorphisms and were advantageous when looking for PCR marker polymorphisms 

between the dsyCS background and either of these diverse parents.  Previous mapping 

efforts by Pawlowski et al. (2003, unpublished) showed linkage of dsyCS to 

chromosome 4.  

The Maize Assembled Genomic Island (MAGI) In-del polymorphism (IDP) map (Iowa 

State University (ISU) IBM map 7: http://magi.plantgenomics.iastate.edu/cgi-bin/cmap/) 

was used to choose markers on chromosome 4.  Eventually, I was able to delineate the 

dsyCS region with two flanking markers, IDP7265 at a physical location of 71,065,974 

(according to maize sequence release 5b.60: http://maizesequence.org) and IDP803 at 

physical location 136,058,931.  This ~55 Mb region contains 701 genes in the Filtered 

Gene set.   When compared to the list of maize meiotic gene homologs in Table 3 

(Chapter 2), two notable candidates present themselves. Maize homologs RAD50 and 

PRD2 are both found inside the mapping interval and both of these genes would be 

consistent with the onset of the first meiotic phenotype (RAD51 foci).  

88

http://magi.plantgenomics.iastate.edu/cgi-bin/cmap/
http://magi.plantgenomics.iastate.edu/cgi-bin/cmap/
http://maizesequence.org
http://maizesequence.org


95

zmPrd2 was identified in an earlier version of the maize sequence map in this region 

and two screens for genetic abnormalities were conducted.  The first was a PCR screen 

looking for Mu elements, which was conducted using primers anchored in exons and 

the Mu TIR primer.  The second was a PCR screen using primers anchored in exons, at 

the intron/exon borders, looking for large deletions or insertions visible on a gel.  Neither 

screen revealed any sequence abnormalities.

Cytological characterization of the dsyCS mutant

Chromosome pairing

Initial characterization of the dsyCS mutant was aimed at determining the extent of any 

homologous pairing deficiency indicated by RAD51 foci abnormalities.  In order to 

determine whether homologous portions of the genome align, I used a fluorophore 

conjugated DNA probe targeting the 5S rRNA locus. This locus contains a highly 

repetitive sequence allowing for a robust signal and clear visualization for in situ 

hybridization (FISH).  The 5S rRNA locus is located on the long arm of chromosome 2 

and is easily visualized in the early substages of prophase I. 

In prophase I, the pachytene stage represents the ideal time to assay pairing since all 

chromosomes are normally synapsed with a partner to form bivalent chromosomes. The 

cytology at this stage in maize is excellent and bivalent chromosomes are 

distinguishable from univalents by thickness.  In early leptotene, chromosomes appear 

as unpaired univalents and the 5S signals generally appear well separated from each 

other in the nucleus. In zygotene and pachytene, if pairing occurs properly, the paternal 
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and maternal 5S loci are juxtaposed and appear as one FISH signal on a bivalent 

chromosome.   Mispairing in pachytene would result in two foci appearing on separate 

bivalents (Figure 3.2). 

dsyCS presents a very strong level of non-homologous pairing, 92% (n=91).  This is a 

level of severity that places dsyCS together with the phs1 mutant of maize (95% non-

homologous pairing) (Pawlowski et al. 2004). 
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Figure 3.2. Chromosome pairing analysis in the dsyCS mutant. a. Flat projection of a 3-

dimensional image showing pairing of the 5S rRNA loci in pachytene nuclei in dsyCS (a) 

and wild type (b) meiocytes. Red: DAPI stained chromosomes, Green: 5s rRNA probe.  

scale bar is 5 µM.
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Telomere bouquet

The telomere bouquet is a cytological structure observed in many organisms and 

thought to play a role in pairing.  The telomere bouquet occurs early in zygotene at the 

time when chromosomes begin to pair.  Observations of dsyCS’ telomere bouquet 

through FISH probes targeting the telomere repeat indicate no perturbations in bouquet 

formation.  

ZYP1 installation

Following DSB repair and pairing, chromosomes become synapsed together, which is 

accomplished by the recruitment and installation of the ZYP1 protein between the 

chromosome in a bivalent. dsyCS displays installation of long stretches of ZYP1, similar 

to the wild type (Figure 3.3).  ZYP1 initially appears as short stretches in zygotene and 

proceeds to long stretches in pachytene.  However, it is clear that not all pachytene 

bivalents have ZYP1 installed between them.
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Figure 3.3.  ZYP1 installation in wild type (a) and dsyCS (b.) meiocytes at pachytene.   

Blue: DAPI staining of chromosomes, Red: ZYP1.  Green at left is ASY1 staining.  scale 

bars are 5 µM and 20 µM respectively.
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Bivalents and univalents counts at metaphase I

To determine whether crossover formation is affected in the dsyCS mutant, I examined 

the numbers of univalents and bivalents at metaphase I to estimate the number of 

crossovers.  Using chromosome spread, I observed that wild-type cells show all 

chromosomes aligning on the metaphase plate, indicating that each chromosome pair 

possesses at least one crossover.  dsyCS displays ~15 (14.9) chromosomes at 

metaphase I (n=12, SE=3.6).  Counting this many chromosomes indicates that there are 5 

bivalents and 10 univalents, and so between 5 and 10 crossovers formed in dsyCS 

meiocytes,

During the univalent/bivalent analysis, I observed anaphase I bridges between 

chromosomes (figure 3.4).  Anaphase I bridges are the result of two centromeres being 

possessed by a single chromosome (Schwartz 1953, McClintock 1938).  The presence 

of anaphase bridges in meiosis suggests the occurrence of recombination between non-

homologous chromosomes.  This was a regular event in dsyCS meiocytes, as it was 

observed in 7 of the 11 meiocytes examined. 
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Figure 3.4. Chromosomes in anaphase I meiocytes in the dsyCS mutant.  white bodies 

are DAPI stained chromosomes. a. An anaphase bridge is indicated by the arrow, the 

two chromosomes making up the bridge are indicated by arrowheads . b. A lagging 

univalent chromosome is indicated by the arrowhead and an overall uneven 

chromosome distribution is seen at left and right sides. scale bars are 15 and 10 µM 

respectively.
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Crossover formation between non-homologous chromosomes

Since I observed the formation of non-homologous bivalents in dsyCS, I decided to 

investigate whether there are also non-homologous crossovers in this mutant, using the 

FISH technique to label maize chromosomes.  Since chromosomes appeared entangled 

in spreads of dsyCS, only probes to identify specific chromosomes were used (Figure 

3.5). 

Due to the nature of the dsyCS mutation, chromosomes were often clumped together, 

even with the most aggressive spreading strategy.  However, in five of twenty-eight 

spreads, a bivalent pair containing a probe was separated away from the main clump of 

chromosomes, and was clearly seen to have formed a crossover with a non-

homologous chromosome. These data suggest that dsyCS often forms non-

homologous crossovers between bivalents. 
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Figure 3.5. Non-homologous bivalents in the dsyCS mutant.  DAPI stained 

chromosomes are in red, the 5S probe is in green, TR-1 FISH probe is in blue. 

Chromosomes 2, white arrow, form a homologous bivalent. However the TR-1, white 

arrow heads, which marks chromosomes 4 and 6 confirms that the heterologous 

bivalent at the bottom contains an incorrect partner. scale bar is 5 µM.
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Telomere bridges

I also examined chromosome spreads in the dsyCS mutant using the telomere repeat 

probe.  I found that in six of twenty-six late diakinesis meiocytes, chromosomes of 

dsyCS, which are nearly at metaphase I compaction levels, display long thin 

connections between telomeres of different chromosomes (Figure 3.6).  The signal 

originating from the stretched chromatin provides a robust signal,  compared to the 

chromosomes, which could be due to probe accessibility to compacted chromatin.   I 

believe that the anaphase I bridges could be attributed, at least in part, to this 

phenomenon.   
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Figure 3.6. Telomere bridges in the dsyCS mutant.  A flat projection of a 3D image of 

dsyCS diakinesis nuclei.  Inset boxes are a trace of the telomere probe pattern inside 

the black lined boxes.  a. The telomere loops around for several um between the 

chromosomes.  b. The telomere is clearly seen stretched between two chromosomes at 

left.  red: DAPI stained chromosomes, green: Telomere repeat probe. scale bars are 15 

and 10 µM respectively.

a.
b.
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RAD51 and DMC1 localization

To investigate the recombination pathway in the dsyCS mutant, I examined installation 

of two proteins known to be crucial for meiotic DNA repair: RAD51 and DMC1.  These 

proteins are both homologs of the bacterial recombinase RecA.  RAD51 is expressed in 

somatic and meiotic cells, while DMC1 is specifically expressed during prophase I of 

meiosis.  Both proteins form distinct foci on chromosomes, which may be used as an 

indicator of the number of DSBs created (Li et al. 2007, Couteau et al. 1999, Siaud et al. 

2004).

The initial characterization of dsyCS by Pawlowski et al. (2003) demonstrated that the 

mutant shows numbers of RAD51 foci at ~2% of the wild-type foci number.  Using a 

combination of the anti-DMC1 and anti-RAD51 antibodies, I found that there was a 

significant decrease in the numbers of both RAD51 and DMC1 foci in dsyCS meiocytes 

at early zygotene (Table 3.1). In addition, their co-localization was reduced to less than 

1% of wildtype.
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Table 3.1. RAD51 and DMC1 foci in dsyCS and wild-type meiocytes. 

Zygotene RAD51 DMC1
% DMC1 

Co-Localized
Wt 466 (n=12, SE=35) 203 (n=11, SE=47) 57% (n=11, SE=10)

dsyCS 22 (n=6, SE=4.5) 7.8 (n=6, SE=3.2) 10% (n=6, SE=6.5)

% of Wt 4.7% 3.8% <1%
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Discussion

The dsyCS mutant exhibits a unique meiotic phenotype with regards to homologous 

pairing and crossing over, with over 90% non-homologous pairing as well as crossovers 

between non-homologous chromosomes.  Crossovers regularly generate dicentric 

chromosomes and telomeres of different chromosomes can be seen physically 

connected.  Chromosomal foci of DNA repair proteins RAD51 and DMC1 are both 

reduced to less than 5% of wild-type installation and their co-localization is particularly 

impaired, at less than 1% of wild type.  A study of the rad51 maize mutant demonstrated 

that the recombinase activity of DMC1 is able to create crossovers, albeit non-

homologously and at 40% efficiency (Li et al. 2007).  It is, therefore possible that dsyCSʼ 

non-homologous crossover activity results from the DMC1-only repair events.

Two candidate genes were found in the dsyCS mapping interval that are homologs of 

previously identified meiotic genes in Arabidopsis: PRD2 and RAD50.  PRD2 was 

identified in Arabidopsis as being a protein required for the creation of SPO11 induced 

DSBs (DeMuyt et al. 2009).  Atprd2 mutants exhibit short siliques and in four of five 

mutant alleles exhibited zero crossovers, the remaining allele showed a total of two 

crossovers from 51 cells examined.  Without DSB formation, as in the other Arabidopsis 

DSB mutants identified by DeMuyt et al. (2009), crossovers and synapsis are unable to 

occur. 

The rad50 mutant of Arabidopsis displays chromosome fragmentation at metaphase I, 

with structural abnormalities as early as pachytene (Bleuyard et al. 2004).  However, the 
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rad50 mutant appears to have a limited number of chromosomes aligning on the 

metaphase plate, indicating that crossovers took place.  Synapsis was not investigated 

in the Arabidopsis rad50 study.  

There is not a clear case supporting either of these candidates.  The low numbers of 

RAD51 and DMC1 foci could be the result of impaired DSB creation (Prd2) or a lack of 

DNA resection (Rad50) allowing these proteins to bind.  While synapsis does not occur 

in DSB mutants, dsyCS could be a DSB hypomorph, which would allow synapsis to be 

seeded.  The number of chiasmata in dsyCS is not compatible with the atPRD2 mutant 

phenotype, but again could be the result of hypomorphic DSB activity rather than a 

complete knockout.  In the maize dsyCS mutant, fragmentation of chromosomes, which 

is expected from rad50 mutants of other plant species, is not seen.  If either of these 

candidates is the source of the dsyCS phenotype, it will provide unique insights into the 

differences in plant meiosis between maize and Arabidopsis as well as help define the 

role for the excess of DSBs in prophase I. 

The bridges seen between telomeres of chromosomes in dsyCS are a striking 

phenotype not seen as the result of meiotic activity in any previously identified meiotic 

mutant that I am aware of.  The structural basis of these bridges is unknown at present, 

though studies in mouse DNA repair indicate that anaphase bridges and these telomere 

connections, are the result of NHEJ or homologous DNA repair (Acilan et al. 2007).  The 

latter would represent a new class of meiotic mutants, as telomeres and their 
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immediately adjacent regions have been reported as suppressed for DSB formation in 

yeast (Borde et al. 2004, Gerton et al. 2000).  

It is notable that the segII and dsyCS mutants both display non-homologous pairing and 

crossovers, despite the availability of RAD51 and DMC1 proteins.  Studies of these 

mutants indicate that there are multiple ways to affect the fidelity of chiasmata in maize, 

beyond directly affecting the integrity of repair events themselves, shown by the 

zmrad51 mutant.  Two possibilities are that there could be a minimum requirement for 

the number of SEI events, as discussed in chapter 2 regarding pseudo-homology, or 

that the formation of DSBs is directed by a complex of proteins, each member of which 

contributes a biochemically unique activity.  In the case of the dsyCS mutant, perhaps 

the mutation is in a gene responsible for blocking DSB formation in telomeres.

dsyCS exhibits crossover homeostasis

Crossover homeostasis is the ability to sacrifice non-crossovers in favor of crossovers 

under limiting SEI conditions, and is associated with crossover assurance (Yanowitz 

2010).   Without homeostasis in dsyCS, the amount of SEI events (<5%) would yield 

<5% of crossovers: ~1 per dsyCS meiocyte.  The 5% of SEI events present in dsyCS 

yield significantly more crossovers: at least 25% of wild type.  The results presented 

here provide the second case for crossover homeostasis in maize (the segII mutant 

being the first).  
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Future directions

The mapping of dsyCS remains an important goal. Further markers need to be selected 

on chromosome 4 to narrow the mapping interval.  Simultaneously, sequencing analysis 

of RAD50 could be conducted to investigate this high profile candidate.  Though the 

interval for dsyCS is still too large for Ac/Ds tagging to reliably generate an allele with 

currently available transpositions, there is an Ac/Ds insertion (I.W06.0870R) less than 2 

Mb from the zmPrd2 candidate, which could be utilized to generate zmPrd2 mutants for 

future studies.  

During the course of my research, I generated a mutant population to search for new 

alleles of dsyCS by crossing a population segregating for the unique mutation with 

EMS-treated pollen from B73 inbred plants.  This population can be screened for sterile 

individuals to look for complementation.  Crossing meiotic mutants as females can 

provide a small amount of seed in some cases, and this could be done with any sterile 

individuals to recover the allele. 

dsyCS has several phenotypic aspects that could be further clarified.  The first would be 

to define the earliest manifestation of the mutation.  To do this, ASY1, AFD1, and γ-

H2AX could be immunolocalized and examined.  Further, the chromosome connections 

at telomeres and reduced RAD51/DMC1 foci indicate that it would be very interesting to 

examine the nature of DSB formation in this mutant.  Recent examination of DSBs has 

been done through hybridization to comprehensive genomic arrays, which exclude 

repetitive elements such as telomeres (Mancera et al. 2008, Chen et al. 2008).  

105



112

Examining the relative abundance of DSBs formed at telomeres could provide insight 

into the nature of this defect.  Additionally, the telomere connections could be examined 

through in vivo studies.  Telomere movement could be tracked in vivo as described by 

Sheehan and Pawlowski (2009).  dsyCS heterozygotes were previously crossed to segII 

heterozygotes. To further examine the nature of DSBs, dsyCS/dsyCS; segII/segII 

progeny could be evaluated.  Establishing whether the phenotype is additive or one 

gene is epistatic to the other would yield insight to the dsyCS mechanism of action. 
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Methods & Materials

anti-DMC1 antibody generation

The zmDMC1 antibody was created by Custom Polyclonal Antibody production at 

Rockland Immunochemicals (Gilbertsville, PA).  Antibodies raised against full length 

DMC1 or RAD51 have the potential to crossreact with the other RecA homolog (Neyton 

et al. 2004). To avoid this, the sequence of a DMC1-unique 18 aa peptide located at the 

N terminus, MAPTRHADEGGQLQLIDA was selected.  Guinea pigs were given a 

primary injection and three booster shots to foster antibodies in their system.  After 

harvesting the guinea pigs, the antibody was affinity-purified using the ZmDMC1 

peptide.

Immunolocalization

Immunolocalization experiments were performed and foci counted as previously 

described (Golubovskaya et al. 2006, Pawlowski et al. 2003).  Co-localization was 

determined by signals overlapping or appearing within 3 pixels of each other at the 

Deltavision RT workstation’s most powerful resolution (200 nanometers).  

Immunolocalization was conducted using the following antibodies: rabbit anti-AtASY1 

(Armstrong et al. 2002) diluted 1:500, guinea pig anti-ZmZYP1, diluted 1:500, rabbit 

anti-hsRAD51 (Terasawa et al. 1995), diluted 1:500, guinea pig anti-DMC1 used at 1:50, 

mouse anti-H2AX (commercial) used at 1:400. 
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FISH

Maize 5s rRNA and centromere 4 (Cent4) repeats were labeled with fluorescein 

isothiocyanate (FITC) –dUTP using nick translation (Roche) to create FISH probes.  A 

cyanine-3 labeled oligonucleotide (CCCTAAA) was used to detect telomeres for 

bouquet analysis. FISH and 3-D microscopic imaging were carried out as previously 

described (Golubovskaya et al. 2002, Pawlowski et al. 2003)

Acetocarmine staining

Anthers were fixed as in Li et al. (2007) for staging. They were squashed and stained 

with acetocarmine following the procedure of Dempsey (1994). 

Chromosome spreads

Whole anthers were harvested fixed and stored in 3:1 ethanol to acetic acid. To initiate 

the spread procedure they were washed in 1x citric buffer on ice.  Anthers were then 

added to a structural weakening buffer at 37C for 40 minutes.  The reaction was 

stopped by adding cold 1x TE followed by 3 rinses in 100% EtOH.  EtOH was allowed to 

evaporate and 35 uL of 3:1 acetic acid: methanol (95:5 in the most aggressive case) 

was added to the anthers on a microscope slide.  Anthers were then cut and the 

meiocytes extruded into the solution as quickly and carefully as possible.  The solution 

containing the meiocytes was dropped onto glass slides in 8uL aliquots from a height of 

no less than 8 inches (additional height did not provide better spreading).  Slides were 

allowed to dry in a humid chamber (standing water in the bottom of a container 
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containing a platform for slides).  Chromatin was crosslinked to slides by exposure to 

120 mJ per cm2. 

Probe hybridization of chromosome spreads

Slides were either stored at -20C or used immediately following UV crosslinking.  Upon 

use the slides were hybridized with probe as in Birchler et al. (2007) with two 

exceptions:  spreads were marked with permanent marker on the opposite side from the 

spread so the breathing procedure was unnecessary and I used a DABCO solution that 

also contained DAPI to mount the slides. 

Semiquantitative RT-PCR

RT-PCR was conducted using the SuperScript III One-Step RT-PCR System with 

Platinum Taq DNA polymerase (Invitrogen Cat. No. 12574-018).  1 ug of total RNA was 

used as the template.  Conditions were as described in Pawlowski et al. 2004.
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