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Understanding past relative sea-level (RSL) changes is important to a number of social and 

scientific questions, including the effects of global climate change, the distribution of coastal 

environments, and future land-use planning. In particular, accurately characterizing millennia! 

sea-level changes is important in evaluating their relationship to ice-sheet dynamics and long­

term climate trends. In this paper, we analyze sea-level data from several Maine salt marshes 

previously reported in a paper from the geological literature. We address these data with a 

"smooth transition" f approximate segmented regression model and account for the presence of 

covariate measurement error. Our model builds on previous methodological work and includes 

a more flexible model, two alternate computational techniques for estimating the parameters in 

the model, and asymptotic confidence intervals for our estimates. For these specific data, our 

model shows that the data from one site are anomalous and therefore warrant additional inves­

tigation. This important aspect of the data was not previously identified by a non-statistical 

analysis. In general, our technique offers a statistically justifiable method for using geological 

data with measurement errors to estimate actual RSL curves that can be compared to each 

other, independently determined climate records, or geophysical model results. 

Keywords: geology, measurement error, segmented regression, maximum likelihood, EM algo­

rithm, smooth transition. 

1 Introduction 

2 

From stories of lost cities and migrations across now sunken land bridges to questions of the effects 

of global warming and investigations of differential crustal motion, there has long been both public 

and scientific interest in understanding the history of changes in the height of the sea relative to 

the height of the land [13). In this paper, we analyze data from four salt marshes along the coast 
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of Maine (USA) (9] and provide new methodology for similar studies. 

We fit the sea level data with a smooth segmented regression model taking into account 

the measurement error in the dates (Section 2). This approach is methodologically similar to (11], 

and we develop a more flexible model (Section 2), present two alternate computational methods 

to estimate the parameters (Sections 3.1 and 3.2), and use approximate asymptotic confidence 

intervals for the estimates (Section 3). 

To the best of our knowledge, this paper is the first statistical treatment of millennia! scale 

relative sea-level data. It provides the geologist with a way to objectively reduce interpretive biases 

that occur when comparing features of estimated sea level curves. We illustrate the method using 

the data from (9] in Sections 3 and 4. Further, in Section 5 we briefly suggest how this statistical 

approach, combined with simulation, can be used to plan future experiments and estimate the 

required number of radiocarbon dates. One reason estimating relative sea-level curves is important 

is because sea-level change records over the past several millenia combined with climate data over 

the same time period need to be used to calibrate the models that are used to predict future sea 

levels (10]. 

1.1 Investigating Sea Level Change 

Accurate tidal records have been collected for several centuries, but determining millennial scale 

changes in sea level requires dating deposited materials. Early attempts to do this relied on iden­

tification of exposed aquatic formations and dating either man made or natural terrestrial items 

below the current sea level [13]. The advent of radiometric dating has made it possible to construct 

quantitative estimates of relative sea level over time (see Figure 1). Core samples are collected 
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from the ocean shore and organic matter in the core is identified and dated (the x-axis estimate) 

[14]. Sea level at the date of sample deposition (they-axis estimate) is inferred from the identity 

of fossilized foraminifera in the sample. We explain the procedure in more detail in Section 1.2. 

The two most common methods currently used by geologists to summarize millennia! scale 

sea level curves are interpolation and heuristic smooths of the data. "Error envelopes" created 

by connecting the corners of ±1 standard deviation (in x and y directions) error boxes centered 

at each point are often displayed. Numerical summaries consisting of confidence intervals for the 

slopes of linear segments of the curves are sometimes included. These are based on simple linear 

regression of estimated height on estimated date. Comparisons of curve estimates (across sites or 

across researchers) seem to rely on either visual identification of seemingly common features or on 

comparisons of the confidence intervals around the estimated slopes. The measurement error in 

both the time and height scales does not appear to be addressed in the literature. 

1.2 Gehrels, Belknap and Kelley {1996} 

[9] creates four site specific scatterplots of estimated sea level (relative to present) over time in the 

late Holocene period. The data are displayed in Figure 1 and Table 1. This section describes the 

data. 

Each point in Figure 1 represents a subsample from a core sample taken from the relatively 

undisturbed area near the bottom of one of the salt marshes. Nearly all the data points are from 

separate core samples. Each subsample was then analyzed to yield estimates of two quantities: 

deposition date (the x-axis of the scatterplot) and sea level at deposition time (the y-axis). The 

analysis methods are explained in detail in [9]. We summarize them here briefly. 
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Table 1: Site by site data from [9]. These sites are numbered in order of their relative positions 
from southwest to northeast along the Maine USA coast. These numbers also are used as index 
parameters in our models. 

Site Site 14C Age s.d. of Mean High Tide s.d. ofMean 
Number Name (1000's 14C years) Age at Deposition (m) High Tide 
1 Wells 0.30 0.05 -0.50 0.23 
1 Wells 0.71 0.17 -1.09 0.16 
1 Wells 1.09 0.05 -1.00 0.25 
1 Wells 3.27 0.07 -3.08 0.24 
1 Wells 3.34 0.06 -1.85 0.19 
1 Wells 3.59 0.06 -3.82 0.16 
1 Wells 3.90 0.15 -2.91 0.30 
1 Wells 4.24 0.07 -3.40 0.17 
1 Wells 4.26 0.06 -3.93 0.17 
1 Wells 4.36 0.06 -3.08 0.16 
1 Wells 4.74 0.07 -4.47 0.17 
2 Phippsburg 0.99 0.06 -0.56 0.15 
2 Phippsburg 2.68 0.07 -1.78 0.21 
2 Phippsburg 2.77 0.07 -1.60 0.22 
2 Phippsburg 3.44 0.05 -2.31 0.17 
2 Phippsburg 3.47 0.15 -3.55 0.17 
2 Phippsburg 3.76 0.06 -3.01 0.17 
2 Phippsburg 4.27 0.07 -3.32 0.14 
2 Phippsburg 4.84 0.10 -4.11 0.17 
2 Phippsburg 4.95 0.08 -6.35 0.15 
2 Phippsburg 4.98 0.06 -6.87 0.13 
2 Phippsburg 6.30 0.06 -15.3 0.33 
3 Gouldsboro 0.57 0.05 -0.74 0.22 
3 Gouldsboro 1.23 0.07 -0.94 0.13 
3 Gouldsboro 2.01 0.06 -1.39 0.22 
3 Gouldsboro 2.33 0.07 -1.16 0.22 
3 Gouldsboro 2.38 0.07 -1.63 0.14 
3 Gouldsboro 2.73 0.08 -2.08 0.12 
3 Gouldsboro 3.58 0.08 -4.21 0.20 
3 Gouldsboro 4.04 0.07 -5.14 0.16 
4 Machiasport 0.49 0.07 -0.75 0.12 
4 Machiasport 1.07 0.09 -1.16 0.17 
4 Machiasport 2.54 0.11 -1.36 0.14 
4 Machiasport 3.01 0.07 -2.56 0.14 
4 Machiasport 4.08 0.08 -3.65 0.14 
4 Machiasport 4.80 0.08 -4.58 0.14 
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Deposition time was estimated by 14C dating the organic matter in the subsample and 

assuming that the age of the organic matter coincides with deposition time. The 14C years can be 

transformed into calendar years with a non-linear transformation [16], but, for simplicity, we have 

not done so here. 

Sea level height is estimated from fossilized foraminifera in the subsample. The geologists 

inferred the man high tide level at the time the foraminifera were alive from the modern distribution 

of these organisms on the surface of the salt marshes. This estimates the relative mean tide level 

at the time the subsample was deposited when it is combined with two other estimated quantities: 

the depth of the subsample relative to current high tide level, and an estimate of the tidal range 

when the subsample was deposited. 

[9] addressed three hypotheses with these data. We focus on the second one: "Differential 

crustal motion along the coast of Maine has occurred during the past 5 ka and can be detected by 

comparing local relative sea level chronologies from which the influence of changes in tidal range 

has been removed." In the following sections, we formulate and fit a parametric model to these 

data and address this hypothesis by means of statistical estimation of the parameters in the model. 

Although this paper focuses on analyzing data from [9], the methods are generally applicable 

to other data from this subfield. Two additional goals of this paper are to provide a standard 

methodology for comparing sea level curves and to develop tools for planning future experiments. 

The model we use is empirical in the sense that it is meant to approximate the observed data 

rather than to reflect any knowledge about the mechanism that causes sea level change. However, 

the model and extensions with more knots are flexible enough to approximate sea level curves for 
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many underlying mechanisms. 

2 A Statistical Model for Sea Level Curve Estimates 

We describe our model for the relative sea level curve estimates in two parts: Section 2.1 statistically 

characterizes the univariate data distributions, and Section 2.2 describes the regression model 

relating the subsample age and estimated sea level. Section 3 describes two methods to estimate 

the parameters. The results of estimation and a discussion of geological interpretations are in 

Section 4. 

2.1 Model for the Collected Data 

The presence of measurement error in both the sea level and age measurements makes this dataset 

especially interesting. A general reference for non-linear measurement error models is [4]. 

Let i = 1, ... , 4 represent the sites and j = 1, ... , ni represent the observations from a given 

site. Since the age of each subsample is estimated by radiocarbon dating, the observed age W;,; is 

the true age X;,; plus error Ui,j (Wi,j = Xi,j + U;,j)· The radiocarbon lab supplies an estimate of 

the standard deviation of each estimated age (O'u,i,j)· 

We model the distribution of each U;,; (/u) as independent N(O, u~,i)· Empirical support 

for this is in [16]. Since 14C dating involves using spectroscopy to count a very large number of 

atoms of a specific isotope in a sample, a loose interpretation of the central limit theorem suggests 

that one would expect the resulting estimate to be approximately normally distributed. Treating 

the O'u,iJ as if they are known quantities is reasonable since the 14C dating labs have a large amount 
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of validation data with which they assess the variability of an estimate from a given sample [16]. 

In measurement error models, a distinction is made between functional models where the 

unobserved true values ( Xi,j) are considered to be nuisance parameters, and structural models 

that assume the true values are observations from a distribution with a known form. The two 

assumptions often result in different estimates. Since the locations of the subsamples within the 

sites are selected at random by the geologists, we use a structural model. We assume that the 

true values are independently sampled from a Beta distribution with support from zero to K and 

a density: 

1 (x· .)a-1 [ (x· .)]b-1 
f:z:(XiJIK, a, b) = Beta( a, b)K l'/ 1 - l'/ (1) 

We use the Beta since it both has bounded support and is flexible enough to describe uniform, 

skewed, concave, and convex probability densities. We estimate a and b from the data, but we found 

the maximum likelihood estimate of K to be unstable. As a result, we set K = max;,j Wi,j + 1. 

Varying K in a neighborhood of that value did not change any of the other parameter estimates 

substantially. 

Relative to the "naive" regression estimator that ignores measurement error, an estimator 

accounting for measurement error generally will be less biased and more variable. It is therefore 

possible that the "naive" estimator has a smaller mean squared error than the measurement error 

corrected estimator. Nonetheless, we prefer the measurement error corrected estimator here for two 

reasons. First, our estimates (Section 3) do not appear to be highly variable. Second, and perhaps 

more importantly, since one of our goals is to suggest a methodology that can be used for other 

applications of radiometric dating, we prefer not to ignore an important feature of the data. 
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There are also errors in the y-direction. First, there is measurement error in each estimated 

sea level, Yi,;, and second, there is error in the equation of our model (Section 2.2) at each (i,j). We 

group both these errors into fi,j and assume that { fiJ }i;~• are independent, mean zero, and normally 

distributed. Each fi,j has its own variance, u~,i,i' with two components: u;(l),i,j' the variance of 

the measured sea level, and U:(2), the variance around the equation for the mean of the model. [9] 

provides estimates of { u~(l),i,j}i;~•. We estimate 0'~(2) from the data. Let u~,i,j = u~(l),i,j + 0'~(2). 

We define the vectors Y, W, X, and € as follows: 

€ [€1,1, · · · , €1,n1, €2,1, · • · , €2,n2, €3,1, · · · , €3,n3, €4,1, • · · , €4,n4]' · 

Let n = n1 + n2 + n3 + n4, the total number of data points. Figure 1 and Table 1 show the observed 

data and their estimated errors. 

2.2 Model for Mean Sea Level 

For each of the four sites, we model the expected relative sea level given 14C age as a smooth 

approximation to a segmented linear regression (or linear spline) with one breakpoint (or knot). We 

arrive at this model by first fitting quadratic P-spline regressions [3] to each scatterplot (ignoring 

the measurement error). This flexible fit indicates that a linear spline with one knot is a good 

approximation to the shape of the curve. A benefit of this model is the ease with which the 

parameters can be interpreted. Of course, data from other studies might require more knots or 
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other modifications. 

The model that we use is similar to the smooth transition models developed by (1]. Let 

<P(X) be the normal cumulative distribution function and (X)+ be a function that returns X if 

X > 0 and 0 otherwise. The parameters of interest are, for sites i = 1, ... , 4, /3o,;, the intercept, 

f31,i, slope prior to the knot, /32,;, the additional slope following the knot, and Ti, the knot location. 

The first regression function for the model we consider has the general form: 

E[Y;,; I Xi,;] - /3o · + /31 ·X· · + /32 ·(X· ·- r·)<P (Xi,j- Ti) ,1 ,1 I.J ,1 I.J J (7 (2) 

·- JLaaturated(Xi,j ). 

This function is a differentiable approximation to the segmented regression function: 

E(Y>IX .. ] = /3o · + /31 ·X· · + /32 ·(X· ·- T<)+· I.J I,J ,s ,1 I,J ,1 I.J I (3) 

We prefer the differentiable approximation since it allows us to estimate the parameters 

in the model with efficient quasi-Newton methods (Section 3.1) and maintains the interpretability 

of the segmented regression model. We select a to be 0.05 since we find that value to be both 

small enough to provide a good approximation to the segmented linear function and large enough 

to keep the condition number of the approximate inverse Hessian in the quasi-Newton algorithm 

small enough for numerical stability. With more data, we could choose a by maximum likelihood. 

Table 2 shows that a simpler model describes our data nearly as well as the saturated model. 

This simpler model uses a /3o and /31 that are common across sites, allows /32 to vary from site to 

site, and gives site 2 (Phippsburg) its own knot. Let k = 1 for i = 1, 3, or 4 and 2 otherwise. The 
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Table 2: This table illustrates the pattern of how the fit degrades as the model is simplified. 

Site Specific Number of Parameters 2Log(Likelihood) 

Parameters in Regression Model 

f3o,i, f31,i, f32,i, Ti ("saturated") 16 -152.52 

f32,i and two rs ("simple") 8 -161.17 

None 4 -189.06 

simple model is: 

E[Yi,;IXi,;] - f3o + f31Xi,j + /32,i(Xi,j - Tk)~ ( Xi,j a- Tk) 

.- J.Lsimple(Xi,j ). 

We fit and discuss both models in the next sections. 

P-value for 

Improved Fit 

0.32 

0.001 

As a vector, denote the parameters to be estimated as 9. For the saturated model, 

Baaturated = [f3o,b · · · ,/3o,4, /31,1! · · ·, /31,4,/32,1! · ·. ,/32,4, T1, · · ·, T4, UE(2)' a, b]'. 

For the simpler model, 

The parameters of geological interest are the intercepts, slopes and knots. 

11 

(4) 
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3 Fitting the model 

We estimate the parameters in our model using maximum likelihood (ML) and compare two com­

putational methods: direct maximization using numerical integration and the Expectation Max­

imization (EM) algorithm [5]. We find that both methods yield nearly identical estimates, and 

discuss their strengths and weaknesses in Section 3.3. As mentioned earlier, the direct method is 

similar to the approach taken by [11]. Our EM implementation treats the unobserved {Xi,;} as 

latent variables [15], [4]. 

Similarly to (12], we assess the variability around the estimates from the direct method 

using confidence intervals based on likelihood ratios. We also present an approximate confidence 

band around the mean response. Since we use a smooth approximation to the segmented regres­

sion model, one would expect the standard asymptotic theory about the null distribution of the 

likelihood ratio statistic to be valid. We looked at the profile likelihoods and they were smooth, 

relatively symmetric and apparently convex in a neighborhood of their maxima. 

For the segmented regression problem with no measurement error, [7] and [6] showed that 

under certain reasonable conditions, likelihood ratio statistics often have the standard chi-squared 

asymptotic null distributions. We mention these results to point out that even though our smooth 

approximation is in some sense close to a non-standard problem (segmented regression), this par­

ticular non-standard problem is fairly well behaved. 
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3.1 Direct Maximization 

The likelihood function for this model is: 

4 n; 

L(Y, WJ9) = 1 II II /y(Yi.ilJ.t(Xi,j),o-;,i,j)fu(wi,jlXi,j,O"~,i,j)Jz(Xi,jlK,a,b)dx. (5) 
xERn i=lj=l 

The likelihood has the same general form whether p(xi,j) is the simplified or saturated model. 

Since we assumed conditional independence of (Yi,j, Wi,j,Xi,j), this integral is simply a product of 

n !-dimensional integrals. The log-likelihood is: 

l (Y, WIO) ~ t, t, log [J.;,ER /y(Y;J II'(X;J ), q~,;)fu( w;JIX;J, <?.,;4 )J,(x;J IK, a, b)dx;J ]· 

The direct approach relies on the fact that we can use numerical methods both 

1. to evaluate (approximate) each of those one dimensional integrals, 

2. and to compute the maximum likelihood estimates of the parameters. 

(6) 

Approximations of the integrals are quite straightforward and fast since the functions involved 

are !-dimensional, smooth and have essentially bounded support. We use efficient quasi-Newton 

methods to find 9 and maximize the likelihood, and find that using the smoother approximation 

to the segmented regression results in more numerically stable estimates. Although the second 

derivative of the mean function at the breakpoint is large, the condition number of the inverse 

approximate Hessian used in the quasi-Newton method is small enough to maintain numerical 

stability. Tables 3 and 4 contain the estimates of the parameters of interest for the simple and 

saturated models respectively. The fitted curves and approximate confidence bands are displayed 

in Figures 2 and 3. We use MATLAB to compute these estimates. The computations required less 

than 10 seconds on a Pentium II 133MHz computer running Windows 98. 
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Table 3: Maximum likelihood estimates of the parameters of interest in the simplified model and 

90% confidence intervals. 

Parameter MLE 90% Confidence Interval 

f3o -0.15 (-0.31, 0.00) 

f3t -0.68 (-0. 73,-0.63) 

/32,1 -0.39 (-1.61,-0.17) 

!32,2 -5.61 (-7.61,-3.61) 

/32,3 -1.62 (-2.49,-1.00) 

/32,4 -0.54 ( -0.88,-0.24) 

T1 (sites 1,3,4) 2.67 ( 2.36 ,3.05) 

T2 (site 2) 4.48 ( 4.27 ,4.72) 
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Table 4: Maximum likelihood estimates of the parameters in the saturated model and 90% confi­

dence intervals. 

Parameter MLE 90% Confidence Interval 

f3o,1 -0.42 (-0.65,-0.19) 

f3o,2 0.51 ( 0.25, 0. 76) 

f3o,3 -0.49 (-0.75,-0.24) 

f3o,4 -0.64 ( -0.92,-0.37) 

/31,1 -0.52 ( -0.59,-0.45) 

/31,2 -0.91 (-0.98,-0.84) 

/31,3 -0.39 (-0.51,-0.28) 

/31,4 -0.64 ( -0.45,-0.27) 

/32,1 -0.80 ( -1.01,-0.59) 

!32,2 -5.70 ( -8.70,-3.43) 

/32,3 -1.91 (-2.55,-1.46) 

/32,4 -0.95 (-1.16,-0. 73) 

T1 2.86 ( 2.53, 3.21) 

T2 4.58 ( 4.35, 4.80) 

T3 2.45 ( 2.19, 2.75) 

T4 2.41 ( 2.03, 2.80) 
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Since the mean response functions are nonlinear in the estimated parameters and the number 

of parameters is large, developing a confidence band for the mean response is difficult. As a result, 

we develop approximate confidence bands in two steps: first we compute bands that treat the knots 

as if they were fixed, and then we adjust to account for the variability of the knot estimates. 

More specifically, when the knot is fixed, the model is linear in the estimated parameters. 

As a result, we can use minus the inverse of the Hessian of the observed log-likelihood (Equation 6) 

with respect to the {3s as an estimate of covariance matrix of the estimated {3s and appeal to 

asymptotic normality to get an asymptotic confidence band. For a 1 - a% band, we account for 

the variability of the knot by using the limit of the 1 - 2a% univariate confidence interval for 

the breakpoint in the lower bound of the confidence band and the upper limit of the knot in the 

upper bound. While we would expect the claimed coverage probabilities to differ somewhat from 

actual coverage probabilities, the band provides a sense of the variability around the fitted model. 

For statistical inference, we recommend using the parameter estimates such as Tables 3 and 4 and 

Figure 4. 

3.2 Expectation Maximization (EM) Algorithm 

We also implemented the EM algorithm [5] to compute the maximum likelihood estimates treating 

[X] as a latent variable. 

For this problem, the algebra involved is quite difficult, but is relatively straightforward to 

handle numerically. The algorithm converges to the same estimates as the direct method (Tables 3 

and 4) after about thirty iterations. 
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3.3 Comparison of the Direct Method and the EM Algorithm 

We found both the EM algorithm and the direct maximization method to be acceptable approaches 

for this application. The direct method is simpler to explain but is tractable only because the 

likelihood only involves low integrals. H the measurement errors were correlated or the Y;,js were 

not independent for instance, the direct method becomes intractable, but one could still easily 

implement the EM algorithm. 

4 Discussion of Inferences and Geological Significance 

Figure 4 shows parameter estimates for the saturated model at all sites (arrayed from SW toNE), 

and can be used to assess the geographic variability of RSL curves along the Maine coast. These 

parameter estimates suggest three important conclusions. 

First, the modeled RSL curve at Phippsburg is significantly different from those at other 

sites: sea-level rise slowed from middle Holocene rates earlier at this site, but was more rapid than 

at others thereafter. This has several possible explanations. First, it is possible that there has 

been an unrecognized experimental error. Second, some hydrographic effect related to this site's 

backbarrier setting, perhaps a change in tidal inlet geometry, may have caused changes in tidal 

range at the site that are not directly related to changing water levels in the open Gulf of Maine. 

Third, it is possible that unusual crustal deformation took place along this portion of the Maine 

coast. In any case, further examination of this site is warranted. It is also interesting that the 

conclusion derived from our statistical analysis, that Phippsburg has an anomalous RSL history, 

differs from the conclusion of [9] that unusually rapid RSL rise took place at Gouldsboro. This 
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points out the need for a consistent and statistically justifiable method of comparing inherently 

variable radiocarbon-based RSL histories. 

Second, with the exception of anomalous results at Phippsburg, estimated model parameters 

change slowly with geographic position: the rate of late Holocene RSL rise increases gradually to 

the SW, and other parameters are not distinguishable at the 95% confidence interval among Wells, 

Gouldsboro, and Machiasport. This suggests that these three sites are recording essentially the 

same RSL history, reinforces the conclusion of [9] that neotectonic deformation has not taken place 

in extreme eastern Maine, and is consistent with the general paradigm of a stiff continental crust 

generally assumed in geophysical models for RSL change. 

Third, with the exception of Phippsburg, the fact that all the estimated intercepts are 

negative suggests that in very recent years the rate of RSL rise has increased. The same result, 

that the rate of RSL rise over the last century is unprecedented in the past two millenia, was 

obtained by [9] from comparison of salt-marsh and tide gauge data and by [8] from more detailed 

analyses of very recent salt-marsh stratigraphy. While it is tempting to constrain the regressions 

to go through the origin, this would not be appropriate since our model applies to the time scale 

range of the observed data which does not include the present. Constraining the regressions to 

go through zero (without adding another knot) would be similar to adding a leverage point to the 

regression. 
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5 Conclusion and Using the Model to Help Plan Future Experi-

ments 

In this paper we developed and fitted a flexible parametric model to describe the data generated 

from basal peat based relative sea-level estimates. The method provides parameter parameter 

estimates and an objective way of comparing curves from site to site. It can also be used to plan 

future experiments and determine the required sample size at each site as follows: Given 

1. a hypothesized relative sea level curve, 

2. roughly feasible ranges for the distributional parameters described in Section 2, 

3. and a proposed sample size, 

one easily can simulate the data one might expect to collect and fit a model to that simulated 

data. Monte Carlo methods can then be used to estimate the probability of detecting a specific 

hypothesized difference of a certain size between two sites. If those probabilities are deemed too 

low, this procedure can be repeated with a larger proposed sample size. The procedure is stopped 

when the probabilities are deemed to be high enough. 

While the one knot linear spline model is both flexible enough to fit these data well and 

parsimonious enough to provide reasonable inferential power, if we had more data, it would be 

interesting to modify [2]'s recently developed Bayesian method of estimating penalized regression 

splines in the presence of measurement error to suit this problem. 
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Figure 1: These four plots contain scatterplots of the collected data. Relative sea level is computed 

as (previous mean sea level)- (current mean sea level). The sea level relative to the land has been 

increasing over time. This figure does not contain the last observation from the Phippsburg site 

(see Table 1), which has been deleted because it was outside the data range of the other sites. Note 

however that this data point agrees with the fitted model quite well. The widths and heights of 

the rectangles are equal to two times the estimated standard deviations of the age and mean tide 

estimates respectively. 
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Figure 2: These four plots illustrate an approximate 95% confidence band around the estimated 

saturated model mean response. 
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Figure 3: These four plots illustrate an approximate 95% confidence band around the estimated 

simple model mean response. 
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Figure 4: These plots summarize geographical variation of the parameter estimates and 90% con-

fidence intervals from the saturated model. Left to right, the sites are arrayed from SW to NE. 

Note that {30 is the intercept; {31 is the slope before the knot; {32 is the additional slope after the 

knot; and r is the knot location. 


