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ABSTRACT 

 

Urbanization is rapidly occurring and with this growth in urban populations, it 

is crucial to plan cities carefully to create a livable and healthy living environment. To 

better understand human-environment relationships and increase eco-friendly 

transportation modes, previous studies have discussed the effects of weather 

variability on urban transportation modes. This study adds to the existing literature by 

running multiple regressive models to examine the weather-cycling relationship using 

a variety of temporal scales. Additionally, microclimate simulations were conducted to 

calculate location specific Universal Thermal Comfort Index (UTCI) values in New 

York City. Findings indicate that cyclists are more vulnerable to weather variability 

during the Spring and Fall seasons. The regression results for UTCI suggest that 

outdoor thermal comfort can be used as a predictor for cycling activity. Furthermore, 

the simulated location specific UTCI values displayed a stronger effect on bike usage. 

These findings highlight the importance of conducting microclimate simulations.  
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CHAPTER 1 

 

INTRODUCTION 

 

In 1800, only 3 percent of the world’s population lived in urban areas; by 1900 

this number increased to 14 percent; and in 2008 the world’s population was evenly 

split between urban and rural areas (Population Reference Bureau). Urbanization is 

rapidly occurring, and it is expected that by 2050, 70 percent of the world’s population 

will live in urban areas. With this growth in urban population, it is crucial to plan 

cities carefully to create a livable and healthy living environment. In response to this 

growing attention in creating sustainable cities, numerous cities have announced 

sustainable development goals. New York City is one of them and has created the 

OneNYC goal of reducing greenhouse gas (GHG) emission 80 percent from 2005 

levels by 2050 as a means to combat climate change (The City of New York, Mayor’s 

Office of Sustainability).  As of 2015, NYC emissions have dropped 14.8 percent 

since 2005, which means there is still a need for a 65.2 percent reduction by 2050. 

Although New York City buildings were responsible for a large portion of GHG 

emissions in 2015 (67 percent), it is important to note that the transportation sector 

accounted for 30 percent of GHG emissions. In the updated OneNYC 2050 strategy, 

some of the goals include “achieve carbon neutrality and 100 percent clean electricity” 

under the A Livable Climate initiative and “reduce congestion and emissions” under 

the Efficient Mobility initiative (City of New York). Increasing alternative methods of 

transportation such as cycling, can help achieve these goals.  
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In comparison with other travel modes, including cars, trains, and buses, 

cycling is more likely to be affected by weather as cyclists are exposed to the outdoor 

environment (Liu et al., 2015a; Sabir, 2011). Although the relationship between urban 

transportation and weather has been gaining attention (Guo et al., 2007; Kalkstein et 

al., 2009; Liu et al., 2015a; Miranda-Moreno and Nosal, 2011; Singhal et al., 2014; 

Thomas et al., 2013; Zhao et al., 2018), it is important to further strengthen the 

understanding of the relationship between weather and cycling. Many of these 

previous studies used field survey data as opposed to big data. Now with the 

increasing availability of open data, it is possible to obtain temporally and spatially 

dense data. Very few studies have explored cycling big data to compare weather-

cycling relationships (Zhao et al., 2018). Furthermore, numerous studies have 

compared weather variables with cycling, but few have explored the relationship 

between outdoor thermal comfort and cycling activities. Specifically, the Universal 

Thermal Comfort Index (UTCI), a measure of outdoor thermal comfort first 

introduced in 2012 which has recently been gaining recognition as an accurate method 

to measure outdoor thermal comfort. As such it is particularly important to have an in-

depth understanding of outdoor thermal comfort and cycling relationships so that the 

potential reduction in cycling due to uncomfortable outdoor environments can be 

mitigated.  

 This study aims to fill these research gaps and add to the existing literature by 

adding a spatial component to the statistical analysis using cycling and weather data. 

Cycling and weather data have been obtained through Citi Bike and Weather 

Underground, respectively, and multiple regressive models were estimated to gain an 
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understanding of the relationship. Several temporal scales were used in examining the 

relationship between weather and cycling, as well as UTCI and cycling. Finally, a 

microclimate simulation for Manhattan was conducted to calculate the UTCI values 

for specific Citi Bike stations to explore the spatial component of the relationship 

between weather, UTCI, and cycling. The results of the study will help inform 

decision makers of the most important environmental variables affecting cycling and 

suggest ways to alter the built environment to create a more comfortable environment 

for outdoor activities. This framework will help planners and urban designers in 

prioritizing what to include to create an attractive street to increase outdoor activities.  
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CHAPTER 2 

 

LITERATURE REVIEW  

 

There have been few studies directly quantifying the relationship between 

outdoor activities and climate conditions. Moreover, even fewer of these studies 

examine the relationship between outdoor thermal comfort values and outdoor 

activities. Among the existing studies exploring weather and transportation, there have 

been common findings. Precipitation generally always has a negative effect on 

ridership across all transit modes (Guo et al., 2007; Kalkstein et al., 2009; Zhao et al., 

2018). Since the effect of precipitation on cycling has already been explored 

thoroughly in previous studies with consistent results (Bergstrom and Magnusson, 

2013; Winter et al., 2017; Zhao et al.,), this study does not include precipitation as a 

variable in the regression models.  

 Understanding the behavioral impacts of weather variability on travel behavior 

is critical for planners and policymakers to incorporate when creating design 

guidelines and infrastructure management. Previous studies have examined the 

impacts of travel purposes on the relationship between weather variability and travel 

behavior. These studies have found that commuters are less sensitive than non-

commuters to weather variability (Cools et al., 2010; Liu et al., 2015). Furthermore, 

studies have shown that adverse weather strongly influences cycling (Richardson, 

2000; Bergstrom and Magnusson, 2003; Winter et al., 2007). This is reasonable as 

cyclists are less protected from the outdoor environment compared to other modes of 
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transportation. A study conducted in Seattle, Washington concluded that cycling is 

largely self-dependent at finer temporal scales (Zhao et al., 2018). Another study 

introduced the concept of a 9-term average residual in order to mitigate the temporal 

variations of the variables (Kalkstein et al., 2009). This 9-term average residual is 

widely used by other studies examining weather and transit relationships (Singhal et 

al., 2014; Zhao et al., 2018).   

Although previous studies have quantitatively examined the relationship 

between weather and travel patterns, most studies have focused on public 

transportation mode choices instead of transportation modes that are more prone to 

weather variability such as walking or cycling largely due to the lack of temporally 

and spatially fine data. Additionally, most existing studies examining UTCI have 

focused on the validation of the thermal comfort index as opposed to the application of 

it (Pantavou et al., 2013; Lai et al., 2014; Fang et al., 2018). This study aims to fill the 

research gaps by quantitatively provide an in-depth understanding of the relationship 

between outdoor thermal comfort and cycling activities.  
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CHAPTER 3 

 

STUDY CONTEXT AND DATA SOURCES 

3.1 Study Area 

 

 Manhattan, New York was chosen as the study area. Manhattan is the most 

densely populated Borough within New York City, and is also a popular destination 

for tourists.  The island is enclosed by the Hudson, East, and Harlem rivers. The 

population of Manhattan is estimated to be around 1.6 million, with nearly 62.8 

million tourists in 2017 (NYC Future). New York City is situated in the warm humid 

subtropical climate zone, where winter temperatures generally stay a few degrees 

above freezing, and summer conditions exist around late May to late September 

(National Climatic Data Center). New York City is generally not very hilly, making it 

an ideal location for cyclists.  

 The large number of visitors and residents in Manhattan allow for an 

interesting mix of data through Citi Bike. The Department of Transportation (DOT) in 

NYC has released Safer Cycling, a comprehensive study of NYC’s bicycle network, 

which reports that numbers of regular bicyclists have increased, and cycling has grown 

dramatically safer. 24 percent of New Yorkers, nearly 1.6 million people report to 

have cycled at least once a year (City of New York), and on a typical day there are 

about 490,000 cycling trips made in NYC (U.S. Census Bureau, 2017). In an effort to 

accommodate the growing number of cyclists, NYC DOT continues to expand and 

enhance on-street bike networks as well as dedicated bike lanes.  
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Figure 1: Context map of Manhattan showing Community Districts and bike stations 
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3.2 Weather Data 

 

 The 2018 weather data were obtained through the Weather Underground 

website. This data source has been used extensively by previous studies, and research 

has indicated that public domain weather sources offer weather data that are just as 

reliable as an onsite weather station (Singhal et al., 2014; Wolff et al., 2011). Since the 

weather data obtained through Weather Underground would be used as an input for 

the microclimate simulations, as well as serve as an overall weather for NYC, a station 

that was not in another building’s shadow was needed. In order to ensure that the 

weather station was placed at an unobstructed area, a station in Jackson Heights, New 

York [Station ID: KNYJACKS2] was used to obtain data. The hardware used for this 

station is Davis Vantage Pro, and the software used is meteobridge. The weather 

factors acquired from this data source include air temperature, relative humidity, wind 

direction, wind speed, solar radiation, and precipitation. The raw data obtained 

through Weather Underground had a temporal resolution of 15 minutes, so the data 

were first aggregated into hourly values.  

 

3.3 Cycling Data 

  

Cycling data were obtained through the Citi Bike NYC Trip Histories Data 

website. Citi Bike launched in 2013 and is now the largest bike share system in the 

nation. Stations and thousands of bicycles are placed across Manhattan, Brooklyn, 

Queens, and Jersey City, and are available for use anytime. Citi Bike offers both day 
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passes and annual memberships, attracting both tourists and residents in New York. 

The information included in the Citi Bike Data include trip duration, start and stop 

time and date, start and end station coordinates, and user type. The user type data 

include information such as age, gender, and whether the biker user is a one-time use 

customer or a subscriber. The raw data included all trip logs, so the data were first 

aggregated into hourly counts using R software.  

 

3.4 Simulation Software for Microclimate Modeling  

 

For the microclimate simulations, a 3D model of the buildings in NYC was 

downloaded from the NYC Planning website. The bike station points were obtained 

through the latitude and longitude coordinates provided by the Citi Bike data. To 

ensure that the station points had the same projection as the 3D model, the station 

points were assigned a projection using ArcGIS. The shape file that resulted from this 

process was then put back into Rhino, and the 3D model was aligned with the station 

location points. In an effort to speed up the simulation process, the 3D model was split 

into the 12 community districts within Manhattan. Table 1 is a list of the community 

districts in Manhattan. 
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Table 1:  List of neighborhoods in each Community District 

Community District Neighborhood Names 

MN CD 01 
Battery Park City, Civic Center, Ellis Island, Governors 

Island, Liberty Island, South Street Seaport, Tribeca, Wall 

MN CD 02 
Greenwich Village, Hudson Square, Little Italy, NoHo, 

SoHo, South Village, West Village 

MN CD 03 
Chinatown, East Village, Lower East Side, NoHo, Two 

Bridges 

MN CD 04 Chelsea, Clinton, Hudson Yards 

MN CD 05 
Flatiron, Gramercy Park, Herald Square, Midtown, Midtown 

South, Murray Hill, Times Square, Union Square 

MN CD 06 

Beekman Place, Gramercy Park, Murray Hill, Peter Cooper 

Village, Stuyvesant Town, Sutton Place, Tudor City, Turtle 

Bay 

MN CD 07 Lincoln Square, Manhattan Valley, Upper West Side 

MN CD 08 
Carnegie Hill, Lenox Hill, Roosevelt Island, Upper East 

Side, Yorkville 

MN CD 09 
Hamilton Heights, Manhattanville, Morningside Heights, 

West Harlem 

MN CD 10 Central Harlem 

MN CD 11 
East Harlem, Harlem, Randall's Island Park, Wards Island 

Park 

MN CD 12 Inwood, Washington Heights 

MN Parks Central Park 
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CHAPTER 4 

 

METHODOOGY: STATISTICAL ANALYSIS 

 

4.1 Independent Variables 

 

Weather variables have an inherent time series variation resulting from diurnal 

cycles. To control for this temporal variation, the residual weather equation was used 

to calculate the residuals for air temperature, relative humidity, wind speed, and solar 

radiation (Zhao et al., 2018). The residuals allow for a comparison of data across all 

days of the week (Kalkstein et al., 2009).  

The formula for the residual weather variables is: 

 

where 

 

 is the residual weather variables of air temperature, relative humidity, wind speed 

and solar radiation.  is the observed weather conditions at a particular day or hour t.  

 is the 9-term moving average for day or hour t. The index  represents weeks, 

ranging from -4 to 4. Therefore  ranges from 28 days before to 28 days after the 

day or hour in question. The weather variable value for the day or hour in question 

will only be compared to a similar time of year. This range of 4 weeks before and after 

was chosen as it is not too long so that it would include days that are substantially 
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different from the day in question such as changes in seasons and academic year 

(Kalkstein et al., 2009).   

 

4.2 Dependent Variable 

Similar to the residuals weather variables, residual variables for cycling counts 

were calculated using the following formula:  

 

 
 

where 

 

 
    

 is the residual cycling counts at either the daily or hourly level.  is the observed 

weather conditions at a particular day or hour t.  is the 9-term moving average 

for day or hour t. The index  represents weeks, ranging from -4 to 4. 

By taking the residuals of the cycling counts, the time series variation of cycling by 

day of time, time of day, and other non-weather effects can be controlled. For 

example, mornings and evenings will always have higher cycling counts on the 

weekdays and the afternoons will have higher cycling counts on the weekends. The 

residuals will mitigate the effect of these non-weather related temporal variations.  
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4.3 Multivariate Linear Regression 

 

The multivariate regression model used for the statistical analysis is shown 

below: 

 

 

where  is the residual cycling counts at the daily or hourly level,  is the daily or 

hourly residuals for air temperature,   is the daily or hourly residuals for wind 

speed,  is the daily or hourly residuals for solar radiation, and  is the daily 

or hourly residuals for relative humidity. A summary of the models is shown in Table 

3.  Although some previous studies have included a lag variable into the regression 

model (Zhao et al., 2018), the residuals calculated with the 9-term moving average 

already account for temporal variations, so it is not included in this regression model.  

 Different temporal scales were used to estimate the regressions models, 

including daily versus hourly values, weekdays versus weekends, and the four 

seasons. The seasons were categorized using the bins shown in Table 2. 

 

Table 2: List of months per season 

Season Months 

Winter December, January, February 

Spring March, April, May 

Summer June, July, August 

Fall September, October, November 
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Table 3: Summary of non-spatial models 

 
Dependent Variable (cycling counts) Independent Variable 

Model 1 
Hourly / Daily values for 2018 for all 

users 
Weather Variables 

Model 2 
Hourly/ Daily values for 2018 for 

‘customers’ 
Weather Variables 

Model 3 Hourly / Daily values for weekends Weather Variables 

Model 4 Hourly/ Daily values for weekdays Weather Variables 

Model 5 Hourly / Daily values for 4 seasons Weather Variables 

Model 6 
Hourly / Daily values for 2018 for all 

users 
UTCI Values 
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CHAPTER 5 

 

METHODOLOGY: SPATIAL ANALYSIS 

 

5.1 Microclimate Modeling  

 

The input variables for UTCI calculations were simulated using Grasshopper 

components in Rhino. The diffuse and direct radiation which were needed for Mean 

Radiant Temperature (MRT) calculations, were simulated using the DIVA 4.0 

Radiation Map component. The bike station locations in the form of point data were 

used as the sensor locations, and the radiation values were calculated at these 

locations. The buildings in the 3D model were also used as inputs for the radiation 

calculations to account for shadows that influence direct radiation, and scattered 

radiation from building walls which influence diffuse radiation. The wind velocities 

were calculated using Eddy, a Grasshopper plugin tool. The outputs for both radiation 

values and wind velocities were obtained for all hours in 2018. These simulated values 

were then used as inputs for the UTCI component. The UTCI component requires air 

temperature, relative humidity, wind speed, diffuse radiation, direct radiation, sun 

elevation angle, and average surface temperature context as inputs. The diffuse and 

direct radiation are used to calculate MRT, which is the average temperature of an 

imaginary enclosure which exchanges thermal radiation with the human body. The 

MRT is important in determining thermal comfort, as the human body is constantly 

exchanging thermal radiation with the surroundings. The air temperature, relative 

humidity, and sun elevation angle values from the weather station data obtained from 
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Weather Underground were used as input values. The default value was used for the 

average street width and height, body solar absorption, and ground reflectance. The 

output of this grasshopper workflow was hourly UTCI values in 2018 at each bike 

station. Simulations were conducted for each community district in Manhattan and 

were combined after all simulation results were obtained.  

 

5.2 Universal Thermal Climate Index 

 

UTCI was created as a means of creating a thermal index that could be used 

globally and accepted internationally. It is defined as “the air temperature of a 

reference condition causing the same model response as actual conditions” 

(Blazejczyk et al., 2013). The UTCI values would differ depending on the location of 

the bike stations because factors such as wind speed and solar radiation would vary. 

For example, if a station is located in between skyscrapers, that station would receive 

very little solar radiation and high wind speeds. These conditions would significantly 

decrease the UTCI value at that location, which may make it seem too cold and 

undesirable for Citi Bike customers. Comfortable UTCI values would result in more 

Citi Bike users, because the nice outdoor conditions may convince people to bike 

instead of taking an Uber or public transportation.  
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CHAPTER 6 

 

RESULTS: STATISTICAL ANALYSIS 

 

6.1 Descriptive Statistics 

 

As seen in Figure 2 below, cycling counts gradually increase from January to 

July where it plateaus, and then decreases again moving towards December. The 

orange dots show raw cycling count data, the red dots shows the 9-term moving 

average, and the blue line illustrates the residual cycling values for the year 2018. The 

temporal pattern described above is no longer apparent when looking at the residual 

cycling values. This indicates that the temporal pattern was successfully reduced by 

taking the residual values, and these residual values are a better representation of 

weather-related effects.   

Figure 2: Graph of cycling counts raw data, 9-term moving average, and residuals 

 
  

Examining the cycling counts at a finer temporal resolution, we can observe a 

two-peak pattern for weekdays (Figure 3) and a one peak pattern for weekends (Figure 

4). The two-peak pattern apparent on weekdays can be explained by morning and 
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evening commute times. Based on this pattern, a large portion of Citi Bike users on 

weekdays seem to be commuters, and Citi Bike users on the weekends are cycling 

more for leisure. This difference in type of customers may affect how the bike users 

are influenced by the weather, and so a regression analysis is also conducted 

separately for weekdays and weekends. The varying nature of cycling counts 

depending on the day of the week and seasons further emphasizes the importance of 

exploring weather-cycling relationships at various temporal levels.  

 

Figure 3: Two-peak pattern for hourly bike trips data on April 26th  

 

Figure 4: One-peak pattern for hourly bike trips data from April 28th to April 29th  
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6.2 Co-linearity Diagnostics 

 

Before running the regression models, a multicollinearity test was conducted 

using the Variation Inflation Factor (VIF). The VIF measures how much the variance 

of an estimated regression coefficient increases if the predictors are correlated. If none 

of the factors are correlated, the VIFs would all be 1. A VIF between 5 and 10 

indicates a high correlation. All variables were well below the collinearity diagnostics 

thresholds, and therefore could be included into the regression models. The result of 

the VIF test is shown in Table 4.  

 

Table 4: VIF results 

     

VIF 1.013201 1.009203 1.016188 1.029121 

 

 

6.3 Regression Model Results 

Daily and hourly cycling models are developed for various time periods 

throughout the year. Models were created to test the effects of the day of the week as 

well as seasonal changes. All estimated models are statistically significant as 

demonstrated by the F statistics and the P values. The R squared value slightly 

increased from 0.3852 to 0.4105 when only considering ‘customer’ users for the daily 

model. This suggests that ‘customer’ users are more likely to change their 

transportation modes based on the weather. A ‘customer’ is defined as someone who 

used either a 24- hour pass or a 3-day pass, as opposed to a ‘subscriber’ who has an 
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annual membership. Perhaps a ‘subscriber’ is less prone to weather variability because 

they have the annual membership in order to use Citi Bike for commuting purposes. 

Commuters are less likely to have the luxury to change transportation modes or shift 

their cycling time since they do not have a flexible time schedule. Interestingly, the R 

squared value significantly decreases from 0.06547 to 0.04532 when only considering 

‘customer’ users for the hourly model. This change in R squared value is larger than 

the difference in R squared values for the daily model. The results for the hourly 

model 1 and model 2 regression estimation suggest that ‘customers’ are less likely to 

be affected by weather variability. This illustrates the importance of conducting 

regression models using various temporal scales.  

In terms of the effects of each weather variable, air temperature, wind speed, 

and relative humidity were significant. Air temperature had a positive relationship 

with cycling activity, while relative humidity and wind speed had a negative 

relationship with cycling activity. Moreover, relative humidity has the strongest effect 

on cycling for both hourly and daily models, as shown by the beta coefficient values.  

Comparing the weekend and weekday models, the weather variables in the 

weekend model explain higher variation than in the weekday model for hourly values. 

Cycling activity on weekdays tend to be more severely affected by temperature, as can 

be seen from the beta coefficient values. Similar to the results from Model 1 and 

Model 2, the weekday model is less likely to be affected by weather than weekend 

cycling at the hourly level, but the opposite is true at the daily level. The daily model 

regression results suggest that cyclists are more likely to be influenced by weather 

variables on weekdays than the weekend.  
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Table 5: Model 1 and Model 2 regression beta coefficient results 

 Hourly 

(All users) 

Hourly 

(Customers) 

Daily 

(All users) 

Daily 

(Customers) 

Intercept -0.0046 -0.0243 0.0005 -0.7836* 

Residual Ta 0.1056* 0.3645* 0.2768* 0.1410* 

Residual WS -0.1247* -0.1302* -0.1780* -0.0654* 

Residual Solar -0.0092 -0.0112 -0.0298 0.0144 

Residual RH -0.4903* -0.6588* -0.5278* -0.1502* 

Adjusted R squared  0.0655 0.0453 0.3852 0.4105 

Model F 123.1 75.36 47.84 53.05 

* p < .05 

 

Comparing the weekend and weekday models, the weather variables in the 

weekend model explain higher variation than in the weekday model for hourly values. 

Cycling activity on weekdays tend to be more severely affected by temperature, as can 

be seen from the beta coefficient values. Similar to the results from Model 1 and 

Model 2, the weekday model is less likely to be affected by weather than weekend 

cycling at the hourly level, but the opposite is true at the daily level. The daily model 

regression results suggest that cyclists are more likely to be influenced by weather 

variables on weekdays than the weekend.  
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Table 6:  Model 3 and Model 4 daily regression beta coefficient results 

  Weekday (Daily) Weekend (Daily) 

Intercept 0.00364 -0.00731 

Residual Ta 0.32154* 0.16187* 

Residual WS -0.22750* -0.08720 

Residual Solar -0.10463 0.07007 

Residual RH -0.56865* -0.48940* 

Adjusted R squared  0.45620 0.25640 

Model F 45.26 8.498 

* p < .05 

 

Table 7: Model 3 and Model 4 hourly regression beta coefficient results 

  Weekday (Hourly) Weekend (Hourly) 

Intercept 0.00035 -0.01749 

Residual Ta 0.11293* 0.08667* 

Residual WS -0.12516* -0.12467* 

Residual Solar -0.01164 -0.00290 

Residual RH -0.48545* -0.49637* 

Adjusted R squared  0.06173 0.07615 

Model F 82.42 42.65 

* p < .05 

 

 For the seasonal model, Fall and Spring had the highest R squared values for 

both the daily and hourly models. One explanation for this is that cyclists are more 

influenced by the weather in between summer and winter when it is becoming either 

colder or warmer. This may be due to the fact that Fall and Spring are usually the 

seasons when people have not yet completely got accustomed to the changing 

temperatures. Another interesting finding here is that solar radiation is only significant 
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in the Fall. Again, this may be because people have a tendency to prefer warm 

temperatures when transitioning from summer to winter. Additionally, the beta 

coefficients values for air temperature in the summer models are negative, whereas the 

beta coefficient values for air temperature are positive for all other seasons. This 

suggests that cyclists prefer lower temperatures in the summer, because cycling is 

uncomfortable in high temperatures. This result is useful for urban planners and 

designers to design effectively throughout all seasons. For example, designing streets 

to provide shade and wind flow for cyclists in the summer is important, while in the 

Fall, streets should allow for sunlight.  

 

Table 8: Model 5 daily regression beta coefficient results 

* p < .05 

 

 

 

 

 

  Winter Spring Summer Fall 

Intercept 0.04757 -0.01331 0.01204 0.01882 

Residual Ta 0.20405* 0.26994* -0.29010* 0.64070* 

Residual WS -0.12687 -0.17461 -0.06817 -0.28237* 

Residual Solar 0.08744 0.05979 0.13890* -0.27530* 

Residual RH -0.79567* -0.51949* -0.41032* -0.70713* 

Adjusted R squared  0.42380 0.43520 0.34710 0.59160 

Model F 7.069 18.53 13.1 30.34 
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Table 9: Model 5 hourly regression beta coefficient results 

  Winter Spring Summer Fall 

Intercept 0.04177 -0.00513 0.00877 0.01220 

Residual Ta 0.07246* 0.24265* -0.02912 0.37121* 

Residual WS -0.07257 -0.14535* -0.06916* -0.15445* 

Residual Solar 0.02600 0.00034 -0.00136 -0.02394 

Residual RH -0.75759* -0.47202* -0.38483* -0.61573* 

Adjusted R squared  0.08323 0.09549 0.03792 0.09038 

Model F 17.32 57.66 22.59 48.49 

* p < .05 

 

The regression model using UTCI values was statistically significant, which 

means that outdoor thermal comfort can also be used a predictor for cycling activity. 

Consistent with the other models, the R squared is higher for daily values. The results 

of this regression can be used to create an equation that can predict cycling activity 

based on UTCI values. This is useful for urban planners and designers who wish to 

increase outdoor activities by changing the built environment. By changing 

streetscapes and buildings surrounding a street, the thermal comfort will significantly 

change which would then affect people’s decisions to engage in outdoor activities.  

 

Table 10: Model 6 regression beta coefficient results 

 

 

 

 

* p < .05 

 

 Daily Hourly 

Intercept -0.0364291* -0.0446818* 

UTCI 0.0040818* 0.0045439* 

Adjusted R squared 0.05169 0.01207 

Model F 17.74 90.96 



 

25 

CHAPTER 7 

 

SPATIAL ANALYSIS 

 

7.1 Data Processing  

 The UTCI simulations were conducted for each community district in 

Manhattan. The first step was to create a framework by using just one of the 

community districts and then applying that framework (Appendix A) to the rest of the 

community districts to comprehensively calculate all the hourly UTCI values in 2018 

for the Citi Bike stations within Manhattan. The solar radiation map (Appendix B) 

illustrates how different areas will receive different amounts of solar radiation 

depending on the direction of the sun as well as the height and orientation of the 

buildings surrounding the station. When comparing the solar radiation map and the 

UTCI map, it is evident that they have similar spatial patterns. This similarity 

demonstrates the strong effect solar radiation has on UTCI values. Furthermore, the 

effect of wind speed can be seen by comparing the UTCI maps before (Appendix C) 

and after (Appendix D) implementing the simulated wind speed values (Appendix E) 

at each station. Stations that experience high wind speeds significantly decreases the 

UTCI values after implementing the simulated wind speeds. Similarly, the UTCI 

values do not change significantly in areas that experience low wind speeds. This 

further indicates the importance of microclimate simulations when examining the 

relationship between weather and cycling. Microclimate simulations can produce a 
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more accurate representation of the environment, rather than using a single weather 

station and applying those weather conditions to all bike stations.  

 After obtaining the UTCI values for every hour of 2018 at each station, the 

data collected in grasshopper were put back into R and were re-formatted to combine 

with cycling counts for each station, as well as with spatial data as shown in Table 11. 

Because numerous stations had NULL values when looking at hourly data, this data 

was aggregated to daily, weekly, and monthly values as well. A spatial regression 

model was created to test whether or not there is a spatial aspect to the relationship 

between UTCI and cycling counts.  

Table 11: Example of monthly data structure from Community District 1 

 

7.2 Spatial Regression Modeling  

 Prior to running the spatial regression models, a linear regression model was 

used as a base line for the conditional autoregressive (CAR) and simultaneously 

autoregressive (SAR) models. CAR models show more of a neighborhood effect than 

SAR models, since in the CAR model, the probability of a certain value is based on 

ID 
Station  

Name 
Latitude Longitude Geometry UTCI Count 

195 
Liberty St & 

Broadway 
40.70906 -74.0104 

c(583589.540899192, 

4506931.18672383) 
14 67 

248 
Laight St & 

Hudson St 
40.72185 -74.0077 

c(583802.919623657, 

4508354.38741048) 
37 34 

249 
Harrison St 

& Hudson St 
40.71871 -74.009 

c(583698.491568793 

, 4508004.16786214) 
29 40 

257 
Lispenard St 

& Broadway 
40.71939 -74.0025 

c(584249.050093871, 

4508086.1605005) 
23 60 

259 
South St & 

Whitehall St 
40.70122 -74.0123 

c(583438.116039422, 

4506059.64365467) 
36 53 

260 
Broad St & 

Bridge St 
40.70365 -74.0117 

c(583491.194554085, 

4506330.07982864) 15 21 
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neighbor values. The CAR model uses a symmetric weight matrix, which means that 

directional processes cannot be modeled. In contrast, SAR can model anisotropic 

models, implying that the processes do not have to be symmetric. These models were 

used to find the regression coefficient and their standard deviations, as well as the 

loglikelihood. Spatial regression models require neighborhood lists, in order to test for 

spatial correlation. Figure 5 shows the resulting neighborhood structure based on the 

Citi Bike station locations in Manhattan. All modelling was completed using R.  

Figure 5: Neighbors Connections 
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To examine whether a spatial pattern exists in the dataset, the CAR and SAR 

models were first compared to a non-spatial regression model. Before running the 

regression models, the data were manipulated to allow easier analysis. Some stations 

were not being used often, resulting in very few bike trips at the hourly, daily, and 

weekly levels subsequently making it difficult to see temporal patterns and trends. 

Therefore, UTCI values per station were aggregated to the monthly level to mitigate 

this issue. The resulting data contained months as columns and stations as rows, where 

each value represented the average UTCI value at a particular month and station. After 

the data manipulation was complete, the linear regression models were created for 

non-spatial, CAR, and SAR assumptions. The results of the regression models are 

shown below in Table 12 and 13.  

 Comparing the loglikelihoods for the three models, the CAR model had the 

highest average loglikelihood of -1772.33, the next highest was the SAR model with 

an average loglikelihood of -1772.64, and the non-spatial regression model had the 

lowest average loglikelihood of -1779.84. The loglikelihood is a measure of the fit of 

the coefficients. Since the sample sizes were the same for all models, the loglikelihood 

can be used to determine which model has the best fit for the dataset. The CAR and 

SAR models resulted in a higher loglikelihood than the non-spatial model, illustrating 

that there is a spatial aspect to the relationship between UTCI values and bike usage. 

Although the difference is minimal, the loglikelihood values for the CAR models are 

higher than the SAR models. Since the CAR model assumes that an area is affected by 

its neighbors, and not neighbor of neighbors, the model results suggest that bike 

stations nearby are likely to experience similar microclimate conditions than bike 
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stations at a distance. These results highlight the importance of considering the 

adjacent areas of the point of interest when simulating location specific UTCI.   

 The non-spatial regression models are statistically significant for the months of 

April to October. Similarly, for the CAR and SAR models statistical significance can 

be seen for the months of April to June, and August to October. This is consistent with 

the findings from the seasonal model explained earlier, where Fall and Spring had the 

highest R squared values. Both models confirm that bikers are more likely to be 

influenced during ‘changing seasons’, where temperatures are unstable, and people are 

not yet accustomed to the changing temperatures. Another interesting finding is that 

the magnitude of beta coefficients is much larger for the simulated UTCI models 

(Models 7, 8, and 9) compared to the non-location specific UTCI model (Model 6). 

The beta coefficient reflects how severely cycling activity will be affected by UTCI. 

This suggests that simulated location specific UTCI values have a stronger effect on 

cycling than the non-location specific UTCI values calculated using weather data for 

Manhattan. The importance of simulating UTCI using microclimate data is highlighted 

in this finding. 
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Table 12: Model 8 non-spatial regression results for all months in 2018 

  Beta Coefficient Adjusted R squared Loglikelihood 

January 0.5518 -0.0004388 -1553.451 

February 0.05376 -0.002482 -1592.712 

March 0.8758 0.003375 -1655.717 

April 3.118* 0.01871 -1759.416 

May 1.962* 0.01185 -1882.401 

June 2.6266* 0.01667 -1886.158 

July 1.8639* 0.008246 -1892.45 

August 2.782* 0.02373 -1933.046 

September 1.8652* 0.01131 -1898.189 

October 2.5011* 0.01262 -1932.254 

November 0.4662 -0.001003 -1735.632 

December 0.01569 -0.002461 -1636.619 

* p < .05 

 

Table 13: Model 9 CAR and SAR regression results for all months in 2018 

  CAR Model SAR Model 

  Beta AIC Loglikelihood Beta AIC Loglikelihood 

January 0.40021 3096.8 -1544.415 0.4266 3098.1 -1545.04 

February 0.021769 3182.4 -1587.193 0.022584 3183 -1587.513 

March 0.74552 3304.6 -1648.31 0.76851 3305.4 -1648.71 

April 2.907* 3511.4 -1751.68 2.9374* 3511.8 -1751.881 

May 1.60206* 3758.7 -1875.354 1.62381* 3759.6 -1875.779 

June 2.27138* 3763.8 -1877.914 2.2898* 3764.4 -1878.187 

July 1.5537 3772.4 -1882.206 1.56945 3772.7 -1882.326 

August 2.50468* 3860.7 -1926.369 2.54324* 3861.2 -1926.614 

September 1.71027* 3795.1 -1893.526 1.72959* 3795.3 -1893.648 

October 2.0509* 3859.2 -1925.588 2.0875* 3859.5 -1925.775 

November 0.32833 3463.9 -1727.973 0.34591 3464.6 -1728.313 

December -0.04858 3263 -1627.488 -0.02342 3263.8 -1627.917 

* p < .05 
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CHAPTER 8 

 

DISCUSSION AND CONCLUSION 

 

With the ever-growing availability of open data sources, it is important to 

understand how big data can be used for both the temporal and spatial exploration of 

valuable datasets. This study examines the relationship between weather variables and 

cycling, as well as UTCI and cycling. Previous studies have discussed the effects of 

weather variability on urban transportation modes, but few studies have conducted an 

in-depth examination using a variety of temporal scales with the addition of 

microclimate simulations to calculate location specific UTCI values. This study aims 

to fill these research gaps.  

 The descriptive statistics indicate that weekday Citi Bike users are mostly 

commuters, and weekend Citi Bike users are cycling mostly for leisure purposes. In 

addition, cycling counts are higher during the summer compared to all other seasons, 

which is partly due to the increase is tourists but also because of the favorable 

weather. Therefore, different temporal scales were used in the regression models 

including daily vs hourly, weekday vs weekend, and seasonal effects. The regression 

models have shown that daily values consistently result in higher R squared values. 

Weekend cyclists are more likely to be affected by weather variability than weekday 

cyclists, which is consistent with findings from previous studies (Guo et al., 2007; 

Kalstein et al., 2009; Singhal et al., 2014). This suggests that weekend cyclists have 

more flexibility to change transportation modes or shift their cycling time, compared 



 

32 

to weekday cyclists who are commuting. Additionally, the regression model 

examining the seasonal differences demonstrates that cyclists are more likely to be 

affected by weather variability during the Fall and Spring seasons, which is consistent 

with a previous study examining seasonal effects (Zhao et al., 2018). The significance 

of the individual weather variables also varied depending on the season. A negative 

beta coefficient could be seen for air temperature in the summer model but was 

positive for all other seasons. In the summer, cyclists prefer a lower temperature for a 

comfortable cycling experience. The results from the seasonal variation model can be 

used by planners, policymakers, and urban designers who are seeking to create an 

optimal outdoor environment throughout all seasons. Finally, the regression model 

examining the relationship between UTCI and cycling activities was statistically 

significant, suggesting that UTCI could be used as a predictor for cycling activity.  

 Results from the microclimate simulations indicate the importance of 

calculating UTCI values at specific locations when exploring the effects of UTCI on 

cycling activity. The microclimate simulation allowed for a more accurate 

representation of the environment in real life, as opposed to using weather values from 

a single weather station. Wind speeds and solar radiation varied throughout Manhattan 

due to the built environment, which influenced UTCI values. The UTCI simulation 

results were used to create spatial regression models to explore the spatial aspects of 

the relationship between UTCI and cycling activity. A comparison of the non-spatial 

model, CAR model, and SAR model illustrates that UTCI values are in fact influenced 

by neighboring UTCI values. Both the CAR and SAR model resulted in higher 

loglikelihood values, exemplifying the need to consider areas adjacent to the area of 
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interest when examining UTCI. However, the spatial regression models were unable to 

verify that simulated UTCI values can better predict bike trip counts. This is 

reasonable since most people do not suddenly decide to ride a bike just because that 

area is thermally comfortable. Bike users are more likely to decide to ride a bike based 

on the weather forecast, not the microclimate. Nevertheless, the results of the spatial 

regression models highlight the importance of further exploration of simulating UTCI 

values. The simulated UTCI values displayed a stronger effect on bike activity 

compared to the non-simulated UTCI values, and clearly shows the importance of 

conducting microclimate simulations. The results of this study can be used to explain 

why microclimate simulations are crucial in outdoor activity studies.  

This study only considered cycling data, but in order to further deepen our 

understanding of transportation mode choices, it would be useful to look at other 

transportation mode data and compare results. This would enable a better 

understanding of the effects of weather variability on transportation mode choice. Due 

to data availability, this study examined the relationship between weather variables, 

UTCI and cycling, but this framework can be used with other types of data as well. 

When temporally and spatially dense data become available, this framework can be 

used to examine the effects of outdoor environments on pedestrian and outdoor space 

usage. The exploration of different types of outdoor environments would be beneficial 

for planners and designers who aim to create an attractive outdoor space. Furthermore, 

the hourly simulated UTCI values for each station shed light on outdoor thermal 

comfort throughout the entire Manhattan area. These values can be used to explore 

different urban design layouts and determine the necessary conditions for promoting 
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an active outdoor area. The regression model results can also assist in creating 

formulas to predict how much cycling activity would increase, if outdoor thermal 

comfort is improved. These are all potential avenues for future research. 
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APPENDIX  

 

APPENDIX A 

 

 

A diagram showing the workflow of this study 
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community District 1 Solar Radiation Simulation Results 
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APPENDIX C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community District 1 UTCI with Constant Wind Values Simulation Results 
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APPENDIX D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community District 1 UTCI with Simulated Wind Values Simulation Results 
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APPENDIX E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community District 1 Simulated Wind Values Results 
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APPENDIX F 

Perspective view of simulation 3D model (Community District 1) 

 

 

Zoomed out perspective view of simulation 3D model (Community District 1) 
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