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Abstract
We discuss various aspects of economic equilibrium problems which
suggest certain reformulations before applying solution procedures. Many
of the ideas are motivated by quasi-Newton algorithms but they are also
useful for piecewise-linear homotopy methods. We also propose a new
quasi-Newton update formula for a subclass of equilibrium problems.

Limited computational experiments are presented.



1. Introduction

A number of computational procedures can be applied to approximate
equilibria in economic models. These methods generate a sequence of
price vectors or a sequence of utility weights using either successive
linearizations, a sequence of mathematical programming problems, or a
homotopy algorithm; see for example the other papers in this volume and
those in Scarf and Shoven (1984). In general the homotopy algorithms are
guaranteed to converge, but on large problems usually require more
computation than the other approaches. One particular method that
appears to be very efficient is the successive linear complementarity
problem technique of Mathiesen (1983)--see also his paper in this volume.

Here we are concerned with reformulations of equilibrium problems
that may render them more amenable to solution approaches that generate
sequences of price vectors. These ideas were motivated by quasi-Newton
algorithms but are also useful for (piecewise-linear) homotopy methods,
for which global convergence can be maintained while employing
reformulations for efficiency. We also propose a new quasi-Newton update
formula for certain equilibrium problems.

In Section 2 we describe the three problems with which we are
concerned and obtain an explicit form for the nonlinear functions
involved in one case. Section 3 presents the Newton and quasi-Newton
philosophies, while in Section 4 we discuss various formulations of
economic equilibrium problems. Section 5 describes the new update
formula and why it may be of interest. Finally, Section 6 contains the

results of some limited computational experimentation.



2. Problems

In all cases there are n goods indexed by i and m consumers
indexed by j. Lower-case roman letters generally denote n—vectors,
while lower—case greek letters are reserved for scalars. Upper-—case
roman letters denote matrices, except that diagonal matrices are denoted
by upper—case greek letters. We use nonnegative superscripts for
indexing, so that possibly nonnegative powers are indicated by enclosing

their arguments in parentheses.

A. Partial Equilibrium, Pure Trade

The economy is described by the following for each consumer j: his

J

initial endowment Y of money, his consumption set IR+ and a utility

. j . s n
function ud: IR;1 - R. There is also an initial endowment w € R~ of
goods——we assume w > O (i.e., each component of w is positive).

J

For given prices p 2 0, consumer j maximizes u over his or

her budget set
T J

{x‘] € IR?: p x¥ w‘]};

we assume that the maximizing vector exists and is a continuous function

dJ  of the price vector p. The excess demand vector is then

g(p) := >3j dj(p) - W.

We seek a price vector p with

p 20, g(p) 0. pel) = 0. (1)



The fact that the demand functions dJ arise from utility
maximization, even with several regularity assumptions on the uwl s,
imposes very little structure besides continuity on the aggregate excess

demand function g (Debreu (1974)). However, we will be interested in

instances of (1) in which -g 1is strictly monotone, i.e.

(p-q)T(g(p)~g(q)) <O (2)

for all distinct p,q 2 0. Such a property can be deduced under certain
hypotheses with a continuum of consumers (Hildenbrandt (1983)). If g
is continuously differentiable, (2) follows if g' 1is negative definite
everywhere. It may also be true that g' is negative definite in a
neighborhood of a solution to (1). This may occur if the income effects

are (locally) dominated by the substitution effects.

B. General Equilibrium, Pure Trade

Here the consumers have an income determined by the sale of their
initial endowment vectors wJ € R+, and the total initial endowment is
w o= EJ. w'J, which we assume to be strictly positive. Hence consumer j

maximizes u‘] over

3 3 00 plxd ¢ plwly,

yvielding his demand dJ(p). Again we set g(p) = EJ. d'](p) — w, and
assume that g 1is defined and continuous at all p 2 0, p # O, and

moreover satisfies Walras’® law pTg(p) = 0. We seek a price vector p

with



p20, p# 0, and g(p) £O. (3)

Because of the homogeneity of g we can normalize p, for example by
A T . .

requiring e p = 1 where e is a vector of ones of appropriate

dimension. Then the problem reduces to one on the price simplex

n-1

S = {p € R™: p 2 O, eTp = 1} of dimension n-1. As we shall see,

however, this is not a particularly natural normalization.

Example: Suppose the utility functions are of constant elasticity of
substitution (C.E.S.) so that for appropriate aij >0 and ol >0 we
have
3. (a )Uj(x P ol £
A i ij ij

w(xd) :=

Ei aij log xij o’ = 1.

Then the economy is described by the nxm matrices A = (aij) 20 and

W= (wl,...,wm) > 0 and the vector (Ul,...,Um) > 0. Here We =w > O;

we also assume eTA > 0, so that each consumer desires something, and by
T T

rescaling the utility functions we can then suppose that e A = e . Let
us write
Q := diag(w) and T := diag(p): (4)
then for p > 0 we find
-1,— T
g(p) =T "(A(PIW - Q)p (5)

where



K(p) :=[a(p).....a"(p)] and

j 3 (©)
A(p) 1= ) V)l Ty (1717073

J denotes the jth column of the matrix A. Note that if all

and where a
U‘j’s equal one (i.e., we have Cobb-Douglas utility functions), then
A(p) = A is constant. For further results on Cobb-Douglas economies see
Eaves (1985). Let us make a simple observation that follows immediately
from (5): for any Cobb-Douglas economy given by m, A, W there is
another given by m', A', W with w=We =w' =We, the same excess
demand function g, and m' = n. This follows by taking W' = Q and
A = (AWT)Q—l. This is a concrete illustration of the fact that any con-
tinuous function g on Sn‘”l satisfying Walras’ law is essentially the
excess demand function of an economy with n consumers-—see Debreu
(1974).

Most utility functions used in economic modelling are of C.E.S. type

(sometimes nested) and thus the form of the excess demand function in (5)

can be a useful guide for devising algorithms to compute equilibria.

C. General Equilibrium, Activity Analysis Production

The consumption side of this economy is described as in case B, but
we add a production side. There are & producers indexed by k; the
kth has a production set {bk§k= gk 2> 0} for some vector bk of inputs
and outputs. We let

B := [bl,....b%]

and assume that free disposal is allowed, so that B = [-I,B’']. We seek

a price vector p and a vector of activity levels z with



p # 0, g(p) = Bz, BTp <0 and z 2 O. {(7)

Note that BTp < 0O implies p 2 0, and again we can renormalize by

requiring p € Sn_l'

Units

Observe that the price Py of the ith good is measured in a unit
that is the reciprocal of the unit of measurement of good 1i; gi(p) and
w, are measured in this unit; and pigi(p) and p;w, are
dimensionless. (We suppose "money" is dimensionless.) In particular,
this implies that normalizations such as eTp = Ei p; = 1 are somewhat
meaningless. It may be useful to view p and g(p) as lying in dual
abstract vector spaces; a choice of particular units for the goods
specifies particular dual bases for these spaces, and then Py denotes

the component of p corresponding to the ith basis element.

3. Newton and Quasi-Newton Philosophies

In this section we discuss the basic concepts of Newton and
quasi-Newton approaches to the solution of hard nonlinear problems.
These concepts are used in the next section to motivate certain "natural”
reformulations of equilibrium problems.

The general form of a finite-dimensional nonlinear problem is: find
x € R® such that P(x) holds, where P 1is some property involving
nonlinear functions. The main idea of a Newton—like approach is the

following algorithm schema:



Iteration k: Given a current trial point xk € R™:
k
Test x  for convergence;
Approximate the functions appearing in P by simpler (usually
. . k
linear) functions to get P ;

Solve the model problem: find x' such that Pk(x+) holds;

Update: Use " to get the new trial point xk+1 (usually

xk+1 t= x+) and proceed to iteration k+l.

The difference between Newton and quasi-Newton approaches is that
the former approximate functions by first- or second-order Taylor
approximations, while the latter employ information obtained about the
nonlinear functions by evaluations at xk and xk+1 to update the
approximations used at iteration k to those for iteration k+l.

This general schema includes Newton’s method for nonlinear equations
(using linear approximations) and for unconstrained minimization (using
quadratic approximations), and also embraces naturally the approach to
solving nonlinear complementarity problems (e.g., (1)) by solving
successive linear complementarity problems. (Eaves (1983) has shown that
the latter technique enjoys some of the desirable properties of Newton's
method for nonlinear equations.)

Let us illustrate two applications of the quasi-Newton approach.

Nonlinear equations. Find x such that f(x) = O, where

£: R® > R®. Thus P(x) corresponds to f(x) = 0 and we let Pk(x)

correspond to fk(x) = 0, where

K(x) 1= £1(5) + F(x-x5). (8)



We let xk+1 = x" {(this is the simplest choice) and
k+1 k SX—-JkslsT
J = J + s (9)
s's
where s = Xk+1 - xk, y = f(xk+l) - f(xk). Note that Jk+1 satisfies

- k+1 . . . .
the secant condition J s =y, thus incorporating new information

about the function f. This is the algorithm of Broyden (1965); in

particular, (9) is known as Broyden’s (first or good) update. Given that
+

we have either a factorization of Jk or its inverse explicitly, x is

easy to obtain from (8); and since Jk+1 in (9) is a rank-one update of

k . . k+1 . e e s . .
J ., a factorization of J or its explicit inverse is easy to derive

k
from one for J .
Unconstrained minimization. Find a local minimizer of a C2

function ¢: R™ > R. Then P(x) corresponds to x being & local

minimizer of ¢ and Pk(x) to x being a local minimizer of ¢k, with
k k kT k 1 kT k k
¢(x) = ¢(x7) + £(x7) (xx7) + 5(xx7) H'(xx")

where f = v¢ (we assume that the gradient of ¢ can be evaluated) and

Hk A v2¢(xk). If we insist that Hk be symmetric and positive definite

then ¢k has a unique global minimizer x+, and the direction x+-xk

is a descent direction for ¢. Thus we choose xk+1 = xk + 7\(x+-xk),

with A 2 O selected to give "sufficient decrease” in ¢, and to assure

that yTs >0 with y and s as above. Finally we set



k T,k T

getl gk _HssH L yy (10)
T. k T
s H's vy s

this update is independently due to Broyden, Fletcher, Goldfarb and
Shanno (see Dennis and Schnabel (1983)) and is guaranteed to be symmetric
and positive definite if Hk is and yTs > 0.

These two examples are to illustrate that (i) there is no need to
take xk+1 = x%; and (ii) there is no need to make linear approxi-

mations, only to obtain tractable subproblems {(i.e. model problems that

can be solved easily).

4. Natural Formulations of Economic Equilibrium Problenms

In the partial equilibrium situation, case A, we are trying to solve
the nonlinear complementarity problem (1). According to our discussion
in the previous section, it is natural to solve a sequence of linear

complementarity problems of the form:

find p >0 with g<(p) <O and pgi(p) =0  (11)
where

Kp) = g(0) + F-p5). (12)

This approach has been suggested by Eaves (1983), Hogan (1975) and
Mathiesen (1983). However, it is worth noting that under several
reasonable assumptions we know that an equilibrium price vector will have
all components positive; in this case we are equivalently searching for a
(positive) solution to g(p) = O, and then nonlinear scalings can be

applied to g, as we shall see later.
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In the general equilibrium pure trade case B, we might similarly
consider linearizing g. However here the problem is just
(n-1)-dimensional; p can be restricted to Snm1 and g(p) satisfies
pTg(p) = 0. We can convert the problem to one in Rn-l by choosing an
nx(n-1) matrix Z whose columns are orthonormal and orthogonal to
e € R® (see e.g. Section 6 of Awoniyi and Todd (1983)). Also let

pO = e/n € Snﬁl. Then the problem is equivalently:
find x € R* 1 with p+Zx > 0, g(p'+Zx) < O.
or, if we know that all prices will be positive, to

find x € R} with g(x) = ZTg(pO+Zx) =0 (13)

(and p+Zx > 0).

Note that ~§' is strictly monotone if ~-g is.
Finally, in the general equilibrium with production case C, we

similarly arrive at an equivalent problem:

2(x) + Z'Bz = O;

BTZX + s —BTpO; (14)

(A4
o
n

=
N
]
O

s 20, z
with g as above. Thus in these two cases, we obtain a system of linear
equations or a linear complementarity problem by replacing g by a

linear approximation
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20 1= B+ I ). (15)

Natural questions that arise concern existence and uniqueness of
solutions to the model problems, and how Jk should be updated--in
particular is the Broyden update (9) appropriate? We address this last
point first.

Note that the Broyden update includes the term sTs in the
denominator. This implies that the euclidean norm is taken to be a
reasonable measure of the distance between two price vectors (or the
vectors in Rn—l corresponding to the price vectors in the general
equilibrium cases). However, our discussion of the arbitrariness of
units suggests that the euclidean norm is not a reasonable measure. The
presence of the sTs term shows that this arbitrariness affects the
algorithm; more precisely, Broyden’s update is not invariant under
scalings of the domain. To fix this problem, we use a natural scaling of

the problem: let
q = Qp = (wipi)

be the new independent variable. This reformulation is equivalent to
scaling the units of the goods so that the total amount available of each
good is one, and is possible if w > O, as in case A and B. In case
C, with production, it can happen that there is no endowment of some
goods. In this case, we can scale so that the maximum possible amount of
each good that can be produced from the initial endowment is one, by

solving the linear programming problems
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W, o= maximize (Bz)i + oW,
Bz { -w
z 20
for each i. Standard assumptions imply that all these problems have
optimal solutions, and the optimal values provide scaling factors to be
used in place of the components of w.

The discussion above suggests that we perform a similar rescaling in
the range; that is, replace g by Qﬁlg. Strictly speaking, this is
unnecessary, since Broyden’s update is invariant under arbitrary (linear)
scalings of the range, if the initial matrix JO is appropriately
changed. We prefer to simply set JO to be a multiple of ~-I, and thus
to rescale both domain and range corresponding to the same change of

units. Thus in (1) we may substitute
ga) := 0 g0 \q) (16)
for g, and in (13) and (14)
g(x) = 2'0 'g(07 (a*+2x)) amn

for g' where qO = e/n; the notation used is to stress that

q = q0 + 7Zx 1is dimensionless while the argument of g is p = Q q. If
production is allowed, Q' = diag(w') can be used instead of ( and
(Q')—IB should replace B. Thus q; = WP, represents the

(dimensionless) value of the total endowment of the ith good; similarly

x in (17) represents an orthogonal transformation of these dimensionless
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values. In either case, the euclidean norm is reasonable to measure
changes in q or x. We might therefore prefer to apply Broyden’s
method (or a successive linear complementarity problem approach) to the
reformulated problem.

However, when it is known that all prices will be strictly positive,
a nonlinear scaling of the range may be even better. Recall that
Newton—like approaches typically make linear approximations to the
nonlinear functions, and note the form of the excess demand function g
of (58). If the elasticities aj are all equal or close to 1 (so that
the utility functions are close to Cobb-Douglas)}, then IIg is linear or
close to linear while g is not. Also zeroes of g and of IIg that
are strictly positive coincide. (However, note that IIg may have many
other zeroes that are not zeroes of g.) Thus it may be suitable to make

linear approximations to

g(p) = Mg(p) (18)

or to

2(x) = Z'e(p), (19)

where p = pO + 7x,

instead of to g or g themselves. We can also combine this idea with

that of scaling to get

g(a) = Og(p). (20)
where p = Qalq, and
R T
g(x) = Z'g(p). (21)
where p = Q‘l(qO+Zx).



14

Another way to view this process is that we are making
approximations of the form ﬂ_l(Jp+k) to g. When we are seeking zeroes
in the model problem, this is tractable; however, when production is
present the model problem becomes difficult and we suggest the use of
(17). It is also worth remarking that, if JTe = 0, the function H_ljp
is homogeneous of degree zero and satisfies Walras’ law. Thus such a
function appears a much better model for an excess demand function than
any linear function could be.

Approximating g(p) by H—ljp, when JTe =0 and J has negative
diagonal entries and nonnegative off-diagonal entries, corresponds to
approximating the economy by one in which all consumers have Cobb-Douglas

utility functions. However, the updates we propose for J (or more

~ 3
accurately, for an approximation to the Jacobian of g or of g) do not

preserve this sign structure, and we do not see how it can be preserved
for any reasonable update.

Both Broyden’s update (9) and the update (29) to be proposed in the
next section are based on least-change principles——see Dennis and
Schnabel (1981). Note that the use of a matrix Z with orthonormal
columns in (17) and (19) implies that least-change principles in Rn_l
and in Sn_1 lead to the same updates.

To conclude this section we consider the extent to which our
reformulations can be combined with piecewise-linear homotopy algorithms,
which (at least for cases B and C) guarantee global convergence to a
solution. First, it is clear that g and ; can be used instead of g

and g in such methods with no penalty, since they merely correspond to

a rescaling of the problem. Indeed, these reformulations are likely to
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be advantageous, since piecewise-linear methods employ regular
triangulations, which are most suited to well-scaled problems. Our
computational results in section 6 bear this out. We can use é instead
of E to create a fixed-point problem to which simplicial algorithms can
be applied.

1

. . . n- .
More precisely, we consider two functions from S to itself

vhose fixed points give equilibria. Define

(ptug(p)),

tlip) := (22)

! (prug(p)),

wvhere pu 1is positive and for a vector u = (ui), u, denotes the vector

with components (max{O,ui}). Alternatively,

fl(P) =p + K(p)hl(p), where
A(p) = we' (ptug(p)), and (23)

hl(p) := max{g(p).-p/u} - e max{g(p).-p/u}p

where max{u,v} denotes the vector with components max{ui,vi}. The

other function we use is

£2(p) = p + ph®(p), where
h2(p) = max{g(p) + Ae. -p/u} and (24)

A = A(p) 1is chosen so that eTh2(p) = 0.
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It is easy to see that fixed points of fl and fz (or zeroes of h1

and h2) are equilibria, and that A(p) is unique and continuous. The
function fl appears in Arrow and Hahn (1971) while fz was motivated
by a suggestion of Eaves. We can then apply a piecewise—linear homotopy

algorithm to find a zero of Eji Rn_l -> Rn—l’ with

T 0

B (x) := z'nd(pY4zx) (25)

Note that, when g(p) + Ae 2 -p/n (we choose u = 10_5 in our
computational tests to encourage this), then EQ(X) = g(x). However, kI
is related to a fixed-point problem so that convergence is assured. We

similarly define
kix) = 2T (Czx), (26)
where hj uses Q_lg(Q_lq) in place of g{(p). in analogy with (17).

Next we ask whether the nonlinear scaling of (18)-(21) can be used

while maintaining convergence. For this, let

p' =p'(p) := max{p,ve} (27)
for some v > O. Then, with II' := diag(p'). set

ol (p+ull'g(p)),

£7(p) =

I (prull'g(p)),



17

There is an alternative representation:

¥1(p) =p+ %(p)ﬁl(p)- where
A(p) = n/e’ (p+ull'g(p)), and (28)

8l(p) i= max{'g(p). -p/n} - e max{l'g(p). -p/u}p.

Note that, if v = 1, then p' = e and ?1 reduces to fl. However,
for small v and p (we choose v = 10*3 in our computational tests),
if p2ve and p 2 —ullg(p) (which follows if p ¢ 1/Wi’ all i),
then ﬁl(p) = Ig(p). Thus, except close to the boundary of Sn—l, ﬁl
coincides with é. Further, ?l clearly maps Sn“1 continuously into
itself and the proof of Theorem 2.2 in Arrow and Hahn (1971) shows that
its fixed points are equilibria. Of course, we can also rescale the
problem by replacing p by gq and g(p) by Q_lg(9~1q) everywhere;

o

then ﬁl will coincide with g except close to the boundary of Sn-l.

In our computational tests in Section 6, we use slightly modified
mappings, since in our examples g 1is not defined for price vectors with
nonpositive components. Following Arrow and Hahn (1971), we replace

g(p) in (22)-(23) and I'g(p) in (27)-(28) by

(1-a)g(p) + ape and

(1-a)I'g(p) + ape

respectively, and by pe if g(p) 1is undefined, where a = a(eTg(p))
and a(A) = max{0, min{l, (A-p)/p}} increases from O for A < p to 1

for A 2 2p. We choose p = 100n in our tests. The resulting functions
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are somewhat different than those suggested by Arrow and Hahn, but are
smooth in larger neighborhoods of equilibria. It is straightforward to
show that the functions obtained are continuous (mapping {p: eTp = 1}
into Sn-l) and that their fixed points are equilibria. However, this
is no longer true for the corresponding modification of f2 in (24),
since any price vector in the boundary of Sn_1 is then a fixed point.
Hence we replace f2(p) by fz(p"), where p" = max{p,ue}/eTmax{p,ue}
for p = 10_5. Again, rescaling can be performed with these
modifications (and makes sense, since a depends on eTg(p), which is

only natural when scaling renders g(p) dimensionless).

5, Maintaining Monotonicity

We have pointed out in Section 2 that under certain conditions the
excess supply function -g 1is globally strictly monotone. This is a
strong condition which implies for instance the uniqueness of equilibria;
indeed, the axiom of revealed preference holds. For completeness we give

a short proof.

Proposition 5.1. If ~-g (~§) is strictly monotone, there is at most one

solution to (1) ((14)).

Proof. Suppose p and q both solve (1). Then

(p-q)T(g(p)-g(q)) = -ng(p) - pTg(q) > 0.

Since =-g 1is strictly monotone, p = q. Next suppose x and x’ solve

(14). with associated (z,s) and (z',s'). Then
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x ) (Ex)2(x")) = (xx") (Z'B(z-2"))

(BTZ(x~x'))T(z—z')

= (s'-s) (z-2")

= (s')Tz + st' 2 0.
Again, strict monotonicity implies that x = x’'. Note that we cannot
claim that =z = z', although this will follow under a nondegeneracy

assumption.

Even if -g is not globally strictly monotone, it may well be
strictly monotone in a neighborhood of an equilibrium. For instance, if
substitution effects dominate income effects near p, then -g'(p)
should be negative definite (although not necessarily symmetric). In
this case there are cogent reasons for approximating -g or -g by a
strictly monotone linear function during the application of a
quasi-Newton approach. As we have seen, this will ensure that the model
problems have at most one solution. It can further be shown that a solu—
tion exists, so that the algorithm is well-defined. Indeed. for (1) a
well-known result states that if -g is linear and strictly monotone
then a unique solution exists. For (14), BTZx < —BTpO implies
x 2 —po. which has a bounded feasible region, and again a standard
result gives existence.

The question then arises how strict monotonicity can be preserved in
a quasi-Newton update. Todd (1984) shows that, if -J is strictly
monotone and yTs < 0, then

J =g+ (Y“JS)(Y”TS)T (29)
T T
(y+J's) s

. + . . .
is such that -] is strictly monotone. This update can therefore be

used in place of Broyden’s.



20

6. Computational Results

Here we describe some very preliminary computer experimentation on
pure trade general equilibrium models. Problems El, E2 and E3 are the
three examples described by Scarf (1967) with 5, 8 and 10 goods respec-
tively. All have C.E.S. utility functions for all consumers. E4 is a
perturbation of El; Waqo is changed to 16 from 15, and (aj) to
(1,2,.5) from (.9,1.3,.8). E5 and E6 are then rescalings of E4; the unit
used to measure good 3 is 4 times smaller (E5) or 16 times larger (EG6)
than in E4.

We tested 10 quasi-Newton and 8 piecewise-linear homotopy methods on
each problem. The methods are denoted QjO (quasi-Newton, using
function Ej, and original variables) and QjS (quasi~Newton, using
function Qj, and dimensionless scaled variables), j =0,1,...,4 and
similarly PjO and PjS, j =0,1,....3. In all cases we start with the
center of the simplex corresponding to pO or qo equal to e/n and
xo equal to O, and the termination criterion is that the maximum
component of Q—lg(p), denoted Hﬂulg(p)nm, not exceed 10—10.
The quasi-Newton methods initialize JO to -al with

o = l/2nH£J(xO)Hw, so that the first step goes at most half-way to the

boundary of the price simplex. Subsequently, we choose

X =x + ka+~xk), where (30)

A = max{\ < I: P, 2 .OSp? for all 1i};

here pk = pO+Zxk. The function whose zero is sought is 2J,  vwhere

2 e(p)  (see (19)) if j =0

. Z'hl(p) (see (23)) if j=1
EJ(X) =

]
)

ZTh2(p) (see (24)) if

Zlg(p)  (see (13)) if j =3 or 4
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and p = pO+Zx. These formulae are modified in the obvious way if
scaling is performed--see (21), (26) and (17) for j =0, j=1 or 2,
and j =3 or 4 respectively. So far, there appears to be no
difference between Q30 (Q3S) and Q40 (Q4S). The distinction is in the
update used; while for j = 0,1,2 and 3 the Broyden update is employed,
j = 4 uses the new update (29). (Although the model does not guarantee
that yTs { 0 at each iteration, this was observed in practice in all
examples.)

Table 1 gives the number of function evaluations required. The
results on this limited test set are remarkably consistent. In all cases
rescaling improves the computational performance, especially for the
(deliberately) badly-scaled problems E5 and E6. Problems E4-E6, which
only differ in scaling, give identical results as expected for the
rescaled methods. Finally, using eo (basically Ig) yields a
substantial improvement over any of the other formulations, especially
when the problems are not rescaled. Methods Q2 and Q3 performed
identically, which is not too surprising: if g(p) + Ae 2 -p/p (recall,
we chose pu = 10*5), then ZThg(p) = ZTg(p). Finally, we should comment
on the two failures. In our primitive implementation, the choice of
step-size in (30) is the only concession to global convergence; the
failure of QlO on E2 appears related to this, as the iterates tried to
converge to a point on the boundary of the price simplex until they were
repulsed, when they tried to converge to another boundary point. Also we
explicitly updated the inverse of Jk; the failure of Q40 on E5 seems to
be related to the near-singularity of several Jk matrices. More
sophisticated implementations (see Powell (1970)) might eliminate these

difficulties.
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The piecewise-linear methods all used the PLALGO code (Todd (1980))
with default settings (hence Merrill’s method with triangulation Jl)
except that the grid size was initially 1/n and after each major cycle
reduced by a factor .37. The mappings used were those described in
Section 4. With the modifications outlined there, method PjO (PjS)
used Ej (ﬁj), given by (25) ((26)) for j =1,2. For j =0, these
functions were based on ?l and ﬁl in (28), and for j =3, on
ZTg(p) as for the quasi-Newton methods.

The results are given in Table 2, where an entry p/q means that p
linear programming pivots and q function evaluations were required.
Once again the beneficial effects of rescaling are demonstrated
convincingly. Similarly, POO and POS perform much better than the other
methods, showing the advantage of the nearly linear function II'g(p)-
Indeed, method POS, with guaranteed convergence, requires a number of
function evaluations not much greater than those for the best
quasi-Newton method, Q0S. The very poor behavior of all "unscaled”
methods on the poorly-scaled problem E5 should also be noted.

These results, while based on limited testing, substantiate the more
theoretical discussion on section 3 and argue for the use of reformu-
lations before applying numerical methods. Also, the new update (29),
while not designed for this class of problems, seems to perform

reasonably well and deserves further investigation.
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Problem El E2 E3 E4 E5 E6
Dimension 5 8 10 5 5 5
Method

Q00 20 19 19 22 40 16
Q10 62 % 24 22 79 49
Q20 25 35 23 23 53 24
Q30 25 35 23 23 53 24
Q40 26 25 22 20 * 23
QoS 10 16 14 10 10 10
Qls 11 17 15 13 13 13
Q28 10 17 15 12 12 12
Q3s 10 17 15 12 12 12
Q4S 10 18 15 13 13 13

¥Failed to Converge

Table 1
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Problem El E2 E3 E4 E5 E6
Dimension 5 8 10 5 5 5
Method

POO 54/58 41/51 82/93 T4/77 2157202  23/32
P10 59/65 99/109 75/86 76/82 4177377  39/49
P20 69/74 89/99 69/82 124/127 184/178 41/54
P30 68/77 83/94 82/94 T77/83 468/417  41/52
POS 5711 24/32 23/32 6/14 6/14 6/14
P1S 1021 47/58 35/45 10/21 10721 10/21
P2S 10720 49/60 34/46 10722 10722 10722
P3S 10/21 51/62 36/46 11722 11/22 11722

Table 2
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