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Abstract

Various index structures have been proposed to speed up the evaluation of XML
path expressions. However, existing XML path indices suffer from at least one of three
limitations: they focus only on indexing the structure (relying on a separate index for
node content), or they are useful only for simple path expressions such as root-to-leaf
paths, or they cannot be tightly integrated with a relational query processor. Moreover,
there is no unified framework to compare these index structures. In this paper, we
present a framework defining a family of index structures, including most existing
XML path indices. We also propose two novel index structures in this family, with
different space-time tradeoffs, that are effective for the evaluation of XML branching
path expressions (i.e., twigs) with value conditions. We also show how this family of
index structures can be realized using the access methods of the underlying database
system. Finally, we present an experimental evaluation to understand the performance
tradeoff between index space and twig matching time. The experimental results show
that our novel indices achieve orders of magnitude improvement in performance for
evaluating twig queries, albeit at a higher space cost, over the use of previously proposed
XML path indices that can be tightly integrated with a relational query processor.
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1 Introduction

XML employs a tree-structured model for representing data. Quite naturally, queries in

XML query languages (see, e.g., [8, 4, 30]) typically specify patterns of selection predicates

on multiple elements that have some specified tree structured relationships. For example,

the XQuery path expression:

/book[title=‘XML’]//author[fn=‘jane’ and ln=‘doe’]

matches author elements that (i) have a child subelement fn with content jane, (ii) have

a child subelement ln with content doe, and (iii) are descendants of (root) book elements

that have a child title subelement with content XML. This expression can be represented

naturally as a node-labeled twig pattern with elements and string values as node labels as

shown in Figure 1(c).1

Finding all occurrences of a twig pattern in an XML database is a core operation in XML

query processing, both in relational implementations of XML databases [10, 9, 26, 27], and

in native XML databases [11, 23, 22]. Prior solutions to this problem use a combination of

indexing [12, 21, 6, 5, 14], link traversal [20, 13] and join techniques [34, 1, 3, 18].

The focus of this paper is on developing index structures that can support the efficient

evaluation of XML ad hoc, recursive, twig queries using a relational database system. By

efficient, we mean that every fully specified, single-path XML query (without any branches

and arbitrary recursion) should be answerable using a single index lookup; in particular,

potentially expensive join operations should be avoided. By ad hoc queries, we mean that

the index structures should be able to perform well even if the expected query workload is

unknown; we believe that this feature is especially important for semi-structured databases,

where user queries may be exploratory. Support for recursive queries means that the index

1IDREFs are encoded and queried as values in XML. A link through an IDREF is treated as a value-based
join of the IDREF value(s) and the (corresponding) ID value(s). Hence, we do not consider IDREFs as part
of the twig pattern.
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<book>
<title> XML < /title>
<allauthors>

<author>
<fn>jane< / > <ln>poe< / >

< /author>
<author>

<fn>john< / > <ln>doe< / >
< /author>
<author>

<fn>jane< / > <ln>doe< / >
< /author>

< /allauthors>
<year> 2000 < /year>
<chapter>

<title> XML < /title>
<section>

<head> Origins < /head> ...

< /section> ...

< /chapter> ...

< /book>

book

head

2000 sectiontitle

year chaptertitle allauthors

XML author authorauthor

fn lnfn

jane

ln lnfn

janejohnpoe doe doe

XML

Origins

2 5 61 64

1

6 21 41

7 10 22 25 42 45 69

65 68

(b)

title

book

fn ln

doe

XML

jane

author

(a) (c)

Figure 1: (a) An XML database fragment, (b) Tree representation, (c) Query twig pattern

structures should support queries having “//” (i.e., ancestor-descendant relationships of

unbounded depth) efficiently (though not necessarily in a single lookup). Support for twig

queries means that the index structures should be able to process branching path queries

without significant additional overhead (compared to single-path queries). Finally, since

XML data may often be stored in relational database systems in the future, we also require

that the index structures be easily implemented in existing relational database systems, and

tightly integrated with relational query processors.

While previously proposed XML path indices (see, e.g., [12, 21, 6, 5, 14, 29, 24]), relational

join indices [28], and object-oriented path indices (see, e.g., [2, 16, 31]) do address some

of these aspects in isolation, we are not aware of any index structure that handles all of

these issues within a unified framework (see Section 6 for more details). Further, some

existing index structures [6, 18] require either special index structures or join algorithms not

available in today’s systems, while others [29, 24] use existing relational access methods in
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unconventional ways that cannot be tightly integrated with relational query processors.

In this paper, we develop index structures that address the above requirements, and

provide orders of magnitude improvement in performance over the use of existing indices for

evaluating twig queries and recursive queries, while remaining competitive for fully specified,

single-path queries. Specifically, the contributions of this paper are:

• A unified framework for XML path indices including most existing ones.

• Two novel index structures ROOTPATHS and DATAPATHS that are effective for the eval-

uation of ad hoc, recursive, twig queries.

• Techniques for implementing the family of index structures using the access methods

of a relational database system, to support tight integration with relational query

processors.

• An extensive experimental evaluation to compare our proposed indices with existing

XML and object-oriented path indices, and relational join indices, and to understand

the performance tradeoff between index space and twig matching time.

The rest of this paper is organized as follows. In Section 2, we formally define the

indexing problems we address in this paper. In Section 3, we define the family of indices,

and in Section 4, we discuss how the space used by our index structures can be optimized.

In Section 5, we present our experimental results. In Section 6, we discuss related work, and

in Section 7, we present our conclusions.
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2 Preliminaries and Problem Definition

2.1 Data Model and Query Twig Patterns

An XML database is a forest of rooted, ordered, labeled trees2, each node corresponding to

an element, attribute, or a value, and the edges representing (direct) element-subelement,

element-attribute, element-value, and attribute-value relationships. Non-leaf nodes corre-

spond to elements and attributes, and are labeled by the tags or attribute names, while leaf

nodes correspond to values. For the sample XML document of Figure 1(a), its tree repre-

sentation is shown in Figure 1(b). Each non-leaf node is associated with a unique numeric

identifier, shown beside the node.

Queries in XML query languages like XQuery [30], Quilt [4] and XML-QL [8] make

fundamental use of (node-labeled) twig patterns for matching relevant portions of data in the

XML database. The node labels include element tags, attribute names, and values; and the

edges are either parent-child edges (depicted by a single line) or ancestor-descendant edges

(depicted by a double line). For example, the XQuery path expression in the introduction

can be represented as the twig pattern in Figure 1(c). Note that an ancestor-descendant

edge is needed between the book element and the author element. This query twig pattern

would match the data tree in Figure 1. In this paper, we assume all values are strings and

only equality matches on the values are allowed in the query twig pattern.

In general, given a query twig pattern Q, and an XML database D, a match of Q in D

is identified intuitively by a mapping from nodes in Q to nodes in D, such that: (i) query

node tags/attribute-names/values are preserved under the mapping, and (ii) the structural

(parent-child and ancestor-descendant) relationships between query nodes are satisfied by

the corresponding database nodes. Finding all matches of a query twig pattern in an XML

2IDREFs are encoded and queried as values in XML. A link through an IDREF is treated as a value-based
join of the IDREF value(s) and the (corresponding) ID value(s), and is not considered part of the XML tree
structure.
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database is clearly a core operation in XML query processing, both in relational implemen-

tations of XML databases [10, 9, 26, 27], and in native XML databases [11, 23, 22].

2.2 Subpaths and PCsubpaths

A twig pattern consists of a collection of subpath patterns, where a subpath pattern is

a subpath of any root-to-leaf path in the twig pattern. For example, the twig pattern

“/book[title = ‘XML’]//author[fn = ‘jane’ and ln = ‘doe’]” consists of the paths

“/book[title = ‘XML’]”, “/book//author[fn = ‘jane’]”, and “/book//author[ln =

‘doe’]”. Each of these is a subpath pattern, as are “/book/title” and “//author[fn =

‘jane’]”.

A subpath pattern is said to be a parent-child subpath (or PCsubpath) pattern if there are

no ancestor-descendant relationships between nodes in the subpath pattern (a “//” at the

beginning of a subpath pattern is permitted). Thus, among the above subpath patterns, each

of “/book[title = ‘XML’]”, “/book/title”, and “//author[fn = ‘jane’]” is a PCsub-

path pattern. However, neither “/book//author[fn = ‘jane’]” nor “/book//author[ln

= ‘doe’]” is a PCsubpath pattern. The importance of making this distinction will become

clear when we formally define the indexing problems addressed in this paper.

2.3 Problem: PCsubpath Indexing

To answer a query twig pattern Q, it is essential to find matches to a set of subpath patterns

that “cover” the query twig pattern. Once these matches have been found, join algorithms

can be used to “stitch together” these matches. For example, one can answer the query twig

pattern in Figure 1(c) by finding matches to each of the subpath patterns “/book[title =

‘XML’]”, “//author[fn = ‘jane’]” and “//author[ln = ‘doe’]”, and combining these

results using containment joins [34, 1, 3]. Alternatively, if there are few XML books, one
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could first find all book ids matching “/book[title = XML]”. Then, one could use the

book ids to selectively probe for authors that match the subpath patterns “//author[fn =

‘jane’]” and “//author[ln = ‘doe’]” rooted at each book id. Note that matches to the

branching point book are needed, even though this node is not in the result of the query

twig pattern. It is easy to see that any query twig pattern can always be covered by a set of

PCsubpath patterns. This motivates the two indexing problems we address in this paper:

Problem FreeIndex: Given a PCsubpath pattern P with n node labels and

an XML database D, return all n-tuples (d1, . . . , dn) of node ids that identify

matches of P in D, in a single index lookup.

An index solving the FreeIndex problem can be used to retrieve ids of branch nodes

or nodes in the result. For example, consider query “/book/allauthors/author[fn =

‘jane’ and ln = ‘doe’]”. A lookup for the PCsubpath “/book/allauthors/author[fn

= ‘jane’]” in the database in Figure 1 gives the id lists ([1,5,6,7], [1,5,41,42]), and

author-id is the penultimate id in each of the lists. Similarly, a lookup on

“/book/allauthors/author[ln = ‘doe’]” gives the id lists ([1,5,21,25], [1,5,41,45]).

Since author id 41 is present in both cases, the selected author can be returned via merge

or hash join, both of which are commonly supported by relational query processors.

Problem BoundIndex: Given a PCsubpath pattern P with n node labels,

an XML database D, and a specific database node id d, return all n-tuples

(d1, . . . , dn) that identify matches of P in D, rooted at node d, in a single index

lookup.

BoundIndex problem is useful because it allows the index-nested-loop join processing

strategy in relational systems to be used. For example, given query “/book[title=‘XML’]//author[ln

= ‘doe’]”, and suppose we have evaluated PCsubpath “/book[title=‘XML’]” and found
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the book id d = 1. Then an index that can solve the BoundIndex problem can be used

in index-nested-loop join to return the “author” id under “book” id 1 and satisfying the

PCsubpath pattern “//author[ln = ‘doe’]”. The FreeIndex problem can be seen as a

special case of the BoundIndex problem when the root node id d is not given.

3 A Family of Indices

In this section, we will present a unified framework defining the family of indices solving

the FreeIndex and BoundIndex problems. This framework covers most existing path index

structures. We also propose two novel index structures: ROOTPATHS and DATAPATHS.

3.1 Framework

We first introduce some notation. Data paths in the XML data consists of two parts: (i) a

schema path, which consists solely of schema components, i.e., element tags and attribute

names, and (ii) a leaf value as a string if the path reaches a leaf. Schema paths can be

dictionary-encoded using special characters (whose lengths depend on the dictionary size)

as designators for the schema components.

In order to solve the BoundIndex problem (which is a more general version of the FreeIn-

dex problem), one needs to explicitly represent data paths that are arbitrary subpaths (not

just prefix subpaths) of the root-to-leaf paths, and associate each such data path with the

node at which the subpath is rooted. Such a relational representation of all the data paths

in an XML database is (HeadId, SchemaPath, LeafValue, IdList), where HeadId is the

id of the start of the data path, and IdList is the list of all node identifiers along the schema

path, except for the HeadId.

As an example, a fragment of the 4-ary relational representation of the data tree of

Figure 1(b) is given in Figure 2, where the element tags have been encoded using boldface
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HeadId SchemaPath LeafValue IdList

1 B null []

1 BT null [2]

1 BT XML [2]

1 BU null [5]

1 BUA null [5,6]

1 BUAF null [5,6,7]

1 BUAF jane [5,6,7]

1 BUAL null [5,6,10]

1 BUAL poe [5,6,10]

...

5 U null []

5 UA null [6]

5 UAF null [6,7]

5 UAF jane [6,7]

5 UAL null [6,10]

5 UAL poe [6,10]

...

Figure 2: The 4-ary relation

characters as designators, based on the first character of the tag, except for allauthors

which uses U as its designator.

We define the family of indices solving the FreeIndex and BoundIndex problems as follows:

Family of Indices: Given the 4-ary relational representation of XML database

D, the family of indices include all indices that:

1. store a subset of all possible SchemaPaths in D;

2. store a sublist of IdList;

3. index a subset of the columns HeadId, SchemaPath, and LeafValue.

Given a query, the index structure probes the indexed columns in (3) and

returns the sublist of IdList stored in the index entries.

Many existing indices fit in this framework, as summarized in Figure 3. For example,

the value index in Lore [20] returns the ID of an attribute or element given its tag name

and value. This index is essentially a B+-tree index on the SchemaPath and LeafValue,
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Index Subset of SchemaPath Sublist of IdList Indexed Columns

Value [20] paths of length 1 only last ID SchemaPath, LeafValue
Forward link [20] paths of length 1 only last ID HeadId, SchemaPath
DataGuide [12] root-to-leaf path prefixes only last ID SchemaPath

Index Fabric [6] root-to-leaf paths only first or last ID SchemaPath, LeafValue
ROOTPATHS root-to-leaf path prefixes full IdList LeafValue,

reverse SchemaPath

DATAPATHS all paths full IdList LeafValue, HeadId,
reverse SchemaPath

Figure 3: Members of Family of Indices

where SchemaPath consists of paths with length one (i.e., the tag name), and the last ID

in IdList is returned. The forward link index [20] in Lore returns the ID of an element or

attribute given its tag name and the ID of its parent. This is essentially a B+-tree index on

HeadId and SchemaPath, where HeadId is the start ID of the path, SchemaPath has length

one, and the last ID in IdList is returned. Similarly, the DataGuide [12] returns the last ID

of the IdList for every root-to-leaf prefix path. Finally, the IndexFabric [6] returns the ID

of either the root or the leaf element (first or last ID in IdList), given a root-to-leaf path

and the value of the leaf element.

It is important to note that in our implementation of these indices, we only consider rela-

tional adaptations (using B+-trees) because some space-efficient structures such as Patricia

tries used in [6] are not present in current commercial relational databases. However, since

many commercial systems such as DB2 implement prefix compression on indexed columns

to reduce the key size, regular B+-tree indices are also space efficient when the schema path

lengths are not too long.

There are also many possible indices belonging to the family that have not been explored

yet. For example, all existing indices return the first or last IDs in the IdList, but do

not return other IDs. Also, none of them index both HeadID and SchemaPaths with length

larger than one. Consequently, none of the existing index structures can answer the FreeIn-

dex or BoundIndex problem with a single index lookup. For example, consider the query
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“/book/allauthors/author[fn = ‘jane’ and ln = ‘doe’]”. The FreeIndex problem

requires the “author” ID given “/book/allauthors/author[fn = ‘jane’]”. Using Index

Fabric, one can find all IDs of “fn” satisfying “/book/allauthors/author[fn = ‘jane’]”,

but the author ID is not returned.

We now propose two novel index structures in this family, ROOTPATHS and DATAPATHS,

summarized in Figure 3, which can answer the FreeIndex and BoundIndex problems with

one index lookup, respectively.

3.2 ROOTPATHS Index

ROOTPATHS is a B+-tree index on the concatenation of LeafValue and the reverse of SchemaPath,

and it returns the complete IdList. Only the prefixes of the root-to-leaf paths are indexed

(i.e., only those rows with HeadID = 1).

There are two main differences between ROOTPATHS and the Index Fabric. The first

difference is that ROOTPATHS stores the prefix paths in addition to root-to-leaf paths. This

extension is to efficiently support queries that do not go all the way to a leaf (e.g., “/book”).

The second extension is to store the entire IdList, i.e., all node identifiers along the schema

path3, as opposed to storing only the document-id or leaf-id of the path as is done in the

Index Fabric. The IdList extension is key to evaluating branching queries efficiently using

relational query processors, at an additional space cost, because it gives the ids of the branch

points in a single index lookup.

We now show how a regular B+-tree index can be used to support PCsubpath queries

with initial “//”. We need to permit suffix matches on the SchemaPath attribute (with exact

matches on the LeafValue attribute, if any). The key observation is that, although B+-trees

are not efficient at suffix matches, they are very efficient for prefix matches. Consequently, if

3The node identifiers used in this paper are simple numeric values, which suffice for subsequent sort-
merge joins, and index-nested-loop joins. Alternative identifiers such as those in [34] can be used, to enable
containment queries.
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ReverseSchemaPath LeafValue IdList

B null [1]

TB XML [1,2]

UB null [1,5]

AUB null [1,5,6]

FAUB null [1,5,6,7]

FAUB jane [1,5,6,7]

LAUB null [1,5,6,10]

LAUB poe [1,5,6,10]

...

Figure 4: The 4-ary Relation Adapted for ROOTPATHS

we just reverse the SchemaPath values to be indexed (e.g., FAUB instead of BUAF in Figure 2),

a regular B+-tree can be used to support suffix matches. This observation has also previously

been used in the string indexing community for matching string suffixes.

Figure 4 shows the 4-ary representation adapted for the ROOTPATHS index. As shown,

the HeadID column can be dropped since only paths starting from the root are stored (hence

all tuples have HeadID = 1, and this does not have to be explicitly stored). Further, the

SchemaPaths are reversed to enable the efficient evaluation of PCsubpath queries with an

initial “//”.

A B+-tree index index on the concatenation LeafValue·ReverseSchemaPath in the

ROOTPATHS relation can be used to directly match PCsubpath patterns with initial recursion,

such as “//author[fn=‘jane’]” in a single index lookup. This would be done by looking

up on the key (‘jane’, FA*). Similarly, PCsubpath patterns with initial recursion, but

without a condition on the leaf value, such as “//author/fn” can be looked up on the key

(null, FA*). Neither the Index Fabric nor the DataGuide can support the evaluation of

such queries efficiently. Of course, fully specified PCsubpaths (without an initial “//”) can

also be handled using this index.
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HeadId ReverseSchemaPath LeafValue IdList

1 B null []

1 TB null [2]

1 TB XML [2]

1 UB null [5]

1 AUB null [5,6]

1 FAUB null [5,6,7]

1 FAUB jane [5,6,7]

1 LAUB null [5,6,10]

1 LAUB poe [5,6,10]

...

5 U null []

5 AU null [6]

5 FAU null [6,7]

5 FAU jane [6,7]

5 LAU null [6,10]

5 LAU poe [6,10]

...

Figure 5: The 4-ary Relation Adapted for DATAPATHS

3.3 DATAPATHS Index

The DATAPATHS index is a regular B+-tree index on the concatenation of HeadId, LeafValue

and the reverse of SchemaPath (or the concatenation LeafValue·HeadId·ReverseSchemaPath),

where the SchemaPath column stores all subpaths of root-to-leaf paths, and the complete

IdList is returned. Figure 5 shows the adaptation of the 4-ary representation for DATAPATHS.

DATAPATHS index can solve both the FreeIndex and the BoundIndex problems in one index

lookup.4 For example, consider query “/book//author[fn = ‘jane’ and ln = ‘doe’]”.

One can use the index to probe all book-ids that match “/book”, which is a FreeIndex

problem. Using these book-ids as HeadId values, one can solve the BoundIndex problem by

probing author-id matches to each of the two PCsubpaths “//author[fn = ‘jane’]” and

“//author[ln = ‘doe’]”, rooted at the book-ids. Finally the intersection of these two sets

of author-id matches is the answer of the query. Alternative plans, enabled by the DATAPATHS

index, are also possible. Note that the initial recursion in these PCsubpaths necessitate the

4In our implementation, we added a virtual root as the parent of all XML documents, so that the index
can solve FreeIndex as well (by letting the HeadId be the virtual root).
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use of ReverseSchemaPath in the BoundIndex.

The DATAPATHS index is bigger than ROOTPATHS, but is exactly what is needed to solve

the BoundIndex problem in one index lookup. We discuss lossless and lossy compression

techniques in the next section.

4 Compressing ROOTPATHS and DATAPATHS

The ROOTPATHS and DATAPATHS indices can be quite large, depending on the size and depth

of the XML database, because node ids are duplicated in IdList and SchemaPaths are

duplicated in DATAPATHS.

In this section, we explore lossless and lossy compression techniques for reducing the

index sizes. The lossless compression schemes do not negatively impact query functionality

(i.e., exactly the same query plan can be used), while the lossy compression schemes trade

off space for query functionality. Also, for all compression techniques, there is a tradeoff

of the decompression overhead at run time and space savings. For example, we could use

dictionary-encoding to compress the LeafValues. However, the dictionary is likely quite

large and cannot fit in memory, incurring I/O overhead for index lookup. Thus, we only

consider compressing IdList, HeadId and SchemaPath in this paper.

4.1 Compressing IdLists

The IdList attribute of ROOTPATHS and DATAPATHS maintains a list of node identifiers,

typically generated using depth-first or breadth-first numbering, for the nodes in the schema

path. One lossless compression technique is to store only the offset of each identifier with

respect to the previous identifier in the IdList, as is done in compressed inverted indices

in IR. This corresponds to a differential encoding of the IdList, and is likely to lead to a

significant savings in space because the ids in the list are strongly correlated by parent-child
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relationships.

With some knowledge about the query workload, it is also possible to prune the IdLists.

For example, a node that is never returned as part of the result of any twig pattern in

the workload, and is not a branching point of any twig pattern, can be eliminated from the

IdList (i.e., replaced by a NULL). An extreme example is when the query workload contains

only simple rooted path patterns (i.e., no branching or recursion) that return the path root

nodes; this occurs when one is only filtering XML documents based on the existence of a

pattern, rather than returning each pattern match; this is the query class handled by the

Index Fabric. In this case, each IdList in ROOTPATHS contains one node. This compression

of IdLists results in loss in functionality. One can only match queries in the workload, and

the index is not useful for ad hoc path patterns.

4.2 Compressing SchemaPaths

In a well-structured XML database, the number of distinct schema paths is quite small

compared to the number of root-to-leaf paths. For example, the DBLP database has 235

distinct schema paths, and the XMark [32] database has 902 distinct schema paths. This

naturally suggests that one can dictionary-encode each of the schema paths, representing

them as small integer ids. The effect of such an encoding on the 4-ary relation of Figure 2 is

depicted in Figure 6, where the SchemaPath attribute has been replaced by the SchemaPathId

attribute.

This compression of schema paths, however, results in some loss in functionality. One

can no longer match a PCsubpath pattern that begins with a “//”, e.g., “//author/fn[.

= jane]”. This loss of functionality is due to the fact that the schema path identifier is

indivisible, and one cannot compute its prefixes or suffixes. Thus, reducing the space used by

the index can result in an increase in query evaluation time, by eliminating some (potentially)

efficient query processing plans.
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HeadId SchemaPathId LeafValue IdList

1 1 null []

1 2 null [2]

1 2 XML [2]

1 3 null [5]

1 4 null [5,6]

1 5 null [5,6,7]

1 5 jane [5,6,7]

1 6 null [5,6,10]

1 6 poe [5,6,10]

...

5 20 null []

5 21 null [6]

5 22 null [6,7]

5 22 jane [6,7]

5 23 null [6,10]

5 23 poe [6,10]

...

Figure 6: SchemaPath Compression in the 4-ary relation

4.3 Pruning HeadIds

While a FreeIndex lookup is useful for any PCsubpath pattern, a BoundIndex lookup is

useful only when one knows a set of HeadId values, say, because of a previous index lookup

of a PCsubpath in the twig pattern, and the optimizer’s choice of index-nested-loops as the

join algorithm. This observation is the basis for reducing the size of DATAPATHS.

If we know the query workload, then we can prune out entries from the DATAPATHS index

whose HeadId corresponds to a data node that is not a query branch point. This technique

is sensitive to the query workload. One can still use the index to match queries not in the

workload (using IdLists), but the index-nested-loop join strategy will not be possible.

5 Experimental Evaluation

We now present an experimental evaluation of the ROOTPATHS and DATAPATHS indices with the

existing index structures in the same family. We also compare our approach against Access

Support Relations [16] and Join Indices [28], which were originally proposed for indexing
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paths in object-oriented and relational databases, respectively. We evaluated the following

features of the new index structures:

• Benefit of indexing both SchemaPath and LeafValue.

• Benefit of returning full IdLists.

• Benefit of reversing SchemaPath for recursive queries.

• Benefit of supporting index-nested-loop join.

• Effects of space compression.

5.1 Experimental Setup

Since XML data may often be stored in relational database systems, we chose to run our

experiments on top of IBM’s DB2 relational database. We used both a real (DBLP [7], which

is shallow) and a synthetic (XMark [32], which is deep) data set for our experiments. We

assume the XML data is stored in an Edge Table [10], which stores every edge in the XML

data and we assume each node is assigned a unique id. 5

We now describe the details of our relational implementation and experimental setup

before presenting our experimental results.

5.1.1 Database Settings and Query Workload

We used a 100MB scaled XMark data [32] and a 50 MB DBLP data [7]. Our experiments

were performed using a 1.7 GHz Pentium machine running Windows 2000, with 1GB memory

and a single 37 GB disk. We used DB2 version 7.2, and ran the experiments with a 40MB

buffer pool with operating system cache turned off in order to study the effects of using a

5For other storage formats where the XML data is stored in multiple tables, we assume each node is
assigned a unique id within a table, and the node id stored in all index structures consists of a table id and
the node id.
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non main-memory resident data set. We also turned off the Windows file system cache so

that data items evicted from the database buffer pool were not cached in the file system.

We collected detailed statistics on all relations and indices before running our queries. The

experimental results reported are the total query execution time of 10 independent runs with

a warm cache, excluding the query optimization time. This simulates the case where many

read-only XML queries are run concurrently against the data. The results for a cold cache

are similar and omitted for space reasons. The cost of translating the XPath query to SQL

is considered part of the query optimization cost. In all experiments, the cost of translating

a tag name to the internal representation is negligible because the translation table can fit

in a single page and can be assumed to always reside in memory.

We used a workload of XPath queries, and varied the parameters of the query such as

the number of branches, the selectivity of each branch, and the depth of branches. Figure 10

summarizes these queries. The details of individual queries can be found in Figures 7 and 8.

5.1.2 Details of Relational Implementation

We implemented seven different indexing strategies for our experiments: ROOTPATHS (RP)

and DATAPATHS (DP) (both with differential encoding on IdList), simulated DataGuide

(DG) and simulated Index Fabric (IF) using B+-tree index, Edge Table index with the

value index, forward link, and backward link index as described in [20] (these indices are

the most useful indices reported in [10]), Access Support Relations (ASR), and Join Indices

(JI).

Since commercial database systems (such as DB2 and Oracle) do not currently implement

Patricia trie, we use regular B+-tree indices in this paper to simulate Index Fabric. Many

commercial systems such as DB2 has implemented prefix compression on indexed columns to

reduce the key size. Thus when the schema paths are not too long, regular B+-tree indices

are also space efficient.
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Query Query Result Size

Per Branch

Q1x /site/regions/namerica/item/quantity[. = 5] 1
Q1d /inproceedings/year[. = ’1950’ ] 1
Q2x /site/regions/namerica/item/quantity[. = 2] 3128
Q2d /inproceedings/year[. = ’1979’ ] 1647
Q3x /site/regions/namerica/item/quantity[. = 1] 11062
Q3d /inproceedings/year[. = ’1998’ ] 10258
Q4x /site[people/person/profile/@income = 46814.17] 1

/open auctions/open auction[@increase = 75.00] 55
Q5x /site[people/person/profile/@income = 46814.17] 1

[people/person/name = ’Hagen Artosi’] 1
/open auctions/open auction[@increase = 75.00] 55

Q6x /site[people/person/profile/@income = 9876.00] 2038
/open auctions/open auction[@increase = 75.00] 55

Q7x /site[people/person/profile/@income = 9876.00] 2038
[regions/namerica/item/location = ’united states’] 7519

/open auctions/open auction[@increase = 75.00] 55
Q8x /site[people/person/profile/@income = 9876.00] 2038

/open auctions/open auction[@increase = 3.00] 5172
Q9x /site[people/person/profile/@income = 9876.00] 2038

[regions/namerica/item/location = ’united states’] 7519
/open auctions/open auction[@increase = 3.00] 5172

Q10x /site/open auctions/open auction

[annotation/author/@person = ’person22082’] 3
/time 59486

Q11x /site/open auctions/open auction

[annotation/author/@person = ’person22082’] 3
[bidder/@increase = 3.00] 5172

/time 59486

Figure 7: Single-branch and twig queries used in our experiments
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Query Query Result Size

Per Branch

Q12x /site//item[incategory/category = ’category440’] 41
/mailbox/mail/date 20946

Q13x /site//item[incategory/category = ’category440’] 41
/mailbox/mail/date 20946
/mailbox/mail/to 20946

Q14x /site//item[quantity = 2] 1543
[location = ’United States’] 16294

Q15x /site//item[quantity = 2] 1543
[location = ’United States’] 16294

/mailbox/mail/to 20946

Figure 8: XMark branching twig queries with one recursion

The original proposals for ASRs [16] and Join Indices [28] present techniques for material-

izing a subset of the paths given a query workload. However, since our focus is on evaluating

ad hoc queries, we implemented ASRs and Join Indices by materializing all relevant paths

present in the data.

Since the DataGuide and the Index Fabric do not store IdLists, they cannot be directly

used to answer twig queries. Consequently, we used the DataGuide/Index Fabric to look

up ids at the end of root-to-leaf paths, then we used (possibly many lookups in) the reverse

link index on Edge Table to determine the branch point ids from the leaf ids.6 We also

experimented with various query plans for branching queries, where DataGuide and Index

Fabric were used only for some of the query branches, and the link and value indices were

used for other branches. We chose the best among these as characterizing the performance

of the DataGuide and Index Fabric approaches. We refer to these combined strategies as

DG+Edge and IF+Edge.

We could not use the structural join algorithms of [34, 1, 3, 18] since none of these

algorithms has been implemented in commercial database systems.

6Note that we cannot use the Reverse DataGuide [19] for this purpose, since it can only return branch
point ids given the leaf to root path.
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Data set RP DP Edge DG+Edge IF+Edge ASR JI

XMark 119 431 127 169 167 464 822
DBLP 80 83 106 133 151 93 318

Figure 9: Space (in MB) for different indices

Query Branches Result Size Per Branch Depth of Branches Recursions

Q1x to Q3x 1 1-11062 – 0
Q1d to Q3d 1 1-10258 – 0
Q4x to Q9x 2-3 1-7519 High 0

Q10x to Q11x 2-3 3-59486 Low 0
Q12x to Q15x 2-3 41-20946 Low 1

Figure 10: Queries

Figure 9 gives the space requirement for the various index structures. The space for

DATAPATHS and ROOTPATHS is the result after differential-encoding on IdList. Since XMark

data is more deeply nested than DBLP, the space requirements for DATAPATHS increase

proportionally.

5.2 Experimental Results

We first compare our index structures with existing XML index structures. We then present

a comparison with ASRs and Join Indices.

5.2.1 Indexing Schema Paths and Values Together

We examine the benefit of indexing schema paths and data values together by choosing a sin-

gle fully-specified path query, and varying it from highly selective (Q1d, Q1x), to moderately

selective (Q2d, Q2x), to relatively unselective (Q3d, Q3x). Figure 11 shows the performance

of various index structures (XMark on the left, DBLP on the right). The Index Fabric

and ROOTPATHS are among the best approaches, while DATAPATHS is only slightly worse.

Meanwhile the Edge and DataGuide+Edge approaches perform very badly with decreasing
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selectivity.

The good performance of Index Fabric is expected because it is optimized for simple path

queries. ROOTPATHS suffers a slight overhead because it stores IdLists instead of just Ids,

and also incurs the cost of invoking a user-defined function to extract the ids. Similarly,

DATAPATHS is slightly worse than ROOTPATHS because it has the overhead of storing both

IdLists and HeadId.

Edge performs badly because it performs a join operation for each step along the path.

As the selectivity of paths decreases, it increases the cost of each join. The bad performance

of Edge is a simple justification for using a single index lookup instead of resorting to more

expensive joins.

The most interesting aspect of the figure, however, is the bad performance of DataGuide+Edge.

The main reason for this behavior is that schema paths are indexed separately from the data

values. Consequently, a separate lookup has to be performed for the schema path (using the

DataGuide) and for the data value (using the value index), and the results have to be joined

together. As the selectivity of paths decreases, the cost of each join increases, resulting in

bad performance.

5.2.2 Returning IdLists

We now examine the performance benefits of returning IdLists for twig queries. We study

three groups of queries, one in which all branches are selective, one is which all branches are

unselective, and one in which there are selective and unselective branches. For each group,

we vary the number of branches.

We used queries Q4x (2 branches) and Q5x (3 branches) to evaluate the performance of

queries with all selective branches. In addition, we also used a single path selective query

(chosen as the first branch common to Q4x and Q5x) as a baseline for comparison. Similarly,

we used Q6x and Q7x to evaluate the performance of queries with a mix of selective and
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Figure 11: Increasing selectivity for single path queries

unselective branches, and Q8x and Q9x for queries with all unselective branches. For all

these queries, the branch point is high in the query. The results for DBLP are similar and

omitted due to space restrictions.

Figures 12(a), (b), and (c) show the performance results for the different groups of queries.

ROOTPATHS and DATAPATHS scale gracefully both with respect to the number of branches and

with respect to the selectivity of these branches. However, the Index Fabric, DataGuide and

Edge approaches perform badly in both regards (note the log time scale on the graphs).

ROOTPATHS and DATAPATHS perform so well because they store IdLists. Hence, they can

do an index lookup for each path, extract the ids of the branch point from the IdLists, and

do a join on the branch points to produce the desired result. With increasingly unselective

predicates, more ids will need to be extracted, thereby explaining the slightly higher running

times as the selectivity of paths decreases. In all cases, however, the running time of the

two approaches is well under a second. The reason that DATAPATHS performs slightly worse

than ROOTPATHS in Figures 12(a) and 12(c) is that in these cases the selectivities are roughly

the same and thus the speedup from index-nested-loops join cannot be exploited. (The

index-nested-loops join strategy is effective when one branch is selective whereas the other

branches are unselective.) Since a sort-merge join is performed for both, DATAPATHS offers

no benefit over ROOTPATHS, but is larger and more expensive to access.
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Figure 12: XMark twig queries without recursion

In contrast, the performance of the Edge table, DG+Edge, and IF+Edge approaches is

many orders of magnitude worse, both when the number of branches increases and when the

selectivity of the branches decreases. In fact, for unselective queries with three branches, the

execution time for these approaches was more than 10 minutes. This phenomenon occurs

because, in the absence of IdLists, these approaches have to perform expensive joins to

determine the relationship between the path leaves and the branch points. Since the branch

points were high for this set of experiments, they had to perform a 5-way join for each branch.

While the joins are expensive enough to do for selective branch queries, performance degrades

dramatically in the presence of unselective branches.

It is also interesting to note some of the limitations of relational systems in evaluating

many joins. The time that DB2 took to optimize the queries was longer than the time it

took to execute the queries using the ROOTPATHS and DATAPATHS approaches (the graphs
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only show the execution time). Also, the relational optimizer understandably made some

wrong decisions for queries with a large number of joins, which further contributed to the

bad performance of Index Fabric, DataGuide and Edge. We thus believe that IdLists are

valuable both for reducing the overhead of performing joins, and also for simplifying the

generated query to enable better optimization.

5.2.3 Benefit of Index-nested-loop Join

We now vary the branching point of the twig queries so that they branch closer to the leaves

(recall that we used branching points close to the root for the previous set of experiments).

We use Q10x and Q11x for the XMark data, which have one selective path and other unse-

lective paths, for this set of experiments. The performance results are shown in Figure 12(d).

The results for DBLP are similar and are omitted.

As before, DATAPATHS performs uniformly well, while Index Fabric, DataGuide and Edge

perform poorly as the number of branches increase. The performance of these three ap-

proaches, while still up to orders of magnitude worse than DATAPATHS, is better than the

case when the branches are deeper because the number of joins required to determine the

branch point is lower for this set of experiments.

The most surprising result here is the relatively bad performance of ROOTPATHS (it is even

worse than IF+Edge at a point). The reason for this degradation of performance is that

ROOTPATHS does not support the index-nested-loop join strategy while the other indices do.

The index-nested-loop join strategy is much better for this set of queries because (a) one

branch is very selective, (b) other branches are unselective, and (c) each selective branch

matches with only very few unselective branches. Condition (c) was not satisfied earlier

for the queries with deep branches because they branch at nodes closer to the root, which

usually have a large number of descendants.
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5.2.4 Recursive Queries

We now examine the performance of evaluating recursive (“//”) queries. The recursive

queries are exactly the same as queries used in Section 5.2.2 except that each query now starts

with a “//”. To examine the overhead for recursive queries, we compare the performance

of ROOTPATHS and DATAPATHS for original queries which do not have a recursion. (Other

indices cannot be used here.) We found that ROOTPATHS and DATAPATHS have less than 5%

overhead for processing queries with a “//” because such queries can be converted into B+-

tree prefix match queries on ReverseSchemaPaths. The detailed results are omitted due to

space constraints.

5.2.5 Space Optimizations

Although DATAPATHS performs orders of magnitude better than existing approaches, one

possible concern is its space overhead. The lossless compression strategies reduced the space

requirement by about 30%, which gives rise to the space requirement shown in Figure 9. We

now study the effects of other lossy compression strategies.

We implemented SchemaPaths compression, which reduces the space overhead by an ad-

ditional 10MB for the XMark data, and has no savings for the DBLP data. For this marginal

savings in space, SchemaPaths compression may not be desirable because it does not support

recursive (“//”) queries. We implemented HeadId pruning based on workload information

(i.e., all queries used in our experiments), and the index size dropped considerably to 141MB

(1.4 times the data size) for the XMark data and 38.4MB (77% of data size) for the DBLP

data. Note, however, such pruning disables index-nested-loop join for queries not in the

workload and branching at other positions. Thus there might be a performance penalty for

such queries and so this compression should be used judiciously.
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5.2.6 Comparison with ASRs and Join Indices

We now compare our index structures against ASR and Join Indices. ASR and Join Indices

are similar to DATAPATHS in the sense that all of them encode nodes along paths. However,

there are three differences between them.

First, both ASR and Join Indices assume the schema is known a priori. Therefore, ASR

and Join Indices require schema discovery as a pre-requisite step and have manageability

problems when new data, not conforming to the previous schema, is added.

Second, our index structures encode both schema and data using the same framework,

while ASR and Join Indices encode schema as relation names. This gives our index structures

two advantages over ASR and Join Indices. First, this drastically reduces the number of

relations and indices, and the management overhead. For example, in order to support ad

hoc queries, both ASR and Join Indices created 902 and 235 tables for XMark and DBLP

respectively. Our index structures each have only one index.

More importantly, indexing schema and data together enables the efficient evaluation of

“//” queries, when the recursion matches many subpaths, because both ASR and Join Indices

need to access many relations, one for each matching subpath. This is less efficient than

accessing a single index structure because in a unified index structure, the cost of accessing

the index is logarithmic to the data size, but the cost of accessing many small indices is linear

to the number of indices. To investigate this, we ran experiments for the queries shown in

Figure 8 which contain a “//” as branch point and matches six subpaths in the data. Again,

we vary the number of branches as well as selectivity of different branches. Q12x and Q13x

consist of both selective and unselective branches, and Q14x and Q15x consist of unselective

branches. The results for all selective branches are similar, so they are omitted. We also

exclude the overhead to decide which relations to access for ASR and Join Indices. So their

real performance would be worse than shown here.

Figure 13 shows the results. The performance of Edge table, DG+Edge, and IF+Edge are
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Figure 13: XMark queries having a “//” as branch point

not shown because they are about an order worse than our index structures. The results show

that the performance of DATAPATHS is up to a factor of 5 better than ASR and Join Indices

because the latter techniques have to access 6 different relations to retrieve a single branch in

the query. This difference decreases as the queries contain only unselective branches, because

now the cost of joining these branches dominates the cost of index access. ROOTPATHS has

bad performance because index-nested-loops join is much more efficient than merge join for

these queries.

Note that the same argument applies to other index structures that answer a recursive

query by translating the recursion into several equality path conditions (e.g., XRel [33]).

Hence we do not compare our index structures with these indices in this paper.

Finally, ASRs and Join Indices require more space than DATAPATHS. ASR uses more space

because it cannot compress IdLists, which are stored in separate columns. However, the

space saving is less than that achieved by the differential encoding of IdLists (i.e., 30%, see

Section 5.2.5) because DATAPATHS need to store SchemaPath. Join Index needs even more

space than ASRs for the following reason. Join Index only store the starting and ending node

id along a subpath. In order to return intermediate nodes on this path, Join indices have

to support both forward lookup to return the ending node and backward lookup to return

the starting node. As a result, Join Indices need to build two B+-tree indices per subpath,
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while ASRs only need to build one.

6 Related Work

There has been a flurry of recent work on storing and querying XML documents. Some

of the proposed approaches use relational database systems for this purpose [10, 9, 26, 27],

while others propose building native XML database systems [11, 23, 22]. A central problem

in both of these approaches is to efficiently index XML documents so that queries can be

answered efficiently. Prior work in this area has focused on efficient ways to harness existing

relational index structures [10, 9, 26, 13, 29, 24], and on the development of new index

structures [12, 21, 6, 5, 15, 14]. The work in this paper builds upon prior work and develops

a new family of index structures that can support a wide range of query access patterns, with

different space-time tradeoffs, that can be tightly integrated with relational query processors.

The works in [12, 21, 5, 14] focus on indexing XML paths, excluding the data values at

the ends of the paths. They rely on complex in-memory graph structures to represent and

query XML structures. For example, consider the evaluation of the query “/book[title =

‘XML’]”. The index structures can be used to determine the “/book/title” ids, but some

other auxiliary index structure (e.g., value indices [20]) will have to be used to determine the

ids of all elements having the value ‘XML’. The ids of these elements will then have to be

joined together to produce the final result. (There are other possible evaluation strategies,

but all of them require a potentially expensive join operation or multiple index lookups

because the data value is indexed separately from the path.) While such query evaluation

strategies may be efficient in some scenarios, often this strategy will be much worse than a

single index lookup (as we verified experimentally). Further, the trivial extension to these

index structures that treats values as part of the structure would not work, since there are

usually far more distinct values than distinctive paths; adding values to the structure will
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blow up the size of the in-memory structure and require complex memory management.

The Index Fabric [6] indexes XML paths and data items together. Thus, the Index Fabric

can support root-to-leaf path queries in a single index lookup. It can also support branching

queries if the query workload is known beforehand; it precomputes all possible branching

queries and encodes them as single path queries. However, in the presence of ad hoc queries

or if precise information about the query workload is not available, the Index Fabric cannot

support branching queries efficiently. Moreover, the Index Fabric does not support recursive

queries efficiently.

Recently, the ViST [29] and PRIX [24] techniques have been proposed for indexing XML

twigs using relational access methods such as B+ trees. These techniques encode XML

documents and queries as sequence patterns, and perform sub-sequence matching to answer

twig queries. A consequence of the sub-sequence matching is that ViST and PRIX require

multiple index lookups even for fully-specified single-path expressions. Further, since sub-

sequence matching is not directly supported in a relational database system, the authors

propose implementing these sophisticated strategies using special-purpose application logic

that is opaque to the relational query engine and query optimizer. Thus, unlike our proposed

approach, these techniques cannot be tightly integrated with a relational query processor for

the general evaluation of XML queries.

XML path indexing is also related to the problem of join indexing in relational database

systems [28] and path indexing in object-oriented database systems (see, e.g., [2, 16, 31]).

These index structures are targeted at workloads consisting of single path queries without

recursion, and assume that the schema is fixed and known. These assumptions do not hold

for XML queries, and we shall show the limitations of these previous approaches, especially

for recursive queries, experimentally in Section 5.

Most related to our approach are other recent approaches for indexing XML paths using a

relational database [33, 25]. The ToXin approach [25] intends to build XML indices similar
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to Access Support Relations (ASR) [16] and Join Indices [28]. However, they have the

same problem as ASR/Join Indices, which are inefficient for recursive queries, as shown in

Section 5. The XRel approach [33] also stores paths in relational tables, except that it

stores the actual paths in a different table and only stores path ids with the data. This

normalization saves space, but the ramification of the decision to store path ids (instead of

actual paths) with the data is that recursive queries require multiple index lookups: one to

look up the path ids of the paths, and more to look up the results for each path id.

There has been some interesting recent work on building approximate XML indices [21,

15]. The basic idea is to tradeoff accuracy of the index structure for associated space savings.

The approximation techniques specified in [15] are quite general and could potentially be

applied to our index structures to further reduce the index space requirement; of course,

this would also imply that our index structures would no longer return exact results and a

post-filtering step would be necessary.

Related to the problem of indexing XML documents is the evaluation of XML con-

tainment queries. XML containment queries are used to efficiently determine ancestor-

descendant relationships (such as “a//b”). Novel join algorithms [34, 18, 1, 3] and adapta-

tions of R-trees [17] have been proposed for this purpose. Such techniques can be used to

stitch together the intermediate results produced using our index structures. It is important

to note that containment query-processing techniques are not path indexing techniques.

Of course, XML indexing is just one aspect of XML query processing. A closely related

problem is the optimization of XML queries by choosing from available indices. The Lore

system presents an optimization approach [20] in which they choose among three XML graph

traversal strategies (top-down, bottom-up, and hybrid). The index structures proposed in

this paper can support all three strategies, and can thus be used with a Lore-style optimizer.

Our focus, however, is to map XML queries to relational index lookups that are visible to

the relational query optimizer, so that we can leverage the vast body of work on relational
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query optimization in order to optimize XML queries.

7 Conclusion

We have described a family of index structures, with different space-time tradeoffs, for the

efficient evaluation of ad hoc, recursive, twig queries. The proposed index structures are

enabled by a simple relational representation of the XML data paths. This permits con-

ventional use of existing relational index structures (e.g., B+-trees) for the twig indexing

problem, and can thus be tightly coupled with a relational optimizer and query evaluator.

The good performance of our proposed techniques can be attributed to the following fac-

tors: (a) combined indexing of XML schema paths and data values, (b) use of IdLists to

determine branch points, and (c) support for general relational query processing strategies

(such as index-nested-loops join). Based on our experiments using the DBLP dataset and

the XMark benchmark, we determined that these new index structures outperform the use

of existing indices by orders of magnitude for most twig queries, while remaining competitive

for single-path (non-branching) queries.

It is important to keep in mind that this performance improvement comes at the cost

of additional index space, and a higher index update cost. Updating the ROOTPATHS and

DATAPATHS indices requires updating multiple index entries. For example, for ROOTPATHS,

inserting an author with a certain name to an existing book requires inserting all prefixes of

the “/book/author/name” path. However, ROOTPATHS and DATAPATHS themselves could be

used to speed up the lookup of the entries to update. For example, if we want to delete an

author with a certain name from an existing book (whose ID is known) from ROOTPATHS, we

could use the author name and the schema path “/book/author/name” to locate the authors

with the given name, and extract the book IDs from the matching entries to examine whether

the book ID matches the book ID to delete. Note that using Edge table, DataGuide, or Index
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Fabric all requires joins to locate the index entries.

Directions for future work include investigating efficient update algorithms for ROOTPATHS

and DATAPATHS, and exploring additional index space compression strategies (e.g., dictio-

nary encoding the leaf values). Another interesting avenue is to explore the use of multi-

dimensional access methods, such as R-trees, to deal with complex conditions on values and

thus index a larger class of XML path expressions.
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