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ABSTRACT

Techniques for discrete event simulation optimization are classified into
three groups: path search methods, pattern search methods and random
methods. Each class is described and a survey of recent literature is

presented in this article.

INTRODUCTION

This paper is a summary of research and applications that have been done
in simulation optimization over the past 15 years. Its purpose is to give a
quick tour of the literature over this time span. Although no general method
has been devised which works well on an arbitrary simulation, there has been
a considerable amount of work done in this area. Over the years a number of
other review papers have been written on this subject
([26],[27],[34],[49],[54],[66],[75]) as well as a comparison of optimization
algorithms on stochastic functions [5].

The problem is to optimize a black box simulation expected response
E(F(X)), over a region S, with respect to a set of p input factors, XeSCRP.

The following diagram depicts a black box simulation:
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where X=(X1,X2,...,XP). Our goal is to optimize (maximize or

minimize) the expected simulation output response E(F(X)) over all possible



feasible input factor settings X. The difficulty with this problem is that
the output F(X) is a random variable equal to the sum of a constant and a
random variable which represents the noise of the system. (i.e.
F(X)=E(F(X))+c where &£ is a random variable with E(£)=0 and V(&)<+®).
Therefore, although we want to optimize E(F(X)), only F(X) can be observed.
This puts the simulation optimization problem in the class of stochastic
optimization problems, which are known to be difficult to solve. In
practice, many simulations and real-life systems of interestyhave noisy
objective functions. Therefore the solution to the simulation optimization
problem must not only present an efficient and effective technique of
optimizing a system's expected response, which of itself may be difficult,
but it must also eliminate or sufficiently reduce the effect of noise such
that the optimization procedure can locate the optimal factor setting of
the expected simulation output response. It is this point which makes the
problem difficult to solve.

The discussion presented in this paper focuses on discrete event
simulation, although some papers on continuous event simulation are mentioned
([11],[66]). All methods involve searching for local optima. Global
simulation optimization is not considered. However, some of the work in this
area, such as confidence interval estimation of global optima
([12]1,[36],[51]), could possibly be adapted for use in stochastic systems.
This may prove to be a rich area of future research. Here we classify the
different approaches of searching for a local optima into 3 basic categories:
path search methods, pattern search methods, and random methods. Path search
methods have been the most widely studied approach for solving the simulation
optimization problem, hence dominate the discussion and references in this

paper. Pattern search methods and random methods are mentioned, with emphasis



on the types of methods which have been presented in the literature.

Path Search Methods

Path search methods involve estimating a direction to move from a
current factor setting to an improved point in the feasible factor set.
Typically only local information is used. Once a direction of movement is
found, a distance to move in that direction is determined. The most common
direction of movement is the gradient.

A widely studied approach in this class of techniques is Response
Surface Methodology (RSM) (see [15], [39] or [56] for general reviews of
RSM). RSM uses a set of sample observations around a particular observation,
and attempts to fit a polynomial response surface to these points. There are
many types of experimental designs specifically tailored to choosing these
points [20]. One hopes that the shape of the response function is captured by
the polynomial fit to the data. The polynomial is usually of first or second
order.

Conventional RSM involves fitting a linear regression model around a
current factor setting, and using this linear model to estimate an improving
direction from the current point. Suppose k factor settings are needed for
the experimental design used to fit the model. Let Y=Xg+e£, where X is a kxp+1
matrix whose rows are the factor settings around the current point, 8 is a
pt+ixl vector of unknown coefficients for the linear model, Y is a kx1 vector
of response measurements corresponding to the k factor settings in X, and &
is the random noise of the system, which we will assume has mean zero. The

ordinary least square estimate of B is B=(XTX)~1XTY. Therefore ?=X§ defines a



linear response surface, from which an optimal direction (e.g. the gradient)
is easily obtained. One then moves in this direction a distance which
optimizes the response function (line search). This is called Phase I of RSM.
This procedure is repeated until the linear model stops providing a
sufficiently good fit (e.g. the gradient of the linear response surface stops
improving the response function value) [72]. Then Phase II is implemented.
Here a quadratic model is fit to the response. The quadratic model is as

follows:
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One then uses this fit to obtain a direction, the gradient, which will improve
the response. The same procedure, as described in Phase I, is done in Phase
II, such that an improved factor setting is obtained. When the length of the
direction chosen to improve the factor setting gets sufficiently close to
zero (e.g. 11dl1<é for some &>0, where d is the gradient of the response
surface obtained in Phase II), the procedure stops.

An advantage of this method is that it is founded on a statistical
‘theory that is easy to understand. The method is also easy to implement [72].
The major disadvantage of RSM is that a large number of simulation runs may
be needed. Choosing the optimal set of runs to make involves deciding among
many types of experimental designs for the data.

A significant amount of research has been done on RSM. Smith has used
ideas involving first order polynomial fits (Phase I) and second order
polynomial fits (Phase II), as desribed above

([47],[72],[73],[741,[751,[76],[77]). He has also done work in trying to



screen out unimportant factors so that the number of variables in the
polynomial would be small [71]. Daugherty and Turnquist have done RSM,
subject to constraints based on the cost to run the simulation [18]. They
have also used spline functions [35] to create artificial experimental points
[19]; this enabled them to obtain a reasonably good fit of the model using
fewer simulation runs, hence make more efficient use of the data. Spline
functions, rather than ordinary polynomial functions, were used, since spline
functions give a smoother fit. The response surface was also fit over the
whole feasible region, as opposed to a localized part of it.

Heller and Staats [38] used RSM, in conjunction with optimization
techniques which are gradient based, to solve problems subject to costs and
constraints. They called the direction obtained a direction of ''Cheapest
Ascent"”. They modified,Zoutendijk's method of Feasible Directions [85] for
this approach. Zoutendijk’'s method is a gradient-based optimization algorithm
for constrained optimization problems. It involves creating a linear progranm,
with the feasible region defined by first derivative linear approximations of
all the binding constraints. One then solves the LP to obtain a direction of
ascent, which is used to move to an improved factor setting. Therefore,

suppose one wants to solve the program:

Maximize f(x)

Subject to gi(x)zo i=31,2,...,m}

&

If the current factor setting is xk, then we can obtain a feasible

direction of ascent, d, by solving the linear program:



Maximize «

Subject to Vf(xk)d-azo
Vgi(xk)d-«zo
ldjlgl where jaii&ii,z,...,mizgi(xk)=05
and d=(d,dy,-..5d )"

Zoutendijk's method is a relaxation method. Convergence may be slow,
depending on the feasible region's steepness ([46],[84]).

Mihram [50] used RSM, with simplex experimental designs [13]. A simplex
experimental design requires p+1 points where XeRP (hence the name simplex).
These p+1 points are all the same distance from the current point. Moreover,
the distance between any two of these p+1 points is the same. Biles did
multiple response surface fitting ([7],[9]) and multiple objective
optimization ([6],[8],[10]). He also did some work in first and second order
response surface fitting, with direct search along the direction of the
gradient, and gradient projection methodology [46]. Gradient projection
methods project the gradient of the objective function onto the boundary of
the feasible region, hence yielding a feasible improving direction, which is
not necessarily optimal, but is easy to obtain. Cooley and Houck [17] looked
at the use of common and antithetic pseudorandom number streams as a means of
reducing the variance of an estimated response surface. They demonstrated
RSM, with the variance reduction modification, by optimizing an inventory
system model. Safizadeh and Thornton [67] extended this work by considering
alternative ways of using the pseudorandom number streams.

Eldridge [23] used a 5—phaée procedure. His phases were: 1) screening
(determining which variables are significant to the model), 2) grouping the

variables into subspaces, which can be evaluated individually, 3) optimizing



over each of these subspaces, 4) fitting an approximating function over each
subspace, 5) identifying the global solution over the entire space. A novel
aspect of Eldridge's paper (the techniques he used were all standard), was
the use of a random factorial design to better identify the optima of a
multimodal response surface. This design is a combination of a complete
factorial design and a random balance design [68]. This design was used, in
Phase II, to break the region into a set of unimodal surfaces, hence
simplifying the problem and enabling one to solve each unimodal surface
individually. Using the theory from analysis of variance, a standard F-test,
with one degree of freedom, was implemented to identify subspaces where a
quadratic model could be fit. The F-test identified whether there were cubic
or higher order effects present in a region, by measuring if such terms were
significant. If the test showed there were such terms (i.e. a subspace could
be adequately fit only by a cubic or higher order polynomial), it was broken
down further until all subspaces could be fit to quadratic models.
Montgomery et al. looked at RSM, by considering different experimental
designs suitable for fitting second order models to simulation responses
[55]. In another paper they also considered screening methods which reduced
the number of factors [52]. In addition, they looked at multivariate RSM
using the Geoffrion-Dyer Interactive Vector Maximal Algorithm [53]. This
algorithm is a multicriteria optimization procedure, which they adapted for
use in multiple response surface optimization. It involves a concave utility
function U, which gives a measure of the relative weighting between each of
the response surfaces. Using gradient information from the utility function
and the response surfaces, an approximation to the tradeoff weights between
the response surfaces is determined. The algorithm then uses these weights to

move toward an improved solution.



All of the above references involve modifying RSM to obtain better fits
to the response function of the simulation so as to obtain gradient estimates
that will most likely point in a response improving direction. They either
use different experimental designs or screen out insignificant factors. Work
has also been done on experimental designs to obtain better fits, as
.described, for example, in ([16],[52],[55]). Other reviews ([26],[27],[54]).
contrast RSM with other methods. Smith did a comparison study [75] between
seven different techniques. It was found that for a unimodal response
function, RSM with Zk factorial design and Random Search yielded the largest
relative gain of the response function towards its optima. Single Factor or
Univariate Search yielded the smallest relative gain.

Stochastic Quasi-Gradient methods use finite—-difference Monte Carlo
estimates of the gradients, applied to standard gradient-based optimization
algorithms. Ermoliev [24] discussed these methods and their applications.

Stochastic Approximation (SA) ([43],[64]) is another path search method.
Using the notation defined previously, let Xn be the factor setting for the
nth iteration of the algorithm, where the optimal factor setting is X,. If
g(Xn) denotes an estimate of the gradient of E(F(.)) at Xn’ then SA chooses

the next factor setting X =Xn+xngn where Xn is a scalar parameter which

n+1l
satisfies the convergence criteria given by Dvoretsky [22]. Dvoretsky
generalized the criteria given by Kiefer and Wolfowitz, and Robbins and
Monro. The Kiefer-Wolfowitz (K-W) algorithm defines g to be a 2-sided
gradient estimate of F. We assume the variance of F(X) is finite for all XeS,
and E(F(X)) is unimodal. The convergence criteria for the K-W algorithm is:
Given two sequences, o and Yn’ satisfying the convergence criteria

(2(x )=+o, Lim(Y )=0, £((x /Y )*)<ta), let

Xn+1=xn+(un/2Yn)(F(Xn+Yn)—F(Xn—Yn)), then X converges in mean square and



10

with probability 1 to a local maxima of F. Even if the convergence criteria
are satisfied, experience has shown that convergence may be very slow and
require a large number of simulation runs (a general summary of such results,
including convergence rates, can be found in [1],[81]).

Azadivar used one-sided [2] and two-sided [3] gradient estimates in
applying SA (in [3], only the sign of the gradient estimate was used).
Kushner and Gavin [44] developed a generalized SA method by searching for, as
opposed to using predetermined, step lengths to move in the direction of the
gradient estimate. Pflug [63] used two-sided finite difference gradient
approximations with SA; he called his approach the '"'Stochastic Quasigradient
method"”. Ruppert et al. [65] used SA applied to a Monte Carlo simulation of a
fish harvesting model. Glynn and Sanders [33] proposed a gradient estimation
technique, using likelihood ratios and Monte Carlo estimation procedures. Fox
[30] estimated gradients for transient markov chains. He also gave a
complexity analysis of the estimation procedure [29] and compared it to the
approaches presented in [30].

Much recent work has been done to obtain an estimate of the gradient, by
Ho, Suri, Zazanis et al. ([40],[41],[79],[80],[82]). They have developed a
technique called Perturbation Analysis (PA). PA uses a basic idea from
calculus, the chain rule, to obtain a gradient estimate using only one run of
a simulation, for any p>1. If w is the simulation response (e.g. the average
waiting time in a queue, for an M/M/1 queue), s is the measure of interest
(e.g. the service time of a customer), and X is the factor of interest (e.g.
the service rate), then we have (aw/3X)=(ow/3s)(3s/3X). They assume that
3s/3X is known and can be evaluated for a given s and X. They make the basic
assumption that the sequence of events remains the same for both X and X+4X,

where AX is an infinitesimal perturbation. If this assumption holds, the
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effect of AX can be measured as it propogates through the simulation. This
effect is kept track of in accumulators (e.g. (3s/3X) evaluated at s and X,
is added to the accumulator whenever a customer is served in the current busy
period), one for each of the indices of the factor X. If the effect of the
perturbation dies out in the simulation run, (e.g. a busy period ends), the
accumulator values are recorded and reset to zero. The total sum of all the
effects of a perturbation will then yield the gradient of a response of the
simulation. It is important to note that one must be able to calculate the
derivative of the measure of interest, so that the accumulator can correctly
sum the effect of the perturbation on the given response. Although this
method has many desirable properties, such as its simplicity and that it
takes very little work to implement the algorithm within a simulation (one
need add only a few lines to a computer program for each factor; one to
update the accumulator so the perturbations effecfs are being measured, and
one to reset the accumulator at points where the perturbation’'s effects have
died out), it has so far only been successfully applied to certain queueing
models.

An important analysis of PA was done by Heidelberger [37], where
necessary and sufficient conditions for PA to produce strongly consistent
estimates were given for regenerative processes. He also identified and
quantified a major weakness of PA: the assumption that the order of events
does not change when a factor is perturbed by an infinitesimal amount. This
assumption is typically not true. Heidelberger's work explains why PA does
not give good estimates in certain simulation models.

As described above, gradient estimation has been the major focus of path
search methods. In general, estimating gradient directions can be both

difficult and expensive, using the techniques presented. This is why very
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little work has gone into estimating hessians or developing the quasi-newton
method to solve the simulation optimization problem. Zazanis and Suri [82]
used PA to estimate the hessian of a G/G/1 queue from a single sample path.
Such hessian estimates could be used in a quasi-newton algorithm. The
difficulty with using this method in a stochastic environment is that a
product of fwo matrix estimates (the inverse of the hessian and the gradient)
must be taken. The inverse of the hessian estimate may be very poor, even if
the estimate of the hessian is reasonably good, especially when the condition
number of the hessian matrix is large (i.e. the ratio of the largest and the
smallest singular values of the hessian matrix is large). If an efficient
technique of reducing the noise effect on the hessian matrix estimate, and
its inverse, is developed, more work will be done with quasi-newton methods

for solving the simulation optimization problem.
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Pattern Search Methods

Pattern search methods are those which require no gradient estimates,
nor randomization procedures, but rather, use some characteristic or pattern
of the observations, to obtain an improved point

The most common method in this class is the Hooke and Jeeves method (HJ)
[4R]. HJ is based on the idea that if a direction has produced a favorable
change in the optimal value, then one should continue to move in this
direction. It uses the pattern from which previous improving changes have
been made, to obtain better factor settings, and eventually, the optimal
setting. One initially selects a set of incremental values for each factor.
Starting at an initial point, one checks, univariately, if positive or
negative incremental value changes in the factor settings produce improved
response values. This yields a new setting for each factor. One then moves
directly from the initial point in the direction towards, and through, this
new point. This procedure is continued until optimal changes cannot be made
with the given incremental values. Then the incremental values are decreased
and the procedure is repeated from the beginning. When the incremental values
reach a prespecified tolerance, the procedure is terminated and the current
factor settings are reported as the solution. Nozari and Morris ([58],[59])
have applied this method in conjunction with the Dudewicz-Dalal Selection and
Ranking method [21]. The Dudewicz-Dalal method is a two-staged sampling
procedure, used to identify the best factor setting between a set of k factor
settings. Let p[k—l] be the mean of the second best system, ”[k] is the mean
of the best system and 5 is a prespecified indifference measure between the
best and second best systems. The procedure results in a probability of

*
correctly selecting the optimum that is greater than P , provided
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“[k—l]_“[k]26>0 (if we are searching for a minima), where P* is a
prespecified probability. The first stage involves running the simulation for
each of the factor settings to be compared. The observations must be
independent to apply the Dudewicz-Dalal method. Therefore, the simulation
runs must be long enough so that the batch sizes are sufficiently large to
ensure independence. The second stage uses the Dudewicz-Dalal method,
together with the information obtained in the first stage, to determine a
search direction which is used in the HJ algorithm. Therefore, the HJ
algorithm is modified by having it obtain its search direction from the two
stage procedure described above. Pegden and Gately also applied the Hooke and
Jeeves method, to problems written in SLAM [61] and GASP IV [62].

Another pattern search method which has been studied is the Simplex
method ([57],[60],[78]). The Simplex method starts with a set of p+1 factor
settings in RP (hence the name simplex). Then, by comparing their response
values, it eliminates the factor setting with the smallest function value (in
the case of maximization) and replaces it by a new factor setting, determined
by the centroid of the p remaining factor settings and the eliminated factor
setting. The resulting simplex either grows or shrinks, depending on the
value of the new factor setting. The procedure is repeated until no more
improvements can be made by eliminating the smallest valued point and the
resulting final simplex is small. Meier [48] looked at applying the simplex
method to simulation studies. A Univariate Search method, applied to
simulation programs written in GPSS, by Lefkowitz and Schriber [45] has also
been looked into. Recently, Schruben [70] applied the Frequency Domain method
[69] of simulation output analysis to optimize a simulation output response.
Schruben showed that a simulation output response could be optimized by using

information obtained from its power spectrum. More work is being done, using
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the frequency domain approach, including the estimation of gradients and

higher order sensitivities.

Random Methods

Random methods are those which use a random approach to select factor
settings, with the hope of obtaining an improving, and eventually, optimal
response. The major problem with these methods is that they are slow to
converge (if they converge at all) to an optima. Previous information is
typically not used at each iteration. Therefore, the method requires a large
number of simulation runs. The reliability of the solution can be expressed
only in terms of probabilities. These probability statements are in turn
based on rather restrictive assumptions.

Very little has been done with this method in trying to solve the
simulation optimization problem. Garcia-Diaz et al. [32] used the Out-of-
Kilter Algorithm [28] with Monte-Carlo sampling to optimize a production
transportation problem which was transformed into a network flow problem. The
Out-of-Kilter Algorithm determines the minimum cost flow of a source to sink
network. It does this by sequentially obtaining solutions to the primal and
dual linear programs for the network. Using the complementary slackness
property, the algorithm terminates with the optimal solution. The Monte-Carlo
sampling procedure is what made their approach random. Smith looked at random
search as a possible method ([72],[75],[77]), and Farrell mentioned random
methods in his review and comparison papers ([26],[27]). Fox [31] presented
ideas using quasirandom numbers as a possible alternative to pseudo-random

number streams. Quasirandom numbers try to minimize the discrepancy of a
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sample, which is a measure of how good the spacing is. More formally, given a

set of points xl,xz,...,stIs and a subset GCIS, define the counting function

SN(G) as the number of points xisG. For each x=(x1,x2,...,xs)sls, let Gx be

the rectangular s-dimensional region Gx=[0,x1)x[0,x2)x...x[O,xs) with volume
1.2 N

X Xge o Xg- Then the discrepancy of the points x ,x ,...,x is

D*(x1 xz xN)= Sup_ I1S,(G )-Nx, x x |
PR ps N "x 172" ""s

xel
It is believed that the smallest discrepancy possible is O(LogpN), where N is

the number of points generated, and p is the dimension of each point. Bratley
and Fox [14] compared different quasirandom generators which give number
streams with the smallest known discrepancy. This idea holds promise in
solving the simulation optimization problem, in conjunction with Random
methods, although at present it has not been fully developed or tested in a
sﬁochastic optimization environment.

Glynn [34] gives a survey of Monte Carlo aigorithms for Stochastic
Optimization, with particular reference to the analysis and comparison of the
convergence rates between the different approaches. Zheng [83] outlines an
integral approach to solve the global optimization problem. Most optimization
algorithms try to find an improving direction. Zheng tries to minimize the
volume of space between the function he is trying to maximize and a plane
whose level is set by the current largest value the function is known to
take. The implementation of his algorithm uses the Monte Carlo technique to
estimate this volume and the largest value of the function. Evtushenko [25]
gave an algorithm for lipshitz continuous functions (i.e. there exists a k>0,
the lipshitz constant, such that |If(x)-f(y)Ii<klIx-y!| for all X,y over the
set for which f is defined), which introduced the integral approach to

optimization. His algorithm is space-covering based (i.e. one tries to
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eliminate regions where the optima cannot occur. When all regions where an
improved point might exist have been eliminated, the algorithm stops. Regions
are eliminated based on the number of points one has evaluated the function
at and the best value of the function one has obtained so far). It has not
been successfully implemented since obtaining the lipshitz constant can be
quite costly. Zheng's modifications get around this problem, at the expense

of efficiency and speed of convergence.

CONCLUSIONS

The simulation response optimization problem has been considered and
classified into three basic categories: path search methods, pattern search
methods and random methods. Although there have been a significant amount of
research in the area, no general approach has been developed into an
efficient and practical algorithm. Barton [4] gives testing strategies for
comparing simulation optimization techniques, with emphasis on the choice of
test functions and the random variability of this function. The literature
clearly points out that particular simulations, due to their structure and
form, seem to yield more consistent results for certain methods. For example,
simulations which are designed using a queueing model may yield the best
result using Perturbation Analysis, while a simulation which appears to have
interaction between the factors or a more clearly defined polynomial relation
between the factor settings and the response may yield the best results using
RSM. Efficient allocation of simulation runs is the main consideration in
choosing a method; such runs can be quite costly. Each method has their

advantage and disadvantage. Most methods consider very basic local
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optimization ideas (e.g. gradient estimates). In a stochastic environment, it
is difficult to use higher level optimization techniques. Until new ideas are
‘brought into this area, these methods will continue to be applied. However,
with a growing interest in this field, it seems likely that there will be new
approaches discovered and developed which will take advantage of more

sophisticated mathematical and optimization ideas.
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