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Abstract

The problem of Code Division Multiple Access
(CDMA) code assignment to eliminate primary
and hidden collisions in multihop packet radio
networks has been widely researched in the past.
However, very little work has been done on the
very realistic distributed, dynamic version of the
transmitter-oriented code assignment (TOCA)
problem in an ad-hoc network where mobiles use
CDMA technology. None of the existing dy-
namic TOCA CDMA algorithms in literature are
efficient, in terms of maximum code index as-
signed in the network, or number of times a mo-
bile has to change its code. We present a set
of local and distributed recoding strategies for
the TOCA CDMA problem in an ad-hoc network
where mobiles can arbitrarily 1) connect and dis-
connect, 2) move about, and 3) increase or de-
crease their transmission power - all these may
need some mobiles to be recoded, to avoid new
collisions. Our strategies, unlike those proposed
earlier in literature, guarantee minimal recoding,
that is, given a current network-wide code as-
signment and one of the above events, our strate-
gies change the codes of the minimum number of
mobiles needed to eliminate all collisions. Mini-
mal recoding can be very important in reducing
the effect of frequent code changes on the per-
formance and criticality of distributed applica-
tions. Further, among all possible minimal re-
coding strategies in a class, most of our strate-
gies are also (provably) optimal in terms of the
maximum code index assigned in the network.
Performance results that evaluate our dynamic
minimal strategies are also presented.

Keywords: CDMA, ad-hoc networks, dy-
namic networks, code assignment, distributed al-
gorithms, graph theory, minimal recoding.

1 Introduction

Ad-hoc wireless networks are characterized by
lack of an established infrastructure such as an
underlying wired network or base stations. How-
ever, their potential uses range widely from sce-
narios where an ad-hoc network could be just
convenient, such as a conference where members
communicate with each other, to critical ones,
such as networks formed on the fly by satellite
constellations, on the battlefield etc. [1].
Transmissions in such wireless media could
lead to collisions, where transmissions are gar-
bled at the receiving end. This could be either
a primary collision, where an incoming trans-
mission is damaged by a simultaneous outgo-
ing transmission from the receiving mobile, or
a secondary (also hidden) collision, where two in-
coming transmissions garble each other. Code
Division Multiple Access is a widely used tech-
nology that completely eliminates collisions by
techniques such as spread spectrum and or-
thogonal codes. We consider only the case of
orthogonal codes. ~ With each mobile (com-
puter+transceiver) modeled as a node, and each
code modeled as a positive integer, codes have to
be assigned to different nodes in the network, one
code per node, in a 1) correct manner to elimi-
nate all constraints (i.e., all primary and hidden
collisions) and 2) an efficient manner, such as say,



to minimize the maximum code index assigned to
any network node. This is known as the code as-
signment problem [2-8]. CDMA protocols require
that either receivers, or transmitters, or both, are
code-agile, that is, are able to communicate over
a range of codes. We are concerned only with the
first kind, also called the Transmitter Oriented
Code Assignment (TOCA) problem. This prob-
lem has been extensively studied for static mul-
tihop networks [2-8]. Finding an optimal TOCA
code assignment in terms of the maximum code
index assigned in the network has been mapped
to the graph coloring problem [9], where codes
are represented by colors - this has been shown
to be NP-complete [5]. Several centralized and
distributed heuristics have been proposed for the
same [2-9].

In an ad-hoc network, nodes are free to 1) move
about, 2) connect or disconnect from the net-
work, and 3) increase or decrease their transmis-
sion ranges (such a capability is often manda-
tory due to the power-sensitivity of CDMA
transceivers, besides other advantages such as
saving power, controlling network connectivity
and throughput, security etc. [10, 11, 12]). These
events may invalidate any statically generated
code assignment by introducing new conflicts in
the assignment, that is, by causing new collisions.
A recoding, that is, a change in the code assign-
ment of some network nodes, is needed to elim-
inate these new collisions. In general, a recod-
ing strategy is a set of algorithms (one for each
of the above event types) for a reassignment of
codes to some of the nodes in the network to
maintain the correctness of the code assignment.
Centralized code assignment algorithms such as
those of [2, 4, 5, 6, 7, 8] are inappropriate in an
ad-hoc network as they determine a new code as-
signment for every node on each event. The dis-
tributed heuristics of [4, 5] are also inadequate as
they assume a static network. Probably the only
prior works to propose distributed solutions in a
dynamic ad-hoc network-like scenario are [3, 6].
None of these papers consider the recoding prob-
lem arising out of a change in transmission range.

In this paper, we give a set of efficient recod-
ing algorithms for the above events. These algo-
rithms involve communication only local to the
event and are distributed, i.e., they require no
central coordination. Our algorithms (provably)
satisfy the important goal of Minimal Recoding,

that is, a recoding strategy must try to minimize
the number of nodes that are recoded (with a new
code) on any network event. More concretely,
given a current code assignment and one of the
above events, among all possible recoding strate-
gies, our algorithms achieve the lowest bound on
the number of nodes that need to be recoded to
eliminate all conflicts in the network. This could
be useful, even critical, in ad-hoc networks where
frequent recoding might be costly to the applica-
tions using the communication medium. Exam-
ples include hard real-time applications [13], and
applications where maintaining a persistent high
data rate is critical to its performance. Moreover,
most of our algorithms are (provably) optimally
mainimal, that is, given a current code assignment
and an event, among all possible recoding strate-
gies that are minimal and consider recoding only
nodes one hop away from the initiating node, our
strategies achieve the optimal (least) increase in
the maximum code index assigned to the net-
work. We also present simulation results that
verify our hypothesis that our strategies would
indeed be practicable in an ad-hoc network in
the long run, and perform better than previously
suggested strategies. In addition, our strategies
can also be used as orthogonal recoding algo-
rithms to any global code assignment heuristic
in a dynamic ad-hoc network.

The rest of the paper is organized as follows.
Section 2 discusses the assumed network model,
and our high-level and concrete goals in design-
ing the dynamic recoding algorithms. Section 3
touches on the previous work on this problem.
Section 4 presents our recoding algorithms. Sec-
tion 5 presents performance results for our algo-
rithms and section 6 concludes the paper.

2 Model and
Statement

Problem

A power controlled ad-hoc network is modeled as
a dynamic directed graph (digraph) G = (V, E)
with V' = {vy,ve,...,v,} the (current) set of
nodes in the network. Each vertex v; in V has
a configuration defined by its current position
coordinates ((x;,y;) in a 2-dimensional network)
and a (variable) maximum transmission power
range 7; which specifies the mazimum distance
from (x;,y;) that other nodes in the network can



hear or are affected by interference from its trans-
missions. The set of edges £ = {(v;,v;) : @ #
Jj & d;j < r;} consists of directed edges of the
type v; — v; if and only if v; is within v;’s trans-
mission range, that is, if the distance d;; between
v; and v; is less than r;. Note that this can be eas-
ily generalized for the non-free-space propagation
case where, due to obstacles, although d;; < r;,
(vi,v;) ¢ E. Node i’s assigned code is denoted
by ¢; and is a positive integer.

Nodes can arbitrarily join or leave the network,
increase or decrease their power range r;, and
move about within the network; call each of these
events or reconfigurations in the network. For
simplicity, we make the following assumptions,
the latter two of which are very realistic, and the
first of which we relax in a subsequent theorem.

1. Network events or reconfigurations occur
throughout the ad-hoc network one after the
other and not simultaneously (we later relax
this condition and show how to parallelize
our recoding algorithms).

2. Nodes move and change their ranges in dis-
crete (and not continuous) steps.

3. Minimal Connectivity: A node v; can
change its configuration if and only if there
are nodes vj, v (J, k # i) in the new config-
uration such that v; is within v;’s transmis-
sion range, and v; is within v, ’s transmission
range.

The TOCA code assignment problem [7] is to
assign a code (equivalently, a color), which is es-
sentially a positive integer, to each node in the
network so that the following constraints CAl
and CA2 are satisfied throughout the network at
all times.

Condition CA1l - (Primary) Collision
Avoidance 1: For every edge (v;,v;) € FE,
¢ # ¢j.

Condition CA2 - (Secondary) Collision
Avoidance 2: For every pair of edges

(Uiuvk)v (Ujvvk) cE & # Js Ci % Cj-

Fig 1(a) shows a snapshot of an ad-hoc net-
work containing 4 nodes {1,2,3,4}, with their
maximum transmission ranges, as well as a new
node 5 attempting to connect to the network.
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Figure 1: Example Ad-hoc Network with (a) nodes and
transmission ranges, (b) induced digraph and (c¢) coloring
constraints (two nodes connected by an edge cannot have
the same code) and a correct assignment.

Fig 1(b) shows the directed graph model of this
ad-hoc network and Fig 1(c) shows the con-
straints in the TOCA problem for the above net-
work. The indices against the nodes show the op-
timal color assignment to satisfy CA1 and CA2.

Ideally, for each event, an efficient recoding
strategy should attempt to (1) minimize the
maximum code index used by any node in the
network, (2) (Minimal Recoding) minimize the
number of nodes that change their code, (3) min-
imize the overhead of recoding, and (4) keep the
recoding strategy distributed and local. Goal 1
is needed because the hardware of a node can
be designed to transmit on only some maximum
number of codes. Goal 2 is very important for an
ad-hoc network since recoding can be very costly,
as mentioned in section 1. These two goals are
contradictory - global coloring algorithms satisfy
only goal 1 (ex. [5]) while local coloring algo-
rithms may satisfy only goal 2. Our minimal ap-
proaches to recoding obtain a tradeoff between
these two goals, while achieving the other goals.
They give the best performance in terms of mini-
mum number of nodes recoded among all possible
strategies while using almost as few colors as a
global coloring heuristic, in fact differing only by
a few colors.

Henceforth, during the recoding for an event,
for each network node, the set of colors that it
cannot be assigned since it would violate either
CA1 or CA2 with some other node, will be called
its constraints. Conflicts will refer to the viola-
tion of CA1 or CA2 somewhere in the code as-
signment due to the event. In the rest of the pa-
per, the terms “color” and “code”’are used inter-



changeably, as are “recoloring” and “recoding”.

3 Previous Work

[3, 6] consider the TOCA problem in the dynamic
and distributed context. Both works are similar
in spirit and give recoding strategies for nodes
joining and leaving a dynamic network with sym-
metric links, but they can be extended to the
asymmetric case. The CP Recoding Strategy of
[3] works as follows. When a new node joins
the network, it contacts all its neighbors. The
new node and its 1-hop neighbors exchange in-
formation about their current assigned colors and
the constraints induced on each by the colors of
nodes 1 and 2 hops away. All pairs of nodes 1 hop
away from the new node which have the same col-
ors violate CA2 and have to select new colors. In
addition, the new node has to select a color that
does not violate the constraints induced by nodes
1 and 2 hops away from it. This is achieved by
having each nodes continuously check if it is the
highest (or lowest)-identity node in its vicinity
(defined by itself and nodes up to 2 hops away
from it) that has not yet been assigned a color.
The node selects the lowest available color (not
yet taken by any of its 1 hop and 2 hop neighbors)
when this condition is satisfied. The ordering by
identities and respect for constraints ensures that
no conflicts arise among nodes choosing new col-
ors and with those whose colors will not change.
When a node leaves the network, its neighbors
update their lists, if any, about the constraints
placed on them for future color selection. No
recoding is required in this case. Node move-
ment is handled as a pair of events consisting of
a node disconnection and connection from/to all
its neighbors.

The CP algorithms of [3] are proved to be cor-
rect but not optimal in any way with respect to
the maximum color index used in the network,
number of recodings etc. As [3] is the work that
comes closest the approaches presented in this
paper, we compare our approaches to theirs by
simulation.

4 New Recoding Strategies

This section presents our recoding strategies.
Sections 4.1, 4.2, 4.3, 4.4 respectively discuss the

n
connect/join

\;‘\ cors
Figure 2: Node n joins the network

recoding strategies for node join, power range in-
crease, power range decrease or leave, and move-
ment.

4.1 Handling a Node Join

We first consider the problem of recoding when
a node n joins the ad-hoc network. Fig 2 shows
a new node n joining the ad-hoc network, thus
creating incoming edges from nodes in the sets
1,, and 2,,, outgoing edges to nodes in the sets 2,
and 3,, and no edges to nodes in the set 4,,. The
sets 1,, through 4,, are thus partitions introduced
on the old vertex set by the new node n. We call
the colors assigned to the nodes in the network
just prior to n joining as their old colors and those
assigned to them after the RecodeOnJoin oper-
ation finishes as new colors (which, for a node,
may be the same as its old color). Also, we call
the constraints to be taken into account for the
new coloring (recoding) as new constraints.

Consider the new constraints/conflicts created
by this join. From CA1l and CA2, observe that
all nodes in 1,,, 2, and {n} each need to have
colors different from each other. However, nodes
in 3,, need not change their color since n will be
assigned a new color anyway and this will need
to be different from any of the colors in 3,,. Rec-
ollect the goal of Minimal recoding we set down
in section 2. Keeping this in mind, instead of re-
coding any nodes more than 1 hop away from n,
we will attempt to minimize the total number of
codes changed in the set 1,, U2, U{n}.

Now, note that if a K-sized subset of nodes
in 1,, U 2, have the same old colors, only K — 1
need to change their color, and one of them can
maintain the same color in the new code assign-



ment. More generally, if the set of old colors
of the nodes in 1, U2, is {C},Cs,...,C,} and
the associated number of nodes in 1, U 2,, with
these corresponding colors is {Ky, Ko, ..., K},
apart from recoding n, at least Y7 (K; — 1) =
>, K;—m of the nodes in 1,,U2,, need to be re-
coded with different new colors to avoid conflicts
in the new code assignment after node n joins.
This is the minimal recoding bound.

Why 7 Clearly CA2 tell us that all nodes in
1,, U 2,, have to have different new colors after
the recoding. Suppose, by contradiction, that
less than Y (K; — 1) = X", K; — m of the
nodes in 1,,U2,, are recoded with new colors when
node n joins. This means that at least |1,,U2,| —
(Cr(Ki—1)—1)=1,U2,|-X", Ki+m+1 =
m + 1 nodes in 1,, U 2,, retain their old colors
after the recoding. However, since the old code
assignment {C,Cs, ..., Cy,} to 1, U2, had just
m colors, this means that at least two nodes in
1,U2,, will have the same color after the recoding,
a contradiction to CA2.

Now, the questions that arise are, which

", (K; — 1) nodes from 1, U2, do we chose
for recoding, and what colors do we assign them
7 Our solution is the following. Consider the
undirected graph G’ = (V; U V,, E') where V; =
1,U2,U{n}, Vo={i:ie Z* &i < maximum
color constraint in the vicinity of 1, U 2,, U n},
E ={(u,v) :u € Vi,v € V, uis not constrained
to be colored newly with v}. By “maximum color
constraint in the vicinity of 1, U2, Un”, we mean
the maximum of all old colors in 1,, U 2,, and
all constraints (due to CAl and CA2) for the
new coloring on nodes in 1, U 2, U {n}. The
edges in E are weighted; edges of the kind (u,v),
u € 1, U2,,v €V, where v is the old color as-
signed to node u are assigned weight 3; all other
edges have weight 1. Note that G’ is an instance
of a bipartite graph.

Next, consider a subset of edges M =
{(u1,v1), (ug,v2),...} from E so that (1) no two
u;’s in M are the same (assign each node in V; at
most one color), and (2) no two v;’s in M are the
same (no two nodes in V; have the same color),
and (3) the sum of the weights of the edges in
M is the largest among all such M that satisfy
conditions (1) & (2). Our recoding strategy is
to assign a node u in V; to the color in V5 that
M matches it to, and for all © € V; not matched
by M, assign them consecutive colors one by one

RecodeOnJoin(Node n)
1

Obtain the constraints (u, oldcolor(v)) of the from-neighbors u of n,

u€lpU2p,v¢ 1y U2, U{n}.
2 Obtain the constraints (n, oldcolor(v)) for n, v ¢ 1, U 2y.
3 Let maxz = the maximum color seen in these constraints or
old colors in 1, U 2.
4 Let Vi =1,U2, U{n}, Vo ={1,...,maz}.
Draw the bipartite graph G’ by joining edges from each vertex
v in V] to each color k in V5 that it can be assigned
without conflicting with the constraints with any of the nodes
not in 1, U2, U {n}.
Assign this edge weight 3 if this is the old color assigned
to v, otherwise assign it a weight of 1.
5 Run the bipartite matching algorithm on G. For each edge in v
that is matched to some edge (v, k), assign it k as the new color.
For all nodes in V7 not assigned a color above, say m of them,
randomly assign them colors maz + 1,...,maz +m
6 Dissipate this information to all concerned nodes, agreeing
on when to change color.

Figure 3: RecodeOnJoin
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Figure 4: (a) Node 8 joins the network. Dotted edges
added by the join. Against each node is shown its (old
color, new color by RecodeOnJoin, new color by CP) (b)
Weighted bipartite graph used by RecodeOnJoin; dark
edges show matching constructed by RecodeOnJoin.

starting from |V3| + 1 onwards. Such an M de-
fined by properties (1) and (2) is called a match-
ing on the graph G’ [14], a set of edges which
have no end-vertices in common. A matching
that satisfies condition (3) is called a mazimum
matching on weighted bipartite graph G’. Effi-
cient algorithms exist to find a maximum match-
ing on any weighted bipartite graph[14]. We shall
not enumerate further on these algorithms but
treat them as a black box in our algorithms and
ensuing discussion.

The pseudo-code for the RecodeOn.Join algo-
rithm executed by a new node n, which uses the
maximum weighted matching on G’, is shown in
Fig 3 and is self-explanatory. Note that this is a
local recoding strategy since the onus of recoding



the nodes in 1,, U2, U{n} is locally centralized at
node n, and uses only local information. The the-
orems stating the termination, correctness and
claimed minimality and optimality among min-
imal algorithms properties of our algorithm ap-
pear in Appendix A.

An example for the recoding by the CP strat-
egy and RecodeOnJoin when a new node (8)
joins an ad-hoc network is shown in Fig 4. The
reader is encouraged to work through this simple
example to understand the presented algorithm.
Note that RecodeOnJoin causes only 3 recodings
while the CP join strategy (which uses a highest-
first node ordering) causes 4 of them. Both end
up using the same maximum color index after the
join event (6).

Ignoring the latency of dissipation of color in-
formation in steps 1, 2 and 6, the complexity
of RecodeOnJoin(n) is dominated by the bi-
partite matching step 4. If the maximum in-
and out-degree of any node in the network is k,
RecodeOnJoin has a complexity of O(k%In(k)).
In a planar ad-hoc network, k would be expected
to be a constant (as in planar graphs), thus giv-

ing us a constant expected time complexity for
RecodeOnJoin.

4.2 Handling Node Power In-

crease

Let us look at Fig 2 again and envision what
happens to the constraints on the nodes in
1,,2,,3,,4, when n increases its maximum
power range r; by some amount. Nodes which
were earlier in set 4,, might now be included in
3, and nodes earlier in 1,, might jump into 2,.
However, note that no new constraints are in-
duced among the nodes in 1, U2, U3, U4, due to
this. In other words, all constraints due to CA1
and CA2 added by the new edges involve node n
' If n’s old color can no longer be assigned to it
because of a new constraint, then the minimal re-
coding would need at least one node to change its
color - we chose n to be this node, thus achieving
the minimal bound. If n’s color has no conflict
with the new constraints on n, then the minimal
recoding changes no colors. This is exactly what
algorithm RecodeOnPowlIncrease does (Fig 5).

We now extend the C'P strategy to account for
recoding on power range increase. When a node
n increases its power range, all nodes up to two

RecodeOnPowlIncrease(Node n)

1 Obtain the (new) constraints (n, oldcolor(v)), v # n for self (n).

2 If current color does not violate new constraints, stop.

3 Recode n with the lowest available color that does not violate
any of the constraints.

Figure 5: RecodeOnPowlIncrease
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Figure 6: Node 5 increases its range. Dotted edges
added to network. Against each node is shown its (old

color, new color by RecodeOnPowlIncrease, new color by
CP)

hops away from n that now have a new constraint
(due to either CA1 or CA2) with n and the same
old color as n (and thus have a conflict with n),
consider themselves for recoding. These nodes,
along with n, do so in a distributed fashion in
increasing or decreasing order of their identities,
in a manner similar to the algorithm presented
in section 3.

An example comparing the performance of
the C'P and RecodeOnPowIncrease strategies is
shown in Fig 6, where node 5 increases its max-
imum transmission range to now include node
1,2,4,6 within its receiving range, thus setting
up new constraints.  RecodeOnPowlIncrease
causes only 1 new recoding while the C'P strat-
egy causes 2 nodes to be assigned different new
colors. RecodeOnPowlIncrease ends up with a
lower maximum color index in the network (4) as
against CP’s 5.

The termination, correctness and minimal-
ity properties of this algorithm are stated with
proofs in Appendix B. However, note that
RecodeOnPowlIncrease may not always achieve
the optimal bound among all minimal recoding
strategies for recoding when a node increases its
rn. Consider the example of n having only one
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decrease of range by node 3

Figure 7: Node 3 decreases its power range. Crossed
out edges deleted and old code assignment is valid.
Against each node is shown its (old color, new color by
RecodeDecrease PowOr Leave, new color by CP)

new constraint with another node m. If n has
lots of old constraints (which still hold) and m
very few, recoding only m might be more opti-
mal in terms of maximum color index assigned
to the network, while achieving the minimal re-
coding bound.

RecodeOnPowIncrease’s time complexity, ig-
noring the constraint collection step 1, is O(k?),
where £ = maximum in- and out-degree of any
node in the network.

4.3 Handling Node Leaves and
Power Decreases

As in 3],
our approach for RecodeDecrease PowOr Leave
adopts the passive strategy of no recoding when
a node leaves the network or decreases its power,
since no new conflicts are introduced by these
events and thus the minimum number of codes
to be changed in the network to maintain no con-
flicts is zero. An example is shown in Fig 7. The
termination, correctness, minimality, and opti-
mality among minimality properties of this algo-
rithm follow from the above discussion and are
stated in Appendix C for completeness.

4.4 Handling Node Movement

As mentioned in section 3, the C'P strategy for
handling recoding on node movement is to treat
it as a pair of consecutive events where the mov-
ing node n leaves and joins the network. Such an
approach can be very costly as mobility is inher-
ent to ad-hoc networks.

RecodeOnMove(Node n)
0 Define 14,25, 3n,4n for the node n in its new position as in
section 4.1.

1 Obtain the constraints (u, oldcolor(v)) of the from-neighbors u of n,

u€lpU2p,v¢ 1y U2, U{n}.
2 Obtain the constraints (n, oldcolor(v)) for n, v ¢ 1, U 2y,.

3 Let maxz = the maximum color seen in these constraints and in the

old colors of nodes in 1, U 2,.
4 Let Vi =1,U2, U{n}, Vo ={1,...,maz}.
Draw the bipartite graph G’ by joining edges from each vertex
v in V] to each color k in V5 that it can be assigned
without conflicting with the constraints with any of the nodes
not in 1, U2, U {n}.
Assign this edge weight 3 if this is the old color assigned
to v, otherwise assign it a weight of 1.
5 Run the bipartite matching algorithm on G. For each edge in v
that is matched to some edge (v, k), assign it k as the new color.
For all unmatched vertices in Vi, say m of them,
randomly assign them colors maz + 1,...,maz +m
6 Dissipate this information to all concerned nodes, agreeing
on when to change color.

Figure 8: RecodeOnM ove
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Figure 9: (a) Node 2 moves. Dotted edges added by
the move. Against each node is shown its (old color, new
color by RecodeOnM ove, new color by C'P) (b) Weighted
bipartite graph used by RecodeOnM ove; dark edges show
matching constructed by RecodeOnM ove.

Our algorithm for recoding on a node move
RecodeOnMove is shown in Fig 8 and is very
similar to RecodeOn.Join. In fact, were the mov-
ing node n to leave the network and then join it
immediately, this would be the exact sequence of
steps executed for the recoding (Appendix D).
Notice, however, that our strategy is more ad-
vantageous than the C'P strategy since a moving
node disconnects from and connects to only some
nodes, not the entire network.

The termination, correctness, minimality and
optimality among minimality properties of this
algorithm are stated in Appendix D. Their proofs
are analogous to those in Appendix A. An exam-
ple for the working of RecodeOnMove is shown



in Fig 9. Both RecodeOnMove and the CP
(which uses a highest-first node ordering) strate-
gies cause 1 new recoding and end up with 4 as
the maximum color index in the network after
this event.

5 Simulation Results

The recoding algorithms presented in the last
section are provably minimal only for the individ-
ual events considered. In this section, we address
the question: how well do the set of our minimal
recoding strategies, call them Minim, of section 4
perform for a long sequence of events in an ad-
hoc network ? We evaluate the performance of
the Minim strategies against (1) a strategy that
uses a centralized coloring heuristic: the BBB
algorithm of [7], to recolor the entire network at
every event, and (2) the CP recoloring strategies.
The performance metrics we are concerned with
are 1) the maximum color index assigned in the
network (the lower, the better is the code reuse)
and 2) the number of nodes recolored (recoded
with a new color different from its old one). This
section handles this issue via discrete event sim-
ulations.

These experiments were carried out on ran-
dom ad-hoc networks generated on a 2 dimen-
sional space 100 units x 100 units square, with
nodes arbitrarily joining, leaving, moving about,
increasing and decreasing their maximum trans-
mission ranges. We investigated the algorithms
for recoding on a node join (section 5.1), node
power increase (section 5.2) and node movement
(section 5.3). The other two strategies of sec-
tion 4.3 are trivial and the same as [3], hence
we did not evaluate them. In order to maintain
the generality of our simulation results, we have
widely varied the different parameters and shown
plots for the same. All points on all plots are
the average of the metric measured over 100 runs
of randomly generated ad-hoc networks for that
particular setting of parameters.

5.1 Node Join

N nodes were consecutively allowed to join the
ad-hoc network. Their position was determined
by choosing their x and y coordinates indepen-
dently and uniformly from the interval [0, 100].

Their transmission ranges were chosen uniformly
in the interval (minr,maxr). For this exper-
iment, Fig 10 shows the two metrics for the
three different algorithms with increasing N
(Figs 10(a-c) with minr = 20.5, maxr = 30.5),
and Mrimarn) (pigs 10(d-f) with N = 100 and
mazxr —minr = 5.0).

In general, the distributed algorithms - CP and
Minim, achieve an almost linear variation (in
N) of the total number of recodings compared
to the global approach BBB (Fig 10(b)), with
Minim outperforming CP (Fig 10(c)). BBB per-
forms badly since it recolors the entire network
at each event. In terms of maximum color index
used, Minim comes closer to the (near-optimal)
BBB heuristic than the CP approach (Fig 10(a)).
These observations hold for a variation of trans-
mission range too (Fig 10(d)).

Evidently, the Minim approach is preferable
to the C'P and the BBB global approaches as the
best distributed recoding heuristic in the Ad-hoc
network scenario.

5.2 Node Transmission Range In-
crease

To measure
the effectiveness of RecodeOnPowlIncrease, we
started with the ad-hoc networks and the code
assignment thereof generated in the last section
(with N = 100, minr = 20.5, mazr = 30.5). A
parameter raise factor was introduced, and half
of the N nodes in the ad-hoc network were ran-
domly chosen and their power ranges increased
by a factor of raisefactor. The change (A’s)
in maximum color index assigned in the network
and the total number of recodings were measured
for this sequence of range increase events and are
shown respectively in Fig 11(a) and Figs 11(b,c).

The CP approach performs better than the
Minim minimal approach in terms of maximum
color index assigned to the network (Fig 11(a)).
This is because unlike the modified C'P strat-
egy to handle range increases, the minimal
RecodeOnPowlIncrease strategy is very simple
and does not care about minimizing the num-
ber of maximum color index after reassignment.
However, this disadvantage is completely offset
by the advantage gained by the much lesser num-
ber of recodings in the Minim case compared to
the CP (and the BBB) strategy (Figs 11(b,c)).



For example, at raisefactor = 4, Minim per-
forms worse than CP in the maximum color in-
dex metric by only 6 colors but outperforms it
by around 50 recodings.

We conclude that while the Minim approach
for recoding on power range increase performs
only slightly worse than the CP strategy on the
maximum color index assigned, it outperforms it
by a huge margin in the total number of recod-
ings. It is of course up to the system designer to
choose between these two approaches depending
on which she prefers more - a lesser number of
codes or a lesser number of recodings.

5.3 Node Movement

To evaluate the performance of RecodeOnM ove,
we started with the networks generated in sec-
tion 5.1. We introduced two new parameters;
mazxdisp, the maximum displacement of a node
in any of the directions, and RoundNo, which
we will explain shortly. In this experiment, there
were several rounds, in each of which all the
N nodes in the network were moved, one by
one, in a random direction in the x-y plane by
a displacement chosen uniformly in the inter-
val [0, mazdisp|. RoundNo such rounds were
carried out for different values of maxdisp and
RoundNo. The two metrics - change in maxi-
mum color index in the network, and total num-
ber of recodings, were measured for this sequence
of node move events (Figs 12). The values of
N = 40, minr = 20.5, maxr = 30.5 were used for
these experiments.

Fig 12(a) shows the total number of recodings
for different values of maxdisp, with RoundNo =
1. The Minim strategy evidently outperforms the
CP strategy. Figs 12(b-d) show the effect of vary-
ing RoundNo, with mazdisp = 40. Fig 12(b)
shows the change in the maximum color index
assigned in the network as we go through more
and more rounds of movement. This metric obvi-
ously does not change too much even for as many
as 10 rounds, and the Minim strategy performs
worse than the CP strategy by at most a cou-
ple of colors. Again, Figs 12(c,d) show us the
vast advantage to be gained in the number of re-
codings for node movement by using the Minim
strategies. The Minim strategy improves vastly
upon the CP strategy as rounds progress (eg., for
RoundNo = 10, the Minim achieves 400 fewer

recodings than CP!).

The conclusions here are similar to the previ-
ous sections - the tradeoff achieved by using the
Minim strategies is the use of a few more extra
colors (codes) for a vast gain in the number of
recodings.

6 Conclusions and Future
Work

The problem of CDMA code assignment to elimi-
nate collisions in packet radio networks has been
widely researched in the past, but none of the
algorithms proposed for code assignment in a
dynamic scenario guarantee any strong perfor-
mance bounds. In this paper, we have presented
a set of recoding strategies Minim for TOCA
CDMA recoding in an ad-hoc network where mo-
biles can arbitrarily 1) connect and disconnect,
2) move about, and 3) increase or decrease their
transmission power. Our strategies, unlike those
proposed earlier in literature, have been proved
to guarantee minimal recoding, that is, given a
current code assignment and one of the above
events, our strategies change the codes of the
minimum number of mobiles needed to elimi-
nate all collisions in the network after the event.
We have further proved that, among all pos-
sible minimal recoding strategies that consider
only some subset of nodes for recoding (one-hop
neighbors of the node executing the event), most
of our strategies are optimal in terms of num-
ber of codes assigned in the network. Simulation
results reveal that our Minim approaches trade
off a relatively small loss in terms of maximum
color index assigned in the network to obtain a
significant gain in terms of the total number of in-
stances where a node has to change its code. The
proposed Minim strategies can be very practical
in scenarios such as hard real-time systems and
high data rate applications running on an ad-hoc
network, where it is much more preferable to use
a few more codes in the network than to suffer
the (possibly) critical loss incurred by changing
the codes of several mobiles.

Future work will focus on a recoding strategy
that seeks to maximize the network-wide code
reuse by using a local gossiping strategy. This
gossiping strategy would work during the (pos-
sibly significantly long) periods when no nodes



connect to, move about or increase their power
within the ad-hoc network.
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Appendix A: Properties of
RecodeOnJoin

Lemma 4.1.1: Apart from recoding n, at least
T(K;—1) =>", K;—mof the nodes in 1,,U2,

need to be recoded with different new colors to

avoid conflicts in the new code assignment af-

ter node n joins. This is the minimal recoding

bound.

Proof: See section 4.1. |

Theorem 4.1.2 (Termination): If no
nodes crash, messages are eventually delivered,
the Minimal Connectivity assumption is main-
tained, and events/reconfigurations sequenced,
RecodeOnJoin terminates.

Proof: By the Minimal connectivity assump-
tion, no-failure assumption and eventual message
delivery assumption, steps 1, 2 and 6 all termi-
nate. The rest of the steps are carried out by the
node n and terminate as n does not crash and
the steps are deterministic. O

Fact 4.1.3: No node in 1, U2, U {n} is re-
assigned the same new color as another node in
the same set. This follows from the definition of
a matching and step 5 of RecodeOnJoin.

Theorem 4.1.4 (Correctness):  The new
code assignment by RecodeOndJoin avoids pri-
mary and hidden collisions.

Proof: In this proof, we shall refer to the con-
straints induced by the joining of n as new con-
straints and those that existed prior to n exe-
cuting RecodeOnJoin as old constraints. First,
note that all nodes in 1, U 2,, assigned a color
by the second part of step 5 in RecodeOnJoin
have no collisions with any node in the network
(by the definition of max in step 3). Next, we
show the same for nodes reassigned by the first
part of step 5. The new constraints that violate
CA1 are the edges between n and nodes in 1,,U2,,,
3. However, RecodeOn.Join will not violate any
of the constraints generated between n and the
nodes in 3,, as these edges will not be added to
G’ (step 4). RecodeOnJoin will not violate any
of the constraints between n and 1, U 2,, since
all nodes in 1,, U2, U {n} end up with different
new colors from each other (Fact 4.1.3). The new
constraints that violate CA2 are that each pair

of nodes in 1,, U 2,, U {n} should have different
colors and each node that is a from-neighbor of
a node in 2, U 3,, should have a different color
from n. Again, as earlier, the second require-
ment is met by the edges not added by step 2,
and the first is met by the fact that all nodes in
1, U2, U{n} are reassigned with different new
colors from each other (Fact 4.1.3).

The old constraints on pairs of nodes neither
of which are in 1,, U2, U {n} are not violated as
these pairs of nodes have the same new and old
colors. The old constraints on pairs of nodes, one
of which, say u, is in 1, U2, U{n} and the other
is not, are not violated by the edges not added
to u in step 4 of RecodeOn.Join. O

Fact 4.1.5: Each node in Vi (step 4 of
RecodeOnJoin) is adjacent to at most one edge
with weight 3. This follows since a node u € V}
can be associated with only one old color before
this event.

Lemma 4.1.6: Let u € 1, U2,, and C,, be its
old color. Then G’ as constructed in step 4 of
RecodeOnJoin has the edge (u, C),) and this has
a weight 3.

Proof: Consider the new constraints induced on
node v in 1,, U 2, by the new node n joining the
network. From steps 1 and 4 of RecodeOnJoin,
such a constraint will affect the presence of an
edge in G’ iff they are between u and a node
v ¢ 1,U2,U{n}. However, it is easy to note
from Fig 2 that no new constraints that vio-
late either CA1 or CA2 are induced on any node
u € 1,U2, and another node v ¢ 1,U2,U{n}. In
other words, a constraint between u and a node
v ¢ 1,U2,U{n} were already satisfied by the old
code assignment. However, since no node not in
1, U2, U{n} is recoded by RecodeOnJoin and
the old color C, assigned to u does not violate
any of the constraints between u and nodes not
in 1,,U2,U{n}, step 4 of RecodeOnJoin will add
the edge (u,C,) to G', and with a weight 3. O

Lemma 4.1.7: From the above fact and lemma,
it follows that in G’, each node v € 1,, U2, is as-
sociated with exactly one edge of weight 3 and
that too to a node C, € V5, which is its old
color. Moreover, all edges incident with n in G’
have weight 1.



Theorem 4.1.8 (Minimality): At the
event where n joins the network, RecodeOnJoin
achieves the minimal recoding bound among all
possible recoding strategies.

Proof: Clearly, RecodeOnJoin will achieve
the minimal recoding bound if every color in
{C1,...,C}, the old set of colors assigned to
nodes in 1,,U2,,, is present in the matching found
in step 5. This is true since then 7", (K; — 1) =

", K; —m nodes in 1, U 2,, will then be re-
coded with new colors (n will have to be recoded
anyway ).

Suppose, by contradiction, there is a color Cj
in {C4,...,C,,} associated with a vertex v € V)
by the matching found by step 5 (call this match-
ing M) and that (v, C;) has a weight < 1 (0 if C;
is not present in the matching at all). There is
at least one node u € Vj such that (u,C;) is in
G’ and has weight 3 (lemma 4.1.6). Again, let u
be matched with some color C; # C; by step 4.
The weight of this matched edge is < 1 (lemma
4.1.7). Now consider the matching M’ obtained
by removing these two edges (u,C}), (v, C;) (if
they exist) from M and adding the edge (u, C;).
Clearly, M’ is also a matching. Moreover, M’
has a weight at least 3—1—1 = 1 more than the
weight of matching M. This is a contradiction
to the maximality of M. O

Theorem 4.1.9 (Optimality among Mini-
mality): At the event where n joins the net-
work, among all correct recodings of the network
that achieve the minimal recoding bound and
consider only nodes in 1,,U2,,U{n} for recoding,
RecodeOnJoin gives us one which (re-)assigns
the least maximum color to any node.

Proof: The theorem is true if the matching
M found by step 5 of RecodeOn.Join has |Vi|
edges. Therefore, let us assume that the second
part of step 5 assigns at least one color greater
than maz. Now assume, by way of contradiction,
the existence of another adversary correct recod-
ing of nodes in 1,, U2, U {n} that uses less than
the colors used by RecodeOnJoin, and is further
the best among all such adversaries. Consider
the matching M"” induced on graph G’ (defined
in step 4 of RecodeOnJoin) by such a recoding.
Since at least one more node in Vj is matched
in M” than in M and both M"” and M have m
edges of weight 3 (otherwise an argument similar
to the proof of Theorem 4.1.8 can be used to im-

prove the adversary recoding), this means that
M" has more edges of weight 1 than M and is
hence a matching on G’ with a larger weight than
M. This is a contradiction to the maximality of
M. Q.

Theorem 4.1.10: The algorithm supports si-
multaneous additions of new nodes when any two
of them are at least 5 hops apart.

Proof: We omit this proof as it is similar to that
of Theorem 5.1 in [3] p. 735. O

Appendix B: Properties of
RecodeOnPowlIncrease

Theorem 4.2.1 (Termination): If no nodes
crash, messages are eventually delivered, the
Minimal Connectivity assumption is maintained,
and events/reconfigurations happen only one af-
ter the other, RecodeOnPowlncrease termi-
nates.

Proof: Step 1 terminates as all messages are
delivered and no processes crash. Steps 2 and 3
complete as n itself does not crash. O

Theorem 4.2.2 (Correctness): The
new code assignment by RecodeOnPowlIncrease
avoids primary and hidden collisions.

Proof: From prior discussion in section 4.4. O

Theorem 4.2.3 (Minimality):  RecodeOn-
Powlncrease achieves the minimal recoding
bound for power increase.

Proof: From prior discussion in section 4.4. O

Appendix C: Properties of
RecodeDecrease PowOrLeave

Theorem 4.3.1 (Termination): If no nodes
crash, messages are eventually delivered, the
Minimal Connectivity assumption is maintained,
and events/reconfigurations happen only one af-
ter the other, RecodeDecrease PowOr Leave ter-
minates.

Theorem 4.3.2 (Correctness): The
new code assignment by RecodeOnPowIncrease
avoids primary and hidden collisions.



Theorem 4.3.3 (Minimality):  RecodeDe-
creasePowOrLeave achieves the minimal recod-
ing bound for the events where a node n leaves
or decreases 7,,.

Theorem 4.3.4 (Optimality among Min-
imality): RecodeDecreasePowOr Leave
achieves the minimal optimal recoding for the
events where a node n leaves or decreases r,,.

Appendix D: Properties of
RecodeOnM ove

Theorem 4.4.1: A RecodeOnMove(n) is equiv-
alent to a RecodeDecrease PowOrLeave(n) at
n’s old position, followed by a RecodeOnJoin(n)
at the new position of n.

Proof: This follows directly by looking at the
pseudo-codes for

RecodeDecreasePowOr Leave(n),
RecodeOnJoin(n) and RecodeOnMove(n). 0O

Theorem 4.4.2 (Termination): If no nodes
crash, messages are eventually delivered, the
Minimal Connectivity assumption is maintained,
and events/reconfigurations happen only one af-
ter the other, RecodeOnM ove terminates.
Theorem 4.4.3 (Correctness): The
new code assignment by RecodeOnPowIncrease
avoids primary and hidden collisions.

Theorem 4.4.4
(Minimality):  RecodeOnMove achieves the
minimal recoding bound for the event in which a
node moves within the network.

Theorem 4.4.5 (Optimality among Mini-
mality): RecodeOnM ove achieves the minimal
optimal recoding for the event in which a node
moves within the network.



