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DISTANCE COVARIANCE FOR DISCRETIZED STOCHASTIC PROCESSES

HEROLD DEHLING, MUNEYA MATSUI, THOMAS MIKOSCH, GENNADY SAMORODNITSKY,
AND LALEH TAFAKORI

Abstract. Given an iid sequence of pairs of stochastic processes on the unit interval we con-
struct a measure of independence for the components of the pairs. We define distance covariance
and distance correlation based on approximations of the component processes at finitely many dis-
cretization points. Assuming that the mesh of the discretization converges to zero as a suitable
function of the sample size, we show that the sample distance covariance and correlation converge
to limits which are zero if and only if the component processes are independent. To construct a
test for independence of the discretized component processes we show consistency of the bootstrap
for the corresponding sample distance covariance/correlation.

1. Introduction

1.1. Distance covariance and distance correlation for vectors. In a series of papers, Székely
et al. [14, 15, 16, 17] introduced distance covariance and distance correlation. They are measures of
the dependence between two vectors X and Y, possibly with different dimensions. These measures
have the desirable property that they are zero if and only if X and Y are independent. This
is in contrast to many other dependence measures where one can only make statements about
certain aspects of the dependence between X and Y. For example, the correlation and covariance
between two real-valued random variables X and Y allow one to make statements about their linear
dependence; only in the case of joint Gaussianity of (X,Y ) their correlation determines the full
dependence structure between X and Y .

The distance covariance between a p-dimensional vector X and a q-dimensional vector Y is a
weighted version of the squared distance between the joint characteristic function φX,Y of X, Y
and the product of the marginal characteristic functions φX, φY of these vectors. We know that
X and Y are independent if and only if

φX,Y(s, t) = φX(s)φY(t) , s ∈ Rp , t ∈ Rq .(1.1)

However, this identity is difficult to check if one has data at the disposal; a replacement of the
corresponding characteristic functions by empirical versions does not lead to powerful statistical
tools for detecting independence between X and Y. First, Feuerverger [6] in the univariate case
and, later, Székely et al. [14, 15, 16, 17] in the general multivariate case recommended to use a
weighted L2-distance between φX,Y and φX φY: for β ∈ (0, 2), the distance covariance between X
and Y is given by

Tβ(X,Y) = cpcq

∫
Rp+q

∣∣φX,Y(s, t)− φX(s)φY(t)
∣∣2|s|−(p+β)|t|−(q+β) dsdt ,
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where the constants cd for d ≥ 1 are chosen such that

cd

∫
Rd

(1− cos(s′x)) |x|−(d+β)dx = |s|β .

Here and in what follows we suppress the dependence of the Euclidean norm | · | on the dimension;
it will always be clear from the context what the dimension is. The quantity Tβ(X,Y) is finite
under suitable moment conditions on X,Y. The corresponding distance correlation is given by

Rβ(X,Y) =
Tβ(X,Y)√

Tβ(X,X)
√

Tβ(Y,Y)
.

An advantage of choosing the particular weight function |s|−(p+β)|t|−(q+β) is that the distance
covariance has an explicit form: for iid copies (Xi,Yi), i = 1, 2, . . . , of (X,Y) we have

Tβ(X,Y) = E[|X1 −X2|β|Y1 −Y2|β] + E[|X1 −X2|β]E[|Y1 −Y2|β]
−2E[|X1 −X2|β|Y1 −Y3|β] .(1.2)

The weight function ensures that Tβ(cX, cY) = c2βTβ(X,Y) for any constant c, hence Rβ(cX, cY)
does not depend on c, i.e., the distance correlation is scale invariant. A corresponding theory can
be built on non-homogeneous kernels as well; see the discussion and references in Davis et al. [4]
who consider auto- and cross-distance correlation functions for time series.

It is clear from the construction that Tβ(X,Y) = Rβ(X,Y) = 0 if and only if (1.1) holds. This
observation motivates the construction of sample versions of Tβ(X,Y) and Rβ(X,Y) and one hopes
that these have properties similar to their deterministic counterparts. In particular, one would like
to test independence between X and Y.

Replacing the characteristic functions in Tβ(X,Y) and Rβ(X,Y) by their sample analogs and
taking into account (1.2), we obtain the sample versions of Tβ(X,Y) and Rβ(X,Y):

Tn,β(X,Y) =
1

n2

n∑
k,l=1

|Xk −Xl|β|Yk −Yl|β +
1

n2

n∑
k,l=1

|Xk −Xl|β
1

n2

n∑
k,l=1

|Yk −Yl|β

−2
1

n3

n∑
k,l,m=1

|Xk −Xl|β|Yk −Ym|β ,

Rn,β(X,Y) =
Tn,β(X,Y)√

Tn,β(X,X)
√

Tn,β(Y,Y)
.

The quantity Tn,β(X,Y) is a V -statistic; cf. Székely et al. [14], Lyons [9]. Therefore standard
theory yields a.s. consistency,

Tn,β(X,Y)
a.s.→ Tβ(X,Y) , n → ∞ ,

under suitable moment conditions; see Hoffmann–Jørgensen [7], Serfling [18]. If X and Y are
independent the V -statistic Tn,β(X,Y) is degenerate of order 1. Under suitable moment conditions,
one also has the weak convergence of nTn,β(X,Y) to a weighted sum of iid χ2-variables; see
Serfling [18], Lyons [9], Arcones and Giné [1]. Moreover, V -statistics theory also ensures that

Tn,β(X,X)
a.s.→ Tβ(X,X) and Tn,β(Y,Y)

a.s.→ Tβ(Y,Y). Hence Rn,β(X,Y) is an a.s. consistent
estimator of Rβ(X,Y) and, modulo a change of scale, nRn,β(X,Y) has the same weak limit as
Tn,β(X,Y).

1.2. Distance covariance and distance correlation for stochastic processes. Székely and
Rizzo [16] considered the situation when X and Y are independent and have iid components, n is
fixed, p = q → ∞. Under these conditions, Rn,β(X,Y) converges to 1. In this way, they justified
the empirical observation that Rn,β(X,Y) is close to 1 if p, q are large relative to n.
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Matsui et al. [8] considered a version of the distance covariance for stochastic processes X,Y on
[0, 1], where it was assumed that the two processes are observed at a Poisson number of points
in [0, 1]. Via simulations the resulting estimator was compared with the distance correlation
Rn,β(X,Y) where the components of the iid vectors (Xi,Yi) consist of a Poisson number of the
discretizations of (Xi, Yi), respectively. Both types of estimators exhibited a similar behavior for
independent X and Y , approaching zero for moderate sizes n, p, q. A possible explanation for this
phenomenon is that [8] and [16] worked under quite distinct conditions. Székely and Rizzo [16]
considered vectors X and Y with iid components whose dimensions increase to infinity for a fixed
sample size n. In [8], X and Y can be understood as vectors of discretizations of genuine stochastic
processes X,Y on [0, 1], such as Brownian motion, fractional Brownian motion, Lévy processes,
etc. In these cases, the components of Xi and Yi are dependent.

In this paper, we again take up the theme of [16] and [8]. We consider two processes X and Y
on [0, 1], which we assume to be stochastically continuous, measurable and bounded. In contrast
to [8],

• we consider discretizations of these processes at a partition 0 = t0 < t1 < · · · < tp = 1 of
[0, 1], assuming that p = pn → ∞ as n → ∞ and the mesh satisfies

δn = max
i=1,...,p

(ti − ti−1) → 0 , n → ∞ ,

• we normalize the points X(ti) and Y (ti) by
√
ti − ti−1.

In the sequel, we suppress the dependence of p on n. It will be convenient to write for any partition
(ti) and a process Z on [0, 1],

∆i = (ti−1, ti] , |∆i| = ti − ti−1 , i = 1, . . . , p , ∆Z(s, t] = Z(t)− Z(s) , s < t.

We consider a vector of weighted discretizations

Zp =
(
|∆1|1/2Z(t1), . . . , |∆p|1/2Z(tp)

)
,(1.3)

and define

Z(p)(t) =

p∑
i=1

Z(ti)1(t ∈ ∆i) , t ∈ [0, 1] .

For stochastically continuous, measurable and bounded processes Z and Z ′ we have

|Zp − Z′
p|2 =

p∑
i=1

(Z(ti)− Z ′(ti))
2|∆i| = ∥Z(p) − (Z ′)(p)∥22

→
∫ 1

0
(Z(t)− Z ′(t))2 dt = ∥Z − Z ′∥22 , p → ∞ ,

in probability, where ∥ξ∥2 denotes the L2-norm of a process ξ on [0, 1].
For β ∈ (0, 2], we introduce a stochastic process analog Tβ(X,Y ) of Tβ(X,Y) from (1.2). Con-

sider an iid sequence (Xi, Yi), i = 1, 2, . . . , of processes Xi, Yi on [0, 1] with generic element (X,Y )
which is also stochastically continuous, measurable and bounded. Define

Tβ(X,Y ) = E
[
∥X1 −X2∥β2∥Y1 − Y2∥β2

]
+ E

[
∥X1 −X2∥β2

]
E
[
∥Y1 − Y2∥β2

]
−2E

[
∥X1 −X2∥β2 ∥Y1 − Y3∥β2

]
,(1.4)

where we assume that all moments involved are finite. Of course, Tβ(X,Y ) = 0 for independent
X,Y . The converse is not obvious; we prove it in Section 4.

The sample analog of Tβ(X,Y ) is given by

Tn,β(X,Y ) =
1

n2

n∑
k,l=1

∥Xk −Xl∥β2∥Yk − Yl∥β2 +
1

n2

n∑
k,l=1

∥Xk −Xl∥β2
1

n2

n∑
k,l=1

∥Yk − Yl∥β2
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−2
1

n3

n∑
k,l,m=1

∥Xk −Xl∥β2∥Yk − Ym∥β2

=: I1 + I3 − 2I2 .(1.5)

Assuming that the moments in Tβ(X,Y ) are finite, the strong law of large numbers for V -statistics
yields

Tn,β(X,Y )
a.s.→ Tβ(X,Y ) , n → ∞ .

This fact and the observation that Tβ(X,Y ) vanishes for independent X,Y encourage one to call
Tβ(X,Y ) the distance covariance between X,Y , and Tn,β(X,Y ) its sample version. The correspond-
ing distance and sample distance correlations Rβ(X,Y ) and Rn,β(X,Y ) are defined in the natural
way.

1.3. Objectives. Typically, we will not have complete sample paths of (Xi, Yi) at our disposal. In

this paper, we assume that we observe a sample
(
(X

(p)
i , Y

(p)
i )

)
i=1,...,n

consisting of discretizations

taken from an iid sequence ((Xi, Yi))i=1,2,... on the same partition (ti)i=0,...,p of [0, 1]. We can de-

fine the corresponding sample distance covariance Tn,β(X
(p), Y (p)) and sample distance correlation

Rn,β(X
(p), Y (p)). In view of the discussion above we see that the latter quantities coincide with

the corresponding quantities Tn,β(Xp,Yp) and Rn,β(Xp,Yp) where Xp and Yp are defined through
(1.3). In the case of an equidistant partition with mesh δn = 1/p we also observe that Rn,β(Xp,Yp)
is exactly the classical sample distance correlation Rn,β(X,Y) of the vectors X = (X(j/p))j=1,...,p

and Y = (Y (j/p))j=1,...,p.
The main goal of this paper is to show that for independent X,Y ,

n
(
Tn,β(X

(p), Y (p))− Tn,β(X,Y )
) P→ 0 , n → ∞ ,(1.6)

provided δn → 0 and p = pn → ∞ sufficiently fast. In turn, we will be able to exploit the existing
limit theory for the normalized degenerate V -statistic nTn,β(X,Y ) to derive the distributional limit

of nTn,β(X
(p), Y (p)). This limit has a weighted χ2-distribution which is not easily evaluated. We

will show that bootstrap versions of the degenerate V -statistics nTn,β(X,Y ) and nTn,β(X
(p), Y (p))

are close in the sense of Mallows metrics and have the same distributional limit as nTn,β(X,Y ).
The paper is organized as follows. In Section 2 we introduce various technical conditions and dis-

cuss their applicability to some classes of stochastic processes. The main results of Theorem 3.1 yield
sufficient conditions for (1.6) and the corresponding versions for the distance correlations, assuming

independence between X,Y . The proof is given in Section 7. The bootstrap for Tn,β(X
(p), Y (p)) is

discussed in Section 5. There we show that a suitable bootstrap version of Tn,β(X
(p), Y (p)) is con-

sistent. The results of Section 4 may be of independent interest. There we show that Tβ(X,Y ) = 0
implies independence of the integrals

∫
XdB1 and

∫
Y dB2 conditional on B = (B1, B2) which has

independent Brownian motion components on [0, 1] and is independent of (X,Y ). In turn, the con-
ditional independence of these integrals implies independence of X,Y . We give a small simulation
study in Section 6 which shows that the theoretical results work for small and moderate values of
n and p.

2. Technical conditions

To derive the results in Section 3 we assume various conditions on the smoothness and moments
of the processes X,Y and their relation with the parameters of the partition, in particular p and
δn. Throughout β ∈ (0, 2) is fixed. If any of the processes X,Y have finite expectation we assume
that they are centered.

We will work under two distinct settings: (1) finite variance of X,Y and (2) X,Y have finite βth
moment.
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2.1. The finite variance case. If X,Y have finite second moments we will work under the set of
conditions (A):

(A1) Smoothness of increments. There exist γX , γY > 0 and c > 0 such that

var
(
∆X(s, t]

)
≤ c |t− s|γX and var

(
∆Y (s, t]

)
≤ c |t− s|γY , s < t .

(A2) Growth condition on p = pn → ∞. We have

δn = o
(
n−2/((γX∧γY )(β∧1))) , n → ∞ .

(A3) Additional moment conditions. If β ∈ (1, 2) we have

max
0≤t≤1

E[|X(t)|2(2β−1)] + max
0≤t≤1

E[|Y (t)|2(2β−1)] < ∞ .

2.2. The finite βth moment case. If X,Y possibly have infinite second moments we will work
under the set of conditions (B):

(B1) Finite βth moment.

E
[
max
t∈(0,1]

|X(t)|β
]
< ∞ and E

[
max
t∈(0,1]

|Y (t)|β
]
< ∞ ,

(B2) Smoothness of increments. There exist γX , γY > 0 and c > 0 such that

max
i=1,...,p

E
[
max
t∈∆i

|∆X(t, ti]|β
]
≤ c δγXn and max

i=1,...,p
E
[
max
t∈∆i

|∆Y (t, ti]|β
]
≤ c δγYn .

(B3) Additional moment and smoothness conditions. If β ∈ (0, 1) we also have

E
[
max
0≤t≤1

|X(t)|2β
]
< ∞ and E

[
max
0≤t≤1

|Y (t)|2β
]
< ∞ ,

and there exist γ′X , γ′Y > 0 and c > 0 such that

max
i=1,...,p

E
[
max
t∈∆i

|∆X(t, ti]|2β
]
≤ c δ

γ′
X

n and max
i=1,...,p

E
[
max
t∈∆i

|∆Y (t, ti]|2β
]
≤ c δ

γ′
Y

n .

(B4) Growth condition on p = pn → ∞. We have

δn = o
((

p nβ/(β∧1))− 1
β/2+γX∧γY

)
.

2.3. Discussion of the conditions and examples.

Remark 2.1. In the proofs we will need the conditions

E[∥X∥β2 ] < ∞ and E[∥Y ∥β2 ] < ∞ for some β ∈ (0, 2).(2.1)

If (A1) holds (in particular, supt∈[0,1]
[
var(X(t)) + var(Y (t))

]
< ∞) (2.1) is automatic because by

Jensen’s inequality

E[∥X∥β2 ] = E
[( ∫ 1

0
(X(t))2 dt

)β/2]
≤

(∫ 1

0
var(X(t)) dt

)β/2
< ∞ .

The same argument also shows that E[∥X∥22] < ∞ under (A1). If (B1) holds then (2.1) follows.

Remark 2.2. In the case of an equidistant partition we have δn = 1/p. Then the growth condition
(A2) reads as

p

n
2

(γX∧γY ) (β∧1)

→ ∞ , n → ∞ ,(2.2)

while (B4) takes on the form

p

n
β

(β/2+γX∧γY −1)(β∧1)

→ ∞ , n → ∞ ,(2.3)
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provided one can ensure that β/2+γX ∧γY > 1. The message from (2.2) is that we need to choose
p the larger the smaller γX ∧ γY is, i.e., the rougher the sample paths. Similarly, for β < 1, p needs
to be chosen the larger the smaller β is. Similar comments apply to (2.3).

Example 2.3. Assume that X,Y are sample continuous self-similar processes with stationary
increments and a finite variance. If the corresponding Hurst exponents are HX ,HY ∈ (0, 1) then
for some cX > 0,

var(∆X(s, t]) = var(X(0, t− s]) = cX (t− s)2HX , s < t ,

and similarly for Y . That is, we can choose γX = 2HX and γY = 2HY in (A1). Furthermore,

(A3) holds for X if β ∈ (1, 2) and E
[
|X(1)|2(2β−1)

]
< ∞, and similarly for Y . A special case is

that of Gaussian X and Y which then are fractional Brownian motions, and (A3) trivially holds.
A process with the same covariance structure is the fractional Lévy process

X(t) =

∫
R

(
(t− s)HX−0.5

+ − (−s)HX−0.5
+

)
dL(s) , t ∈ R ,HX ∈ (0.5, 1) ,

where L is a two-sided Lévy process on R with mean zero and finite variance, introduced in Mar-
quardt [11]. This process is not self-similar (unless L is a Brownian motion) but has station-
ary increments. Here (A1) holds with γX = 2HX and γY = 2HY . Furthermore, (A3) holds if

E[|L(1)|2(2β−1)] < ∞.
Notice also that any centered Gaussian processes X and Y satisfying (A1) have automatically

continuous sample paths and (A3) is satisfied.

Example 2.4. Assume that X and Y are Itô integrals, i.e., there are two Brownian motions
BX , BY and predictable processes ZX , ZY with respect to the corresponding Brownian filtrations
such that

X(t) =

∫ t

0
ZX(s) dBX(s) , Y (t) =

∫ t

0
ZY (s) dBY (s) , 0 ≤ t ≤ 1 .

Then we have

var
(
∆X(s, t]

)
=

∫ t

s
E[Z2

X(x)] dx , s < t .

Hence, if cX = supx∈[0,1] E[Z2
X(x)] < ∞, then

var
(
∆X(s, t]

)
≤ cX (t− s) ,

and one can choose γX = 1 in (A1). Moreover, (A3) holds for X if β ∈ (1, 2) and E[|X(1)|2(2β−1)] <
∞. This follows from an application of Doob’s maximal inequality for martingales. Similar argu-
ments apply to the process Y . A special case is that of zero drift geometric Brownian motions; a
simple computation shows that nothing changes even when the drift is not zero.

In the equidistant case we conclude from (2.2) that (A2) holds if
p

n
2

β∧1

→ ∞ , n → ∞ .(2.4)

Example 2.5. For α ∈ (0, 2) sample continuous self-similar SαS processes with stationary incre-
ments provide a family of examples with an infinite second moment. For such processes (B1) is
satisfied for β < α and (B2) is satisfied with γX = γY = βH, where H is the Hurst exponent. This
follows from continuity, self-similarity and stationarity of the increments. Similarly, (B3) holds if
β < α/2 and γ′X = γ′Y = 2βH. Such processes include the fractional harmonizable α-stable motions
and, if 1 < α < 2 and 1/α < H < 1, also the linear fractional stable motions; see Chapter 7 in
Samorodnitsky and Taqqu [13]. Another example is that of the γ-Mittag Leffler fractional SαS
motion, which is an integral of a γ-Mittag Leffler process with respect to a suitable SαS random
measure; see [12], Section 8.4. Here H = γ + (1− γ)/α.
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Example 2.6. Lévy processes are stochastically continuous and bounded by definition. If X is a
Lévy process with finite second moment (A1) holds because var(∆X(s, t)) = c (t− s), for s < t and

a constant c. Moreover, (A3) holds for X if E[|X(1)|2(2β−1)] < ∞. Indeed, an application of Lévy’s
maximal inequality yields for t ∈ [0, 1],

E[|X(t)|2(2β−1)] ≤ E[ max
0≤t≤1

|X(t)|2(2β−1)] ≤ cE[|X(1)|2(2β−1)] .

Similarly, for X, (B1) holds if E[|X(1)|β] < ∞, (B2) is satisfied if E[|∆X(s, t]|β] ≤ c(t− s)γX , and

(B3) holds if E[|∆X(s, t]|2β] ≤ c(t− s)γ
′
X .

3. Main results

We would like to use the distance covariance to test for independence of two stochastically
continuous bounded stochastic processes X,Y on [0, 1]. By the strong law of large numbers for
V -statistics we have

Tn,β(X,Y )
a.s.→ Tβ(X,Y ) ,(3.1)

where the limit is defined in (1.4). If X,Y are independent then Tβ(X,Y ) = 0, and in Section
4 we prove that, conversely, Tβ(X,Y ) = 0 implies independence of X,Y . The following theorem
establishes, in particular, that under appropriate conditions, if X,Y are independent, then also

Tn,β(X
(p), Y (p))− Tn,β(X,Y )

P→ 0(3.2)

and, hence,

Tn,β(X
(p), Y (p))

P→ 0 .(3.3)

This relation can be used in testing for independence of X,Y . Note that, if X,Y are dependent
the results of Section 4 will imply that Tβ(X,Y ) > 0 and so, by (3.1) and (3.2), we see that

nTn,β(X
(p), Y (p))

P→ ∞.
In fact, the limiting equivalence (3.2) holds for dependent X,Y as well, as the proof of Lemma 7.3

shows, as long as one imposes more restrictive moment conditions (due to the use of Hölder-type
inequalities for products of dependent random variables).

In the theorem below we assume, without loss of generality, that E[X(t)] = E[Y (t)] = 0 for
any t ∈ [0, 1], provided the expectations are finite. Indeed, Tn,β contains expressions of the type
Xk −Xl, Yk − Yl or their discrete approximations. Therefore we can always mean-correct Xk and
Yk, without changing the value of Tn,β.

Theorem 3.1. Assume the following conditions:

1. X,Y are independent stochastically continuous bounded processes on [0, 1] defined on the
same probability space.

2. If X,Y have finite expectations, then these are assumed to be equal to 0.
3. δn → 0 as n → ∞.
4. β ∈ (0, 2).

Then the following statements hold.

(1) If either (A1) or
[
(B1),(B2) and p δ

β/2+γX∧γY
n → 0

]
are satisfied then (3.2) (and, hence,

(3.3)) hold.
(2) If either (A1),(A2) or (B1),(B2),(B4) hold then

nTn,β(X
(p), Y (p))

d→
∞∑
i=1

λi(N
2
i − 1) + c

for an iid sequence of standard normal random variables (Ni), a constant c, and a square
summable sequence (λi).
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(3) If either (A1),(A3) or
[
β ∈ (0, 1) and (B1)-(B3) and p δ

β+γ′
X∧γ′

Y
n → 0

]
hold then

Rn,β(X
(p), Y (p))

P→ 0 .

(4) If either (A1)-(A3) or
[
β ∈ (0, 1) and (B1)-(B4) and p δ

β+γ′
X∧γ′

Y
n → 0

]
hold then

nRn,β(X
(p), Y (p))

d→
∞∑
i=1

λi(N
2
i − 1) + c

for an iid sequence of standard normal random variables (Ni), a constant c, and a square
summable sequence (λi).

The proof is given in Section 7.

Remark 3.2. The numbers λi in parts (2) and (4) of the theorem are the eigenvalues of certain
integral operators. This follows from limit theory for degenerate V -statistics; see Serfling [18],
Lyons [9], Arcones and Giné [1]. Unfortunately, neither the λi nor the distribution of the limit are
available. Arcones and Giné [1] proved the consistency of a bootstrap version of degenerate U - and

V -statistics. These latter results apply to Tn,β(X,Y ) but not to Tn,β(X
(p), Y (p)). In Section 5 we

argue that the bootstrap also works for a modification of the latter quantity.

4. The condition Tβ(X,Y ) = 0 and independence of X and Y

The results in the previous section tell us that Tn,β(X
(p), Y (p))

P→ Tβ(X,Y ) = 0 for independent
X,Y under various conditions on X,Y and the size of the mesh δn of the partition (ti). An
important question is whether, conversely, Tβ(X,Y ) = 0 also implies independence of X,Y . In the
case β ∈ (0, 1] an affirmative answer to this question follows from Lyons [9], based on the fact that
the metric obtained by raising the separable Hilbert space distance to the power β ∈ (0, 1] is of
the strong negative type. In the sequel we extend the converse statement to all β ∈ (0, 2). Our
approach is based on studying the conditional independence of certain stochastic integrals.

Let B1 and B2 be independent Brownian motions on [0, 1], independent of a pair (X,Y ) of
stochastically continuous bounded stochastic processes [0, 1]. The stochastic integrals

Z1 =

∫ 1

0
XdB1 and Z2 =

∫ 1

0
Y dB2

are well defined (and are, given (X,Y ), independent normal random variables).
The next lemma demonstrates a connection between such stochastic integrals and distance co-

variances. Let FB denote the σ-field generated by B = (B1, B2).

Lemma 4.1. Let β ∈ (0, 2) and assume that E[∥X∥β2 ] + E[∥Y ∥β2 ] < ∞. Let Y ′ be a copy of Y
independent of everything else. Then

c20 Tβ(X,Y ) =∫
R2

|st|−(1+β/2)E
∣∣∣E[e is

∫
X(u) dB1(u)e it

∫
Y (u) dB2(u) − e is

∫
X(u) dB1(u)e it

∫
Y ′(u) dB2(u) | FB

]∣∣∣2 ds dt
(4.1)

where

c0 =

∫
R

1− e− s2

2

|s|1+β/2
ds .
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Proof. Consider an independent copy (X ′, Y ′) of (X,Y ) and let Y ′′, Y ′′′ be independent copies of
Y which are independent of everything else. The expectation on the right-hand side in (4.1) can
be written as

E
[
e is

∫
(X−X′)dB1+it

∫
(Y−Y ′)dB2 + e is

∫
(X−X′)dB1+it

∫
(Y ′′−Y ′′′)dB2

−e is
∫
(X−X′)dB1−it

∫
(Y−Y ′′)dB2 − e−is

∫
(X−X′)dB1+it

∫
(Y−Y ′′)dB2

]
= E

[
e− s2

2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y (u)−Y ′(u))2 du + e− s2

2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y ′′(u)−Y ′′′(u))2 du

−2e− s2

2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y (u)−Y ′′(u))2 du

]
= E

[(
1− e− s2

2

∫
(X(u)−X′(u))2 du

)(
1− e− t2

2

∫
(Y (u)−Y ′(u))2 du

)
+
(
1− e− s2

2

∫
(X(u)−X′(u))2du

)(
1− e− t2

2

∫
(Y ′′(u)−Y ′′′(u))2 du

)
−2

(
1− e− s2

2

∫
(X(u)−X′(u))2 du

)(
1− e− t2

2

∫
(Y (u)−Y ′′(u))2 du

)]
.

By change of variables, ∫
R

1− e− s2

2

∫
(X(u)−X′(u))2du

|s|1+β/2
ds = c0 ∥X −X ′∥β2 .

Thus we obtain

E
[
∥X −X ′∥β2∥Y − Y ′∥β2 + ∥X −X ′∥β2∥Y

′′ − Y ′′′∥β2 − 2∥X −X ′∥β2∥Y − Y ′′∥β2
]
= Tβ(X,Y ) .

□

An immediate corollary of Lemma 4.1 is that Tβ(X,Y ) = 0 implies that, for a.e. s, t,

E
[
e is

∫
X(u) dB1(u)e it

∫
Y (u) dB2(u) − e is

∫
X(u) dB1(u)e it

∫
Y ′(u) dB2(u) | FB

]
= 0

with probability 1. By Fubini’s theorem, on an event of probability 1, this equality holds for all
rational s, t, hence for all real s, t. We conclude that the stochastic integrals Z1, Z2 are conditionally
independent given FB.

The next theorem, which is the main result of this section, shows that this implies independence
of X and Y .

Theorem 4.2. If the stochastic integrals Z1 and Z2 are a.s. conditionally independent given

FB then X,Y are independent. In particular, if β ∈ (0, 2) and E[∥X∥β2 ] + E[∥Y ∥β2 ] < ∞, then
Tβ(X,Y ) = 0 if and only if X,Y are independent.

Proof. Only the fact that the conditional independence of the integrals implies independence of X
and Y remains to be proved. Let

(
a(t), 0 ≤ t ≤ 1

)
and

(
b(t), 0 ≤ t ≤ 1

)
be functions in L2[0, 1],

and

A1(t) =

∫ t

0
a(s) ds and A2(t) =

∫ t

0
b(s) ds, 0 ≤ t ≤ 1 .

Since the law of the bivariate process

(B̃1(t), B̃2(t), 0 ≤ t ≤ 1) =
(
B1(t) +A1(t), B2(t) +A2(t)

)
, 0 ≤ t ≤ 1 ,

is equivalent to the law of the standard bivariate Brownian motion, it follows that the integrals∫ 1

0
X(t) dB̃1(t) =

∫ 1

0
X(t) dB1(t) +

∫ 1

0
X(t)a(t) dt
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and ∫ 1

0
Y (t) dB̃2(t) =

∫ 1

0
Y (t) dB2(t) +

∫ 1

0
Y (t)b(t) dt

are a.s. conditionally independent given FB.
It is not difficult to construct a sequence (Cn) of events in FB, of positive probability, such that

the conditional laws of the integrals∫ 1

0
X(t) dB1(t) and

∫ 1

0
Y (t) dB2(t)

given Cn converge to the degenerate law at zero as n → ∞. One way for producing such a sequence
of events is to let the two independent Brownian motions take values close to zero at the points
i/n, i = 0, 1, . . . , n. Letting n → ∞ we conclude that the integrals∫ 1

0
X(t) a(t) dt and

∫ 1

0
Y (t) b(t) dt

are independent.
For every fixed realization of the processes X and Y ,

(4.2) lim
ε→0

1

ε

∫ t+ε

t
X(s) ds = X(t) and lim

ε→0

1

ε

∫ t+ε

t
Y (t) ds = Y (s)

for all t in a set of full Lebesgue measure. By Fubini’s theorem there is a set M of full Lebesgue
measure such that, for every t ∈ M , (4.2) holds a.s. By necessity, the set M is dense in [0, 1].

To prove our claim it suffices to prove that for any points 0 = t0 < t1 < · · · < tk < tk+1 = 1,
k ≥ 1, the random vectors (X(t1), . . . , X(tk)) and (Y (t1), . . . , Y (tk)) are independent. By stochastic
continuity of the processes X and Y it is enough to restrict ourselves to the case when every ti ∈ M .
Let 0 < ε < mini=1,...,k(ti+1 − ti). Choosing piece-wise constant functions

(
a(t), 0 ≤ t ≤ 1

)
and(

b(t), 0 ≤ t ≤ 1
)
, we conclude that the sums

k∑
i=1

θi

∫ ti+ε

ti

X(t) dt and

k∑
i=1

γi

∫ ti+ε

ti

Y (t) dt

are independent for any choice of θ1, . . . , θk and γ1, . . . , γk. Since all points (ti) are in the set M ,
dividing by ε and letting ε → 0 we conclude that

k∑
i=1

θiX(ti) and

k∑
i=1

γiY (ti)

are independent for any choice of θ1, . . . , θk and γ1, . . . , γk. By the Cramér-Wold device this implies
that the vectors (X(t1), . . . , X(tk)) and (Y (t1), . . . , Y (tk)) are independent. □

5. The bootstrap for the sample distance covariance

We mentioned in Remark 3.2 that the limit distribution of nTn,β(X,Y ) is not available. The-

orem 3.1 states that the discretization nTn,β(X
(p), Y (p)) has the same asymptotic properties as

nTn,β(X,Y ) under suitable conditions on the smoothness of the sample paths, moment conditions
and the growth rate of p = pn → ∞.

In this section we advocate the use of the bootstrap for approximating the distribution of
nTn,β(X

(p), Y (p)). The bootstrap can be made to work for the degenerate V -statistic Tn,β(X,Y )
as shown in Arcones and Giné [1]. In this case, the naive bootstrap does not work and one has to

modify the degenerate kernel. Since the V -statistic Tn,β(X
(p), Y (p)) is degenerate for every fixed

p we face the problem of approximating the distribution of the latter statistic by its bootstrap
version. We will show that this approximation works.
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We will make use of a modification of Lemma 2.2 in Dehling and Mikosch [5], which deals with
U -statistics with a kernel defined on the Euclidean space. We work with a separable metric space

S. For m ≥ 1, let h : Sm 7→ R be a symmetric function. Let (X
(1)
i , X

(2)
i ), i = 1, 2, . . . , be an

S × S-valued iid sequence with marginal laws L(X(1)) = F and L(X(2)) = G, respectively. On the
subset of probability measures on S,

Γ2,h =
{
H : E[h2(Z1, . . . , Zm)] < ∞ for iid (Zi) with common law H

}
,

we define the semi-metric

d2,h(F,G) = inf
{(

E
[(
h(X

(1)
1 , . . . , X(1)

m )− h(X
(2)
1 , . . . , X(2)

m )
)2
]
)1/2}

,

where the infimum is taken over all random elements
(
X

(1)
1 , . . . , X

(1)
m , X

(2)
1 , . . . , X

(2)
m

)
in S2m such

that (X
(1)
i , X

(2)
i ), i = 1, . . . ,m, are iid S2-valued random elements, X

(1)
i has law F and X

(2)
i has

law G. The fact that d2,h is a semi-metric can be shown using similar arguments as in the proof
of Lemma 8.1 in Bickel and Freedman [2] that discusses the properties of the related Wasserstein
metric d2 on a subset of probability measures on R, Γ2 = {H : EH [Z2] < ∞}, defined by

d2(F,G) = inf
{(

E
[
|A−B|2

])1/2
: L(A) = F ,L(B) = G} .

Let m ≥ 2 and choose H ∈ Γ2,h. Define a function on S × S by

h2(x, y;H) = E[h(x, y, Z3, . . . , Zm)]− E[h(x, Z2, . . . , Zm)]

−E[h(Z1, y, Z3, . . . , Zm)] + E[h(Z1, . . . , Zm)] ,(5.1)

where (Zi) are iid with common law H. The proof of the following result is completely analogous
to that of Lemma 2.2 in Dehling and Mikosch [5].

Lemma 5.1. Let F,G be in Γ2,h,
(
X

(1)
j

)
iid with common law F , and

(
X

(2)
j

)
iid with common law

G. Then for any n ≥ 1,

d2

(
L
( 1
n

∑
1≤i ̸=j≤n

h2(X
(1)
i , X

(1)
j ;F )

)
,L

( 1
n

∑
1≤i̸=j≤n

h2(X
(2)
i , X

(2)
j ;G)

))
≤ 25/2 d2,h(F,G) .

(5.2)

For an S-valued iid sequence (Zi) with common law F ∈ Γ2,h and n ≥ 1 we denote by Fn the
empirical law of Z1, . . . , Zn. Consider an iid sequence (Z∗

ni) with the law Fn, that is, given that
law, independent of (Zi). The following result is analogous to Theorem 2.1 in [5].

Corollary 5.2. Under the aforementioned conditions, and if also E[|h(Zi1 , . . . , Zim)|2] < ∞ for all
indices 1 ≤ i1 ≤ . . . ≤ im ≤ m, we have

d2

(
L
( 1
n

∑
1≤i ̸=j≤n

h2(Z
∗
ni, Z

∗
nj ;Fn)

)
,L

( 1
n

∑
1≤i̸=j≤n

h2(Zi, Zj ;F )
))

→ 0 ,

for almost all realizations of (Zi).

Proof. By (5.2), it suffices to show that d2,h(Fn, F ) → 0, almost surely. By Varadarajan’s theorem
(see Billingsley [3], p.29) the empirical distribution Fn converges weakly to the distribution F , for
almost all realizations (zi)i≥1 of (Zi)i≥1. Thus, by Skorokhod’s theorem, there exist a sequence of
random variables (Z∗

n)n≥1 such that Z∗
n has distribution Fn, and an F -distributed random variable

Z̃ such that Z∗
n → Z̃ almost surely. We now take m iid copies of the pair (Z∗

n, Z̃), which we denote

by (Z∗
n1, Z̃1), . . . , (Znm, Z̃m). Then

(Z∗
n1, . . . , Z

∗
nm) → (Z̃1, . . . , Z̃m), almost surely.
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Moreover, by definition of d2,h, we have

d2,h(Fn, F ) ≤
(
E
[
(h(Z∗

n1, . . . , Z
∗
nm)− h(Z̃1, . . . , Z̃m))2

])1/2
.

It suffices to show that the right-hand side converges to 0 as n → ∞. For any ϵ > 0, we can find a
bounded continuous function g : Sm → R such that

E
[
(h(Z̃1, . . . , Z̃m)− g(Z̃1, . . . , Z̃m))2

]
≤ ϵ.

By Lebesgue’s dominated convergence theorem, we obtain

E
[
(g(Z∗

n,1, . . . , Z
∗
n,m)− g(Z̃1, . . . , Z̃m))2

]
→ 0.

The strong law of large numbers for U -statistics implies that

E
[
(h(Z∗

n,1, . . . , Z
∗
n,m)− g(Z∗

n,1, . . . , Z
∗
n,m))2

]
=

1

nm

∑
1≤i1,...,im≤n

(h(zi1 , . . . , zim)− g(zi1 , . . . , zim))
2

→ E(h(Z1, . . . , Zm)− g(Z1, . . . , Zm))2 ≤ ϵ.

This finishes the proof. □
In what follows, (Zi) will stand for the iid sequence of the pairs (Xi, Yi), i = 1, 2, . . . , used in

the previous sections for defining the quantities Tn,β(X,Y ). Correspondingly, we write (Z
(p)
i ) for

the sequence of the discretizations (X
(p)
i , Y

(p)
i ), i = 1, 2, . . . , with generic element Z(p). For the

ease of presentation we focus on the case β = 1 and suppress β in the notation. We consider only
the case when X,Y have finite second moments. A generic element Z = (X,Y ) has trajectory
(x, y) assuming values in a function space S where x, y are defined on [0, 1] and are Riemann
square-integrable.

Under the hypothesis that X,Y are independent, Tn(X,Y ) has representation as a V -statistic of
order 4 with a 1-degenerate symmetric kernel h4 = h(x1, x2, x3, x4); see Appendix A, where we also
show that, when scaled by n, the limits of Tn(X,Y ) and the corresponding normalized U -statistic
(which is obtained by ignoring all summands h(Zi1 , Zi2 , Zi3 , Zi4) with the property ij = ik for
j ̸= k) differ by an additive constant. Applying the Hoeffding decomposition to this U -statistic,
the limiting distribution of nTn(X,Y ) coincides, up to a scale change, with the limiting distribution
of the following normalized U -statistic:

Un(Z) =
1

n

∑
1≤i ̸=j≤n

h2(Zi, Zj ;FZ)

where FZ = FX × FY and h2 is defined in (5.1). Arcones and Giné [1] proved that the correct
bootstrap version of nTn(X,Y ) is

Un(Z
∗) =

1

n

∑
1≤i ̸=j≤n

h2(Z
∗
ni, Z

∗
nj ;Fn,Z) ,

where Fn,Z is the empirical distribution of the iid sample Z1, . . . , Zn. The fact that the limiting
distributions of Un(Z) and Un(Z

∗) coincide follows from Corollary 5.2.
Our program for the remainder of this section is to show that we are allowed to replace Z = (X,Y )

by the corresponding discretizations Z(p) = (X(p), Y (p)) in the aforementioned U - and V -statistics,

i.e., we will show that suitable bootstrap versions of nTn,β(X,Y ) and nTn,β(X
(p), Y (p)) have the

same limiting distribution. We start by showing that Un(Z) and Un(Z
(p)) are close in the sense of

the d2-metric.

Lemma 5.3. Assume the following conditions:

1. X,Y are independent and have finite second moments.
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2. Condition (A1) holds.
3. δn → 0 as n → ∞.

Then

d2
(
L(Un(Z));L(Un(Z

(p)))
)
≤ c δ(γX∧γY )/2

n → 0 .

Proof. By (5.2), with h given by (A.1), we have

d2
(
L(Un(Z));L(Un(Z

(p))
)

≤ c
{
E
[(
h(Z1, . . . , Z4)− h(Z

(p)
1 , . . . , Z

(p)
4 )

)2]}1/2

= c
{
E
[(
f(Z1, . . . , Z4)− f(Z

(p)
1 , . . . , Z

(p)
4 )

)2]}1/2

≤ c
(
EI21 + EI22 + EI23

)1/2
,

where

I1 = ∥X1 −X2∥2∥Y1 − Y2∥2 − ∥X(p)
1 −X

(p)
2 ∥2∥Y (p)

1 − Y
(p)
2 ∥2 ,

I2 = ∥X1 −X2∥2∥Y3 − Y4∥2 − ∥X(p)
1 −X

(p)
2 ∥2∥Y (p)

3 − Y
(p)
4 ∥2 ,

I3 = ∥X1 −X2∥2∥Y1 − Y3∥2 − ∥X(p)
1 −X

(p)
2 ∥2∥Y (p)

1 − Y
(p)
3 ∥2 .

The second moments are estimated as in Proposition 7.1 below. We have by (7.4),

E
[(
∥X1 −X2∥2 − ∥X(p)

1 −X
(p)
2 ∥2

)2 ∥Y1 − Y2∥22
]
≤ c δγXn

and

E
[
∥X(p)

1 −X
(p)
2 ∥22

(
∥Y1 − Y2∥2 − ∥Y (p)

1 − Y
(p)
2 ∥2

)2] ≤ c δγYn .

That is, E[I21 ] ≤ c δγX∧γY
n . The second moments of I2, I3 can be bounded by the same quantities. □

Our next goal is to show that, under appropriate assumptions, the difference between the laws
of Un(Z

∗) and Un(Z
(p)∗) asymptotically vanishes.

Lemma 5.4. Consider the following conditions:

1. X,Y are independent and have finite second moments.
2a. Condition (A1) holds.
2b. E[|X(t)−X(s)|4] ≤ c |t− s|γ̃X and E[|Y (t)− Y (s)|4] ≤ c |t− s|γ̃Y hold.
3a.

∑∞
n=1 δ

γX∧γY
n < ∞.

3b.
∑∞

n=1

(
δ
2(γX∧γY )
n + n−1δγ̃X∧γ̃Y

n

)
< ∞.

If either 1, 2a, 3a or 1, 2a, 2b, 3b hold then

d2
(
L(Un(Z

∗)),L(Un(Z
(p)∗))

)
→ 0 ,

for a.e. realization of (Zi).

Proof. With h given by (A.1), by Lemma 5.1 it is enough to prove that d2,h
(
L(Z∗),L(Z(p)∗)

)
→ 0

for a.e. realization of (Zi). We have

d2,h(n) := d2,h
(
L(Z∗),L(Z(p)∗)

)
≤

(
EFn

[(
h(Z∗

1 , Z
∗
2 , Z

∗
3 , Z

∗
4 )− h(Z

(p)∗
1 , Z

(p)∗
2 , Z

(p)∗
3 , Z

(p)∗
4 )

)2])1/2

=
1

n2

 ∑
1≤i1,i2,i3,i4≤n

(
h(Zi1 , Zi2 , Zi3 , Zi4)− h(Z

(p)
i1

, Z
(p)
i2

, Z
(p)
i3

, Z
(p)
i4

)
)21/2
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≤ 1

n2

 ∑
1≤i1,i2,i3,i4≤n

(
f(Zi1 , Zi2 , Zi3 , Zi4)− f(Z

(p)
i1

, Z
(p)
i2

, Z
(p)
i3

, Z
(p)
i4

)
)21/2

.

We first show that the right-hand side converges to zero under the assumption that 1, 2a, and 3a
hold. Using (A1), we obtain

E
[
d2,h

(
L(Z∗),L(Z(p)∗)

)]2 ≤
∑

1≤j1,j2,j3,j4≤4

E
[(
f(Zj1 , . . . , Zj4)− f(Z

(p)
j1

, . . . , Z
(p)
j4

)
)2]

≤ c δγX∧γY
n .

Thus, if
∑

n δ
γX∧γY
n < ∞ applications of Markov’s inequality and the Borel-Cantelli lemma yield

that d2,h
(
L(Z∗),L(Z(p)∗)

)
→ 0 a.s. as n → ∞.

Now assume that 1, 2a, 2b and 3b hold. Using standard calculations for U -statistics, we have

var(d22,h(n)) ≤ c
∑

1≤j1,j2,j3,j4≤4

[
n−1var

((
h(Zj1 , . . . , Zj4)− h(Z

(p)
j1

, . . . , Z
(p)
j4

)
)2)

+
(
E
[(
h(Zj1 , . . . , Zj4)− h(Z

(p)
j1

, . . . , Z
(p)
j4

)
)2])2]

= J1 + J2 .

We have J2 = O(δ
2(γX∧γY )
n ). We can handle J1 similarly to the proof of Lemma 5.3. For example,

E
[
∥X1 −X

(p)
1 ∥42] = E

[( ∫ 1

0
(X(u)−X(p)(u))2 du

)2]
≤ c

∫ 1

0
E
[
(X(u)−X(p)(u))4

]
du

≤ c δγ̃Xn .

Now d2,h(n)
a.s.→ 0 as n → ∞ follows by an application of Markov’s inequality of order 2, the

Borel-Cantelli lemma and since
∑

n

(
n−1δγ̃X∧γ̃Y

n + δ
2(γX∧γY )
n

)
< ∞. We omit further details. □

Combining the previous arguments, a natural bootstrap version of the degenerate V -statistic
nTn(X

(p), Y (p)) is given by Un(Z
(p)∗).

Proposition 5.5. Assume the conditions of Lemma 5.4. Then

d2
(
L(Un(Z)),L(Un(Z

(p)∗))
)
→ 0

for a.e. realization of (Zi).

For an application of the bootstrapped sample distance correlation nRn(X
(p), Y (p)) we still miss

one step in the derivation of the bootstrap consistency: we also need to prove that the denominator
quantities converge a.s.

Tn(X
(p), X(p))

a.s.→ T (X,X) and Tn(Y
(p), Y (p))

a.s.→ T (Y, Y ) , n → ∞ .

In Lemma 7.4 we provide sufficient conditions for this to hold.

6. Simulations

In this section we illustrate the theoretical results in a small simulation study.
We start with identically distributed fractional Brownian motions (fBM) X,Y on [0, 1] with

Hurst coefficient H and correlation ρ where the dependence between X and Y is given by the
covariance function

cov(X(s), Y (t)) =
ρ

2
{|s|2H + |t|2H − |t− s|2H}, s, t ∈ [0, 1] .
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If X = Y we also set ρ = 1. Note that, for H = 1/2, the right-hand side collapses into ρ(s ∧
t), corresponding to Brownian motions X,Y . The top graph in Figure 1 nicely illustrates the

consistency of the sample correlation Rn(X
(p), Y (p)) for independent X and Y (ρ = 0). In the top

row we fix p = 100 and increase n from 100 to 400, and we choose H = 1/4, H = 1/2 (BM) and
H = 3/4. Apparently, we can see the influence of the smoothness of the sample paths: the larger
H the larger γX = γY = 2H (see Example 2.3), the smoother the sample paths and the closer

Rn(X
(p), Y (p)) to zero; see also the upper bounds in Proposition 7.1. In the bottom row we show

Rn(X
(p), Y (p)) for dependent X and Y with ρ = 0.5. We again choose H = 1/4, H = 1/2 (BM) and

H = 3/4, fix p = 100 and increase n from 100 to 300. In the bottom graphs the sample distance
correlation converges to some positive constants; we see a clear difference between the independent
and dependent cases.
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Figure 1. Boxplots for Rn(X
(p), Y (p)) simulated fBMsX,Y withH = 1/4, 1/2, 3/4

(from left to right), p = 100 and increasing sample sizes n. Top: iid fBMs X,Y .
Each boxplot is based on 500 replications. Bottom: identically distributed fBMs
X,Y with correlation ρ = 0.5. Each boxplot is based on 300 replications.

In Figure 2 we illustrate the performance of the sample distance correlation Rn(X
(p), Y (p)) when

X and Y are independent (possibly with distinct distributions) non-Gaussian processes. We treat
three cases, including heavy-tailed processes: X,Y are iid geometric BMs (left), X,Y are iid α-
stable Lévy motions (middle), X is a geometric BM and Y an α-stable Lévy motion (right). For
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geometric BM we choose the parametrization

X(t) = exp
(
(1− 0.72/2)t+ 0.7B(t), t ∈ [0, 1] ,

where µ = 1 (drift), σ = 0.7 (volatility) and B is standard BM. The parameters of the α-stable
Lévy motions are (α, β, µ, σ) = (1.8, 0.3, 0, 1); cf. [13, Ex. 3.1.3]. We fix p = 100 and increase n
from 100 to 300. Also in these non-Gaussian settings the boxplots nicely illustrate consistency of
Rn(X

(p), Y (p)) even in the heavy-tailed α-stable case.
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Figure 2. Boxplots for Rn(X
(p), Y (p)) for simulated independent non-Gaussian

processes X,Y , p = 100 and increasing sample size n. Each boxplot is based on
500 replications. Left: iid geometric BMs X,Y . Middle: iid α-stable Lévy motions
X,Y . Right: independent geometric BM X and α-stable Lévy motion Y .

In Figure 3 we study the influence of the size of p on the sample distance correlation for a given
n. We choose p = 100 (left) and p = 300 (middle) while X, Y are independent BMs: there is hardly
any difference between the left and middle graphs for a given n. In the right graph we choose iid
α-stable Lévy motions X,Y with the same parameters as before. We increased p from 100 to 1000
and fix n = 100. Again, one can hardly see any difference between the boxplots. These observations
are not surprising – in view of the definition of the distance correlation and the independence of
X(p) and Y (p) for any p. However, it is perhaps unexpected that n and p may have similar size and
still provide good approximations to zero.

In Figure 4 we visualize how the bootstrap works for the normalized sample distance corre-
lations nRn(X

(p), Y (p)) for iid fBMs X, Y . We show histograms based on 500 replications of

nRn(X
(p), Y (p)) and compare with the histograms based on 200 replications of the bootstrap ver-

sion generated from a single sample. We see that the distributions of nRn(X
(p), Y (p)) and its

bootstrap version are close to each other and get more concentrated.
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Figure 3. Boxplots for Rn(X
(p), Y (p)) for different p. Left and middle: X, Y are

iid BMs. For each p = 100 (left) and p = 300 (middle) we take three distinct sample
sizes n = 100, 200, 300. The boxplots are based on 300 replications. Right: X, Y are
iid α-stable Lévy motions, n = 100 is fixed while p = 100, 500, 1000. The boxplots
are based on 500 replications.

7. Proof of Theorem 3.1

We prove the theorem by a series of auxiliary results.

Proposition 7.1. Assume the conditions 1.-4. of Theorem 3.1.

1. If also (A1) holds then there is c such that for any n ≥ 1,

E
[
|Tn,β(X

(p), Y (p))− Tn,β(X,Y )|
]
≤ c δ(γX∧γY ) (β∧1)/2

n .

2. If also (B1),(B2) hold then there is c such that

E
[
|Tn,β(X

(p), Y (p))− Tn,β(X,Y )|
]
≤ c

(
p δ(β/2+γX∧γY )

n

)(β∧1)/β
.

Proof. We start with the decomposition

Tn,β(X
(p), Y (p))− Tn,β(X,Y ) = I1 + I2 − 2I3 ,(7.1)

where

I1 =
1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥β2∥Y

(p)
k − Y

(p)
l ∥β2 − ∥Xk −Xl∥β2∥Yl − Yk∥β2

)
,

I2 =
1

n4

n∑
k,l=1

∥X(p)
k −X

(p)
l ∥β2

n∑
k,l=1

∥Y (p)
k − Y

(p)
l ∥β2 − 1

n4

n∑
k,l=1

∥Xk −Xl∥β2
n∑

k,l=1

∥Yk − Yl∥β2 ,

I3 =
1

n3

n∑
k,l,m=1

∥X(p)
k −X

(p)
l ∥β2∥Y

(p)
k − Y (p)

m ∥β2 − 1

n3

n∑
k,l,m=1

∥Xk −Xl∥β2∥Yk − Ym∥β2 .

(7.2)

We will find bounds for the absolute values of the expectations of these quantities. From now on,
c denotes any positive constants whose values are not of interest.
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Figure 4. Comparison of histograms for nRn(X
(p), Y (p)) based on Monte Carlo

simulation (blue) and bootstrap (pink) for iid fBMs X, Y with H = 1/4, H = 1/2,
H = 3/4 (from left to right). The sample size is n = 100 (top) and n = 300 (bottom)

and p = 100. The histograms of nRn(X
(p), Y (p)) and the bootstrap version are based

on 500 and 200 replications, respectively.

First assume that (X,Y ) have finite second moment. Observe that

|I1| ≤
1

n2

n∑
k,l=1

∣∣∥X(p)
k −X

(p)
l ∥β2 − ∥Xk −Xl∥β2

∣∣ ∥Y (p)
k − Y

(p)
l ∥β2

+
1

n2

n∑
k,l=1

∣∣∥Y (p)
k − Y

(p)
l ∥β2 − ∥Yk − Yl∥β2

∣∣∥Xk −Xl∥β2

=: I11 + I12.(7.3)

By a symmetry argument, interchanging the roles of X and Y , it suffices to consider I11. Using
the independence of X and Y , we have

E[I11] ≤ E
[∣∣∥X(p)

1 −X
(p)
2 ∥β2 − ∥X1 −X2∥β2

∣∣]E[∥Y (p)
1 − Y

(p)
2 ∥β2 ] .

By Lyapunov’s inequality,

E[∥Y (p)
1 − Y

(p)
2 ∥β2 ] ≤ (E[∥Y (p)

1 − Y
(p)
2 ∥22])β/2
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≤ c
(∫ 1

0
var(Y (p)(t)) dt

)β/2
< ∞ .

Assume 0 < β ≤ 1. Then, by concavity and Jensen’s inequality,

E
[∣∣∥X(p)

1 −X
(p)
2 ∥β2 − ∥X1 −X2∥β2

∣∣](7.4)

≤ E
[
∥(X(p)

1 −X
(p)
2 )− (X1 −X2)∥β2

]
= E

[( p∑
i=1

∫
∆i

(
∆X1(t, ti]−∆X2(t, ti]

)2
dt
)β/2]

≤
( p∑

i=1

∫
∆i

var
(
∆X1(t, ti]−∆X2(t, ti]

)
dt
)β/2

=
( p∑

i=1

∫
∆i

(
var(∆X1(t, ti]) + var(∆X2(t, ti])

)
dt
)β/2

≤ c δγXβ/2
n .

The last step follows from (A1). If 1 < β < 2, we use the inequality |xβ − yβ| ≤ β(x∨ y)β−1|y − x|
for positive x, y and Hölder’s inequality to obtain

E
[∣∣∥X(p)

1 −X
(p)
2 ∥β2 − ∥X1 −X2∥β2

∣∣]
≤ cE

[(
∥X(p)

1 −X
(p)
2 ∥β−1

2 ∨ ∥X1 −X2∥β−1
2

) ∣∣∥X(p)
1 −X

(p)
2 ∥2 − ∥X1 −X2∥2

∣∣]
≤ cE

[(
∥X(p)

1 −X
(p)
2 ∥β−1

2 ∨ ∥X1 −X2∥β−1
2

)
∥(X(p)

1 −X
(p)
2 )− (X1 −X2)∥2

]
(7.5)

≤ c
(
E
[
∥X(p)

1 −X
(p)
2 ∥22 ∨ ∥X1 −X2∥22

])(β−1)/2(
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥2/(3−β)

2

])(3−β)/2

= c P1 P2 .

Since (3− β)−1 < 1 the same arguments as in the case 0 < β < 1 yield P2 ≤ c δ
γX/2
n . Moreover, we

have

P
2/(β−1)
1 ≤ E

[
∥X(p)

1 −X
(p)
2 ∥22

]
+ E

[
∥X1 −X2∥22

]
= P11 + P12 .

It follows from Remark 2.1 that P12 < ∞ and a similar argument yields P11 < ∞.
Summarizing the previous bounds for 0 < β < 2 under (A1), we have

E[I11] ≤ c δ(γX∧γY ) (β∧1)/2
n .

Now we turn to I2. Observe that

|I2| ≤ 1

n2

n∑
k,l=1

∣∣∥X(p)
k −X

(p)
l ∥β2 − ∥Xk −Xl∥β2

∣∣ 1
n2

n∑
k,l=1

∥Y (p)
k − Y

(p)
l ∥β2

+
1

n2

n∑
k,l=1

∥Xk −Xl∥β2
1

n2

n∑
k,l=1

∣∣∥Y (p)
k − Y

(p)
l ∥β2 − ∥Yk − Yl∥β2

∣∣ ,
and a similar bound exists for |I3|. The same arguments as above yield

E[|I2 + I3|] ≤ c δ(γX∧γY ) (β∧1)/2
n .

We omit further details.
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Next assume that (X,Y ) have finite βth moment for some β ∈ (0, 2). We follow the patterns
of the proof in the finite variance case. We start by bounding E[|I1|]. First assume β ∈ (0, 1].
Following (7.4), we have by (B2),

E
[( p∑

i=1

∫
∆i

(
∆X1(t, ti]−∆X2(t, ti]

)2
dt
)β/2]

≤ c

p∑
i=1

|∆i|β/2 E
[
max
t∈∆i

∣∣∆X(t, ti]
∣∣β]

≤ c p δβ/2+γX
n .

Now assume 1 < β < 2. Following (7.5), we have by Hölder’s inequality,

E
[∣∣∥X(p)

1 −X
(p)
2 ∥β2 − ∥X1 −X2∥β2

∣∣]
≤ cE

[(
∥X(p)

1 −X
(p)
2 ∥β−1

2 ∨ ∥X1 −X2∥β−1
2

)
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥2

]
≤ c

(
E
[
∥X(p)

1 −X
(p)
2 ∥β2 ∨ ∥X1 −X2∥β2

])(β−1)/β (
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥β2

])1/β

= c P̃1P̃2 .(7.6)

Proceeding as for 0 < β < 1, we have

P̃2 =
(
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥β2

])1/β
≤ c

(
p δβ/2+γX

n

)1/β
.

We also have

P̃
β/(β−1)
1 ≤ E

[
∥X(p)

1 −X
(p)
2 ∥β2

]
+ E

[
∥X1 −X2∥β2

]
.

The right-hand side is finite by assumption (B1). Collecting bounds for 0 < β < 2, we arrive at

E[|I1|] ≤ c
(
p δβ/2+γX∧γY

n

)1∧β−1

.

The quantities E[|Ii|], i = 2, 3, can be bounded in a similar way. □

Now we can finish the proof of the first two parts of Theorem 3.1. We assume that either

(A1) or [(B1),(B2) and p δ
β/2+γX∧γY
n → 0] are satisfied. Under these assumptions, it follows from

Proposition 7.1 that Tn,β(X,Y ) − Tn,β(X
(p), Y (p))

P→ 0. The quantity Tn,β(X,Y ) can be written
as a V -statistic of order 4 of the sample ((Xi, Yi))i=1,...,n; see Appendix A. (Lyons [9] used a V -
statistics of order 6. The higher order leads to a higher numerical complexity for the calculation of

the bootstrap quantities.) Since X,Y are assumed independent and E[∥X∥β2 ] + E[∥Y ∥β2 ] < ∞ (see
Remark 2.1) we may apply the strong law of large numbers to the V -statistic Tn,β(X,Y ) implying
that

Tn,β(X,Y )
a.s.→ Tβ(X,Y ) = 0 .(7.7)

Hence the first parts of the theorem follow.
Under the corresponding growth conditions (A2) and (B4) on δn → 0, Proposition 7.1 also yields

n (Tn,β(X,Y ) − Tn,β(X
(p), Y (p)))

P→ 0. Then we can use the fact that the V -statistic Tn,β(X,Y )
is degenerate of order 1 to conclude that nTn,β(X,Y ) converges in distribution to a series of

independent weighted χ2-distributed random variables, and nTn,β(X
(p), Y (p)) has the same weak

limit; we refer to Arcones and Giné [1], Serfling [18] for general limit theory on U - and V -statistics.

Remark 7.2. Following the aforementioned arguments, the strong law of large numbers (7.7) re-
mains valid if X and Y are dependent and the corresponding moments in the definition of Tβ(X,Y )
are finite. In this case Tn,β(X,Y ) is a non-degenerate V -statistic and it follows from the Hoeffd-
ing decomposition that (

√
n(Tn,β(X,Y )− Tβ(X,Y ))) converges to a normal distribution provided

sufficiently high moments of (X,Y ) are satisfied.
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Our next goal is to prove the last two parts of Theorem 3.1. They will follow if we can show
consistency of Tn,β(X

(p), X(p)) and Tn,β(Y
(p), Y (p)). This is the content of the following lemma.

Lemma 7.3. Assume the following conditions:

1. X is defined on [0, 1] and has Riemann square-integrable sample paths.
2. If X has a finite first moment X is centered.
3. δn → 0 as n → ∞.
4. β ∈ (0, 2).

Moreover, consider the following conditions:

(1) X has finite second moment and there exist γX > 0 and c > 0 such that

var
(
X(s, t]

)
≤ c |t− s|γX , s < t .(7.8)

If β ∈ (1, 2) we also assume

max
0≤t≤1

E[|X(t)|2(2β−1)] < ∞ .(7.9)

(2) For some β ∈ (0, 1),

E
[
max
0≤t≤1

|X(t)|2β
]
< ∞ ,(7.10)

and there exist γ′X > 0 and c > 0 such that

max
i=1,...,p

E
[
max
t∈∆i

|∆X(t, ti]|2β
]
≤ c δ

γ′
X

n .(7.11)

If either (1) or (2) hold then

Tn,β(X
(p), X(p))− Tn,β(X,X)

P→ 0.

Moreover, we also have

Tn,β(X
(p), X(p))

P→ Tβ(X,X),(7.12)

where

Tβ(X,X) = E
[
∥X1 −X2∥2β2

]
+

(
E
[
∥X1 −X2∥β2

])2 − 2E
[
∥X1 −X2∥β2 ∥X1 −X3∥β2

]
.

Note that since (7.8) and (7.9) are respectively implied by conditions (A1) and (A2), while (7.10)
and (7.11) are implied by the condition (B3), the conditions of Lemma 7.3 are included in (3), (4)
of Theorem 3.1.

Proof. We assume condition (1). We use the decomposition (7.1) and follow the lines of the proof
of Proposition 7.1. In this case,

I1 =
1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥2β2 − ∥Xk −Xl∥2β2

)
,

I2 =
( 1

n2

n∑
k,l=1

∥X(p)
k −X

(p)
l ∥β2

)2
−

( 1

n2

n∑
k,l=1

∥Xk −Xl∥β2
)2

,(7.13)

I3 =
1

n3

n∑
k,l,m=1

(
∥X(p)

k −X
(p)
l ∥β2∥X

(p)
k −X(p)

m ∥β2 − ∥Xk −Xl∥β2∥Xk −Xm∥β2
)
.

We start by considering I1. First assume that β ≤ 1. Observe that

E[|I1|] ≤ E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥β2

(
∥X(p)

1 −X
(p)
2 ∥β2 + ∥X1 −X2∥β2

)]
≤

(
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥2β2

])1/2(
(E

[
∥X(p)

1 −X
(p)
2 ∥2β2 )1/2 + (E∥X1 −X2∥2β2

]
)1/2

)
.



22 H. DEHLING, M. MATSUI, T. MIKOSCH, G. SAMORODNITSKY, AND L. TAFAKORI

Similarly as in (7.4) the first expectation is bounded by c δβγXn , while the remaining two expectations
are bounded, so that as in the proof of Proposition 7.1, we have that

E[|I1|] ≤ c δβγX/2
n .

If 1 < β < 2 we may proceed as for E[I11] in the proof of Proposition 7.1 in the case 1 < β < 2:

E[|I1|] ≤ E
[∣∣∥X(p)

1 −X
(p)
2 ∥2β2 − ∥X1 −X2∥2β2

∣∣]
≤ cE

[
∥X(p)

1 −X
(p)
2 ∥2β−1

2 ∨ ∥X1 −X2∥2β−1
2

∣∣∥X(p)
1 −X

(p)
2 ∥2 − ∥X1 −X2∥2

∣∣]
≤ c

(
E
[
∥X(p)

1 −X
(p)
2 ∥2(2β−1)

2 ∨ ∥X1 −X2∥2(2β−1)
2

])1/2

×
(
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥22

])1/2

= c P1 P2 .

We have P2 ≤ c δ
γX/2
n and

P 2
1 ≤ E

[
∥X(p)

1 −X
(p)
2 ∥2(2β−1)

2

]
+ E

[
∥X1 −X2∥2(2β−1)

2

]
= P11 + P12 .

We deal only with P12; P11 can be bounded in a similar way. For 1 < 2β ≤ 2, the function
f(x) = |x|2β−1 is concave. Therefore

P12 = E
[( ∫ 1

0
(X1(t)−X2(t))

2 dt
)2β−1]

≤
(
E
[ ∫ 1

0
(X1(t)−X2(t))

2 dt
])2β−1

< ∞ .

In the last step we used (7.8).
If 2 < 2β < 4 we have by Lyapunov’s inequality and (7.9),

P12 = E
[( ∫ 1

0
(X1(t)−X2(t))

2 dt
)2β−1]

≤ E
[ ∫ 1

0
|X1(t)−X2(t)|2(2β−1) dt

]
< ∞ .

Thus we proved that

E[|I1|] ≤ c δγX(β∧1)/2
n .

We can deal with I2 in the same way by observing that

I2 =
1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥β2 − ∥Xk −Xl∥β2

) 1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥β2 + ∥Xk −Xl∥β2

)
= P̃1P̃2 .(7.14)

The expected value of P̃2 is bounded and hence P̃2 is stochastically bounded while similar calcula-

tions as for I1 show that E[|P̃1|] → 0. Hence I2
P→ 0. We have

I3 =
1

n3

n∑
k,l,m=1

(
∥X(p)

k −X
(p)
l ∥β2 − ∥Xk −Xl∥β2

)
∥X(p)

k −X(p)
m ∥β2

+
1

n3

n∑
k,l,m=1

∥Xk −Xl∥β2
(
∥X(p)

k −X(p)
m ∥β2 − ∥Xk −Xm∥β2

)
= I31 + I32 .(7.15)
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We will deal only with I32; the other case is similar. Assume 0 < β ≤ 1. By the Cauchy-Schwarz
inequality and using similar bounds as above,

E[|I32|] ≤
(
E
[
∥X1 −X2∥2β2

])1/2 (
E
[∣∣∥X(p)

1 −X
(p)
3 ∥β2 − ∥X1 −X3∥β2

∣∣2])1/2

≤
(
E
[
∥X1 −X2∥2β2

])1/2 (
E
[
∥(X(p)

1 −X1)− (X
(p)
3 −X3)∥2β2

])1/2
→ 0 .(7.16)

Now assume 1 < β < 2. Then

E[|I32|] ≤ cE
[
∥(X(p)

1 −X1)− (X
(p)
3 −X3)∥2

(
∥X(p)

1 −X
(p)
3 ∥β−1

2 ∨ ∥X1 −X3∥β−1
2

)
∥X1 −X2∥β2

]
≤ c

(
E
[
∥(X(p)

1 −X1)− (X
(p)
3 −X3)∥22

])1/2

×
(
E
[(
∥X(p)

1 −X
(p)
3 ∥2(β−1)

2 ∨ ∥X1 −X3∥2(β−1)
2

)
∥X1 −X2∥2β2

])1/2

≤ c
(
E
[
∥(X(p)

1 −X1)− (X
(p)
3 −X3)∥22

])1/2

×
{(

E
[
∥X(p)

1 −X
(p)
3 ∥2(β−1)

2 ∥X1 −X2∥2β2
])1/2

+
(
E
[
∥X1 −X3∥2(β−1)

2 ∥X1 −X2∥2β2
])1/2}

.

The first factor is P2 from above which is bounded by cδ
γX/2
n . For the second term, we only consider

E[∥X(p)
1 −X

(p)
3 ∥2(β−1)

2 ∥X1−X2∥2β2
]
by a symmetry argument. An application of Hölder’s inequality

to this quantity yields the bounds(
E
[
∥X(p)

1 −X
(p)
3 ∥2(2β−1)

2

]) β−1
2β−1

(
E
[
∥X1 −X2∥2(2β−1)

2

]) β
2β−1 = P

β−1
2β−1

11 P
β

2β−1

12 ,

where P11, P12 are defined above and shown to be bounded. This concludes the proof under
condition (1).

We assume condition (2). Now we prove the lemma under the condition that the moments of X(t)
of the order 2β ∈ (0, 2) are finite. We have for 2β ≤ 1 by concavity and in view of condition (7.11),

E[|I1|] ≤ E
[
∥(X1 −X

(p)
1 )− (X2 −X

(p)
2 )∥2β2

]
≤ c δβn

p∑
i=1

E
[
max
t∈∆i

|∆X(t, ti]|2β
]
≤ c p δ

γ′
X

n .

(7.17)

The right-hand side goes to zero by assumption. For 2β ∈ (1, 2) we have by Hölder’s inequality,

E[|I1|] ≤ E
[∣∣∥X(p)

1 −X
(p)
2 ∥2β2 − ∥X1 −X2∥2β2

∣∣]
≤ cE

[(
∥X(p)

1 −X
(p)
2 ∥2β−1

2 ∨ ∥X1 −X2∥2β−1
2

)
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥2

]
≤ c

(
E
[
∥X(p)

1 −X
(p)
2 ∥2β2 ∨ ∥X1 −X2∥2β2

])(2β−1)/(2β)

×
(
E
[
∥(X(p)

1 −X1)− (X
(p)
2 −X2)∥2β2

])1/(2β)

= c P̂1 P̂2 .

The quantity P̂1 is finite in view of (7.10) and P̂2 → 0 by the argument of (7.17).

For I2 = P̃1P̃2 we use (7.14). Since E[∥X1−X2∥β2 ] and E[∥X(p)
1 −X

(p)
2 ∥β2 ] are finite the expectation

of P̃2 is bounded while

E[|P̃1|] ≤ 2E[∥X −X(p)∥β2 ] ≤ 2
(
E[∥X −X(p)∥2β2 ]

)1/2
.
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The argument of (7.17) shows that the right-hand side converges to zero.
Finally, we use the decomposition I3 = I31 + I32. Inequality (7.16) and the bounds above show

that E[|I32|] → 0; the case E[|I31|] → 0 follows in a similar way.

Collecting all bounds above, we proved Tn,β(X
(p), X(p))−Tn,β(X,X)

P→ 0 both under the condi-

tions of (1) and (2). Then relation (7.12) is immediate. Indeed, under the assumption E[∥X∥2β2 ] <

∞ the strong law of large numbers for U - and V -statistics yields Tn,β(X,X)
a.s.→ Tβ(X,X). □

For the proof of the bootstrap consistency in Section 5 we need a.s. convergence of Tn,1(X
(p), Y (p)) =:

Tn(X
(p), Y (p)). We give some sufficient conditions.

Lemma 7.4. Assume the following conditions on the Riemann square-integrable process X on
[0, 1].

1. E[∥X∥22] < ∞ and E[X(u)] = 0 for u ∈ [0, 1].
2. (A.1) holds.
3. E[|X(t)−X(s)|4] ≤ c|t− s|γ̃X holds for some γ̃X > 0.

4.
∑∞

n=1 n
−1

(
δγXn + δγ̃Xn

)
< ∞.

Then Tn(X
(p), X(p))

a.s.→ T (X,X) holds as n → ∞.

Proof. From (7.1) recall the decomposition Tn(X
(p), X(p))−Tn(X,X) = I1+I2−2I3; see also (7.13).

Since E[∥X∥22] < ∞, by the strong law of large numbers for V -statistics, Tn(X,X)
a.s.→ T (X,X).

Therefore it suffices to show that

Ii
a.s.→ 0 , i = 1, 3 ,

I ′2 :=
1

n2

n∑
k,l=1

∥X(p)
k −X

(p)
l ∥2 −

1

n2

n∑
k,l=1

∥Xk −Xl∥2
a.s.→ 0 .

We have

|I ′2| ≤ 1

n

n∑
k

∥X(p)
k −Xk∥2

=
1

n

n∑
k

(
∥X(p)

k −Xk∥2 − E[∥X(p) −X∥2]
)
+ E[∥X(p) −X∥2] .

By Jensen’s inequality,

E[∥X(p) −X∥2] ≤
(∫ 1

0
var(X(p)(u)−X(u)) du

)1/2
≤ δγX/2

n → 0.

Moreover,

var
( 1

n

n∑
k

(
∥X(p)

k −Xk∥2
))

≤ n−1E[∥X(p) −X∥22] ≤ n−1δγXn .

Using Markov’s inequality and the Borel-Cantelli lemma, we conclude that I ′2
a.s.→ 0 if

∑
n n

−1δγXn <
∞.

The proof of I1
a.s.→ 0 is similar. We have by the Cauchy-Schwarz inequality,

|I1| ≤
( 1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥2 − ∥Xk −Xl∥2

)2)1/2

×
( 1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥2 + ∥Xk −Xl∥2

)2)1/2
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≤ c
1

n2

n∑
k,l=1

(
∥X(p)

k −Xk∥2 + ∥Xl −X
(p)
l ∥2

)2
+c

( 1

n2

n∑
k,l=1

(
∥X(p)

k −Xk∥2 + ∥Xl −X
(p)
l ∥2

)2)1/2( 1

n2

n∑
k,l=1

∥Xk −Xl∥22
)1/2

.

Therefore it remains to show that

1

n

n∑
k=1

(
∥X(p)

k −Xk∥22 − E[∥X(p) −X∥22]
)
+ E[∥X(p) −X∥22]

a.s.→ 0 .

But we have E[∥X(p) −X∥22] = O(δγXn ) and

var
( 1

n

n∑
k=1

(
∥X(p)

k −Xk∥22
))

≤ n−1E[∥X(p)
k −Xk∥42]

≤ n−1

∫ 1

0
E[(X(p)(u)−X(u))4] du ≤ n−1δγ̃Xn .

Since we assume
∑

n n
−1δγ̃Xn < ∞ applications of Markov’s inequality and the Borel-Cantelli lemma

show that I1
a.s.→ 0.

Finally, we show I3
a.s.→ 0. We have

I3 =
1

n3

n∑
k,l,m=1

(
∥X(p)

k −X
(p)
l ∥2 − ∥Xk −Xl∥2

) (
∥X(p)

k −X(p)
m ∥2 − ∥Xk −Xm∥2

)
+

2

n3

n∑
k,l,m=1

(
∥X(p)

k −X
(p)
l ∥2 − ∥Xk −Xl∥2

)
∥Xk −Xm∥2

= I31 + I32 .

The Cauchy-Schwarz inequality yields

|I31| ≤ 1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥2 − ∥Xk −Xl∥2

)2
≤ c

1

n

n∑
k=1

∥X(p)
k −Xk∥22

a.s.→ 0 ,

|I32| ≤ c
( 1

n2

n∑
k,l=1

(
∥X(p)

k −X
(p)
l ∥2 − ∥Xk −Xl∥2

)2)1/2 ( 1

n2

n∑
k,l=1

∥Xk −Xl∥22
)1/2

≤ c
( 1

n

n∑
k=1

(
∥X(p)

k −Xk∥22
)1/2 ( 1

n2

n∑
k,l=1

∥Xk −Xl∥22
)1/2 a.s.→ 0 .

This proves the lemma. □

Appendix A. The sample distance covariance as a degenerate V-statistic

We assume that Zi = (Xi, Yi), i = 1, 2, . . . , is an iid sequence with generic element (X,Y ) whose

components are Riemann square-integrable on [0, 1], and E[∥X∥β2 + ∥Y ∥β2 ] < ∞ for some β ∈ (0, 2).
Lyons [9, 10] proved that Tn,β(X,Y ) has representation as a V -statistic of order 6 with degenerate
kernel of order 1. In what follows, we will indicate that it can be written as a V -statistic of order 4
with symmetric degenerate kernel of order 1. This fact is useful for improving upon the complexity
of the numerical approximation of the sample distance correlation and its bootstrap version.
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We start with the kernel

f((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = f(z1, z2, z3.z4)

= ∥x1 − x2∥β2∥y1 − y2∥β2 + ∥x1 − x2∥β2∥y3 − y4∥β2
−2∥x1 − x2∥β2∥y1 − y3∥β2 .

From this representation, it is obvious that

Tn,β(X,Y ) =
1

n4

∑
1≤i,j,k,l≤n

f(Zi, Zj , Zk, Zl).

Then one can define the corresponding symmetric kernel via the usual symmetrization as

(A.1) h(z1, z2, z3, z4) =
1

24

∑
(l1,l2,l3,l4) permutation of (1,2,3,4)

f(zl1 , zl2 , zl3 , zl4).

It is not difficult to see that the kernel h is at least 1-degenerate, by showing that, under the null
hypothesis of independence of X and Y ,

E[f(z1, Z2, Z3, Z4)] + E[f(Z2, z1, Z3, Z4)] + E[f(Z2, Z3, z1, Z4)] + E[f(Z2, Z3, Z4, z1)] = 0 .

Still under the null hypothesis of independence of X and Y ,

E[h(z1, z2, (X3, Y3), (X4, Y4))]

=
1

6

(
∥x1 − x2∥β2 + E∥X1 −X2∥β2 − E∥x1 −X∥β2 − E∥x2 −X∥β2

)
×
(
∥y1 − y2∥β2 + E∥Y1 − Y2∥β2 − E∥y1 − Y ∥β2 −E∥y2 − Y ∥β2

)
,

and the right-hand side is not constant. Hence, the kernel h is precisely 1-degenerate. In summary:

Lemma A.1. If X,Y are independent and E[∥X∥β2 + ∥Y ∥β2 ] < ∞ for some β ∈ (0, 2) then
Tn,β(X,Y ) has representation as a V -statistic with a symmetric kernel h of order 4 which is 1-

degenerate. Moreover, the corresponding U -statistic T̃n,β(X,Y ), which is obtained from Tn,β(X,Y )
by restricting the summation to indices (i1, i2, i3, i4) with mutually distinct components, satisfies
the relation

n
(
Tn,β(X,Y )− T̃n,β(X,Y )

) P→ E[∥X1 −X2∥β2 ]E[∥Y1 − Y2∥β2 ] , n → ∞ .(A.2)

Indeed, observe that ∆n = Tn,β − T̃n,β is based on summation of the kernel h over indices
(i1, i2, i3, i4) for which at least two components coincide. If more than 2 indices coincide the
number of these summands in ∆n is of the order O(n2). However, the normalization in n∆n is of
the order n3. Therefore the sum of these terms is negligible as n → ∞. Finally, the part of the sum
corresponding to the case when exactly two indices coincide and the other indices are different, can
be written as a U -statistic of order 3. By the law of large numbers, this U -statistic converges a.s.

to E[∥X1 −X2∥β2 ]E[∥Y1 − Y2∥β2 ].

Remark A.2. The additional moment assumption on h(Zi1 , Zi2 , Zi3 , Zi4), 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤
4, required in Corollary 5.2 is satisfied for our kernel. Note that it suffices to consider the non-
symmetric kernel f , and to show that E[(f(Zi1 , Zi2 , Zi3 , Zi4))

2] < ∞, for all indices 1 ≤ i1, . . . , i4 ≤
4. For our specific kernel, this condition reads

E
[(

∥Xi1 −Xi2∥β
[
∥Yi1 − Yi2∥β + ∥Yi3 − Yi4∥β − 2∥Yi1 − Yi3∥β

])2
]
< ∞,

and this holds under the moment conditions made in this paper.
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[17] Székely, G.J. and Rizzo, M.L. (2014) Partial distance correlation with methods for dissimilarities. Ann.

Statist. 42, 2382–2412.

[18] Serfling, R.J. (1980) Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York.

Department of Mathematics, Ruhr-Universität Bochum, 44780 Bochum, Germany
E-mail address: herold.dehling@rub.de

Department of Business Administration, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya
466-8673, Japan

E-mail address: mmuneya@gmail.com

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copen-
hagen, Denmark

E-mail address: mikosch@math.ku.dk

School of Operations Research and Information Engineering, Cornell University, 220 Rhodes Hall,
Ithaca, NY 14853, U.S.A.

E-mail address: gs18@cornell.edu

University of Melbourne, School of Mathematics and Statistics, Richard Berry Building, Parkville,
3010, Melbourne, Australia

E-mail address: laleh.tafakori@unimelb.edu.au


