ON THE POWER OF ARRAYS IN
UNIVERSAL LANGUAGES

by

Donald B. Johnson+

TR 73-155

January 1973

Computer Science Department
Cornell University
Ithaca, New York 14850

+This research was done while the author was an NSF
predoctoral fellow and was partially supported by

ATATY L /T YOO

On the Power of Arrays in
Universal Languages
by

Donald B. Johnson

Abstract

A language with arrays but with no conditional
statement is shown to be universal under "simulation,"
a relation on programs frequently encountered in the
practical computing world. Any r.e. set can be
enumerated by a program (in this language) whose
flow chart is a single loop which contains no alternate
execution paths normally thought necessary for compu-
tation in general. A related result is shown for any
general program, thus characterizing selection in arrays
as at least as powerful as conditional branching in
programs. These results are related to important.

results in schemata.

Introduction

Turing machines, recursive functions, and certain
languages on program machines with a finite number of
registers of infinite precision are equivalent in com-
puting power, and are generally accepted as computation-
ally "universal." 1In fact, so great is the power of
simple program machines that extremely small universal
languages exist. For example, the universal language
named G3 by Constable and Borodin [1] is comprised of
only three operations, addition of one, proper subtraction
of one, and a transfer of control conditional on a speci-
fied register being nonzero. The reader is referred to
Minsky [6] for an extensive discussion of small universal
languages, their equivalence to Turing machines, and the
question of universality itself.

Not only are such small languages universal, they
can be proved to be so with very few registers, as few as
4 in the case of G3. While these results on small langaages
are intriguing, they put all commonly used programming lan-
guages (if infinite precision variables are allowéd) into
the same class, and so are of no help in comparing the
power of important language features such as pushdown stores,
recursion, labels as variables, and so forth. Each of these
features can be mimicked through an appropriate manipulation

of a small number of machine registers.

Patteréon and Hewitt [7], Strong [8], and Constable
and Gries [2] have shown that differences in computing
power appear between such language features mentioned when
program schemes are considered. For instance, recursive
program schemes have more power than schemes with a finite
number of variables but are themselves inferior in power
to schemes with arrays. It is the array result, due to
Constable and Gries [2], which interests us here; Because
of the equivalence in power of schemes with arrays to schemes
with pushdown stores and to the effective functionals of
Strong [8], Constable and Gries suggest that these
schemes are "universal." No more powerful functionals are
known, and the suggestion of universality is of the same
form and perhaps as convincing (given time) as that for the
univeréality of Turing machines and languages such as‘G3;

To employ arrays in program schemes in which, of course,
neither the functions nor the domain of computation can be
fixed, subscripting must be a "special operaticn." Constable
and Gries maintain the necessary scheme properties by re-
quiring the subscript values themselves to be from a domain
disjéint from the domains of all interpretations for the
schemes, requiring arithmetic operations on subscripts to
always yield a value from the subscript domain, and defining
the subscripting or selection operation as a primitive of the

class of schemes.

In the sections that follow, we consider the power
of array mechanisms in programs rather than in schemes.
Since very simple languages are already universal, it does
not appear at first that there can be any important gain
from being able.to name an unbounded number of variables
in an infinite array. In fact, any array or set of arrays
can be modelled in a few registers by mapping an array
reference with multiple indices into an index in a one-
dimensional array packed into two registers by ﬁeans of
a pairing function. The array can be "shifted" left or
right to make any desired position accessible to the
pairing function inverse.

What can be gained from employing arrays is a
simplification in the language and in the control structure
of programs. If we allow array references as variables so
that subscripting or selection is a primitive operation
of the program machine, under appropriate conventions
regarding termination a universal language exists which
has no conditional transfer of control. The entire control
structure of the program is contained in the data structure,
and every program has a branchless flow chart. Another
way of stating the result is that the conditionals needed
to mimic selection in arrays are the only conditionals
needed in a universal language. We conlcude that the
power of the selection operation in arrays is equivalent

to the power of conditional branching in programs.

In the development which follows, we confine our
attention to programs (partial functions) on the natural
numbers. As is well known, this is sufficient for
universality. Furthermore, we draw subscripts from the
same domain. The most important restriction has to do
with program termination. In general, a program with no
conditional branches will not terminate. Consequently we
introduce the concept of simulation and are satisfied with
prbgrams of simple structure which simulate either termi-
nating or nonterminating programs much in the same way a
nonterminating computer system executes a user's (hopefully)
terminating program. Also, our constructions require a

language with an assignment statemeént.

Programs and Simulation

In later sections we give constructions which produce,
from a given program, a more complex pregram which "does
the same thing" in a subset of its variables. We say the
second program simulates the first. It is the purpose of
this section to deveiop some of the properties of simu-
lations of this type. The definitions of Milner [5] and
Goguen [3], for instance, are somewhat different from ours,
as are the applications to which their theory is applied.

| Every program names a set of variables. This set is
finite unless there are one or more infinite collections of
variables called arrays. Operations are always on indivi-

dual variables, however, whether they are members of arrays

or not. We use the word "variaBY¥s* to mean what is often
called in the 1iteraturev“simple variable." As will appear,
subscripting is an operétion which yields a variable. We
will have no need to speak of "array variables." The
following definitions make these notions more precise.

A program is a finite collection of statements, with
rules for their execution and a rule for deciding the order
in which the statements are executed. All programs we
consider execute statements in the order given except when
an explicit branch occurs. We exclude parallel and non-
deterministic programs. Also, statements are restricted
so that they change the value of at most one variable, that
is, there are no array operations implying parallelism
within statementé.

A variable is a unique name which may take on any

value from the domain N U {undef} . An array name is a

bijection from N onto a countably infinite set of
variables not otherwise named in the program. An array
name is thus not a variable but a name for a subset of the
variables of a program. Array names appear in programs

only in array references, names qualified by a list of

arguments called subscripts. An array reference, there-
fore, always stands for some variable. Which one it stands

for is determined when the array reference is evaluated.

While there is a distinction between a variable and
an array reference (which returns a variable) we class

both together with the name elementary variable because

at execution time both refer to some member of the program's
set of variables.

In the languageé we will diécuss later computafioh
occurs in assignment statements, the right hand sides of
which are elementary variables or certain (total) functions
of elementary variables. It is convenient to allow as
subscripts any expression which may appear on the right
hand side of an assignment. Thus subscripts may be ele-
mentary variables, and so themselves may be subscripted
subject only to the restriction that any array reference
must be a finite string of symbols. There is always an
"innermost" subscript which does not belong to an array.

A full state of a program is a function from the set

of variables of the program into the domain of values. A

partial state is a restriction of a full state to a subset

of variables. The convention chosen for initialization of
variables and the choice of variables for input will
define a set of allowable initial full states.

- A partial computation with respect to some initial

full state Py is a sequence of partial states begihning
with dgr @ restriction of Py - The sequence may be finite
or infinite. If it is finite, the partial computation is

dgrdyr =++ 19y such that for 0 < i < n each q; is restricted

to the same subset of variables Q and, for 0 < i<n,

9541 is the partial state following the first assignment
to some variable in Q to occur after q; when exXecuting the
Program beginning at its first statement andg in Py Of
course, q, is the partial state at termination if exe-
cution terminates or it may be the last partial state to
éver occur in some infinite exXecution. If the sequence is
infinite, €xecution must be infinite. The definition is
similar, but for 0 < i,

A full computation is defined in the obvious way

over full states.

A partial computation with respect to a singleton
{X} is equivalent to the output of 3 Program where X is
the "printer," 2 distinguished variable which "prints" its
contents whenever it receives an assignment.

A partial computation qo,ql, vee o4y is a simulation

of a full computation TorTyr «ee 1Ty if there is a bijec-
tion f from the variable set R of the full computation
to Q , the variable set of the partial computation, and,
for 0 < i < n, r; = q,°f .1 The definition extends

naturally to infinite computations where the same condition

holds for 0 < i . The range Q of f isg called the

Simulation set. A control state ci is the state of all
variables not in the simulation set, that is, the complement

of q; in the full state in which dq; occurs.

Composed functions, denoted f+g , are applied from the
right so that feg(x) = f(g(x))

Program T if there exists

2 simulates program Ty

an f and an initial control state ¢ such that for

0
all allowable initial full states So of = there is a

-1

1

simulation on ™, when begun in full state c v (so-f

0) -
Computations and simulations have several interesting

properties. Computations over sets of variables embed

computations over subsets of these variable sets. Also,

computations are unique. The following lemmas give these

results as well as a transitivity result for simulation.

Lemma 1 (embedding): Let PorPyr «-+ 4Py be a
partial computation with states restricted to P ,

a subset of the variables of some program. If

1

dy = pOIQ where Q < P then dordyr =+« 9 is

a partial computation with states restricted to Q

if and only if (qo,(qo,)* ql,(ql,)* ses (qm')* qm) =

(polQ,pllQ, e ,pn[Q) where q, , differs from gq;

in at most one variable for 0 < i < m.

Proof: The proof is by induction over the length of
PgrPys +++ +P, - We have given that q, = pOIQ . By
definition of a computation and the fact that but one

assignment can occur at a time, follows pj

Pyl
because of exactly one variable for each 0 < j <n . It

is also true that q; can differ from ay in at most

+1

one variable for 0 < i < m ; for the same reasons if

! f| X denotes the restriction of the function f to
the domain X .

qgrdyr -~ = is a computation (in which case one
variable causes 9541 to follow qi) and by a given con-
dition in the case of the reverse implication.

Assume that dprdyr =-+ r94 is a partial compu-

i
tation if and only if (qo,(qo,)* qlr(qu)* .o qi(,qi)*) =
(pOIQ,pllQ, .o ,ple) . If this is true, both compu-
tations will have been generated by the same execution
sequence. There will then occur a next assignment to a
variable in P . This will generate pj+1 .

There are two cases. If the variable which generates
pj+l is in Q , then the definition of a computation re-
quires there to be a 9541 following q; such that
diyq = pj+l|Q . So for this case we prove qu,Qys -«
19509541 is a partial computation if and only if

(qo,(qo,)* e oo qi(qi,)* qi+l) = (po|Qr e . 'ijQ'pj-l-llQ) .

If the variable which generates pj+l is in P - Q ,‘

then pj+l|Q = ple = q; and there is no gq;,; . So for
this second case we have dgrQdyr +++ 194 is a partial
computation if and only if (qo,(qo,)* ce qi(,qi)*) =
(polQl e o o 'plelpj+ll Q) .

The lemma is proved by induction on j , as these are

the only cases that can occur. [J

Corollary 2: The result of Lemma 1 is true for

PgrPyr .- infinite and A rdyr =-- 'qm finite

or dpsdyr e infinite. ([

-10-

It is important to note that an infinite computation

may embed a finite computation.

Corollary 3: Any partial computation relative to

some fixed initial full state is unique.

Proof: Let dgrdyr +++ 14

n and PorPqv ..._,pn be

computations over Q and P respectively such that
Q = P , and with respect to initial full state Ty - By
Lemma 1 they must be identical since if Q = P then

pi]Q = Pp; for 0 < i <n . The result is clearly true

for infinite computations as well. [
We use these results to show transitivity of

simulation.

Lemma 4 (transitivity): If a program L simulates
a program T, , and ™ simulates a program Ty o

then L simulates ﬂl

Proof: By definition of simulation there exists an

initial control state c and a simulation set selector

0

f by which simulates Similarly do and g

T 1

exist by which ﬂ3 simulates 7 If P and V are the

2 .

variable sets of and respectively, then £(P) and

1 2

g(V) are the simulation sets, under £ and g respec-
tively, in T, and Ty -
If PorPyr «++ Py is a full computation on T

then by definition of simulation there exists a partial

-11-

computation dy:9y7 +++ 9y OD ‘“2 begin in q, U o

such that p., =gq;*f for 0 <i<m.
For ™, to begin in d, U o implies existence of

a full computation (qO U c0)= LgrXyr ee- 4L, OR T, .

From the definition of simulation, then, there exists a
partial computation SgrSyr e+ 4S, ONn T,y begun in
dy Us, such that r; =s.°g for 0 <i<n.

By Lemma 1 there exists on 7 begun in d0 U So

3
a computation wuy,u;, ... ,u_ such that u, = solg-f(P) .

But from this it follows that uo-g-f = so°g-f = ro-f =Py -

By uniqueness (Corollary 3), p; = ui-g-f for 0 <i<m

is simulated by T, with
-1 .nd simulation set

from which we conclude that Ty
initial control state do u Co°9
selector g-°f .

The proof is presented for the case in thch all
computations are finite. It may be that TarTyr o« and
so,sl, ... are infinite or that all computations
Pgr/Pyr <+« i dgrdyr ece i TarTys eee i SgrSqr e and
uy,uy, ... are infinite. From Corollary 2 we may insert
language into the proof which allows all possible cases,
thus completing the proof. [

Simulation between programs is not an equivalence

relation since, although simulation is transitive and

reflexive, it is not in general symmetric.

-12-

That the decision problem for simulation is unde-
cidable is shown in the next section. Time complexity for

conditional-free simulations is discussed later.

Decision Problem for Simulation

The way we have defined simulation, it is possible'for
a terminating program and a nonterminating program to "do
the same thing," to pfoduce identical (finite) computations.
So the "halting problem" becomes the "finite computation
problem." We claim this is a natural recasting of the
problem from its usual terms.

Certainly computers produce output before programs run
to completion. Even in the functional model, we find our-
selves speaking not quite precisely of programs enumerating
a set when we really mean the set would gg enumerated if
we ran our program on all arguments in succession.

It is obvious that the finite computation problem is
undecidable. We would also expect the decision problem
for simulation to be undecidable. This is shown in the

following theorem:

Theorem 5: It is undecidable whether general program

m simulates program

2 -
Proof: We reduce the strong halting problem to the
decision problem for simulation, using G; augmented with

arrays and any total functions F .

-13-

Given some ﬂo with input I , construct Ty by

replacing each assignment X[Y] <« F(Zl, ces ,Zn) with

Tl +~ Y

T2 « F(Zl' .en ,zn)
X[Tll “ T2

X[Tl] « T2+1 1
x[Tll « Tz-l

and preceding the program with the statements

1 1
Tl < Tl—]_ T2 “ Tz‘l

T T.+ «
« 1 T2 T2+l

where T. T, do not appear in 2

1, 2 0 °
Then construct T, as follows:

T3
H « H+1

where H does not appear in Notice that every

Ty -
variable in LOY except H , changes at least twice if it
changes at all. H changes no more than once.

Clearly ﬂ3(i) halts if and only if ﬂo(i) halts.
So any computation on T, over a variable set of a single
variable can have exactly two states only if the variable

set contains H and halts.

To
The only way T, can simulate a program Ty with

the single statement

! Proper subtraction is defined =x+1 = if x=0 then 0 else x-1 .

2 Generalization to multiply subscripted references is obvious.

~-14-

H « H+1

is for to halt on all inputs. Thus if we could solve .

0
the decision problem for simulation we could solve the

strong halting problem, known to be unsolvable. [J

Conditional-free Simulations

In the usual theory, in which programs are functions
which return a value (give output) only upon termination,
conditional statements in some form are required for
sufficient power to compute all recursive functions. These
programs in general have flow charts with one or more
branches.

In this section we show that, if one is content to
simulate computing a function rather than computing it with
a terminating program, then there exists a program without
conditionals (and thus with a branch-free flow chart) which
does so. The constructions make use of array references
which are, of course, selectors of a sort. Selection is
performed on the variables of the program, howéver; and
not over the program structure as is theAcase when
conditionals are employed.

For purposes of exposition, a result is first given
for simulating nonterminating programs with a single con-
ditional. The result is then generalized to simulation of
nonterminating programs with an arbitrary number of con-
ditionals. This result is used to show that any r.e. set

can be enumerated with a conditional-free program, and

-15-

finally we show any general program may be simulated by

a conditional-free program.

Single-conditional Nonterminating Programs

A single-conditional nonterminating program has the

form

Ty
Ty
T
m
L1 :Sl
Lz: 52
L : S
n n

Lner? 92 R0 By

where the T, and S; are of the form
X « F(Yl, e ,Yk)

for an elementary variable X and for any k-adic total

function of the elementray variables Yl’ s ,Yk except

that there is one statement Sj of the form
if X # 0 then go to Lp .

The range of any function F is a subset of the
natural numbers. Since our definition allows any constant

function, for notational convenience we allow constants in

-16-

place of any Yl’ e ,Yk or as subscripts in any array

reference.

Lemma 6: Fér any single-conditional nonterminating

program theré}exists a nonterminating program withouﬁ

conditionals which simulates it.

Proof: Construct a conditional-free program from

the given program as follows:

(1) Increase the number of subscripts of all
elementary variables by one, using a variable
Ij not in the given program. Variables become
monadic array references and the dimensionality
of each array name is increased by one;

(2) Precede the labelled statement Lp: Sp with
the statement Ij <~ 0 ;

(3) Replace the labelled conditional Lj: Sj with

Lj: Ij < X[... ,0]

where X[...] is the original test variable of
Sj;

(4) Precede the entire program with the statement

Ij ~< 0 .
We now show that the transformed program simulates the
original under the obvious simulation set selector from the

variables of the original program into the set

'{x | x is an array reference and its last subscript is zerol}.

-17-

As long-as X[...] = 0 in the original program, the
simulating program computes identically in its simulation

set. All statements in the loop L1 to L execute in

n+l
sequence since no branch occurs in the original program.
If, however, X[...] #,0 when Lj is encountered, the
original program branches to Lp . No new state can

occur in the computation of the original program until
statement Lp is executed.

But this is exactly what the simulation does. All
statements from Lj to Lp in the forward direction
over the loop are executed by the simulator, but in a set
disjoint from the simulation set, that is, with Ij # 0 .
The variable Ij becomes 0 exactly at label Lp so a
new state in the simulation is then possible. [

In [2], Constable and Gries give two programs to
compute F(0,0) and F applied to all combinations of
previously computed function values for an arbitrary
total function F . The first is a conventional program
with a conditional, and the second a program without
conditionals ([21, p 97 et fol). We present a similar
program for the same sequence, first with and then without
conditionals. In our case, the préceding lemma gives an
immediate proof that the second program computes the

same sequence as the first.

-18-

I<«0
J <« 0
P <0
A[0] « 0
P « P+l |
- A[P] « F(alI],A[J))
J « J+1
if I # 0 then go to L,
I « J+1
J <« 0.
L,: I « I=1
go to L,

This program is a single-conditional nonterminating
program. Thus the following program simulates it, com-
puting in A[+,0] the same sequence the above program
computes in A[+] . The reader may verify that the con-

struction is in accord with Lemma 6.

K<« 0
I[K] « O
JlK] « 0
P[K] « O
A[0,K] « O
L.: P[K] « P[K]+1
A[P,K] <« F(A[I[K],K],A[TJ[K],K])
J[K] <« J[K]+1
K <« I[K]
‘I[K] « J[K]+1
J[K] « O
K<« 0
L,: I[K] « I[K]=1

go to Ll

-19-

Of course, label L2 now serves no purpose except to

make comparison of the programs easier.

General Nonterminating Programs

Lemma 6 illustrates our method of simulating branches
by taking execution "out of the simulation set" until the
destination label is reached. With this idea understood,
it is now easy to generalize the method to general non-
terminating programs which may have an arbitrary number of
conditional branches.

A general nonterminating program has the form

1
Ty
T
m
Ll: S1
L2: 52
L : S
n n
go to Ll

where the Ti are of the form

x < F(Yl, e o0 ,Yk)

and the Si may have either the form

- -20-

(i) X <« F(Yl’ cee ,Yk) or

(ii) if X # 0 then go to Lp .
i

Except for allowing an arbitrary number of conditionals,

the definition is the same as before.

Theorem 7: For any general nonterminating program

there exists a nonterminating program without

conditional which simulates it.

Proof: Let there be g conditional branch statements
(of type (ii)) in a given general nonterminating program.
Define a simulating program by the following transformation:

(1) Create g new variables, each with g-1

subscripts:

Il[' 11 e I°]
]

Iz['l'r cee g

—
]
-
L[]
~
.
.
.
-
L]
—
~e

(2) Precede the program with g statements to

initialize the origin index location of the new

variables to zero:

Il[0,0, e ,01 <0
I2[0,0, ... ,0] <0

Iq[o,o, eee 401 <« 0 ;

-21-

(3) Replace each conditional branch statement. If
the rth such statement is
Li: if X # 0 then go to Lr
replace it with a control variable "set"
statement
L;: I_[I;00,...,01,...,1I__;00,...,],
Ir+l[0""'0]""’Iq[o""’O]] + X
and precede each label Lr with a "reset"
statement
Ir[Il[O,...,O],...,Ir_l[O,...,O],
Ir+1[0""'0]""’Iq[o""'O]] <0 ;

(4) Augment each elementary variable of the original
program with g subscripts which are origin-
indexed control variables, Ir[0,...,0] . For
instance, for an array reference X[Yl, .o ,Yk]

write

X[Yll...'Yk’Il[o'...’O],Iz[o’...'O]’ oo o
Iq[O,...,O]] .

The selector from the variables of the original program
into the simulation set {x | x is an array reference with
at least g subscripts and the last g subscripts are zero}
is defined in the obvious way.

Simulation is shown in the same way as before. As long
as no test variable is nonzero at the time it is tested, no
branch occurs in the original program and no control variable

gets changed in the simulator.

-22-

When some test variable is nonzero when tested, . the
Same arguments again apply since control varlables only
enter array references in the origin-indexed p051tlon.
Thus, once one control variable is nonzero in its origin-
indexed position, neither a control variable in this
position nor any variable in the simulation set can be
affected until the "reset" statement for the appropriate
control variable is reached. We conclude that simulation

is correct. [J

The reader is invited to compare our construction with.

that given by Gries [4].

General Programs

It is well known that for every general recursive

function there exists a general program of the form

Ll' S
Ly: S,]
Ln: Sn

Ln+l:

where the Si are of the form
(i) X « X+1 ,
(ii) X <« x=1 ,
(iii) X <« Y , or
(iv) if X # 0 then go to L

where X, Y are elementary variables. This language is simply

-23-

G3 augmented with an assignment statement, (iii). A general
program terminates by a branch or by natural sequencing to
label Ln+l . We include assignment statements in order to
allow conditional-free simulations and make output conven-
tions more ﬁatural. Array references are allowed in order
to state an equivalence result.

For such a program to compute a function there must be
a selected output variable, say 2 . When the program is
run on some input Py it generates a computation
PgrPys +++ 1Py v which is finite if the program computes a
function. The value of Z in P is the value of the

function.

Take a gene€ral program T, with input variable I
and output variable Z . Construct Ty with input variable
J and output variable W , neither of which appear in To

as follows:

LO: I « J
le L)
Ln+1: W<« 2
J <« J+1

if J # 0 then go to L0

A computation of over variable set W will

it
enumerate the r.e. set for the function computed by Ty +
beginning of course with the vj+1St value, where j is
the input to J . We may say that the r.e. set is "printed

in W .

-24-

Since all we need to do to make T, @ general non-
terminating program is to change the last statement to
go to L, , we can construct a conditional-free simulator.

This gives us the theorem:

Theorem 8: For any r.e. set there exists a general
nonterminating program without conditionals which

enumerates the set. [
There is a stronger result than this, however.

Theorem 9: For any general program there exists a
general nonterminating program without conditionals
which simulates it.

Proof: Let To be an arbitrary general program.
Construct from Ty @ program m, in which every ele-
mentary variable is increased in dimensionality by one,
using a new variable H . Clearly T simulates L
when H = 0 in the initial state and the simulation set

{x | x is an array reference in and H = 0} is

T

related to the variables of in the obvious manner.

To
Then construct a general nonterminating program LD
from Ty
H<« O
Ll: Ty
Ln+l: H <« H+1
go to L,

=25~

It is clear that Ty simulates Tg oOn simulation set
{x | X 1is an array reference in "2 and H =0} , for

if label Ln is reached, execution will never enter the

+1
simulation set again, and a simulation exists. Or if

Ln+l

simulation set, and a simulation exists within

is never reached, execution will remain in the

i .
1
Finally, apply the construction of Theorem 7 to

produce a program 1. , free of conditionals, which simu-

-3

lates T, on the simulation set {x | x 1is in the

simulation set of T3 and H[0,...,0] = 0} . By Lemma

1, simulates g - g

T3

Let equivalence of program classes exist whenever

there are constructions which, given a program in each

class, give simulating programs in the other class.

Theorem 10: The class of general programs is

equivalent to the class of conditional-free non-
terminating programs.
Proof: Thecrem 9 gives us the construction from the
class of general programs to the class of conditional-
free nonterminating programs. The reverse construction is
trivial since every conditional-free nonterminating program
becomes a general program when the final go to is replaced
by a conditional branch on an always nonzero variable. 0
Obviously it is not true that conditional-free

programs with arrays can be simulated by general programs

-26-

‘without arrays, since this would require a bijection from

an infinite to a finite set.

Time Complexity

In all thé constructions of the preceding theorems,
the nonterminating simulators give a simulation in time
related linearly to the product of the size and execution
time of the original program provided only the time to
produce the respective computations is counted. It may
indeed be reasonable to measure execution times in this
way since it is always possible to arrange for a simu-
lator of a terminating pfogram to enter a final "compu-
tation done" state in its simulation, possibly printing
a message to that effect. Otherwise, of course, we must
observe that our simulating programs do not terminate in

general.

-27-

References

(1]

[2]

[31]

[4]

(5]

(61l

[7]

[8]

Constable, R. L. and Borodin, A. B., "Subrecursive
Programming Languages, Part I: Efficiency and Program
Structure," J.ACM, 19, 3, 526-568 (July 1972).

Constable, R. L. and Gries, D., "On Classes of Program
Schemata," SIAM J. Comput., 1, 1, 66-118 (March 1972).

Goguen, J. A. Jr., "On Homomorphisms, Simulations,
Correctness and Subroutines for Programs and Program
Schemes," Proc. IEEE Symposium on Switching and Autom-
ata Theory, 1972, 52-60.

Gries, D., "Programming by Induction," Information

Processing Letters, 2 (1972).

Milner, R., "An Algebraic Definition of Simulation
between Programs," Stanford Artificial Intelligence
Memo AIM-142, Computer Science Department, Stanford
Univ. (also in Proc. I.J.C.A.I. Conf., London,
September 1971).

Minsky, M., Computation, Finite and Infinite,
Prentice-Hall, Engelwood Cliffs, N.J., 1967.

Patterson, M. S. and Hewitt, C. E., "Comparative
Schematology,"” Conf. Record of Project MAC Conference
on Concurrent Systems and Parallel Computation,

Accoc. for Comput. Machinery, New York, 1970, 119-128.

Strong, H. R., "High Level Languages of Maximum
Power," Proc. IEEE Conf. on Switching and Automata
Theory, 1971, 1-4.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

