PERFECT SAMPLING FOR DOEBLIN CHAINS
KRISHNA B. ATHREYA AND ORJAN STENFLO

ABSTRACT. For Markov chains that can be generated by iteration of i.i.d. random maps
from the state space X into itself (this holds if X is Polish) it is shown that the Doeblin
minorization condition is necessary and sufficient for the method by Propp and Wilson
for “perfect” sampling from the stationary distribution 7 to be successful.

Using only the transition probability P we produce in a geometrically distributed
random number of steps N a “perfect” sample from 7 of size N!.

1. INTRODUCTION

The problem of sampling exactly from the stationary distribution of an ergodic Markov
chain has received much attention in the Markov Chain Monte Carlo literature after the
pioneering work of Propp and Wilson [17]. (See e.g. [13] and [7]). The present work
explores this problem in some detail for Markov chains on general state spaces.

Let (X, B) be a measurable space, and P : X x B — [0, 1] be a transition probability.
That is, for each z € X, P(z,-) is a probability measure on (X, B) and for each A € B,
P(-, A) is B-measurable. Let P satisfy the Doeblin hypothesis:

There exist a probability measure v on (X, B), and constant 0 < « < 1, such that
(1) P(z,) > av(-), forall z € X.

It is known, see e.g. [16], [2] or [15], that for such a P:

i) there exists a unique invariant probability measure = on (X, B) i.e. a probability
measure satisfying,

(2) m(A) = / P(z,A)dr(x), for all A € B,
X
and
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(ii) if {ZHo}2 ; denotes a Markov chain with transition probability P and initial prob-
ability distribution g, then for any

(3) |P(ZF € ) — ()| < el — )" for n > 0,

where ¢ is a non-negative constant, and || - || denotes the total variation norm. Thus Z#°
may be regarded as a sample from a distribution that is close to .

The goal of this paper is to show that if the Markov chain with transition probability
P satisfies Doeblin’s condition and can be generated by iteration of i.i.d. random maps
then it is possible to produce in a finite number of steps using only P a sample of 7-
distributed random variables. In fact, our scheme produces a random sample of random
size M, say S := {x1,...,zm} such that each z; is marginally distributed as 7 and
conditional on M, they are identically distributed and M = N!, where N is a random
variable with geometric(c) distribution. Such a sample S, has been referred to as an
“exact” or “perfect” sample in the Markov Chain Monte Carlo literature (See [22]).

It is also shown here that for Markov chains that can be generated by iteration of i.i.d.
random maps, success of the method by Propp and Wilson of “perfect sampling” from
the stationary distribution of a Markov chain (understood in the sense of condition (A)
below) implies the Doeblin condition (1) for some iterate P™ of P. Thus the Doeblin
condition is necessary and sufficient for the simulation algorithm by Propp and Wilson
to be successful for Markov chains that can be generated by iteration of i.i.d. random
maps. This includes Markov chains with a countable state space and more generally
Markov chains with a Polish (=complete, separable, metric) state space.

In the next section, we review some relevant concepts from the theory of iteration with
i.i.d. random maps and prove some preliminary useful facts.

In Section 3 we apply these concepts to establish the above claims about Doeblin
chains. A numerical example is presented at the end.

2. ITERATION OF I.I.D. RANDOM MAPS AND MARKOV CHAINS

The simulation of Markov chains in discrete time is often accomplished by representing
the Markov chain in the form

(4) Xn+1 = f(Xna In)

where f is a function and {I,,} is a sequence of independent and identically distributed
random variables. Under mild conditions it is possible to represent a general state space
Markov chain in this form. Conversely a random dynamical system of the form (4)
where {I,} is a sequence of i.i.d. random variables generates a Markov chain under
appropriate measurability conditions. We spell this out below in some detail for the sake
of completeness as well as setting the stage for the results of Section 3.

Sequences of the form (4) in the case when {I,,} is stationary has been considered by
many authors. See e.g. [5], [9], [1] and [6] for an overview. See [18] for the case when
{I,} is a regenerative sequence. The particular case when {I,} is i.i.d. allows a richer
analysis. See [10], [20] and [8] for surveys of this literature.
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2.1. Random Dynamical Systems. Let (X, B) and (S,S) be two measurable spaces
and w : X x S — X be jointly measurable, i.e. for any A € B, w™(A) € B x S. Let
{I;}32, be a sequence of random elements of S defined on the same probability space
(Q, F, P). Consider the random dynamical system defined by

(5) Zn(z,w) = w(Zp-1(z,w), I, (w)), n>1, Zy(z,w)==x
If we write

(6) ws(z) = w(z, s),

then (5) can be rewritten (suppressing w)

(7) Zn(z) :==wyp, owy, ,0---owp(x), n>1, Zy(z)=ux.

Consider also the reversed iterates
(8) Zn(x) == wy, owp 0---owy, (x), n>1, Zy(z) =z

The assurpption that w : X xS — X is jointly measurable is crucial in rendering both
Zn(x) and Z,(z) random variables on (2, F, P) for any fixed n and z.

Proposition 1. For each n > 0, both Z,(z,w) and Z,(x,w) defined in (7) and (8) are
jointly measurable as maps from (X x Q,B x F) to (X, B) and hence for each x, and n
Zn(x,-) and Z,(x,-) are measurable as maps from (0, F) to (X, B).

Proof. (by induction)

Clearly Zy(z,w) := z is jointly measurable. Assume Z,(-,-) is jointly measurable for
some fixed n. Define the map h, : (X x Q,Bx F) = (X x S,B x S), by

(9) hn(z, w) = (Zn(2,w), Int1(w))-
For any A; € B and A, € S,
hit (A X Ag) = {(z,w) : hp(z,w) € A X Ay} = {(z,w) : Zp(z,w) € Ay, 11 (w) € Ay}
— 77 (4) N (X x I714(A)).
Since Z,(-,-) is jointly measurable (by the induction hypothesis), and I, : (2, F) —
(S,8) is measurable, h'(A; X Ay) € B x F. Thus the class {D : h;'(D) € B x F}
contains all rectangles of the form (A; x Ay) and since it also contains complements and
countable unions of such sets it contains the minimal o-algebra, B x S, generated by the
measurable rectangles. Consequently h,, is measurable.
Since w : (X x S, B x §) — (X, B) is measurable, the composition
w o hy(z,w) = w(Z,(z,w), Iy (W) = Zpyi(z,w)

is measurable. Thus it follows from the induction principle that Z,, is jointly measurable
for each fixed n.
The joint measurability of Z, for each fixed n implies that for any n and A € B,

Z7HA) = {(z,w) : Zy(z,w) € A} € Bx F.

n
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Hence, see e.g. [14] Proposition I11.1.2., for any x € X the z-section {w : Z,(z,w) €
A} € F, and thus
Zn(z,) - (2, F) = (X, B)
is measurable.
The same proof works for Z,. This completes the proof of the proposition.

Corollary 1. For each n,
P,(z,A) := P(w: Z,(z,w) € A),
constitutes a transition probability.

Proof. 1t is clear that for each z € X, P,(z,-) is a probability measure on (X, B). In
order to show that for each A € B, P,(-, A) is B-measurable we note that the class
of sets {D € Bx F: P(w: (z,w) € D) is a measurable function from X to R} is a
monotone class that includes the measurable rectangles {Ax B : A € B, B € F}. Hence
this class contains B x F. Since Z, is jointly measurable it follows that for any A € B,
Z-1(A) € B x F and consequently P, (-, A) is B-measurable. O

2.2. LI.D. random maps. Of particular importance is the special case when {I;}22,
of 2.1 are independent and identically distributed. It is intuitively clear from (7) that
for each fixed x, {Z,(x)}22, is a Markov chain starting at z. Here is a quick and formal
proof.

Proposition 2. Let {1, };";1 be a sequence of independent u-distributed random variables
and let the sequence {7, ()}, be defined as in (7). Then {Z,(z)}°, is a Markov chain
starting at x with transition probability

(10) P(z,A) = p(s:w(z,s) € A), z€ X, A€ B.

Proof. The fact that P is indeed a transition probability follows from Corollary 1.

Let F, denote the o-algebra generated by {I;(w)}?_;. For each fixed z, Z,(7,w) is a
measurable function of (I;(w),. .., I,(w)) and hence F,-measurable. By hypothesis the
random variables {/;(w)}52, arei.i.d. Thus, for any bounded measurable h : (X, B) — R
and A € F,,

E(h(Zps1(x)) - A) = E(h(w(Zy (), Iny1)) - A) = /ATh(Zn(x,w))dP(w)
where Th(z) := [, h(y)P(z,dy) for P is as in (10). Thus for each z, {Z,(z)}22, is a
Markov chain.
U

We call the set of objects {(X, B), (S, S, ), w(z, s)} an Iterated Function System (IFS)
with probabilities. (This generalizes the usual definition, see e.g. [4], where S typically is
a finite set and the functions w; = w(-,s) : X — X typically have (Lipschitz) continuity
properties.)
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The above proposition suggests the question: Given a transition probability P on some
state space (X, B) does there exist an IFS with probabilities that generates a Markov
chain with P as its transition probability? (We call such an IFS with probabilities an
IFS representation of P.) The answer is yes under general conditions including the case
when X is a Polish space. The following proposition and its proof are essentially as
in Kifer ([10] Theorem 1.1.) with an additional emphasis of the joint measurability of
the constructed map. Note that in view of Propositions 1 and 2 above it suffices to
show the existence of a probability space (S,S, ) and a jointly measurable function
w: X x S — X such that (10) holds.

Proposition 3. Suppose P is a transition probability on a metric space (X, d) that is
Borel measurably isomorphic to a Borel subset of the real line. Then there exist a jointly
measurable function w : X x (0,1) = X such that

(11) P(z,A) = p(s € (0,1) : ws(x) € A),

for any x € X and Borel set A in X where u is the Lebesgue measure restricted to the
Borel subsets of (0,1).

Remark 1. If (X,d) is a Polish (=complete, separable, metric) space then (X,d) is
Borel measurably isomorphic to a Borel subset of the real line.

Remark 2. Note that an IFS representation for a transition probability is typically not
unique.

Proof. Assume first that X is (a Borel subset of) R. Define w: R x (0,1) — R by
w(z,s) = inf{y : P(z, (—o0,y]) > s}.
We have
w(z,s) >a< Pz, (—0,a]) < s,
for x € X, s € (0,1) and @ € R. Thus for fixed z, w(z, s) is Borel measurable in s and
since
u(s € (0,1) :ws(x) >a) = p(s € (0,1): Pz, (—o0,a]) < s)
1 —-P(z,(—00,a]) = P(z, (a,)),

and sets of the form (a, c0) generates the Borel sets in R, it follows that (11) holds.

Also for fixed s € (0,1),

{zr eR:ws(x) >a} ={r € R:P(z,(—00,a]) < s},

and this is a Borel set since P is a transition probability. Thus w, : R — R is a Borel
map.

E}E remains to show that w is jointly measurable. Note that for fixed z, w(z,s) =

wg(s) : (0,1) — R is nondecreasing and left continuous. Set w(z,0) = —oo and let us
for n > 1 define,

. 11
wy(z, 8) = w(x,j/n), if 4 <s< ]i, j=0,..,n—1.
n n
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For any Borel subset A of R, we have that

{(x,S):wn(x,s)EA}:U?;& (z,5) : w(z, j/n) € A, %§8<j:1}
= U ({(e,5) i, fn) € A} {(ms) - L <s < 0y

is a Borel subset of R2.
Since w(z, s) is left continuous in s, it follows that w(z, s) = lim,_, wy,(x, s) for all
(z,s) and thus

{(z, ) : w(z,s) € (a,00)} = U, N2 {(x,s): wy(z,s) € (a,00)}, for any a € R.

Consequently w is jointly measurable.

Suppose now the state space, X, is Borel measurably isomorphic to a Borel subset of
the real line. Let ¢ : X — R be a one-to-one Borel map such that M = ¢(X) is a Borel
subset of R with the property that ¢~ : M — X is also Borel measurable. Suppose that
¥ : R — X equals ¢ ' on M and maps R\M on some point z; € X. For each z € R
and Borel subset B of R define P(z, B) = P(¢(z), ¢~ (B N M)). It is readily checked
that P is a transition probability on R.

Define ¢ : R x (0,1) — R by g(z,s) = inf{y : P(z,(—o0,y]) > s}. Then as was
shown above, we have that ¢ is measurable. Define w(z,s) = ¥(g(¢(x),s)). Then
w: X x (0,1) — X is measurable and for any measurable subset A of X we have that

p(s w(z, s) € A) = p(s : ¥(9((x), 5)) € A) = (s : g(¢(z),s) € Y1 A)
= P(¢(x), ¢ A) = P($(¢(x)), 6~ (v AN M)) = P(z, A).
This completes the proof. O

Since {I;}22, is i.i.d. it follows that Z,(z) and Zy(z) defined in (7) and (8) respectively
are identically distributed random variables for each fixed n and xz. Thus in order to
prove distributional limit results for the Markov chain {Z,(z)} as n tends to infinity
we may instead study the pointwise more well behaved (but non-Markovian) sequence

{Zy(2)}.

The following proposition is part of the folklore in this subject.

Proposition 4. Let (X,d) be a metric space.
(1) Suppose for some x € X there exists a random variable Z(x) such that

Zn(x) = Z(z), in distribution.
Let m, denote the probability distribution of Z(z), i.e. my(-) = P(Z(z) € ). Then

Eh(Z,(2)) = Eh(Z(2)) == /X hdr,,

for any h € C(X), the space of real-valued, bounded and continuous functions on X, i.e.
Zn () converges in distribution to Z(x).
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(i1) Suppose in addition that P (defined as in (10) above) has the Feller property i.e.
the map Th(z) := [ h (z,dy) is continuous for any h € C(X). Then m, is invariant
for P.

(#ii) If P has the Feller property and m, in (i) is independent of x € X, then m, = 7
1s the unique invariant probability measure for P.

Proof. The proof of (i) follows immediately from the property that Z,(z) and Z,(z) are
identically distributed for each fixed n. Assertion (ii) is a consequence of the fact that the
distributional limit of a Markov chain with the Feller property converging in distribution
is necessary invariant. To see this, note that, [, h(y)P"t!(z,dy) = [ Th(y)P"(x, dy) for
any h € C(X) and integer n > 1. Letting n — co we obtain that [, hdm, = [, Thdm,
and thus 7, is invariant. Assertion (iii) is a consequence of the fact that a weakly
attracting probability measure for a Markov chain is necessary unique. In fact suppose
f < My)P™(z,dy) — f « hdm for all z € X and that @ 7r is an arbitrary 1nvar1ant probability
measure. Then fX hdr = [, [y h(y)P™(z,dy)dn(z) — [, [y hdndit(z) = [ hdr, and
thus # = m. The invariance of 7 follows from (ii).

O

Remark 3. As a corollary of the above proposition we obtain that if the maps, ws, s € S,
are all continuous and the limait

(12) Z = lim Z,(x)

n—oo
ezxists and does not depend on x € X a.s., then 7 defined by m(-) = P(Z € -) is the
unique invariant probability measure for the Markov chain with transition probability P
defined as in (10) above. This was formulated as a principle in [11] and follows since
the Markov chains obtained in this case will have the Feller property and almost sure
convergence implies convergence in distribution.

Remark 4. In the last 15 years, there has been an considerable interest for the case when
S is a finite set and the maps ws, s € S, are (affine) uniform contractions. In this case the
limit in (12) exists also in the deterministic sense and the compact limit point set Z(S)
(called the associated fractal set) typically has an intricate self-similar geometry. This
set 1s approached by any trajectory with an exponential rate. The invariant probability
measures obtained for these chains are supported on the associated fractal set. See [3]
for more on this and an inspiring account on how to generate fractals such as flowers
and landscapes as well as applications to image encoding. The Markov chains generated
in this way are typically not Harris recurrent. (See e.g. [12] for the definition of Harris
recurrent Markov chains).

Remark 5. For an overview of well known sufficient average contraction and stability
conditions ensuring (12) with an (almost surely) exponential rate of convergence, or as
in condition (A) below uniform in x € X, see e.g. [20], [8] and [19].
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If the convergence in (12) is in the discrete metric and uniform in z € X, then Propp
and Wilson (1996) gave an algorithm for exact sampling from 7. The following propo-
sition may be viewed as a (slightly weaker) alternative formulation of the simulation
algorithm by Propp and Wilson [17].

The algorithm by Propp and Wilson (1996) for exact simulation: Suppose
there exists a random variable Z : (Q, F, P) — (X, B) with the property that

(A): sup,cx d(Zn(z), Z) “3 0, as n — oo,

where d denotes the discrete metric (d(z,y) = 1 <= =z # y) then (equivalently
formulated) there exists a random integer N, with P(N < co) = 1, such that Z,(z) = Z
for all n > N and z € X and thus Zy(z) is a 7 distributed random point.

In practice, we continue to simulate i.i.d. random variables I, ..., Iy until the first mo-
ment when the function Zy(z) does not depend on z € X. (It is clear that Z,(z) = Z
for all n > N since for n > N we have that Z,(z) := ZN(w1N+1 o---owy, (z)) and Zy(y)
does not depend on y € X.)

Remark 6. In order for this algorithm to be effective we need a good tool to determine
whether Z,(z) does depend on x or not.

In the case when X 1is a partially ordered set with the additional property of the exis-
tence of a largest and smallest element 1y, and y, respectively and wy are monotone with
respect to this ordering for any s € S, then Zn(x, w) is a map monotone in x and we only
need to check whether Z,(y)) = Zn(ys) since all other Z,(z) will be sandwiched between
these values. See e.g. (8] for further details and examples.

If wy, is constant for some n then Zn will also be constant. This simple property is
an essential property we are going to use here.

Remark 7. If the convergence in (A) is only true with the metric d replaced by the metric
d, we obtain an algorithm for simulation of points from a distribution, 7, close to w in the
Prokhorov metric for probability measures. The algorithm can be formulated as follows;
Fiz a point 1o € X and an € > 0. Let N := min{n : sup, ,x d(Zn(x), Zn(y)) < €}.
Then Zy(xo) will have the desired property, with #(-) := P(Zn(x0) € -) being e-close
to m in the Prokhorov metric. This extension of the Propp and Wilson algorithm thus
makes sense also in cases when we do not have convergence in total variation norm which
e.q. is the typical case for fractal supported invariant probability measures. Note however
that N need not be measurable in general. In the case when the metric space (X,d) is
separable and partially ordered with the additional property of the existence of a largest
and smallest element vy, and y, respectively and w, are monotone with respect to this
ordering for any s € S then N will be measurable.
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Remark 8. Note that any map on X into itself is continuous if X is given the topology
induced by the discrete metric. Thus w(-) = P(Z € -) is invariant if condition (A) holds.

Remark 9. Versions of the Propp and Wilson algorithm can be stated also in cases
when {I,} is not i.i.d. but has an underlying i.i.d. structure. See [21]| for a version of
the Propp and Wilson algorithm for Markov chains in random environments.

Let us now consider the following conditions:
(B) : P(Z,, is a constant function) > 0, for some ny > 1.
and

(C) : (The (general) Doeblin hypothesis): There exist a probability measure v on (X, B),
and constants 0 < a < 1 and ny > 1 such that

P (z,-) > av(-), for all z € X.

Condition (B) needs some additional explanation. Fix a pont 2y € X. The set {Z,,
is a constant function} = {w : Z,,(z,w) = Zp,(z,w) for all z € X} may not be a
measurable set in general. In this case we understand condition (B) as fulfilled if

sup{P(A) : A C {Z,, is a constant function}, A € F} > 0, for some ng > 1.

We call an IFS regular if the sets {Z, is a constant function}, and {Z, is a constant
function} are measurable for each n.

Note that if X is separable and {¢;}$2, is a countable dense set in X we have that
{w : ZHO(QI) = Zno(qi)a\V’i} =Ny qu‘ mqj{w : Zno(qjvw) € {~T : d(x:qi) < 1/n}}7 and
{w : Zn,(q1) = Zp,(q:), Vi} are measurable and thus any IFS representation on a separable
metric space with all wg, s € S being continuous is necessarily regular.

If S is a finite or countable set and if w, is measurable for each fixed s € S, then the IFS
is regular and no further topological assumptions on X is needed. To see this, suppose S
is a finite or countable set. Let n € N be fixed and define for every i = (i1, ... ,i,) € S™,
Ci={w e Q: L(w) =1,...,I(w) = i,}. By the assumption that I, is an S-valued
random variable for each fixed n it follows that C; € F. Let A, = {i€ S" : w;, 0---ow;,
is a constant function}. Clearly A, is at most a countable set. Since {Zn is a constant
function} = Ujea, Cj it follows that {Zn is a constant function} € F. The same argument
works to prove that {Z, is a constant function} € F.

Theorem 1. For a reqular IFS we have the following relations between our conditions:

(4) & (B) = (C)
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and conversely any transition probability on a metric space that is Borel measurably
isomorphic to a Borel subset of the real line satisfying condition (C) with ng =1 can be
represented by an IFS satisfying conditions (A) and (B).

Remark 10. If we understand the perfect sampling method of Propp and Wilson as
successful if and only if condition (A) holds, then Doeblin’s hypothesis also holds for
some ngy and thus we cannot perform perfect sampling from invariant distributions of
general Harris chains using Propp and Wilson’s method.

Proof. Proof (A) = (B) : Let A, = {Z, is a constant function }. The sets A, are
measurable by assumption and increasing i.e. A, C A,.1, for any n > 1. Assume
condition (A) holds. Condition (A) is equivalent to P(UA,) = 1. This implies that
lim,, ,o P(A,) = 1 and hence P(A,,) > 0 for some ny > 1 which is the same as (B)
since for each fixed n, P(A,) = P(Z, is a constant function).

Proof (B) = (A) : Assume « := P(Z,, is a constant function) > 0 for some ngy. For
integers m > 1, define the independent random functions wy, = Wy © Whpppo 1 ©*7* O
Wi 1ypgs1- Thus Zn, = Wm © --- 0 Wy, and consequently P(Z,,,, is not a constant
function) < P(w; is not a constant function for any i = 1,...,m) = II7*, P(w; is not
a constant function) = (1 — @)™. Thus P(Zmy, is a constant function) = P(Zpyy, is a
constant function) > 1 — (1 — )™ — 1, as m — oo, and consequently condition (A)
holds.

Proof (B) = (C) : Assume « := P(Z,, is a constant function) > 0. Define v(-) :=
P(Z,, € - | Zy, is a constant function). Then v is a probability measure on (X, B). It

follows that
P®(z,) = P(Zn(2) €)
> P(Zp,(x) € -, Zp, is a constant function)
= av(),

and thus condition (C) holds.
The converse of Theorem 1 will be proved as a part of the proof of Theorem 2 below,

stated and proved in the next section.
O

3. PERFECT SAMPLING FOR DOEBLIN CHAINS

The goal of this section is to establish the claims made in Section 1 about Doeblin
chains.

Theorem 2. Let P be a transition probability on a metric space that is Borel measurably
isomorphic to a Borel subset of the real line. Suppose the Doeblin hypothesis (1) holds.

Let w denote the unique invariant probability measure for P. Then we can produce a
non-trivial sample of w-distributed random variables of random size M, {X1,..., Xun},
where M = N! and N is a geometric(a)-distributed random variable. Conditional on
N =n, {Xy,..., Xu} are identically distributed.
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The sample can be explicitly constructed according to the following scheme:
1. Generate a geometric(a)-distributed random integer, n.
2. Generate n independent random numbers, iy, ... ,i,, uniformly distributed in (0,1).
The sample can now be expressed by {z, : o is a permutation of {1,...,n}}, where
To = fizqy © Jig) O "0 figuoy © Gin(ny and where the functions fs: X — X and X-valued
constants gs, s € (0,1) are constructed by using the algorithm described in the proof of
Proposition 3 above.

Remark 11. Special cases of Theorem 2 has been proved by Murdoch and Green [13]
and Corcoran and Tweedie [7]. The random point usually referred to in the Propp and
Wilson method corresponds to the point x, where o s the identity permutation.

Proof. Define the transition probability,

(13) Q(z,-) :=
Then

P(z,-) — a/z/(-).
l-«o

P(z,")=(1—-a)Q(x,-) + av().

Using the algorithm described in the proof of Proposition 3 above, let f(-,s) = fs,s €
(0,1), and g(-,8) = gs,s € (0,1) together with the Lebesgue measure restricted to
(0,1) be IFS representations of Markov chains with transition probabilities Q and v(-)
respectively. (We identify v with a transition probability defined by v(z, ) := v(-)).

Let {I! } be a sequence of independent random variables uniformly distributed in (0, 1).
Let {I} be another (independent) such i.i.d. sequence.

Then {1}, with I,, = (I}, I) forms an independent sequence uniformly distributed in

n' n

(0,1) x (0,1). If we define w,; = f, for 0 < ¢ <1 — « and g, otherwise, we obtain that
wr, = x(I; £1—a)fy, +x(I; > 1 - a)gr,

where x denotes the indicator function. Thus {(X, d), ws,, (s,t) € (0,1)x(0,1)} together

with the Lebesgue measure restricted to (0,1) x (0, 1) forms an IFS representation of the

transition probability P.

Note that g, s € (0,1) are all constant maps chosen with positive probability and thus
condition (B) is fulfilled proving the converse of Theorem 1.

Let N = min{n > 1;I” > 1 —a}. Then P(N =n) = (1 — a)" 'a and thus P(N >
n)=(1—-a)"

Define Z,(z) and Z,(z) as before and note that if N < n then Z,(z) = Zy(z) is a
constant function. Note also that P(N < n) — 1 as n — co. Define Z := Zy(z) and
() :=P(Z e ).

For fixed integers n > 1, and permutations o of {1,...,n}, define

~0— P e n
Zn - w(lg.(l)alil) © © w(lg,(n)alg)'

A

Note that for o = id, the identity permutation, we have that Zg = Z,. It is clear that
Z%(x) and ZZ(x) are identically distributed for any pair ¢ and & of permutations of
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{1,...,n} and any x € X. It is also clear that conditional on the event {N = n}, Z%
and Z§ have the same distribution and the value is independent of z.
Thus for any permutation o of {1,..., N} we have that X, := fp

(] 1 O ---0
. . . . . 0-(1) fIO-(Z) . .
fr wep 09Iy 18 m-distributed. From this expression we also observe that conditional

on N the random variables {X,} are identically distributed. This completes the proof
of Theorem 2.
O

Remark 12. If V(-) is a real valued function on (X, B) that is integrable with respect
to m, then an estimate of A = [ Vdr is

where {X;: 1 <i< M} is as in Theorem 2.

There is an alternative formulation of Theorem 2 which can be more useful in cases
when an IFS representation of Q defined in (13) above is a-priori known. The following
theorem states this and also gives a representation of the unique invariant probability
measure.

Theorem 3. Let P be a transition probability on a measurable space (X, B) satisfying
the Doeblin condition:

P(z,:) > av(-), for all z € X,
where 0 < o < 1, and v is a probability measure on (X,B). Define the transition

probability,

Q(z,-) := P(x’l')__aay(')

and suppose {(X, B), (S, S, u), f(x,s)} is an IFS representation of Q.
Then

(a)

I

P"(z,-) = i(l — oz)joz/X Q' (y, )dv(y) + (1 — a)"Q™(z,-), n > 1,
(b)
7() =301 - oV [ @ )dn(y

15 the unique invariant probability measure for P.
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(c) Let {I;}22,, n and N be independent random variables on the same probability space
(Q, F, P) such that for each j, I; is an (S,S)-valued random variable with distribution
w, n is an (X, B)-valued random variable with distribution v, and N is an integer valued
random variable with geometric(a) distribution, i.e., P(N = j) = (1 — )’ la for j > 1.
Let for n > 1, 3, be the set of all permutations of {1,2,...,n}. Forn > 2 and
o € Ny let Xo = fr,4,0 i, 00 f1,_y)(n). Forn =1, set ¥y = {0} and
Xo =mn. Let for anyn > 1, {on; 11 =1,2,...,(n—1)!} be a listing of the elements of
Yn_1. Then the collection {Xs,, 1 < i < (N —1)!} has the property that they are m-
distributed. Further, conditional on N =n and n = x the collection of random variables
{X,,, 1 <4< (n—1)!} are also identically distributed with distribution Q" '(z,-).

Remark 13. When (X, B) satisfy the conditions of Theorem 2 then we can use Propo-
sititon 3 in order to find an IFS representation for Q.

Proof. To verify (a), let us for k¥ < N, define w;, = fr, and for k > N let w;, = 1. As
before define,

Zn(x) == wy, owpy 0--- 0wy, (x), n>1, Zy(z) =
For any n we have that

P"(z,-) = P(Zn(z) €) = P(Zn(z) €-|N >n)P(N >n)

This proves (a).

From (a) we observe that ||P"(z,:) — w(-)|| — 0 as n — oo. Thus 7 is uniquely
invariant and (b) holds.

The proof of (c) is the same as the proof of Theorem 2 above. We omit the details. O

Remark 14. As a consequence of the representations in Theorem 3 we see that for any
r € X andn >0,

o0

P (@) 7O = lla) (1) /X Q " (y, )dv(y) — Q"(z,-)[|(1 — )"
< (1-ar

We have thus in particular proved (3).
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Remark 15. If for any x € X, Q(z,+) is absolutely continuous with respect to X for
some measure \ then m 1s also absolutely continuous with respect to A and

9T () = 31— o [ (o, p)dv(a),
()=

j= X

where g9 (z,-) is the density of Q7 (x, ) with respect to X. This can be seen by using the
representation in Theorem 3 (b).

Remark 16. Versions of Theorems 2 and &8 can also be given under the generalized
Doeblin hypothesis (C). If we consider subsequences {Znn,}5° and note that they have
the same invariant probability measure as the full sequence, we see that the methods for
the case ng = 1 can be used.

4. EXAMPLE
We illustrate our sampling algorithm with a simple example.

Example 1. Let

0.7 02 0.1
P=| 04 02 04
0.1 06 0.3

be a Markov transition matriz for a Markov chain on the three points state space {0, 1, 2}.
This Matriz can be written as

3

0.7 0.2 0.1 1/4 2/4 1/4 1 0 0
04 02 04 | =04 1/4 2/4 1/4 | +06]| 1/2 0 1/2
0.1 0.6 0.3 1/4 2/4 1/4 0 2/3 1/3

Using the algorithm described in the proof of Proposition 8 above for gemerating an
IFS representation for
1/4 2/4 1/4
1/4 2/4 1/4 |,
1/4 2/4 1/4

we obtain g; =0, if 0 < s <1/4,9s=1,if1/4 < s<3/4, and gs =2, if 3/4 < s < 1,
and for

1 0 0
1/2 0 1/2 |,
0 2/3 2/3

we obtain fs = hy, if0 < s < 1/2, fs=ha, if 1/2 < s <2/3, and fs = hs, if2/3 < s < 1,
where the functions h; : {0,1,2} — {0,1,2}, i = 1,2,3, can be expressed by

01 2 01 2 01 2
m_<001)’@_<021)’%_(022>'
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In order to use the algorithm described in Theorem 2, we toss a “skew coin” with
probability 0.4 to obtain “head” until the first time, N, when “head” occurs.

Suppose e.q. that the value we obtain by this experiment is equal to 3. We now generate
3 random points uniformly distributed in (0,1). Suppose e.g. that 0.367,0.252, and 0.839
are the results we obtain from this erperiment. We note that go367 = goose = 1, and
Go.szo = 2 and fos67 = foos2 = h1, and fos3e = hs. Let m denote the unique invariant
probability measure for P. We obtain the following sample of w-distributed points; x1 :=

fo3670 fo.252090.830 = 0,72 := fo.3670 fo.839090.252 = 1,73 := fo.2500 fo.8390G0.367 = 1,74 :=
fo.252 © fo.367 © Go.839 = 0,25 := fo.839 © fo.252 © go.367 = 0, %6 1= fo.839 © fo.367 © Go.252 = 0.
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