
  

 

COMPUTATIONAL CANOPY MODELS FOR PRECISION MEASUREMENT 

AND ADAPTIVE MANAGEMENT OF GRAPEVINE PERFORMANCE 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

by 

James Matthew Meyers 

January 2011



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 James Matthew Meyers



 

 

COMPUTATIONAL CANOPY MODELS FOR PRECISION MEASUREMENT 

AND ADAPTIVE MANAGEMENT OF GRAPEVINE PERFORMANCE 

 

James Matthew Meyers, Ph. D. 

Cornell University 2011 

 

Effective control of winegrape fruit quality requires the simultaneous consideration of 

multiple response models including: the relationship between the chemical profile of 

harvested fruit and the organoleptic qualities of a finished wine; a mechanistic 

understanding of key flavor and aroma compound biosynthesis; and the role of 

physical vineyard parameters in these biosynthetic processes. Any attempt to 

predictably influence the performance of a winegrape cropping system, with respect to 

flavor and aroma, requires the ability to both measure the relevant physical parameters 

of that system and to accurately manipulate them to achieve a deliberate and 

quantitative response. Although the sub-discipline of precision viticulture has 

established that a quantitative understanding of plot-scale spatial variability can guide 

cultural inputs toward plot-scale consistency, the existence and small-scale spatial 

patterns and their effect on precision management have not been extensively studied. 

The experiments presented here were designed to: 1) improve the precision and 

increase the spatial resolution of commonly used viticultural research methods with 

the goal of identifying, characterizing and quantifying small-scale spatial patterns in 

fruiting-zone of winegrape canopies; 2) explore the impact of small-scale spatial 

structure on the efficacy of common plot-level cultural inputs; 3) develop methods for 

optimizing vineyard research and commercial production operations within known 

parametric spatial patterns at multiple scales; and, 4) explore the potential application 



 

of these methods in the control of a specific sunlight-sensitive compound vital to the 

organoleptic qualities of Riesling wine. The development and application of new 

computational methods for managing both the data volume of high-resolution models 

and the combinatorial complexities of multi-objective vineyard optimization, resulted 

in: new quantitative metrics for describing fruit-zone sunlight regimes; the discovery 

and quantification of small-scale culturally-induced microclimatic spatial patterns; the 

discovery that small-scale spatial patterns can negatively impact the efficacy of plot-

scale cultural inputs; and an enhanced understanding of the relationship between 

canopy microclimatic variability and concentrations of C13-norisoprenoids in Riesling 

grapes. To date, the software tools developed within the scope of dissertation have 

been adopted by researchers and winegrape growers in a dozen countries and 14 U.S. 

states for use in the study and optimization of crop performance and fruit metabolite 

profiles. 
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CHAPTER 1 

ENHANCING THE PRECISION AND SPATIAL ACUITY OF POINT QUADRAT 

ANALYSES VIA CALIBRATED EXPOSURE MAPPING 

 

 

Abstract: Modeling canopy sunlight environments requires precise measurements of 

biomass distribution and photon flux distribution (PFD). However, customary 

methods for obtaining these measurements are limited in their precision and 

practicality. Point quadrat analysis (PQA), the standard for canopy architecture, is 

limited in spatial precision and the lack of calibration; while measurement of PFD 

across an entire canopy typically requires rigorous sampling protocols. This paper 

introduces new methods that combine PQA and photon flux measurements into a 

calibrated biomass and PFD model. These techniques, applied to sample data from a 

shoot thinning study, revealed quantitative descriptions of canopy biomass 

distribution, light environment and treatment efficacy.  

 

Key words: Light attenuation, light interception, biomass distribution, canopy 

management, shoot thinning 

 

Introduction 

Sunlight intensity in a grapevine canopy fruiting zone has been shown to 

strongly correlate with key fruit composition measures such as sugars, acids, and a 

variety of secondary metabolites involved in wine flavors and aromas, including 

phenolics (Downey et al. 2006), monoterpenes (Reynolds and Wardle 1989), 

norisoprenoids (Lee et al. 2007), and methoxypyrazines (Hashizume and Samuta 

1999). Accordingly, many viticultural treatments associated with canopy management 
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are intended to manipulate the photosynthetic photon flux (PPF) of the fruiting zone or 

the distribution of photon flux across the total leaf area of the canopy to achieve 

metabolic effect. 

To establish the efficacy of viticultural treatments, researchers compare pre- 

and post-treatment measurements of specific microclimatic indicators and look for 

correlations between those differences and both quantitative and qualitative harvest 

data. Point quadrat analysis (PQA) has been used for decades as a method for 

measuring and comparing microclimatic indicators of a canopy, including canopy 

consistency, leaf area density, cluster exposure, and leaf area source/sink balance (i.e., 

exterior vs. interior leaves) (Smart and Robinson 1991). PQA has been used to 

characterize both vertically shoot positioned and non-vertically positioned trellis 

systems (Gladstone and Dokoozlian 2003). PPF is commonly measured directly via a 

ceptometer placed at the location of interest. Both PQA and direct PPF measurement 

are relatively simple and easily performed, but they have limitations. For example, 

optimal viticultural practices should be guided by precise sunlight measurements at 

multiple locations within the canopy, but PPF measurements are often limited to the 

fruiting zone. This is because it is an important location, but also because it is easy to 

define and locate. Obtaining PPF readings at other points in the canopy requires 

establishing a rigorous coordinate system within the canopy and recording a 

considerably larger number of samples (Schultz 1995). Sampling a large number of 

PPF values is potentially error prone because of the shifting sun location and variable 

cloud cover during lengthy data collection.  

Numerical analysis methods traditionally associated with PQA underutilize the 

spatial information collected by defining individual leaf or cluster exposure as a binary 

function: exposed (not interior) or unexposed (interior) (Smart and Robinson 1991). 

This approach presupposes that all interior leaves and clusters are equally exposed to 
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sunlight, or that the differences in exposure are immaterial. This approach to exposure 

analysis diminishes precision, and thus reduces the confidence of efficacy correlations 

offered by PQA-based viticultural research. More elaborate methods of describing leaf 

area density (Schultz 1995, Gladstone and Dokoozlian 2003) have been attempted 

which can depict the asymmetrical spatial distribution of biomass within the canopy, 

but the implementation of these methods is relatively difficult and time consuming. 

New methods for using the previously ignored spatial information collected 

from PQA datasets, and for simplifying whole-canopy PPF sampling protocols, have 

been developed and are described in this paper. Some of the proposed methods expand 

on traditional PQA analyses by enhancing numerical methods to compute leaf and 

cluster exposure as a continuous function and by introducing metrics for expressing 

biomass symmetry. Other methods integrate a minimal number of PPF measurements 

with traditional PQA data into a computational model designed to establish a 

calibrated canopy photon flux attenuation curve, and to produce maps of leaf and 

cluster exposures without the need for extensive PPF sampling. These new methods 

are demonstrated through a sample data set from a shoot-thinning study. All new 

spatial and calibrated flux metrics, discussed in the next section, are summarized in 

Table 1.1.  
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Table 1.1.  Summary of new point quadrat analysis metrics 

 

 

 

 

Metric Abbreviation 
Units of 

Expression 
Value 
Range 

Description 

Occlusion layer 
number 

OLN Contacts 
1 to 

infinity 
Number of shade-producing contacts (leaves and 

clusters) per insertion 

Cluster exposure 
layer 

CEL 
Occlusion 

layers 
0 to 

infinity 
Number of shading layers between clusters and the 

nearest canopy boundary 

Leaf exposure 
layer 

LEL 
Occlusion 

layers 
0 to 

infinity 
Number of shading layers between leaves and the 

nearest canopy boundary 

Canopy cluster 
symmetry 

CCS None -1 to 1 

The ratio of the number of occlusion layers between 
a cluster and the insertion side of the canopy 

versus the exit side of the canopy. A value of 0 
indicates that the distances are equal. A negative 
value indicates that clusters are biased to the exit 

side (– (1 – exit / insertion)). A positive value 
indicates that the bias is toward the insertion side (1 

– (insertion/exit)). 

Canopy 
calibration 
coefficient 

Ep1 None 0 to 1 
The average percentage, expressed as a decimal, 

of light that is transmitted beyond an occlusion layer 
of the canopy. 

Cluster exposure 
flux availability 

CEFA None 0 to 1 
The percentage, expressed as a decimal, of above-

canopy photon flux that reaches clusters. 

Cluster exposure 
flux symmetry 

CEFS None -1 to 1 

The ratio of the photon flux that clusters receive 
from the insertion side of the canopy versus the exit 
side. A value of 0 indicates that the flux is equal. A 
negative value indicates that flux is biased to the 
exit side (– (1 – exit/insertion)). A positive value 

indicates that the bias is toward the insertion side (1 
– (insertion / exit)). 

Leaf exposure 
flux availability 

LEFA None 0 to 1 
The percentage, expressed as a decimal, of above-

canopy photon flux that reaches leaves. 

Leaf exposure 
flux symmetry 

LEFS None -1 to 1 

The ratio of the photon flux that leaves receive from 
the insertion side of the canopy versus the exit side. 

A value of 0 indicates that the flux is equal. A 
negative value indicates that flux is biased to the 
exit side (– (1 – exit / insertion)). A positive value 

indicates that the bias is toward the insertion side (1 
– (insertion / exit)). 

Trellis contact 
symmetry 

TCS None -1 to 1 

The ratio of the number of biomass contacts on the 
insertion side of the trellis center, versus the exit 

side of the trellis center. A value of 0 indicates that 
the contact counts are equal. A negative value 

indicates that biomass is biased to the exit side (– 
(1 – exit/insertion)). A positive value indicates that 
the bias is toward the insertion side (1 – (insertion / 

exit)). 
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Materials and methods 

Sample dataset. Sample data to demonstrate the proposed new PQA metrics 

were obtained from a 16-row block of Vignoles (Vitis sp.) at a commercial vineyard in 

Hector, NY (Finger Lakes region, east side of Seneca Lake). Vines were planted in 

north-south row orientation, trained to high wire umbrella, and managed according to 

standard viticultural practices for hybrid canopies in the Finger Lakes region. Half of 

the vines in the block were shoot thinned to a target of 20 shoots per linear canopy row 

meter in a replicated fashion, while the remaining (control) vines averaged 24 shoots 

per linear meter of canopy. 

Canopy biomass characterization. Point quadrat analysis was performed pre-

veraison in mid-July by inserting a thin metal rod into the fruiting zone along the 

transverse axis of the canopy row, as described by Smart and Robinson (1991). A tape 

measure was used as a guide for insertions, which were made at 20-cm intervals along 

the length of the four-vine panel at the height of the fruiting wire, resulting in a total of 

36 insertions per panel. 

Photon flux measurements. A Decagon AccuPAR LP-80 photosynthetically 

active radiation sensor (Decagon Devices, Pullman, WA) was used to measure PPF. 

Ambient flux was measured above each data panel by averaging 10 flux samples 

collected over a period of approximately 10 seconds. For the ambient measurements, 

the ceptometer sensor bar was oriented parallel to the ground, with the sensors facing 

directly upwards toward the sky. Intra-canopy photon flux was measured by placing 

the ceptometer inside the canopy with the sensor bar aligned with the longitudinal axis 

of the row, and the sensors facing directly upwards toward the sky. Sensor height was 

the same height used for PQA measurements, and sensor depth was the transverse axis 

(center) of the trellising system. In practice, this depth equated to the location of the 

cordon wire. The in-canopy flux of each vine was measured by averaging 10 flux 
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samples, from a single location, collected over a period of approximately 10 seconds. 

%PPF for each vine‟s center was determined by dividing the average vine canopy flux 

measurement by the ambient flux measurement for the panel, and multiplying by 100. 

Measurements were recorded with the ceptometer bar set to sensor averaging mode. 

Continuous functions for cluster and leaf exposure.  The standard PQA 

metrics for sunlight exposure, PIC and PIL, are binary functions through which 

clusters and leaves are categorized as being either interior to the canopy or not interior 

to the canopy.  Three new metrics were developed to provide a continuous analog 

measure of exposure. The first, occlusion layer number (OLN), is the total number of 

leaf and cluster contacts for an insertion sample. The purpose of OLN is to formalize 

the idea that all canopy contacts contribute to canopy density (Reynolds et al. 1994, 

1996), and thus, create shade in the canopy. OLN is a measure of the overall shade-

producing biomass density of the canopy, and was calculated as follows, 

 

    Eq. 1 

Clusters and leaves at the second position in a PQA insertion are partially 

exposed to sunlight (Reynolds et al. 1994). We developed new metrics that determine 

the distance, in occlusion layers, of a leaf or cluster to the nearest canopy boundary. 

For a given set of PQA data, the new functions, cluster exposure layer (CEL) and leaf 

exposure layer (LEL), were calculated as follows:  

 

   Eq. 2 

 

       Eq. 3 

 

The „Min‟ expression in Eq. 2 and Eq. 3 denotes that the smaller of the two 
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values was used in the calculation. The first parameter in the expression computes the 

distance of the leaf or cluster to the PQA insertion side of the canopy, while the 

second parameter calculates the distance to the PQA exit side of the canopy. In 

determining the distance to the canopy boundary, both cluster and leaf contacts are 

counted. In computing CEL for a dataset, the distance from the canopy boundary for 

each contact was individually computed, added to a running total, and divided by the 

total number of cluster contacts. In computing LEL for a dataset, the distance from the 

canopy boundary for each contact was individually computed, added to a running 

total, and divided by the total number of leaf contacts. A leaf or cluster at either the 

insertion or exit canopy boundary was considered to be at exposure layer zero (i.e., on 

the exterior of the canopy). Canopy gaps were not included in either CEL or LEL 

calculations. Gaps are often localized (i.e. not evenly distributed) in the canopy, and 

thus, would inappropriately skew the CEL and LEL values of the denser canopy 

portions. 

Canopy biomass symmetry. Cluster canopy symmetry (CCS) was developed 

to further enhance the precision of the exposure analysis by computing the positional 

bias of clusters within the canopy. CCS was expressed as a number between -1 and 1, 

with a value of 0 for a set of PQA insertion data indicating that clusters were equally 

balanced between their distance, in canopy layers, to insertion side of the canopy and 

the exit side of the canopy. A hypothetical CCS value of 1 would indicate that all 

clusters are located exactly at the insertion side boundary of the canopy, while a value 

of -1 would indicate that all clusters were located exactly at the exit side boundary of 

the canopy. The CCS metric was designed to characterize the distribution of biomass 

along the transverse axis of the canopy. By quantifying this symmetry, CCS enables 

researchers to integrate any available temporal flux data related to the local solar 

zenith angle and row orientation. CCS was calculated as follows: 
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 Eq. 4 

 

 

The expression, OLN – CEL – 1, computes the number of shading layers between a 

cluster and the farthest canopy boundary. 

Calculating the positional bias of leaves required a different approach, because 

there are many more leaves and they have more influence, versus clusters, on the light 

environment in the canopy. Because leaves account for most of the contacts in a PQA 

dataset, they are inherently symmetric within the set. We determined that computing 

leaf symmetry using an LEL-based variant of Eq. 4 would generally produce numbers 

very close to zero because the midpoint of the average leaf-dominated PQA insertion 

sample has an equal number of leaves on either side. This does not necessarily mean 

that the leaves are symmetrically arranged around the centerline of the canopy.  

As an alternative to calculating a self-referential symmetry for leaf contacts we 

developed a metric to calculate biomass symmetry with respect to the intended 

centerline of the trellising system. By including the trellising system centerline in PQA 

insertion data (using „W‟ to record the location of the wire), we calculated the Trellis 

Contact Symmetry (TCS). TCS, also expressed as a number between -1 and 1, was 

developed to provide a measurement of trellis consistency and the efficacy of cultural 

practices intended to maintain a symmetric vine row. TCS was also intended to reveal 

thigmomorphogenetic responses to local weather phenomena or other environmental 

stressors (Tarara et al. 2005). Designed as a measure of consistency, TCS is intended 

to be used in standard deviation calculations. For example, a vineyard could have a 

mean TCS of zero, but still have high variability from panel to panel or row to row. 

This variability would be revealed in the standard deviation of the TCS values. TCS 
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was calculated as follows: 

 

Eq. 5 

 

 

The use of traditional PQA calculations (Smart and Robinson 1991) and the 

new spatial calculations on three example insertions are shown in Table 1.2.  
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Table 1.2.  Traditional PQA exposure metrics and new spatial metrics for three 

sample insertions.  L=leaf, C=cluster, W=wire, G=gap. Values presented are for 

demonstration purposes and do not relate to the sample data set. 

 
 

Sample PQA Insertion 
Data 

 
Traditional Metrics 

 
New Metrics 

LLWCLL 
G 

LLWLLCL 

 LLN PIC PIL PG  OLN CEL LEL CCS TCS 

 3
a
 100

b
 55.55

c
 33%

d
  3.67

e
 1.5

f
 0.78

g
 -0.5

h
 -0.43

i
 

a 
On average, the canopy had three layers of leaves from insertion to exit side. 

b 
100% of clusters in the canopy insertions were partially or fully shaded. 

c 
55.55% of leaves in the canopy insertions were partially or fully shaded. 

d 
33% of the canopy insertions made no biomass contact (gap in canopy). 

e 
On average, the canopy insertions had 3.67 layers of shading biomass (clusters and leaves). Shoots are not 

included in OLN. 
f 
On average, there were 1.5 layers of shading biomass (leaves and clusters) between the exterior of the canopy and 

a cluster. 
g 
On average, there were 0.78 layers of shading biomass (leaves and clusters) between the exterior of the canopy and 

a leaf. 
h 
On average, clusters were positioned closer to the exit side of the PQA insertions. Specifically, that there were 50% 

fewer shading layers between clusters and the exit side of the canopy, vs. the insertion side of the canopy. 
i 
On average, leaves and clusters were positioned closer to the exit side of the PQA insertions. Specifically, 43% of 

biomass is on the insertion side of the trellising wire.  Note, that TCS can only be calculated if ‘W’ is recorded with the 
PQA insertion data; 

j 
PQA, LLN, PIC, PIL, PG, OLN, CEL, LEL, CCS, TCS: point quadrat analysis, leaf layer number, 

percent interior clusters, percent interior leaves, percent gaps, occlusion layer number, cluster exposure layer, leaf 
exposure layer, canopy cluster symmetry, and trellis canopy symmetry, respectively. 
 

 

Calibration of light attenuation. Light attenuation in grapevine canopies has 

been shown to have an exponential relationship to canopy depth when depth is 

expressed as either absolute distance (Dokoozlian and Kliewer 1995a,b) or as a 

function of LLN (Smart 1985). This implies that the general shape of the light 

attenuation curve for any given canopy is exponential with respect to PQA exposure 

layer. With the goal of maximally leveraging the spatial precision of CEL and LEL, 

we developed a field method for calibrating the light attenuation curve of a canopy. By 

assuming that the acceleration of attenuation across occlusion layers is approximately 

constant, we determined that the PPF exposure at a given insertion position can be 

calculated as: 

    Eq. 6 

 

where Ep Exposure layer  represents the percentage of above-canopy PPF (%PPF) that has 
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reached a given exposure layer, and where Ep1 , or the canopy calibration coefficient, 

represents the percentage of light that is transmitted across each canopy occlusion 

layer. For example, an Ep1 value of 0.34 indicates that each occlusion layer in the 

canopy blocks 66% of sunlight, while allowing the remaining 34% (a combination of 

sun flecks and light transmitted through leaves) to reach the next layer. Every canopy 

will possess a unique rate of attenuation due to its particular canopy architecture and 

Ep1 value, which is influenced by innumerable variables including cultivar, nutritional 

status, and cultural practices. 

Since Ep1 represents a constant acceleration of attenuation, a canopy can be 

calibrated by fitting the n
th

 root curve with only two known points. The first point, 

100% transmittance at occlusion layer zero, is fixed for all canopies. To locate a 

second point, %PPF was measured directly in the canopy. Rearranging Eq.6 yielded, 

 

   Eq. 7 

 

Although Ep1 is equal to the transmittance at occlusion layer one, we determined that it 

was not practical to attempt to measure it directly because occlusion layer one, or any 

other fixed integer occlusion layer, cannot be reliably located for flux sampling. We 

avoided the need to locate a specific canopy layer by sampling %PPF at the 

longitudinal midline of the canopy. On average, the longitudinal midline of the canopy 

is half of the distance between the PQA insertion side and exit side of the canopy. 

Thus, the longitudinal midline can be said to be at OLN / 2. Applying the %PPF 

measurements at OLN / 2 to Eq. 7 yielded, 

 

      Eq. 8 
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Photon flux measured at the center of the canopy is the sum of sunlight penetrating 

from both sides of the row; therefore, Ep1 was calculated using one half of the %PPF 

value measured at position OLN/2. The final expression for calculating Ep1 was, 

 

       Eq. 9 

 

To incorporate this bilateral approach, Eq. 6 was updated to independently calculate 

the PPF from either side of the canopy, as follows:  

 

 Eq.10 

 

Biomass exposure mapping. Following from OLN, CEL, LEL, and Ep1, 

additional metrics were developed to determine %PPF for any given leaf or cluster in 

a canopy. Cluster exposure flux availability (CEFA) and leaf exposure flux 

availability (LEFA) express %PPF of a given PQA dataset. CEFA and LEFA follow 

from Eq. 10 and were computed as follows: 

 

    Eq. 11 

 

    Eq. 12 

 

Exposure maps, depicting distribution of %PPF values among cluster and leaf 

contacts, were created by calculating CEFA and LEFA values for each contact in the 

PQA dataset (Figures 1.1 and 1.2). 

Cluster exposure flux symmetry (CEFS) and leaf exposure flux symmetry 

(LEFS) were developed to provide calibrated PPF symmetry metrics that are 
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analogous to CCS. CEFS and LEFS represent the symmetry of PPF received by 

clusters and leaves from either side of the canopy row. Like CCS, CEFS and LEFS 

were expressed as a number between -1 and 1, where a CEFS value of 0 for a set of 

PQA insertion data indicated that clusters were receiving an equal amount of photon 

flux from both sides of the canopy. A hypothetical CEFS value of 1 would indicate 

that all clusters in the dataset received all of their PPF from the insertion side of the 

canopy, while a value of -1 would indicate that all clusters received all of their photon 

flux from sunlight from the exit side of the canopy.  

CEFS and LEFS were designed to enable the integration of temporal flux data 

related to the local solar zenith angle and row orientation. For example, if 

mesoclimatic data was on hand indicating that the block received 10% more sunlight 

on the canopy exit side, a grower would probably assume that clusters were receiving 

more light from that canopy side. By calculating CEFS, true bias in cluster exposure 

symmetry can be calculated. CEFS was defined as follows, 

 

Eq. 13 

 

 

Continuing our example, let us assume that the grower calculated a CEFS value for the 

block of 0.08, indicating that biomass asymmetry in the canopy caused an 8% bias in 

%PPF toward the insertion side of the canopy. This bias acts to offset the imbalance 

caused by sun tracking asymmetry, suggesting that the clusters actually received an 

approximately equal amount of light from either side of the canopy, despite the sun 

tracking bias to the exit side. 

Similarly, LEFS calculations were defined by substituting LEFA for CEFA in 

equation 13. LEFS is expected to generally be very close to zero for most canopies, 
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due to the dominance of leaf contacts in PQA datasets. 

Results 

 Canopy characterization and calibration of flux attenuation. The new 

metrics, when applied to the sample dataset, indicated there was an effect of shoot 

thinning in reducing canopy density and increasing sunlight exposure of both leaves 

and fruit. By traditional PQA metrics, shoot thinning decreased canopy LLN, PIC, 

PIL, and increased PG (Table 1.3). Using the new spatial metrics and calibrated flux 

metrics (Table 1.4), shoot thinning decreased canopy OLN, CEL, LEL and increased 

CCS, Ep1, CEFA, CEFS, and LEFA. 
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Table 1.3.  Efficacy of shoot thinning of Vignoles expressed by traditional PQA 

metrics. 

 
Treatment LLN PIC PIL PG 

Control 2.53 70.78 37.19 6.31% 

Shoot thinned 2.08 55.69 31.52 7.26% 

Change -17.4%
a
 -21.3%

b
 -15.2%

c
 15.1%

d
 

a 
The shoot thinned canopy had a 17.4% reduction in the number of leaf layers.

 

b 
The shoot thinned canopy had a 21.3% decrease in the number of clusters that were partially or fully shaded.

 

c 
The shoot thinned canopy had a 15.2% reduction in the number of leaves that were partially or fully shaded.

 

d 
The shoot thinned canopy had a 15.2% increase in the number of canopy gaps. 

e 
PQA, LLN, PIC, PIL, PG: point quadrat analysis, leaf layer number, percent interior clusters, percent interior leaves, 

percent gaps, respectively. 

 

 

Table 1.4.  Efficacy of shoot thinning of Vignoles expressed by new spatial metrics 

and calibrated flux metrics. 

 
 Spatial Metrics  Calibrated Flux Metrics 

Treatment OLN CEL LEL CCS  Ep1 CEFA CEFS LEFA LEFS 

Control 3.23 0.98 0.47 0.006  .239 25.1% 0.115 40.0% -0.021 

Shoot thinned 2.78 0.66 0.36 0.070  .282 36.5% 0.068 45.9% -0.018 

Change -14.0%
a
 -32.5%

b
 -23.7%

c
 10.8%

d
  18%

e
 45.1%

f
 -47.7%

g
 14.8%

h
 -14.2%

i
 

a 
The shoot thinned canopy had a 14% reduction in occlusions layers (total contacts) versus the control.

 

b 
Shoot thinned canopy had a 32.5% reduction in occlusion layers between clusters and their nearest boundary.

 

c 
Shoot thinned canopy had a 23.7% reduction in occlusion layers between leaves and their nearest boundary.

 

d 
Shoot thinned canopy exhibited a 10.8% increase in cluster positioning bias, with the bias toward the insertion-side. 

There were 7% fewer shading layers between clusters and the insertion side of the canopy vs. the exit side. 
e 
Canopy calibration showed a 18% increase in per-layer light transmittance in shoot thinned canopy vs. the control. 

f 
On average, the clusters in the shoot thinned canopy received 45.1% more of the available above-canopy photon 

flux compared to those in the control. 
g 
The shoot thinned canopy exhibited a 47.7% reduction in cluster exposure bias. Both the control and shoot thinned 

canopies exhibited a bias (11.5% and 6.8%, respectively) in cluster photon flux availability from the insertion side of 
the canopy. 
h 
On average, the leaves in the shoot thinned canopy received 14.8% more of the available above-canopy photon flux 

compared to those in the control. 
i 
The shoot thinned canopy exhibited a 14.2% reduction in leaf exposure bias. Although, both the control and shoot 

thinned canopies exhibited minimal (2.1% and 1.8%, respectively) bias in leaf photon flux availability from either side 
of the canopy. 
j 
OLN, CEL, LEL, CCS, Ep1, CEFA, CEFS, LEFA, LEFS: occlusion layer number, cluster exposure layer, leaf 

exposure layer, canopy cluster symmetry, canopy calibration coefficient, cluster exposure flux availability, cluster 
exposure flux symmetry, leaf exposure flux availability, and leaf exposure flux symmetry, respectively. 

 

Biomass exposure gradients. Cluster exposure mapping (Figure 1.1A) 

indicated that the clusters in the shoot thinned canopies had higher %PPF values vs. 

control. The exposure map indicated that largest reduction in cluster counts for shoot 

thinned vines occurred in the %PPF range of 15-19.9%, followed by the ranges of 25-

29.9%, and 0-4.9%; while the largest increase in cluster counts for shoot thinned vines 

occurred in the %PPF range of 20-24.9%, followed by the ranges of 30-34.9%, 55-
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58.9%, and 65-69.9%. 

Similarly, LEFA values were calculated for each leaf contact in the sample 

data set. The resulting exposure maps (Figure 1.1B) indicated that the leaves in the 

shoot thinned canopies had higher %PPF values vs. control. The exposure map 

indicated that the largest reductions in leaf counts for shoot thinned vines occurred in 

the %PPF range of 50-54.9%, followed by the ranges of 15-19.9%, 60-64.9% and 25-

29.9%; while the largest increase in leaf counts for shoot thinned vines occurred in the 

%PPF range of 55-59.9%, followed by the ranges of 65-69.9%, and 20-24.9%. 

Scope of metabolic effect. Cluster exposure mapping (Fig. 1) indicated that 

the effects of shoot thinning on cluster exposure were concentrated in the lower %PPF 

ranges, with most improvements occurring for clusters originally below 30% ambient 

PPF. However, leaf exposure mapping (Fig. 2) revealed a concentration of efficacy in 

%PPF ranges above 50%. This suggests that shoot thinning treatment increased the 

photon flux for deeply shaded clusters more effectively than it did for deeply shaded 

leaves. 
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Figure 1.1. Cluster exposure map (A) and leaf exposure map (B) for sample data set. 

Total cluster count for control and shoot-thinned treatments was 592 and 580, 

respectively. Total leaf count for control and shoot-thinned treatments was 2107 and 

1751, respectively. 
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Discussion 

Improved utility. PQA‟s limited spatial precision has narrowed its use to 

diagnosing simple canopy problems and providing coarse measurements of treatment 

efficacy. Spatially-aware cluster and leaf exposure metrics expand PQA‟s usefulness 

by enabling the measurement of subtle differences in light environment, canopy 

density and biomass distribution. Canopy calibration further increases the utility of 

PQA by providing researchers with the tools needed to make direct quantitative 

comparisons among dissimilar canopies and across multiple studies. The simplicity 

and precision of calibrated PQA makes it an effective alternative to more time 

consuming coordinate-based canopy measurement techniques, and to less robust 

methods such as photographic sunfleck analysis.  

Integration of mesoclimatic data. When temporal mesoclimatic flux data is 

available, it can be overlaid onto a %PPF exposure map to produce a map of absolute 

photon flux. These maps could be used to evaluate flux-dependent physiological 

responses, such as leaf light compensation point and light saturation. In this way, 

exposure maps could be used to estimate a variety of physiological responses, such as 

a canopy‟s potential net photosynthetic carbon production over a specific timeframe, 

or the development of light-sensitive metabolites. 

Considerations for shoot positioned vs. non-positioned training systems. 

The new spatial metrics (OLN, CEL, LEL, and CCS) were intended to be equally 

appropriate for any type of canopy, as they do not make any assumptions regarding 

light attenuation – they merely improve on the spatial precision of standard PQA 

datasets. The metrics that rely on attenuation calibration (CEFA, LEFA, CEFS, and 

LEFS) are also intended to be used with any type of training system, but are probably 

maximally effective when applied to non-vertically positioned shoot systems, as non-

vertically shoot positioned systems are more likely to have higher OLN and more 
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spatial distribution.  

Additional research and crop management applications. The light 

attenuation curve for a calibrated canopy correlates with its distribution of leaf area 

density (Gladstone and Dokoozlian 2003). As such, the exposure maps created by the 

methods presented here could be used as leaf area density maps in the studying of 

pests and disease densities, or for the calibration of spray equipment for optimal 

canopy deposition. Canopy biomass symmetry and cluster exposure symmetry metrics 

could guide the severity and timing of alternate side leaf pulling, or other leaf density 

management practices. The relevance of these mapping methods need not be limited to 

grapevine canopies and could be applied to other row crops. 

Use of model. Calculation of the new spatial metrics can be performed using 

traditional PQA datasets. Spatial exposure mapping, which requires a minimal number 

of ceptometer measurements to calibrate the canopy, adds only a few minutes of data 

collection time per panel. The optional trellising symmetry calculation requires only 

that the center of the trellis, or “wire”, be recorded along with leaf and cluster contacts 

as a „W‟ in the PQA dataset. A library of Excel spreadsheet functions that automates 

the data processing required to compute the new metrics is available from the 

corresponding author (jmm533@cornell.edu). 

Conclusion 

This paper demonstrated new sampling and numerical analysis methods that 

combined traditional PQA and photosynthetic photon flux measurements into a 

calibrated biomass and photon flux distribution model. These techniques, when 

applied to a sample dataset of control vs. shoot thinned vines, demonstrated detailed 

quantitative descriptions of canopy biomass distribution, light environment, and the 

efficacy of the viticultural treatment. In combination, the exposure maps and biomass 

symmetry methods should enable the synthesis of mesoclimatic photon flux data with 
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microclimatic indicators to further enhance the precision of efficacy correlation 

studies and enhance the significance of cross-study correlations. It is anticipated that 

these new methods may serve to guide cultural practices, and be used to predict 

relative fruit and wine quality from grapevine canopies at mid-way through the 

growing season.  

 

  



 

21 

LITERATURE CITED 

 

Dokoozlian, N.K., and W.M. Kliewer. 1995a. The light environment within grapevine 

canopies. I. Description and seasonal changes during fruit development. Am. J. Enol. 

Vitic. 46:209-218. 

 

Dokoozlian, N.K., and W.M. Kliewer. 1995b. The light environment within grapevine 

canopies. II. Influence of leaf area density on fruit zone light environment and some 

canopy assessment parameters. Am. J. Enol. Vitic. 46:219-226. 

 

Downey, M.O., N.K. Dokoozlian, and M.P. Krstic. 2006. Cultural practice and 

environmental impacts on the flavonoid composition of grapes and wine: A review of 

recent research. Am. J. Enol. Vitic. 257-268. 

 

Gladstone, E.A., and N.K. Dokoozlian. 2003. Influence of leaf area density and 

trellis/training system on the microclimate within grapevine canopies. Vitis 42:123-

131. 

 

Hashizume, K., and T. Samuta. 1999. Grape maturity and light exposure affect berry 

methoxypyrazine concentration. Am. J. Enol. Vitic. 50:194-198. 

 

Lee, S., M. Seo, M. Riu, J.P. Cotta, D.E. Block, N.K. Dokoozlian, and S.E. Ebeler. 

2007. Vine microclimate and norisoprenoid concentration in Cabernet sauvignon 

grapes and wines. Am. J. Enol. Vitic. 58:291-301. 

 

Reynolds, A.G., and D.A. Wardle. 1989. Influence of fruit microclimate on 



 

22 

monoterpene levels of Gewürztraminer. Am. J. Enol. Vitic. 40:149-154. 

 

Reynolds, A.G., D.A.Wardle, and M. Dever. 1994. Shoot density effects on Riesling 

grapevines: Interactions with cordon age. Am. J. Enol. Vitic. 45:435-443. 

 

Reynolds, A.G., D.A. Wardle, and A.P. Naylor. 1996. Impact of training system, vine 

spacing, and basal leaf removal on Riesling. Vine performance, berry composition, 

canopy microclimate, and vineyard labor requirements. Am. J. Enol. Vitic. 47:63-76. 

 

Schultz, H.R. 1995. Grape canopy structure, light microclimate and photosynthesis. I. 

A two-dimensional model of the spatial distribution of surface area densities and leaf 

ages in two canopy systems. Vitis 34:211-215. 

 

Smart, R. E. 1985. Principles of grapevine canopy microclimate manipulation with 

implications for yield and quality. A review. Am. J. Enol. Vitic. 36:230-239. 

 

Smart, R.E., and M. Robinson. 1991. Sunlight into Wine: A Handbook for winegrape 

canopy management. Winetitles, Underdale, Australia. 

 

Tarara, J.M., J.C. Ferguson, G.A. Hoheisel, and J.E. Perez Pena. 2005. Asymmetrical 

canopy architecture due to prevailing wind direction and row orientation creates an 

imbalance in irradiance at the fruiting zone of grapevines. Agric. For. Meteorol. 

135:144-155. 

  



 

23 

CHAPTER 2 

 

INFLUENCE OF SHOOT THINNING AND HEDGING ON MICROCLIMATIC 

VARIABILITY IN VIGNOLES 

 

Abstract: Canopy management treatments applied to control microclimatic 

parameters are generally assumed to improve parametric consistency, but this 

assumption is not often tested. To explore the effect of common canopy management 

on microclimatic consistency, Vignoles (Vitis sp.) vines in an established commercial 

vineyard were subjected to three treatments – shoot thinning (ST), hedging (H), and a 

combination of shoot thinning and hedging (ST-H) over a period of two years. Results 

indicated that occlusion layer number, a measure of biomass density, exhibits similar 

patterns of autocorrelation among control and treated canopies, suggesting that 

treatments do not reduce spatial trends. Six metrics of fruit-zone organ exposure 

exhibited statistically significant differences in intra-season variance, and that five of 

the six were a result of increases in variance, suggesting that treatments intended to 

influence fruit-zone organ exposure may do so with the side-effect of increased 

variability. When both seasons were aggregated, only two treatment-metric 

combinations resulted in statistically significant difference in variance, further 

suggesting that treatment-induced variability is not consistent from season to season. 

 

Key words: canopy management, shoot thinning, variance equality 

 

Introduction 

 Shoot thinning and hedging treatments are commonly applied with the goal of 

manipulating excess vine growth in a manner that improves vine performance and 
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fruit-zone canopy architecture. Among the many shoot thinning and hedging studies in 

the literature (Reynolds et al., 2005; Morris et al., 2005; Reynolds et al., 1994a; Poni 

et al., 2004), treatment efficacy has been largely measured in terms of responses in 

parameters such as yield, Brix, TA, and fruit sunlight exposure. When qualitatively 

interpreting results, a treatment is generally considered to successful when it achieves 

responses that positively correlate with contemporary models of fruit quality as in 

(Reynolds et al, 1994a; Reynolds et al, 1994b). From a statistical perspective, 

treatment response is measured a changes in mean parameter value while treatment 

significance is determined through a method of means separation such as analysis of 

variance (i.e., ANOVA).   

Spatial autocorrelation in microclimatic canopy parameters has been measured 

and these parameters correlate with flavour compounds in winegrapes (Meyers et al., 

2009). However, in reporting experimental results, parameter variability is often not 

quantified and if it is discussed, it is limited to a characterization naturally occurring 

variability (Kasimatis et al., 1975) or a rationalization of unexpected results as in 

(Reynolds et al., 2007). Since it is generally assumed that the consistent application of 

cultural practices will lead to reduced variability, failed statistical separation in the 

presence of high variability is often assumed to be the result of intrinsic vineyard 

variability obscuring treatment effect. 

Researchers anticipate plot-scale variability, as it has been previously 

quantified for numerous parameters including canopy fill (Bramley and Hamilton, 

2004), yield (Taylor et al., 2005), and vine water status (Acevedo-Opazo et al., 2010),  

so they plan for inherent variability through the use of experimental design techniques 

such as blocking and replication, or specialized sampling protocols that attempt to 

compensate for potential sources of block (Iland et al., 2004) or vine (Rankine et al., 

1962) variability. Thus far, however, the hypothesis that the treatment itself could 
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increase parametric variability has not been tested. To test this hypothesis, shoot 

thinning and hedging were applied to a commercial Vignoles (Vitis sp.) and analyzed 

for its effect on the autocorrelation and variance of microclimatic parameters.  

 

Materials and methods 

Vine material. A Vignoles (Vitis sp.) block, approximately 25 years of age, 

was subjected to canopy management treatments at a commercial vineyard in Hector, 

NY (Finger Lakes region, east side of Seneca Lake). Vines were planted in north-

south row orientation, trained to high wire umbrella, and managed according to 

standard viticultural practices for hybrid canopies in the Finger Lakes region. Vine 

spacing was 2.4 by 2.8 meters. The fruiting wire was approximately 1.8 meters above 

soil level. A subplot of 896 research vines was chosen from 16 consecutive rows in the 

block. Exterior rows and panels were excluded. Three panels were randomly chosen 

per row to obtain 192 research vines. The experiment consisted of 4 replications, one 

replication per row, of 4 treatments. The four treatments consisted of a control, shoot 

thinning (ST), hedging (H), and a combination of shoot thinning and hedging (ST-H). 

Shoot thinned vines were thinned on May 21
st
 and May 19

th
, in 2007 and 2008 

respectively, to a target of 20 shoots per linear canopy row meter, while the remaining 

(control) vines averaged 24 shoots per linear meter of canopy. All secondary and 

tertiary shoots were removed for ST and ST-H treatments. Hedged (H) vines were 

hedged  on July 23
th

 and 18
th

 in 2007 and 2008 respectively along the face of the rows. 

No top-hedging was performed. 

Canopy characterization. Point quadrat analysis (PQA; Smart and Robinson 

1991), Enhanced point quadrat analysis (EPQA) and calibrated exposure mapping 

(CEM) were performed pre-veraison, after hedging, on July 23th
th

 and July 18
th

 in 

2007 and 2008 respectively by inserting a thin metal rod into the fruiting zone along 
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the transverse axis of the canopy row, as described by Meyers and Vanden Heuvel 

(2008). A tape measure was used as a guide for insertions, which were made at 20-cm 

intervals along the length of the four-vine panel at the height of the fruiting wire, 

resulting in a total of 35 insertions per panel. A Decagon AccuPAR LP-80 

photosynthetically active radiation sensor (Decagon Devices; Pullman, WA) was used 

to measure percent photon flux (PPF). PQA and EPQA metrics were computed for 

each vineyard panel using Microsoft Office Excel version 12.0.6514.5000 SP2 

(Microsoft Corporation; Redmond, WA) and EPQA-CEM Tools version 1.6.2 

(available on request from jmm533@cornell.edu). The following metrics were 

calculated: percent gaps (PG), occlusion layer number (OLN), leaf layer number 

(LLN), percent interior clusters (PIC), percent interior leaves (PIL), cluster exposure 

layer (CEL), cluster exposure flux availability (CEFA), leaf exposure layer (LEL), and 

leaf exposure flux availability (LEFA). As measures of 'low' and 'high' cluster 

exposure cluster exposure maps were computed, as described by Meyers and Vanden 

Heuvel (2008) to determine the percentage of clusters in each replicate with CEFA 

values below 0.25 (CEFA25) and above 0.75 (CEFA75) respectively. 

 Quantification of canopy autocorrelation. Autocorrelation in OLN was 

calculated in 20 cm lag distance increments along the length of each panel using the 

autocorr function from the MATLAB add-on Econometrics Toolbox version 1.1 (The 

Mathworks, Natick, MA, USA). Results were averaged across all panels in each 

treatment combination and plotted to compare the autocorrelation patterns between 

seasons.  

Statistical Analysis. Statistical analysis was performed via SAS version 9.1.3, 

service pack 4 (SAS; Cary, NC) for treatment mean, standard deviation,  least-squares 

mean separation, pairwise least-significant-difference (LSD) t tests, Levene tests 

(Levene 1960) of variance equality, and Brown-Forsythe (BF; Brown and Forsythe 
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1974) tests for pairwise (i.e. control vs. treatment) variance equality. Significance was 

reported, for all tests, only when p-values were less than 0.05. Variability of each 

parameter was quantified by computing relative standard deviation (RSD) for each 

treatment. The components of RSD (mean and standard deviation) and RSD value 

(100 * mean / standard deviation) were computed via Microsoft Office Excel version 

12.0.6514.5000 SP2 (Microsoft Corporation; Redmond, WA). 

Results 

 Autocorrelation of canopy biomass. Spatial autocorrelation of OLN was 

present in all treatments and varied with lag distance (Figure 2.1).  All autocorrelation 

plots revealed a visible sinusoidal hole-effect pattern, modulating between positive 

and negative values. 

Figure 2.1.  Average spatial autocorrelation (range -1 to 1) of Occlusion Layer 

Number (OLN). By definition, a lag distance of zero has an autocorrelation value of 

'1'. The sinusoidal "hole-effect" pattern is visually apparent in all plots (C = control, 

ST = shoot-thinned, H = hedged). 
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 Microclimatic response. In 2007, the ST treatment resulted in a statistically 

significant response in all canopy metrics except PG (all canopy responses shown in 

Table 2.1). 2007 ST reduced canopy density (OLN = 2.67 vs.  control of 3.44; LLN = 

2.00 vs. control of 2.71) and increased fruit-zone organ exposure (PIC = 52.2% vs. 

control of 73.7%; PIL =  27.3% vs. control of 37.5%; CEL = 0.63 vs. control of 0.96; 

LEL =  0.30 vs. control of 0.46; CEFA = 0.54 vs. control of 0.40; LEFA = 0.61 vs. 

control of 0.51; CEFA75 = 14% vs. control of 2%) while specifically reducing the 

percentage of low-exposure clusters (CEFA25 =  7% vs. control of 25%).  

2007 H resulted in only a single significant response (PG = 9.29% vs. control 

of 3.33%), while 2007 ST-H resulted in statistically significant reductions of measures 

of canopy density (OLN =  vs. control of; LLN = vs. control of), and increases in most 

measures of fruit-zone organ exposure (PIC = 55.6% vs. control of 73.7%; CEL = 0.65 

vs. control of 0.96; CEFA = 0.57 vs. control of 0.40; CEFA25 = 5% vs. control of 

25%; CEFA75 = 16% vs. control of 2%). Average 2007 yields on a panel-basis were 

C = 31.2 (+/- 19.7); ST = 24.1 (+/- 15.1); H = 23.9 (+/- 16.4); ST-H = 26.0 (+/- 16.3). 

 In contrast, 2008 ST (Table 2.1) resulted in no statistically significant canopy 

responses, while H reducing measures of canopy density (PG = 16.3% vs. control of 

8.59%; OLN = 2.16 vs. control of 2.84; LLN = 1.70 vs. control of 2.27) and increasing 

measures of fruit-zone organ exposure (PIC = 35.7% vs. control of 53.5%; PIL = 

23.1% vs. control of 35.1%; CEL = 0.25 vs. control of 0.70; LEL = 0.26 vs. control of 

0.43; LEFA = 0.50 vs. control of 0.45). Average 2008 yields on a pounds-per-panel-

basis were C = 40.5 (+/-7.0); ST = 54.0 (+/- 69.2); H = 29.6 (+/- 11.9); ST-H = 30.9 

(+/- 15.8). 
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Table 2.1. Canopy architecture metrics. 

 

Year Treatment PG OLN LLN PIC PIL CEL CEFA LEL LEFA 
% of clusters 

w/CEFA < 
0.25 

% of clusters 
w/CEFA > 

0.75 

2007 

C 
3.33 

(5.14) 
b 

3.44 
(0.56) 

a 

2.71 
(0.39) 

a 

73.7 
(10.9) 

a 

37.5 
(6.9) 

a 

0.96 
(0.25) 

a 

0.40 
(0.06) 

b 

0.46 
(0.12) 

a 

0.51 
(0.04) 

b 

25 
(10) 

a 

2 
(3) 
a 

ST 
6.90 

(5.09) 
ns 

2.67 
(0.56) 
b ** 

2.00 
(0.45) 
b *** 

52.2 
(20.9) 
b *** 

27.3 
(7.6) 
b ** 

0.63 
(0.30) 
b ** 

0.54 
(0.07) 
a **** 

0.30 
(0.09) 
b ** 

0.61 
(0.05) 
a **** 

7 
(7) 

b *** 

14 
(11) 
b ** 

H 
9.29 

(9.83) 
a * 

3.02 
(0.82) 

ns 

2.34 
(0.71) 

ns 

66.7 
(17.3) 

33.4 
(10.0) 

ns 

0.91 
(0.51) 

ns 

0.41 
(0.11) 

ns 

0.42 
(0.19) 

ns 

0.52 
(0.08) 

ns 

23 
(23) 
ns 

5 
(7) 
ns 

ST-H 
7.62 

(5.49) 
ns 

2.88 
(0.30) 

b * 

2.17 
(0.30) 
b ** 

55.6 
(10.8) 
b *** 

33.9 
(5.3) 
ns 

0.65 
(0.15) 

b * 

0.57 
(0.07) 
a **** 

0.39 
(0.07) 

ns 

0.62 
(0.06) 
a **** 

5 
(6) 

b *** 

16 
(11) 
ns 

 

2008 

C 
8.59 

(7.38) 
b 

2.84 
(0.63) 

a 

2.27 
(0.56) 

a 

53.5 
(14.2) 

a 

35.1 
(9.1) 

a 

0.70 
(0.26) 

a 

0.40 
(0.09) 

0.43 
(0.17) 

a  

0.45 
(0.05) 

b 

38 
(16) 

53 
(14) 

ST 
8.77 

(6.32) 
ns 

2.64 
(0.65) 

ns 

2.15 
(0.59) 

ns 

53.7 
(17.8) 

ns 

29.8 
(9.4) 
ns 

0.70 
(0.31) 

ns 

0.13 
(0.21) 

ns 

0.34 
(0.15) 

ns 

0.48 
(0.06) 

ns 

41 
(19) 
ns 

5 
(7) 
ns 

H 
16.3 

(11.2) 
a * 

2.16 
(0.78) 
b ** 

1.70 
(0.65) 
b ** 

35.7 
(17.6) 
b ** 

23.1 
(11.4) 
b *** 

0.25 
(0.18) 
b ** 

0.46 
(0.15) 

ns 

0.26 
(0.16) 
b *** 

0.50 
(0.08) 

a * 

30 
(19) 
ns 

13 
(19) 
ns 

ST-H 
10.1 

(8.10) 
ns 

2.51 
(0.48) 

ns 

1.98 
(0.40) 

ns 

56.8 
(10.3) 

ns 

28.3 
(7.9) 
b * 

0.51 
(0.12) 

ns 

0.43 
(0.08) 

ns 

0.32 
(0.11) 

b * 

0.49 
(0.06) 

ns 

32 
(16) 
ns 

6 
(6) 

b *** 

Parenthesized values are standards deviations (calculated on a per-panel basis) 
* = p < 0.05; ** = p < 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001. Means separations apply only to same-season data 

 

 Treatment effect on canopy architecture variability. Variability in canopy 

architecture parameters, as shown by the RSD values in Table 2.2, varied across 

treatments and seasons. Levene and BF tests revealed instances of statistically 

significant differences in treatment parameter variability vs. control. In 2007 the ST 

treatment influenced variability in PIC and CEFA75, while increasing RSD to 40.1% 

vs. control of 14.8% and decreasing RSD in CEFA75 (80.4% vs. control of 137.6%). 

The 2007 H treatment significantly influenced variability in CEFA, LEFA, CEFA25, 

and CEFA75 vs. control. Compared to control, RSDs increased in CEFA (27.4% vs. 

15.2%), LEFA (15.7% vs. 8.3%) and CEFA25 (98.3% vs 41.9%); while in CEFA75, 

RSD was equal vs. control (137.6) despite the statistically significant difference in 

variance. 2007 ST-H reduced RSD of CEFA75 (68.5%) vs. control (137.6%).  2008 



 

30 

data indicated that only one treatment-parameter combination resulted in significantly 

different variance, with the H treatment reducing the RSD of PG (68.6%) vs. control 

(85.9%). 

 

Table 2.2.  Relative standard deviation and variance equality tests of canopy metrics 

 

Treatment Year PG OLN LLN PIC PIL CEL CEFA LEL LEFA 

% of 
clusters 

w/CEFA ≤ 
0.25 

% of 
clusters 

w/CEFA > 
0.75 

2007 

C 154.3 16.2 14.5 14.8 18.4 26.5 15.2 26.9 8.3 41.9 137.6 

ST 73.7 21.1 22.6 40.1 * 27.8 47.9 13.6 31.2 8.2 101.1 80.4 † 

H 105.9 27.1 30.3 26.0 29.9 56.2 27.4 *† 46.1 15.7 *† 98.3 *† 137.6 * 

ST-H 72.1 10.5 14.0 19.3 15.5 23.5 12.6 17.1 9.2 124.0 68.5 *† 

 

2008 

C 85.9 22.3 24.8 26.5 25.9 37.4 22.4 38.6 10.0 42.8 96.0 

ST 72.1 24.5 27.3 33.1 31.7 45.2 26.2 43.3 12.2 45.6 135.1 

H 68.6 † 36.1 38.1 49.3 49.3 65.0 32.4 60.2 15.3 63.1 150.6 

ST-H 80.6 19.2 20.4 22.0 28.0 24.3 17.6 33.5 11.7 51.4 101.2 

 

Combined 

C 113.6 21.0 21.1 25.3 22.0 34.5 18.8 32.4 10.4 47.3 129.2 

ST 72.6 22.3 25.0 35.9 29.6 45.7 25.3 * 38.2 15.3 *† 92.7 † 107.1 

H 85.2 *† 34.6 36.6 45.5 *† 41.5 * 70.8 30.4 *† 56.0 15.4 *† 78.1 166.8 

ST-H 77.9 16.2 17.5 22.0 23.0 26.1 *† 20.2 26.5 15.5 *† 100.4 92.9 

 
† = Brown-Forsythe test for variance equality rejects null hypothesis (that variances are equal) with p < 0.05. 

* = Levene test for variance equality rejects null hypothesis (that variances are equal) with p ≤ 0.05. 

 

Discussion 

Increased fruit-zone exposure variability. In metrics of fruit-zone organ 

exposure (i.e. PIC, PIL, CEL, LEL, CEFA, LEFA, CEFA25, and CEFA75), five of the 

six reported statistically significant differences in intra-season variance were a result 

of increases in variance, suggesting that treatments intended to influence fruit-zone 

organ exposure may do so with the side-effect of increased variability – despite their 

consistent application. When both seasons were aggregated, only two treatment-metric 

combinations resulted in statistically significant difference in variance (one increased 

RSD while one decreased), further suggesting that treatment-induced variability is not 

consistent from season to season. 

Implications for precision canopy management. The concept of precision 
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viticulture applies to the variable application of cultural inputs in response to observed 

variability in vineyard-scale parameters (Bramley and Hamilton 2004), such as water 

status or canopy photosynthetic activity, with the goal of improving overall vineyard 

consistency. Considering the presence of spatial autocorrelation of microclimatic 

parameters, and the sensitivity some of odor active compounds to small differences in 

canopy architecture (Meyers et al., 2009), growers should consider the possibility that 

a consistently-applied canopy treatment, designed to reduce vineyard-scale 

consistency, may lead to a decrease in microclimatic consistency when applied 

without regard to small scale spatial patterns. 

This consideration could be particularly important when trying to minimize an 

undesirable aroma compound that is both highly odor-active and susceptible to small 

differences in microclimatic parameters such as 1,1,6-trimethyl-1,2-dihydronapthalene 

(TDN; Kwasniewski et al., 2010; Meyers et al., 2009). Furthermore, TDN has been 

shown to respond to cluster exposure only at levels above 20% of ambient light 

(Gerdes et al., 2002; Meyers et al., 2010 unpublished data). Considering these model 

parameters, managing a Riesling vineyard to a mean cluster exposure target of 20% 

would be a reasonable approach to minimizing TDN. However, as variability in 

cluster exposure increases, so will the number of clusters receiving more than the 20% 

threshold of dose response. Although increased variance will also increase the number 

of clusters receiving less than 20%, the outliers do not cancel each out (in terms of 

TDN response) because all clusters receiving less than 20% of ambient sunlight are 

expected to produce statistically equivalent TDN concentrations. Thus, in this 

scenario, higher variability leads to higher TDN. In these instances, it may be best to 

quantify small-scale variability (i.e. at the panel and/or vine level) to determine an 

optimal vineyard inputs that. 
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Conclusions 

The presence of biomass spatial autocorrelation in all treatments suggests that 

spatially uniform application of canopy management treatments may not lead to 

reduction in variability. Moreover, the application of canopy management treatments 

intended to control fruit quality can lead to increased variability of microclimatic 

parameters which, in some cases, could lead to unintended degradation in fruit quality.  
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CHAPTER 3 

 

MAXIMIZING OPERATIONAL EFFICIENCY VIA DYNAMIC SPATIALLY-

EXPLICIT OPTIMIZATION 

 

Abstract: Environmental parameters within vineyards are spatially correlated, 

impacting the economic efficiency of cultural practices and accuracy of viticultural 

studies that utilize random sampling. This study aimed to test the performance of non-

random sampling protocols that account for spatial correlation (“spatially-explicit 

protocols”) in reducing sampling requirements versus random sampling and 

decreasing the negative impacts of spatial imbalance.  

 Canopy microclimate data was collected across multiple sites/seasons/training 

systems.  Autocorrelation was found in all systems, with a periodicity generally 

corresponding to vine spacing. Three spatially-explicit sampling models were 

developed to balance minimal sample sizes against maximal fit of sample fruit 

exposure parameters to population parameters. A globally optimized explicit sampling 

(GOES) model, which performed multivariate optimization to determine best-case 

sampling locations, reduced fruit cluster sample size requirements vs. random 

sampling by up to 60%. Two univariate spatially-weighted template sampling (STS) 

models, derived from GOES solutions but easier to implement, reduced sampling 

requirements up to 24% when based on probabilistic panel weighting (PW), and up to 

21% when preferentially selecting specific locations within canopy architecture (AW). 

 GOES, PW STS, and AW STS each reduced required sample size vs. random 

sampling.  Comparative analyses suggested that optimal sampling strategies should 

simultaneously account for spatial variability at multiple scales. This study, one of the 

first agricultural studies on the use of spatially-explicit sampling protocols, 
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demonstrates that dynamically optimized sampling can decrease sample sizes required 

by researchers and/or wineries and reduce the negative impact of spatial imbalance 

within vineyards.  

 

Key words: autocorrelation , canopy management, cluster exposure, heuristic 

algorithms, sampling strategies 

 

Introduction 

 Viticulturalists collect quantitative data on vine characteristics and fruit 

composition to understand and guide cultural practices.  However, vineyards are 

heterogeneous and many key viticultural parameters vary significantly throughout a 

site.  For example, soluble solids in single Thompson Seedless berries within the same 

vineyard are reported to have a standard deviation of 1.7 – 3.0 degrees Brix (Kasimatis 

et al., 1975).  Similarly, vine-level spatial autocorrelation in microclimatic canopy 

parameters has been measured by enhanced point quadrat analysis (EPQA; Meyers 

and Vanden Heuvel, 2008), and these parameters correlate with flavour compounds in 

winegrapes (Meyers et al., 2009). Block-level spatial patterns in vineyards have been 

identified and quantified for a variety of parameters, including canopy fill (Bramley 

and Hamilton, 2004), yield (Taylor et al., 2005), and vine water status (Acevedo-

Opazo et al., 2010).  

To address inherent variability within a block or vineyard, viticulturalists 

typically pool together multiple berries or clusters to improve accuracy, and test 

samples in replicate to evaluate the precision of their measurements and facilitate 

statistical comparisons.  Both commercial growers and researchers aim to minimize 

the number and size of field samples to reduce labour and material costs while still 

achieving acceptable accuracy and precision. Many sampling protocols have been 
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suggested for collecting fruit from vineyards, with the majority of approaches 

involving random selection of clusters from either the whole vineyard or a vineyard 

sub-section. Some sampling protocols involve the use of generalized spatial patterns 

to, for example, ensure that fruit is sampled from all regions of an individual vine 

(Rankine et al., 1962), or balanced across sides of a row (Iland et al., 2004).   

From a statistical perspective, the ideal protocol should result in a 

representative sample of the population, such that parameters are sampled with a 

distribution similar to that of the population. The justification for random sampling is 

that variables contributing to the variance of a population are expected to be mutually 

independent with respect to their location in time and space, i.e., independent and 

identically-distributed (i.i.d.) random variables. Under these circumstances, any 

arbitrary set of sampled field measurements is equivalent to any other set (of equal 

size) in its ability to estimate population parameters, hence the standard use of random 

sampling in viticultural experiments.  

When random variables in a system are i.i.d., that system is said to be a 

stationary process with respect to the measured variables. The term stationarity is 

used to describe the stationary nature of statistical parameters within a system – such 

as the mean and variance.  If the mean in a system is independent of both time and 

space, the system is said to exhibit first order stationarity.  Similarly, second order 

stationarity is said to exist when the variance of a system does not vary as a function 

of location. Because the practice of random sampling assumes i.i.d., its accuracy and 

efficiency is a function of the first and second order stationarity of the system in which 

it is employed.   

The realization that random variables are not i.i.d. for most agricultural plots 

(Student, 1938; Jefferys, 1939) has led to the introduction of blocking and replication 

to compensate for potential spatial patterns.  In modern agricultural experiments, this 
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compensation often takes the form of randomized complete block designs (RCBD) 

and their variants. For the most part, these techniques are applied to experimental 

designs without attempting to gain prior knowledge of existing field patterns (van Es 

et al. 2007), despite the demonstration that direct compensation for known spatial 

trends can improve precision in hypothesis testing (Kirk et al., 1980; Tamura et al., 

1988). In viticultural literature, some authors have suggested using systematic 

approaches to sample berries from all parts of the cluster as opposed to randomly 

selecting berries (Roessler and Amerine, 1958; Rankine et al., 1962, Iland et al., 2004) 

to compensate for variability in ripeness, but to our knowledge, vineyard sampling 

protocols that account for known spatial heterogeneity within a site (i.e., “spatially-

explicit”) have not been explored.  An alternative to RCBD, the spatially-balanced 

complete block (SBCB) design, was developed to assist researchers in minimizing the 

effects of unknown block-level spatial trends (van Es et al. 2007) through the use of 

static block-layout templates. Because they are designed to maintain spatial balance 

among treatments in factorial experiments, SBCB designs are superior to RCBD in 

their ability to protect against the adverse effects of unknown field trends such as 

those reported in vineyards (Bramley and Hamilton, 2004; Taylor et al., 2005; Meyers 

and Vanden Heuvel, 2009; Acevedo-Opazo et al., 2010).  The concept of spatially 

explicit design could be extended to field sampling practices to maximize the fit of a 

sample distribution to population statistics, such that a smaller spatially-explicit 

sample should achieve the same accuracy and precision as a larger random sample.  

For our initial investigations of spatially-explicit sampling protocols we used 

measurements of canopy microclimate as the parameters of interest, as canopy 

microclimate is widely reported to influence many aspects of both grape and wine 

composition.  Using natural variation in fruit cluster sunlight exposure in Riesling 

(Vitis vinifera L.) and Vignoles (Vitis sp.) populations from the Finger Lakes region of 
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New York State, we quantified autocorrelation in key microclimatic canopy 

parameters.  We then determined the maximum potential benefit in reducing sample 

size using spatially-explicit globally optimized (i.e., cluster-specific) sampling 

methods versus randomized sampling methods.  Finally, in the interest of convenient 

application, we considered the use of univariate “sampling template” strategies where 

clusters were preferentially sampled from specific regions within each panel, or from 

particular panels within the vineyard and used these findings to evaluate the impact of 

vine spacing and training systems on optimal sampling strategies. 

 

Materials and Methods 

 Vine material. Three commercial New York vineyards (Finger Lakes region, 

east side of Seneca Lake) designated as sites 'A', 'B', and 'C' were used for this study. 

At site A, 66 Riesling vines (22 three-vine panels) trained to two-tier flatbow (as 

described by Reynolds and Vanden Heuvel, 2009) with vertical shoot positioning 

(VSP) were selected for consistency (i.e., no missing vines or obviously young 

replants) from a subplot of 6 rows. At site B, 72 Scott Henry trained (as described by 

Reynolds and Vanden Heuvel, 2009) Riesling vines (18 four-vine panels) were 

selected for consistency from a subplot of 7 rows. At site C, 96 Vignoles (Vitis sp.) 

vines (24 four-vine panels) trained to high-wire umbrella kniffen (as described by 

Reynolds and Vanden Heuvel, 2009) were selected at random from a subplot of 16 

rows. Vines at all three sites were planted in north-south row orientation and managed 

according to standard regional viticultural practices.  Vine spacing was 280 cm (row) 

x 200 cm (vine), 280 cm x 200 cm, and 280 by 180 cm for sites A, B, and C 

respectively.  Data were collected at each site for two consecutive seasons (2008 and 

2009 for sites A and B; 2007 and 2008 for site C). 

 Canopy density and cluster exposure characterization. EPQA and 
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calibrated exposure mapping (CEM) (Meyers and Vanden Heuvel, 2008) were 

performed at the onset of veraison (18
th

 of July 2007 and 15
th

 of July 2008 for 

Vignoles; 25
th

 of August 2008  and 20
th

 of August 2009 for Riesling). A tape measure 

was used as a guide for insertions, which were made at 20 cm intervals along the 

length of the panels at the height of the fruiting wire, resulting in 30, 39, and 35 

insertions per panel at sites A, B, and C respectively. A Decagon AccuPAR LP-80 

photosynthetically active radiation sensor (Decagon Devices, Pullman, WA, USA) 

was used to measure percent photon flux (PPF) values used in canopy calibration. The 

EPQA metrics occlusion layer number (OLN), cluster exposure layer (CEL), and 

cluster exposure flux availability (CEFA) were calculated as measures of canopy 

biomass density, un-calibrated cluster exposure, and calibrated cluster exposure, 

respectively using Microsoft Office Excel version 12.0.6514.5000 SP2 (Microsoft 

Corporation, Redmond, WA, USA) and EPQA-CEM Tools version 1.6.2 (available on 

request from jmm533@cornell.edu). A separate dataset was computed and maintained 

for each site. 

 Quantification of canopy autocorrelation. Autocorrelation in OLN, CEL, 

and CEFA was calculated in 20 cm lag distance increments along the length of each 

panel using the autocorr function from the MATLAB add-on Econometrics Toolbox 

version 1.1 (The Mathworks, Natick, MA, USA). Results were averaged across all 

panels in each site-year combination and plotted to compare the autocorrelation 

patterns between seasons and among the three tested EPQA metrics. To quantify 

potential repetitive spatial patterns in canopy architecture parameters, Fourier series 

were computed for each EPQA metric, as a function of distance along canopy row. 

 Fourier signal periods were computed using MATLAB's discrete Fourier transform 

function, fft, and additionally processed via custom software.  

 Simulated sampling using real field data. A fruit cluster contact database for 
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each site-year combination was created by exporting the calculated EPQA-CEM 

values as measured at veraison (i.e., OLN, CEL, and CEFA) along with location 

information (vineyard row number, panel number, and EPQA insertion position) to a 

text file containing a unique data record for each cluster. The six resulting cluster 

inventories (three sites in each of two years) contained 706 and 819 clusters from 66 

vines at site A in years 2008 and 2009 respectively; 1178 and 967 clusters from 72 

vines at site B in years 2008 and 2009 respectively; and 591 and 490 clusters from 96 

vines at site C in years 2007 and 2008 respectively.  These databases were imported 

into custom-written MATLAB software (Version 7.10.0.499, The Mathworks, Natick, 

MA) designed to perform spatial analysis and to simulate both random sampling and 

spatially-explicit methods described below. The cluster inventory for each site 

assumed the role of that site's experimental population for the remainder of the 

experiment. 

 Determination of arbitrary sample fitness. A numerical measure of sample 

fitness, i.e., the similarity of any given random or spatially-explicit sample to its 

parent population parameters, was computed as follows: 1) Cluster exposure maps, 

defined as a set of CEFA values binned in 1% increments, were calculated to establish 

a histogram representing the discrete probability density of population cluster 

exposure for each site's cluster inventory, P(CEFAPop), and formatted as a vector of 

100 histogram bins. 2) A similar vector representing the CEFA probability density of a 

particular sample, P(CEFASample), was computed for every sample generated during a 

simulation. 3) Sample fitness was determined by subtracting the P(CEFASample) vector 

from the P(CEFAPop) vector and computing Euclidean length of the resulting vector.  

 Determination of random sample fitness. A baseline model of random 

sample fitness was established through simulation for the purpose of later comparison 

with spatially-explicit sample fitness scores. The baseline was determined by 
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computing the fitness scores of simulated random samples ranging in size from 1% to 

100% of the population equally spaced in 1% increments. To account for variation in 

results, the simulation was repeated in 30 trials and the final fitness score for each 

sample size was determined as the averaged score across all trials. 

 Determination of globally optimal samples. Maximally fit samples were 

calculated to establish the best-case of spatially-explicit sampling performance. These 

globally optimized explicit samples (GOES) were computed by searching for the 

maximally fit combination of clusters (i.e., the sample with the best sample fitness 

score) from the known population while constrained only by a target sample size (e.g., 

5% of population) and without regard for balancing the sample among individual 

vines or panels. 

 Due to the combinatorial complexity of the problem space (e.g., exploring 

every sampling combination of 80 clusters in a population of 800 would require 

computing the sample fitness value of over 10
100

 sampling combinations), heuristic 

methods were used to identify the optimal sampling locations for each sample size. 

Two heuristic optimization methods, Tabu Search (TS; Glover 1990) and Genetic 

Algorithm (GA; Holland 1975) were implemented to perform a minimization of 

sample fitness score (with 0 as a perfect score) while searching the global sample 

space for samples of the specified size. A preliminary comparison of algorithm 

performance, using a subset of the experimental data, indicated that TS and GA 

optimizations converged on functionally equivalent solutions, but that TS found its 

minimum for our fitness function in about 10% of the computing time required by 

GA. Thus, TS was chosen for use in this experiment and the complete set of 

simulation trials, which analysed approximately 1.2 billion sample combinations, was 

computed in <48 hours processing time using a personal workstation. The specific 

configuration included a multi-core CPU running at 2.5GHz and enough physical 
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memory (i.e., 8 gigabytes) to host the algorithms without the need to access secondary 

storage. 

 Our custom simulation software was used to identify the optimal GOES 

solutions for samples ranging in size from 1% to 100% of the population equally 

spaced in 1% increments. The simulation was repeated in 30 trials and the final fitness 

score for each sample size was determined as the averaged score across all trials. 

Cluster sampling location data from the 30 trials was analysed to determine the 

probability of each cluster being included in the optimal sampling solution. Results 

were plotted, one plot for each site-year combination, to illustrate the spatial patterns 

and their relationship to sample size. 

 Spatially-explicit sampling models. In the interest of developing simple field 

methods and illuminating the relationships between block variability, canopy 

structure, and optimal sampling solutions, two strategies for spatially-weighted 

template sampling (STS) were developed which employed a form of pseudo-random 

sampling that concentrated sampling frequencies within specific blocks or panel 

locations in quantities proportionate with the globally optimized probability densities. 

For each site-year combination, GOES solutions were analysed to determine the inter-

panel and intra-panel probability densities of optimal cluster sampling locations. 

These densities were used to define two types of weighted sampling templates: a 

panel-weighted (PW) template which determined the number of clusters to be 

harvested from each panel within the block; and a canopy architecture-weighted (AW) 

template that assigned a weighted number of clusters to each 20cm increment along 

the length of a panel. Figure 3.1 illustrates an example of each sampling method. 
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Figure 3.1.  Example of a panel-weighted (A), architecture-weighted (B), and globally 

optimized (C) sampling template generated from EPQA dataset.  The panel-weighted 

template indicates what percentage of the overall vineyard sample should be collected 

from this panel (i.e., 8.5% of the total sample – other panels will have different 

weights and all weights add up to 100%). The architecture-weighted sampling 

template indicates what percentage of the overall vineyard sample should be collected 

from this location along the length of each panel (applied consistently to each panel). 

The locations are based on 20cm increments and the weights add up to 100% for each 

panel. The globally optimized template indicates precisely which clusters should be 

sampled from each panel (Y = sample, N = do not sample). Each panel has a unique 

template. 

 

 Efficiency of GOES and STS vs. random sampling.  Fitness values vs. 

sample size (1% to 100% of population) were determined for random, GOES, and STS 

sampling protocols as described in previous paragraphs. For each site-year 

combination, the resulting sample size vs. fitness scores were fitted as a series of 

piecewise cubic polynomials, as determined by the MATLAB spline function.  The 
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fitted curves were then used to compute random-sample-equivalent sample sizes for 

each GOES and STS sample. Figure 3.2 illustrates the method of using the fitted 

curves to convert from a random sample size to an optimized sample size. Differences 

in sample size were plotted for each site-year combination. 

  

 

 

Figure 3.2.  Illustration of the method used to interconvert sample size equivalents. A 

piecewise cubic spline was fitted to plots of fitness score vs. random sampling and 

fitness score vs. optimized sampling. Equivalent sample sizes are determined by 

locating the point on each curve where the fitness values are equal. Fitness score 

represents the 2-norm of the difference between population and sample discrete 

probability densities of the target vineyard parameters. 

 

Results 

 Quantification of canopy autocorrelation. Spatial autocorrelation was 

present in all canopies, for all measured EPQA metrics, and varied with lag distance 



 

47 

 

(Table 3.1).  Aggregated by EPQA metric, absolute mean autocorrelation for OLN, 

CEL, and CEFA were 0.22 (+/- 0.09), 0.13 (+/- 0.02), and 0.12 (+/- 0.02) respectively. 

Aggregated by training system, absolute mean autocorrelation for U, SH, and 2TFB 

were 0.17 (+/- 0.10), 0.16 (+/- 0.09), and 0.14 (+/- 0.02) respectively.  

Autocorrelation, expressed as aggregated absolute mean, varied among reported 

EPQA metrics with values of 0.22 (+/- 0.09), 0.13 (+/- 0.02) and 0.12 (+/- 0.02) for 

OLN, CEL, and CEFA respectively.  

Periodic spatial structure. Most autocorrelation plots revealed a visible 

sinusoidal hole-effect pattern, modulating between positive and negative values 

(illustrated in Figure 3.3 for site C; sites A and B not shown). Fourier analysis of the 

underlying EPQA metrics at site A determined that the primary OLN and CEL value 

cycles occurred at a period of 170 and 190 canopy row centimetres (i.e., 8.5 and 9 

lags) for 2007 and 2008 respectively – a distance within 10 cm of the vine spacing at 

that site. Primary CEFA value cycles occurred at 170 cm in 2007 and 84 cm 

(approximately ½ of the vine spacing) in 2008. The primary and secondary signal 

periods for site C are annotated on Figure 3.3, and the complete Fourier dataset is 

presented in Table 3.1. 
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Figure 3.3.  Average spatial autocorrelation (range -1 to 1) of EPQA metrics in 

Umbrella trained Vignoles vines (site C). By definition, a lag distance of zero has an 

autocorrelation value of '1'. The sinusoidal "hole-effect" pattern, attributed to the 

repetitive spatial structure of the canopy row along its longitudinal axis, is most 

evident in occlusion layer number (OLN) which is a measure of canopy biomass. The 

dashed line located by the 'x' indicates the most prominent signal period as determined 

by Fourier analysis of the underlying EPQA metrics. The dashed line located by the 'o' 

indicates the signal period of next highest power. Vine spacing in the field is 180 cm 

(9 lags). CEL = Cluster Exposure Layer, CEFA = Cluster Exposure Flux Availability. 
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Table 3.1.  Summary statistics for canopy autocorrelation and Fourier analysis of 

signal periods. Bolded signal values are within 10 cm of the vine spacing (i.e. 190 

cm). Italicized values represents periods consistent with double or half vine spacing. 

 
 OLN CEL CEFA 

 
SH 2TFB U SH 2TFB U SH 2TFB U 

 

 
2008 2009 2008 2009 2007 2008 2008 2009 2008 2009 2007 2008 2008 2009 2008 2009 2007 2008 

 

 

Autocorrelation Analysis 

Min 
Autocorrelation 

-0.21 -0.60 -0.27 -0.25 -0.69 -0.47 -0.23 -0.36 -0.41 -0.24 -0.25 -0.32 -0.20 -0.15 -0.27 -0.27 -0.17 -0.27 

Max 
Autocorrelation 

0.54 0.66 0.46 0.58 0.55 0.58 0.44 0.25 0.19 0.40 0.17 0.25 0.31 0.27 0.36 0.39 0.42 0.19 

Mean 
Autocorrelation 

0.07 0.00 -0.05 -0.02 -0.01 0.01 0.07 -0.02 -0.03 -0.03 -0.02 -0.01 0.03 0.03 -0.04 0.01 -0.02 -0.01 

Absolute Mean 
Autocorrelation 

0.12 0.33 0.16 0.15 0.32 0.26 0.13 0.16 0.11 0.13 0.10 0.15 0.03 0.10 0.12 0.16 0.10 0.11 

 

Fourier Analysis 

Vine Spacing 
(cm) 

200 200 180 200 200 180 200 200 180 

Primary Signal 
Period (cm) 

380 190 290 310 170 190 190 190 290 207 170 190 84 190 48 67 170 84 

Secondary Signal 
Period (cm) 

253 380 193 207 52 253 109 95 53 78 76 84 380 48 290 150 227 58 

 

Ten of the 18 site-year-metric combinations analysed revealed primary signal 

periods within 10 cm of the vine spacing (Site A: OLN in 2008 and 2009, CEL in 

2008 and 2009, CEFA in 2009; Site B: CEL in 2009; Site C: OLN in 2007 and 2008, 

CEL in 2007 and 2008, CEFA in 2007). Four of the remaining eight combinations 

revealed either a primary signal that was reflective of double vine spacing (Site A: 

OLN in 2008), half vine spacing (Site C: CEFA in 2008), or a secondary signal period 

within 10 cm of the vine spacing (Site B: OLN in 2008 and 2009).  

 Spatial structure and sampling efficiency in GOES solutions. The optimal 

and randomized cluster sampling strategies over a range of sample sizes are shown in 

Figure 3.4 (site A, 2009 data is presented; other site-year combinations not shown).   

The optimal sampling strategy, as determined by GOES simulations, resulted in 

preferential selection of specific clusters at low sample sizes.  The preferred clusters 

are associated with the darker bands in Fig 4B, and are more representative of the 
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population distribution of CEFA.  Conversely, non-preferred clusters which are poorly 

representative of the CEFA of the population (i.e., outliers) appear as white bands in 

Fig 3.4A.  Optimal cluster sampling locations, as determined by GOES simulations, 

exhibited strong spatial structure compared to random sampling across all sample 

sizes, sites, years, and training systems. 

 

 

Figure 3.4.  Comparison of sampling patterns generated by random sampling (A) and 

globally optimized spatially-explicit sampling (B) at site A in 2009. Banded pattern in 

the optimized sample indicates that some clusters (i.e., the dark bands) are preferred 

over others (i.e., the light bands) when choosing a minimum sample that best 

represents the targeted population parameters (i.e., the probability distribution of 

cluster exposure flux availability in the population). Each cluster location on the X-

axis corresponds to a specific cluster in an enhanced point quadrat analysis dataset. 

Each row on the Y-axis represents a sample of size Y%. 
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When compared to random samples of equal fitness scores, GOES achieved a 

reduction in sample size vs. random sampling at all sample sizes in all site-year 

combinations (Figure 3.5), although the extent of the improvement varied among 

treatments.  For operationally practical sample sizes below 20% of the population, 

GOES resulted in reductions in required sample size ranging from 25% to 60% 

compared to random sampling (Figure 3.5B). 

 

 

Figure 3.5.  Reduction in sample size achieved through spatially-explicit global 

optimization of sampling. The sample sizes indicated on the X-axis are Y% (i.e., the 

value on the Y-axis) smaller than a statistically comparable random sample. 2TFB = 

two-tier flatbow, SH = Scott Henry, U = Umbrella. Sample optimization was 

performed for cluster exposure flux availability (CEFA). Panel A shows all tested 

sample sizes. Panel B shows detail of sample sizes between 1% and 20% of 

population. 

 

 Spatial structure and sampling efficiency in STS solutions. Similar to the 

GOES optimization, the use of a panel weighted template strategy (PW STS) resulted 

in some panels being preferably sampled over others in the optimal strategy, indicated 

by the visual banding pattern in Figure 3.6B.  Unlike the GOES optimization, a 
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banding pattern is also visible when clusters are selected at random due to variation in 

cluster count among panels and thus cluster sampling frequencies (illustrated for site 

A 2009 in Figure 3.6A; other sites not shown). Similar banding patterns appear for 

AW STS, reflecting higher cluster count numbers at some positions along the panel 

than other positions (Figure 3.7A). Visual banding in Figure 3.7B represents the 

variation in sampling frequencies after being adjusted to the optimal architecture-

weighed frequency. 

 

  

Figure 3.6.  Sample density in random (A) and panel-weighted sampling templates 

(B) (PW STS). Optimized panel-weighted sampling frequencies demonstrating the 

impact of globally optimized sampling on the probability that a cluster is sampled 

from each panel (data from Site A, 2009). Visual banding in the random sample plot is 

caused by variability in cluster count among panels that results in some panels 

naturally being sampled more than others. Banding differences in the optimized 

samples are a result of weighting adjustments introduced to improve sample fitness 

with respect to population parameters. 
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Figure 3.7.  Sample density in random (A) and architecture-weighted sampling 

templates (B) (AW STS). Optimized vine-architecture-weighted sampling frequencies 

demonstrating the impact of globally optimized sampling on the probability that a 

cluster is sampled from each position within a canopy panel (data from Site A, 2009). 

Visual banding in the random sample plot is caused by variability in cluster count 

among panel locations that results in some locations being sampled more than others. 

Banding differences in the optimized samples are a result of weighting adjustments 

introduced to improve sample fitness with respect to population parameters. 

 

When compared to random samples of equal fitness scores, PW STS achieved 

a reduction in sample size at random-sample sizes below 95% of population in all site-

year combinations (Figure 3.8) and reductions varied among treatments.  For random 

sample sizes below 20% of population, PW STS achieved sample reductions ranging 

from 1% to 24% (plus one outlier of 47%) compared to random sampling. Similarly, 

AW STS achieved reduction in sample size at random sample sizes below 65% of 

population in all site-year combinations (Figure 3.9) and reductions varied among 

treatments. For random sample sizes below 20% of population, AW STS achieved 

sample reductions ranging from 2% to 21%. 
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Figure 3.8.  Difference in sample size achieved through panel-weighted template 

sampling. The sample sizes indicated on the X-axis are Y% (i.e., the value on the Y-

axis) smaller than a statistically comparable random sample. 2TFB = two-tier flatbow, 

SH = Scott Henry, U = Umbrella. Sample optimization was performed for cluster 

exposure flux availability (CEFA). Values below zero represent a reduction in 

sampling requirements (vs. random sampling), while values above zero indicate an 

increase in sampling requirements. Panel A shows all tested sample sizes. Panel B 

shows detail of sample sizes between 1% and 20% of population. 
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Figure 3.9.  Difference in sample size achieved through architecture-weighted 

template sampling. The sample sizes indicated on the X-axis are Y% (i.e., the value on 

the Y-axis) smaller than a statistically comparable random sample. 2TFB = two-tier 

flatbow, SH = Scott Henry, U = Umbrella. Sample optimization was performed for 

cluster exposure flux availability (CEFA). Values below zero represent a reduction in 

sampling requirements (vs. random sampling), while values above zero indicate an 

increase in sampling requirements.  Panel A shows all tested sample sizes. Panel B 

shows detail of sample sizes between 1% and 20% of population. 

 

Discussion 

 Consistency of structural patterns. Autocorrelation among the reported 

EPQA metrics (Figure 3.3) suggests that measures of biomass density (OLN) may be 

more inclined to exhibit periodic spatial patterns than measures of cluster exposure 

(CEFA, CEL), perhaps due to higher number of leaf contacts vs. cluster contacts per 

unit of row length, and the efficacy of cultural practices (i.e., leaf pulling) intended to 

improve exposure consistency.  As expected, the vine spacing (180 cm or 200 cm) was 

similar to either the primary or secondary periods from Fourier analysis (Table 3.1) in 

nearly all treatments, suggesting that vine spacing is a major factor in controlling 

spatial patterns in cluster exposure. 
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 Limits of univariate sampling templates. Based on the presence of spatial 

patterns, and the potential for decreasing sampling sizes by up to 60%, we expected 

that a sampling protocol based on sample selection at regular locations (AW STS) 

along the panel should be successful in reducing cluster sample sizes because certain 

positions would be more representative of the population than others.  While AW STS 

resulted in a reduction in sample size as compared to random selection (up to 21%), 

the smaller reductions enabled by AW STS compared to both PW STS (up to 24% 

reduction) and GOES (up to 60% reduction) suggests that the localized three-

dimensional structure of a vine row, as influenced by vine spacing, training system, 

and vine morphology can only partially explain the patterns.  

 Similarly, while the reduced sample sizes of PW STS compared to random 

sampling revealed panel-to-panel patterns in field conditions, the additional sample 

size reductions achieved with GOES as compared to PW STS suggests that those 

inter-panel patterns do not, in isolation, explain the majority of the spatial structure 

within the block.  Moreover, the ability of GOES to achieve sample size reductions 

greater than the combined sample reductions from both AW and PW STS suggests 

that there are additional dimensions, some likely temporal in nature, that must be 

simultaneously balanced to achieve a reduction in sample size or maximize precision 

when measuring and describing cluster exposure. 

 Seasonal stability of spatial patterns. The reduction in sample size 

requirements for all optimized sampling methods vs. random sampling varied between 

seasons (Figure 3.5), as did autocorrelation in vineyard parameters and signal period 

(Table 3.1), suggesting that optimal sampling patterns would differ season to season. 

While it seems likely that temporal variability in seasonal weather patterns had an 

effect on season-to-season variability, cultural variability in cane pruning at all three 

sites may have been a more important factor.  Cane positioning, with respect to trunk 
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location at the vineyard floor, was inconsistent both within a vineyard row and 

between seasons (data not reported). Individual vines in vineyards in the Finger Lakes 

region often have several trunks which are trained without deliberate vertical 

positioning. Recording the location along the panel where a cane (or cordon) meets the 

fruiting wire could facilitate further analysis and potentially improve season-to-season 

portability of vineyard maps and sampling solutions. In support of this work, EPQA-

CEM Tools (Meyers and Vanden Heuvel, 2008; available from first author upon 

request) has been updated to allow for the recording of this location, as designated by 

the letter 'T' which can be added to any EPQA insertion string to denote the location 

where the cane/cordon meets the fruiting wire.  

 Economically scalable operational models. The results of the optimized 

sampling methods demonstrated here suggest a substantial potential for improvement 

in sampling efficiency, but the practicality of implementation must also be considered.  

The optimum solution defined by GOES requires locating individual clusters during 

sampling.  While this type of selective harvesting may be justifiable for a researcher, 

cluster-scale GOES methods are not likely to translate to a commercial vineyard, 

where sampling is often done by seasonal labour.  Ultimately, the increased 

application of robotic automation in vineyards (Cunha et al. 2010, Morris 2007) may 

make GOES approaches commercially viable, but the current state of commercial 

grape production requires a more straightforward and less labour intensive approach 

toward improving sampling protocols.  

 PW STS represents an example of an economically customized approach to 

spatially-explicit vineyard operation. Choosing clusters for sampling at the panel-scale 

preserves some of the spatial information computed for the best-case GOES solution 

without the challenge and cost of locating specific clusters.   Once CEFA or another 

parameter of interest (e.g., average estimated berry temperature) is characterized, a 
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commercial vineyard could then use selective sampling of particular blocks to direct 

vineyard operations and improve sampling efficiency.  Moreover, by using a cluster-

scale GOES model as an ideal target, the spatial unit of work within vineyard 

operations can be scaled up (i.e., moving performance toward logistical simplicity) or 

down (i.e., moving performance toward the “best-case” sampling scenario) as current 

labour cost, equipment capability, resource planning maturity, and other economic 

factors dictate.  Architecture based sampling strategies (AW STS) also offered 

improvements over random sampling, and would be simple to translate into verbal 

instructions, e.g. “take clusters at 80, 140, and 200 cm from the left edge of each 

panel”.  However, the improvements were more modest than those achieved with the 

block-level based sampling strategies. 

 Multivariate applications. Although the demonstrated cluster sampling 

optimization was based on a single ecophysiological parameter (i.e., fruit cluster 

exposure), heuristic optimization methods more naturally facilitate optimizations 

across multiple operational objectives. Rather than simply finding the best sampling 

strategy for representing the population cluster exposure, a multi-objective 

optimization strategy could balance the influence of additional vineyard parameters.  

Although collecting the necessary spatial vineyard data for multiple parameters 

requires an investment in labour and/or technology, continued advances in vineyard 

sensing technology are likely to improve the economics of data collection through 

increases in sensor density, sampling frequency, and variety of measureable 

parameters (Cunha et al. 2010). While the increased application of traditional data 

processing tools is an obvious response to increasingly larger datasets, the adoption of 

more sophisticated information processing and operational decision support methods 

such as those presented here could fundamentally transform vineyard management. 

 



 

59 

 

Conclusions 

 All tested spatially-explicit models reduced required sample size to achieve 

similar performance as random sampling.  Reduction in the required sample size was 

observed for both panel-weighted (PW STS) and architecture weighted (AW STS) 

sampling templates, although neither reduction was as great as the best-case globally-

optimized sample (GOES).  Measurements of cluster exposure have been shown to 

exhibit varying scales of spatial patterns within a site.  Although some patterns can be 

loosely predicted based on deliberate repetitive cultural practices (e.g. vine spacing or 

shoot positioning), some are based on less visibly obvious field conditions (e.g. soil 

structure or slope).  Autocorrelation in canopy biomass and fruit exposure was 

quantitatively linked to fixed vine spacing, but the smaller efficiency gains associated 

with AW and PW sampling suggest that optimal sampling strategies should 

simultaneously account for spatial variability at multiple scales. However, even when 

the underlying cause for the patterns is not definitively known, data from measured 

spatial patterns can be used to improve operational efficiency by guiding vineyard 

activities (e.g. sampling or selective harvesting) toward the locations that will most 

effectively achieve a desired goal. Finally, the methods presented here should be 

readily applicable to optimizing sampling protocols for other targeted parameters, 

including multivariate models. 
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CHAPTER 4 

 

IMPACT OF CLUSTER LIGHT ENVIRONMENT ON ORGANOLEPTIC 

CONCENTRATIONS IN RIESLING 

 

Abstract. Concentrations of organoleptic chemical compounds in Riesling are 

known to correlate to fruit-zone cluster exposure, although optimal cultural influences 

with respect to exposure timing and canopy assessment methods have not been 

established. To explore the spatiotemporal relationships between fruit-zone cluster 

exposure and harvested concentrations, correlations were measured among eight 

compounds (glycosylated TDN, β-damascenone, vitispirane, linalool oxide, -

terpineol, 4-vinylguiacol, vanillin, and eugenol), five cluster exposure metrics of 

varying spatial precision, two sites, and two phenological stages in two consecutive 

seasons. Pairwise combinations of the cluster exposure metrics (percent interior cluster 

[PIC], cluster exposure layer [CEL], log(CEL), cluster exposure flux availability 

[CEFA], and the percent ambient photosynthetic photon flux [%PPF] available at the 

longitudinal centerline of the fruiting zone), the eight quantified compounds, the two 

sites, the two phenological stages (fruit set and veraison), and the two seasons (2008 

and 2009) resulted in a total of 360 pairwise permutations. Among 22 statistically 

significant site-year-timing-compound-metric responses, CEFA appeared as the 

cluster exposure response predictor of highest frequency (8) followed by -logCEL (6), 

CEL (4), PIC (2), and %PPF (2). Where multiple metrics yielded significant responses 

for the same site-year-timing-compound combination, a ranking of correlation 

coefficients among redundant metrics revealed that CEFA was the most frequent best 

predictor (7 of 12) followed by -logCEL (3 of 12), and %PPF (2 of 12). In comparing 
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the relative predictive strength among EPQA and PQA metrics, a general pattern 

emerged: CEFA > log(CEL) > CEL > PIC. C13 response data suggested that canopies 

with low cluster exposure (CEFA < 0.2) may be effective in minimizing the influence 

of post-veraison cluster exposure on harvested C13 concentrations. 

 

Introduction 

 Numerous fruit cluster exposure studies have reported correlations between 

cluster exposure and organoleptically influential secondary metabolites such as 

phenolics (Downey et al. 2006), monoterpenes (Reynolds et al. 1996, Reynolds and 

Wardle 1989), norisoprenoids (Kwasniewski et al. 2010, Meyers et al. 2009, Lee et al. 

2007), and methoxypyrazines (Ryona et al. 2008, Hashizume and Samuta 1999). 

Although viticultural treatments such as leaf pulling and shoot thinning are often 

employed to manipulate fruit exposure, uncertainty remains about quantitative 

relationships between canopy architecture and organoleptic chemical profiles. 

Although grape growers desire to control the quality of their fruit, conflicting and 

inconclusive research data limits their ability to act with decisive precision and 

economic efficiency. 

 Many previously reported response studies have utilized point quadrat analysis 

(PQA) or direct measurement of fruit-zone percent photosynthetic photon flux (%PPF) 

to characterize cluster exposure; and most have used random subsampling of treatment 

populations in the measurement of biological responses. In choosing these methods, 

researchers have made some assumptions about canopy variability. The use of a 

categorical PQA metric such as percent interior clusters (PIC) or a fixed-location 

%PPF measurement to quantify cluster exposure, implies that any subtleties in three-

dimensional microclimatic spatial structure that may influence variability in cluster 

exposure can be overlooked in establishing biological responses. Similarly, the use of 
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random subsampling assumes that canopies are random fields, although recent 

evidence suggests that neither of these assumptions are valid (Meyers et al. 2010, 

Meyers et al. 2009). 

 Although numerous field methods have been demonstrated for quantifying 

three-dimensional canopy structure (Meyers and Vanden Heuvel 2008, Mabrouk and 

Sinoquet 1998, Schultz 1995) few are practical for high-volume or low-cost data 

collection. For example, the method demonstrated by Schultz (1995) is highly precise, 

but requires an elaborate and obtrusive measurement rigging. The Mabrouk and 

Sinoquet (1998) method is extraordinarily precise but its destructive sampling and use 

of complicated imaging tools limits its use to specialized and well-funded research 

venues. The Meyers and Vanden Heuvel (2008) method, known as enhanced point 

quadrat analysis (EPQA), offers new field protocols and canopy architecture metrics 

that improve on the three-dimensional precision of PQA without the need for 

cumbersome or complicated collection tools.  

 One EPQA metric, cluster exposure layer (CEL), improves on the spatial 

precision of PIC and can be calculated from a standard PQA dataset.  A second EPQA 

metric, cluster exposure flux availability (CEFA), uses a computational model to 

combine PQA datasets and fruit-zone %PPF measurements, thus further improving 

spatial precision. Contrasting operational cost of these methods, %PPF measurements 

require an initial investment in a measurement device such as a ceptometer, but 

subsequently require the least amount of field labor. PIC and CEL require no special 

field equipment (although calculation of CEL requires access to a personal computer) 

but requires more labor than %PPF. Calculation of CEFA requires the combined 

investment in materials and labor of the former metrics.  

 Organoleptic responses in Riesling. Of particular interest to Riesling is l,l,6-

trimethyl-1,2-dihydro-naphthalene (TDN) which imparts a kerosene-like aroma to 
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finished wines (Simpson 1978).  Other C13 norisoprenoids (e.g. beta damascenone 

which has been demonstrated to enhance fruity aromas) are generally considered to 

correlate positively with wine quality, but TDN is usually considered to be undesirable 

(Marais et al. 1992). Due to the combination of TDN's undesirable character, low 

sensory threshold (Simpson 1978), and responsiveness to fruit exposure, the 

production of high quality Riesling fruit is dependent on cultural practices that can 

minimize TDN while, if possible, also maximizing other desirable aroma compounds.   

In the specific case of managing fruit cluster exposure, quantitative knowledge of 

dose-response thresholds and other non-linear features would improve the precision of 

models and the canopy management practices that they guide. This paper seeks to 

advance the quantitative precision and economic efficiency of methods used to 

measure and manipulate fruit exposure in viticultural research and commercial 

production by exploring the relevance of subtle microclimatic structure in the 

determination of fruit exposure chemical responses of eight chemical compounds 

while controlling for sampling errors through the elimination of subsampling. 

 

 
Material and Methods 
 

Vine material. Two Riesling blocks were studied for naturally occurring 

microclimatic variation at two commercial vineyards (sites 'A' and 'B') in Lodi, NY 

(Finger Lakes region, east side of Seneca Lake). At site 'A', 72 Scott Henry trained 

Riesling vines (18 four-vine panels) were selected for consistency (i.e., no missing 

vines or obviously young replants) from a subplot of 6 rows. At site 'B', 66 Riesling 

vines (22 three-vine panels) trained to two-tier flatbow with vertical shoot positioning 

(VSP) were selected for consistency (i.e. no missing vines or obviously young 

replants) from a subplot of 7 rows. Both sites were planted in north-south row 
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orientation and managed according to standard viticultural practices for vinifera 

canopies in the Finger Lakes region. Vine spacing was 2.0 by 2.8 meters and 2.2 by 

2.8 meters at sites A and B respectively. Exterior rows and panels were excluded. The 

experimental unit for a treatment was one panel (i.e., four consecutive vines at site A 

and three consecutive vines at site B). 

Canopy characterization. Point quadrat analysis (PQA; Smart and Robinson 

1991), Enhanced point quadrat analysis (EPQA) and calibrated exposure mapping 

(CEM) were performed at fruit-set (June 27
th

 and July 5
th

 in 2008 and 2009 

respectively) and pre-veraison (on August 15th
th

 and August 25
th

 in 2008 and 2009 

respectively) by inserting a thin metal rod into the fruiting zone along the transverse 

axis of the canopy row, as described by Meyers and Vanden Heuvel (2008). A tape 

measure was used as a guide for insertions, which were made at 20-cm intervals along 

the length of the four-vine panel at the height of the fruiting wire, resulting in a total of 

35 insertions per panel. A Decagon AccuPAR LP-80 photosynthetically active 

radiation sensor (Decagon Devices; Pullman, WA) was used to measure percent 

photon flux (PPF). PQA and EPQA metrics were computed for each vineyard panel 

using Microsoft Office Excel version 12.0.6514.5000 SP2 (Microsoft Corporation; 

Redmond, WA) and EPQA-CEM Tools version 1.6.2 (available on request from 

jmm533@cornell.edu).  

Weather data. Growing degree day (base 50 degrees Fahrenheit) data were 

obtained from site-located HOBO weather stations (Onset Computer Corp; Bourne, 

MA). Precipitation data was obtained from the Network for Environmental and 

Weather Applications (Cornell University, Ithaca, NY) weather station in Valois, NY. 
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Cumulative totals were calculated for the ranges between April 15
th

 and fruit-set, 

between fruit-set and veraison, and between veraison and harvest. Harvest dates in 

2008 were October 13
th

 and October 9
th

 for sites A and B respectively.  In 2009, fruit 

was harvested on October 15
th

 at both sites.   

Fruit assessment. Panels were individually harvested and pressed in their 

entirety (i.e. without subsampling), analyzed for soluble solids, treated with 50 mg/L 

SO2 and samples (200 ml in 2008; 500 ml in 2009) were frozen at -40C for later 

analysis.  Juice soluble solids were quantified by floating an Ertco 2523PL hydrometer 

(Nalge; Rochester, NY) in the thawed and pressed juice. Juice samples were thawed at 

room temperature for approximately 24 hours and analyzed for pH and titratable 

acidity via titration of 50ml juice samples with 0.1N NaOH on a Mettler-Toledo DL22 

auto-titrator and DG115-SC probe (Mettler-Toledo; Greifensee, Switzerland). 

 Analysis of C13-norisoprenoids, monoterpenes, and phenolics. Targeted 

organoleptic compounds (glycosylated TDN, β-damascenone, vitispirane, linalool 

oxide, -terpineol, 4-vinylguiacol, vanillin, and eugenol) were extracted from juice 

samples via a solid-phase extraction (SPE) protocol derived from Lopez et al. (2002). 

Juice samples were thawed at room temperature for approximately 24 hours and 

centrifuged prior to SPE processing.  

4 mL SPE cartridges packed with 200 mg of LiChrolut EN sorbent (Merck 

KGaA, Damstadt, Germany) were preconditioned with sequential washings of 

dichloromethane (DCM; 5 mL), methanol (5 mL), and water (10 mL) and loaded with 

50 mL of juice at a flow rate of approximately 2 mL/minute via a Cerex SPE 

processor (Varian, Inc., Palo Alto, CA). Lipids and free volatiles were removed from 



 

70 

 

the stationary phase with sequential washings of water (4 mL) and a 2:1 v/v mixture of 

pentane and DCM (7.7 mL). The remaining analyte was eluted with a 9:1 v/v mixture 

of ethyl acetate and methanol (4 mL) and dried under nitrogen to complete dryness. 

 Samples were reconstituted with 10 mL of 0.2M citric acid buffer (adjusted 

with NaOH to a pH of 2.5) and incubated at 100C for 1 hour to hydrolyze the 

glycosides. 2-octanol was added to the cooled solution to serve as an internal standard 

at a target concentration of 250 mg/L. A fresh 4 mL SPE cartridge packed with 200 

mg of LiChrolut EN was preconditioned with sequential washings of DCM (5 mL), 

methanol (5 mL), and water (5 mL) and the sample loaded at a flow rate of 

approximately 2 mL/min. The SPE column was dried under nitrogen for 15 minutes, 

volatiles eluted with 2.8 mL of DCM, concentrated under nitrogen to a volume of 

approximately 300 μL, and 100 μL portion drawn for further analysis via GC-MS 

using a Varian CP-3800 gas chromatograph fitted with a wax column and Saturn 2000 

mass spectrometer (Palo Alto, CA).  Analytes were identified via retention index and 

library spectra and quantified relative to the 2-octanol internal standard via 

ChromaTOF software version 4.22 (Leco Corporation, St. Joesph, MI). Vitispirane 

peak area was determined through the addition of peak areas for vitispirane A and B. 

Some monoterpenes were assumed to have been partially rearranged to -terpineol 

during acid hydrolysis (Baxter et al. 1978), so -terpineol was expected to serve as a 

proxy for total monoterpene concentrations. 

 Statistical Analysis. Correlation coefficients were calculated for pairwise 

comparisons among the five metrics of cluster exposure (PIC, CEL, log(CEL), CEFA, 

and %PPF), eight measured compounds (TDN, β-damascenone, vitispirane, linalool 
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oxide, -terpineol, 4-vinylguiacol, vanillin, and eugenol), two sites (A and B), the two 

canopy measurement timings (fruit-set and veraison) in the two seasons (2008 and 

2009) resulting in a total of 320 pairwise permutations. Correlation coefficients were 

calculated to test responses between microclimatic metrics and fruit composition and 

also to compare microclimatic metrics as a measure of internal consistency.

 Univariate regression analyses were performed for each site-year-compound 

combination (CEFA vs. relative analyte concentration) at both fruit-set and veraison. 

Multivariate regression analysis was performed to test the merits of combining fruit-

set and veraison measurements and adding crop load, when available, to regressions. 

Additional model parameters were determined to be insignificant if their individual p 

values (Pr > F) were greater than 0.05. All correlations, regressions and significance 

tests were performed via SAS version 9.1.3, service pack 4 (SAS; Cary, NC). 

 

Results & Discussion 

 Growing degree and rainfall accumulation. Total growing degree day 

accumulation (Figure 4.1) and rainfall (Figure 4.2) were similar in 2008 and 2009, 

although in 2008 accumulations were weighted toward the latter half of the growing 

season.  In 2008, no additional rainfall occurred during differential harvest dates, so 

sites A and B are reported with equivalent rainfall accumulations in both years.  
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Figure 4.1.  Growing degree accumulation (base 50 degrees Fahrenheit) from bud 

break to fruit-set (BB-FS), from fruit-set to onset of veraison (FS-V), and from onset 

of veraison to harvest (V-H).  

 

 

 

 
Figure 4.2.  Rainfall accumulation from bud break to fruit-set (BB-FS), from fruit-set 

to onset of veraison (FS-V), and from onset of veraison to harvest (V-H). Sites A and 

B share data from the same weather station, and no rainfall occurred during 

differential harvest dates, so sites A and B are reported with equivalent rainfall 

accumulations. 
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Correlations between cluster exposure and compound concentrations. 

Value ranges of microclimatic indicators (Table 4.1) and relative analyte 

concentrations (Table 4.2) varied within each site-year combination, suggesting that 

viticultural practices at both sites were not successful at tightly controlling variability 

of microclimatic indicators or analyte concentrations. Pearson correlation coefficients 

of analyte responses (Table 4.3) revealed 22 statistically significant (p ≤ 0.05) 

responses representing 12 unique site-year-timing-compound combinations (i.e., some 

site-year-timing-compound combinations yielded significant responses for more than 

one cluster exposure metric). TDN responses were most frequent (9), followed by -

terpineol (4), vitispirane (3), -damascenone (2), eugenol (2) and linalool-oxide (1), 4-

vinylguiacol (1), and vanillin (0). 
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Table 4.1.  Ranges, means, and standard deviations of microclimatic metrics. Vines at 

sites A and B were trained to Scott Henry and two-tier flatbow respectively. PPF = 

Photosynthetic photon flux at fruit zone. FS = fruit-set. V = veraison. PIC = percent 

interior clusters, CEL = cluster exposure layer, CEFA = cluster exposure flux 

availability. 

 

Site Year Timing 

LLN 
min-max 

mean (std) 

OLN 

min-max 

mean (std) 

PIC 

min-max 

mean (std) 

CEL 

min-max 

mean (std) 

CEFA 

min-max 

mean (std) 

PPF  

min-max 

mean (std) 

A 

2008 

Fruit set 
1.40 - 2.50 
2.04 (0.28) 

2.00 - 3.18 

2.74 (0.34) 

50.0 - 84.5 

60.8 (10.6) 

0.50 - 0.95 

0.68 (0.13) 

0.13 - 0.40 

0.28 (0.07) 

6.20% - 48.6% 

23.1% (9.38) 

 

Veraison 
1.65 - 2.62 
2.08 (0.30) 

2.02 - 3.54 

2.83 (0.42) 

35.2 - 81.4 

54.7 (14.7) 

0.35 - 0.93 

0.61 (0.17) 

0.16 - 0.46 

0.31 (0.09) 

0.50% - 27.00% 

5.11% (4.62) 

 

2009 

Fruit set 
1.84 - 2.64 
2.16 (0.23) 

2.14 - 3.19 

2.72 (0.29) 

66.0 - 94.1 

79.0 (9.5) 

0.80 - 1.53 

1.09 (0.26) 

0.03 - 0.21 

0.13 (0.06) 

0.78% - 28.4% 

5.13% (5.09) 

 

Veraison 
1.64 - 2.36 
2.05 (0.24) 

2.26 - 3.09 

2.72 (0.26) 

53.1 - 91.2 

76.0 (10.3) 

0.59 - 1.28 

0.99 (0.19) 

0.07 - 0.28 

0.14 (0.06) 

0.51% - 13.03% 

1.59% (1.22) 

 

B 

2008 

Fruit set 
1.77 - 3.15 
2.42 (0.38) 

2.29 - 4.03 

3.00 (0.51) 

50.0 - 94.8 

70.3 (11.4) 

0.56 - 1.21 

0.83 (0.19) 

0.13 - 0.38 

0.24 (0.06) 

0.70% - 44.7% 

9.46% (7.89) 

 

Veraison 
2.90 - 4.33 
3.50 (0.43) 

4.03 - 5.70 

4.67 (0.50) 

65.5 - 100 

87.8 (8.27) 

1.00 - 1.75 

1.36 (0.24) 

0.06 - 0.20 

0.12 (0.04) 

0.40% - 11.2% 

1.73% (1.62) 

 

2009 

Fruit set 
2.71 - 3.85 
3.35 (0.31) 

3.87 - 5.26 

4.52 (0.43) 

89.1 – 100 

96.1 (3.95) 

1.23 - 2.03 

1.69 (0.22) 

0.03 - 0.18 

0.08 (0.04) 

0.44% - 17.9% 

3.97% (3.88) 

 

Veraison 
2.26 - 3.44 
2.78 (0.38) 

3.32 - 4.88 

4.06 (0.43) 

87.9 - 97.6 

92.4 (3.54) 

1.26 - 1.81 

1.47 (0.17) 

0.01 - 0.06 

0.04 (0.02) 

0.51% - 5.05% 

1.41% (0.86) 

 

Table 4.2.  Relative ranges, means, and standard deviations of analyte concentrations 

at harvest. Value ranges are arbitrary units derived from GC-MS peak areas vs. and 

internal standard of 2-octanol. Vines at sites A and B were trained to Scott Henry and 

two-tier flatbow respectively. ND = Not detected. 

 

Site Year 

TDN 

min-max 

mean (std) 

Damascenone 

min-max 

mean (std) 

Vitispirane 

min-max 

mean (std) 

-Terpineol 

min-max 

mean (std) 

Linalool Oxide 

min-max 

mean (std) 

4-Vinyl Guiacol 

min-max 

mean (std) 

Vanillin 

min-max 

mean (std) 

Eugenol 

min-max 

mean (std) 

A 

2008 
2.59 – 5.51 

3.56 (0.90) 

0.44 – 0.97 

0.61 (0.16) 

0.93 – 2.44 

1.52 (0.45) 

2.4 – 3.99 

3.30 (0.51) 

6.78 – 14.88 

9.63 (2.41) 

10.22 – 77.72 

31.32 (22.31) 

3.28 – 6.78 

4.62 (1.49) 
ND 

 

2009 
0.43 - 1.81 

1.07 (0.35) 

0.04 - 0.14 

0.08 (0.03) 

0.03 - 0.09 

0.06 (0.02) 

0.16 – 0.57 

0.34 (0.12) 

0.21 – 0.67 

0.41 (0.13) 

0.21 – 1.06 

0.54 (0.22) 

0.09 – 0.83 

0.28 (0.18) 

0.03 – 0.18 

0.09 (0.04) 

 

B 

2008 
0.73 – 2.06 

1.53 (0.36) 

0.03 – 0.90 

0.33 (0.20) 

0.02 – 0.16 

0.08 (0.03) 

0.02 – 0.96 

0.41 (0.22) 

0.18 – 1.40 

0.99 (0.26) 

0.05 – 3.79 

1.02 (0.94) 

0.14 – 1.19 

0.44 (0.25) 

0.03 – 0.28 

0.11 (0.06) 

 

2009 
0.75 – 2.42 

1.35 (0.48) 

0.07 – 0.14 

0.09 (0.02) 

0.04 – 0.11 

0.07 (0.02) 

0.21 – 0.68 

0.42 (0.12) 

0.17 – 1.04 

0.54 (0.19) 

0.04 – 2.95 

0.71 (0.49) 

0.11 – 0.96 

0.35 (0.18) 
ND 
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Table 4.3.  Pearson correlation coefficients for microclimatic metrics versus relative 

chemical concentrations. †=p ≤ 0.10; *=p ≤ 0.05; **=p ≤ 0.01; ***=p ≤ 0.001. N=9, 

24, 33, and 30, for A-2008, A-2009, B-2008, and B-2009 respectively. PPF = 

Photosynthetic photon flux at fruit zone. FS=fruit-set. V=veraison. PIC=percent 

interior clusters, CEL=cluster exposure layer, CEFA=cluster exposure flux 

availability. ND=analyzed for but not detected in more than three treatments. 
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A 
2008 

FS - 0.69 * - 0.45 - 0.40 - 0.42 0.19 - 0.35 0.35 ND 
V - 0.80 * - 0.62 † - 0.52 - 0.64 † - 0.12 - 0.61 0.01 ND 

2009 
FS - 0.05 0.03 0.05 0.11 0.06 0.21 - 0.10 - 0.12 
V -0.09 0.15 0.18 0.22 0.15 0.20 0.05 - 0.01 

 

B 
2008 

FS 0.08 0.04 0.17 0.04 0.07 0.14 - 0.04 -0.04 
V - 0.16 - 0.02 0.20 - 0.07 0.04 - 0.05 - 0.25 0.46 † 

2009 
FS 0.31 - 0.08 - 0.03 0.37 † 0.28 0.33 † 0.39 † ND 
V - 0.17 0.21 0.22 - 0.32 - 0.32 - 0.11 - 0.30 ND 

 

C
E

L
 

A 
2008 

FS - 0.69 * - 0.47 - 0.40 - 0.52 0.16 - 0.43 0.28 ND 
V - 0.80 ** - 0.64 † - 0.55 - 0.57 - 0.19 -0.60 † - 0.05 ND 

2009 
FS 0.03 0.04 0.07 0.08 0.08 0.26 - 0.18 - 0.13 
V 0.11 0.18 0.18 0.26 0.19 0.14 0.13 0.03 

 

B 
2008 

FS - 0.01 0.02 - 0.07 0.03 - 0.06 0.09 0.03 - 0.10 
V 0.30 0.06 0.31 0.06 0.21 0.04 - 0.16 - 0.67 ** 

2009 
FS 0.33 † - 0.08 0.16 0.43 * 0.36 † 0.32 † 0.32 ND 
V - 0.24 0.12 0.18 - 0.34 † - 0.39 † - 0.13 - 0.25 ND 

 

-l
o
g
(C

E
L
) 

A 
2008 

FS 0.70 * 0.49 0.39 0.56 - 0.11 0.47 -0.24 ND 
V 0.83 ** 0.69 * 0.58 † 0.62 † 0.26 0.62 0.13 ND 

2009 
FS 0.01 0.03 0.05 0.06 0.07 0.27 - 0.20 - 0.14 
V 0.08 0.16 0.15 0.22 0.16 0.12 0.11 0.02 

 

B 
2008 

FS 0.01 0.05 - 0.06 0.04 - 0.05 0.11 0.07 - 0.07 
V 0.32 0.04 0.35 0.07 0.23 0.03 - 0.16 0.67 ** 

2009 
FS 0.33 † - 0.11 0.15 0.41 * 0.35 † 0.32 † 0.32 ND 
V - 0.23 0.15 0.20 - 0.35 † - 0.40 * - 0.12 - 0.25 ND 

 

C
E

F
A

 

A 
2008 

FS 0.54 0.59 † 0.68 * 0.43 0.00 0.42 0.51 ND 
V 0.88 ** 0.73 * 0.66 † 0.65 † 0.21 0.58 0.09 ND 

2009 
FS 0.02 - 0.02 - 0.07 - 0.11 - 0.09 - 0.23 0.12 0.17 
V - 0.08 - 0.13 - 0.16 - 0.20 - 0.13 -0.19 -0.05 0.06 

 

B 
2008 

FS - 0.43 * - 0.21 - 0.42 * - 0.13 - 0.03 - 0.17 0.00 - 0.20 
V - 0.18 0.11 - 0.10 0.10 - 0.18 0.15 0.29 † - 0.46 † 

2009 
FS - 0.40 * 0.04 0.03 - 0.44 * - 0.26 - 0.37 * - 0.41 † ND 
V 0.16 - 0.25 - 0.27 0.31 0.30 0.12 0.30 ND 

 

P
P

F
 

A 

2008 
FS 0.34 0.46 0.71 * 0.17 0.14 0.38 0.42 ND 

V 0.44 0.19 0.24 0.29 0.08 0.01 - 0.35 ND 

2009 
FS 0.07 0.09 0.01 - 0.02 - 0.01 - 0.05 0.01 0.21 

V 0.20 - 0.01 0.14 - 0.08 0.08 0.09 0.00 0.10 

 

B 

2008 
FS - 0.36 0.32 - 0.30 - 0.38 * 0.08 - 0.10 0.02 0.12 

V 0.10 0.16 0.41 † 0.09 - 0.24 0.18 0.12 0.06 

2009 
FS - 0.23 - 0.08 0.02 - 0.26 - 0.07 - 0.22 - 0.18 ND 

V - 0.17 0.07 - 0.05 - 0.04 - 0.13 - 0.19 - 0.13 ND 
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Regression analysis of all significant responses (Figures 4.3 through 4.8) 

revealed generally stronger responses at veraison vs. fruit-set. With the exception of 

TDN and vitispirane, which responded positively to cluster exposure measured at 

fruit-set at site A in 2008 (Figure 4.3), all fruit-set responses were negative. However, 

all negative responses were generally weak (vs. positive responses) with low 

regression R2 values suggesting that none were biologically significant, leaving only 

the C13 compounds and eugenol with operationally significant responses. 

Furthermore, neither C13s nor eugenol consistently responded in all site-year 

combinations. While C13s responded at both fruit-set and veraison at site A in 2008, 

no responses were found at site A in 2009, and the responses at site B (all at fruit-set) 

were weak. Eugenol responded only in one parameter combination (site B veraison in 

2008). Multiple regression (combining time points and adding available crop load 

data) failed to significantly improve any of the regression models (p > 0.05 for each of 

the additional parameters in all cases). 
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Figure 4.3.  Statistically significant responses between fruit-set cluster exposure and 

analyte concentration at site A in 2008. CEL = Cluster exposure layer. CEFA = 

Cluster exposure flux availability. %PPF = percent photosynthetic photon flux. 
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Figure 4.4.  Statistically significant responses between veraison cluster exposure and 

analyte concentration at site A in 2008. CEL = Cluster exposure layer. CEFA = 

Cluster exposure flux availability. 
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Figure 4.5.  Statistically significant responses between fruit-set cluster exposure and 

analyte concentration at site B in 2008. CEFA = Cluster exposure flux availability. 

%PPF = percent photosynthetic photon flux. 
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Figure 4.6.  Statistically significant responses between veraison cluster exposure and 

analyte concentration at site B in 2008. CEL = Cluster exposure layer. 
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Figure 4.7.  Statistically significant responses between fruit-set cluster exposure and 

analyte concentration at site B in 2009. CEL = Cluster exposure layer. CEFA = 

Cluster exposure flux availability. %PPF = percent photosynthetic photon flux. 
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Figure 4.8.  Statistically significant responses between veraison cluster exposure and 

analyte concentration at site B in 2009. CEL = Cluster exposure layer.  

 

A possible explanation for the C13 results is that, although C13s can be 

expected to respond positively with cluster exposure at both fruit-set and veraison 

(Kwasniewski et al. 2010), sufficient dose-response thresholds were only achieved at 

site A in 2008. Previous work on the response of TDN to cluster exposure (Gerdes et 

al. 2002) has suggested that TDN concentrations in Riesling only respond to fruit-zone 

sunlight exposures above 20% of ambient sunlight (study was conducted in Davis, 

CA). Our results appear to be consistent with this assertion in that, in both seasons 

studied, the average veraison CEFA values at site B (2TFB) were below 0.15 (15% of 

ambient sunlight) and TDN values were best predicted by fruit set measurements 

(when fruit was more exposed).  

Considering these combined results, it may be reasonable to assume that the 

final concentrations of C13s in Riesling canopies with veraison CEFA values below 

0.20 are independent of post-veraison fruit exposure. However, the comparatively 

weak responses in 2009 (vs. 2008) could also be attributed to lower post-veraison 

GDD accumulation. A follow-up time-course study of analyte concentrations could be 
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helpful in both separating the effects of fruit exposure from seasonal temperature 

patterns and in measuring the effect of differential harvest dates on the balance 

between free and bound C13s. 

Eugenol in wine is generally assumed to originate from the breakdown of oak-

derived lignin (Chatonnet and Dubourdieu 1998).  Since the juice samples in this 

study were not exposed to oak, the positive correlation between cluster exposure and 

eugenol concentration at site B in 2008 requires a different explanation. In addition to 

evidence for a broad relationship between sunlight exposure and volatile phenols in 

wine (Downey et al. 2006), specific evidence of a positive correlation between 

sunlight intensity and eugenol has been demonstrated in basil (Xianmin et al. 2008). 

However, the limited evidence presented here does not make a clear case for a 

relationship between sunlight intensity and the de novo synthesis of eugenol, so the 

possibility of contamination should also be considered.  Preharvest exposure to smoke 

has been shown to increase eugenol concentrations in juice (Kennison et al. 2008) 

after acid hydrolysis.  Further support for the hypothesis that severity of smoke-taint 

would correlate to cluster exposure can be found in recent evidence for a positive 

correlation between fruit sunlight exposure and spray deposition (Austin et al. 2011, in 

press).  However, the lack of evidence for an additional smoke-derived compound 

response (e.g., 4-methylguaiacol) suggests that a strong conclusion regarding the 

relationship between cluster exposure and eugenol requires more study. 

Best metrics for predicting response. Among the 22 statistically significant 

site-year-timing-compound-metric responses, CEFA appeared with the highest 

frequency (8) followed by -logCEL (6), CEL (4), PIC (2), and %PPF (2). Where 

multiple metrics yielded significant responses for the same parameter combination, a 

ranking of correlation coefficients among redundant metrics (Table 4.4) revealed that 

CEFA was the most frequent best predictor (7 of 12) followed by -logCEL (3 of 12), 
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and %PPF (2 of 12). In comparing the relative predictive strength among EPQA and 

PQA metrics, a general pattern emerged: CEFA > log(CEL) > CEL > PIC. Had this 

experiment been limited to using only the standard PQA metric for cluster exposure 

(PIC), only two of the twelve identified unique site-year-timing-compound responses 

would have been found. In both of these cases, EPQA metrics improved the strength 

of response. Furthermore, six of the twelve unique responses would not have been 

missed without the use of a ceptometer (four were found solely using CEFA as the 

independent variable, one using only %PPF, and one that was found with both CEFA 

and %PPF). Thus, although EPQA metrics can improve field precision without the use 

of a ceptometer (using only -logCEL and CEL), performing the canopy calibration 

needed to calculate CEFA further improves precision and predictive power.  
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Table 4.4.  Ranked predictors of significant biological responses. Primary (1) 
predictor is the metric with the strongest correlation coefficient. %PPF = percent 

photosynthetic photon flux at fruit zone. FS=fruit-set. V=veraison. PIC=percent 

interior clusters, CEL=cluster exposure layer, CEFA=cluster exposure flux 

availability. 

 
Site Year Timing Compound 1 Predictor 2 Predictor 3 Predictor 4 Predictor 

A 

2008 

Fruit set 
TDN -log(CEL) CEL PIC -- 

Vitispirane %PPF CEFA -- -- 

 

Veraison 
TDN CEFA -log(CEL) CEL PIC 

-damascenone CEFA -log(CEL) -- -- 

 

2009 

Fruit set -- -- -- -- -- 

 

Veraison -- -- -- -- -- 

 

B 

2008 

Fruit set 

TDN CEFA -- -- -- 

Vitispirane CEFA -- -- -- 

Terpineol %PPF -- -- -- 

 

Veraison Eugenol -log(CEL) CEL -- -- 

 

2009 

Fruit set 

TDN CEFA -- -- -- 

-terpineol CEFA CEL -log(CEL) -- 

4-vinylguiacol CEFA -- -- -- 

 

Veraison Linalool-oxide -log(CEL) -- -- -- 

 

 

Limitations of ceptometer-based canopy calibration. Although eugenol was 

found to respond to cluster exposure in one site-year combination (Figure 4.6), CEFA 

was not a statistically significant predictor for that combination. The superior 

performance of CEL vs. CEFA in this instance, could be explained the introduction of 

error during canopy calibration due to limited ceptometer precision at near-zero %PPF 

values.  

 

 Conclusions 

Although measures of cluster exposure often strongly correlate among 

themselves they are not equivalent in their ability to quantitatively predict biological 
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responses, suggesting that metrics which capture subtle parametric variability, such as 

CEFA and -log(CEL) are superior predictors of biological response of organoleptic 

properties and may justify the required investment in equipment and labor. Although 

extremely low light at the interior of a canopy is typically considered to be 

undesirable, it appears that it may be effective in minimizing the influence of post-

veraison cluster exposure on harvested C13 concentrations in the studied climate 

which may reduce the need to closely monitor precise cluster exposure post-veraison.  

In contrast, highly exposed fruit-zone architectures are likely to lead to higher C13 

concentrations and efforts to control harvest concentration require closer monitoring 

of post-veraison cluster exposure. 
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