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Abstract 

Supplemental lighting is integral to year-round production of greenhouse crops; however, 

the location of lights within the greenhouse and its effects on lighting uniformity in the growing 

space is often not considered. This research was conducted to assist Controlled Environment 

Agriculture (CEA) producers and researchers in identifying the optimum lighting layout for 

improved lighting uniformity. The methodology outlines the development of an algorithm for 

modelling supplemental lighting, based on standardized goniophotometric data, and optimizing 

the location of lighting fixtures within the CEA environment. This resulted in the production of a 

software package in the Python Programming Language that could model and optimize lighting 

uniformity for unique CEA environments based on their physical dimensions and specified 

lighting fixture. Through the implementation of this novel software, the lighting uniformity for 

hypothetical CEA environments with a small number of supplemental lighting fixtures were 

optimized.  
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Introduction 

Supplemental lighting is a fundamental aspect that enables year-round production  

in controlled environment agriculture facilities; such as vertical farms and greenhouses at 

northern latitudes (Dorais & Gosselin, 2002). In a standard facility, supplemental lighting is 

frequently installed at arbitrary heights and configurations. This may provide adequate 

light for plants, but it does not create a uniform lighting environment. A non-uniform 

lighting environment can cause variable yields and plant quality; as well as, contribute to 

the creation of  “hotspots”, or areas of over-exposure, which in some cases can lead to plant 

stress or physiological disorders, for example, tipburn of head lettuce (Frantz et al., 2004). 

Ferentinos (2005) suggested that increasing lighting uniformity improves consistency of 

yield, as well as, that increasing uniformity lowers greenhouse energy requirements. 

Manually determining the ideal location for lights (the method most frequently used 

by researchers and small greenhouse operations) is a tedious process, that involves the 

placement of lights, use of a quantum sensor to map light levels at plant canopy heights, 

and reconfiguration to reach an optimum layout. A less exhaustive alternative would be to 

model light distribution based on standardized light output files composed of angular 

distribution of luminous intensity. By testing different configuration of lighting systems 

using computer models, a local optimum for uniform illuminance may be achieved across 

the growing area of a greenhouse. This computer model begins with the collection of 

goniophotometric data obtained from any lighting fixture. Goniophotometers measure the 

variation of luminous intensity across various angles at a fixed distance from a luminaire. 

By using goniophotometric data, 3-Dimensional models for the illuminance of these 

lighting systems can be developed. The advantage to creating a computer model and 
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optimization algorithm that processed goniophotometric data, is that a computer can then 

perform the complex and computationally intensive calculations required for optimization. 

Ideally, this would allow for optimized lighting set-ups for any lighting fixture, any crop, 

and any greenhouse to be developed automatically in the computer program. The objective 

of this research was to apply an original methodology to computer modelling of 

greenhouse supplemental light distribution, and to develop a software for the spatial 

optimization of supplemental lighting fixtures to improve light exposure, or illuminance, on 

the growing area of the plants. 
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Methods 

In this study, two supplemental lighting sources were considered: a high-pressure 

sodium (HPS fixture) Gavita Pro 6/750e Flex3 US DE and a light emitting diode fixture 

Philips GreenPower toplighting DR/B - Low Blue. The fixtures were previously chosen by 

the Cornell Controlled Environment Agriculture (CEA) group based on preliminary work 

where the Philips LED was found to be about 40% more energy efficient than the Gavita 

HPS fixture.  The goniophotometric data were initially recorded by the product testing 

company, Intertek, for these two lighting systems. Goniophotometric data are displayed in 

a standardized file developed by the Illuminating Engineering Society, known as IES files 

(ANSI/IESNA Standard File Format, 2002).The first step was to parse the files and collect 

the goniophotometric data points in a data matrix. 

The software to parse these files was developed for this project specifically to 

handle IES files written according to ANSI/IESNA LM-63-2002 data systems (ANSI/IESNA 

Standard File Format, 2002). The first step of the parsing process began with the 

conversion of the file extension of the IES file from ‘_____.ies’ to a text file ‘_____.txt’ using 

UNIX in the terminal. The text file could then be directly used in the Python programming 

language by creating a 2-Dimensional list where each line of the text file was converted to 

an individual list. The file was then scanned to return relevant information; namely, the 

quantity and values of the vertical, θ, and horizontal, ϕ, angles measured in the 

goniophotometric data. These numbers defined the dimensions of the goniophotometric 

data, which was then transferred into a data-frame from the Python programming 

language’s module PANDAS, which is a data structure for statistical computing (McKinney, 
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2010). Each value in the data-frame represented the luminous intensity in candela at a 

particular vertical & horizontal angle at a fixed radius from the light source.  

Next, interpolation of the goniophotometric data was used to define the luminous 

intensity of points that fall between measured data points. This allowed for any point along 

the surface of the goniophotometric sphere to be approximated based on the data in the IES 

file. A method for interpolation based on an Inverse-Distance Weighting formula (Robeson, 

1997) was applied to interpolate candela values for points that fall between the data points 

of the goniophotometric data. First the great-circle distance was calculated (Equation 1), 

this value was then weighted using an inverse weighting function (Equation 2). Finally the 

value at the point of interest was calculated as a weighted sum of values of the nearby data 

points (Equation 3). The procedure and variables are as follows: 

 
 
 

Equation 1. 𝒅𝒊𝒋 = 𝑹 𝐜𝐨𝐬−𝟏[𝐬𝐢𝐧 𝝓𝒊 𝐬𝐢𝐧 𝝓𝒋 +  𝐜𝐨𝐬 𝝓𝒊 𝐜𝐨𝐬 𝝓𝒋 𝐜𝐨𝐬(𝝀𝒊−𝝀𝒋)] 

 
Equation 2.    𝒘𝒊𝒋 =  𝒅𝒊𝒋

−𝟏 

 

Equation 3.    𝒛̂𝒋 =  ∑ 𝒘𝒊𝒋𝒛𝒊
𝒏𝒋

𝒊=𝟏  / ∑ 𝒘𝒊𝒋
𝒏𝒋

𝒊=𝟏  

 
 

 

Next it was desirable to consider points that extend away from the surface of the 

sphere.  To make use of the vertical and horizontal angles of the goniophotometric data, a 

method to interconvert between Cartesian-coordinate systems, 3-Dimensional system 

defined by x, y, and z coordinates, and spherical coordinates was implemented. This 

allowed for a point of interest to be defined by both its x-, y-, & z- coordinates in a large 

Spatial Interpolation Variables 
 Latitudes 

 Longitudes 

nj 

Number of 
Control (Data) 
Points 

i 
Unsampled 
location 

j 
Control (Data) 
Point 

z Candela value 
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environment, as well as, by its relationship to a light fixture through θ (vertical angle), ϕ 

(horizontal angle), and r (distance to light fixture). The relationship between cartesian and 

spherical coordinates is outlined below (Figure 1.), and the algorithm for their  

interconversion is described.  

 

 Provided with a θ, ϕ, and r the x, y, and z-coordinates may be calculated through the 

following algorithm. The angular values from the IES file were first converted from 

steradians to angular degrees, by multiplying θ and ϕ by 180. The x-,y-, and z-coordinate 

was then calculated using equations 4, 5, and 6 respectively. An original software to follow 

this algorithm was developed for this project. 

 

Equation 4.                                           𝒙 = 𝒓 ∗ 𝐬𝐢𝐧 𝜽 ∗ 𝐜𝐨𝐬 𝝓    

Equation 5.                                           𝒚 = 𝒓 ∗ 𝐬𝐢𝐧 𝜽 ∗ 𝐬𝐢𝐧 𝝓 

Equation 6.                                                   𝒛 = 𝒓 ∗ 𝐜𝐨𝐬 𝜽 

  

  

Figure 1. Relationship between angles reported in goniophotometric readings that 
utilize a spherical coordinate system and those of a xyz-Cartesian coordinate system. 
( ANSI/IESNA Standard File Format, 2002) 
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With a method to find the position of any point in relation to the light and the 

luminous intensity along the surface of the goniophotometric sphere, a method was 

developed to find the illuminance, or luminous flux density, of a given area, as it varies with 

distance from the light source. Goniophotometric readings report the value of luminous 

intensity in candela (lumens per steradian), though the value of interest was the 

illuminance provided by a point source. A candela value is a measure of luminous intensity, 

which is a measure of the luminous flux per unit solid angle which is photometrically 

weighted for human vision (Choudhury, 2016). Illuminance is a measure of the luminous 

flux density incident on a surface in (lux = lumens/m2).  A software to convert from 

luminous intensity, I, to illuminance, E,  was developed based on equation 7. Where d 

represents the distance to the light source and 𝜃, the angle to the light source.  

 

Equation 7.                                                    𝑬 =
𝑰

𝒅𝟐 ∗ 𝐜𝐨𝐬 𝜽 

 

Ultimately, this method altered the units of the data from candela (
𝑙𝑢𝑚𝑒𝑛

𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛
), to lux 

(
𝑙𝑢𝑚𝑒𝑛

𝑚2 ). Additionally this allowed for the lux to be calculated for any point, including those 

outside of the surface of the sphere. This left one final step in developing the computer 

model specific for controlled environment agriculture, conversion to Photosynthetic 

Photon Flux Density (PPFD).  

 Lux is a photometric unit, it is weighted to the sensitivity of the human eye through 

the photopic luminosity function (Choudhury, 2016); whereas, plants utilize quanta of 

energy within the wavelength of 400nm to 700nm (Choudhury, 2016). After finding the 

photometric illuminance it was necessary to convert to the quantum measurement of 
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PPFD. An original software was developed to convert between these measurements 

specifically based on the following algorithm.  

After finding the luminous flux density (lux) the units from photometric light 

measurements (lux) were converted to quantum units (
µ𝑚𝑜𝑙𝑒𝑠

𝑚2∗𝑠
). Photometric measurements 

are produced through the measurement of visible light in units that are weighted according 

to the sensitivity of the human eye. The weighting of the units to the sensitivity of the 

human eye is produced through the photopic vision luminosity function. Provided with the 

luminosity function (𝑉(𝜆), 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) and the spectral radiant flux ( Φ𝑒,𝜆(𝜆) 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 (
𝑊

𝑛𝑚
) ), 

the photometric luminance flux for a spectrum of light in lumens was determined by 

Equation 8.  

Equation 8: 

 𝚽𝑽 = 𝟔𝟖𝟑. 𝟎𝟎𝟐 
𝒍𝒖𝒎𝒆𝒏𝒔

𝑾
∗ ∫ 𝑽(𝝀)𝚽𝒆,𝝀(𝝀)𝒅𝝀

𝝀=∞

𝝀=𝟎

 

 By solving for the amount of Photosynthetically Active Radiation (PAR) in the same 

spectrum of light a conversion factor was established between photometric lumens and 

Photosynthetic Photon Flux. Photosynthetically Active Radiation is electromagnetic 

radiation within the wavelengths of 400 to 700 nm. This value is reported as the 

Photosynthetic Photon Flux Density, with the units of  
𝜇𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚𝑒𝑡𝑒𝑟𝑠2∗𝑠𝑒𝑐𝑜𝑛𝑑
.  

In order to find the photosynthetic photon flux of a light source incident on a point, 

the spectral contribution of photons at each wavelength must be considered. This may be 

derived beginning with the Einstein-Planck Relation (Eq. 9).  

Equation 9.                                                          𝑬 = 𝒉 𝝂 
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Where E is the value of a quantum of energy known as a photon (Joules), h is Planck’s 

constant (6.62607004 * 10-34 
𝑚𝑒𝑡𝑒𝑟𝑠2×𝑘𝑔

𝑠𝑒𝑐𝑜𝑛𝑑
), and v is the frequency of oscillation (second-1).  

Equation 10.                                                          𝝀𝝂 = 𝒄 

To this the equation for the speed of light (Equation 10) may be incorporated to 

result in Equation 11, which directly relates the energy of a photon to wavelength, to return 

the Photon Energy. In equation 10 and 11, 𝜆 has the units of nanometers and c has the 

value of 2.99792 ∗ 108 𝑚𝑒𝑡𝑒𝑟𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
.  Photon Energy, Eλ, has the units of 

𝐽

𝑝ℎ𝑜𝑡𝑜𝑛
. 

Equation 11. 

𝑬𝝀 =  
𝒉 ∗  𝒄

𝟏𝟎−𝟗  ∗  𝝀
 

 After finding the Photon Energy for each wavelength within PAR, photon flux was 

found by dividing the spectral radiant flux (Φ𝑒,𝜆(𝜆), 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 (
𝑊

𝑛𝑚
)) by the photon energy, Eλ ,  

(
𝐽

𝑝ℎ𝑜𝑡𝑜𝑛
). By summing the photon flux at each wavelength within PAR, the flux of 

photosynthetic photons (
𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑠
)for the whole spectrum was determined (Equation 12).  

Equation 12. 

𝑷𝒉𝒐𝒕𝒐𝒏 𝑭𝒍𝒖𝒙 =  ∑
𝚽𝒆,𝝀(𝝀)

𝑬𝝀

𝝀=𝟕𝟎𝟎

𝝀=𝟒𝟎𝟎

 

By adapting the photon flux to represent micromoles (Eq. 13) the final number for the 

Photosynthetic Photon Flux with units of 
𝜇𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 was determined. 

Equation 13.                                             𝑷𝑷𝑭 =  
𝒑𝒉𝒐𝒕𝒐𝒏 𝒇𝒍𝒖𝒙

𝟔.𝟎𝟐𝟐∗𝟏𝟎𝟏𝟕
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 Finally, a conversion factor between PPFD and photometric lumens may be 

established by dividing the Photosynthetic Photon Flux Density(Eq. 13) by the photometric 

luminous flux (Eq. 8). This provides a conversion factor with the units of (
𝜇𝑚𝑜𝑙𝑒𝑠

𝑙𝑢𝑚𝑒𝑛𝑠∗𝑠
). 

Provided with the lux (
𝑙𝑢𝑚𝑒𝑛𝑠

𝑚2 ) from the goniophotometric data, the irradiance was 

multiplied by the conversion factor to find the Photosynthetic Photon Flux Density in units 

of (
𝜇𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚𝑒𝑡𝑒𝑟𝑠2∗𝑠𝑒𝑐𝑜𝑛𝑑
). This conversion is unique for every lighting system and must be 

originally calculated based on the spectral distribution of the light. With this step 

completed it was now possible to use the model to find the PPFD at any point within an 

isolated lighting environment, specific to the light measured in the goniophotometric data.  

 Next a 3-Dimensional simulation of a greenhouse was created. Provided with inputs 

of lighting position and type, length and width of greenhouse, and the resolution of the 

calculation, the model created a surface of calculation points on the “greenhouse” floor. The 

greater the resolution, the more points present within the calculation bed. The PPFD was 

calculated at each of these points, which provided data for the overall illuminance on the 

floor of the simulated greenhouse. After defining an ideal range for PPFD, a metric was 

used to determine uniformity of light across the greenhouse floor which was the 

percentage of calculation points within the ideal range within the define area. Increased 

density of calculation points allows for a more accurate calculation of the uniformity of the 

light, but it requires the PPFD to be calculated at more points; thereby, increasing the 

number of calculations and decreasing the performance speed. 
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The final output of interest of the computer model is uniformity. This is calculated as 

the percent of calculation points within an optimal PPFD range, defined by a minimum and 

maximum value of (
𝜇𝑚𝑜𝑙𝑠

𝑚2·𝑠𝑒𝑐
) specific for a crop.  

 The ultimate goal of developing the lighting computer model was to be able to 

conceive and test different lighting positions, in search of the most ‘ideal’ physical 

configuration of lights. In terms of computation, this is a challenging task to complete 

because it is a NP-hard problem. That is a nondeterministic polynomial time hard, meaning 

the algorithm to solve this problem can produce different results on different runs and the 

computation time increases in polynomial time as the number of computations increases. 

Simply stated, this puts this type of optimization problem in the most difficult groups of 

problems to solve. In order to reduce the number of computational steps, it was necessary 

to restrict the possible location of lights based on preliminary binding constraints, such as 

the height, width, and length of the greenhouse as well as the minimum and maximum 

Photosynthetic Photon Flux Density values. Additionally, a resolution for the computation 

is defined by the user. This resolution is reported as a percentage and affects the potential 

locations a light can be placed as well as the density of calculation points on the calculation 

bed. It is important to note that percent resolution is an abstract metric that mainly affects 

computation time; it is not the percent of the dimensions of the greenhouse. For instance, a 

resolution of 10% on a greenhouse with length, width, and height = 10 m will result in the 

program considering locations at 1 m intervals in the x, y, and z direction; whereas, a 

program of resolution 20% will consider locations at 0.5 m intervals. This example 

demonstrates that an increasing percent resolution results in denser calculation points.  
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Having been provided with a height of the greenhouse and a range of acceptable 

PPFD values the potential heights which a light can be hung are then restricted, because 

hanging a light too low will result in too high of a PPFD value and hanging at a height too 

high will result in an insufficient PPFD value. Defining an acceptable range of heights was 

the first step in the optimization. This range is further restricted by the resolution so that 

only certain positions within the range will be considered in the optimization.  

 In order to minimize computation time further an original system of data caching 

was developed to minimize the number of redundant calculations. This data cache was 

developed in the Python programming language and it stored the accompanying 

illuminance at all of the calculation points, produced by an individual light at every possible 

location. Because the optimization code will test every possible combination of lighting 

positions, there will be some combinations where a single light is in the same position in 

two different, unique lighting combinations. In these instances it is faster to simply 

reference the location of the illuminance data produced by the light at the redundant point, 

than it is to recompute the effects of the light at the same position. This system of data 

caching reduced the number of computational steps significantly. The data points that are 

stored within the cache are chosen with discretion, as preliminary data analysis provides a 

range of x, y, and z positions for the light that produce desirable results.  

 After designing a data cache system, the challenge of improving lighting uniformity 

was reduced to a simple optimization problem, which takes the following form: 

 

Decision Variable: 

𝑥𝑖 = {
1, 𝐿𝑖𝑔ℎ𝑡, ′𝑥′ , 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, ′𝑖′  

0, 𝐿𝑖𝑔ℎ𝑡, ′𝑥′, 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ′𝑖′ 
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*Let i represent a 3-variable cartesian (x,y,z) coordinate  
 

Objective Function 
Maximize Uniformity:  

𝑈 =  ∑ 𝑢 (𝑥𝑖)

𝑛=𝑁

𝑛=0

 

*Where N = total number of lighting systems 
Binding Constraints: 
 Physical Constraints: 

0 ≤ 𝑥𝑖(𝑥) ≤ 𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 𝑤𝑖𝑑𝑡ℎ 

0 ≤ 𝑥𝑖(𝑦) ≤ 𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 

0 ≤ 𝑥𝑖(𝑧) ≤ 𝑔𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 

 Hyper-illumination: 
𝑤ℎ𝑒𝑛 𝑙𝑖𝑔ℎ𝑡 𝑖𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥𝑖 , 

 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑜𝑖𝑛𝑡𝑖)  ≤ 𝑚𝑎𝑥𝑃𝑃𝐹𝐷 

 
 Hypo-illumination: 

𝑤ℎ𝑒𝑛 𝑙𝑖𝑔ℎ𝑡 𝑖𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥𝑖 , 
 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑜𝑖𝑛𝑡𝑖) ≥ 𝑚𝑖𝑛𝑃𝑃𝐹𝐷 
 

An original algorithm was developed to solve this combinatorial optimization 

problem in the Python programming language. The optimization code tests all possible 

combinations of lights constrained by the binding constraints. The combination of lights 

that produces the greatest uniformity is decided to be the optimum based on the maximum 

and minimum PPFD value for the crop, type and number of lighting system, and the 

dimensions of the greenhouse. 

 Finally, to ensure that the number of lights being used is ideal, the optimization code 

is called recursively to consider the instances of: N + 1 and N – 1, where N = number of 

lights. This code examines whether adding or removing a light can increase the overall 

uniformity of the lighting system. If adding or subtracting a light produces a more optimal 

uniformity, the recursive optimization code is recalled to now test whether adding or 
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subtracting another light will improve the uniformity. This recursive aspect to the 

optimization ensures that not just the location of lights is optimum, but also the number of 

lights used is optimized.  

 

Results 

 The primary results of this research is the construction of a functional software to 

model the effects of supplemental lighting in greenhouses based on goniophotometric data. 

The starting goniophotometric data may be visualized in Figure 2, where each blue dot 

represents a data collection location for which there is a known luminous intensity. Each of 

these data points is equidistant, r = 1, from the light source which is represented by the 

orange dot.  

 

 

Figure 2. 3-Dimensional 

Representation of Goniophotometric 

Data Points. Each data point is 

equidistant from the light source, 

meaning the distant from the light 

source for each point is r = 1. 

 

 

 

 

 

 Based on the methodology described these data points went through a 

computational pipeline to be able to define the illuminance of any point in a greenhouse. 

Beginning with interpolation between goniophotometric data points (Figure. 3).  
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 After interpolation, luminous intensity was converted to illuminance which allows 

for the illuminance of any point within an environment to be calculated. With the 

application of this software to controlled environment agriculture in mind, the points of 

interest for finding illuminance were defined by a bed of calculation points. This bed of 

calculation points aimed to represent the growing area of plants in a greenhouse. The 

quality of the output and the speed of the software is highly affected by the density of the 

calculation points. The user defines the desired resolution of computation, which in turn 

affects the density of calculation points, which can be visualized in Figure 4.  

 

Figure 3. Representation of Known 

Luminous Intensity after 

Interpolation. Every equidistant 

point of distance, r = 1, may be 

approximated through the 

interpolation algorithm.  

Figure 4. Visualization of how increasing resolution, increases the density of calculation points (Blue dots) on 

the bed of the greenhouse environment. X, Y, Z – coordinates represent the position of a point along the width, 

length, and height of a greenhouse respectively. The graph on the left has a resolution of i=10, the middle i = 2, 

and the right i = 1, this denotes the density of calculation points / width or length of the greenhouse. 
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 The computer model of lighting effects was used to create heatmaps of illuminance 

in the greenhouse. The optimization code considers the effects of the physical location of 

supplemental lighting on the uniformity of illuminance across the calculation points. As an 

example, the effects of the height of a supplement light may be visualized in Figure 5.  The 

uniformity varies based on the model of lighting fixtures and their position, as well as the 

lighting requirements for the crop growing in the greenhouse. 

 

 

 Ultimately the effects of the lights’ cartesian coordinates (position along the width, 

length, and height of a greeenhouse) affects the uniformity of light; as well as, the 

interaction of lights in creating areas of over exposure. As a sample output the light 

emitting diode fixture Philips GreenPower toplighting DR/B - Low Blue was optimized 

using the software. The software considered a 40m long by 10 m wide greenhouse that 

included 6 fixtures, the optimum illuminance range was broad ranging from 100 (
𝜇𝑚𝑜𝑙𝑠

𝑚2·𝑠𝑒𝑐
) to 

500 (
𝜇𝑚𝑜𝑙𝑠

𝑚2·𝑠𝑒𝑐
).  The difference between a conventional lighting configuration, where lights 

Figure 5. Visualization of the effects of z-position of light on the total uniformity of the 

greenhouse bed. In (a. left) the position of the light is [5m, 5m, 10m], by lowering the light to 

[5m, 5m, 5m] in (b. middle) the uniformity decreases as a hotspot develops directly under the 

light. Finally uniformity drops as the light is lowered to [5m, 5m, 2m] as the hotspot increases 

in illuminance and the corners of the greenhouse lack adequate illuminance. 
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are placed in rows above growing areas, is compared to an optimized configuration in 

Figure 6.  

 

 

Figure 6. Comparison of Conventional Lighting Configuration versus an Optimized Lighting 

Configuration. It is worth noting that optimization improved the uniformity of illuminance across 

20% more of the growing area than a traditional lighting plan. This is visible along the edge of 

the growing area in the figure.  
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Discussion & Conclusions 

 There has been a significant amount of research on how to optimize the uniformity 

of lights in a greenhouse as well as in human-occupied spaces (i.e. offices, houses, etc.) 

(Ferentinos, 2005)(Both et. al, 2002). The methodology outlined in this paper is unique in 

the development of a computer model rooted in photo-physical equations; whereas, 

previous research mapped lighting uniformity using quantum sensors (Both et. al, 2002). 

Previous research has investigated sets of optimum layouts, rather than all potential 

configurations of lights. This is both a benefit and a drawback to this software. While it is 

possible to produce high quality results that consider every possible location a light can be 

placed in a greenhouse, this greatly affects the computation time. This increased 

computation time, makes it challenging to produce results for large greenhouses with a 

large number of supplemental lights.  

 The objective of this research was to develop a methodology to standardize lighting 

in a greenhouse to minimize the effects of non-uniform light exposure; such as, inconsistent 

yield, biased lighting treatments in research, and the frivolous use of energy related to 

over-or-under lighting portions of the growing area. The software was developed  in the 

Python programming language and it returns the optimum locations for supplementary 

lights in a greenhouse, based on the type of light, number of lights, size of the greenhouse, 

and the lighting requirements for a particular crop. In order to be applied to commercial or 

academic controlled environment agriculture this software can be further developed or 

integrated into a computational pipeline. 

 Future proposed work with the model is to validate the predicted illuminance from 

the model, based on experimentally collected light-maps for the same lights. This will help 
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to adjust the accuracy of the results produced in the computer model. Additionally, creating 

a repository of IES files for different lighting systems will increase the applicability of the 

software. Finally, incorporating new methods for optimization will improve the 

performance of the software for large greenhouses with a large number of lighting fixtures. 

An obvious way to improve the dimensionality reduction in these circumstances is to 

incorporate machine learning. This could be easily incorporated using the module Python 

scikit-learn of the Python programming language, which is compatible with the software 

produced in this research.
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