
CONSTRAINED OPTIMIZATION OF NONCONVEX

PROBLEMS AND ITS APPLICATIONS IN FAIRNESS IN

MACHINE LEARNING

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Zhuangjin Du

December 2021

© 2021 Zhuangjin Du

ALL RIGHTS RESERVED

ABSTRACT

Fairness is an important concern in machine learning. One way to characterize

the problem is to minimize some objective function, representing a quantity like

loss, under constraints that represent fairness conditions like demographic parity.

Previous papers show how a two-player approach to optimizing the Lagrangian can

be computationally efficient and provably converge to a good, constraint-satisfying

solution on convex objective functions. This work analyzes the convergence of the

two-player framework in [3] on nonconvex functions, in particular those that satisfy

the PL inequality.

BIOGRAPHICAL SKETCH

Zhuangjin is a Master of Science student studying Computer Science at Cornell

University. She completed her Bachelor’s in Science from Cornell University ma-

joring in Computer Science with a minor in mathematics in 2019.

iii

ACKNOWLEDGEMENTS

My greatest thanks given to those who have helped with this work, in particular

Karthik Sridharan, my advisor, and Danny Son, my colleague, who have made

critical contributions to this work and have assisted me unfailingly throughout.

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Background . 2

1.1.1 Constrained optimization . 2

1.1.2 Modifying the Lagrangian for machine learning applications 3

2 Constrained Optimization on a PL objective 8

2.1 PL Inequality . 8

2.2 Regret Minimization . 9

2.3 Intuition . 9

2.3.1 Algorithm and Proof . 9

2.4 Applications . 16

3 Conclusion 19

Bibliography 20

v

CHAPTER 1

INTRODUCTION

Machine learning has become ubiquitous in many modern systems, and as the

impact of these systems grows, the problem of quantifying and ensuring fairness

becomes more significant. Designing systems that can do these things are increas-

ingly important to settings in which fairness is a critical concern; from evaluating

job applicants to recommending products for online shopping. It is not always

obvious how to evaluate or enforce fairness, and recent interest in the area has

exploded.

One approach to this problem is to use constrained optimization. In general, this

technique is useful for managing resources, scheduling [7], and for specific situa-

tions like maintaining fairness in machine learning. For fairness, many optimiza-

tion problems are naturally restricted. It is common to optimize some objective

function, such as utility or cost, based on parameters defining the model. These

parameters typically operate under restrictions, such as those imposed by money

and resources, but can also represent requirements on measures such as statistical

parity.

One example of how constrained optimization can be useful is the 80% rule:

minθ∈Θ
1
|S|
∑

x,y∈S `(f(x; θ), y)

s.t. 1
|S|
∑

x∈Smin
1f(x;θ)>0 ≥ 0.8

|S|
∑

x∈S 1f(x;θ)>0

In this application, both the objective and the constraint functions could be non-

convex (such as for classifiers f learned by neural networks).

A common technique for approaching constrained optimization is to use the La-

grangian. This game-theoretic approach will be discussed in the Background sec-

1

tion.

1.1 Background

We introduce and motivate the use of a two-player games approach to this con-

strained optimization problem in the context of machine learning problems.

1.1.1 Constrained optimization

The following is a general formulation of constrained optimization:

minθ∈Θ g0(θ)

s.t. ∀i ∈ [m] · gi(θ) ≤ 0

In general, constrained optimization problems can be rewritten using the La-

grangian, where we minimize over θ ∈ Θ and λ ∈ Λ:

L(θ, λ) := g0(θ) +
m∑
i=1

λigi(θ) (1.1)

This allows for a game-theoretic approach to the problem, in which the two players

are θ and λ oppose each other; θ wants to be set to minimize the value of L(θ, λ)

as much as possible, and λ aims to maximize it. Intuitively, λ distributes itself

onto the violated constraints, i where gi(θ) > 0, and θ aims to mitigate this by

searching for θ ∈ Θ such that the constraints are satisfied.

This approach can improve computational efficiency. Christiano et al. [?] showed

that the (approximate) max flow problem can be solved in near-linear time using

a Laplacian solver. Õ
(
mn1/3ε−11/3

)
, beats traditional algorithms, fastest O

(
n3/2

)
However, unless we can say minθ∈Θ maxλ∈Λ L(θ, λ) = maxλ∈Λ minθ∈Θ L(θ, λ), it

2

is possible that an algorithm will not converge to a solution in which neither

player moves forward — a pure Nash equilibrium. This is extremely likely with

nonconvex problems. Instead, a mixed Nash equilibrium may exist, in which θ and

λ are probability distributions, and there does not exist a better distribution for

eithier player to take such that they can improve the value of Equation 1.1.

In this work, we build off the framework introduced in [3] which offers a theoretical

proof of a convergence to a solution that is both low in error and satisfies constraint

bounds in the setting with a convex objective, to extend the proof to a broader

class of nonconvex objective functions.

1.1.2 Modifying the Lagrangian for machine learning ap-

plications

Internal regret

In online learning, wherein an algorithm makes predictions over time and learns

from it as it sees new examples, the goal is typically to minimize regret, or the

cumulative loss generated over time.

The standard notion of regret is external regret, which represents the total loss

compared to some fixed optimal predictor in the hypothesis class H.

Definition 1. Given an optimal predictor h∗ such that

h∗ := argmin
h∈H

1

T

T∑
t=1

` (h, (xt, yt))

define external regret to be

3

R(h) :=
1

T

T∑
t=1

` (h, (xt, yt))−
1

T

T∑
t=1

` (h∗, (xt, yt)) (1.2)

Another type of regret, swap regret (also called internal regret) introduced in 1998

by Vohra and described in detail in [1], is used in the framework in [3] to show

that their constrained optimization framework, Algorithm 2, leads to a feasible

and optimal solution. We will define it here and sketch the result in a later section

Φ−correlated equilibrium below.

Definition 2. Swap regret is defined as how much better a classifier h could have

done, compared to some better hs that does exactly what h did, but is allowed to

switch every occurence of decision i for some different decision j made by h.

Rs(h) :=
1

T

T∑
t=1

` (h, (xt, yt))−
1

T

T∑
t=1

` (hs, (xt, yt)) (1.3)

Another way to think of internal regret is to think of the online learning problem

of predicting stocks; if every choice to purchase some stock A had instead been

switched to the choice of purchasing a different stock B, how much could the total

revenue have been? The swap regret is the difference between the actual history

and the optimal history under these conditions.

Online optimization of internal regret can be achieved using the exponential weights

algorithm [4]. However, this is an impractical step to play for the θ player, which

is potentially as large as the number of parameters in a neural network, and is

data-based.

4

Φ-correlated equilibrium

One critical change we make to the algorithm is to then look not for a mixed Nash

equilibrium, but a Φ-correlated equilibrium.

Definition 3. Φ-correlated equilibrium. equilibrium in which each player can

remap their choices in the history to achieve minimum regret.

We will show that aiming for a Φ-correlated equilibrium in which the θ-player

minimizes its external regret and the λ-player minimizes its internal regret leads

to a solution to the original optimization problem that is very close to satisfying

So far, what we have is an algorithm that repeats these two steps over each itera-

tion:

1. Take one step to update θ(t) to minimize external regret. Assuming convex

g0, θ can be updated with one (stochastic) gradient step.

2. Take one step to update λ(t) to minimize internal regret. λ can be updated

with a an algorithm using exponential weights [4].

We can show that this algorithm that alternates online external regret mini-

mization and internal regret minimization can achieve near-feasibility and near-

optimality in expectation, as defined below:

Definition 4. For the optimal feasible solution θ∗, some small ε > 0, and R a

maximum 1-norm for the Lagrangian multipliers λi’s, we know that a solution θ, λ

is nearly-optimal in expectation if:

Eθ [g0(θ)] ≤ g0 (θ∗) + ε

5

Definition 5. For the optimal feasible solution θ∗, some small ε > 0, and R a

maximum 1-norm for the Lagrangian multipliers λi’s, we know that a solution θ, λ

is nearly-feasible in expectation if:

max
i∈[m]

Eθ [gi(θ)] ≤
ε

R− ‖λ‖1

We want to show that an approximate Nash equilibrium does correspond to a

nearly-optimal solution.

Proof. We examine a θ that satisfies an ε-Nash Equilibrium. In other words, θ

satisfies the following:

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ

Eλ [L (θ∗, λ)] ≤ ε (1.4)

Since L is linear in λ, we let

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ
L
(
θ∗, λ̄

)
≤ ε

for λ̄ = Eλ[λ].

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ
L
(
θ∗, λ̄

)
≤ ε (1.5)

θ is nearly-optimal.

Likewise, for near-feasibility, we have:

Proof. By setting λ∗ = 0, we see that

Eθ [g0(θ)]− g0 (θ∗) ≤ ε

6

θ is nearly-feasible. We let θ∗ = θ, and rearrange:

max
λ∗∈Λ

m∑
i=1

λ∗iEθ [gi(θ)]−
m∑
i=1

λ̄iEθ [gi(θ)] ≤ ε

R
∥∥(Eθ [g:(θ)])+

∥∥
q
− ‖λ̄‖p

∥∥(Eθ [g:(θ)])+

∥∥
q
≤ ε

Algorithm 1 Two-player constrained optimization of non-convex Lagrangian

1: procedure PhiCorrelatedOptimization(L : Θ×∆m+1 → R, T ∈ N) . L
is the objective function, T is the number of time steps to run the algorithm.

2: Initialize θ(1) = 0, and M (1) ∈ R(m+1)×(m+1) with Mi,j = 1/(m+ 1)
3: for t ∈ T do
4: Let θ(t) = fix M (t) (*)

5: Let ∆
(t)
θ be the gradient of L(θ(t), λ(t)) w.r.t. θ

6: Let ∆
(t)
λ be the gradient of L(θ(t), λ(t)) w.r.t. λ

7: θ(t+1) ← ΠΘ

(
θ(t) − ηθ∆̌(t)

θ

)
(**)

8: Update M̃ (t+1) = M (t) � · exp
(
ηλ∆

(t)
λ

(
λ(t)
)T)

9: Update M
(t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥ for i ∈ [m+ 1]

return θ(1), · · · , θ(T) and λ(1), · · · , λ(T)

10: . (*) This fix operation retrieves the eigenvalue associated with the top
eigenvector of M .

11: . (**) ΠΘ projects onto Θ w.r.t. the Euclidian norm.

Using SGD

This algorithm introduced in [3] uses stochastic first-order methods like SGD on

the Lagrangian directly, while further analysis in this work will use GD. In [3], they

show that re-framing as a 2-player game allows using SGD during the θ player’s

step, which converges to a nearly-optimal nearly-feasible solution. the λ-player is

updated using exponential weights, an external regret-minimizing algorithm. SGD

is computationally much more efficient than evaluating a gradient in GD, but we

will not be discussing the use of SGD with the framework in section 2.2.

7

CHAPTER 2

CONSTRAINED OPTIMIZATION ON A PL OBJECTIVE

It may be more productive to work with a narrower range of objective functions

than all nonconvex functions to achieve good rates for the progression of the two-

player algorithm. One such set of functions is the PL inequality.

2.1 PL Inequality

By assuming stricter properties of the Lagrangian, we can prescribe an algorithm

that finds a near-optimal θ per iteration. If the iteration of the λ player — which

still maintains the feasibility of the constraints — manages to allow the Lagrangian

to preserve this property, the iterative proof applies.

Definition 6. A function f : Rd → R+ satisfies the Polyak- Lojasiewicz (PL)

inequality if it satisfies

f(w)− f(w∗) ≤ µ‖∇f(w)2‖ (2.1)

for some real µ > 0.

This definition was established in 1963 [9], and some functions that also satisfy

this condition include one-point convexity, star convexity, τ -star convexity.

We also know that all critical points are global by this inequality.

8

2.2 Regret Minimization

2.3 Intuition

We can then make the assumptions that

1. The Lagrangian satisfies the proximal-PL condition, and that

2. The minimizer for ft−1 is not far from the minimizer for ft (to be character-

ized below).

The intuition is that, while we know the λ player changes the Lagrangian each turn,

that the minimizer θ for a given time step is close to the minimizer for the next

time step as well. This means the minimzer at time t is a good first guess for the

minimzer at step t+ 1. With a warm start for f1, we see that not many iterations

are required to reach the objective. Knowing this, Algorithm 2 can minimize a

nonconvex objective function while dealing with the Lagrangian changing after

the λ-player update.

2.3.1 Algorithm and Proof

Algorithm 2 Regret Minimization for θ player

1: function RegretMinimizer(T, θ0, ε)
2: Set M ≥ f1(θ(0))− f1(θ∗1)
3: τ1 = β

µ
· log M

ε

4: θ(1) = OGD
(
f1, θ

(0), τ1

)
5: for 1 ≤ t ≤ T do
6: Set τt = β

µ
log 2Ct+ε

ε

7: Set θ(t) = OGD
(
ft, θ

(t−1), τt
)

8: return θ1, · · · , θT

9

Algorithm 3 Online Gradient Descent

1: function OGD(f, θ(0), K)
2: for 1 ≤ k ≤ K do
3: Set θ(t) =

∏
Θ

(
θ(t−1) − η∇f

(
θ(t−1)

))
. Projected GD update

4: return θ1, · · · , θT

Formally, we will show the main result in Theorem 2.3.1.

Theorem 2.3.1 (Main Theorem). Suppose f1, · · · fT : Θ → R satisfy the PL

condition and are β−smooth. Let θT∗ be the minimizer of ft. Furthermore, assume

that ‖ft(θ) − ft−1(θ)‖ ≤ Ct = O(T−1/2). Then, running Algorithm 2 produces

iterates θ1, · · · , θT that satisfy

1

T

T∑
t=1

ft
(
θt
)
− ft

(
θt∗
)
≤ ε

where the number of calls to the subprocess OGD is at most

β

µ

{
log

M

ε
+ T log

(
2C

ε
√
T

+ 1

)}
where C is the constant that satisfies C√

T
= maxt∈[1..T] Ct. Now, by setting ε =

T−1/2, we can bound the number of OGD updates to at most

O

(
β

µ
{log((f1(θ0)− f1(θ∗1)

√
T) + T logC}

)

We first establish a progress lemma on the θ-player. We can do this by exploiting

the fact that running Gradient Descent (GD) on the objective will always reduce

it. For reference, we will use the update in (2.2) to denote a GD update for some

step size η,

θ(t+1) ← θ(t) − η∇f(θ(t)) (2.2)

and the update in (2.3) to denote a projected GD update for step size η. We

define ΠΘ to project its argument onto some parameter space Θ with respect to

the Euclidean norm.

θ(t+1) ← ΠΘ

(
θ(t) − η∇f(θ(t))

)
(2.3)

10

Lemma 2.3.2 (Progress Lemma). Suppose f satisfies the PL condition and is

β−smooth. Let θ∗ bet the minimzer of f . Then, performing one GD update gets

us

f(θ(t+1))− f(θ∗) ≤ −(η − β/2 · η2)‖∇f(θ(t))‖2

Setting step size η = 1
β

gets

f(θ(t+1))− f(θ∗) ≤ − 1

2β
‖∇f(θ(t))‖2 (2.4)

Proof. This follows from the β-smoothness of f .

f(θ(t+1))− f(θ∗) ≤ 〈∇f(θ(t)), θ(t+1) − θ(t)〉+
β

2
‖∇θ(t+1) − θ(t)‖2

≤ −η‖∇f(θ(t))‖2 +
β

2
η2‖∇f(θ(t))‖2

= −(η − β/2 · η2)‖∇f(θ(t))‖2

Lemma 2.3.3 (Progress Lemma — constrained). Suppose F (θ) = f(θ) + g(θ)

where f is differentiable and β-smooth, and g is the indicator function that takes

the value 0 on some parameter space θ, and ∞ elsewhere. We can say that a

function F satisfies the Proximal-PL condition ([6]) if there exists µ > 0 such that

1

2
Dg(θ, β) ≥ µ(F (θ)− F (θ∗)) (2.5)

where

Dg(θ, β) = −2β ·min
y

{
〈∇f(θ), y − θ〉+

β

2
‖y − θ‖2 + g(y)− g(θ)

}
(2.6)

If Θ is closed and convex, and F satisfies the Proximal-PL condition, then per-

forming one GD update gets us

11

f(θ(t+1))− f(θ∗) ≤ 1

2β
Dg(θ, β) (2.7)

when we set η = 1
β

.

Proof. First, we observe that

θ(t+1) = ΠΘ

(
θ(t) − η · ∇f(θ)

)
= argmin

y∈Θ
‖y − θ(t+1)‖2

= argmin
y
‖y − (θ(t) − η · ∇f(θ(t)))‖2 + g(y)

= argmin
y

{
〈f(θ(t)), y − θ(t)〉+

1

2η
‖y − θ(t)‖2 + g(y)− g(θ(t))

}
We then use the β-smoothness of f again and set η = 1

β
, and use the definition of

Proximal-PL from Equation (2.6):

f(θ(t+1))− f(θ∗) ≤ 〈f(θ(t)), θ(t+1) − θ(t)〉+
β

2
‖θ(t+1) − θ(t)‖2

= min
y

{
〈f(θ(t)), y − θ(t)〉+

β

2
‖y − θ(t)‖2 + g(y)− g(θ)

}
= − 1

2β
Dg(θ, β)

We now look at the sequence of functions that the θ-player aims to minimize regret

over.

Theorem 2.3.4. Suppose f1, f2, · · · , fT : Θ → R satisfy the PL condition and

are β-smooth. Let θ
(t)
∗ be the minimizer of ft. Furthermore, assume that ‖ft(θ)−

ft−1(θ)‖ ≤ Ct = O(T−1/2).

12

Then, running Algorithm 2 produces iterates θ(1), θ(2), · · · , θ(T) that satisfy equation

2.8 for some small ε ≥ 0:

T∑
t=1

ft(θ
(t))− ft(θ(t)

∗) ≤ ε (2.8)

Lemma 2.3.5. Suppose θ(t−1) satisfies

f(t−1)(θ
(t−1))− f(t−1)(θ

(t−1)
∗) ≤ ε (2.9)

Then, we have

f(t−1)(θ
(t−1))− f(t−1)(θ

(t)
∗) ≤ 2Ctε (2.10)

In other words, we know θ(t−1) serves as a good initial guess for the minimizer of

ft.

Proof. We make use of these three inequalities:

ft(θ
(t−1))− ft−1(θ(t−1)) ≤ Ct (2.11)

ft−1(θ(t−1))− ft−1(θ(t−1)
∗) ≤ ε (2.12)

ft−1(θ(t−1)
∗)− ft(θ(t)

∗) ≤ Ct (2.13)

Equations (2.11) and (2.12) follow from the assumptions we have made. (2.13) is

a result of θ
(t−1)
∗ being the minimizer of ft−1, which means ft−1(θ(t−1)) ≤ ft−1(θ

(t)
∗).

Then, we know

ft−1(θ(t−1)
∗)− ft(θ(t)

∗) ≤ ft−1(θ(t)
∗)− ft(θ(t)

∗) ≤ Ct

We add equations (2.11) through (2.13) to get the desired result.

This lemma is useful because it implies that the suboptimality of our initial guess

at time t (which is the optimizer from time t−1) is not far away from the optimum

at time t.

13

Lemma 2.3.6. Suppose we run Algorithm 3 on f, θ(0), K where f satisfies the PL

condition for a constant µ > 0, θ(0) is some initial guess, and K is the number

of iterations. Define ∆t = f(θ(t)) − f(θ∗). Let M be any upper bound on ∆0. In

other words, M is an upper bound on the initial suboptimality. Then, if K ≥ β
µ

,

we have

f(θ(K) − f(θ∗) ≤ ε (2.14)

for some small ε, where θ(K) is the output of Algorithm 3.

Proof. We will make use of the inequality below.

∆j ≤ (1− µ

β
)∆j−1 (2.15)

A proof for equation (2.15) can be found in the proof of Theorem 1 in [6]; we use

the recursive form of the inequality. By applying 2.15 K times and using the fact

that 1− x ≤ e−x, we can get

∆K ≤
(

1− µ

β

)K
∆0 ≤ e−K(µ/β)∆0 ≤ e−K(µ/β)M (2.16)

Now, we want to solve for the K that satisfies

e−K(µ/β)M ≤ ε (2.17)

Rearranging this inequality, we can see that

K ≥ β

µ
log

M

ε
(2.18)

Proof. Now, we return to the main theorem. In Algorithm 2, we set τt to be the

number of OGD updates (calls to Algorithm 3) we perform to produce θ(t).

14

Recall that we set τ1 = β
µ

log M
ε

, where M is the upper bound on f1

(
θ(0)
)
−f1 (θ∗).

Then, by Lemma 2.3.6, we know

f1

(
θ(1)
)
− f1

(
θ(1)
∗
)
≤ ε (2.19)

for some small ε.

Now for 2 ≤ t ≤ T , we recall that in Algorithm 2, we set τt = β
µ

2Ct+ε
ε

. By Lemma

2.3.5, we know that

ft
(
θ(t−1)

)
− ft

(
θ(t)
∗
)
≤ 2Ct + ε (2.20)

Then, in every iteration for t ≥ 2 of Algorithm 2, we can use the update θ(t) =

OGD(ft, θ
(t−1), τt. Therefore, by Lemma 2.3.6, we have

ft(θ
(t))− ft(θ(t)

∗) ≤ ε (2.21)

for all t ∈ [T]. Therefore,

1

T

T∑
t=1

ft(θ
(t))− ft(θ(t)

∗) ≤ ε′ (2.22)

for some small ε′.

Now, it remains to find the upper bound to the number of OGD updates (i.e.∑
t∈[T] τt).

We have the following:

T∑
t=1

τt =
β

µ
log

M

ε
+

T∑
t=2

β

µ
log

2Ct + ε

ε
(2.23)

We examine the second term on the RHS. Recall that Ct = O(T−1/2), and that C

15

is the constant such that maxt∈[T] Ct ≤ CT−1/2. Then,

T∑
t=2

β

µ
log

2Ct + ε

ε
=
β

µ

T∑
t=2

log
2Ct + ε

ε

=
β

µ
log ΠT

t=2

2Ct + ε

ε

≤ β

µ
log ΠT

t=2

2CT−1/2 + ε

ε

=≤ β

µ
log ΠT

t=2

2C

ε
√
T

+ 1

≤ β

µ
log(

2C

ε
√
T

+ 1)T

≤ β

µ
T log(

2C

ε
√
T

+ 1)

By setting ε = T−1/2, we have that the number of OGD updates is at most

β

µ

{
log

M

ε
+ T log

(
2C

ε
√
T

+ 1

)}

Additional notes

It is important for the computational time of the algorithm to bound the number

of calls to Algorithm 3, or OGD, because it can be costly to evaluate the gradient

of a data-driven function.

2.4 Applications

In general, the PL inequality is useful as a condition that does not require convexity,

and is a tool usable to show linear convergence rates [9], [2]. In particular, [2] shows

16

that it can be used to analyze several different machine learning situations. For

example, strongly convex functions composed with piecewise linear functions, like

(leaky) ReLU, satisfy the condition.

It is also potentially interesting to look at the class of “definable functions” which

can be shown to include problems of interest for this method.

Definition 7. An o-minimal structure is a collection S = {Sn}∞n=1, where Sn is

a set of subsets of Rn which includes all algebraic sets and is closed under ifnite

union/intersection and complement, Cartesian product, and projection, and S1

consists of finite unions of open intervals and points.

Definition 8. A function f : D → Rm with D ⊂ Rn is definable if its graph is in

Sn +m.

We also note from [5] that for any definable functions f, g : D → R, any linear

combination αf + βg and fg is definable.

Recall from our definition of the Lagrangian formulation in Equation 1.1 that we

are interested in the sum of an objective function and several constraint functions.

Assuming that constraint functions [gi] for 1 ≤ i ≤ m are convex and definable,

we can see that given a definable objective function we will have a definable La-

grangian. Indeed, [5] analyzes arbitrarily deep neural networks (which are highly

convex) with common types of layers like linear, convolution, ReLU, and max-

pooling satisfy definability.

Kurdyka shows that functions that satisfy the Lojasiewicz inequality are also de-

finable in some o-minimal structure [8]. Paraphrased, the main result of the paper

is that functions f that are differentiable and on an open and bounded subset of

17

Rn such that f(x) > 0, must satisfy

‖ grad(Ψ ◦ f)(x)‖ ≥ c (2.24)

for some increasing positive function Ψ and c > 0, ρ > 0.

18

CHAPTER 3

CONCLUSION

We show a proof of convergence to an optimal and feasible solution to a constrained

optimization problem under specific conditions. A natural direction following this

would be to explore a broader class of problems and to weaken the conditions

required for the algorithm to apply.

Additionally, among other things, [3] presents a method to find a distribution over

at most m + 1 distinct values of θ, where m is the number of constraints, and a

single deterministic λ. This requires a decoupling of the two players, in which they

aim to optimize two different Lagrangian functions Lθ and Lλ.

19

BIBLIOGRAPHY

[1] A. Blum and Y. Mansour. From external to internal regret. J. Mach. Learn.
Res., 8:1307–1324, 2007.

[2] Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of
learning algorithms that converge to global optima. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 745–
754. PMLR, 10–15 Jul 2018.

[3] Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. Two-player games for
efficient non-convex constrained optimization. In Aurélien Garivier and Satyen
Kale, editors, Proceedings of the 30th International Conference on Algorith-
mic Learning Theory, volume 98 of Proceedings of Machine Learning Research,
pages 300–332, Chicago, Illinois, 22–24 Mar 2019. PMLR.

[4] Geoffrey J. Gordon, Amy Greenwald, and Casey Marks. No-regret learning in
convex games. ICML ’08, page 360–367, New York, NY, USA, 2008. Association
for Computing Machinery.

[5] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep
learning, 2020.

[6] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient
and proximal-gradient methods under the polyak- lojasiewicz condition. CoRR,
abs/1608.04636, 2016.

[7] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan
Wilder. End-to-end constrained optimization learning: A survey. CoRR,
abs/2103.16378, 2021.

[8] K. Kurdyka. On gradients of functions definable in o-minimal structures. An-
nales de l’Institut Fourier, 48:769–783, 1998.

[9] B. Polyak. Gradient methods for the minimisation of functionals. Ussr Com-
putational Mathematics and Mathematical Physics, 3:864–878, 1963.

20

	Introduction
	Background
	Constrained optimization
	Modifying the Lagrangian for machine learning applications

	Constrained Optimization on a PL objective
	PL Inequality
	Regret Minimization
	Intuition
	Algorithm and Proof

	Applications

	Conclusion
	Bibliography

