
• 

• 

• 

Cornell University 
Ithaca, New York 

Statistical Analyses for Multistage Experiment Designs 

Walter T. Federer 

Abstract 

Suppose that t experiments are conducted simultaneously on the same set 

of experimental units. For example, suppose that t mutually orthogonal latin 

square experiment designs are used for the t experiments on n2 experimental 

units. Statistical literature is voluminous on construction of such designs, 

but contains relatively little and incomplete results on statistical analyses 

for such designs. Six statistical analyses are presented for a pair of ortho-

ginal latin square experiment designs. Then, the methods are generalized for 

t mutually orthogonal experiment designs. The results are also extended to a 

set of t mutually balanced Youden experiment designs • 
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1. Introduction 

Multistage experiment designs come in many forms and situations. Statis-

tical procedures for summarizing the information from one multistage design will 

be varied and different from a second multistage design and from single stage 

designs. By far the vast majority of statistical procedures developed have been 

for single stage experiment designs. The same is true for multistage treatment 

designs (selection of treatments for inclusion in an experiment design, the 

arrangement of treatments in an experiment). We shall, however, restrict our 

attention to multistage experiment design, and shall be even more restrictive 

• and consider only one type of multistage design, viz. a set of t mutually ortho­

gonal latin square experiment designs, a MOL(n,t) set, or a set oft mutually 

balanced Youden experiment designs (see Preece, 1966b; Federer, 1972; Hedayat, 

Seiden and Federer, 1972), a MBY (n=v=b,k,A,t) set. 

Some types of multistage experiments are listed below. 

T,ype !: Consider any completely randomized design, randomized block design, row 

by column design, etc. for which each sampling unit is measured over time. This 

has been called a repeated measures design. Several different concepts and 

statistical analyses have been derived for these designs (see, e.g., Kershner 

and Federer, 1981). For some repeated measures designs, a single treatment is 

applied to a given sampling unit either at the beginning of the experiment or 

continuously throughout the experiment. Other types of repeated measures 

• 
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designs involve changing the treatments at specified periods and are called 

~ cross-over or change-over designs (see Kershner and Federer, 1981). Additional 

concepts, definitions, and statistical analyses are required to summarize and 

apply the information available from these experiment designs. 

The earliest uses of repeated measures experiment designs appear to have 

been in agriculture for continuous cropping studies, for crop rotation experi­

ments, and for pasture experiments. Other early uses were in nutrition and feed­

ing experiments on animals (see Brandt, 1938 and Cochran, Autrey and Cannon, 1941). 

~e 2: A specified experiment design and a specified set of v treatments con­

ducted at i locations, sites, laboratories, etc., using a different set of rv 

experimental units for each experiment. Two classic papers on statistical 

analyses for this type of multistage design are Cochran (1936) and Yates and 

Cochran (1938). When the experiment design varies from site to site, one may 

~ use the statistical analyses described in Cochran and Cox (1957), chapter 14. 

~ 

Type 3: There are vi, i=l,2,···,t, treatments in the experiment at site i; the 

number of replications may vary on each or all of the vi treatments; the vi 

treatments may differ from site to site; the experiment design may vary at each 

site; one wishes to summarize the information over the i experiments for such 

purposes as to determine an optimum sampling fraction (see Yates and Zacopanay, 

1935), to determine optimal allocation of resources for maximizing genetic ad­

vance (see Sprague and Federer, 1951), or to determine crop response to ferti­

lizer applications (see Meisinger, 1976). The first two references above made 

use of unbiased estimates of ratios of variance components to summarize the 

information from an experiment. The unbiased estimates were then combined. 

Since one is dealing with a population of population parameters, unweighted 

combinations were utilized to combine the information from the t experiments. 
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The last reference considers that the response is a function of a number of 

~ measured independent variables at each of the sites. 

Type 4: The t separate sets of n=v treatments are carried out simultaneously 

or successively on the same set of rc experimental units. In some situations 

it is assumed that the treatments in one set do not affect those in the second 

set, and hence are not considered in the designing; in other situations the 

treatments in one set are in an orthogonal, a balanced, or a partially balanced 

arrangement with the treatments in another set. For example, a set of t mutually 

orthogonal latin squares may be used on the n2 experimental units or a set of t 

mutually balanced Youden designs may be used on the nk experimental units. Other 

experiment designs may also be used. 

Type 5: The vi treatments are in a mixture such as found in intercropping, appli­

cation of drugs, application of teaching or recreational programs, etc., where 

~ the different items may enter simultaneously, sequentially, or at different times. 

~ 

Individual responses may be measured on each item in a mixture, or only one re-

sponse may be available for the k items in a mixture. Statistical designs and 

analyses have to be devised for the various types of responses, as well as for 

attaining the goals of an experiment. 

2. Some Statistical Analyses for a Pair of Orthogonal Latin Square Designs 

Conducted Simultaneously 

Consider a marketing research situation wherein an experimenter has n 

grocery stores available for n time periods. He wishes to use n merchandising 

treatments on one commodity, say apples, and n merchandising treatments on a 

second commodity, say carrots. He decides to use a pair of orthogonal latin 

square experiment designs for the experiment. After he obtains his n2 responses, 
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Yhij' on apples and n2 responses Whij' on carrots, the question now arises as 

~ to how he should analyze the 2n2 responses. Some possibilities with their 

assumptions and difficulties are listed below. 

(i) The results from the two experiments~ considered to be independent. It 

is further believed that the standard textbook ANOVA would be appropriate for 

these experiments. The ANOVA would be: 

Apples Carrots 

Source of variation d. f. Source of variation d. f. 

Total n2 Total n2 

Correction for mean 1 Correction for mean 1 

Stores (columns) n-1 Stores (columns) n-1 

Periods (rows) n-1 Periods (rows) n-1 

Treatments n-1 Treatments n-1 

Remainder (n-1) (n-2) Remainder (n-1) (n-2) 

~ Such ANOVA's are related to the response model equations: 

yhl"J" = ~ + p h + y . + T • + E h". a a aJ. aJ a lJ (2.1) 

and 

(2. 2) 

where ~, pxh' y ., and T . are overall mean, row, column, and treatment effects 
X Xl XJ 

for commodity x; x=a,c; h,i,j=l,2,· • • ,n; and Exh .. are NIID(O,~ ). The experi-
l.J EX 

menter may then use F-tests, some multiple comparisons procedure, or other statis-

tical procedures to summarize the information and make the desired inferences. 

The assumption that the two experiments are independent would be untenable 

for the above situation, since sales of apples and sales of carrots would most 

likely be related, that is, the purchase of apples affects the purchase of c~:~rrots, 

~ 
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and vice versa. One should also note that the above procedure is the one fol-

~ lowed in most textbooks and by most statisticians and investigators. The text-

book ANOVA and response models (2.1) and (2.2) may be inappropriate. Instead, 

the differential gradient model of Cox (1958), a model including terms for non-

additivity, or some other response model, may be more appropriate than equa-

tions (2.1) and (2.2). 

The residuals using response model equations (2.1) and (2.2) are computed 

as: 
- 2y_ •• e = yhij - y - y. i. - y •. j + ahij ho • 

A A A 

(2. 3) = yhij - Y ••• - Pah - yai - '! aj 

and 

wh .. 
- 2w e chij = - wh·. - w - w + 

J.J . i. • . j ... 
A A "' (2. 4) = whij - w - Pch - yci - '! ... ch 

~ 
The "Remainder" sum of squares may be computed by squaring the n2 residuals and 

obtaining their sum for each analysis. 

Example 2i: Suppose that an experimenter conducted two experiments simultaneously 

in four grocery stores and for four time periods. Suppose that there were four 

treatments involving four methods of packaging apples and four treatments involv-

ing size of packages of carrots. Furthermore, suppose that the two latin square 

experiment designs used were orthogonal ones. The responses are considered to 

be pounds of a product (apples or carrots) sold to ten customers, and it is con-

sidered that the non-treatment period between treatments is sufficient to remove 

any carry-over effect of a treatment. The data are given in Table 2.1. For the 

analysis we use response model equations (2.1) and (2.2). The data were con-

~ 
structed to give integers for solutions of effects. 



• 

• 

• 

- 6 -

For the Yhij the following values were used: 

"' J.l.a = 10 

"' "' 
Pal = -1 Yal = -3 

"' -1 "' 3 Pa2 = ya2 = 

"' "' 
Pa3 = 2 Ya3 = 0 

A A 

Pa4 = 0 Ya4 = 0 

The eahij values are given in Table 2.3. 

For the whij the following values were used: 

A 
10 J.l.e = 

"' -1 
A 

Pel = Yel = 

"' A 

Pe2 = -1 Ye2 = 

A A 

Pe3 = 0 Ye3 = 

A 

2 
A 

Pe4 = Ye4 = 

Thee h'. values are given in Table 2.3. 
e ~J 

-3 

3 

-3 

3 

"' T = aA -3 

"' -4 TaB = 

A 

Tac = 7 

"' T = 0 aD 

"' T = 0 ea 

"' Teb = -3 

A 

T = -1 ee 

"' 4 Ted = 
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Store 
(apple sales, pounds) 

4 - "' y = 28 "' Period 1 2 3 y 
y ·h·. Pah 'r = . h·. • •• A a A 

1 A 4 B 7 c 16 D 9 36 9 -1 y 
. • B· = 24 

A 

'r = aB 

2 B 1 A 10 D 9 c 16 36 9 -1 = 68 
A y 

•. C· T = aC 

3 c 16 D 15 A 8 B 9 48 12 2 y = 4o 
A 

•• D· T = aD 

4 D 7 c 20 B 7 A 6 4o 10 0 
y = 42 g = a .•• a a 

28 52 4o 4o 160 38 "' y 
. . i. - 0 y = 0ab = b· •• 

- 42 "' y •• i. 7 13 10 10 - 10 - y = 5 = 
C• • • ac 

A 

38 
A 

Yai -3 3 0 0 0 - - y = 5 = d· •• ad 

St ore 
(carrot sales, pounds) 

4 - A = 40 
A 

Period 1 2 3 w w. h•. Pch w T = . h·. . •. a ca 

1 a 8 b 7 c 3 d 18 36 9 -1 w = 28 .•. b "' 'r = cb 

8 36 36 "' 2 d c 13 a 5 b 10 9 -1 w = 'r = •.• c cc 

3 b 4 a 13 d 11 c 12 4o 10 0 w 56 
A 

••• d = 'r = cd 

4 c 8 d 19 a 9 b 12 48 12 2 
= 44 "' w 5 = A· .• cA 

160 
A 

w 28 52 28 52 - 0 w = 36 5 = 
• •l• B·. • cB 

- 36 
A 

w •• i. 7 13 7 13 - 10 - w = 5 = C· •. cC 
"' = 44 

A 

Yci -3 3 -3 3 0 - - w 5 = D· •. cD 

Table 2.1. Data from a pair of orthogonal latin square designs conducted 

simultaneously on the same 16 experimental units . 

-3 

-4 

7 

0 

0.5 

-0.5 

0.5 

-0.5 

0 

-3 

-1 

4 

1 

-1 

-1 

1 
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Apple Sales (Yh .. ) 
~J 

Source of variation d. f. Sum of sg,uares Mean sg,uare 

Total 16 2000 

Correction for mean 1 1600 

Stores 3 72 24 

Periods 3 24 8 

Apple treatments 3 296 296/3 

Remainder 6 8 4/3 

Carrot Sales (Wh .. ) 
-- ~J 

Source of variation d. f. Sum of sg,uares Mean sg,uare 

Total 16 19o4 

Correction for mean 1 1600 

Stores 3 144 48 

Periods 3 24 8 

Carrot treatments 3 lo4 lo4/3 

Remainder 6 32 16/3 

Table 2.2. Analyses of variance for apple sales Yh .. and carrot 
~J 

sales Wh .. using response model equations (2.1) and 
~J 

(2. 2 ) • 
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• 
Residuals eahij for Yhij values 

Store 

Period 1 2 3 4 Sum 

1 A 1 B -1 c 0 D 0 0 

2 B -1 A 1 D 0 c 0 0 

3 c 0 D 0 A -1 B 1 0 

4 D 0 c 0 B 1 A -1 0 

Sum 0 0 0 0 0 

• Residuals e h. . for Wh .. values 
c l.J l.J 

Store 

Period 1 2 3 4 Sum 

1 a 2 b -2 c -2 d 2 0 

2 d -2 c 2 b 2 a -2 0 

3 b 0 a 0 d 0 c 0 0 

4 c 0 d 0 a 0 b 0 0 

Sum 0 0 0 0 0 

Table 2.3. Residuals for Yh .. and Wh .. using equations 
l.J l.J 

(2. 3) and (2.4 ) . 

• 
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(ii) The treatments in each of the two orthogonal latin sguare designs ~ 

• blocked in relation to the treatments in the other experiment. Response model 

equations (2.1) and (2.2) are extended to include an additional term for this; 

thus, 

yghJ." J. = !l + 0 + p h + y . + T • + E h. . a ag a aJ. aJ ag l.J 
(2.5) 

and 

W h" . = !l + 0 + p h + Y . + T • + E h" . g lJ c cg c cJ. CJ cg l.J ' 
(2. 6) 

where o is the stratification (blocking) effect of the carrot treatments on ag 

the apple treatments, o is the blocking effect of the apple treatments on the cg 

carrot treatments, and the other terms are as described previously. Several 

authors have used response model equations of this form, such as, e.g., Anderson 

(1972), Anderson and Federer (1976), Bose and Srivastava (1964), Bradu (1965), 

Cheng (1978), Clarke (1963), Federer (1981), Freeman (1958), Freeman and Jeffers 

• (1962), Potthoff (1962a,l962b), Preece (1966), Rees (1966a), Singh, et al. (1981), 

• 

and Srivastava and Anderson (1970,1971). 

The residuals are computed as: 

(2. 7) 

and 

ecghij 
-= w - w ghij g• •• 

-- w . •• 1• 
-- w . • •• J + 3W •••• (2. 8) 

Example 2ii: Using the d&ta from example 2i and response models (2.5) and (2.6) 

"' "' results in the analyses of variance given in Table 2.5. The values for !l , !l , a c 

"' "' "' A A 

Pah' Pch' yai' yci' T aj' 
"' and T . are the same as in Example 2i. The solutions 

CJ 

"' A 

for the 0 and 0 are: ag cg 
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A A 

0 = 0.5 0 = 1 a a cA 

8 "' = -0.5 0cB = -1 ab 
A "' 0 = 0.5 5cc = -1 ac 

"' "' 0ad = -0.5 0 = 1 
cD 

The residuals for the yghij and the wghij values are given in Table 2. 4. 

(iii) One might wish to combine the results from the two exp= riments. Note 

that sums and differences are orthogonal to each other. Therefore, one could 

obtain analyses of variance of the following forms using response model equa-

tions of the form of (2.5) and (2.6): 

Sum of apple and carrot sales 

(Y h" . + W h" . = S h" . ) g 1J g 1J g lJ 

Source of variation d. f. 

Total Total 

Apple sales minus carrot sales 

(Yghij - Wghij = Dghij) 

Source of variation d. f. 

Correction for mean l Correction for mean = Product (P) l 

Stores (columns) n-1 Stores (columns) X P n-l 

Periods (rows) n-l Periods (rows) X P n-1 

Grouping 1 (apples) n-1 Grouping 1 (apples) X P n-1 

Grouping 2 (carrots) n-1 Grouping 2 (carrots) X P n-1 

Remainder (n-l)(n-3) Remainder (n-l)(n-3) 

The null hypothesis tested using Grouping 1 (apples) and remainder mean squares 

is that apples treatments in the presence of all carrot treatments do not differ. 

A similar hypothesis is tested using Grouping 2 (carrots) and remainder mean 

squares. With differences one is testing the null hypothesis of no difference 



• 
Period 

1 

2 

3 

4 

Sum 

• 
Period 

1 

2 

3 

4 

Sum 

Table 2.4. 

• 
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Residuals e h'. for Y h'. values ag ~J g ~J 

Store 

1 2 3 4 Sum 

A a 0.5 Bb -0.5 Ce -0.5 Dd 0.5 0 

Bd -0.5 Ae 0.5 Db 0.5 Ca -0.5 0 

Cb 0.5 Da -0.5 Ad -0.5 Be 0.5 0 

De -0.5 Cd 0.5 Ba 0.5 Ab -0.5 0 

0 0 0 0 0 

Residuals e h. . for W h .. values eg ~J g ~J 

Store 

1 2 3 4 Sum 

A a 1 Bb -1 Ce -1 Dd 1 0 

Bd -1 Ae 1 Db 1 Ca -1 0 

Cb 1 Da -1 Ae -1 Bd 1 0 

De -1 Cd 1 Ba 1 Ab -1 0 

0 0 0 0 0 

Residuals eaghij and eeghij for Yghij and Wghij 
values • 
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Apple sales (Yghij) 

Source of variation d. f. Sum of sg,uares Mean sg,uare 

Total 16 2000 

Correction for mean 1 1600 

Stores 3 72 24 

Periods 3 24 8 

Grouping by carrot treatments 3 4 4/3 

Apple treatments 3 296 296/3 

Remainder 3 4 4/3 

Carrot sales (W h .. ) g l.J 

Source of variation d. f. Sum of squares Mean square 

Total 16 19o4 

Correction for mean 1 1600 

Stores 3 144 48 

Periods 3 24 8 

Grouping by apple treatments 3 16 16/3 

Carrot treatments 3 lo4 lo4/3 

Remainder 3 16 16/3 

Table 2.5. Analyses of variance for apple sales Yghij and carrot sales WghiJ 

using response model equations (2.)) and (2.(>) • 
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in the sales of the two products using the correction for the mean, a throw-

41t away in ordinary textbook analyses, and the remainder mean squares. The 

remaining four mean squares are interactions with product. 

• 

• 

Example 2iii: Sums and differences for the n2 categories of Table 2.1 are pre-

sented in Table 2.6. Analyses of variance for the sghij = yghij + wghij values 

and the Dghij = Yghij - Wghij values are presented in Tables 2.7. In addition, 

F-values, using the remainder mean square as the demoninator ofF, are computed 

to demonstrate that the correction for mean, or the product mean square, is used 

in testing. 

(iv) One might wish to combine total sales ~in the previous section, or one 

might wish to take some economic value of responses. Suppose the cost per 

pound of apples is c and the cost per pound of product two, carrots, is c . a c 

Then one could combine the responses from each experiment as Pghij = caYghij 

+ c W h' .. One could then obtain an analysis of variance table as described for 
c g lJ 

S h'. values above, or one might wish to compute an ANOVA table of the following 
g lJ 

form on the P h' . values: 
g l.J 

Source of variation 

Total 

Correction for mean 

Product one (apples) 

Product two (carrots) 

Interaction of products 

Stores (columns) plus a component of interaction 

Periods (rows) plus a component of interaction 

Remainder of interaction 

d. f. 

1 

n-1 

n-1 

(n-1)2 

n-1 

n-1 

(n-1 )(n- 3) 
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Yghij + wghij = 8ghij 

• Store 

2 4 - - -Period l 3 s s. h •• s -s • h .• . h. . . ... 

.I Aa 12 nb 14 Cc 19 Dd 2'( '(2 18 -2 

2 Bd 9 Ae 23 Db 14 Ca 26 72 18 -2 

3 Cb 20 Da 28 Ad 19 Be 21 88 22 2 

4 De 15 Cd 39 Ba 16 Ab 18 88 22 2 

s .. i. 56 lo4 68 92 320 - 0 

- 14 26 17 23 20 = -s - s .. i. . ... 
- - -6 6 -3 3 0 s .. i. -s . ... 

72 - 18 
A 

-2 82 - 20.5 
A s .• ·A - s .•• A = T a A = s = s = T = 0.5 a ... 8• .• ea 

6o - A 66 - 16.5 
A s = s = 15 T = -5 s = s = T = -3.5 • • • B . . • B aB b .•• b· .• eb 

lo4 - 26 
A 

6 78 - A s = s = T = s = s = 19.5 1" = -0.5 ••. c ••. c ac c ..• c ••• ee 

84 - A 

94 - A s = s = 21 T = l s = sd• •• = 23.5 1" = 3. 5 •. • D ..• D aD d· . . ed • y 
ghij - wghij = Dghij 

Store 

Period l 2 3 4 D . h•. d . h .• d -d . h. . . ... 

l A a -4 Bb 0 Ce 13 Dd -9 0 0 0 

2 Bd -7 Ae -3 Db 4 Ca 6 0 0 0 

3 Cb 12 Da 2 AD -3 Be -3 8 2 2 

4 De -1 Cd l Ba · -2 AB -6 -8 -2 -2 

D .. i. 0 0 12 -12 0 - 0 

d .. i. 0 0 3 - 3 - 0 = d . ... 
d .. i. -d 0 0 3 -3 0 . ... 

-16 d -4 
A 

-4 d 
A 

D ••• P.. = ... A = oA = D = 2 = 0.5 0 = 0.5 
8• •• a . .. a 

d 
A 

d 
A 

D, .. B = -12 = -3 oB = -3 D = 10 = 2.5 ob = 2.) • • • • B b· .. b· •. 

d 8 
A 

8 6 d 
A 

D = 32 = oc = D = = 1.5 0 = 1.5 ... c .•• c c .•• C• • • c 

4 d 
A 

-18 d -4. 5 
A 

-lt. 5 D = - = -1 oD = -1 D = = 5d = ••• lJ ••• D d· .. d ••• 

Table 2. 6. s ghij and Dghij values for data of Example 2i. 
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Apple sales plus carrot sales = S h'. g ~J 

• Source of variation d. f. Sum of squares Mean square F-value 

Total 16 7224 

Correction for mean 1 64oo 

Stores (columns) 3 360 120 10 

Periods (rows) 3 64 64/3 21/9 

Apple treatments 3 264 88 22/3 

Carrot treatments 3 100 100/3 25/9 

Remainder 3 36 12 

Apple sales minus carrot sales = D h'. g ~J 

Source of variation d. f. Sum of sg,uares Mean sg,uare F-value 

• Total 16 584 

Product = p (correction for mean) l 0 0 0 

p X Stores 3 72 24 18 

p X Period 3 32 32/3 8 

p X Apple treatments 3 360 120 90 

p X Carrot treatments 3 116 116/3 29 

Remainder 3 4 4/3 

Table 2.7. Analyses of variance and F-values for Sghij and Dghij values • 

• 
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Unless one were making inferences to a population of levels of each product 

and unless one has a random sample of levels, one could not utilize the "Remainder 

of interaction" mean square as an error term. Instead, one would need to obtain 

an error mean square from theory, from previous experiments, or elsewhere. A 

mean square with interaction components would be inappropriate for hypothesis 

testing of fixed main effects. 

Example 2iv: One could select various ca and cc prices to obtain Pghij values. 

For analysis purposes one need only consider the ratio of prices, say c /c , and a c 

obtain Ph'. = (c /c )Y h'. + W h'. for various ratios to depict the range of g lJ a c g lJ g lJ 

prices incurred in practice. Since the computations would be straightforward 

for the data in Table 2.1, no analyses were performed on the data. 

Other combinations of data such as total calories, total protein, etc. 

could also be used to combine results from two commodities such as beans and 

maize, cowpeas and soybeans, etc . 

(v) The experimenter wishes to combine the results from the two experiments, 

and the levels of the two products are comparable, such that level ~for 

product~ is the ~ ~ level ~ for product two, etc. Then, for standard 

response model equations of the form of (2.1) and (2.2), an ANOVA would be 
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Source of variation 

Total 

Correction for mean 

Products (squares) 

Stores within products 

Stores 

Stores X Products 

Periods within Products 

Periods 

Periods X Pro~ucts 

Treatments within Products 

Levels 

Levels x Products 

Remainder within Products 

d. f . 

1 

1 

2(n-l) 

2(n-l) 

2 (n-1) 

2(n-l)(n-2) 

n-1 

n-1 

n-1 

n-1 

n-1 

n-1 

The levels would need to be more than nominal levels of product; they would need 

to have practical meaning and associated for all levels. 

Example 2v: Suppose that for the data in Example 2i, treatments A and a are 

comparable, B and b are comparable, C and c are comparable, and D and d are 

comparable. For example, treatment C could be standard price of apples and 

treatment c could be standard price for carrots. Treatments D and d could be 

a 20% price increase over standard. Treatments b and B could be standard pric-

ing, but a free gift is available for those purchasing a product. Treatments 

A and a could be a 20% price reduction. Using response model equations (2.1) 

rmd (2.2), an ANOVA and F-st1'ltistics for the data from Example 2i are given ln 

'l':JbJe 2.8. A two-way table of product by level totals is included to indicate 

• how to C(Jmpute the Treatment and Treatment X Product sums of squares. 
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Source of variation d. f. Swn of s9.uares Mean ssuare F-values 

Total 32 39o4 

Correction for mean 1 3200 

Product (P) 1 0 0 0 

Stores within Products 6 216 

Stores 3 180 6o 

Stores X p 3 36 12 

Periods within Products 6 48 

Periods 3 32 32/3 

Periods X p 3 16 16/3 

Treatments within Products 6 4oo 

*Treatments 3 220 220/3 

*Treatments X p 3 180 6o 

Remainder within Products 12 4o 10/3 

*Computed from the table 

Product A= a B=b C=c D=d Swn 

Apples 28 24 68 40 1600 

Carrots 4o 28 36 56 1600 

Swn 68 52 lo4 96 320 

Difference -12 - 4 32 -16 0 

Table 2.8. Analysis of variance and F-statistics when treatment levels are 

identical for the two products • 

18 

3.6 

3.2 

1.6 

22 

18 
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(vi) Another method for combining the results from the two experiments is to 

• use a bivariate analysis of variance and appropriate multivariate procedure. ---
For response model equations (2.5) and (2.6), a bivariate analysis of variance 

would be of the following form: 

Source of variation d. f. Sums of products 

cyy T 

) Total n2 yw 

T ww 

( Y~ • ./n2 Y,,, W, • ./n2 ) 
Correction for mean 1 

w~. jn2 

Stores n-1 cyy Syw ) 
sww 

cyy p 

) yw 
Periods n-1 

pww • cyy vyw ) Treatments (Product 1) n-1 
vww 

Treatments (Product 2) n-1 cyy uyw ) 
Uww 

( E Eyw ) Remainder (n-1 )(n- 3) yy 

Eww 

The procedure for computing the sums of squares and products in the above MANOVA 

table is straight-forward except for perhaps the last three. To compute Vyw 

•1se tutals Y • and W , where j=g=l, 2, • · · ,n equals number of product one ••• J g· ••. 

treatments. uyw uses totals y . and w ... J· where j=g=l,2,··· ,n equals number g· .• J 

• 
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of product two treatments. These cross products compare a treatment response 

4lt for its own product with responses from the same experimental units and with 

• 

• 

all treatments of the other product on these n experimental units. E is 
yw 

obtained as the sum of the products of the n2 pairs of residuals given by 

formulas (2.7) and (2.8). 

After one has the sums of squares and cross products in a MANOVA table, one 

then proceeds in the usual manner for multivariate analysis procedures. 

Example 2vi: We shall now use the data from Example 2i to illustrate the appli-

cation of multivariate techniques for data from two simultaneous experiments on 

the same n2 = 16 experimental units. A MANOVA table is given in Table 2.9. 

To compute the sums of squares and cross-products for Treatments (apples) use 

the following data from Table 2.1: 

Apple sales y = 28 y = 24 y = 68 y = 4o •. ·A ••• B ... c • • • D 

Carrot sales w = 44 w = 36 w = 36 w = 44 A· .. B· •• C· •• D• •• 

i[28(44) + 24(36) + 68(36) + 4o(44)J - it(16o)(16o) = 1576- 16oo = -24 • 

Likewise, the treatments (carrots) sum of products is computed as: 

i[42(4o) + 38(28) + 42(36) + 38(56)] - ft(l6o)(l6o) = 1596 - 16oo = -4 • 

The sum of products of the n2 = 16 residuals in Table 2.4 is computed as: 

[0.5(1)- 0.5(-1)- 0.5(-1) + 0.5(1) + ••• + 0.5(1) + 0.5(1)- 0.5(-1)] = 8. 

Since the residuals for Wghij are twice those for Yghij' the correlation of 

residuals is one, i.e., 8//4(16) = 1 • 
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Mean squares and 

• Source of variation d. f. Sums of Eroducts covariance 

[2000 166o] [ - ] Total 16 
19o4 

e6oo 1600] [ - - ] Correction for mean 1 
1600 

[ 72 72] [ 24 24 ] Stores (columns) 3 
144 48 

[ 24 

2:] [ 8 8~3] Periods (rows) 3 

[ 296 -24] [296/3 -8 ] Treatments (apples) 3 
16 16/3 

[ 4 -4] [ 4/3 -4/3] Treatments (carrots) 3 
lo4 lo4/3 

• [ 4 

1:] 
[ 4/3 8/3] Remainder 3 

16/3 

Table 2.9. MANOVA for the data in Example 2i • 

• 
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• 
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that !Eyy EY"J 
This means 

EY"J Eww 

4 
= 

8 
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81 - 0 and that statistics like 
16 -

Eyy EY"J Eyy+Uyy EY"J+UY"J . are not practically useful. All the informa-

~ Eww Ehw+UY"J Eww+Uww 

tion on the remainder variances is given by either variable Y or W. One can 

easily construct examples where this is not the case. 

3. Extension to More Than Two Designs 

Suppose that one sets up t experiments in t mutually orthogonal latin 

square designs, or alternatively in t mutually balanced Youden designs. Straight-

forward extensions of the six analyses in section 2 are possible. For method (i), 

one simply computes the analyses for each of the t experiments separately with-

out any reference to the remaining t-1 experiments • 

For method (ii), one groups or stratifies one set of treatment for (t-1) 

other sets which results in a straightforward extension of equations (2.5) and 

(2.6) for possible response model equations of the form: 

t 

Ylfghij = l-11 + L ~\fg + Plh + Yli + "1j + Elfghij 
f=2 

t 

y2fghij = l-12 + I 02fg + P2h + v2i + '2j + €2fghij 
f=l~2 

t-1 

ytfghij - 1-lt + L. 0tfg + Pth + yti + 'ti + Etfghij 
f=l 

with corresponding residual equations: 

( 3.1) 

( 3. 2) 

(3.3) 
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- -
t 

e1fghij = y1fghij - L y1fg· • • 
f=2 

- yl··h··- yl···i· 

t 

e2fghij = y2fghij - L Y1fg ... - Y2 .. h .. - Y2· .. i· 
f=1,#2 

t-1 

~tfghij = ytfghij - I y tfg·.. - y t •• h·. 
f=l 

-
- y t· .. i. 

(3. 4) 

y 2 .... j + ( t+ 1 )y 2 ..... 

( 3. 5) 

( 3. 6) 

The parameters are as defined previously with obvious extensions. An ANOVA 

partitioning of degrees of freedom for, say, the first response equation for t 

mutually orthogonal latin squares, is: 

Source of variation d.f. 

Total n2 

Correction for mean 

Rows 

Columns 

Stratification by t-1 
sets of treatments 

First set of treatments 

Remainder 

1 

n-1 

n-1 

( t-1 )(n-1) 

n-1 

n2 -1- ( t+2) (n-1) 

For t mutually balanced Youden designs, the partitioning of degrees of freedom 

for response model equations (3.1) to (3.3) for the response in (3.1) is: 
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Source of variation 

Total 

Correction for mean 

Rows 

Columns 

Stratification by t-1 sets of treatments 
(eliminating column effects) 

First set of treatments (eliminating 
columns and (t-1) groupings by other 
sets of treatments) 

Remainder 

d. f. 

nk. 

l 

k-1 

n-1 

(t-1 )(n-1) 

n-1 

nk-k- ( t+ 1 )(n-1) 

For method (iii), sums and differences, one may set up (t-1) orthogonal 

contrasts among the t sets of treatments and have t-1 sums and t-1 differences 

in the same type of analyses as for two sets of treatments, or one may set up 

• a partitioning of degrees of freedom in an ANOVA as follows for t mutually 

orthogonal latin square designs: 

• 

Source of variation 

Total 

Correction for mean 

Rows 

Columns 

Stratification 

Remainder 

t sets of treatments = T 

T X rows 

T x columns 

T X t sets of treatments 

T X Remainder 

d. f. 

1 

n-1 

n-1 

t(n-1) 

n2 -l- ( t+2) (n-1) 

t-1 

( t-1) (n-1) 

( t-1) (n-1) 

t ( t-1 )(n-1) 

(t-l)[n2 -l-(t+2)(n-l)] 
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For method (iv), one may take any linear combination of the t responses, 

say ~t 1c f h" .Y f h" ., where c fgh". are costs, relative amount of protein, e= e g 1J e g 1J e 1J 

usefulness, etc., and conduct an ANOVA using these n2 responses. The ANOVA 

would be similar to the first one in this section for an MOL(n,t)-set or for 

the second ANOVA for a set of t mutually balanced Youden designs. 

For method (v) involving n comparable levels for the treatments in each of 

the t sets and for a MOL(n,t)-set of latin squares, one could partition the 

degrees of freedom as follows: 

Source of variation 

Total 

Correction for mean 

Sets 

Rows within sets 

Rows 

Rows by sets 

Columns within sets 

Columns 

Columns x sets 

Treatments within sets 

Levels 

Levels X sets 

Stratification by other treatments within sets 

Remainder within sets 

d. f. 

1 

t-1 

t(n-1) 

t(n-1) 

t(n-1) 

t(t-l)(n-1) 

t[n2 -l-(t+2)(n-l)] 

n-1 

(t-l)(n-1) 

n-1 

( t-1 )(n-1) 

n-1 

( t-1 )(n-1) 

For method (vi), the extension from the bivariate multivariate analysis to 

the t-variate multivariate analysis is straightforward. The sums of squares and 

products matrix becomes t X t instead of 2 X 2, and the MANOVA partitioning of 

degrees of freedom is that for the first ANOVA of this section • 
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4. Connectedness of Designs and Analysis 

• In using a MOL(n,t)-set of latin squares and whenever t = n-1, there are 

zero degrees of freedom for the remainder sum of squares for methods (ii) -

(vi). Over-stratification can result in disconnected designs. For example, 

consider the following array where the first two rows define the rows and 

columns of the array, and the first four rows form an orthogonal array (a 

MOL(3,2 )-set): 

0 0 0 1 1 1 2 2 2 

0 1 2 0 1 2 0 1 2 

0 1 2 1 2 0 2 0 1 

0 1 2 2 0 1 1 2 0 

2 0 1 0 1 2 1 2 0 

2 0 1 1 2 0 0 1 2 

1 2 0 0 1 2 2 0 1 

1 2 0 2 0 1 0 1 2 

• Use of more than two 3 X 3 latin squares results in disconnected-designs. 

• 

Likewise, if one has n-1 MBY(n,n-l,n-2) Youden designs, there are only 

n(n-1) observations for one response variable for the n2 degrees of freedom. 

In an ANOVA partitioning of degrees of freedom there would be: 

Source of variation d. f. 

Total n(n-1) 

Correction for mean 1 

Rows n-2 

Columns n-1 

(n-1) sets of treatments (n-1)2 

Remainder - (n-1) 
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Thus, the design is overparameterized by (n-1) degrees of freedom. To illustrate, 

~ consider the MOL(5,4)-set with the last rows of the squares omitted, i.e. 

~ 

~ 

An ANOVA is: 

1 2 3 4 5 
2 3 4 5 1 
3 4 5 1 2 
4 5 1 2 3 

omitted 

Source 

Total 

1 2 3 4 5 
3 4 5 1 2 
5 1 2 3 4 
2 3 4 5 1 

omitted 

of variation 

Correction for mean 

Rows 

Columns 

1 2 3 4 5 
4 5 1 2 3 
2 3 4 5 1 
5 1 2 3 4 

omitted 

First set of treatments 

Second set of treatments 

Third set of treatments 

Fourth set of treatments 

Remainder 

d. f. 

20 

1 

3 

4 

4 

4 

4 

4 

-4 

1 2 3 4 5 
5 1 2 3 4 
4 5 1 2 3 
3 4 5 1 2 

omitted 

-(n-1) = -4 degrees of freedom are associated with the Remainder line in the 

ANOVA, indicating the degree of overparameterization. 

Whenever the number of rows k becomes smaller, the overparameterization 

becomes greater when using the full set of mutually balanced Youden designs. 

This fact has not been considered by researchers who construct sets of the 

various designs. Using more than n-1 latin squares could be useful in coding 

theory, as this is one method of widening a code by having more than n+l rows 

ln an array. The code is lengthened merely by repeating the array as many times 

as desired. For three symbols we obtained an 8-row by 9-column array above. 
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For four symbols one can obtain 23 rows by 16 columns as follows: 

• 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 1 0 2 3 2 3 0 1 3 2 1 0 

0 1 2 3 3 2 1 0 1 0 2 3 2 3 0 1 

0 1 2 3 2 3 0 1 3 2 1 0 1 0 2 3 

1 0 2 3 0 1 2 3 2 3 0 1 3 2 1 0 

1 0 2 3 3 2 1 0 0 1 2 3 2 3 0 1 

1 0 2 3 2 3 0 1 3 2 1 0 0 1 2 3 
1 0 2 3 2 3 0 1 0 1 2 3 3 2 1 0 

1 0 2 3 3 2 1 0 2 3 0 1 0 1 2 3 

1 0 2 3 0 1 2 3 3 2 1 0 2 3 0 1 

2 3 0 1 0 1 2 3 1 0 2 3 3 2 1 0 

2 3 0 1 3 2 1 0 0 1 2 3 1 0 2 3 

2 3 0 1 1 0 2 3 3 2 1 0 0 1 2 3 

2 3 0 1 1 0 2 3 0 1 2 3 3 2 1 0 

2 3 0 1 3 2 1 0 1 0 2 3 0 1 2 3 

2 3 0 1 1 0 2 3 3 2 1 0 1 0 2 3 

• 3 2 1 0 0 1 2 3 1 0 2 3 2 3 0 1 

3 2 1 0 2 3 0 1 0 1 2 3 1 0 2 3 

3 2 1 0 1 0 2 3 2 3 0 1 0 1 2 3 

3 2 1 0 1 0 2 3 0 1 2 3 2 3 0 1 

3 2 1 0 2 3 0 1 1 0 2 3 0 1 2 3 

3 2 1 0 0 1 2 3 2 3 0 1 1 0 2 3 

The first two rows define the rows and columns of the latin square, and the first 

five rows define an orthogonal array of five rows and 16 columns (a MOL(4,3)-

set) • 

• 
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5 . Discussion 

An early use of a complete set of orthogonal 5 X 5 latin squares is des-

cribed in Tippett (1936) and Fisher (1937), section 35.1. The latter points 

out that interactions between sets of treatments must be negligible or absent 

in order to make valid statements about the treatments in each set. This set 

is being used as a 5-4 fractional replicate of a 56 factorial. McNemar (1951) 

emphasizes this fact and again points out that a latin square can be used as 

a fractional replicate provided there is no interaction between factors. The 

last assumption he considered to be mostly untenable in psychological research. 

Grant (1948) essentially presented the response model equation and ANOVA for a 

pair of orthogonal latin squares as described in method (ii). 

Although we have confined our discussion to sets of orthogonal latin squares 

and balanced Youdens, we could have used other types of row-column designs. For 

• example, dropping a row from or adding one to a Youden results in partially 

balanced row-column designs. These could be used if desired. The computations 

become more difficult, due to the lack of orthogonality or balance. We also 

could have considered orthogonal F-squares, orthogonal latin and F-cubes and 

hyper-cubes. The concepts would be the same. 
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