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ABSTRACT 

The length of productive life of 39,683 gade Holstein cows milked in 150 

large herds in New-York State between 1981 and 1986 was analyzed by 

modeling their hazard, which is a measLre of their probability of being culled. 

Animals still alive when the analysis was performed were assigned a ·censored" 

record equal to the current value of their length of productive life. The concept of 

hazard allows an adequate statistical treatment of these censored records. The 

proportional hazards models considered involve a baseline hazard function and 

log-linear time-dependent explanatay variables affecting culling rate. These 

indude a herd x year effect, a stage of lactation x lactation number effect and a 

within herd and lactation level of milk production effect (normalized rank based 
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on 305 ME mille yield). 

A semi-parametric analysis - for which the baseline hazard function is 

completely unspecified (Cox's regession) - showed that the assumption of 

proportional hazards is appropriate, that all the effects in the model are highly 

significant and that the baseline hazard function can be closely approximated by 

a Weibull hazard function of the form A(t) • Ap (At)P-1. Such an approximation 

geatly simplifies computations and facilitates further genetic and nongenetic 

studies on longevity of dairy cows. 

Key words: Holstein-Friesian, stayability, nonlinear. model, Cox _model, 

Weibull model, length of productive life 

INTRODUCTION 

Longevity is a highly desirable quality of a dairy cow : total profit and profit per 

day of life have been shown to be related to longevity (1, 2, 17, 21) : when 

herdlife increases, fewer heifers need to be raised and replacement costs are 

decreased. But culling decision usually occurs long before senescence. 

Consequently, geneticists have developed the concept of stayability (or 

survivability ) to characterize the capability for a cow to remain productive in 

her herd over time (13, 14, 22). 

When reason for leaving the herd is not considered, this ability can be 

referred to as true stayability. It also measl.l"es the dairyman's perception of 

the value of the caN. However, it may be of interest to distinguish between 

disposal mostly beyond the control of dairy managers such as the sale of a 

profitable but sterile caN (involunllry culling) and volunhlty disposal of a 

healthy but not profitable cow. Van Arendonk (26) showed that if involuntary 

culling is decreased, a hisjler voluntary culling rate can be applied, resulting in a 

.· 
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larger profit for the farmer. The aptitude to delay involuntary disposal will be 

called functional stayability. 

Many different measures of stayability have been proposed: age, number of 

lactation, length of productive life or lifetime production at time of disposal. 

Computation of these measures requires the ~nowledge of the culling date. But it 

is usually impossible or useless to wait until all the animals of interest have 

disappeared from the herd before starting any analysis. To overcome this 

difficulty, early indicators of true stayability such as the proportion of cows still 

alive at a given timeT o (e.g. 48 months) or at the beginning of a given lactation 

number have been used. But such measures suffer severe crawbacks: many 

different To can be chosen and a substantial loss of information exists: cows 

culled one day or one year before. To are treated alike. Also, linear models are 

not adequate to analyze such binomial data :at To. a caN is alive or not (8, 16). 

A continuous measure such as the length of productive life (LPL) seems more 

desirable. LPL is defined to indude animals still alive at the time of the analysis. 

The corresponding records, which represent a lower bound of the eventual 

LPL's are called censored records and the existence of censored records is 

referred to as censoring . Records from CCHIS sold for dairy plrpOSes are also 

considered as censored (13). 

Specific statistical methods dealing with censaing have been. developed (7, 

18, 20) but because they are quite complex, they have not been used by animal 

breeders until recently (15, 22, 23, 24, 26). The objective of this paper is to show 

in which direction the models proposed by these authors may be improved to 

mae property desaibe the culling process as it ocet.rs on the farm. A particular 

approach on how functional stayability can be approximately estimated is also 

suggested. 
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MATERIALS and METHODS 

General approach 

The analysis of censored survival data is based on the use of special 

modeling distributions such as the hazard function. If T is the nonnegative 

random variable representing the failure time of a crm, the hazard function J..(t) is 

defined as: 

_ Prob ( t ~ T < t + S I T ~ t ] 
J..(t) -= hm r-

S~O 0 

(18) [1 1 

i.e. J..(t) specifies the instantaneous rate of failure at time t, conditional upon 

survival up to t. Here, hazard is intuitively synonymous with relative culling 

rate. In many cases, the exact nature of the density function f(t) or the survivor 

function S(t) -= Prob (T ~ t) is not known in the population under study but some 

information is available on how the failure rate J..(t) changes over time. Note also 

that: 

S(l) ~ exp [ - J ~ J.(u) du ] [2] 

The most popular regession model based on the concept of hazard function 

is the Proportional Hazards (PH) model, for which the hazard J..(t) • J..(t; Zi) 

for animal i is the product of a time-dependent term J..o(t) related to the aging 

process (the baseline hazard function) and a ·stress-dependent • term e'Zt" P 

representing how the vector of covariates Zi influences failure rate, 

independently of time (5). Hence: 

A(t; Zi)-= J..O(t) ezi"P [3] 

Therefore, the hazards of two animals i and i' are assumed to be always 

proportional with hazards ratio e<Zi- Zi">"P. The baseline hazard function can 

.-
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have a lmown parametric form; e.g. if J.o(t) =A = constant, the corresponding 

baseline survivor curve is exponential: So(t) = exp(-At). If Ao(t) = Ap (J..t)p-t 

for some A and p, Tfollows a Weibull distribution : So(t) = exp(- (J..t)P)). 

Using the concept of "partial likelihood". Cox (5, 6) proposed a method for the 

estimation of the effects p in the PH model, which does not require any 

assumption about the form of J.o(t). In the Cox's regression, estimates of p are 

obtained by maximizing the logarithm L1 of a "partial" likelihood of the form: 

L1 ..: L [ Zi"P - log { L e~P} ] 
i e {unc.) me Risk(T[iJ) 

(4] 

where : T[1 1 < ... < T[n] are the ordered n observed (uncensored ) failure 

times; 

{unc.} is the set of uncensored cows; 

Risk (T[iJ) -= { m ; T m ~ T[i]l is the set of animals at risk at T[i]· i.e. alive 

just prior to T[i]· 

If, as it often happens in practice, failure times are recorded in a way allowing 

for ties between some individuals - e.g. same number of days of productive life -

an approximation of the partial likelihood is given by: 

(Peto, in (5)) 

where d; • the k;'s and D<T[ij) are the number. the indices and the set of C(foNS 

actually failing at T[i]-
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(3) (6] 

In some cases, the PH assumption is not tenable for all the factors of interest. 

A possible alternative which retains the simplicity of the PH model and lcnown as 

stratification is the definition of a different baseline hazard function AQj(t) for 

each level j of one particular factor. This was the approach chosen by Smith (22, 

23) in his analysis of age at disposal of dairy cows: records were· "stratified" by 

year of birth of the cows. Problems related with Smith's model are discussed in 

(12). 

A much more powerful generalization of the PH model is the use of time­

dependent covariates. In that case, the exponential part in (3] is allowed to 

vary with time: 

A(t ; Zi(t) ) .. AQ(t) ezi(t)" P (7) 

Estimation of pin a Cox's PH model with time-dependent covariates can lead 

to extremely tedious computations: at each failure time Tp]. the values of 

ez~P. ezm(t)"P in [4] or [5] vary. However, if zm(t) is a very simple function of 

time, such as a piecewise constant function, L ezm(t)'p in [4) or [5] 

m & Rislc(T[i]) 

can be computed in a more efficient way than in the general case (12). In that 

situation, it is assumed that within each interval for which zm(t) is constant the 

PH assumption holds but that the hazards ratio changes from one such interval 

to the next. But even then, computations are still very tedious and such 8 model 

cannot be applied to very large data sets necessary for routine sire evaluation. 

On the other hand, when the baseline hazard function Ao(t) in [1] has 8 
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parametric form, estimation of p and ).0(.) is generally easier (7, 18). Conse­

quently, the following approach is chosen here: on a data set of moderate size, 

the Cox's version of the PH model is fit and the baseline survivor function S o(t) is 

estimated. Then the PH assumption is checked and the estimate of S o(t) is 

compared - using goodness-of-fit and aoss-validation tests - to a known 

parametric form: the Weibull distribution. This choice results from the simplicity of 

the Weibull survivor function (So(t) = exp( - (}.t)P)) allied with its flexibility: a 

Weibull regession can model constant (p • 1), iRa-easing (.p >. 1) and 

deaeasing (p < 1) hazard rates. It is the simplest generalization of the 

exponential survivor distribution. If an approximation of .Ao(t) and So(t) with a 

parametric model is possible, further analyses would be geatly facilitated. 

Data set 

Only grade cows are considered here: culling policies in gade and 

registered herds are known to be markedly different and should not be treated 

alike: registered cows are kept longer, are culled le_ss on milk production and 

more on type or fa dairy purposes (10, 11). 

In the Natheast Dairy Recad Processing Laboratory (ORPL) AI sire file, the 

exact failure date of cows culled before 1981 was not recaded when failure 

occurred after mae than 305 days of lactation. To avoid the problems associated 

with such 1rUncated records (12), the period of study was restricted to January 

1981 - February 1986, i.e., to the years fa which complete information is 

available. 

The data set includes the length of productive life (culling date - first 

parturition date, in days) of 39,683 gade Holstein cows milked in 150 large 

herds in New-Yak state. Admittedly, this data set is not representative of the 
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whole g-ade population but this restriction to large herds (190 to 849 cows per 

herd over the whole period) is a compromise between the need to constrain the 

estimation problem to a reasonable size by limiting the number of herds and the 

desire to base conclusions on more precise estimates of the herd x year effect. 

LPL records of cows sold for dairy purposes or assumed alive on March 1, 1986 

were considered as censored: 47% of the total number of records were 

censored. 

Models 

Our principal objective was to describe as precisely as possible the main 

factors affecting the culling process. Two models were envisioned here. 

Management practices and culling policies are controlled by the dairy 

manager and influenced by the herd environment: they are likely to affect the 

LPL of all the cows in a same herd in a similar fashion. Therefore, a herd effect hj 

is induded in the model and its change over time is simulated by a step function, 

for which jumps are arbitrarily assumed to ocCll" on January 1, each year. 

Stage of lactation is regarded as another essential factor determining the 

probability for a cow of being culled, i.e., her hazard. For example, during the f1rst 

months of lactation. milk production is maximum, reproductive status does not 

affect profitability and salvage value is generally low : culling at that point seems 

less likely than for cows of the same age but reaching a later stage of lactation. A 

piecewise constant stage of lactation effect Pk(t) is defined in order to isolate 

three .biological periods· rearly·. ·middle·. ·end of lactation and c::t-y period"). 

Finally, two CfmS may freshen the same day at the same age. one for the xth 

time and the other for the (x+1 )st time. A lactation number effect qr(t) is added to 

1reat differently Cfms managed more or less intensively than others. 
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The first model (model A) is written: 

A(t) = Ajkl(t) ... Ao(t) exp { hj(t) + Pk(t) + Ql(t)} (8) 

where : Ao(t) is a completely arbitrary baseline hazard function, 

hj(t) is the jth herd x year effect, 

Pk(t) is the kth stage of lactation effect (from day 0 to day 29 after 

parturition, from day 30 to 249, and from day 250 to the beginning of the next 

lactation). 

Ql(t) is the lth lactation number effect (lactation 1, 2 • 3 to 5,. 6 and . 

more). 

Note that hj(t) is a function of the calendar time whereas Pk(t) and Ql(t) are 

step functions of biological time, dependent on date of parturition. 

Although the estimation of sire genetic merit is our ultimate goal, sire effects 

are completely ignored in this part : sires are expected to have a rather small 

effect on the LPL of their daughters. Heritability of stayability is known to be quite 

low. The other effects desaibed above are intuitively believed to have a more 

ctastic effect on culling rate that the genetic make-up of the cow. Moreover, if 

sires are to be included in the Cox's PH model, fewer herds have to be selected 

in order to constrain the estimation problem to a reasonable size. In such a 

reduced date set, inevitably, each sire would have very few daughters and the 

predsion of their estimate would be very poor. The adequacy of the model would 

be difficult to assess. 

Low mille yield has been desaibed as the major reason for voluntary disposal 

of a C(HI. Hence, a correction of LPL for mille production should reveal 

differences between animals fa- reasons for disposal other than production: 

differences in voluntary culling due to type, old age a- general health and above 
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all, differences in involuntary culling caused for instance by infertility, illness, 

chronic mastitis, etc .... Therefore, such a correction would represent a first step 

toward the study of what was previously defined as functional stayability. 

A time-dependent ·within herd and lactation level of milk production effect" 

rm(t) is added to the previous model to form model B: 

A(t) .. Ajklm(t) .. Ao(t) exp { hj(t) + Pk(t) + q1(t) + rm(t) l [9) 

Ao(t), hj(t), Pk(t) and ql(t) are defined as in [8). rm(t) is the effect associated 

with the mth dass of milk production. These dasses are defined in a specific way. 

trying to simulate the actual voluntary culling process as it is performed on the 

farm. In particular, it is believed that relabve milk production (compared to the 

other cows present in the same herd at the same time) plays a larger role in the 

culling decision than actual yield. In practice, each record (lactation) of a cow is 

assigned a milk production dass in the following way, illustrated in figure 1: 

/ligu-~ I hH4} 

i) 305 days Mature Equivalent (305ME) records are sorted within herd and 

year separately for first and later parities. 

ii) ranks within herd-year are standardized by computing their expected 

normal scores. 

iii) these expected normal scores are divided into 9 dasses of equal 

importance (each of probability 11.1% ). 

Records for which the 305ME production is not known (mainly lactations not 

terminated at the end of the study period) are assigned to a tenth goup. 

Goodness-of-fit and model validation 

The adequacy of the two models proposed was checked in several ways: 

1) A test for the proportional hazards assumption is based on the concept of 
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generalized residuals developed by Cox and Snell (4). Generalized residuals for 

observations Ti are functions ei = gi( Ti: ~ , Zi) such that the ei's are independent 

and identically distributed, with known distribution. For example, in the case of 

failure times, it can be shown that the random variable: 

Ti 

ei = I 0 J..(u : Zi ) du [10) 

follows an exponential distribution with parameter 1 ( 4). The generalized 

residual ei represents the sum of the hazards that animal i encountered during 

its life. 

A test of the proportional hazards assumption is obtained by checking 

whether the estimated generalized residuals ei constitute a random sample 

from a unit exponential distribution, where : 

Yi 

;i = I 0 ~(u : Zi ) du [11 1 

with Yi- Ti if animal i is uncensored or Yi - Ci (censoring time) if the animal i is 

censored. 

" In practice, the ordered (uncensored) ej are plotted against the expected 

order statistics of a unit exponential with the same censoring pattern. If the 

resulting line strongly deviates from a straight line with slope 1 and going 

through the origin, the proportional hazards assumption is rejected. 
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2) The need for the inclusion of a particular goup of covariates in the model 
. . 

is checlced by a forward stepwise procedure based on the large sample 

lilcelihood ratio test (19). If 1'(1) represents the maximum lilcelihood (ML) estimate 

A 

of 11(1) in a reduced model including only covariates Z(1) and if p denotes the ML 

estimate of P-= <P(1)· P(2)) in the extended m~el including covariates z - (Z(1)· 

A 

Z(2)>· the procedure to test Ho : 11(2) = 0 is to compare the value of 2 [ L2<P> -

A 

L2CP(1 )> ] to a x2 distribution with v degees of freedom, where v is the 

dimension of P(2)· 

3) In the case of the Weibull proportional hazards model, we have: 

S o(t) = exp [- (At)P-1 ] [12] 

and therefore: 

log [ log S o(t) 1 .. p log t + p log A [131 

Hence the adequacy of the Weibull model in a study of LPL records can be 

A 

assessed by loolcing at the quality of the regession of log [-log SO(t) 1 on log t, 

A 

where So(t) is the estimated baseline suvivor curve, as computed ·in (6]. The 

slope and the intercept of the regession line also provide aude estimates of the 

Weibull parameters A and p (20). 

4) To definitely confarm the validity of the Weibull model as an approximation 

of the Cox's semi-parametric model, a cross-validation test was performed: 

two subsets S1 and S2 of the initial data set were randomly aeated and Weibull 

versions of models A and B- i.e., fa which the baseline hazard function is a 

Weibull hazard - were fit on both subsets. The following lilcelihood function of the 

observed failures given the model (7,18) was maximized: 
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L = [ IT A(Ym : Zm(Ym))] [ . IT . S(Ym' : Zm•(t))] (14] 
me {unc.} m'e{unc., cens.} 

where {unc.} and {cens.} are the sets of uncensored and censored cows. 

The two set.s of estimates for fJ, p and A are then compared and for each 

subset, generalized residuals are computed using the ML estimates of p, p and A 

obtained from the same subset or from the other. The distribution of both sets of 

generalized residuals is then compared to that of a censored unit exponential. If 

the model is correct, the same fit should be observed whatever the origin of the 

estimates. 

At the same time, a check for the existence of interactions between Stage of 

Lactation (SL) and lactation Number (LN) effects in models A and B was 

performed through a slight modification of these models: a SL x LN effect gkl is 

defined to replace Pic and Ql in (8] and (9]. Models A and Bare modified as: 

A(t) -= Ao(t) exp { hj(t) + 9kl(t) } 

A(t)-= Ao(t) exp { hj(t) + 9kl(t) + rm(t)} 

(Model A*) 

(Model B*) 

In absence of interaction, 9kt(t) • Pic + Ql for all k and I. 

[15] 

(16) 

Nine Sl x LN dasses are defined (3 SL dasses defined as previously and 

only 3 LN dasses - frst, second, thi'd and more). In contrast with the Cox's 

model, only recocds from caws calving Ia- t!Je trst birle after January 1, 1981 

can be used in the Weibull model: none of these cows had started a sixth 

lactation before the end of the study period (February 1986). S1 and S2 include 

respectively 13,797 and 13,842 LPL recocds and two-thirds of these records are 

censoced. This proportion of censored recocds is quite large: it illustrates the 

need fa- an different statistical treatment of the two types of recocds. Indeed, 

some herd-year •subclasses· indude only censored records. It should not be 



- 14-

considered that these subclasses do not contain any information. The absence 

of uncensored records simply indicates that the average hazard was particularly 

low in those herd-years. 

RESULTS and DISCUSSION 

The estimation of 757 effects (750 herd x year + 3 SL + 4 LN effects) and 777 

effects (757 + 20 within herd x lactation level of production effects) for the Cox's 

models A and B was performed by maximum likelihood using a very- efficient­

method for numerical optimization~ known as the BFGS algorithm ((9}, chapter 

8). This algorithm mimics the well known Newton's algorithm but replaces the 

exact evaluation of the matrix of second derivatives of the log-likelihood by an 

approximation of this matrix in some optimal way. 

For the estimation of these same effects when the Weibull models A* and B* 

are fit, the matrix of second derivatives of the likelihood L in (14] is very sparse 

and its inversion is simple: therefore, the Newton's algorithm can be used. 

The likelihood ratio tests used to check the importance of the factors in 

models A and B reveal that all the facters included have a very highly significant 

effect (p<0.001) on a cow's hazard. Estimates of herd x year effects range from -

3.96 to 1.32. Note that an estimate of 1.0 means that in the herd considered, the 

relative culling rate is e 1.0 •2. 7, i.e. a cow in this herd is 2. 7 times mere likely 

to be culled at any timet than a cow in an "average• herd. Figure 2 presents the 

distribution of herd x year estimates fer model A. 

/li§U'I o~.".rtd U/J/1 litH#} 

The estimates of the stage of lactation and lactation number effects are 

presented in table 1. As expected, relative culling rates increase considerably 

with stage of lactation. A C(yN linis!Jtng her lactation has a probability of being 
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culled exp [0. 77- (-0.63)) = 4.06 times larger than a cow of the same productive 

age shrtinp her lactation. Relative culling rate is also larger in first lactation than 

later on, especially when differences in milk production between young and old 

CCHIS are taken into account (model B). A CCH/ finishing her first lactation will be 

at a much higher risk of being culled than another of t!Je same ape in the middle 

of her second lactation. 

/liQU'~ ..1/tl!l'~) 

Within herd x lactation level of production (WHLP) effects for model B are 

presented-·in figure 3. The two Cli"Ves for first and later lactations are smooth, 

monotone and almost parallel: there is no interaction between this factor and 

lactation number. WHLP effects increase continuously at an approximately 

,.. 
quadratic rate. B4t as far as the relative culling rate (exp(q{t))) is concerned, the 

increase is slrHi and almost linear from production classes 1 to 7 and then very 

sharp for the last two classes. 

CCHIS in the last milk production class in frst lactation are about 10 times 

more likely to be culled at any time t than CCH/S in the first class and almost 4 

times more than CCH/S in the seventh class. 

This trend was expected but these results suggest that dairymen actually 

base thei' voluntary culling decision - maybe only intuitively - on a criterion 

closely related to the st~ndardized - and therefore artificial - 305ME milk 

production. 

For the tenth class of milk production - which corresponds to cc:H~s with 

unknown 305ME records- the estimates of WHLP effects are extremely lrHI (-

1.98 in frst lactation, -1.20 in later lactations) because most of the records 

assigned to this class are from the last lactation of censa-ed cows and 

therefore, very few failt.res are actually observed in this category. · 
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,... 
A regession of the estimated generalized residuals ei on. the expected order 

statistics Oi of a censored unit exponential distribution leads to the following 

equations: 

,... 
ei - -o.0003 + 1.005 Oi R2 • 0.9997 for model A 
,... 
e; • -o.013 + 1.033 Oi R2 .. 0. 991 for model 8 

The ageement with theoretical prediction when a proportional hazards 

model is adequate is excellent, especially for model A. The power of such a . 

gaphical test based on generalized residuals is unknown. Cox and Oakes ((7), 

p1 09) warn against an ill-considered positive interpretation of this kind of test for 

large data sets. However, in a preliminary analysis with some truncated -and 

therefore incorrect -records, this same test dearly detected a large discordance 

with the proportional hazards assumption (12). It can be conduded at least that 

there is no evidence here of a departl.l"e from the proportional hazards situation. 

The slightly less satisfying behavior of the observed residuals in model 8 is 

probably due to an incorrect treatment of the animals with no 305ME record 

(gouped in the tenth level of production dass): the hazard of these animals is 

compared with the hazard of other cows whose LPL record is adjusted for 

differences in milk production. However, this disaepancy is rather small: only 

0.6% of the residuals deviate significantly from their expected value (see (12) 

p133). 

A 

A wei~ted regession of log [-log So(t)] on log t gives the following 

equations: 

A 

log (-log So(t)]- -11.20 + 1.48 log t R2 • 0.991 for model A 

A 

log [-log So(t)] • -12.88 + 1.69 log t for model B 
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Therefore, the baseline hazard function can be well approximated by a 

Weibull hazard function. The values of the aude estimates of p (1.48 and 1.69) 

show that the baseline hazard of a cow ina-eases with productive age. Estimates 

for A are A- 5.3 1o-4 and A .. 4.91o-4 respectively. 

Figure 4 presents the values of the estimates of p-1 p for the SL x LN effects 

when Weibull model A* is fit on the two subsets S1 and S2. The estimates 

obtained for both models are consistent, except for the first period of the first 

lactation. Indeed, the gap between the two estimates is easily explained. by the. 

difference for the number of cows actually failing in S1 and S2 (48 vs 68). This 

difference is entirely due to sampling. More interestingly, figure 4 shows that an 

interaction exists between SL and LN: in first lactation, cows are comparatively at 

a higher risk at the beginning and the middle of their lactation. 

/li'gu-4 "Mil I4/JI4 .t't ltN4/ 

A 

Finally, table 2 presents the reg-ession equations of generalized residuals ei 

for animals in S1 and S2 on the expected order statistics of a censa-ed unit 

exponential distribution, when models A* and B* are fit and when estimates fa­

p, p and A are obtained either from S1 or S2. 

Clearly, the ageement between predicted and observed values is excellent 

for model A*: very similar results are obtained whatever the origin (S1 or S2) of 

the estimates used to compute the residuals. For model B*, the ageement is not 

as good. In particular, the slope corresponding to residuals in S1 computed with 

estimates from S2 is larger than when these estimates are from S1 itself (1.17 vs 

1.03). However, regession equations tends to exaggerate this discordance. This 

is shown in fiQll"e 5: only a small fraction of the residuals strongly deviate from 

the theoretical straight line with slope 1 and ma-e than 90% of the residuals 

behave as expected. Again, the observed dsaepancies probably aiginate from 
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the gouping of LPL records for which the 305ME mille yield is unknown. 

{ligu-~ S IIH~/ 

CONCLUSION 

The results presented here suggest that the Weibull regression is well suited 

for an efficient analysis of LPL data, especially when its flexibility is enhanced by 

the use of time-dependent regession variables. The choice of a Weibull model 

largely alleviates the computation burden which limits the use of the Cox's model 

with time-dependent variables. Comparisons between populations are facilitated 

since the baseline hazard function can be desaibed through only 2 parameters 

instead of a step function with many jumps. Also, the Weibull model is a 

particular type of proportional hazards model: an intuitive interpretation of the 

effects in the models remains very simple, through the concept of relative culling 

rate. 

The inadequate treatment in models B and B* of records for which the 305ME 

mille yield is not lcnown should be easy to correct: approximate 305ME records 

can be precicted from early lactation tests. When this is not possible (extremely 

short lactations), it can be assumed that the corresponding LPL records are 

censored at the end of the previous lactation. In any case, these models give 

enccx.raging results about the possibility of correcting LPL records for voluntary 

disposal. 

Finally, models A* and B* can be extended to include transmitting abilities 

(i.e. si"e effects) in crder to detect genetic differences in culling rate of sires' 

dau~ters. Note that althou~ the proportional hazards assumption is found 

satisfactory here, nothing guarantees that this is still the case for sire effects 

when they ere added to models A • and B* . This will have to be considered as an 

approximation of the true situation. The validity of this assumption requires 

further investigation. 
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2 - Figure 1: Illustration of the definition of milk production classes. 

3-

4 - Figure 2 : Distribution of herd x year estimates for model A. 

5 -

6 - Figure 3 : Within herd x lactation level of production estimates for model B. 

7 -

8 _ Figure 4 :Estimates of [p- 1 ~]computed from data subsets S1 and S2 for 

9 _ model A*. (~vis the Stage of lactation x Lactation number (SL x LN) effect 

1 o _ and p is the slope parameter of the Wei bull baseline hazard function). 
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12 _ Figure 5 :Generalized residuals for model B. 
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Figure 1 

SteP- 2 : rank: standardization 
expected normal score : 0.656 

~P- 3: categorization 
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1 _ Table 1 : Maximum likelihood estimates of Stage of lactation and 

2 _ Lactation number effects for model A 

3 -

4 - Stage of lactation Lactation number ... 
5-

6 _ days after parturition Model A Model 8 1 lactation Model A Model 8 

7-

8-

9-

10 -

11 -

12 -

13 -

14 -

15 -

16 -

17 -

18 -

19 -

20 -

21 -

22 -

23 -

24 -

25 -

26 -

27 -

0-29 

30- 249 

250-0 

-0.77 

0.18 

0.63 

-0.81 

0.12 

0.66 

1 

2 

3 to 5 

;;::6 

0.31 

-0.03 

-0.13 

-0.14 

0.62 

0.15 

-0.26 

-0.52 

.. 
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1 • 

2 . 

3 . 

4 • Table 2 : Regression equation of generalized residuals ei for models 

5-

6-

• A· and s· on the order statistics Oi of a censored unit exponential distribution 

7- generalized 

8-

9-

10 -

11 -

12 -

13 -

14 -

15 -

16 -

17 -

18 -

19 -

20 -

21 -

22 -

23 -

24 -

25 -

26 -

27 

residuals estimate from data subset : 

from: S1 

S1 Elj = 0.007 + 0.981 Oj 

S2 Elj = -0.003 + 1.019 Oj 

S2 

Model A*: 

(0.999) 

(0.999) 

Elj = 0.003 + 1.002 Oj (0.999) 

Elj = 0.005 + 0.986 Oj (0.998) 

Model B*: 

S 1 Elj = -0.013 + 1.031 Oj (0.996) 9j = -0.049 + 1.167 Oi (0.984) 

ei = -o.o21 + 1.os1 oi (0.990) S2 Elj = -0.026 + 1.078 Oi (0.982) 
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