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Rather than simply focusing on the malignant cancer cells, the role of the tumor microenvironment 

as a whole is increasingly being studied.  As this amalgamation of malignantly transformed cells, host 

tissue cells, growth factors, cytokines, and extracellular matrix (ECM) proteins forms the tumor, the 

interactions between these heterotypic components contribute to tumorigenesis.  As the origin of the 

various components of what has not been fully elucidated, the work presented here focuses on a likely 

contributor – the breast tumor stroma.  A cell type of interest in the tumor stroma is the myofibroblast, 

which is largely responsible for the excessive ECM accumulated within tumors.  Adipose-derived 

stem/progenitor cells (ASCs) are adult mesenchymal stem cells present within adipose tissue, a main 

component of the mammary tissue surrounding breast tumors, which are utilized for regenerative tissue-

engineering approaches.  These multipotent cells have been shown to play a critical role in wound 

healing, which has similarities to the stromal reaction seen in tumors and therefore may contribute to the 

tumor stroma by undergoing myofibroblastic differentiation. 

Within the tumor microenvironment chemical cues in the form of secreted molecules from tumor 

cells as well as altered ECM composition and stiffness are mechanisms through which ASC function may 

be altered.  Here the ability of ASCs to be altered by tumor conditioned media (TCM) as well as enhanced 

stiffness has been studied.  The results indicate that ASCs cultured in TCM take on an altered tumor-

associated (TA) phenotype which entails increased proliferation and pro-angiogenic potential as well as 

the ability to alter the tumor ECM composition, by differentiating into myofibroblasts.  Through a 

positive feedback loop system, the increased ECM stiffness of tumors also signals ASCs to proliferate 



 

and become more pro-angiogenic.  These resultant changes within the TA-ASC ECM propagate pro-

tumorigenic signals.  In essence, ASCs receiving tumor-derived chemical and mechanical cues alter the 

tumor stroma to produce the malignant microenvironment.  With this knowledge, the regenerative 

potential of ASCs should be mindfully harnessed to ensure that their pro-tumorigenic capacities do not 

induce undesirable effects. 
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CHAPTER 1 

INTRODUCTION 

1.1 Breast Cancer 

When making a comprehensive assessment of the disease, the American Cancer Society (ACS) 

estimates that one-half of all men and one-third of all women within the United States will be afflicted by 

at least one type of cancer during their lives (1). These cancers form when individual cells within complex 

multicellular organisms go rogue and begin multiplying in an unregulated manner. The defining 

characteristics of cancer are continually evolving but, most recently the main hallmarks are considered to 

be: promotion of proliferation, evasion of growth suppression and apoptosis, replicative immortality, 

angiogenic switch, invasion, avoidance of immune destruction, and reprogrammed cell metabolism (2). 

Although much research focuses on the genetic aberrations in cancer cells that lead to these changes, it is 

increasingly apparent that perturbed tissue homeostasis may enable this malignant transformation, and 

thus this area of study deserves more research.  

The term cancer refers to a broad group of more than 100 diseases afflicting many of the tissues 

of the body, and is more specifically described by the originating tissue of the initial cell undergoing 

uncontrolled growth.  For example, when a rogue cell within the mammary epithelial tissue proliferates to 

form a lump or mass, a breast tumor is formed.  Breast cancer is a specific form of cancer that afflicts a 

substantial number of women, making it a leading cause of cancer-related deaths (1).  These tumors can 

range in malignancy from benign (non metastatic) to invasive carcinoma where the cells aggressively 

invade local and distant organs.  The ACS estimates that nearly a quarter-million people were diagnosed 

with invasive breast cancer in 2011, and of those diagnoses, 95% were in women 40 years of age or older 

(1). With improved diagnostic techniques enabling earlier detection and superior treatments, survival rates 

have greatly improved over the last half-century and a large portion of these afflicted women will survive 

at least 5 years beyond diagnosis (3). Improvements are still necessary to further understand this disease 
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because 39,510 Americans are predicted to succumb to breast cancer in 2012 (3). 

  Breast tumors are often first detected as a hard lump within the compliant breast tissue.  

Generally, these hard tissue masses do not cause pain which is why they are often first detected by 

manual palpation rather than through other symptomatic means.  In order to enable earlier detection, 

women younger than 40 are recommended to have a clinical breast exam (CBE) every 3 years in addition 

to the suggested monthly self breast exam (1). It is also suggested that after reaching 40 years of age 

women have a CBE and mammogram performed on a yearly basis as their risk for breast cancer 

development increases.  Additionally, women who are at higher risk for developing breast cancer should 

undergo increased screening as early stage diagnosis provides for improved survival (4).   

Through investigation, our understanding of breast cancer has greatly improved.  Risk factors for 

disease development, including mutations in BRCA1/BRCA2, were first identified in the early 1990s (5, 

6).  With the identification of breast cancer gene-expression signatures such as expression of estrogen-

receptors (ER), progesterone-receptors (PR) and human epidermal growth factor receptor 2 (HER2), 

molecular diagnosis is possible leading to improved therapies for targeted implementation (7).  In fact, 

much research has been spent isolating what changes occur within cancer cells on a genetic level that 

enable tumors to grow while bypassing the robust cell machinery designed to inhibit this type of behavior.  

As an example, trastuzumab an antibody drug target of HER2 has been shown to significantly enhance 

survival of patients with HER2-postitive breast tumors (8). As is true for any battle, having a better 

understanding of your enemy allows for the best counterattack. In the case of tumors, a lot of progress has 

been made in understanding the genetic aberrations that lead to the development of this disease as well as 

variances within tumors which provide for better or worse prognosis.  Although these approaches focus 

on the ability to identify and target the cancer cells, a greater appreciation has been gained in more recent 

years for the role of the entire tumor microenvironment in the process of tumor growth or tumorigenesis 

(9). In particular, a correlation has been shown between enhanced mammographic density, a measure of 

tissue density and thus stiffness, and the incidence of breast cancer (10).  This may indicate that 

alterations to the tissue prior to transformation of malignant cells may even contribute to tumor initiation.  
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One cell type of great interest to these changes in the extracellular matrix (ECM) is the myofibroblast, as 

further discussed in the following section.  

 

1.2 Activated Fibroblasts/Myofibroblasts 

The role of the stromal compartment within tumors is quickly receiving more attention as both a 

prognostic tool and a chemotherapeutic drug target (11, 12).  The tumor stroma is the connective 

scaffolding around and within tumors made up of mesenchymal cells, ECM, vasculature, and supporting 

cells (13).  A large cellular component of the stroma is the carcinoma-associated fibroblasts (CAFs).  

When fibroblasts assume an increased proliferative and ECM depositing phenotype, these cells are termed 

‘activated’ fibroblasts or myofibroblasts (13).  Markers specific to the activated fibroblasts within tumors 

include: alpha-smooth muscle actin (αSMA) and fibroblast-specific protein 1 (FSP1) (13).  These cells are 

increasingly being recognized for the multimodal role they play in tumorigenesis, namely that CAFs are 

responsible for promoting tumor growth (14), fostering vasculature development (15), and mediating the 

inflammatory response (16) in addition to altering the ECM (13). 

 Fibroblasts secrete a large portion of the proteins within the ECM, including the fibrillar proteins 

collagen I and fibronectin (Fn) (both further discussed in section 1.6), which are found in increased 

densities within tumors (17). The process through which these ECM components accumulate at excessive 

levels in the tumor storma is termed desmoplasia.  CAFs play a prominent role in this defining 

characteristic of the tumor stroma (2).  Altered ECM composition and arrangement, largely due to these 

myofibroblasts, may contribute to the overall stiffening of the tumor microenvironment.  One signaling 

molecule involved in this process is transforming growth factor beta (TGF-β) as increasing TGF-β levels 

in tumors has been correlated with tumor desmoplasia (18).  Although TGF-β can generate signaling 

through a tumor suppressing pathway, its signaling ability is broad and can also lead to the activation of 

CAFs, or their differentiation into myofibroblasts (19) which causes cells to take on a more contractile 

phenotype (20).  In addition to TGF-β, basic fibroblast growth factor (bFGF) and platelet-derived growth 
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factor (PDGF) have been shown to contribute to the proliferative (21) and ECM depositing (22) 

characteristics of activated fibroblasts, respectively.  Fibroblasts can also assume an activated phenotype 

due to alternative (non-growth factor) signals as is possible in response to reactive oxygen species, ECM 

signaling (23), and cell-cell junctions (24).  Although it is not clear whether CAFs act more as cancer 

initiators or propagators (25), these cells represent a promising therapeutic target (26) due to their 

regulatory role in cancer progression.  Whether CAFs arise from local fibroblasts which become activated 

or from the differentiation of stem cells remains unclear, however, as CAFs are a principle source of 

vascular endothelial growth factor (VEGF) within the tumor microenvironment (15), these cells 

intimately contribute to angiogenesis, a hallmark of cancer, further discussed in the next section. 

 

1.3 Angiogenesis 

Paramount to tissue survival is the ability to receive nutrients and oxygen while disposing of 

unwanted cellular waste.  These processes are accomplished in the body by the blood supply carried by 

the vasculature.  When a new tissue forms, as is true during tumor formation, new blood vessels must be 

recruited to perform these functions.  During development, the formation of new microvasculature 

networks is referred to as neovascularization; however, the term angiogenesis is used to describe the 

process when new vessel sprouts are formed from existent vascular beds.   

In a tissue like malignant tumors, where cells proliferate profusely, the recruitment of vasculature 

to support growth may not be able to occur at a sufficient rate, in which case hypoxia and necrosis may 

occur.  Hypoxia arises when oxygen levels are inadequate to maintain cell metabolism.  Cell death is a 

result of prolonged hypoxia and depletion of nutrients, which results in the necrosis of tissues as is often 

seen in the core of aggressively growing tumors.  As a survival mechanism, cells secrete growth factors 

and cytokines that will promote the process of angiogenesis when encountering a nutrient-poor 

environment.  This occurs through various signaling means.  Of note, lack of oxygen leads to changes in 

hypoxia-inducible factor (HIF), which has direct and indirect proangiogenic transcriptional targets (27).  
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 In 1971, Judah Folkman suggested that combating the process of tumor angiogenesis could be a 

promising therapeutic approach by starving tumors (28).  A variety of pro-angiogenic growth factors and 

cytokines have been identified since this initialization of this field of study, including: VEGF, bFGF, 

PDGF, TGF-β, angiopoietins, and interleukin 8 (IL-8) (29, 30).  In 2004, the FDA approved the use of 

Avastin (bevacizumab), an inhibitory antibody against VEGF, for the treatment of colorectal cancers, 

which was later expanded to include other cancers.  However, after minimal benefits were indicated for 

the treatment of breast cancer the FDA recalled its accelerated approval (31). Many other anti-VEGF 

treatments have been approved as anti-cancer therapeutics citing increased survival, although the survival 

rates are merely increased a few months indicating the need for different approaches (29).  Combinatorial 

approaches targeting additional molecular and cellular mediators of angiogenesis or other 

microenvironmental changes may be necessary in order to produce substantial changes in patient 

outcomes. 

 

1.4 The Tumor Microenvironment 

 The build-up of genetic alterations in a cell may enable it to go rogue by avoiding the normal 

anti-cancer pathways; however, tumors are not insular as cancer cells alone cannot produce a sizable 

tumor.  In fact, supportive cells (e.g. CAFs) may largely orchestrate and even initiate tumor formation 

through diverse signaling mechanisms not yet fully understood.  There is a diverse population of 

heterotypic cells within the tumor tissue and its stroma, including immune cells, fibroblasts, as well as the 

cells that make up the vasculature.  The tumor microenvironment is considered to be the normal cells, 

molecules, and blood vessels which work in concert to provide tumor cells the structure and nutrients 

necessary for growth (Figure 1.1).  The intricate interplay between all of these cell types and how this 

contributes to tumorigenesis has increasingly been investigated in recent years. 
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Figure 1.1 The Tumor Microenvironment 

Within the local space surrounding a tumor (or the tumor microenvironment) a diverse population of cell 

types is found.  Interactions between the varying cell types via direct contact, soluble factor signals, or 

through the extracellular matrix are the armamentarium enabling tumor development.  Understanding the 

heterotypic cell population present and the types of interactions that take place within the local 

microenvironment will provide better insight into the workings of a tumor. 

 

Within the tumor microenvironment various types of communication are utilized to transmit 

signals between the aforementioned cell types (Figure 1.2).  These include direct cell-cell communication 

through junctions which bridge the cytoskeleton of neighboring cells.  Indeed, this type of interaction has 

been shown to promote tumorigenesis as direct contact between tumor cells and their neighboring stormal 

fibroblasts has been shown to promote breast cancer cell growth (32). Additionally, cell communication is 

fostered through secreted signals including growth factors and cytokines which can bind to cell receptors 
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and signal in an autocrine or paracrine fashion.  An ever-growing number of soluble signals are 

investigated for their role in tumorigeneis, including TGF-β (33) and VEGF (29),  which have already 

been discussed. While cells can signal to each other through these more direct means, signals are often 

transmitted through the ECM as well.  This signaling matrix is constantly remodeled during various 

processes including tumorigenesis (34). Additionally, through a more recently recognized means of 

communication, aptly named mechanotransduction (more thoroughly discussed in section 1.7), cells are 

also able to interpret mechanical signals within their microenvironment.  These mechanoreceptors 

transmit signals to intracellular pathways which lead to an ever-growing number of altered cell behaviors 

(35). 

 

Figure 1.2 Microenvironmental Cell Interactions 

Cells are able to send and receive signals via various means.  These include direct cell-cell and cell-ECM 

contacts as well as via chemical and mechanical cue transmission.  Cells receive these signals via various 

types of receptors which transmit the signal through an intracellular cascade, leading to changes in 

various cell behaviors. Adapted (36) with permission. 

 

Direct cell-cell communication 

 Cells are able to bind to their surroundings via a broad class of glycoproteins referred to as cell 

adhesion molecules (CAMs).  The heterotypic cells within the tumor microenvironment are able to 
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interact through direct cell-cell interactions enabled by CAMs.  The specific CAMs involved in cell-cell 

adhesions are cadherins which are often designated with a prefix indicative of the tissue in which they 

generally found.  For example, epithelial cadherin (E-cadherin) is found on epithelial cells and plays a 

role in cancer.  CDH1, which is the gene that codes for E-cadherin, is often mutated in various types of 

epithelial cancers and is an indicator of poor prognosis in breast cancer (37), likely causing decreased 

cell-cell junctions and thus promoting tumor cell proliferation, invasion, and metastasis (38).  

Furthermore, direct cell-cell interactions via an atypical cadherin, cadherin-23, between fibroblasts and 

tumor cells enhances tumor growth (39).  

 

Chemical-mediated cell communication 

Soluble factor signaling occurs through the secretion of molecules from one cell which can then 

either bind to receptors on the same cell, neighboring cells, or distant cells.  Upon binding to a cell surface 

receptor, conformational changes in the receptor activate an intracellular signaling cascade that ultimately 

alters cell behavior. Two tumor microenvironmental processes that at least in part rely on changes in 

soluble factor signaling are angiogenesis and fibroblast activation, as discussed in the previous sections.  

In both of these examples, the tumor-derived growth factors signal surrounding cells to behave in a 

specified manner which then contributes to the overall growth and maturation of tumors.  While many 

soluble factors key to tumorigenesis have been discovered, only limited success has occurred to date in 

using this information for the treatment of various cancers (40).   

 

Cell-ECM communication 

CAMs are also involved in the ability of cells to bind to their ECM.  The most common type of 

CAM used to bind the ECM is the integrin.  ECM proteins (discussed further in section 1.6) like collagen, 

fibronectin, laminin, and vitronectin all contain cell adhesion sites which are amino acid sequences that fit 

into the binding site of integrins, in the same way the growth factors have binding sites to receptors on the 
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cell surface.  Tumor desmoplasia caused by CAFs alters the ECM composition within tumors leading to 

changes in cell-ECM signaling (41).  Critical cell processes within tumors include proliferation, 

differentiation, and migration which are all influenced by the binding of cells to the ECM (42).  As these 

processes are key to tumor progression, an improved understanding of ECM-tumor interactions will likely 

lead to better cancer therapeutics. In fact, integrin engagement (43) and expression (44) is known to vary 

in tumors and targeting of specific integrin subunits involved in these cell-ECM interactions has been 

shown to reduce prostate cancer cell survival and metastasis (45). 

 

Mechanical signal communication 

Cells are bombarded with an array of mechanical signals including fluid shear, stress from 

adhesion to other cells, and adherence to an ECM of varied tissue strain which cells transduce into 

biochemical signals (46).  The ability of cells to interpret these mechanical signals is more thoroughly 

discussed in section 1.7.  Within tumors, however, these mechanical cues are often altered as compared to 

host tissue.  Particularly in the breast, where tumors are of greater stiffness than surrounding host adipose 

tissue (47), this means of cellular communication can lead to changes in various cell functions.  As tissue 

stiffness is known to vary throughout the body, these mechanical cues have been investigated for their 

role in proliferation as well as adhesion and motility (35, 48).  Stiffness has also been shown to lead to 

additional phenotypic changes, including: altered differentiation (49), angiogenesis (50), and cell 

malignancy (51).  These processes are key to tumorigenesis, and thus tumors can utilize signals resulting 

from altered tissue mechanics to promote their own growth, such as stiffness. The combinatorial effect of 

these signaling modalities (cell-cell, cell-ECM, chemical, and mechanical communication) produces a 

microenvironment facilitating tumorigenesis; however, the effect of all these signals on the function of 

surrounding host tissue cells remains unclear. 
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1.5 Stem Cells and Cancer 

The exact source of the various cell types that make up the tumor microenvironment is not fully 

understood.  One likely population contributing to produce these cells is adult stem cells which can be of 

various origins (e.g. mesenchymal or hematopoietic).  Stem cells are defined by their ability to both self-

renew and differentiate into cells of specialized function (52).  Many tissues within the body contain a 

fractional population of stem cells; however, there are a few large tissue sources of mesenchymal stem 

cells including the bone marrow and adipose tissue (53).  The mammary microenvironment (Figure 1.3), 

or the host tissue surrounding breast tumors, is largely composed of adipose tissue which contains an 

abundant population of mesenchymal stem cells, termed adipose-derived stem cells (ASCs) (52).  These 

mesenchymal stem cells possess the capacity to differentiate toward many lineages including adipocytes, 

chondrocytes, myocytes and osteocytes and can be easily acquired from the lipoaspirate resulting from 

elective lipoplasty procedures (52).  

 

  

Figure 1.3 Mammary microenvironment 

Tumors found within the breast are surrounded by mammary tissue which is largely composed of adipose 

tissue.  This loose connective tissue contains mature adipocytes (or fat cells) as well as undifferentiated 

stem/progenitor cells. 
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Initially, bone-marrow derived stem cells (BMSCs) received a lot of attention for the role that 

these cells play in tumorigenesis.  Although BMSCs have been shown to minimally contribute to the 

vascular endothelium of human tumors (54, 55), their role in other facets of tumor growth may be more 

significant.  Specifically, BMSCs are known to secrete chemokines that enhance tumor aggressiveness by 

promoting metastasis (56). Additionally, the presence of BMSCs in tumor models has been shown to 

cause chemotherapeutic resistance, further highlighting the pro-tumorigenic capacity of these cells (57).  

While the complete role that BMSCs may play in the initiation and progression of tumors is not clear, in 

the context of breast tumors, ASCs represent a population of stem cells with similar differentiation 

capacities that are in closer proximity to the incipient tumor.  ASCs, like BMSCs, can be recruited via the 

vasculature to distant tissues. 

Unlike some types of adult stem cells with multilineage potential, ASC acquisition is easier as 

more individuals elect for liposuction procedures as opposed to bone marrow extraction.  The ease of 

ASC accessibility makes them very attractive for tissue engineering and regenerative therapy approaches.  

In fact, adipose tissue containing ASCs improves the repair of breast tissue after tumor resection (58).  

This regeneration may be due to the adipogenic differentiation and pro-angiogenic character of ASCs 

(59).  However, while ASCs have been shown to aid in cosmetic breast augmentations, the appearance of 

cysts and microcalcifications at these regeneration sites (60) may indicate the need for more thorough 

investigation into the role of ASCs in these processes.   

Some more recent studies have shown that ASCs likely play a pro-tumorigenic role within the 

tumor microenvironment.  In particular, ASC pro-angiogenic and pro-inflammatory cytokine secretions 

are a means by which these cells can promote tumor growth (61).  ASCs have been shown to promote 

tumor growth in lung and brain cancer models (62).  Additionally, a specific pro-inflammatory cytokine 

secreted by ASCs, interleukin 6 (IL-6), has been shown to enhance breast cancer cell migration and 

invasion (63).  As the rate at which ASCs are being studied for regenerative tissue engineering purposes 

increases, a more complete understanding of the role that ASCs play in tumorigenesis should be evaluated 

to ensure their usage at the site of regeneration does not lead to tumor development.  
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1.6 The Extracellular Matrix 

The portion of tissues external to a cell, or the extracellular compartment, is comprised of a 

matrix providing support and structure to the cellular component of tissue.  In addition to the fibrous 

proteins, proteoglycans, and adhesive glycoproteins that create the ECM scaffold mesh on which cells can 

bind and grow, additional signaling molecules including cytokines and growth factors are resident within 

the ECM (64).  By binding to, rearranging, and applying force to the ECM cells are able to utilize this 

ever-changing matrix as a signaling depository. The main structural proteins within the ECM include 

collagen, fibronectin (Fn), elastin, and laminin, to which cells are able to bind at specific adhesion sites 

(64). 

The ECM proteins are structured to contain various domains that contribute to overall structure 

and function, providing sites for adhesion to other proteins, cells, or growth factors with the ECM (65). 

As collagen is the most abundant protein within the human body (66), it is also the most abundant protein 

with the ECM.  Although collagen types I-XXVIII have been identified to date  (67), collagen I and IV 

are the main constituents of the tumor stroma (68) and basement membrane (69), respectively and thus 

play critical roles in tumorigenesis.  Collagens fibrils are quarter-staggered assemblies of homo- or 

heterotrimeric molecules of α chains such as α1 and α2 which combine in a 2:1 ratio in collagen I (67).  

Alternatively, collagen IV produces a mesh network when 3 α chains combine to form a trimeric 

molecule that binds in an end-to-end fashion forming the network (67).  Cells bind to collagen I and IV by 

using integrins α1β1 and α2β1 integrins (70, 71).  The role of collagen in tumorigenesis is increasingly 

studied as increased amounts of collagen I within the tumor stoma and its reorganization are known to 

enhance tumor aggressiveness (68).  Additionally, breakdown of the collagen IV component of the 

basement membrane, which acts as a barrier, enables malignant cell invasion (72).  Furthermore, the 

crosslinking of collagen by lysyl oxidase (LOX) augments tumor progression (73).    

Although changes in collagen contribute to tumorigenesis, Fn is an additional fibrillar protein 

which undergoes changes within the tumor ECM and even controls the deposition and reorganization of 

the collagen I matrix (74, 75).  Fn contains three types of repeating globular modules which contain cell 
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adhesion sites, such as the arginine-glycine-aspartic acid (RGD) site as well as protein binding sites (76).  

Cell adhesion to Fn is largely mediated by the α5β1 integrin through the combination of the RGD and 

synergy sequence sites (76). The content of Fn in the tumor ECM is amplified over normal epithelial 

ECM and these changes promote tumor malignancy (77).  The larger than normal quantities found in the 

tumor ECM raises questions regarding the role of this ECM protein in tumorigenesis and its organization 

within the microenvironment.  Targeting of the Fn within tumors may prove to be a therapeutic option, as 

binding of tumor cells to the Fn component of the ECM has been shown to enhance tumor malignancy by 

enabling tumor cell resistance to apoptosis when treated with chemotherapeutic treatments (78).   

In addition to the structural proteins, proteoglycans which are made of glycosaminoglycans 

(GAGs) play a critical role in the ECM.  As GAGs are clusters of carbohydrate chains often attached to a 

protein backbone they are highly hydrophilic molecules and, their presence in the ECM promotes the 

incorporation of water and the ability of tissues to withstand compressive forces (79). Enhanced levels of 

GAGs were first noted thirty years ago (80), and more recent work has shown chondroitin sulfate, a 

particular type of GAG, to play a role in tumorigenesis, specifically through the promotion of breast 

cancer metastasis (81).  As changes in the tumor ECM composition and arrangement have been shown to 

largely regulate critical processes in tumorigenesis, further investigation is necessary to fully illuminate 

the cellular components causing these changes and the ideal pathways to target for anticancer 

therapeutics. 

 

1.7 Mechanotransduction 

 The ability of a cell to translate a mechanical signal into a chemical signal transmitted within the 

cell that can lead to altered cell dynamics is termed mechanotransduction (46).  A great deal of progress 

has been made to date to understand the process of mechanotransduction; although, work is ongoing to 

understand more thoroughly the mechanoreceptors and subsequent signaling cascades through which cells 

are able to sense their surroundings.  Mechanotransduction is carried out through cell surface receptors, 
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stretch-activated ion channels, focal adhesion (FA) complexes, and cell-cell junctions (46). 

Within FAs, the best characterized of adhesion complexes, cells engage a specific type of 

transmembrane receptor, namely integrins.  These heterodimer complexes are composed of one α and one 

β subunit which, through a combination of eight β and eighteen α subunits, form twenty-four distinct 

integrins (82).  Different integrins are engaged at differing cell adhesion sites on ECM proteins.  For 

example, the αvβ3 integrin is used by cells to bind to vitronectin, an adhesion protein abundant within 

serum and the ECM.  Specific amino acid sequences like RGD (Fn) and DGEA (collagen) found within 

ECM proteins enable this integrin engagement.  

As integrins bind to the ECM, conformational changes in the intracellular domain of the receptor 

occur that lead to the recruitment of various intracellular proteins to FAs, causing the propagation of a 

signaling cascade (Figure 1.4).  Talin (both 1 and 2) as well as kindlin (2 and 3), which bind the β subunit 

of integrins and link to the actin cytoskeleton, are critical for the activation of integrins, enabling high-

affinity ECM binding (83).  While the head of talin links integrins to actin, the tail domain is able to bind 

vinculin which then initiates the integrin clustering at FAs and, by binding to actin as well, further 

reinforces the connection between integrins and the cytoskeleton (84).  Crosslinking of actin which can be 

done by α-actinin produces the actin-rich cytoskeletal fibers (64).  Additional proteins recruited to FAs 

include tensin, paxillin, and focal adhesion kinase (FAK).  Tensin, similar to talin and kindlin, is able to 

bind both actin and the β integrin subunit (64).  Paxillin is able to interact with both the β integrin subunit 

and protein tyrosine kinases, including FAK, to create a signaling bridge (85). Phosphorylation of FAK at 

FAs leads to the propagation of intracellular signals through the Rho-ROCK pathway (64).   
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Figure 1.4 Focal Adhesions 

Cells bind to their ECM proteins using integrins which are heterodimers made of an α and β subunit.  

Once these integrins engage a protein adhesion site, intracellular molecules are recruited which, create a 

bridge with the actin cytoskeleton and further promote the recruitment of other integrins and trigger 

intracellular signaling cascades. 

 

Signaling within mechanotransduction pathways is increasingly relevant to tumor biology.  

Enhanced stiffness created within the tumor microenvironment by changes in both the ECM as well as 

cytoskeletal tension can then signal cells through various mechanisms including the Rho-ROCK pathway 

to produce a positive feedback loop promoting tumor cell malignancy and proliferation (46). 

Additionally, as FAK expression is also enhanced within tumors which, promotes proliferation, inhibitors 

to these pathways represent promising therapeutic targets (86).  While augmented tissue stiffness impacts 

tumor cell behavior, altered mechanotransduction within the stromal cell compartment of tumors likely 

also contributes to tumor progression (50, 87). 
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1.8 Research Objectives 

There exists a need for a better understanding of the role that surrounding host tissue stromal cells 

play in the organization of the tumor ECM, how this impacts tumor stiffness, and the resultant changes in 

tumor growth. As the mammary microenvironment, the host tissue surrounding breast tumors, is largely 

composed of adipose tissue which is abundant in ASCs, evaluation of the role these cells play in altering 

the tumor ECM is critical.  A major cellular contributor to these ECM alterations is CAFs, or 

myofibroblasts.  The ability of ASCs to become myofibroblasts in order to contribute to tumorigenesis is 

unclear.  Tumors which produce an altered physicochemical environment as compared to normal 

mammary tissue, interface with host tissue and contribute to tumor progression by signaling surrounding 

cells through these altered physicochemical cues within the tumor microenvironment(88).  Here, the 

ability of ASCs to assume a myofibroblast phenotype and cause changes in the tumor ECM as a result of 

tumor-derived physicochemical cues have been studied.  

In this work analyzing the ability of altered tissue mechanics and chemical signals (Figure 1.5) to 

influence ASC pro-tumorigenic behaviors a myriad of physical science oncology approaches have been 

implemented. To model the progenitor cellular component of the host tissue both 3T3-L1 (ATCC) mouse 

preadipocytes, a well-characterized cell line modeling adipogenesis (89) as well as  human primary 

adipose-derived stem cells (isolated by Lonza based on stem cell marker expression analyzed via flow-

cytometry) were used.  Mammary tumor-derived chemical cues were collected in tumor-conditioned 

media (TCM) from highly malignant human breast cancer cells (MDA-MB231, ATCC).  Comparisons 

with additional normal and malignant cells were made to measure how tumor aggressiveness impacted 

these chemical cues.  Assessment of the effect of ECM stiffening as seen in tumors on ASC behavior was 

measured with hydrogels (e.g. alginate, polyacrylamide, collagen) of varying stiffness.   
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Figure 1.5 Modeling Tumor-derived Cues 

 
The physicochemical microenvironment of a breast tumor varies from that of the normal host mammary 

tissue within which these tumors originate.  The local tissue contains a population of stem cells, ASCs, 

which may be signaled by the tumor via physicochemical cues the chemical portion of which is released 

into tumor-conditioned media (TCM).  Additionally, the enhanced tumor tissue stiffness, which is often 

responsible for the initial tumor diagnosis, may also cause changes in ASC behavior. 

 

I propose that ASCs encountering the breast tumor microenvironment experience differential 

mechanical and chemical stimuli, altering their behavior to promote tumor ECM stiffening and 

angiogenesis, and thus contribute to increased mammary tumor malignancy. In order to address this 

hypothesis, I have investigated the following sub-hypotheses:  

 

1. ASCs alter the composition of the tumor ECM 

2. Enhanced tissue stiffness, as seen in tumors, alters ASC functions 

3. Tumor-derived physicochemical cues promote ASCs to differentiate into 

myofibroblasts, and thus enhance tumorigenesis 

 

3T3-L1 cells 
Human adipose-derived stem cells 

 

hydrogels 
 

MDA-MB231 TCM 
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The ever-growing utilization of ASCs for regenerative purposes warrants investigation of the 

ability of these cells to be altered by mechanical and chemical cues which vary throughout the body, and 

particularly at the site of tumor growth.  With an improved understanding of ASC behavior in response to 

varied physicochemical signals, implementation of ASCs for regenerative purposes will be markedly 

improved by harnessing their potential while adjusting for any off-target capacities.  Furthermore, as we 

further understand the roles ASCs play in tumorigenesis, we can better target any pro-tumorigenic 

capacity of these cells while properly harnessing their capacity at the site of tumor excision.  

 

1) ASCs alter the composition of the tumor ECM 

Alterations to the ECM of ASCs were studied as a function of exposure to tumor-derived soluble 

factors.  The ECM protein Fn was specifically evaluated as this protein is found at higher concentrations 

within tumor tissue (90) and Fn complexity enables this protein to become stiffer through conformational 

changes (91). Additionally, TGF-β, a growth factor readily produced by tumor cells has been shown to 

increase Fn expression and incorporation into the ECM (92).  To investigate the role of tumor-derived 

chemical cues, and specifically TGF-β, on ASC organization and deposition of Fn within the tumor ECM, 

the matrix produced by ASCs in response to soluble cues collected from breast cancer cells was studied 

(Chapter 2).  A well-characterized murine preadipocyte cell line (3T3-L1) was used to represent ASC 

function.  Specifically, 3T3-L1 cell-derived matrices were analyzed for Fn composition and conformation 

in response to TCM from MDA-MB231 cells.  Through inhibition and supplementation studies, TGF-β 

was studied for its role in signaling ASCs in the tumor microenvironment to alter the Fn ECM.  

 

2) Enhanced tissue stiffness, as seen in tumors, alters ASC functions 

 The ability of ASC behavior to be altered with mechanical cues was tested by implementing a 

novel alginate photocrosslinking system which produced artificial ECMs of varying stiffness while 

maintaining the density of cell adhesion sites throughout the matrix.  This system enabled isolation of the 
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effect that altered ECM stiffness, as seen at the site of tumors, has on ASC behavior. To address this 

question, 3T3-L1 cells were seeded within alginate gels of stiffness similar to that of normal to malignant 

breast tissue and evaluated for their ability to proliferate, differentiate, and produce pro-angiogenic 

secretions (Chapters 3 and Figure 4.8).  

 

 3) Tumor-derived physicochemical cues promote ASCs to differentiate into myofibroblasts, and thus 

enhance tumorigenesis 

 To further delve into the altered ASC phenotypic changes that occur due to physicochemical 

tumor-derived cues, the function of ASCs in response to both TCM and altered tissue stiffness was 

measured (Chapter 4).  Utilizing a comprehensive approach, both 3T3-L1 cells and ASCs were evaluated 

for their ability to proliferate, differentiate, and alter VEGF-induced pro-angiogenic endothelial cell 

behavior as a function of chemical cues and mechanical from breast cancer cells.  Furthermore, the ability 

of these cells to undergo myofibroblastic differentiation (become α-SMA positive) and alter the local 

mechanics due to the TCM was measured.  Their altered behavior due to the amalgamation of both 

chemical and mechanical tumor-derived cues was additionally assessed.  An in vivo model was finally 

implemented to evaluate the cumulative contribution of myofibroblastic differentiation of ASCs to breast 

tumorigenesis.    
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CHAPTER 2 

 
ADIPOSE PROGENITOR CELLS INCREASE FINBRONECTIN MATRIX  

STRAIN AND UNFOLDING IN BREAST TUMORS 

Published in Physical Biology (93) 

 

2.1 Contributors 

Co-authors to this work made the following contributions: Matthew Saunders, an M. Eng. Student 

in the Gourdon lab, imaged and analyzed the FRET data presented in this chapter. Christine J. Yoon, an 

undergraduate student in the Fischbach lab, biochemically analyzed the ECMs. The work was completed 

as a collaborative project between the labs of Delphine Gourdon and Claudia Fischbach who both 

contributed greatly to the preparation of the manuscript presenting this work. 

 

2.2 Abstract 

Increased stiffness represents a hallmark of breast cancer that has been attributed to altered 

physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in 

modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We 

have utilized a combination of biochemical and physical science tools to evaluate whether paracrine 

signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and 

stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy 

transfer (FRET) imaging to map the molecular conformation and stiffness of Fn that has been assembled 

by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our 

results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening 

by adipose progenitor cells and that transforming growth factor-β (TGFβ) serves as a soluble cue 

underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human 
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adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our 

results. Insights gained by these studies advance our understanding of the role of Fn in mammary 

tumorigenesis and may ultimately lead to improved anti-cancer therapies. 

 

2.3 Introduction 

Increased stiffness represents a hallmark of solid tumors, which is largely attributed to altered 

physicochemical properties of the extracellular matrix (ECM) (94). In particular, breast tumors are stiffer 

than their surrounding host tissue (51, 95), and accumulating experimental evidence indicates that this 

reduction in tissue compliance originates from altered ECM composition and crosslinking. More 

specifically, collagen is known to be up-regulated and more densely crosslinked within breast tumors as 

compared to healthy mammary tissue (73, 96). This variation advances tumorigenesis in an integrin-

dependent manner (51, 73) and likely occurs not only by modulating the behavior of tumor cells, but also 

by altering mechanotransduction of stromal cells (50, 87). In addition to collagen, the tumor-associated 

ECM contains other fibrillar components whose role in promoting stiffness is less clear. In particular, 

fibronectin (Fn), which is critical for collagen turnover (74), is also up-regulated in mammary tumors and 

enhances tumor cell malignancy (78, 97). However, the specific characteristics of Fn underlying these 

variations remain to be elucidated. 

Fn is a large (450-500 kD) dimeric glycoprotein consisting of three types of repeating globular 

modules (denoted FnI, FnII, and FnIII) (98) and plays an important role during embryonic development 

and regeneration of normal tissues (99).  It contains numerous surface-exposed binding sites for cell 

receptors (in particular an Arg–Gly–Asp [RGD] loop which binds multiple integrins) and other matrix 

proteins (e.g., collagen, fibrin), including itself (100).  Fn also has a number of cryptic binding sites, 

which remain buried when the protein is in its globular form (101).  These cryptic sites, however, may be 

exposed when Fn undergoes conformational changes.  In fact, Smith et al. have used fluorescence 

resonance energy transfer (FRET) imaging to map Fn molecular conformation, demonstrating that a broad 
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range of Fn conformations coexist within the fibers.  The authors attributed this variety of Fn 

conformations to the presence of cells, which, by exerting tension on surrounding fibers (Rho-mediated 

cellular contractility), led to the loss of both quaternary and tertiary structures of around half of the Fn 

molecules forming the highly dynamic (strained) fibrillar network (102).  Similarly, Klotzsch et al. 

demonstrated that stretching of Fn fibers not only induced partial unfolding of Fn modules (leading to the 

exposure of cryptic binding sites), but also increased the stiffness of the resulting strained fibers in a non-

linear (albeit reversible) fashion (91). Despite these connections between Fn matrix organization and 

stiffness, the specific characteristics of Fn fibrils in the tumor microenvironment remain to be identified. 

The ECM, which mediates increased tumor stiffness, is predominantly assembled by stromal cells 

(13), and adipose-derived stem cells (ASCs) represent a subpopulation of these cells in breast tumors. 

More specifically, mammary tumors are surrounded by adipose tissue, which in addition to differentiated 

adipocytes, contains an abundant population of ASCs (103). While adipocytes assemble a basement 

membrane that promotes mammary tumor progression through collagen IV (104), ASCs deposit an ECM 

that is rich in Fn (105).  However, it is not clear whether ASC-mediated alterations of the Fn matrix 

contribute to increased tumor stiffness. We therefore investigated the capability of tumor-derived soluble 

factors to modulate Fn expression and conformation by ASCs. In particular, we focused on elucidating 

the effect of transforming growth factor β (TGFβ), due to its central role in tumorigenesis (19), Fn 

incorporation into the ECM (92), and cell contractility (20).  

Utilizing a combination of biochemical assays and FRET imaging to monitor the expression and 

conformation of ASC-deposited Fn matrices, we provide experimental evidence that tumor-derived 

soluble cues promote Fn matrix assembly and enhanced stiffness. We further show that these differences 

involve TGFβ and may play a role during tumorigenesis in vivo. Collectively, our findings implicate Fn 

matrix assembly by stromal cells as an important contributor to increased tumor stiffness that may be 

explored towards more efficacious anti-cancer therapies. 
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2.4 Methods 

In vivo studies 

Experimental animal procedures were performed according to protocols reviewed and approved 

by the Cornell University Institutional Animal Care and Use Committee. Specifically, primary human 

adipose derived stem cells (ASCs) were obtained from commercial sources (Lonza) and were cultured in 

manufacturer supplied growth medium (ADSC-GM, Lonza). ASCs were injected into the cleared 

mammary fat pad of 3 week old female SCID mice (Charles River Labs) either alone or in combination 

with MDA-MB231 breast cancer cells (1 x 106 cells of each type in 20 µL of DMEM/ Ham’s F-12 

(Gibco), 10 % FBS (Tissue Culture Biologicals), 1 % antibiotic (penicillin/streptomycin, Invitrogen)). 

Injection of only MDA-MB231 cells served as an additional control. Tumors were harvested 5 weeks 

after implantation, fixed in neutral buffered formalin (EMD), paraffin embedded, and sectioned.  Using 

standard immunohistochemistry, sections were stained for nuclei and Fn with a primary antibody raised 

against Fn (Sigma-Aldrich), an Alexa Fluor 488-labelled secondary antibody, and 4',6-diamidino-2-

phenylindole (DAPI) (both from Invitrogen). Samples were mounted with ProLong Gold Antifade 

Reagent (Invitrogen) and were imaged on a Zeiss Observer Z.1 microscope with an AxioCam MRm 

camera. Blinded researchers made conclusions regarding the fibril formation. Fn staining intensity was 

evaluated via image analysis of 5-7 randomly selected areas in each of 4 specimens per condition using 

ImageJ (NIH). 

 

Cell culture and media conditioning 

3T3-L1 preadipocytes and MDA-MB231 breast cancer cells (both from ATCC) were routinely 

cultured in MEM (α-modification [αMEM], Sigma-Aldrich) containing 10% FBS and 1% antibiotic. For 

all experiments, 3T3-L1 cells were used at passage eight or lower. To obtain tumor conditioned media 

(TCM), subconfluent cultures of MDA-MB231 were washed with PBS (Invitrogen) and incubated with 

αMEM, 1% FBS, 1% antibiotic. After 24 hours, media were collected and normalized to cell number in 
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order to ensure equal concentrations of tumor cell-derived soluble factors in all experiments. To this end, 

cells were trypsinized and counted using a Beckman Coulter Z2 Particle Analyzer, and media volumes 

were adjusted with αMEM, 1% FBS, 1% antibiotic. The normalized media were concentrated 10-fold 

using Amicon Ultrafree 15 centrifugal filter units (3000 MWCO, Millipore). Prior to cell culture, this 

medium was diluted to a 2-fold concentration with αMEM, 1% FBS, 1% antibiotic. Control media were 

obtained by incubation of αMEM, 1% FBS, 1% antibiotic in the absence of cells for 24 hours and similar 

processing. TGFβ concentrations in the different media were quantified with a Quantikine TGFβ1 ELISA 

(R&D Systems) according to manufacturer’s instructions. 

 

Immunostaining, Western Blotting, and Real-Time RT PCR 

To analyze changes of Fn matrix assembly on the protein and mRNA level 3T3-L1 cells were 

seeded and allowed to adhere overnight. Subsequently, media was replaced with either control or TCM 

for 3 days with a media change after 2 days. For immunostaining of cell- and matrix-associated Fn, 

cultures grown on coverslips were fixed, permeabilized with PBS containing 0.05% Triton-X (VWR), and 

incubated with a primary antibody raised against Fn (Sigma-Aldrich), an Alexa Fluor 488-labelled 

secondary antibody, and DAPI (both from Invitrogen).  Samples were mounted with ProLong Gold 

Antifade Reagent (Invitrogen) and randomly selected areas were imaged on a Zeiss Observer Z.1 

microscope using an AxioCam MRm camera (with equal exposure times between conditions). 

Researchers who made conclusions regarding fibril formation were blinded to the conditions. For Western 

Blot analysis, lysates of cells and decellularized matrices (obtained by detergent extraction according to 

(106)) were prepared with RIPA buffer containing protease inhibitor cocktail (both from Sigma-Aldrich). 

Protein concentrations were determined with a BCA kit (Pierce), and 2 µg of protein were loaded in gels 

(12% Ready Gel Precast Gels, BioRad), resolved by SDS-PAGE, and transferred to PVDF membranes 

(Biorad). Membranes were probed for Fn (rabbit anti-Fn) and β-actin (mouse anti- β-actin) as a loading 

control (both from Sigma-Aldrich) and subjected to ECL detection (Amersham Biosciences). 
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Densitometry was performed using Adobe Photoshop CS4 (multiplying the mean pixel intensity by the 

band size measured in pixels) and normalized to β-actin.  

For Real-Time RT PCR, total RNA was extracted using TRIzol® (Invitrogen) according to the 

manufacturer’s protocol.  RNA (1 µg total) was reverse-transcribed using High Capacity cDNA Reverse 

Transcription Kits with random hexamers (Applied Biosystems).  Real-time RT PCR was performed in 

triplicate (25 ng template) using SYBR green detection (Quanta) on an Applied Biosystems 7500 System.  

Primer sequences for mouse Fn (fwd: 5’cggagagagtgcccctacta3’, rev: 5’cgatattggtgaatcgcaga3’) and 

GAPDH (fwd: 5’tgtgatgggtgtgaaccacgag3’, rev: 5’tgggagttgctgttgaagtcgc3’) were used (107) 

(synthesized by IDT Technologies), and relative quantification was performed using the ΔΔCt method as 

previously described (108).  

 

FRET labeling of Fn  

Fn used for FRET analysis was doubly labeled using a previously described two-step process 

(109). In the first step, human plasma Fn (Swiss Red Cross, SRK) was denatured in 4 M guanidine 

hydrochloride (GdnHCl, Sigma-Aldrich) to expose four free cysteine residues located on FnIII7 and 

FnIII15 (Figure 2.1A). Subsequently, a 10-fold excess of the acceptor label (A), Alexa 546 maleimide 

(Molecular Probes), was added. After incubation for 1 hour at room temperature, the reacted Fn solution 

was dialyzed in a Slide-a-lyzer dialysis cassette (10,000 MWCO; Pierce Biotechnology) to remove 

unbound fluorophores and GdnHCl. This procedure was performed in 0.1 M sodium bicarbonate in PBS 

(pH 8.6), which served as the labeling buffer for the subsequent reaction. In the second step, the donor 

label (D), Alexa 488 succinimidyl ester, was non-specifically conjugated to lysine residues by using a 60-

fold excess of Alexa 488 as directed by the standard amine-labeling protocol of the manufacturer 

(Molecular Probes).  The D/A-labeled Fn (Fn-DA) was then purified by size-exclusion chromatography 

using a PD-10 gel filtration column (GE Healthcare).  The labeling ratio of donors to acceptors per Fn 

dimer was determined using published extinction coefficients for the dyes and Fn. The batch of Fn-DA 
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used in the described experiments resulted in approximately 10 donors and 4 acceptors per molecule.  

 

 

Figure 2.1 FRET-Fn intensity correlates with Fn conformation and strain 

(A) Labeling scheme of Fn for FRET analysis: acceptor fluorophores were conjugated to each of the four 

cysteines located on modules III7 and III15 and donor fluorophores to random lysines. (B) Representative 

image of a confocal z-stack that was color-coded to better visualize FRET intensities (i.e., acceptor 

intensity divided by the donor intensity [IA/ID]) resulting from heterogeneous strain within the Fn matrix. 

Blue indicates low FRET and fiber unfolding while green-yellow indicates higher FRET and intact 

secondary/tertiary structure of the fibers (scale bar = 50 µm). (C) Histogram of the FRET intensities 

derived from analysis of the field of view shown in B, including chemical denaturation data acquired by 
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denaturing Fn-DA with different concentrations of GdnHCl and corresponding Fn conformations in 

solution. Correlation of FRET intensity with likely conformations adopted by Fn in fibers and resulting 

Fn fiber strains. (D) A plot of the average FRET intensity (IA/ID ± SD) versus strain applied to manually-

deposited Fn fibers that were extended up to 260% strain is shown.  

 

Preparation of culture substrates for FRET analysis 

3T3-L1 cells were cultured in control or TCM for 3 days with a media change on the second day. 

For studies involving modulation of TGFβ signaling, 2 ng/mL recombinant human TGFβ1 and 0.5 µg/mL 

anti-human LAP (neutralizing TGFβ1 antibody) (both from R&D) were added to control media and TCM 

30 minutes before administration to cultures, respectively. These concentrations were based on 

manufacturer descriptions of activity and the TGFβ concentrations measured in the TCM via ELISA.  

After this preconditioning period, the cells were trypsinized, counted, and resuspended in αMEM, 1% 

FBS, 1% antibiotic at a concentration of 100,000 cells/mL. Subsequently, 200 µL of this cell suspension 

was seeded onto Lab-TekTM glass chamber slides (Thermo Scientific) that were previously coated with 

unlabeled Fn ([un-Fn], 50 µg/mL in PBS) to promote cell adhesion. Additionally, 200 µL of 100 µg/mL 

human plasma Fn (only 8% Fn-DA with an excess of 92% un-Fn to prevent intermolecular energy 

transfer between adjacent proteins in fibers (109)) in αMEM, 1% FBS, 1% antibiotic was added per well 

to enable FRET analysis of Fn deposition.  Following 24 hours of culture (i.e., a time period during which 

cells incorporate labeled Fn into matrix fibrils (109)), cultures were fixed with neutral buffered formalin 

(EMD) and imaged. 

 

FRET analysis 

Donor and acceptor peak intensities resulting from cell-mediated deposition of FRET-labeled Fn 

were analyzed by confocal microscopy and subsequent image processing. Z-stack images were acquired 

through the entire thickness of the matrix at 6-8 representative locations per well with a z-step of 1.125 
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µm using a Zeiss Meta 710 Confocal Microscope with a 40x water immersion lens and imaging 

parameters that prevented photobleaching. However, only images captured >2.25 µm above the glass 

were utilized for analysis of FRET intensities to exclude artifacts mediated this interface. A 20% laser 

output was used as optimized by calibration testing with a 600 V voltage gain for both the donor and 

acceptor channels with ranges of 514-526 nm and 566-578 nm, respectively. Matrix thickness of 6-8 

sections per condition was determined as the distance between the slices when the matrix first came into 

focus and when the matrix first began to go out of focus. Thickness values reported as the average change 

relative to control conditions for at least 2 independent experiments.  Image processing of the acceptor 

and donor images was performed as previously described (102).  Briefly, MATLAB (MathWorks, Inc.) 

was used to determine the FRET for each pixel of a FRET image, to calculate the mean and standard 

deviation of the FRET intensities, and to compile FRET intensity data at each representative location for 

histogram plotting.  To assess the spread in the FRET intensity between conditions, the mean of the 

standard deviation of the FRET intensities within each image of a stack was averaged for all locations 

within an experiment. 

 

Correlation of FRET intensities with Fn conformations and strains 

Because the utilized FRET labeling approach relies on multiple fluorophores present on each Fn-

DA molecule, and because the labeling with donors is random, our technique cannot measure absolute 

distances between fluorophores but rather determines population averages. The ratio of the acceptor to the 

donor peak intensity (FRET intensity) was, therefore, calibrated (1) to known conformations of soluble 

Fn in solution, and (2) to known strains of deposited Fn fibers. For (1), a 0.1 mg/ml Fn solution (5% Fn-

DA, 95% un-Fn) was denatured in different concentrations of guanidine hydrochloride (GdnHCl) and the 

FRET intensity was measured. In physiological buffer, soluble Fn exists in a pretzel-like shape (compact 

conformation), held together by ionic interactions (110) (Figure 2.1). Previous studies using circular 

dichroism have shown that Fn’s quaternary structure is disrupted in 1M GdnHCl (extended conformation) 
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and that further increase in GdnHCl concentration results in partial unfolding of its tertiary and secondary 

structure (unfolded conformation), which is essentially complete in 4M GdnHCl (102). In practice, the 

FRET intensity of the 1M GdnHCl denaturation point using monomeric Fn-DA (to prevent additional 

FRET caused by crossover of the Fn dimer arms) was used as the onset for partial Fn unfolding as 

previously described (102). For (2), manually pulled Fn fibers were deposited on silicone sheets and 

strained on a custom-made, one-dimensional strain device as previously described (111). Briefly, 0.25 

mm-thick silicone sheets (Specialty Manufacturing) were cut into a dog-bone shape and cleaned by 

sonication in 2% PCC-54 (Sigma-Aldrich) and then 70% ethanol. A 0.5 mg/ml Fn solution (5% Fn-DA, 

95% un-Fn) was deposited as a small drop on the silicone sheet. Fibers were extruded from the drop with 

a sharp tip and deposited onto the silicone sheet. Afterwards, the sample was washed with 2% (w/v) BSA 

in PBS, and soon thereafter immersed in PBS buffer for further studies. Fiber strain was calculated from 

the macroscopic strain of the silicone sheet and correlated with FRET determined as described above 

(102). 

 

Analysis of cell numbers, cell morphology, and pore size of the Fn matrices 

Cell numbers and cell morphology were analyzed by fixing samples utilized for FRET analysis 

with neutral buffered formalin, staining them with DAPI and Alexa Fluor 568-phalloidin (both from 

Invitrogen), and conducting image analysis using ImageJ (NIH). To this end, ten representative images of 

each well were taken and the average number of nuclei per field of view (FOV) was assessed. To quantify 

cell morphology, the spreading of each cell was measured in 8 representative images per sample (4 

samples per condition). Pore size was analyzed by measuring the average size of the empty space within 

reconstructed z-stack images of the donor channel using ImageJ. 

 

Statistical analysis 

Statistical analysis was performed using Prism 5 (GraphPad Software).  Student’s T-tests were 



 

30 

used to determine statistical significance between conditions and a p-value less than 0.05 was considered 

statistically significant. The spread of FRET intensity between the four conditions was analyzed by one-

way analysis of variance (ANOVA) followed by the Tukey method to make post hoc pair wise 

comparisons with α = 0.05.  Biochemical and FRET experimental results are shown for one representative 

study after similar results were replicated in separate experiments. Matrix thickness and spread of FRET 

intensity relative to control conditions are reported as the average changes calculated from at least 2 

independent experiments. Unless otherwise noted, values are reported as the mean with error bars to 

indicate standard deviations. 

 

2.5 Results 

Adipose progenitor cells contribute to increased Fn in tumors in vivo 

Fn expression increases in the tumor microenvironment and promotes malignancy (78, 97); 

however, the cellular origin of Fn up-regulation remains unclear. To evaluate whether ASCs contribute to 

Fn deposition in mammary tumors, human MDA-MB231 breast cancer cells were xenografted either 

alone or in combination with primary human ASCs into the cleared mammary fat pad of SCID mice. 

Quantification of Fn in the explanted tissues by image analysis of immunohistochemically stained cross-

sections revealed that tumors containing ASCs exhibited a 1.4-fold denser and more fibrillar Fn matrix as 

compared to tumors generated using MDA-MB231 cells alone (Figure 2.2). Additionally, injection of 

ASCs only did not increase the Fn concentration at the implantation site likely due to their differentiation 

into adipocytes, a cell type that forms a basement membrane rather than an ECM rich in Fn (112). These 

results not only suggest that ASCs enhance Fn deposition and remodeling in the mammary tumor 

microenvironment, but also that tumor-derived factors are capable of altering the phenotype of ASCs 

which contributes to these changes.  
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Figure 2.2 Fibronectin (Fn) deposition by ASCs in vivo 

Co-implantation of human MDA-MB231 and primary human ASCs into the cleared mammary fat pad of 

SCID mice yielded tumors with a denser and more fibrillar Fn matrix as compared to implantation of 

MDA-MB231 cells alone. Additionally, co-implantation with MDA-MB231 cells promoted Fn matrix 

assembly by ASCs as compared to injection of ASCs alone (scale bars = 50 µm). 

  

Tumor-derived soluble factors regulate Fn matrix formation by adipose progenitor cells 

To evaluate Fn matrix deposition and remodeling by adipose progenitor cells in the presence of 

mammary tumor cells, we conducted in vitro studies utilizing two well-characterized cell lines: 3T3-L1 

preadipocytes as a model of ASCs and MDA-MB231 breast cancer cells as representative of aggressive 

disease. First, we broadly assessed the effect of breast cancer-derived soluble factors on Fn matrix 

formation via biochemical assays. To this end, 3T3-L1s were incubated for 3 days in either control media 

or media conditioned by MDA-MB231 cells (TCM), and we subsequently evaluated Fn transcription and 

protein levels. Immunofluorescence analysis indicated that cultures maintained in TCM produced a 
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denser and more fibrillar Fn matrix relative to cells that were fed with control media (Figure 2.3A). 

Western Blot analysis of both total cell lysates and matrices prepared by detergent extraction showed 

increased Fn levels in TCM-incubated cultures, further supporting our microscopic observations (Figure 

2.3 B,C). We further analyzed Fn gene expression in 3T3-L1 cells via real-time RT PCR, which revealed 

up-regulated Fn expression in the presence of tumor-derived soluble factors (Figure 2.3D). Together, 

these results suggest that ASCs in the breast cancer microenvironment exhibit enhanced Fn transcription 

and Fn matrix assembly.  

 

FRET-imaging allows monitoring of Fn unfolding and stiffness by adipose progenitor cells 

Cells assemble their Fn matrix not only by incorporating endogenously derived Fn, but also by 

polymerizing soluble Fn from exogenous sources (113). This characteristic allowed us to monitor the 

deposition of FRET-labeled Fn into newly developed fibrils in order to determine the conformation and 

stiffness of the 3T3-L1-derived Fn matrices. For these studies, dual labeled Fn (Fn-DA) was prepared by 

labeling each of the four cysteines located on Fn modules III7 and III15 with acceptor fluorophores and 

random lysines with donor fluorophores (Figure 2.1A). When cells adhere and apply traction forces to 

their matrix (114), incorporated Fn-DA is exposed to dynamic levels of strain that can be monitored by 

analyzing the average increase of donor-acceptor distances. More specifically, cell-mediated stress leads 

to increased separation of donors and acceptors via Fn unfolding and, hence, decreased FRET intensity 

(i.e., acceptor intensity divided by the donor intensity [IA/ID]) in certain regions of the matrix [blue 

fibrils], while other regions are strained less as indicated by higher FRET [green-yellow fibrils] (Figure 

2.1B).  
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Figure 2.3 Biochemical analysis of Fn matrix assembly 

Immunofluorescence revealed that 3T3-L1 preadipocytes exhibit increased Fn matrix assembly when 

cultured in the presence of MDA-MB231-conditioned media (Tumor-Pre) as compared to the same cells 

maintained in control media (Control). (A) Insets depict representative areas of matrices shown in the 

overview images (scale bars = 100 µm). Western Blot analysis of 3T3-L1 cultures (B) or detergent 

extracted matrices (C) followed by densitometry confirmed that 3T3-L1 cells that were exposed to tumor-

conditioned media (Tumor-Pre) deposited increased amounts of Fn as compared to cells maintained in 

control medium (Control). (D) 3T3-L1 cells significantly up-regulated Fn expression when exposed to 

tumor-conditioned media relative to control conditions as measured by Real-Time RT PCR. (n=3, *p < 

0.05 from Control).  
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Tumor-derived soluble factors regulate Fn matrix thickness 

We measured the thickness of the Fn-DA matrices produced by 3T3-L1 cells in response to tumor-

secreted soluble factors using z-stack confocal microscopy analysis. 3T3-L1 cells were pre-conditioned in 

either control media or MDA-MB231-conditioned media for 3 days (i.e., a time period similar to the 

biochemical studies described above). Subsequently, FRET analysis was performed in fresh serum-

reduced media (i.e., following re-seeding and throughout 24 hours of culture) with defined concentrations 

of Fn (8% dual-labeled Fn-DA). Our results indicate that the Fn matrix assembled by tumor-conditioned 

3T3-L1 cells was significantly thicker than that produced by cells in control media (Figure 2.4A). 

Quantification of DAPI-stained nuclei confirmed similar cell numbers in all conditions, suggesting that 

the detected differences in matrix thickness were due to changes in Fn matrix assembly rather than cell 

proliferation (Figure 2.4B). Additionally, neither the morphology of the cells nor the pore size of the 

matrices differed between conditions suggesting that the detected change in thickness was due to 

increased Fn deposition rather than incorporation of cells (Figure 2.4 C,D). These measurements 

confirmed our biochemical results, and collectively provide strong evidence that soluble factors from the 

tumor increase Fn deposition by adipose progenitor cells. 
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Figure 2.4 Fn matrix thickness 

3T3-L1 preadipocytes assemble thicker matrices when pre-conditioned in the presence of tumor-derived 

soluble factors (Tumor-Pre) relative to the same cells that were maintained under control conditions 

(Control). (A) Matrix thickness was quantified by confocal analysis of z-stack images that were obtained 

following incubation of the differently pre-conditioned cells with FRET-labeled Fn for 24 hours. * p < 

0.05 for 8 independent experiments. (B) Quantification of cell number via image analysis of DAPI stained 

cells demonstrated equal cell densities in both conditions indicating that differences in matrix thickness 

were not due to altered cell proliferation (n=10, p = 0.26).  (C) Quantification of cell spreading via image 

analysis of cells stained with phalloidin and DAPI, demonstrates that cell morphology is similar in control 

and tumor-preconditioned 3T3-L1 cells (scale bars = 50 µm, n = 7 or 4, p = 0.45).  (D) Control and 

tumor-preconditioned cells assembled Fn matrices of similar pore size as tested using image analysis of 3-

D reconstructed confocal image stacks (scale bars = 20 µm, n = 8, p = 0.16). 
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Tumor-derived soluble factors regulate Fn matrix unfolding and stiffness 

To determine if the presence of tumor-derived soluble factors acts not only on Fn production, but 

also on Fn unfolding and stiffness, we pre-conditioned 3T3-L1 as described above and conducted FRET 

analysis. To only analyze Fn fibrils deposited to the newly deposited Fn matrix and exclude artifacts 

mediated by the glass surface this analysis was performed only on the portions of the matrix that were 

>2.25 µm away from the glass (Figure 2.5). Matrices assembled by tumor-pre-conditioned cells (Figure 

2.6A) exhibited a decreased mean FRET intensity relative to matrices deposited by control cells as 

visualized by the color shift from yellow-green (control) to blue (tumor) in Figure 2.6B, the left-shift of 

the histograms accumulating FRET intensities of the entire z-stack of that field of view (Figure 2.6C), and 

the corresponding box and whisker plots of multiple fields of view (Figure 2.6D). Correlation of these 

changes in FRET intensity with Fn strain (based on the calibration in Figure 2.1D indicates that tumor-

associated 3T3-L1 cells generate highly-strained fibers (220% average strain), while control cells deposit 

more relaxed fibers (120% average strain) correlating with a 83% change in Fn fiber strain. When relating 

Fn fiber strain to the stiffness of individual Fn fibers as recently published (Klotzsch et al 2009), these 

data also suggest that Fn fibers generated by tumor-associated cells are more than three times stiffer than 

fibers deposited by control cells (tumor-associated Fn: 0.5-0.6 MPa; control: 0.1-0.2 MPa). These 

differences suggest that 3T3-L1 cells exposed to tumor-derived soluble factors are capable of increasing 

the population of partially unfolded, stiffer Fn fibers. Additionally, the spread of Fn conformations was 

significantly narrower in the tumor case as suggested by the FRET values (tumor: ~0.5 to 0.7; control: 

~0.5 to 0.8) and width of the corresponding histograms (Figure 2.6C) of one representative experiment 

and calculated changes for 6 independent experiments (Figure 2.7). This suggests that tumor-derived 

factors prevent stromal cells from generating their usual heterogeneous Fn matrix (consisting of a broad 

range of Fn conformations from almost compact to unfolded) and instead stimulate them to generate 

highly stretched, and hence stiffer, partially unfolded fibers. Figure 2.6D summarizes FRET data for 

multiple fields of view per condition and illustrates the global effect of tumor-derived soluble cues on 

matrix conformation and stiffness by indicating a significant decrease in FRET intensity for Fn matrices 
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produced by tumor pre-conditioned cells compared to control cells.  Therefore, in addition to up-

regulating matrix thickness, tumor-secreted soluble factors enrich the population of highly stretched, 

stiffer Fn fibers in 3T3-L1-deposited matrices. 

 

 

Figure 2.5 Variation of FRET intensity through the matrix 

(A) The FRET intensity through the matrix, i.e., along the z-axis from the glass/matrix interface (z = 0 

µm) to the matrix/medium interface (z = 9 µm) is indicated for one condition (Tumor-Pre), showing a line 

to represent the average intensity per image as a function of z. Representative FRET images of the matrix 

along z showing higher FRET fibrils (appearing like small aggregates anchored to the glass) at z = 0 and 

rather constant lower FRET fibrils above a certain distance from the glass (z > 2.25 um). (B) These 

constant FRET values are the ones that were averaged and reported in this study, intentionally discarding 

fibers at the glass interface to eliminate effects mediate by Fn-substrate interactions (scale bar  = 50 µm). 
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Figure 2.6 Fn matrix unfolding and stiffening in response to tumor-conditioned media 

3T3-L1 cells pre-conditioned in the presence of tumor-derived soluble factors (Tumor-Pre) promote Fn 

unfolding and stiffness relative to the same cells pre-conditioned in control media (Control). (A) Bright 

field images of representative fields of view (scale bar = 50 µm).  (B) Confocal Z-stack slices of the same 

fields of view in which the FRET intensity for each pixel was color-coded and mapped to the images 

shown in A (scale bar = 50 µm). (C) Histograms of the FRET intensity derived from analysis of the 

complete z-stack of that field of view. (D) Box and whiskers plots of the FRET intensity determined by 

analysis of 6-8 representative fields of view per condition indicate the intensity of the FRET for each 

condition (n = 7, * p < 0.05).  
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Figure 2.7 Effect of tumor-conditioned media and TGFβ on Fn fiber heterogeneity 

(A) Fn fiber heterogeneity was assessed by quantifying the standard deviation (i.e., spread) of the FRET 

intensity for each condition.  (B) Pre-conditioning of 3T3-L1 cells with tumor-conditioned media 

(Tumor-Pre) or TGFβ (Control + TGFβ) significantly decreases the spread of the FRET intensity (i.e., 

increases fiber homogeneity) relative to control conditions (Control) and tumor-preconditioning in which 

TGFβ signaling has been inhibited via the addition of a neutralizing antibody (Tumor-Pre + anti-TGFβ) 

(n = 2 or 6, *p < 0.05). 

 

Tumor-derived TGF-β plays a key role in regulating Fn matrix unfolding and stiffness 

To determine if tumor-derived TGFβ contributes to the matrix modifications described above, we 

first measured the levels of TGFβ in both control and TCM and detected increased concentrations of 

TGFβ (up to 1.75 ng/mL) in TCM (Figure 2.8A).  We next pre-conditioned 3T3-L1cells in the presence 

or absence of TGFβ, mimicking levels in the TCM, followed by a 24 hour incubation period with Fn (8% 

dual-labeled Fn-DA) for FRET measurements (Figure 2.8B). Qualitative and quantitative FRET analysis 

revealed that the presence of TGFβ affected matrix characteristics in a manner similar to TCM. More 

specifically, the mean FRET intensity decreased for matrices assembled by TGFβ-pre-conditioned cells 

(0.50) as compared to control conditions (0.54), indicating the formation of more stretched and stiffer Fn 
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fibers in the presence of TGFβ (Figure 2.8 C-E).  The width of the corresponding histograms additionally 

revealed that the distribution of Fn conformations was narrower in the TGFβ case relative to controls, 

and, in fact, recapitulated conditions generated by tumor-preconditioned cells (Figure 2.7B, 2.8D). These 

changes suggest that TGFβ plays a role in the assembly of a Fn population that mostly consists of 

unfolded and stiffer fibers. Finally, TGFβ enhanced the quantity of assembled fibers, which resulted in a 

23% increase in matrix thickness relative to control conditions (Figure 2.8F) and a corresponding increase 

in protein content as detected by Western Blot analysis (Figure 2.8G).  

We next evaluated whether inhibition of TGFβ can normalize Fn matrix assembly by tumor-

associated 3T3-L1 cells. To this end, 3T3-L1 cells were pre-conditioned in TCM that was either 

supplemented with TGFβ neutralizing antibody or left untreated (Figure 2.9A). Subsequent FRET 

analysis of the resulting matrices revealed that inhibiting TGFβ in the TCM has two significant effects on 

matrix characteristics: (i) stabilization of Fn fibers from cell-mediated stretching and unfolding (Figure 

2.9 B-D), and (ii) down-regulation of fiber formation (as detected by the decrease in matrix thickness in 

Figure 2.9E and corresponding Western Blot analysis (Figure 2.9F). The spread of FRET intensity also 

increased with TGFβ antibody treatment and mimicked decreased fiber homogeneity in a manner similar 

to control conditions (Figure 2.6).  Collectively, these results suggest that tumor-secreted TGFβ plays a 

key role in deregulation of Fn matrix assembly in tumor microenvironments and that blocking its 

signaling normalizes the assembly of Fn matrices and reduces their corresponding stiffness. 
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Figure 2.8 Fn matrix characteristics in response to TGFβ 

Pre-conditioning of 3T3-L1s with TGFβ as a mimic of tumor cell secretion (Control+TGFβ) promotes Fn 

matrix unfolding, stiffness, and thickness relative to pre-conditioning with control media (Control). (A) 

ELISA indicates increased concentrations of TGFβ in tumor-conditioned media (TCM) relative to control 

media (Control) (n = 3).  (B) Representative bright field images of 3T3-L1 cells preconditioned with or 

without TGFβ at concentrations similar to those in the tumor-conditioned media (scale bar = 50 µm). (C) 

Confocal z-stack slices of the same fields of view in which the FRET intensity for each pixel was color-

coded and mapped to the images shown in B (scale bar = 50 µm).  (D) Histograms of the FRET intensity 

derived from analysis of the complete z-stack of that of view as well as (E) a box and whiskers plot of the 
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FRET intensity determined by analysis of 6-8 representative fields of view per condition indicate the 

distribution of the FRET for each condition (n=6, *p < 0.05).  (F) Fn matrix thickness as determined by 

confocal analysis of z-stack images for four independent experiments (n = 4, *p < 0.05). (G) Fn levels as 

measured by Western Blot analysis.  

 

 

 Figure 2.9 Fn matrix characteristics in response to tumor-conditioned media with inhibition of 
TGFβ 

Inhibition of TGFβ by supplementing tumor-conditioned media with neutralizing antibodies (Tumor-Pre, 

anti-TGFβ) inhibits Fn matrix unfolding, stiffness, and thickness mediated by 3T3-L1s relative to tumor-
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conditioned media (Tumor-Pre). (A) Representative bright field images of 3T3-L1 cells pre-conditioned 

in tumor-conditioned media with or without TGFβ neutralizing antibody (scale bar = 50 µm). (B) 

Confocal z-stack slices of the same fields of view in which the FRET intensity for each pixel was color-

coded and mapped to the images shown in A (scale bar = 50 µm).  (C) Histograms of the FRET intensity 

derived from analysis of the complete z-stack of that field of view (D) as well as a box and whiskers plot 

of the FRET intensity determined by analysis of 6-8 representative fields of view per condition (n=7 or 4, 

* p < 0.05) indicate the distribution of the FRET for each condition.  (E) Fn levels in the different cultures 

as determined by confocal analysis of matrix thickness (n = 2, *p < 0.05) and (F) Western Blot analysis.  

 

  

Note, absolute FRET intensities for these experiments (Figures 2.8 & 2.9) varied from those 

shown in Figure 2.6. This variation can be explained by the fact that the FRET efficiency of the Fn-DA 

aliquot, which was utilized for the entire study naturally (slowly) decreased with time. The loss of FRET 

efficiency is not linear with time because of intrinsic differences between donor and acceptor 

fluorophores, and because of the higher number of donors vs. acceptors on each Fn-DA molecule. 

Nevertheless, the FRET dependency on strain maintains the same trend (FRET decreases with applied 

strain, due to extension or unfolding in regions of Fn within approximately 10 nm of FnIII7 and FnIII15 

where acceptors fluorophores are located) only with a different, usually smaller, slope. Averaging of the 

relative changes of FRET intensity across multiple experiments verified the relevance of our results and 

yielded statistically significant differences (Figure 2.7). 

 

2.6 Discussion 

It has been known for almost 30 years that solid tumors contain increased levels of Fn (90), yet 

the underlying mechanisms and resulting effects on cancer still remain unclear. Our studies now provide 

experimental evidence that paracrine signaling between breast cancer and adipose progenitor cells 
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regulates Fn deposition and remodeling. Furthermore, our findings support that the resulting 

modifications of the Fn matrix contribute to the enhanced rigidity of mammary tumors, which is 

associated with tumorigenesis and metastasis (51, 73, 115). More specifically, our results reveal that 

tumor-derived soluble factors promote Fn expression and unfolding by adipose progenitor cells and that 

TGFβ serves as a soluble cue underlying these changes. Lastly, our in vivo data provide pathological 

relevance by indicating a denser and more fibrillar Fn matrix in tumors that were formed in the presence 

of ASCs although we cannot directly confirm this is due to the presence of the ASCs.  

Previous studies indicate that stromal cells up-regulate Fn in tumor microenvironments and that 

these changes promote tumor malignancy (77, 97). By performing a combination of biochemical and 

physical science measurements our data not only support this observation, but furthermore suggest that 

the conformation and stiffness of the tumor-associated Fn matrix is altered within our in vitro matrices. 

Using a previously established FRET technique (109) we reveal that tumor-conditioned stromal cells 

increase Fn unfolding, thereby exposing cryptic binding sites and enhancing the population of stiffer Fn 

fibers in the ECM (91). In our studies, the estimated stiffness of individual Fn fibers was significantly 

higher than the macroscopic stiffness of tumors in vivo. This difference can be attributed to the 

mesoscopic regime of deformations in individual fibers, whereas in tumors the deformation is distributed 

over a network of disordered and connected fibers that respond collectively to strain (initially by 

ordering/aligning along the strain axis). In addition to these direct effects, Fn unfolding may also 

indirectly influence matrix mechanics as it leads to the subsequent deposition of a more unfolded (hence 

stiffer) matrix (116).  These changes are likely due to enhanced traction forces that cells exert on stiffer 

substrates and that increase unfolding of the newly assembled Fn (48, 117). Finally, it is conceivable that 

altered Fn characteristics modulate tumor rigidity by changing the specific properties of other ECM 

components. For example, Fn fibers act as templates and are necessary for the deposition of collagen (75). 

In addition, the specific binding of collagen type I’s α1 chain to the gelatin-binding domain of Fn (located 

on modules FnI6, FnII1-2 and FnI7-9) is necessary for the initial co-deposition of collagen (118). Because 

the interaction between Fn and collagen is likely conformation-dependent, the unfolded/highly-strained 
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Fn fibers generated by ASCs may dramatically affect collagen fibrillogenesis, either by disrupting the 

exposed binding site for collagen type I or by exposing cryptic sites with enzymatic activity such as 

FnCol-ase, which is a metalloprotease in the collagen binding domain of Fn, capable of digesting collagen 

(119). Consequently, Fn unfolding may regulate the biological and physical characteristics of tumor-

associated collagen I that ultimately contribute to tumorigenesis (73, 120). 

The recruitment of mesenchymal stem cells to the tumor stroma and their contribution to breast 

tumorigenesis has been actively investigated in the past. While most studies have focused on bone 

marrow-derived mesenchymal stem cells (56), relatively little is known about the role of adipose tissue-

derived mesenchymal stem cells (i.e., ASCs) in the tumor microenvironment. Our data suggest that ASCs 

regulate the physicochemical properties of the mammary tumor microenvironment by altering the 

composition and stiffness of the tumor stroma. In addition to modulating tumor cell signaling, these 

changes may be of particular relevance to tumor angiogenesis, a hallmark of cancer (121). Specifically, 

ASCs are able to differentiate into endothelial cells (122) and to incorporate into tumor vessels (123). As 

both cell differentiation and blood vessel growth are directly regulated by mechanical signals (49, 50), it 

is possible that paracrine signaling between ASCs and mammary tumor cells provides a mechanism by 

which tumors recruit blood vessels for further growth and metastasis. We have performed our in vitro 

studies with 3T3-L1 preadipocytes as a representative of ASCs. It has to be noted that the differentiation 

potential of these cells is limited to the adipose lineage, while ASCs are multipotential (52). Nevertheless, 

our in vivo studies with ASCs support the relevance of our findings. Additionally, we have conducted 

studies comparing the proliferation and differentiation potential of 3T3-L1 and ASCs in tumor-

conditioned media and observed similar responses (Figure 4.1). Collectively, our data implicate ASCs as 

an important stromal cell type that contributes to tumorigenesis. 

TGFβ is a global modulator of tumorigenesis (e.g., by modulating metastasis and interactions 

with immune cells (33, 124)) that is secreted by mammary tumor cells (19).  It also regulates ECM 

deposition (92). However, its specific role in regulating the stiffness of the mammary tumor stroma 

remains less well understood. Previous studies have attributed TGFβ a role in ECM stiffening, though 
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most of this work has been conducted in the context of myofibroblast-mediated stiffening of collagen 

(125). In the context of wound healing, TGFβ contributes to fibrosis and the related changes in fibroblast 

behavior depend on Fn matrix production (126). Our data now suggest that TGFβ acts as a paracrine 

signal that stimulates ASCs to produce a denser and stiffer Fn matrix in tumors. TGFβ-mediated matrix 

remodeling contributes to tumor metastasis (127), and metastasis, in turn, is enhanced on stiffer matrices 

(73). Therefore, it is possible that TGFβ enhances metastasis through altering Fn assembly by ASCs. 

Collectively, our results contribute to an improved understanding of Fn matrix assembly in the 

breast tumor microenvironment and future experiments will help to further clarify the role of adipose 

progenitor cells in this process. For example, our studies have been performed on 2-D glass surfaces, and 

as both substrate rigidity and culture dimensionality can modulate changes in cell behavior a more 

relevant culture system should be implemented in the future. More specifically, the glass substrates 

utilized in our studies do not reflect the tumor-inherent matrix stiffness that may affect cell-mediated 

changes of Fn matrix conformation and mechanics. Future experiments using culture substrates of varying 

stiffness (e.g., polyacrylamide gels (116)) may illuminate the mechanical properties of the newly 

assembled Fn matrix as a function of the initial substrate stiffness. Furthermore, matrix assembly and 

remodeling depends upon the formation of focal adhesion complexes whose functional properties differ in 

2-D and 3-D cell culture (128, 129). By expanding upon our work, FRET-studies in a physiologically 

relevant 3-D matrix (e.g., collagen gels) could lead to additional insights into Fn matrix assembly by 

tumor-associated adipose progenitor cells. 

 

2.7 Conclusion 

A combination of biochemical and physical science tools was utilized to evaluate the role of 

ASCs in Fn matrix assembly and stiffness enhancement. Our results suggest that paracrine signaling 

between tumor cells and ASCs contribute to matrix stiffening in tumors and that TGFβ is a critical 

regulator of this process. While this study was specifically designed to characterize the Fn matrix 
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deposited by tumor-conditioned ASCs, our experimental approach may be broadly applicable to studying 

other tumor-stroma interactions. For example, fibroblasts are fundamental to the organization of the 

tumor ECM (13) and the combination of conditioned media studies with FRET analysis may help to 

evaluate Fn matrix assembly by these cells in tumors. Additionally, analysis of stiffness-related 

mechanotransduction (e.g., via activation or inhibition of the Rho-ROCK pathway (130)) in conjunction 

with FRET analysis of the resulting Fn characteristics will allow us to better understand the 

interdependence of these two parameters. Insights gained by these studies improve our knowledge of how 

cell-microenvironment interactions promote mammary tumorigenesis and may ultimately help to improve 

the clinical prognosis of cancer patients. 
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CHAPTER 3 

STIFFNESS OF PHOTOCROSSLINKED RGD-ALGINATE GELS REGULATES  

ADIPOSE PROGENITOR CELL BEHAVIOR 

 

Published in Biotechnology & Bioengineering (131) 

3.1 Contributors 

Co-authors to this work made the following contributions: Caroline M. Berglund and William J. 

Polacheck, undergraduates in the Kirby lab at the time the work was completed, aided in the preparation 

and analysis of the photocrosslinked alginate gels. Jason S. Lee, an undergraduate and then M. Eng. 

Student in the Fischbach lab working under my supervision, aided in the culture, seeding, and analysis of 

cells within the photocrosslinked systems. Jason P. Gleghorn, a post-doctoral fellow in the Kirby lab, 

aided in the design of studies to analyzed the photocrosslinked alginate gels. The work was completed as 

a collaboration between the labs of Brian J. Kirby and Claudia Fischbach who both contributed greatly to 

the preparation of the manuscript presenting this work. 

 

3.2 Abstract 

Adipose progenitor cells (APCs) are widely investigated for soft tissue reconstruction following 

tumor resection; however, the long-term success of current approaches is still limited. In order to develop 

clinically relevant therapies, a better understanding of the role of cell-microenvironment interactions in 

adipose tissue regeneration is essential. In particular, the effect of extracellular matrix (ECM) mechanics 

on the regenerative capability of APCs remains to be clarified. We have used artificial ECMs based on 

photocrosslinkable RGD-alginate to investigate the adipogenic and pro-angiogenic potential of 3T3-L1 

preadipocytes as a function of matrix stiffness. These hydrogels allowed us to decouple matrix stiffness 

from changes in adhesion peptide density or extracellular Ca2+ concentration and provided a 

physiologically relevant 3-D culture context. Our findings suggest that increased matrix rigidity promotes 
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APC self-renewal and angiogenic capacity, whereas it inhibits adipose differentiation. Collectively, this 

study advances our understanding of the role of ECM mechanics in adipose tissue formation and 

vascularization and will aid in the design of efficacious biomaterial scaffolds for adipose tissue 

engineering applications. 

 

3.3 Introduction 

Adipose progenitor cells (APCs) are widely used for breast reconstruction following tumor 

resection (132).  In these applications, APCs are frequently transplanted on biomaterial scaffolds and then 

used to stimulate soft tissue formation by both readily differentiating into adipocytes and through 

paracrine signaling with surrounding host cells (103). For example, APCs secrete pro-angiogenic factors 

(e.g., vascular endothelial growth factor [VEGF]) that promote the recruitment of endothelial cells and 

angiogenesis (133, 134). New blood vessel formation, in turn, ensures the functionality of the newly 

developing adipose tissue by providing routes for endocrine and metabolic signaling (135, 136). While 

increasing experimental evidence indicates that cell-microenvironment interactions play a critical role in 

guiding adipogenesis (137, 138), the effect of dynamic changes of the extracellular matrix (ECM) 

mechanics on APC behavior remains largely unknown. This information is critical to the design of 

biomaterial scaffolds for adipose tissue engineering applications.  

Changes in ECM rigidity broadly regulate cell behavior and may also impact the regenerative 

capabilities of APCs. ECM rigidity is largely controlled by the composition, crosslinking, and contraction 

of its protein components (35), and these parameters may vary locally at the site of APC implantation. 

Specifically, the mechanical properties of the ECM change during adipogenesis as the initially fibrillar 

ECM transforms into a laminar matrix structure (139). Additionally, APCs may be exposed to 

pathologically enhanced ECM stiffness when they are located next to scars resulting from surgery (140) 

or tumors that may recur after resection (47). While matrix stiffness regulates the proliferation (141, 142), 

differentiation (49), malignancy (51), and angiogenesis (50) of various cell types, its specific effect on 
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APC differentiation and pro-angiogenic activities is less well understood. 

Matrices with adjustable mechanical but fixed chemical properties are necessary to study APC 

behavior in response to matrix stiffness. Frequently, Matrigel™ and collagen gels of variable 

concentrations are used to evaluate the relationship between ECM mechanics and cell behavior (143, 

144). However, this approach entails changes in adhesion ligand density, which regulates cellular 

functions independent of matrix stiffness (145). Artificial ECMs may overcome these limitations by 

permitting decoupling of the physical and chemical matrix characteristics.  Specifically, the rigidity of 

RGD-modified alginate hydrogels can be readily adjusted by ionic crosslinking with varying 

concentrations of Ca2+ (146).  This approach, however, may not be suitable for studies of adipogenesis as 

it typically yields gels that are much stiffer than adipose tissue and because local concentrations of Ca2+ 

regulate APC functions (e.g., proliferation and differentiation (147, 148)). Photocrosslinked, alginate-

based hydrogels (149-152) may provide suitable alternatives to examine the effect of matrix stiffness on 

adipogenesis.   

The goal of this study was to establish a biomaterial-based 3-D culture system in order to evaluate 

the effect of matrix stiffness on the self-renewal, differentiation, and pro-angiogenic capacity of APCs 

under biologically relevant conditions. To this end, we have cultured 3T3-L1 preadipocytes, a well 

established cell model for the study of adipogenesis (153), within photocrosslinked, RGD-modified 

alginate hydrogels that recreate tissue dimensionality and ECM mechanics representative of normal and 

pathological adipose tissue.  Our results identify mechanical stiffness as an important regulator of APC 

function that must be considered in the design of efficacious and safe biomaterials for adipose tissue 

engineering. 

 

3.4 Materials and Methods 

Cell culture  

3T3-L1 cells (ATCC) were routinely cultured in MEM (α-modification, Sigma) containing 10% 
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fetal bovine serum (FBS, Tissue Culture Biologicals) and 1% antibiotic (penicillin/streptomycin, Gibco).  

To induce adipogenesis, cells were maintained for 2 days in MEM (α-modification), 5% FBS, 1% 

antibiotic containing 1 μM insulin (Sigma), 100 nM corticosterone, 200 μM isobutylmethylxanthine, and 

60 μM indomethacin (all from EMD) as previously described (137). Subsequently, differentiation media 

(MEM [α-modification], 5% FBS, 1% antibiotic, 1μM insulin) was added, and cells were cultured under 

these conditions for 6 days, with media changes every other day.  

 

Cell viability in response to photocrosslinking conditions 

Cell viability in response to photocrosslinking conditions was tested in 2-D culture by exposing 

3T3-L1 cells to increasing concentrations of VA-086 (Wako), Irgacure-2959 (Ciba), and varying 

durations of ultraviolet (UV) light (365 nm longwave, 2 μW/cm2) in the absence of polymer. Specifically, 

cells were seeded into 12-well plates at equal densities and allowed to adhere overnight. Cultures were 

then treated with photoinitiators and/or UV light (using a Spectroline UV crosslinker) to simulate the 

conditions during hydrogel crosslinking. For these experiments, VA-086 and Irgacure-2959 were 

dissolved in water and 70% ethanol, respectively.  Due to the different photoinitiator activities, 10-fold 

greater concentrations of VA-086 (0.1 - 0.4 %, w/v) were used as compared to Irgacure-2959 (0.01 - 0.04 

%, w/v).   Subsequently, dead cells were removed by rinsing the culture dishes with PBS, while adherent 

viable cells were trypsinized and quantified using a Beckman Coulter counter. 

 

Fabrication and characterization of photocrosslinked alginate hydrogels 

Photocrosslinkable alginate was synthesized by reacting Protanal® LF10/60 (FMC Biopolymer) 

with methacrylic anhydride (Alfa Aesar), replacing secondary alcohols on the polymer with methacrylate 

groups (Figure 3.1) (152, 154, 155). To this end, methacrylic anhydride (Alfa Aesar) was added to a 2.5% 

w/v solution of alginate in deionized water while the pH was maintained with 5M NaOH.  After 72 hours 

of reaction time, the alginate was washed with ethanol and filtered twice prior to lyophilization.  In a 
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second reaction, the obtained material was modified with GGGGRGDSP (Peptides International) 

adhesion peptides using standard carbodiimide chemistry as previously described (156). To remove 

unreacted, low-molecular weight components, the alginate was purified by dialysis, and then the 

methacrylated RGD-alginate was sterile filtered and lyophilized. To prepare hydrogel disks for further 

analysis, a 3% (w/v) solution of methacrylated RGD-alginate in PBS was cast between two glass plates 

(separated by 1 mm spacers) and crosslinked in an UV crosslinker (Spectroline) for 5 minutes. The same 

modified polymer was used for all hydrogel systems; stiffness was altered by adjusting VA-086 

concentrations to 0.1 (compliant gels), 0.2 (moderate gels), and 0.4 (stiff gels) % (w/v). Disks were 

punched out of the crosslinked slab of hydrogel using sterile biopsy punches (d=6 mm). 

Aggregate moduli of photocrosslinked alginate were measured under radial confinement and 

uniaxial compression using a mechanical tester (ELF 3100, Bose).  Alginate hydrogels were 

incrementally loaded at steps of 5% compression with the reported aggregate modulus measured from the 

slope fit to the stress–strain curve at 15% strain. To ensure that gel modulus was maintained through 

experiments, the aggregate moduli of different batches were measured. Additionally, for experiments 

where direct comparisons were made between conditions, the same batch of material was used.  To ensure 

maintenance of gel mechanical character for the duration of the culture experiments, the aggregate 

modulus of compliant alginate gels was measured in the same manner as described above over a period of 

2 weeks.  Gel swelling was assessed by measuring the wet and dry weights of alginate gels, pre- and post-

lyophilization, respectively, over a 6 week period.  To encapsulate 3T3-L1 into 3-D hydrogels, cells were 

suspended in the alginate solution prior to gelation at a concentration of 1.5 x 106 cells/mL. The resulting 

matrices were subsequently cultured under dynamic conditions on a Bellco orbital shaker. The day of cell 

encapsulation was considered day 0. 
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Figure 3.1 Development of photocrosslinked RGD-alginate hydrogels 

Methacrylated alginate was synthesized by reaction of LF10/60 alginate with methacrylic anhydride and 

was subsequently modified with RGD-adhesion peptides using carbodiimide chemistry. Exposure of the 

resulting material to UV light in the presence of a photoinitiator yielded photocrosslinked RGD-alginate 

hydrogels. 
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Analysis of cell adhesion and proliferation 

Cell adhesion was measured under 2-D conditions. 3T3-L1 preadipocytes were seeded onto non-

modified and RGD-modified alginate disks of equal aggregate modulus (~12 kPa). After 16 hours of 

culture, cells were fixed and stained with Alexa Fluor 568 phalloidin (Invitrogen, 1:100) and DAPI 

(Invitrogen, 1:5000). The cells were visualized using a fluorescent microscope (Zeiss Observer Z.1), and 

three representative images per gel were taken with an AxioCam MRN camera. Cell spreading was 

quantified via image analysis (ImageJ, NIH) by measuring the average surface area per cell for three gels 

per condition.  

Cell proliferation was tested under 3-D conditions. Cells were released from their matrices by 

dissolution of the gels in a solution of alginate lyase (3.3 units/g alginate, Sigma) in PBS on days 0, 3, and 

7. Cell numbers in the resulting cell suspension were determined with a Beckman coulter counter. 

Additionally, cell-encapsulating alginate disks were subjected to live/dead staining using calcein 

(Invitrogen, 1ug/mL for 15 mins) and propidium iodide (Sigma, 10ug/mL for 5 mins), respectively. Eight 

representative images of three gels per condition were taken at randomly selected locations on each gel 

for viability quantification via image analysis. 

 

Analysis of adipose differentation 

Cells were harvested from their 3-D matrices by alginate lyase treatment as described above 8 

days after induction of differentiation. The resulting cell pellet was lysed on ice in a buffer containing 

50mM Tris, 1mM EDTA, and 1mM β mercaptoethanol (all from J.T. Baker). Subsequently, glycerol-3-

phosphate dehydrogenase (GPDH) activity was measured using a spectrophotometer as previously 

reported (137).  Briefly, supernatants obtained from the lysates were mixed with dihydroxyacetone 

phosphate and the oxidized form of nicotinamide adenine dinucleotide (NADH). GPDH activity was 

assessed by quantifying the decrease in NADH absorbance at 340 nm over a 7-minute period.  Enzyme 

activity was normalized to total protein content as measured by the Bio-Rad Protein assay per 
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manufacturer’s protocol.  To visualize lipid accumulation, cell-incorporating gels were fixed overnight in 

formalin, stained with Oil Red O (Sigma, 0.3% w/v solution in 60% isopropyl alcohol) for 2 hours, and 

then interrogated with bright field microscopy.  

 

Analysis of VEGF secretion 

On day 3, cell-incorporating hydrogel disks were transferred to new culture dishes containing 

MEM (α-modification) with 1% FBS and 1% antibiotic.  Media were collected after 24 hours and 

analyzed for VEGF (Quantikine ELISA, R&D). To additionally determine the amount of matrix-

sequestered VEGF, alginate constructs were dissolved with alginate lyase as described above and the 

VEGF content of the resulting solution was measured.  Prior studies verified that alginate lyase treatment 

does not compromise VEGF analysis as incubation of recombinant VEGF with alginate lyase and 

subsequent ELISA yielded similar VEGF concentrations as samples not exposed to alginate lyase (Figure 

3.2). Indicated values represent the total amount of VEGF quantified in the conditioned media as well as 

the gel lysate. VEGF data were normalized to cell number as determined at the time of media harvest to 

account for cell proliferation differences between conditions. 

 

Figure 3.2 Alginate lyase treatment does not alter VEGF ELISA readings 

Control experiment of recombinant VEGF levels measured in samples diluted with alginate lyase and 

PBS show that treatment with alginate lyase does not compromise ELISA readings as similar values are 

found in both solutions.  
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Analysis of endothelial cell behavior 

Human umbilical vein endothelial cells (HUVECs, Lonza) were routinely cultured in endothelial 

growth medium (EGM-2, Lonza). 3T3-L1-conditioned media was collected as described above for VEGF 

analysis, concentrated two-fold using Amicon centrifugal filter units (Millipore, MWCO = 3kDa), and 

subsequently reconstituted with EGM-2 from which growth factors were omitted. HUVEC proliferation 

was assessed by cell counting after 5 days of culture in reconstituted conditioned media. To assess cord 

formation, HUVECs were seeded onto Matrigel™ (BD) in conditioned media.  After 24 hours, the cells 

were stained with calcein (Invitrogen, 1 µg/mL) and imaged on a Zeiss Observer Z.1 microscope using an 

AxioCam MRN camera.  Three randomly selected areas were imaged and analyzed per well with three 

wells per condition.  The connectivity and length of the tubular structures were assessed using a 

MATLAB®-based program (AngioQuant) (157).   

 

Statistical analysis 

All data are reported as means ± standard deviations and were analyzed by one-way analysis of 

variance (ANOVA) followed by the Newman-Keuls method to make post hoc pair wise comparisons 

using Prism 5 (GraphPad Software) with α = 0.05 (*, p<0.05; **, p<0.01 between noted conditions). 

 

3.5 Results 

Establishment of photocrosslinking conditions  

To enable cytocompatible photocrosslinking, we initially tested the effect of two widely used 

photoinitiators, Irgacure-2959 and VA-086 (151, 155), on 3T3-L1 viability. For these experiments, 

relevant concentrations of these two substances were added to the media of standard 2-D cell cultures 

(i.e., in the absence of the polymer). Our results indicated that VA-086 in 10-fold higher mass 

concentration is less toxic to 3T3-L1 cells than Irgacure-2959 (Figure 3.3 A,B), both with and without 
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UV exposure. Specifically, 0.04 % Irgacure-2959 in conjunction with 15 min UV (i.e., conditions 

necessary to produce the stiff gels [see below]) dramatically decreased cell viability to 2% (Figure 3.3A). 

In contrast, exposure to 0.4 % VA-086 and 5 min UV (i.e., conditions needed to produce similarly stiff 

gels [see below]) resulted in 82% viability. To assess whether these differences were due to the varying 

UV exposure times we additionally irradiated cultures with VA-086 for 15 min. In these experiments, cell 

viability was slightly reduced as compared to treatment for 5 min, but still remained at 77% for the 

highest VA-086 concentration (Figure 3.3B). The reduced viability in the 0% Irgacure-2959 condition 

relative to the 0% VA-086 condition after 15 min of UV may be caused by the different solvents (ethanol 

for Irgacure-2959, water for VA-086). Nevertheless, the different solvents do not account for the 

observed changes in cell viability in the presence of photoinitiators because VA-086 is also less cytotoxic 

than Irgacure-2959 when dissolved in ethanol (149).  Collectively, treatment with VA-086 (0.4%; 5 min 

UV) yields 41-fold enhanced 3T3-L1 cell numbers as compared to Irgacure-2959 (0.04%; 15 min UV) 

and was, therefore, used for all experiments involving photocrosslinking of cell-incorporating alginate 

matrices.  

Development of artificial ECMs with relevant matrix stiffnesses 

Next, we tested our ability to generate 3-D hydrogel matrices of biologically relevant stiffness by 

photocrosslinking methacrylated alginate with VA-086. The crosslinking density of the gels was adjusted 

by altering the concentration of the photoinitiator VA-086.  Mechanical testing confirmed that the elastic 

moduli of the resulting matrices were 3.3 kPa, 7.9 kPa, and 12.4 kPa and, therefore, representative of 

physiological (~2kPa), intermediate, and pathological (~12kPa) stiffness ranges detected, for example, 

during tumorigenesis (47) (Figure 3.4A). These moduli were maintained throughout the time of 3-D 

culture, as no significant changes were detected over 2 weeks (Figure 3.4B).  Additionally, measurement 

of gel wet and dry weight indicated no significant swelling during the duration of the experiment that 

would otherwise alter the mechanical characteristics of the gels (Figure 3.4C).   
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Figure 3.3 Cell viability in response to photocrosslinking conditions. 

Control experiments in 2-D cell culture indicate that 3T3-L1 viability is lower following 

photocrosslinking with Irgacure-2959 (A) compared with VA-086 (B). The percentage of viable cells is 

expressed relative to control conditions in which cells were neither treated with photoinitiator nor exposed 

to UV light (0/0); however, an equal volume of the solvent (water or 70% ethanol for VA-086 or 

Irgacure-2959, respectively) was added to the control condition.  Arrows indicate photocrosslinking 

conditions that would be necessary to produce gels with a modulus of 12 kPa (stiff condition). 
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Figure 3.4 Characterization of the developed materials 

Mechanical testing verified that gels that mimicked moduli of normal (compliant), intermediate 

(moderate), and pathological (stiff) adipose tissue could be engineered by controlling photoinitiator 

concentration (A, n = 5 or 6) and that the modulus did not change significantly during the culture time 

period (B, n = 4).  No significant swelling in the gels was seen after initial equilibration as the wet and dry 

weights of the alginate gels were maintained for periods longer than the duration of the experiments (C, 

n=3).  Covalent modification of methacrylated alginate with RGD adhesion peptides promoted 3T3-L1 

adhesion and spreading on 2-D hydrogel disks.  Fluorescent staining was performed with DAPI and 

phalloidin to visualize actin (red) and nuclei (blue), respectively.  (D, scale bars = 20 μm).   Average cell 

area and number of adhered cells per field of view (FOV) were quantified by analyzing the images (E, n = 

3). (*, p < 0.05; **, p < 0.01) 
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Subsequently, we modified the photocrosslinkable alginate by covalent coupling of adhesive RGD 

peptides according to a previously established protocol (Figure 3.1) (156). This reaction resulted in the 

introduction of two cellular binding sites per alginate chain (158) and enabled integrin engagement 

necessary for cells to sense changes in matrix stiffness (159). Successful RGD modification was 

confirmed with a simple 2-D adhesion assay in which cells were seeded on top of hydrogel disks with 

aggregate modulus of 12 kPa. 3T3-L1 cells readily adhered and spread on RGD-modified alginate, 

whereas cell adhesion was dramatically reduced on non-modified alginate (Figure 3.4D). Specifically, 

both cell numbers and cell surface areas were significantly increased on RGD-modified disks relative to 

non-modified cultures (Figure 3.4E).   

 

3T3-L1 proliferation and viability within hydrogels with different modulus 

We determined 3T3-L1 number and viability within the 3-D hydrogel matrices to assess the effect of 

mechanical stiffness on adipose progenitor cell self-renewal. The number of 3T3-L1 cells within 7.9 kPa 

(moderate) and 12.4 kPa (stiff) hydrogels increased over time, while no significant change was detected 

in 3.3 kPa (compliant) matrices (Figure 3.5A). At day 0, cellularity was similar for all conditions, 

suggesting that the detected differences were due to changes in cell proliferation rather than encapsulation 

efficiency. Live/dead staining after 7 days in culture, furthermore, indicated that culture within compliant 

gels promoted cell death as compared to culture within moderate and stiff gels. The resulting changes in 

cell viability likely contributed to the detected variations in cell number by mediating a decrease in the 

population of proliferative cells (Figure 3.5 B,C).  

 



 

61 

 

Figure 3.5 Proliferation and viability within 3-D hydrogel cultures 

Significantly more 3T3-L1 cells were observed following culture within the stiff and moderately stiff gels 

compared with the compliant gels (A, n = 4). At day 7, cell viability in the stiff and moderate gels was 

higher relative to the compliant gels as assessed by image analysis (B, n = 4) of live and dead cells 

following staining with calcein (green) and propidium iodide (red), respectively. (C, scale bars = 20 μm). 

(**, p < 0.01) 

 

3T3-L1 differentiation within hydrogels of varying stiffness 

To evaluate the effect of matrix stiffness on adipogenesis, typical markers of lipid biosynthesis were 

analyzed 8 days following induction of differentiation. GPDH activity, a key enzyme involved in lipid 

accumulation, decreased with increasing ECM stiffness (Figure 3.6).  Specifically, 3T3-L1 cells that 

differentiated within stiff gels exhibited 1.4-fold and 2.4-fold reduced GPDH activity relative to the same 

cells maintained within moderate and compliant gels, respectively (Figure 3.6A). Visualization of lipid 

biosynthesis via Oil Red O staining further confirmed that cells in compliant matrices produced enlarged 

fat droplets as compared to cells cultured within the stiffer matrices (Figure 3.6B). Because 3T3-L1 
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differentiation was induced immediately after seeding, no proliferation phase occurred and these results 

cannot be attributed to changes in cell numbers due to altered proliferation. Consequently, our data 

suggest that adipose differentiation of 3T3-L1 cells is inhibited in stiff matrices and that a combination of 

chemical and mechanical cues contributed to this as no adipogenesis was observed in the absence of 

hormonal induction. 

 

  

Figure 3.6 Adipose differentiation within 3-D hydrogel cultures 

As determined by analysis of GPDH activity, adipogenesis of 3T3-L1 cells was higher within compliant 

gels relative to stiffer gels (A, n = 4) and microscopic evaluation of lipid droplet size following Oil Red O 

staining one week after inducing differentiation. (B, scale bars = 20 μm). (*, p < 0.05) 

 

Pro-angiogenic capacity of 3T3-L1 in response to varying stiffness 

We analyzed VEGF secretion of 3T3-L1 preadipocytes in the different hydrogels to assess the effect 

of 3-D matrix stiffness on the pro-angiogenic potential of these cells. 3T3-L1s cultured within stiff gels 

secreted significantly more VEGF as compared to the same cells contained within compliant gels (Figure 

3.7A). No significant difference in VEGF secretion was detected between the compliant and moderate 

culture systems. The observed effects can be attributed to changes in secretion rather than variable 

sequestration within the different matrices, because similar amounts of VEGF were retained in compliant 

(45 ± 13 % of total VEGF) and stiff gels (47 ± 5 % of total VEGF). In these experiments, VEGF secretion 

was normalized to cell number at the time of harvest, thus the differences indicate altered secretion and 
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not differences in cell number. To evaluate the physiologic relevance of these changes, we analyzed 

HUVEC behavior in response to media collected from the different substrates. Media conditioned by 

3T3-L1 cells in stiff matrices promoted HUVEC proliferation (Figure 3.7B) and tube formation on 

Matrigel™ (Figure 3.7 C,D) as compared to media collected from cells within compliant substrates. 

Additionally, conditioned media from stiff cultures promoted transwell migration of endothelial cells (305 

± 24 HUVECs/FOV) relative to media from compliant cultures (286 ± 34 HUVECs/FOV).   

 

 

Figure 3.7 Pro-angiogenic potential of 3T3-L1 in 3-D hydrogel cultures 

3T3-L1 cells cultured within stiff hydrogel matrices secreted larger concentrations of VEGF normalized 

to cell number compared with those maintained within more compliant gels (A, n = 4). Conditioned 

media collected from cells maintained in stiffer matrices enhanced HUVEC proliferation (B, n = 4) and 

capillary tube formation on Matrigel (C[n = 3], D[scale bar = 50 µm]) relative to media obtained from 

compliant cultures.  (*, p < 0.05) 
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3.6 Discussion 

We have characterized a biologically relevant 3-D culture system for 3T3-L1 cells and used it to 

evaluate the effect of matrix stiffness on the self-renewal, differentiation, and pro-angiogenic capacity of 

APCs. This model system is based on photocrosslinked RGD-modified alginate and through its use, we 

decoupled matrix stiffness from changes in adhesion peptide density or extracellular Ca2+ concentration, 

which may independently affect adipose progenitor cell behavior (145, 147, 148). Our data indicate that 

enhanced matrix rigidity significantly decreases adipose differentiation of APCs, whereas it increases the 

number and angiogenic capacity of these cells. Collectively, our results define matrix stiffness as an 

important design parameter for the development of biomaterial scaffolds for adipose tissue engineering.  

We used the developed RGD-alginate gels to study APC behavior in response to varying 

stiffnesses under 3-D culture conditions. Previous studies have indicated that matrix elasticity regulates 

the proliferation and differentiation capacity of stem cells on 2-D substrates (49, 141, 142), and that 

compliant matrices may be a prerequisite for adipose differentiation in 2-D culture (160). However, 

integrin mechanoreceptors may signal differently in 2-D and 3-D culture (128), and we, therefore, aimed 

at investigating APC behavior under 3-D conditions. Our results suggest that, according to previous 2-D 

studies, adipose differentiation is greatest in matrices with a modulus that is similar to adipose tissue, 

whereas less compliant substrates inhibit this process and increase the proliferative and angiogenic 

potential of APCs. These differences may be related to adhesion-dependent changes in cell contractility. 

In particular, cells encapsulated in stiff matrices exhibit increased integrin engagement, cell proliferation, 

and angiogenic factor expression as compared to those in compliant matrices (35, 161), and changes in 

cytoskeletal tension and intracellular signaling may contribute to this (162, 163). In contrast, adipose 

differentiation is favored in softer environments with which cells interact less strongly and 

consequentially undergo morphological changes that favor adipogenesis (163). Future studies using 

pharmocological inhibition of the associated signaling pathways will help to probe these connections.  

Vascularization of adipose tissue is mediated by a concerted and complex interplay between 

multiple pro- and anti-angiogenic factors. For example, VEGF dynamically interacts with basic fibroblast 
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growth factor (bFGF) and interleukin-8 (IL-8) (164) to activate endothelial cell proliferation and 

migration that leads to the formation of new blood vessels, while anti-angiogenic factors such as 

thrombospondin inhibit these processes (165). To the best of our knowledge, our studies for the first time 

suggest that mechanical stiffness results in the up-regulation of VEGF in APCs. Nevertheless, the 

detected differences in VEGF secretion may only partially account for the significant increase in tube 

formation observed on MatrigelTM. It is likely that a stiffness-mediated increase of other pro-angiogenic 

molecules, or downregulation of anti-angiogenic factors, contributes to the detected angiogenic effects in 

our experiments; this deserves future study.  

The reported results have important implications for the design of biomaterial scaffolds for 

adipose tissue engineering. Successful adipose tissue engineering approaches rely on both adipose 

differentiation and the rapid recruitment of a vascular network to meet the metabolic requirements of the 

newly formed fat pad (132). It may be possible to satisfy these biological design parameters by the 

development of hydrogel composites that consist of spatially defined compliant and stiff compartments 

that drive adipose tissue regeneration by promoting adipogenesis and pro-angiogenic factor secretion, 

respectively. Such polymeric systems would be particularly useful when combined with endothelial cells 

(166). Specifically, our results indicate that co-implanted endothelial cells may be able to accelerate 

vascularization by increased proliferation and tube formation in response to the elevated concentration of 

pro-angiogenic factors (e.g., VEGF) from APCs. In contrast, implantation of APCs within matrices 

exhibiting stiffnesses >10kPa may not result in efficacious and safe therapies, as the encapsulated cells 

may undergo very limited differentiation into adipocytes, while potentially promoting pathological 

angiogenesis. In particular, enhanced concentrations of pro-angiogenic factors can activate the angiogenic 

switch in dormant tumors (167), which is critical to tumor induction, progression, and metastasis. This 

process may be further enhanced because increased matrix rigidity promotes blood vessel formation by 

directly altering endothelial cell behavior (50). This possible perturbation of blood vessel homeostasis 

represents a particularly important problem, as adipose tissue engineering is predominantly pursued for 

reconstruction therapies for breast cancer patients who carry the risk of tumor recurrence (132). 
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While the focus of this study was to investigate the role of mechanical stiffness on APC 

proliferation, adipose differentiation, and pro-angiogenic capability in a 3-D culture context, a number of 

related questions could also be studied with the developed hydrogels. For example, does mechanical 

stiffness also influence the behavior of fully differentiated adipocytes? What happens if APCs are not 

exposed to differential mechanical environments until after they are hormonally induced to undergo 

differentiation? Would they still respond differently to soft and stiff matrices? Finally, APCs are 

multipotential and have been shown to differentiate into other lineages including chondrocytes, 

osteoblasts, and endothelial cells (52).  To what extent are mechanical cues involved in guiding these cells 

along a specific lineage? The materials described in this study provide an important platform that can be 

used to address all of these questions. As the developed photocrosslinkable materials can be processed 

into 2-D and 3-D substrates, they may also be useful to assess differences as a function of tissue 

dimensionality.  

 

3.7 Conclusions 

We explored RGD-functionalized, photocrosslinkable alginate gels to evaluate the effect of ECM 

mechanics on APC behavior under physiologically relevant 3-D culture conditions. Using these model 

systems, we revealed that increased ECM stiffness inhibits adipose differentiation, while increasing the 

proliferative and angiogenic potential of these cells. Based on these observations, it may be possible to 

enhance adipose regeneration by implanting APCs in composite hydrogels that consist of both compliant 

and stiff compartments. Our results suggest that this approach might simultaneously promote 

adipogenesis and angiogenesis, two processes critical to the long-term success of engineered adipose 

tissue. In total, our results provide an improved understanding of the role of ECM stiffness in adipose 

tissue regeneration, and inform adipose tissue engineering approaches. 
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CHAPTER 4 

 
IMPLANTED ADIPOSE PROGENITOR CELLS AS 

 PHYSICOCHEMICAL REGULATORS OF BREAST CANCER 

Accepted for publication in Proceedings of the National Academy of Sciences (168) 
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progenitor cells on variably stiff gels and aided in the preparation of the manuscript.  The thrust of this 

work was completed in the lab of Claudia Fischbach who contributed greatly to the design of experiments 

and the preparation of the manuscript presenting this work. 

 

4.2 Abstract 

Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes, 

such as soft tissue reconstruction following mastectomy.  However, the ability of tumors to commandeer 

ASC functions to advance tumor progression is not well understood.  Through the integration of physical 

sciences and oncology approaches we investigated the capability of tumor-derived chemical and 

mechanical cues to enhance ASC-mediated contributions to tumor stroma formation.  Our results indicate 

that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing 

proliferation, pro-angiogenic factor secretion, and myofibroblastic differentiation of ASCs.  This altered 

ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction, thereby enhancing 

tissue stiffness, a characteristic feature of breast tumors.  Increased stiffness, in turn, facilitated changes in 

ASC behavior similar to those observed with tumor-derived chemical cues.  Orthotopic mouse studies 

further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo.  In 

summary, altered ASC behavior can promote tumorigenesis, and thus their implementation for 

regenerative therapy should be carefully considered in patients previously treated for cancer. 

 

4.3 Introduction 

Adipose-derived stem or progenitor cells (ASCs) are widely used in tissue engineering due to 

their multipotency, ability to enhance vascularization, and relative ease of isolation from the stromal 

vascular fraction of adipose tissue (52, 169). In particular, ASCs are increasingly considered for 

reconstructive procedures following surgery for breast cancer, which compose the majority of the 93,000 
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breast reconstructions performed in the U.S. per year (170). ASCs offer several advantages over 

commonly utilized silicone and saline implants including their ability to regenerate functional adipose 

tissue, which reconstitutes a large fraction of the breast (60, 171). However, malignantly transformed cells 

may be present in breast cancer survivors without manifest disease, and it remains unclear whether 

implanted ASCs may increase the risk of tumor development and relapse (172) by establishing a 

microenvironment conducive to nascent or recurrent tumorigenesis.  

Mammary tumors are stiffer than normal mammary gland tissue (47, 173), due in part to tumor 

cell-secreted morphogens that vary extracellular matrix (ECM) assembly. Altered ECM deposition and 

contraction not only enhances tumor rigidity (41), but further modulates tumor progression by perturbing 

epithelial morphogenesis (51) and vascular development (50). Myofibroblasts regulate these outcomes by 

controlling the mechanical properties of the tumor-associated ECM and by functioning as a major source 

of host-derived pro-angiogenic factors (e.g., vascular endothelial growth factor [VEGF]) (41, 174). 

Generally, local fibroblasts are considered the primary origin of myofibroblasts and regulator of this 

desmoplastic reaction, but bone marrow- and tissue-derived mesenchymal stem cells may also contribute 

to this cell population. Specifically, ~20% of tumor-associated α-smooth muscle actin (α-SMA)-positive 

myofibroblasts originate from bone marrow, whereas non-bone marrow tissues including adipose tissue 

contribute to the remainder (175, 176). However, the integrated effects of tumor-associated 

physicochemical cues on ASC-dependent tumorigenesis are not well understood. 

Here, we applied a physical sciences-based approach to correlate tumor-mediated changes in 

ASC phenotype with tissue stiffness, vascularization, and growth. Our findings support that ASCs can 

develop into myofibroblasts in response to physicochemical factors provided by cancerous cells. This 

phenotypic change not only enhanced angiogenesis, but also ECM rigidity, which further increased the 

tumor-promoting capacity of ASCs in a positive feedback loop. These findings support the role of ASCs 

as key regulators of mammary tumor progression and recurrence, which warrant review of current tissue 

engineering therapies following mastectomy and may be explored towards more efficacious therapies for 

breast cancer patients. 



 

71 

4.4 Materials and Methods 

Cell Culture 

3T3-L1, MDA-MB231, MCF-7 (all from ATCC), and MCN1 and MCN2 mammary tumor cells 

isolated from the mammary epithelium of MMTV-Cre, p53L/L and MMTV-Cre, p53L/L RbL/L, respectively 

(177), were routinely cultured in MEM (α-modification [αMEM], Sigma) containing 10% FBS (Tissue 

Culture Biologicals) and 1% antibiotic (penicillin/streptomycin, Gibco). MCF-10A (ATCC), MCF10AT1, 

and MCF10ACA1a (both from Barbara Ann Karmanos Cancer Institute (178)) were maintained in 

DMEM/F12 supplemented with horse serum, epidermal growth factor (EGF), hydrocortisone, cholera 

toxin, insulin, and penicillin/streptomycin (all from Invitrogen) as previously described (179). ASCs and 

human umbilical vein endothelial cells (HUVECs) (both from Lonza) were cultured in their 

corresponding growth media (ADSC-GM and EGM-2, respectively; Lonza). Lonza isolates ASCs from 

lipoaspirates based on expression of stem cell-associated surface markers (180), cryopreserves cells at 

passage 1, and does not pool cells from multiple sources. Here, ASCs from two separate, female donors 

were utilized at passages less than 7.  

 

Analysis of ASC proliferation, adipogenesis, pro-angiogenic capability, and migration 

Conditioned media was collected from the different tumor and epithelial cell lines in αMEM (1% 

FBS, 1% antibiotic) over 24-hours, normalized to cell number, concentrated 10-fold in an Amicon 

centrifugal filter unit (Millipore, MWCO = 3kDa), and subsequently reconstituted with media containing 

1% FBS (Tissue Culture Biologicals) and 1% antibiotic (Gibco) specific to the treatment cell type (Table 

4.1).  Control medium was incubated for 24-hours without exposure to cells and then processed similarly. 

Conditioned media was globally tested for cytokines using Human Cytokine Antibody Arrays 

(Affymetrix) and specifically for IL-8 using ELISA DuoSets (R&D). Following 3 days of treatment in 

control media or TCM, cell counting was performed using a Z2 Beckman Coulter counter. To assess 
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proliferation, 10 µM BrdU (Sigma) was added to cells 20 hours prior to fixation in 4% paraformaldehyde.  

Then samples were incubated in ice-cold 1N HCl, followed by 2N HCl at 37oC, and then 0.1 M borate 

buffer prior to adding biotinylated mouse anti-BrdU. Subsequently, BrdU and nuclei were stained with 

streptavidin-conjugated Alexa Fluor 555 (both from Invitrogen) and DAPI (4',6-diamidino-2-

phenylindole), respectively. The percentage of BrdU-positive nuclei was determined from 5 images per 

samples with 4 samples per condition.  

 

Table 4.1 TCM Reconstitution Medium 

Cell Type Reconstitution Medium Additives 
3T3-L1 (ATCC), 

MCN1, MCN2 (177) MEM (α-modification) (Sigma) 1% FBS (Tissue Culture Biologicals) 
1% antibiotic (Gibco) 

HUVEC (Lonza) EBM-2 (Lonza) 
Heparin (Lonza) 

Gentamicin/amphotericin-B (Lonza) 
1% FBS (Lonza) 

ASC (Lonza) DMEM/F:12 (Invitrogen) 1% FBS (Tissue Culture Biologicals) 
1% antibiotic (Gibco) 

 

  

 

Adipogenesis of 3T3-L1s and ASCs was induced as previously described (137) and by using 

ADSC-GM SingleQuots® (Lonza), respectively. Differentiation into adipocytes was assessed by Oil Red 

O staining, immunofluorescence analysis of peroxisome proliferator-activated receptor gamma (PPARγ), 

as described in the staining procedures section, and by measuring glycerol-3-phosphate dehydrogenase 

(GPDH) activity. For the latter, supernatants collected after lysing cells on ice in a buffer containing 

50mM Tris, 1mM EDTA, and 1mM β mercaptoethanol (all from J.T. Baker) were mixed with 

dihydroxyacetone phosphate and oxidized nicotinamide adenine dinucleotide (NADH).  The decrease in 

NADH absorbance at 340 nm was quantified on a spectrophotometer over a 7 min period. Enzyme 

activity was normalized to total protein content as measured by protein assay (Bio-Rad). To visually 

assess differentiation into lipid-rich adipocytes, cells were fixed in formalin prior to staining with Oil Red 

O (Sigma) for 2 hours.  Samples were imaged with a bright field microscope. 

For analysis of pro-angiogenic activities, 3T3-L1s or ASCs were preconditioned in control or TCM 

for 3 days, then fresh media containing 1% FBS and 1% antibiotic specific to the treatment cell type 
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(Table 4.1) was added, collected after 24 hours, and processed as described above. VEGF secretion of 

preconditioned ASCs or 3T3-L1s was analyzed via human or mouse Quantikine ELISA (R&D Systems), 

respectively, and normalized to cell number determined by Z2 Beckman Coulter counter. To assess the 

effect of altered VEGF secretion on HUVEC migration, ASCs and 3T3-L1 cells were preconditioned for 

3 days.  Collagen-coated transwell inserts seeded with HUVECs were placed atop tumor-preconditioned 

3T3-L1 or ASCs cells in fresh αMEM (1% FBS, 1% antibiotic).  After 24 hours, inserts were formalin-

fixed following a swabbing of the top of the membrane to remove non-migrated HUVECs. Cells on the 

lower side of the membrane were stained with DAPI and nuclei were counted.  The number of migrated 

HUVECs was then normalized to the number of progenitor cells within each well. 

To determine the effect of tumor-derived soluble factors on adipose progenitor recruitment, 3T3-L1 

cells were seeded on top of collagen I (PureCol, Inamed)-coated Nunc 10 mm Tissue Culture inserts (8.0 

µm pore) with either TCM or control medium beneath the membrane. After 18 hours, 3T3-L1s were 

formalin fixed following a swabbing of the top of the membrane to remove non-migrated cells.  Cells on 

the lower side of the membrane were stained with DAPI and the average number of nuclei was counted in 

8-10 images per sample. 

 

Analysis of myofibroblast differentiation and matrix stiffening 

Differentiation into myofibroblasts was assessed by immunofluorescence analysis of α-SMA, 

procollagen I, and collagen I as described below. Transforming growth factor β (TGF-β) signaling was 

modulated by supplementing control or TCM with 2 ng/mL recombinant human TGF-β1 or 0.5 µg/mL 

anti-human LAP (neutralizing TGF-β1 antibody) (both from R&D Systems), respectively. Interleukin-8 

(IL-8) signaling was evaluated by supplementing growth media with 3-30 ng/mL recombinant human IL-

8 (R&D). For contraction assays, ASCs were suspended in 15 mg/ml collagen (1 x 106 cells/ml) isolated 

from rat tails (181), cast into circular molds 0.5 mm thick and 4 mm in diameter (182), and cultured in 

TCM or control medium under free-floating conditions on an orbital shaker for 2 weeks, with media 
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changes every other day. To inhibit proliferation, initial addition of TCM or control medium was 

supplemented with 4 µg/mL mitomycin C (Fisher Scientific) as previously described (183). Actin 

polymerization and pROCK signaling were inhibited by supplementing culture media with 1 µM 

cytochalasin D or 20 µg/ml Y-27632 (both from Tocris), respectively. Gel contraction was determined by 

measuring the surface area of each gel using the magnetic lasso tool in Photoshop (Adobe) to trace the 

apical surface circumference.  For the analysis of cell matrix stiffening, these same collagen gels were 

stained with dichlorotriazinylaminofluorescein (5-DTAF), sandwiched between two glass plates, and 

imaged with a Zeiss LSM 510 confocal microscope as previously described (184). A shear stress was 

applied to the gel while a photobleached line in the sample was imaged. As described previously, a 

MATLAB algorithm was then used to calculate the gel modulus based on the displacement of the 

photobleached line (184). 

 

Western Blot Analysis 

Cells were lysed in RIPA buffer (Thermo Scientific) containing protease inhibitor (Sigma), 

phosphatase inhibitor cocktail (Sigma), and 1mM phenylmethylsulfonyl fluoride (PMSF) in isopropyl 

alcohol. Equivalent quantities of protein were loaded as measured by BCA protein assay (Thermo 

Scientific). Proteins were separated by SDS-PAGE and transferred to a PVDF membrane (Bio-Rad).  

Primary antibody to α-SMA (Abcam) was incubated with the membrane overnight at 4°C, followed by a 

1 hour incubation with HRP-conjugated anti-rabbit secondary antibody (Novus Bio) at room temperature. 

Chemiluminescence detection was performed to visualize probed protein using ECL kit (GE healthcare) 

based on manufacturer’s protocol. 

 

Analysis of ASC response to matrix mechanical properties 

For traction force microscopy (TFM) analysis, polyacrylamide gels 1, 5, and 10 kPa in stiffness 

were prepared with embedded fluorescent beads, and cellular traction stresses were measured using TFM 
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as previously described (114, 185-187).  Briefly, images of the gels in a stressed and relaxed state were 

taken pre- and post-removal of the cells with trypsin, respectively.  The substrate strains were converted 

to traction stresses using the LIBTRC analysis library developed by Professor Micah Dembo of Boston 

University, who also invented the basic theory that underlies TFM. Polyacrylamide gels of the same 

stiffness were used for immunofluorescence analysis of phosphorylated focal adhesion kinase 

(pFAK[Y397]) as described in staining procedures section.  For studies of the combined effects of 

stiffness and TCM, cells were seeded on 0.2-30 kPa stiff polyacrylamide gels and cultured in either 

control media or TCM for 10 days followed by staining and analysis as further outlined in the staining 

procedures section.  

For studies using RGD-modified alginate substrates, alginate (Protanal LF 20/40, FMC) was 

modified with GGGGRGDSP (Peptides International) as previously described (1).  3%, 1.5%, and 0.75% 

(w/v) solutions of alginate in αMEM were cast between glass plates with 1 mm spacers and crosslinked in 

a solution of 0.1 M CaCl2, 0.01 M HEPES (J.T. Baker) prior to punching out topographically flat disks 1 

cm in diameter.  The aggregate moduli of these gels were measured on a mechanical tester (ELF 3100, 

Bose) under radial confinement and uniaxial compression at 15 % strain.  Cells were seeded on top of the 

gels and cultured in well plates. For analysis of cell numbers and adipogenic differentiation, cells were 

harvested by dissolving these constructs in 50mM EDTA (J.T. Baker) in PBS and analyzed as described 

above. To analyze VEGF secretion, cell-seeded gels were transferred to a new culture dish (containing 

fresh media with 1% FBS, 1% antibiotic). After 24 hours, media and cells were collected and analyzed as 

described above. 

 

In vivo studies 

Media, ASCs and/or MDA-MB231 cells (1 x 106 in 20 µL of DMEM/ Ham’s F-12, 10 % FBS, 1 % 

antibiotic) were injected into the cleared mammary fat pad of at least six 3 week-old female SCID/NCr 

mice (Charles River Labs, 01S11) (2 tumors per mouse) per condition in accordance with Cornell 
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University animal care guidelines. Explants were harvested 6 weeks after implantation, imaged, weighed, 

and divided for subsequent formalin-fixation/paraffin-embedding and lysis in T-PER buffer (Pierce). 

H&E-stained sections were broadly evaluated for pathological features of malignancy. Cross-sections 

were characterized further via immunohistochemical staining for CD31, α-SMA, procollagen I, and 

desmin, while collagen was stained via Masson’s Trichrome. Staining procedures and image analysis 

methods are described in the following sections. VEGF and IL-8 content in lysates was measured via 

VEGF and IL-8 DuoSets (R&D) and normalized to protein content as determined via BCA protein assay 

(Thermo Scientific). 

 

Staining procedures  

For immunocytochemistry, formalin-fixed cells were rinsed with 0.05% Triton-X in PBS (PBS-X) 

followed by incubation with 2% BSA in PBS-X (PBS-X/BSA) for blocking. Afterwards, the cells were 

incubated with the desired primary antibody diluted in PBS-X/BSA overnight at 4°C. Following two 

washes in PBS-X, samples were incubated with secondary antibodies diluted in PBS-X/BSA for 1 h at 

room temperature. The following primary antibodies were used: rabbit anti-mouse PPARγ (Cell 

Signaling), rabbit anti-FAK [pY397] (Invitrogen), mouse anti-α-SMA (Abcam), rabbit anti-procollagen I 

(SP1.D8, Developmental Studies Hybridoma Bank, Univ. of Iowa), and rabbit anti-collagen I (Millipore). 

DAPI was used as a nuclear counterstain, Alexa Fluor 488 or 568 served as the secondary antibody, and 

Alexa Fluor 568-conjugated phalloidin enabled detection of the F-actin cytoskeleton (all from 

Invitrogen). Imaging was performed on a Zeiss Observer Z.1 microscope and AxioCam MRm camera 

unless otherwise noted. Cells cultured within collagen gels and stained with α-SMA primary and 

AlexaFluor 488-conjugated secondary antibody, phalloidin, and DAPI were imaged on a Zeiss 710 

Confocal Microscope. 

Paraffin sections of in vivo samples were subjected to antigen retrieval treatments (proteinase K 

[Dako] for CD31 staining, antigen retrieval system [Dako] for α-SMA, and 0.1M citrate buffer for 
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alternate stains) prior to standard immunostaining procedures.  Subsequently, samples were rinsed and 

blocked in 0.05% Tween-20 PBS (TBST) with SuperBlock (Thermo Fisher). An additional blocking 

treatment was required for α-SMA and procollagen I staining using M.O.M kit (Vector laboratories) and 

Vectastatin ABC kit (Vector laboratories), respectively. In addition to those previously listed, rat anti-

CD31 (Pharmingen), mouse anti-α-SMA (Invitrogen), and rabbit anti-desmin (Abcam) were used. For 

CD31 staining, the TSA biotin system (PerkinElmer) was used for signal amplification. For DAB-based 

immunohistochemistry, peroxidase activity was blocked using 3% hydrogen peroxide and an HRP-

conjugated secondary antibody (Novus) and 3,3´-diaminobenzidine (DAB) substrate kit (Thermo Fisher) 

was used for color development. Samples were counter-stained with Gill’s hematoxylin (EMD 

chemicals). IgG isotopes and primary antibody-lacking sections served as negative controls. 

For picrosirius red staining, 4 µm thick sections of paraffin–embedded tissue were stained with 

0.1% Sirius red F3B (Sigma) in saturated picric acid for two hours at room temperature followed by 

washes in 1% acetic acid and distilled water. Stained sections were imaged with a Nikon Eclipse TE2000-

S microscope equipped with a rotating filter for polarized light under 10x magnification. Microscope 

setting (light intensity, exposure time, condenser opening, gain, and gamma parameter) was identically 

applied to all samples. 

 

Image Analysis 

For image analysis, raw data images of in vitro samples and histological cross-sections were 

utilized. Background staining was excluded from images of various samples prior to isolating positive 

pixels of interest using Adobe Photoshop.  Isolated positive pixels were then quantified in ImageJ (NIH). 

Positive pixel density was averaged for 8-10 representative images per sample for 4 samples per in vitro 

condition and for 15-20 representative images per explant. Staining intensity was normalized to cell 

number as determined by semi-automated counting of DAPI-stained nuclei utilizing ImageJ. Alpha-SMA 

positive cells in in vitro samples were manually quantified. Cell alignment was determined by using 
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ImageJ to measure the angle of lines drawn through the long axis of up to 20 randomly selected cells per 

image.  The average cell angle was then calculated for each image, and the individual cell deviation from 

the average was computed and plotted. For all conditions, a total of 8-10 images were examined per 

sample with 4 samples per condition. 

Collagen fiber maturity in picrosirus stained sections was analyzed by their birefringence color 

appearing as red/orange, green, or blue/white according to fiber thickness. The birefringence color pixels 

(red, green, and blue) of collagen fibers were segmented using RGD stacks in ImageJ and the separated 

pixels were quantified. Threshold was manually adjusted based on grayscale images, and kept constant 

throughout all samples. Five to six images were analyzed per tumor for a total of three tumors per 

condition. 

 

Multiphoton Second Harmonic Generation Imaging and Analysis 

Multiphoton microscopy was performed on a previously described, custom-built multiphoton 

microscope (188). Tumor samples were fixed in placed, immersed in PBS, and imaged with 780 nm 

illumination using an Olympus 20x/0.95W XLUMPlanFl objective. For each specimen, six Z-series (2 

µm steps, from 60 μm to 100 µm deep) were acquired. Emissions were separated into SHG (360-405 nm, 

pseudocolored blue) and autofluorescence (420-550 nm, pseudocolored yellow) channels. Only the SHG 

channel was used for image quantification of collagen matrix properties. In order to analyze the mean 

structural characteristics of the collagen matrix, a 2D spatial autocorrelation was computed from the SHG 

channel image. An isocontour was fit to 1/e of the maximum value of each image autocorrelation. The 

mean radius of this isocontour (the mean correlation distance in the image) indicates the size scale of the 

collagen framework in any image. For the collagen fibril linearity (FL) assessment, individual fibrils were 

traced throughout each Z-stack. Specifically, both the full-length and the shortest distance between fibril 

ends were measured using Fiji (a packaged version of ImageJ). The ratio of the linear distance over the 

full fibril length was calculated to be the collagen FL. 30-50 fibrils per z-stack were measured, and the 
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collagen FL of each condition was obtained by averaging the FL of 4 z-stacks in each tumor.  A total of 3 

tumors per condition were analyzed. 

 

Dynamic Mechanical Thermal Analysis of tumor sections 

Fixed tumors were cut with a vibratome into sections ranging from 0.7 to 2.7 ± 0.1 mm in thickness 

as determined optically. These sections were punched into cylindrical thick sections of 2.6 ± 0.1 mm in 

diameter, fixed between the Dynamic Mechanical Thermal Analyzer (DMTA) parallel plates, and 

fully immersed in PBS in a standard submersion-compression clamp configuration at room temperature 

(25oC). A controlled force was applied by the upper plate while the lower plate held the sample in a fixed 

position. Two series of compressive tests were then run on each tumor sample following an initial 

application of 9% pre-strain to ensure full sample engagement and homogeneous compression before 

measurement. In the first series, the maximum force applied was set at 0.01 N to exclusively probe the 

low-strain (9-14%) elastic regime to avoid plastic deformation, while it was set at 0.4 N in a second series 

to investigate the full elastic regime and the onset of material to plastic deformation (up to 30% strain). 

The rate of force application was kept constant at 0.025 N/min in all tests. The force F (force sensitivity 

of 0.001 N) and thickness L (distance resolution of 0.05 µm) were measured simultaneously and 

converted into engineering stress-strain plots as follows: strain,  ε=(Lo-L)/Lo (where Lo is the initial zero-

strain sample thickness and L the thickness during compression) and stress, σ=F/Ao (where F is the force 

during compression, and Ao the initial zero-strain sample cross-sectional area). The mean Young’s 

modulus, E, was obtained for each sample from the slope of the stress-strain curve, σ = E ε in the low-

strain (9-14%) elastic regime.   

 

Analysis of the Effect of Altered Progenitor Cell ECM 

3T3-L1-derived matrices were prepared as previously described (189).  More specifically, 3T3-L1s 

were seeded in 12-well plates and cultured for 8 days in either TCM or control media supplemented with 
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50 µg/mL ascorbic acid (Sigma) with media changes every other day. On day 8, the matrix was incubated 

at 37oC for 15 minutes in extraction buffer (20 mM NH4OH and 1% Triton-X in PBS). After washing in 

deionized (DI) H20 and PBS followed by blocking with 1% BSA, Vybrant DiO (Invitrogen)-labeled 

MDA-MB231 cells were seeded atop the matrix. pROCK signaling was inhibited by supplementing 

culture media with 20 µg/mL Y-27632 (Tocris).  The number of MDA-MB231 cells was assessed by 

counting 10 images per sample for 6 samples per condition. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5©.  Student’s t-tests were used to 

compare two data sets while ANOVA was applied to determine the statistical significance of the 

differences between data sets of 3 or more using the Tukey method to make post-hoc pairwise 

comparisons.  A p-value less than 0.05 was considered statistically significant. Data are represented as 

average ± standard deviations with the exception of the traction force measurements which are shown 

with standard errors. 

 

4.5 Results and Discussion 

TCM regulates the adipogenic and pro-angiogenic capability of ASCs 

To evaluate the effects of tumor cell-secreted soluble factors on ASC behavior, human ASCs 

were cultured in conditioned media (TCM) from commonly used highly (MDA-MB231) or less (MCF-7) 

aggressive human breast cancer cell lines. Additionally, mouse 3T3-L1 preadipocytes – a well-

characterized cell model for studies of adipogenesis (89) – were used to verify the broad implications 

from primary ASC studies. Analysis of cell numbers and BrdU incorporation suggested that tumor-

secreted factors promoted ASC and 3T3-L1 proliferation (Figures 4.1A and 4.2A). In contrast, these 

factors inhibited adipose differentiation of both cell types, as indicated by attenuated activity of the 
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lipogenic enzyme GPDH (Figure 4.1B), reduced activation of the key adipogenic transcription factor 

PPARγ (Figure 4.2C), and inhibition of lipid droplet accumulation (Fig. 4.2B). An experiment in which 

ASCs and 3T3-L1s were first exposed to TCM and then evaluated for VEGF secretion further suggested 

that exposure to tumor-derived soluble factors enhances pro-angiogenic factor release by these cells 

(Figure 4.1D). This increased pro-angiogenic potential is relevant to tumor angiogenesis as tumor-

preconditioned ASCs and 3T3-L1s significantly enhanced VEGF-dependent migration of human 

umbilical vein endothelial cells (HUVECs) as compared to control cells (Figure 4.1E). Notably, the 

magnitude of these changes directly correlated with tumor aggressiveness since MDA-MB231-TCM 

induced greater phenotypic changes than media collected from MCF-7 cultures (Figures 4.1 and 4.2). 

Comparison of effects mediated by isogenically matched normal MCF10A, premalignant MCF10AT, and 

fully malignant MCF10ACA1a cells confirmed these results. Specifically, premalignant cells had no 

significant effect on ASC adipogenic differentiation and VEGF secretion, but promoted ASC 

proliferation, whereas MCF10ACA1a cells mediated outcomes similar to MDA-MB231 (Figure 4.2C-E). 

The described observations were broadly relevant as TCM collected from two murine mammary tumor 

cell lines (177) also enhanced the proliferative and pro-angiogenic phenotype of adipose progenitor cells, 

and inhibited adipose differentiation (Figure 4.3A-C).  

To assess whether tumor cells actively recruit ASCs, we performed a transwell migration assay 

with TCM, which revealed that tumor cells attract adipose progenitor cells towards their respective 

location by enhancing their directed migration (Figure 4.3D). Collectively, these data suggest that tumor 

cell-secreted soluble factors enhance the pro-angiogenic cell population in the tumor stroma by guiding 

ASC behavior. As TCM similarly modulated ASC and 3T3-L1 behavior, and because data generated with 

primary cells are typically more robust and generalizable the studies described in the following 

experiments were primarily performed with ASCs. 
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Figure 4.1 Tumor-secreted soluble factors regulate ASC function 

(A) TCM from MCF-7 and MDA-MB231 increases 3T3-L1 and ASC cell numbers relative to control (n 

= 4). (B) TCM treatment significantly decreases the adipogenic capability of 3T3-L1 and ASCs relative to 

control as determined by spectrophotometric analysis of GPDH activity (n = 4). (C) Immunofluorescence 

analysis of the transcription factor PPARγ in 3T3-L1s confirmed that TCM inhibits adipogenic 

differentiation (Scale bar = 20 µm). (D) ELISA suggested that ASCs and 3T3-L1s increase VEGF 

secretion when pre-conditioned with TCM from either MCF-7 or MDA-MB231 (n = 4). * p < 0.05 from 

control; ♦ p < 0.05 from MCF-7 condition. (E) 3T3-L1s and ASCs that were previously pre-conditioned 

with TCM from MDA-MB231 enhanced HUVEC migration in a transwell assay as compared to 3T3-L1s 

and ASCs pre-conditioned with control media; addition of a VEGF neutralizing antibody decreased 

migration to control levels (n = 4). * p < 0.05 from all other conditions of the same cell type. 
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Figure 4.2 Tumor-secreted soluble factors alter ASC functions 

(A) TCM from MCF-7 and MDA-MB231 enhanced ASC proliferation as assessed by quantification of 

BrdU positive cells (Scale bar = 50 µm). (B) Differentiation of ASCs in control medium resulted in large 

lipid droplet formation, whereas ASCs cultured in TCM from MCF-7 or MDA-MB231 exhibited 

decreased lipogenesis, evidenced by diminished Oil Red O-staining (Scale bar = 50 µm). (C) 

Quantification of BrdU positive ASCs after culture in conditioned media of isogenically matched 

MCF10A (normal), MCF10AT1 (premalignant), and MCF10ACA1a (malignant) cells confirms that 

increased ASC proliferation represents a function of tumor malignancy (Scale bar = 50 µm). (D) 

Adipogenic differentiation of ASCs in conditioned medium from normal and premalignant cells resulted 
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in lipid droplet formation, whereas ASCs cultured in TCM from MCF10ACA1a cells exhibited decreased 

lipogenesis, evidenced by diminished Oil Red O-staining (Scale bar = 100 µm). (E) MCF10ACA1a TCM 

also significantly increased VEGF secretion by ASCs as measured by ELISA (n = 4). * p < 0.05 from 

control condition; ♦ p < 0.05 from MCF10A condition. 

 

 

Figure 4.3 Effect of tumor-derived soluble signals on 3T3-L1 cells 

(A) Cell counting indicated enhanced 3T3-L1 cell numbers with TCM supplementation from two mouse 

breast cancer cell lines (MCN1, MCN2) as compared to control medium (n = 4). (B) Adipogenic 

differentiation significantly decreased with murine TCM treatment relative to control conditions as 

assessed by spectrophotometric analysis of GPDH activity and Oil Red O staining (n = 4) (Scale bar = 20 

µm). (C) Murine TCM also significantly increased VEGF secretion by 3T3-L1s as measured by ELISA (n 

= 4). (D) Using a transwell assay, 3T3-L1 migration was enhanced towards TCM from MDA-MB231 and 

MCF-7 as compared to control medium (n = 3). * p<0.05 from control; ♦ p<0.05 from MCN2 condition.  
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TCM enhances ASC differentiation into ECM-stiffening myofibroblasts 

Myofibroblasts represent an abundant and pro-angiogenic cellular component of the tumor stroma 

whose differentiation is enhanced in the presence of reduced signaling by the adipogenic transcription 

factor PPARγ (190, 191). Accordingly, ASCs exposed to TCM exhibited increased expression of α-SMA 

relative to control conditions (Figure 4.4A), whereby MDA-MB231 exerted a more pronounced effect 

than MCF-7 (Figure 4.4B). Next, we evaluated whether tumor cell-derived TGF-β (192), which is pivotal 

to myofibroblast differentiation and secreted at higher levels by more malignant tumor cells (193) may be 

involved in inducing phenotypic changes of ASCs. Control media was supplemented with TGF-β at 

levels found in MDA-MB231-TCM, and this treatment induced ASC differentiation into myofibroblasts 

as suggested by immunofluorescence and Western Blot analysis (Figures 4.4 A,C). Furthermore, addition 

of a TGF-β epitope-blocking antibody to TCM abrogated myofibroblast differentiation. While these data 

verify that tumor-secreted TGF-β functions as an upstream mediator of ASC differentiation into 

myofibroblasts (Figure 4.4A) other molecules may also play a role. Comparison of control media as well 

as TCM from MCF-7 and MDA-MB231 via a cytokine antibody array revealed that interleukin-8 (IL-8), 

VEGF, tumor necrosis factor receptor 1 (TNFR1), and matrix metalloproteinase 3 (MMP3) were 

enhanced in the TCM (Figure 4.4D). As IL-8 has been related to myofibroblast differentiation in prostate 

cancer (194) and was enhanced in MDA-MB231 vs. MCF-7 TCM (Figure 4.4E), we assessed its effect on 

ASC myofibroblast differentiation. Results from these studies elucidated that IL-8 regulates ASC 

differentiation into myofibroblasts in a dose-dependent manner (Figure 4.4F). These findings are of 

particular interest as myofibroblasts themselves can up-regulate IL-8 (195), which may further promote 

ASC differentiation into myofibroblasts. 
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Figure 4.4 Effect of tumor-derived soluble factors on ASC myofibroblast differentiation.  

(A) Treatment of ASCs with TCM from MDA-MB231 significantly increased the number of α-SMA 

(green) positive cells as quantified by immunofluorescence image analysis. Addition of TGF-β to control 
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media (control + TGF-β) mimicked this effect, while blockade of TGF-β in TCM using a neutralizing 

antibody (MDA-MB231 - TGF-β) inhibited it (n = 4) (Scale bar = 100 µm) * p < 0.05 from control and 

MDA-MB231-TGF-β conditions. (B) Immunofluorescence analysis indicates that ASCs up-regulate α-

SMA more significantly with TCM from MDA-MB231 as compared to TCM from MCF-7 or control 

cells (n = 4) (Scale bar = 50 µm). (C) Western blot analysis of equally loaded samples shows elevated 

levels of α-SMA in ASCs treated with MDA-MB231 TCM, which were further enhanced by addition of 

TGF-β. (D) Cytokine array analysis indicates increased levels of noted cytokines within TCM as 

compared to control media. (E) ELISA of IL-8 detects greatest levels within MDA-MB231 TCM (n = 3). 

(F) Exposure of ASCs to relevant concentrations of IL-8 increased α-SMA and stress fiber formation 

(insets) in a dose-dependent manner (Scale bar = 200 µm). * p < 0.05 from control (B) or from all other 

conditions (E). 

 

Myofibroblasts mediate tissue stiffening by altering ECM composition and enhancing 

contraction. In particular, increased collagen I deposition has been associated with increased tumor 

stiffness and malignancy (73). Our results support that ASC exposure to tumor-derived paracrine signals 

may contribute to this because ASCs produced significantly more procollagen I (6.0 ± 1.1-fold) and 

collagen I (4.2 ± 1.1-fold) when treated with TCM rather than control media (Figure 4.5). Furthermore, 

ASCs seeded into microfabricated, free-floating 3-D collagen disks differentiated into myofibroblasts, 

developed stress fibers, and contracted significantly more when cultured in the presence of TCM as 

compared to control media (Figures 4.6 B,C). These variations in gel contraction were mediated by 

differences in TCM-mediated changes in myosin-mediated cell contractility rather than proliferation. 

Specifically, pharmacological inhibitors cytochalasin D (i.e., an agent preventing actin polymerization) or 

Y-27632 (i.e., an inhibitor of pROCK and thus RhoA signaling) added at levels not affecting cell viability 

restored the diameter of previously contracted gels (Figure 4.6C), whereas disks cultured in TCM in the 

presence of mitomycin C contracted markedly more than similarly treated control disks (Figure 4.6A). To 



 

88 

more fully elucidate whether the integrated effects of varied ECM deposition and contraction indeed 

contribute to enhanced tissue rigidity, the mechanical properties of ASC-seeded disks were analyzed 

following culture in control or TCM. The shear modulus of these constructs was determined by applying 

a shear force to one side of a sandwiched gel while measuring the displacement of a photobleached line 

within the gel (184). Our results indicate that TCM-treated collagen cultures were 1.5-fold stiffer than the 

control constructs (Figure 4.6D), confirming the effect of tumor-derived soluble factors on ASC-mediated 

changes in tissue stiffness. These changes may be explained by varied matrix contraction and irreversible 

changes in ECM deposition mediated, for example, by increased collagen crosslinking due to enhanced 

lysyloxidase (LOX) expression by myofibroblasts (196) and/or deposition of additional fibrillar ECM 

components such as fibronectin (93). 

 

 

Figure 4.5 Effect of tumor-secreted soluble factors on ASC collagen deposition.  

ASCs cultured in MDA-MB231 TCM exhibited increased collagen type I matrix assembly relative to 

ASCs maintained in control medium as indicated by positive staining for (A) type I procollagen and (B) 

collagen (Scale bar = 20 µm).  

   A 

   

B
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Figure 4.6 Altered matrix mechanics with ASC differentiation into myofibroblasts 

(A) Collagen gels seeded with ASCs contracted significantly more when cultured in TCM as compared to 

control medium (n = 6), which occurred even in the presence of the proliferation inhibitor mitomycin C 

(Scale bar = 500 µm). (B) Confocal imaging revealed that ASCs within these gels developed stress fibers 

necessary to generate contractile tension, but only differentiated into α-SMA positive cells in the presence 

of TCM (Scale bar = 100 µm). (C) Pharmacological inhibition of cytoskeletal tension using cytochalasin 

D and Y-27632 contributed to the release of the contracted gels as determined via an increase in surface 

area (n = 3). (D) ASC-seeded collagen gels cultured in the presence of TCM were significantly stiffer 

relative to gels maintained in control media as determined by confocal-based stiffness measurements (n = 

5) * p < 0.05. 
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ASCs respond to ECM mechanical properties in a tumor-dependent manner 

Both normal and tumorigenic cells respond to increased matrix stiffness by adjusting integrin-

dependent adhesion, traction forces, and subsequent downstream signaling (51, 197) with effects on cell 

proliferation and differentiation (49). To test the ability of ASCs to react to tumor-derived and/or self-

imposed changes in matrix stiffness we evaluated their adhesion characteristics and corresponding 

activation of mechano-regulated signaling pathways using hydrogels of pathologically-relevant stiffness 

(47). Specifically, use of collagen-coated polyacrylamide gels allowed control over mechanical properties 

of the culture substrates without affecting adhesion ligand density, which can independently affect cell 

behavior (198). ASCs spread significantly more on substrates mimicking breast tumor rigidity (~10kPa 

(47)) relative to substrates approximating premalignant (~5kPa) and adipose tissue (~1kPa (47)) stiffness 

(Figure 4.7A). TFM confirmed that these morphological changes were accompanied by greater traction 

forces of ASCs on stiffer relative to more compliant matrices (Figure 4.7A). These observations directly 

correlated with the recruitment of pFAK to focal adhesions (Figure 4.7B), a result of activated Rho-

ROCK signaling due to force-induced changes in adhesion dynamics (199). Accordingly, ASC number 

was greater on stiffer matrices, and administration of cytochalasin D and Y-27632 inhibited this effect 

(Figure 4.7C) confirming that Rho-ROCK mediated changes in cytoskeletal tension enable ASCs to 

respond to ECM stiffness.  

To broadly assess stiffness-dependent cellular responses to a more relevant, biocompatible 

material that can be used for adipose tissue engineering and breast reconstruction applications (200, 201), 

we cultured adipose progenitors on RGD-modified alginate disks similarly mimicking normal, 

premalignant, and cancerous breast tissue stiffness. Interestingly, increased stiffness recapitulated the 

effects of TCM and enhanced cell numbers and VEGF-secretion of these cells, while inhibiting their 

adipogenic differentiation (Figure 4.8). These results are consistent with previous studies, which indicate 

elevated adipocyte conversion on more compliant matrices (49, 131) and with less spread, rounder cell 

morphology (163).  
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Figure 4.7 ASC response to matrix mechanical properties 

(A) Traction Force Microscopy indicated that ASCs cultured on hydrogels of increased stiffness spread 

significantly more and exert greater traction forces relative to cells cultured on soft matrices; 

representative ASC phase images with corresponding traction maps are shown (n = 13-32, error bars 

represent standard errors) (Scale bar = 50 µm) * p < 0.05 from 1 kPa condition. (B) Immunofluorescence 

indicates increased recruitment of pFAK[Y397] to ASC focal adhesions on stiffer matrices (white arrows) 

(Scale bar = 20 µm). (C) Cell counting suggested that increased matrix stiffness enhances ASC numbers 

and that pharmacological inhibition of cytoskeletal tension with Y-27632 or cytochalasin D inhibits this 

effect (n = 4). (D) ASC numbers on stiff matrices were further enhanced with culture in TCM whereby 

TCM from MDA-MB231 exerted a more pronounced effect than TCM from MCF-7 (n = 3) * p < 0.05 
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between all conditions; + p < 0.05 between MDA-MB231 and control conditions. (E) Image analysis of 

the deviation from the average angle of phalloidin-stained cells revealed that ASC alignment represented 

an integrated effect of both substrate stiffness and tumor malignancy; while ASCs on 30 kPa gels had 

enhanced alignment in MCF-7 TCM, this occurred on gels of even lower stiffness in MDA-MB231 TCM. 

(Scale bar = 50 µm) * p < 0.05.  

 

 

 

Figure 4.8 Effect of matrix stiffness on adipose progenitors 

Culture of 3T3-L1s on RGD-modified alginate hydrogels mimicking stiffness of normal (compliant, ~1.8 

kPa), moderately diseased (~5.2 kPa) and malignant breast tissue (stiff, ~12 kPa) demonstrate that matrix 

mechanical properties mediate similar effects on adipose progenitors as tumor-derived soluble factors. 

(A) Enhanced matrix stiffness increased cell numbers (n = 8), (B) decreased adipogenesis as determined 

by GPDH analysis and Oil Red O-staining, (n = 3), and (C) enhanced VEGF secretion as measured by 

ELISA (n = 4). * p < 0.05 from compliant condition. ♦  p < 0.05 from moderate condition (Scale bar = 50 

µm). 
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To investigate whether tumor-secreted soluble factors enhance ASC response to ECM rigidity, 

ASCs were cultured on polyacrylamide substrates of a broad range of stiffnesses (0.2-30 kPa)), in the 

presence or absence of TCM from MCF-7 or MDA-MB231. Cell growth was commensurate with 

increasing stiffness whereby the level of tumor malignancy affected ASC stiffness response. More 

specifically, TCM from the more malignant MDA-MB231 cells increased cell growth on gels of lower 

stiffness relative to TCM of the less malignant MCF-7 (Figure 4.7D). Furthermore, the combined effects 

of ECM stiffness and tumor-derived soluble factors promoted cellular alignment on stiffer, but not soft, 

matrices, and this effect was more pronounced with TCM from MDA-MB231 than MCF-7 (Figure 4.7E). 

Collectively, these results suggest that tumor-secreted factors dramatically enhance adipose-derived stem 

cell responses to stiffness leading to (i) an increased contractile cell population, and (ii) directed force 

generation (202), which may ultimately exacerbate tumor rigidity and hence malignancy.  

 

ASCs modulate tumor progression in vivo 

To determine the relevance of our in vitro findings to tumor growth in vivo, ASCs and MDA-

MB231 cells were injected individually or in combination into the cleared mammary fat pad of 

immunocompromised mice. Co-injection of MDA-MB231 with ASCs yielded larger tumors than delivery 

of tumor cells alone in accordance with previous results (123, 203) (Figure 4.9A). In contrast, injected 

ASCs largely formed adipose tissue, as seen in histological sections (Figures 4.9C and 4.13A, B), that 

was similar in size to explants from sham-injected media suggesting that the difference in tumor size was 

caused by varied tumor malignancy rather than the additional volume assumed by the co-injected ASCs 

(Figure 4.9A). Furthermore, tumors resulting from the mixture of ASCs and MDA-MB231 cells appeared 

more locally invasive upon explantation relative to MDA-MB231-borne tumors, which were easily 

demarcated for dissection. Pathological evaluation of H&E-stained cross-sections confirmed this 

assessment and revealed an enhanced degree of local invasion and desmoplasia for the co-implanted 

tumors versus the control tumors (Figures 4.10A, B). Additionally, cytological features of malignancy 
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(multinucleated cells and rosettes) were augmented in the co-implanted group as compared to the MDA-

MB231 group (Figure 4.10C).  

 

 

Figure 4.9 ASCs modulate tumor progression in vivo.  

(A) Tumors resulting from the co-injection of ASCs and MDA-MB231 cells (Both) (n = 14) were 

significantly larger than tumors formed by MDA-MB231 cells alone (n = 16). Soft tissue explants 

generated from injected ASCs (n = 12) or Media (n = 2) are shown for a comparison (Scale bar = 5 mm). 

(B) Immunofluorescence analysis indicates that α-SMA levels were greatest in the explants resulting 

from co-implantation of ASCs and MDA-MB231 cells as compared to those from MDA-MB231 and 

ASCs alone (Scale bar = 50 µm). (C) Similarly, the density of CD31+ blood vessels was enhanced in 

explants from the co-implanted group (Scale bar = 20 µm). For α-SMA and CD31+ image analysis, ASC 

(n = 6), Both (n = 6), and MDA-MB231 (n = 12) explants were analyzed. (D) Mechanical analysis of 

tumor sections via DMTA. The mean stress-strain profile was measured in PBS at room temperature 

through the low-strain (9-14%) elastic regime. The engineering stress σ versus strain ε curve represents 

the average of 2 compressions per tumor section performed on 4 tumor sections from MDA-MB231 

alone, and 9 tumor sections from the co-implantation group (see Materials and Methods). The mean 

Young’s modulus, E, was extracted from the slope of the stress-strain curve, σ = E ε. (E) Compared to 
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tumors from MDA-MB231, co-injected tumors contain more mature and linearized collagen fibers as 

revealed by picrosirius red staining of cross-sections and second harmonic generation (SHG) imaging 

(Scale bar = 100 µm), which is further quantified in Fig. S9. For (A-C) *p < 0.05 from ASCs condition; 

♦p < 0.05 from MDA-MB231 condition. 

 

 

Figure 4.10 ASCs modulate tumor progression in vivo 

Representative H&E sections of tumors resulting from co-injection of ASCs and MDA-MB231 cells 

(Both) (n = 7) or MDA-MB231 cells alone (n = 8) scored for pathological features of malignancy are 

shown (Scale bar = 40 µm). P-values were calculated from the total population of scores for each section 

type. (A) Co-implanted tumors exhibited enhanced local invasion relative to MDA-MB231 tumors as 

evidenced by indistinct tumor boarders. Tumor cells infiltrated and separated skeletal myofibers (*) and 
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often surrounded atrophic skeletal myofibers (→). (B) Enhanced desmoplasia in the co-implanted group 

was evident as variably sized, pale to brightly eosinophilic, loose bands of connective tissue (→) scattered 

within the tumor. Additionally, rossettes (*) which indicate an anaplastic phenotype in tumors, were 

evident in the co-implanted tumors. (C) Multinucleated tumor cells (→), indicating the breakdown of cell 

division machinery, are also more evident in the co-implanted tumors as compared to MDA-MB231 

tumors alone. 

 

To correlate variations in tumor growth with differences in myofibroblast differentiation, 

immunohistochemical analysis was performed, which confirmed that the density of α-SMA 

myofibroblastic cells (Figure 4.9B) was increased in tumors originating from co-injection of both cell 

types rather than tumor cells alone. Circulating ASCs can be recruited to and associate with blood vessels 

in the form of α-SMA pericytes (204). In our co-implantation studies, however, immunohistochemical 

analysis of desmin, a pericyte marker (205), verified that the majority of α-SMA positive cells were 

myofibroblasts rather than pericytes as desmin staining showed no significant difference (p=0.33) 

between co-implanted and control tumors. Nevertheless, blood vessel density was greater in the co-

implantation group (Figure 4.9C), and ELISA of tumor lysates suggested that ASC/myofibroblast 

secretion of pro-angiogenic VEGF and IL-8 (174, 195) may have contributed to these differences (Figure 

4.11).  

  



 

97 

 

 

Figure 4.11 ASCs increase pro-angiogenic factor levels in tumors 

(A) VEGF and (B) IL-8 content was enhanced within tumors containing ASCs as compared to those from 

only MDA-MB231 cells as revealed by ELISA of lysates. * p < 0.05 from ASC condition; ♦  p < 0.05 

from MDA-MB231 condition. ASC (n = 6), ASC/MDA mixture (n = 6), and MDA (n = 12) implants 

were analyzed. 

 

To evaluate if varied myofibroblast content correlated with increased stiffness, we determined the 

mechanical properties of the different tumors via DMTA compression tests on tumor sections, in the 

elastic regime of deformation. The mean Young’s modulus (E) was more than 50% higher in tumors 

generated by co-implantation of ASCs than in those generated in the absence of ASCs (3.1 ± 1.2 kPa vs. 

2.0 ± 0.8 kPa, P < 0.04) (Figures 4.9D and 4.12). Data from the full elastic and plastic regime of 

deformation (Figure 4.12B) additionally indicated that tumors from the co-implanted group exhibit both 

higher stiffness and a smaller range of elastic (reversible) deformation than tumors grown without ASCs. 

Consistent with these results, tumors resulting from co-injection contained more procollagen I and 

collagen (Figures 4.13A, B), were characterized by enhanced collagen fibril maturity and linearity 

(Figures 4.13C, D), and likely also comprised increased fibronectin (93). Such changes are indicative of 

enhanced desmoplasia and aggressiveness (73) and may further contribute to ASC-mediated changes in 

tumor growth; decellularized matrices of TCM-preconditioned adipose progenitors increased tumor cell 

growth relative to matrices from control cells in a manner dependent on generation of cytoskeletal tension 
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(Figure 4.13E). Nevertheless, additional conditions including paracrine signaling between ASC-derived 

cells and tumor cells may also contribute to the observed changes in tumor growth in our studies (123). 

 

 

Figure 4.12 ASCs increase tumor stiffness 

Tumors formed in vivo by MDA-MB231 alone (MDA-MB231) or MDA-MB231 in the presence of ASCs 

(Both) were analyzed for stiffness via DMTA of cross-sections in PBS at room temperature (n = 8-18). 

(A) The lines within the boxes indicate the mean Young’s modulus for each condition, while the colored 

boxes span the 25th to 75th percentile. The whiskers correspond to the maximum and minimum measured 

Young’s modulus values. The mean Young’s modulus of the tumor sections from the co-implanted group 

(Both = 3.1 ± 1.2 kPa) is approximately 50% higher than that of the sections from the tumors grown 

without ASCs (MDA = 2.0 ± 0.8 kPa). (B) DMTA mean stress-strain profiles of tumor sections over the 

full regime of elastic and plastic deformation (n = 4-9). The boxed-in area corresponds to the low-strain 

(9-14%) regime from which the Young’s moduli (shown in A) were extracted. Tumors from the co-

implanted group (Both) exhibit not only higher moduli but also a smaller range of elastic deformations, 

i.e., earlier onset to plastic deformation than tumors grown without ASCs (17% versus 23%), and more 

pronounced stiffening prior to rupture, as indicated by the steeper stress-strain slope at high strains in the 

co-implanted group. * p < 0.05 from MDA-MB231. 
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Figure 4.13 ASCs enhance tumor growth by modulating collagen deposition and structure 

(A) Immunohistochemical analysis of tissues subjected to co-injection of ASCs and MDA-MB231 cells 

(Both) or either cell type alone indicated increased collagen synthesis with co-injection, as indicated by 

greater levels of the precursor type I procollagen (brown). (B) Masson’s Trichrome staining confirmed 

greater collagen deposition (blue) in tumors formed by both ASCs and MDA-MB231 cells as compared 
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to tumors formed by MDA-MB231 only. For procollagen I and collagen image analysis, ASC (n = 6), 

ASC/MDA mixture (n = 6), and MDA (n = 12) implants were analyzed (Scale bar = 20 µm). (C) Images 

captured from picrosirius red-stained cross-sections via polarized light microscopy (as shown in Figure 

4.9E) were analyzed for non-collagen (white), immature/thin collagen (green), and mature/thick collagen 

content. Co-implanted tumors (Both) contained more mature collagen fibrils than control tumors. (D) A 

2D spatial autocorrelation analysis based on SHG images showed that the average collagen framework 

size (autocorrelation mean radius) in the ASC-containing tumor explants (Both) was significantly greater 

than their counterparts (MDA-MB231) (Scale bar = 100 µm). Additionally, analysis of fibril linearity (a 

ratio of the shortest distance to the full-length between fibril ends) indicated that collagen fibrils in tumors 

from the co-implantation group (Both) were straighter than those from control tumors. For picrosirius red 

and SHG image analysis, MDA-MB231/ASC (n = 3) and MDA-MB231 (n = 3) explants were analyzed. 

(E) MDA-MB231 grew more on decellularized matrices from MDA-MB231-conditioned 3T3-L1 than 

matrices from 3T3-L1 preconditioned with control media. These differences were related to varied 

cytoskeletal tension as treatment with the pROCK inhibitor Y-27632 inhibited this effect (n = 6). ♦ p < 

0.05 from MDA-MB231 condition; * p < 0.05 from control. 

 

4.6 Conclusions: 

Breast cancer cell signaling may undermine normal ASC function to form a physicochemical 

microenvironment that promotes tumorigenesis. Epidemiologically, controversy still exists as to whether 

fat grafting procedures contribute to recurrence of breast cancer (206). Our findings suggest this 

possibility and long-term follow up studies will be needed in which not only the use of ‘simple’ fat, but 

implants concentrated with ASCs are evaluated. Additionally, the results presented herein provide a 

possible explanation for why obesity - associated with an increased pool of ASCs - represents a risk factor 

for breast cancer (207, 208), and highlight novel design parameters for ASC-based breast reconstruction. 

Specifically, ASCs are frequently applied using relatively rigid biomaterial scaffolds or hydrogels (209, 
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210), but vehicles mimicking the mechanical properties of adipose tissue and potentially co-delivery of 

morphogens are needed to ensure adipose tissue functionality. In particular, PPARγ agonists may 

represent attractive candidate molecules due to their ability to promote adipogenesis, while inhibiting 

myofibroblast differentiation (191). Determination of whether tumor-related changes of ASC functions 

are due to selective mechanisms or cell fate instruction will also be needed to help increase the safety of 

such applications. Although the goal of the present study was to better define the physicochemical 

contributions of ASCs to breast cancer, a variety of other cancers may also depend on such phenomena. 

Because ASCs can be activated and released into the circulation to participate in tumor progression at 

spatially distinct sites they may, for example, impair the prognosis of prostate (211) and colorectal cancer 

patients (212). Collectively, therapeutic application of ASCs independent of site should be carefully 

considered in patients previously treated for cancer, and the use of cell delivery vehicles accurately 

mimicking non-tumorigenic microenvironmental conditions should be a prerequisite.  
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CHAPTER 5 

CONCLUSIONS 
 

 This body of work presents findings on the role of ASCs in breast tumorigenesis.  These findings 

are broadly applicable to both the fields of regenerative tissue-engineering as well as cancer biology.  The 

response of ASCs to signals derived from tumors in the form of soluble secreted molecules and 

extracellular matrix (ECM) stiffness was measured to assess whether changes in ASC behavior as a result 

of these signals could contribute to produce a pro-tumorigeneic microenvironment.  As ASCs are found 

within the local host tissue surrounding breast tumors, gaining an understanding of the changes in their 

behavior when signaled by tumors may provide insight into potential therapeutic targets.  Furthermore, 

the regenerative potential of ASCs is immense; however, without a complete understanding of the 

potential of these cells, implanted ASCs may have detrimental off-target outcomes. Three main questions 

were addressed through this work to analyze the changes in the behavior of tumor associated (TA-) ASCs 

as outlined in the sub-hypotheses in section 1.8.  

 

5.1 ASCs promote tumor stiffening by altering the composition of the ECM 

 Initially, the ability of TA-ASCs to alter the fibronectin (Fn) ECM structure and composition as a 

result of tumor-derived chemical cues was assessed.  To this end, both biochemical assays and 

fluorescence resonance energy transfer (FRET) techniques were implemented to measure Fn density and 

conformation (Chapter 2). Additional work looking at the altered collagen composition and structure 

within the tumor-ECM in the presence of ASCs was presented in Chapter 4.  This work together indicates 

that as hypothesized, ASCs do promote tumor stiffening by altering the composition and structure of the 

ECM.   

For the initial study, changes were seen in the Fn ECM produced by ASCs in response to tumor-

derived chemical cues.  More specifically, the amount of Fn within an in vivo model of human ASCs and 
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an in vitro model of mouse 3T3-L1preadipocytes was increased in the presence of breast tumor.  After 

seeing an enhancement to the Fn density within tumors due to TA-ASCs, further investigations into the 

protein conformation were conducted.  These studies showed conformational changes to this Fn matrix.  

FRET analysis indicated that the Fn within TA-3T3-L1-derived matrices, as compared to normal 3T3-L1-

derived matrices, was in a more unfolded conformation. This work shows that phenotypic changes in 

ASCs that occur as a result of tumor-derived chemical cues lead to increased unfolding of Fn, which 

results in overall Fn fiber stiffening.  While we can directly correlate Fn conformation to fiber stiffness, in 

this work we do not directly show that this results in a total matrix stiffening. TGF-β, which is secreted at 

high levels by many breast cancer cells, was largely responsible for this phenotypic change in the 3T3-L1 

behavior and resultant Fn matrix changes.  In addition to Fn matrix changes, TA-ASCs were also shown 

to produce a more collagen rich tumor ECM, full of elongated fibrils.  Stiffness measurements, as shown 

in Figure 4.12, further confirm that the presence of ASCs does lead to stiffer tumors, which is likely due 

to the aforementioned ECM protein changes. With an indication that TA-ASCs contribute to tumor 

stiffening, further analysis of the impact that tissue stiffness has on the function of ASCs was necessary. 

 

5.2 Enhanced tissue stiffness, as seen in tumors, alters ASC function 

Next, the ability of the enhanced tissue stiffness as seen at the tumor-host interface to signal these 

host tissue cells was assessed using a novel photo-crosslinked alginate system (Chapter 3).  Additional 

experiments using Ca2+ cross-linked alginate gels as well as polyacrylamide gels in Chapter 4 also show 

that, over the range of normal to malignant breast tissue stiffness, the behaviors of ASCs is altered.  This 

work confirms the second sub-hypothesis that the enhanced tissue stiffness, as seen in tumors, does alter 

ASC function. 

  To enable measurement of the impact of ECM stiffening on the behavior of ASCs, independent 

of other changes within the ECM that occur when tissue density is increased, namely augmented cell 

adhesion site density, a novel photo-crosslinked alginate gel system was developed.  This is in contrast to 
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Ca2+-crosslinking methods generally implemented (as used in Chapter 4) where varying polymer 

concentrations are used to modify stiffness, and thus lead to differences in adhesion site density though 

conditions.  By seeding 3T3-L1 cells within these alginate gels of stiffness ranging from that of normal to 

malignant breast tissue, changes in ASC behavior as a function of ECM stiffness were studied.  The 

combination of studies presented in Chapters 4 and 5 show that over this range of tissue stiffness, ASC 

behavior is altered.  Specifically, increased stiffness enhances proliferation and pro-angiogenic secretion 

of ASCs while diminishing differentiation into the mature cell type of adipose tissue, adipocytes.  

Furthermore, these changes are dependent on the utilization of the Rho/ROCK signaling pathway.   

These findings have significance for a variety of ASC applications ranging from the design of 

scaffolds for regenerative approaches to the impact of TA-ASCs within stiff ECMs as seen at sites of 

inflammation and disease.  When utilizing ASCs for tissue-engineering applications, one must consider 

the stiffness of the implanted material and/or the tissue surrounding the implantation site to ensure that the 

ASCs remain efficacious.  Additionally, with the potential for these cells to contribute to tissue changes as 

a result of stiffness, their role at the sites of inflammation and diseases like cancer where enhanced 

stiffness is a hallmark of the disorder, should be more clearly delineated.  In order to more fully capture 

the role of ASCs in breast tumorigenesis, a comprehensive assessment of the ability of these cells to alter 

the tumor stroma was then further examined. 

 

5.3 The physicochemical cues of breast tumors promote ASC pro-tumorigenic behaviors 

In a final comprehensive assessment, the ability of ASCs to assume a myofibroblastic phenotype 

within the tumor microenvironment and thus contribute to the desmoplastic response in tumors was 

measured (Chapter 4).  This change in ASC phenotype was due to the combination of chemical and 

mechanical cues from breast tumors and as stated in the third and final sub-hypothesis these tumor-

derived cues do enhance the pro-tumorigenic behavior of ASCs. In total, these studies indicate that 

physicochemical cues within the breast tumor microenvironment produce a pro-tumorigenic phenotypic 
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change in ASCs.   

 To rigorously assess the role of ASCs in altering the tumor stroma, ASCs were cultured in 

conditions to mimic both the chemical and mechanical cues that TA-ASCs would encounter.  Notably, the 

soluble factors produced by tumor cells initially lead to changes in ASC behavior similar to those seen in 

response to enhanced tissue stiffness.  With further investigation, we showed the ability of TA-ASCs to 

assume a myofibroblast phenotype, in a TGF-β-dependent manner, and further stiffen the ECM through 

deposition and matrix contraction.  This was consistent with the findings of increased Fn fiber stiffness in 

the matrices of TA-3T3-L1 cells (Chapter 2).  Furthermore, the ability of these cells to then respond to 

these chemical cues was heighted in the presence of the increased stiffness of malignant breast tissue.  To 

ensure the relevance of these in vitro findings, an orthotopic murine model was used which further 

verified that TA-ASCs contribute to tumor growth and stiffening. These cumulative results indicate that 

ASCs are induced to take on an altered phenotype in response to tumor-derived chemical and mechanical 

cues and this phenotypic change further propagates the production of a pro-tumorigenic 

microenvironment through a positive feedback loop mechanism (Figure 5.1). 

 As a result of this work the scientific community has gained a greater appreciation for the role 

that chemical and mechanical cues play in altering the function of ASCs.  In the context of tissue-

engineering, these findings indicate that ASC differentiation and pro-angiogenic behaviors can be 

controlled in part through the mechanical character of a material.  As the vascularization of implants and 

the production of the cells types of interest are the keys to regenerating tissues, harnessing this knowledge 

can aid in our ability to utilize ASCs for the production of replacement tissues.  However, this should be 

done carefully as we have furthermore shown that these cells can contribute to producing a 

microenvironment conducive to tumor growth.  As we now know that these cells contribute to changes in 

the ECM composition, structure, and stiffness, additional work should be carried out to asses exactly how 

these changes stimulate tumors.  With a more thorough mechanistic understanding of the ASC-tumor 

communications, the ability to target these interactions would be possible for the purpose of anti-cancer 

therapeutics. 
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Figure 5.1 Alterations in ASC function within tumor microenvironment 

Enhanced tissue stiffness and changes in local signaling molecules are characteristic features of the tumor 

microenvironment.  As cells respond to both chemical and mechanical cues, adipose-derived stem cells 

(ASCs) assume an altered tumor associated (TA-) phenotype in response to these cues, as would be 

experienced at the breast tumor-host mammary tissue interface.  Namely, these cells take on a more 

myofibroblastic phenotype producing a denser extracellular matrix (ECM) of fibronectin (Fn) and 

collagen, within which both proteins are in a more extended form.  These TA-ASCs additionally assume a 

more pro-angiogenic phenotype which contributes to tumor growth by increasing tissue vascularization.  

In addition to altering ASC function, the ability of the TA-ASCs to enhance tissue stiffness advances the 

pro-tumorigenic capacity of the tumor stroma as increasing stiffness promotes angiogenesis(50) and 

tumor cell malignancy(51). 

 

  (Fn/collagen) 

TA-ASCs 
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5.4 Future Directions 

 This dissertation has provided great insight into the changes that occur in ASCs due to altered 

mechanical and chemical cues as would be encountered within the tumor microenvironment. While 

making progress in our understanding of the role of stem cells in breast tumorigenesis, the results 

presented herein broaden our perspective by illuminating additional scientific questions deserving of 

experimentation.  The tumor is an extremely embrangled tissue that requires simplification for the 

purpose of dissecting out the role of various components; however, once individual constituents have 

been resolved, the larger, more complicated system must be considered.  Future endeavors should entail 

both of these approaches, by both delving in more depth into the signaling pathways leading to the 

changes noted as well as by looking further into additional methods of signaling not addressed within this 

work. 

 

Propagation of signals due to altered ECM 

In this dissertation the enhanced ability of the altered ECM to further promote tumor growth was 

only peripherally investigated.  Results shown in Figure 4.13E indicate that these stiffer ECMs do 

enhance tumor cell growth; however, more extensive studies into other behavioral changes as well as the 

signaling mechanisms are needed. Initially, the in vitro findings indicating an altered Fn conformation 

within the tumor stroma should be confirmed within in vivo samples.  Moreover, the ability of this Fn to 

signal surrounding cells through means independent of the increased stiffness of the fiber should be 

assessed.  These distinct methods may include the exposure of cryptic binding sites resulting in changes 

in the overall ECM assembly.  Indeed, as Fn and collagen work in concert to produce the ECM (75), the 

combination of the increased Fn and collagen within the TA-ASC ECM likely alters cell-ECM signal 

propagation throughout the tumor microenvironment.  For example, the elongated Fn may decrease the 

ability of cells to use the α5β1 integrin due to increased spacing between the synergy and RGD adhesion 

sites which could propagate the pro-angiogenic phenotype by enhancing alternative integrin engagement 
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(e.g. αvβ3).  While work has been done to show that stiffness and collagen cross-linking promote tumor 

malignancy (51, 73), additional work to fully elucidate ECM protein compositional control of tumor 

microenvironmental signaling in both normal and malignant cells is necessary.  Lastly, as cell-ECM 

interactions have been shown to contribute to fibroblast activation (23), determining whether the changes 

that TA-ASCs make to the ECM contribute to myofibroblast differentiation would highlight an additional 

feedback mechanism being utilized within this system.  

 

Therapeutic targets 

With an improved understanding of the key signaling pathways involved in tumorigenesis, we are 

better able to rectify the mechanisms that tumors use to enable their growth leading to the eventual 

demise of the organism of origin.  Here, we have shown that tumor-derived chemical cues, specifically 

IL-8 and TGF-β, promote the myofibroblastic phenotype and that this further leads to ECM changes 

which promote tumor stiffening.  This would suggest that a combinatorial targeting of these molecules 

could reduce tumor desmoplasia and inhibit the downstream signals resultant from these ECM alterations.  

Although some TGF-β therapies are currently being studied (213), including other molecules that may 

target the same pathway and finding an approach to reduce off-target consequences as TGF-β is an 

abundantly utilized growth factor are critical.  Additionally, incorporation of an anti-angiogenesis 

therapeutic (29) with these anti-desmoplasia approaches may prove even more beneficial. 

 

Deciphering the role of direct cell-cell communication 

 As outlined in section 1.4, cell-cell signaling is an important communication means within the 

tumor microenvironment.  The studies presented here have largely focuses on chemical and mechanical 

signaling; however, as enhanced recruitment of ASCs to the tumor is seen (Figure 4.3D), more analysis of 

the behavior of these cells when in direct contact with tumor cells is necessary.  As cell-cell junctions 

play a key role in cellular communication and, in particular myofibroblast differentiation (24), further 
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work evaluating this signaling means between these cell populations would elucidate the role of this 

communication in this system and whether this too might be a potential therapeutic target. 

 

Altered mechanotransduction in TA-ASCs 

A final avenue of investigation that might prove worthy of study is experimental analysis of 

whether TA-ASCs assume an altered mechanotransducing pathway.  As the glycocalyx is known to be 

altered within tumor (214), gaining an appreciation for how differentiation of ASCs towards a TA-ASC 

phenotype may change this mechanotransduction pathway as well as others, could prove to elucidate 

additional pathways which are changed within TA-ASCs that may aid in their ability to promote tumor 

growth.  As an initial means of assessment, one could simply study whether the traction forces of TA-

ASCs are altered as compared to normal ASCs, which would be a likely result of an altered glycocalyx, 

and then delve into the mechanisms through which the cells is able to achieve this result. 
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CHAPTER 6 

CLIMB GK-12 EXPERIENCE: AN INQUIRY-BASED APPROACH TO 
TEACHING FUNDAMENTALS OF POLYMERS FOR TISSUE ENGINEERING 

 
Submitted to The Science Teacher (215) on June 11, 2012 

6.1 Contributors 

Co-authors to this work made the following contributions: Ann Phinney-Foreman, the science 

department head at Waverly High School, provided a classroom filled with students eager to conduct 

inquiry-based experiments. Shivaun Archer, co-leader of the GK-12 CLIMB program, provided 

assistance in the design of the experiments and preparation of the manuscript.  Claudia Fischbach aided in 

the preparation of the manuscript describing these experiments. 

 

6.2 Introduction 

Currently, when patients are in need of new joints, organs, or other tissues the most common 

sources are either donors or man-made materials.  However, the use of donor tissues is limited by 

availability, which is why more than 7,000 people die each year while waiting on organ transplant lists 

(based on Organ Procurement and Transplantation Network data as of April 6, 2012).  Alternately, 

material implants are only available for certain applications and their longevity is often not equal to 

naturally repaired tissues (216, 217).  For these reasons scientists have continued to explore our ability to 

generate replacement tissues through sophisticated cell culture techniques since the inception of the term 

tissue engineering, nearly a quarter-century ago (218).  While some tissue-engineered products like the 

bi-layered Apligraf® skin substitute have made it to market, research into engineering a wide variety of 

other tissue types is still ongoing.  In order to create tissue engineering products for clinical applications 

biomaterials scaffolds are frequently combined with the cells that make-up a tissue of interest.  These 
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scaffolds can provide cells with an appropriate physicochemical environment to enable them to recreate in 

vivo-like tissue constructs. For example, Apligraf® consists of a biomaterials matrix that allows cells to 

grow both within and on top to appropriately mimic the different layers of the skin.   

 A variety of polymers, both natural and synthetic are used as biomaterials for scaffold 

fabrication. In particular, hydrogels, which are simply hydrophilic polymer chain networks within which a 

large amount of water is dispersed, are often explored because these systems mimic the extracellular 

matrix (ECM) surrounding cells within the body. For example, collagen, an abundant ECM component, is 

routinely utilized in tissue engineering applications due to its relative ease of isolation and ability to 

instruct physiologically relevant cell behavior. However, collagen isolation underlies batch to batch 

variations and is relatively expensive, and thus other natural polymers are frequently researched for tissue 

engineering approaches.  Alginate, one such polymer, is derived from algae and used frequently as a food 

additive, which makes it a safe, affordable material for study in the classroom that forms a gel as ionic 

bonds are formed between the polymer chains similar. 

 

 We have designed an inquiry-based activity, which allows students to explore hydrogel materials 

properties in the context of tissue engineering.  While exploring the mechanisms through which alginate 

is able to transition from a polymer in solution to a formed gel, students are able to learn about both the 

chemistry of polymer cross-linking and how hydrogels can be used as innovative biomaterials to improve 

human health.   Initially, students explore methods of polymerizing a solution of alginate into a gel and 

then study how to adjust the mechanical properties of the resultant hydrogel for different applications. By 

adjusting the stiffness of the hydrogel, students can learn the importance of modeling tissue stiffness for 

the purposes of tissue engineering. This activity covers the NY State learning standards 

(http://www.p12.nysed.gov/ciai/mst/sci/ls.html) - Analysis, Inquiry, & Design; Apply Scientific Concepts 

to Physical Setting; Relate Math, Science, & Technology as well as highlights concepts in ionic bonding. 
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6.3 Experimental Details 

Concept Introduction 

This activity was collaboratively designed by a New York State high school chemistry teacher 

and a Cornell University biomedical engineering graduate student. The concepts of tissue culture and 

ECM should be briefly reviewed.  A PowerPoint presentation to introduce the necessary material can be 

found online (http://climb.bme.cornell.edu/biomaterials.php). Although a brief description is provided, 

further background on the topics of tissue culture and the ECM are described elsewhere (219-221). These 

materials enable students to become familiar with real world applications that apply concepts covered in 

the activity.  In the review, students should be made aware that tissue culture (or cell culture) is when 

cells are grown outside the body and separate from the organism from which they originate.  Tissue 

culture is often done by placing cells in plastic dishes and maintaining them in liquid media which 

provides the nutrients necessary for the cells to survive and grow.  When in culture, these cells are 

generally maintained without the natural ECM in which they would be found in tissues.  The ECM, or the 

portion of a tissue which is not contained within a cell, is scaffolding on which cells are provided support 

and structure enabling their growth.  As researchers begin to better understand how cells interact with the 

ECM, the need to culture cells using different materials which better mimic the natural ECM within 

which the cells would be found in the body is more apparent (218).  As the ECM is naturally composed of 

polymers like collagen, other natural polymers are used to create artificial ECMs for tissue culture, hence 

the use of hydrogels. 

Students are also introduced to the concept of polymers as long-chain molecules composed of 

repeating units referred to as monomers. The polymer of interest in this experiment, alginate is a block 

co-polymer of mannuronic and guluronic acid.  As can be seen in the chemical structure of alginate, the 

guluronic monomers stick out from the chain more (Figure 6.1A) and are the units which allow the 

polymer chains to bond and form cross-links by a divalent cation linking 2 chains together (Figure 6.1B). 

The objective of this activity is for students to design and carry-out investigations that will aide in their 
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understanding of polymer cross-linking and hydrogel formation. Their design must include an activity to 

quantify some mechanical characteristic of the crosslinked polymer, and will require organizing and 

representing their data using Excel software.  

 

Materials and Teacher Preparation 

Handouts to accompany this activity can be found online 

(http://climb.bme.cornell.edu/biomaterials.php).  Prior to the initial hands-on activity, sufficient alginate 

solution should be prepared noting that each student/group should not require more than 10 mL.  For a 

total of 20 groups, 200 mL of alginate solution should be prepared and left stirring overnight to enable 

complete dissolution.  To produce a 4 % (w/v) solution, slowly add 8 g alginate (FMC Biopolymer) to 

200 mL de-ionized (DI) H2O stirring on a stir plate.  Once the alginate is dissolved the solution will be 

very viscous.  In order to better visualize the gel, simple food dyes can be added to the alginate solution.  

Univalent and divalent cation-containing solutions of 0.1 M NaCl, KCl, CaCl2, and Ba(NO3)2 in DI H20 

are prepared as the potential cross-linking solutions.  For the second portion of the activity where the 

importance of cross-link density on the stiffness of the alginate is determined cross-link density will be 

adjusted by varying (i) ion concentration with 0.1 mM, 0.001 M, 0.01M 0.1 M, and 1 M of CaCl2 and 

Ba(NO3)2 and (ii) polymer concentration with 0.5, 1, 2, 3, and 4 % w/v solutions of alginate all prepared 

as described above. As the methods implemented to measure stiffness are largely designed by students, 

additional supplies necessary are outlined by each student.  This may include items such as trays, 

markers, rulers, weights, timers, and circular molds. 

 

Uncovering the process of cross-linking 

Students are provided a 4% (w/v) solution of alginate and potential cross-linking solutions 

containing univalent and divalent cations.  They then devise an experimental approach to determine 

which of the univalent and divalent solutions cause the polymer solution to gel (Figure 6.2a).  After 
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visualizing solid gels forming only in the presence of the divalent cations, students are able to deduce that 

divalent cations are necessary for alginate to cross-link into a hydrogel network (Figure 6.2b).  This is 

because of the relatively strong ionic interactions between the carboxylic groups from two alginate chains 

and the Ca2+ or Ba2+.  A discussion of the activity can further clarify this phenomenon for students as 

outlined by the questions in Figure 6.3.  

 

Figure 6.1 Alginate Structure 

Alginate is a block co-polymer composed of guluronic (G) and mannuronic (M) acid monomers which 

are linked in a 1,4 configuration as shown (A) .  When divalent cations are added to the guluronic acid 

monomers, the individual alginate chains are able to create cross-links between the chains, and an 

intertwined polymer gel is produced (B) which can contain a large amount of water, leading to the term 

‘hydrogel’.  
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Figure 6.2 Determination of Cross-linking 

Each experimental group is provided a 4% (w/v) alginate solution, in this case dyed blue to enable easy 

visualization, along with all the potential cross-linking solutions (A).  By devising a method to simply (B) 

drop the alginate into a dish and then (C) add each potential cross-linker, students can determine that (D) 

only when a divalent cation is added to the alginate does the polymer solution gel.  

 

 

Figure 6.3 Discussion of Cross-linking 

To target the discussion of this activity on what happens when alginate is cross-linked; a few questions 

for class discussion are provided. 
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Understanding how cross-link density impacts hydrogel stiffness 

 Once students discover what is necessary for alginate to become a gelled polymer, the natural 

progression for the inquisitive student is to investigate how specific gel properties can be achieved by 

changes in this process.  In order for students to delve into this experiment, a spectrum of solutions with 

varying concentrations of polymer or cross-linker is provided.  To encourage inquiry-based investigative 

skills, students are simply provided a basic description of the supplies and told to develop a method to 

experimentally determine how the character of the gel is altered with changes in either cross-linker or 

polymer density.  The one caveat to this is that however they choose to measure the gel stiffness it must 

be quantifiable on a graph.  A proposal to students to experimentally determine this relationship is shown 

in Figure 6.4.  Students develop a wide array of techniques to address this including measurement of the 

distance a polymer moves when placed on an incline following cross-linking or how much the gel 

deforms when exposed to an equal load (e.g. a small jar, Figure 6.5).  After developing their own method, 

students are then able to better critique their methods to allow for improved measurements.  As an 

example, some students found that when they applied a small amount of solution to a large drop of 

alginate the exterior of the hydrogel would cross-link while the interior would remain in solution causing 

it to burst like the Betty Crocker ® snack Fruit Gushers does when a force was applied to it.  This then 

taught the students the alginate solution and crosslinker need to be mixed to properly form a 

homogeneous gel. 



 

117 

 

Figure 6.4 Changes in the Hydrogel 

A proposal to students to begin the activity on altering cross-link density will enable them to initiate the 

second experiment. 

 

Figure 6.5 Altering Gel Stiffness 

By maintaining polymer concentration while varying the concentration of cross-linking ions present, the 

resultant polymer can vary from dilute solution to rigid gel.  Students can implement a variety of methods 

to measure this.  (A) One commonly applied method included measuring the distance the gel traveled 

when placed on an equal incline, which was produced by simply inclining the plate containing the cross-

linked gels.  Alternately, students can perform the same test, but measure the time that the gel takes to 

travel a given distance.  (B) Additionally, students chose to apply a given load, in this case a small bottle, 

to each gel and measured the amount of deformation or spreading that the gels underwent after 

application of the force.  
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Producing a Lab Report 

 An outline of the lab report where students describe their hypothesis and share results learned 

through this inquiry-based experiment is provided in Figure 6.6. In addition to writing a report, students 

can use Microsoft® Excel to produce plots of their collected data.  This allows them to create a visual 

means through which they can share their results (Figure 6.7). 

 

 

 

Figure 6.6 Lab Write-Up 

By following this outline, students can write a lab report to summarize their findings and synthesize their 

lab data with applications for these materials. 
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Figure 6.7 Plotting Experimental Results 

By first casting gels in molds of a known diameter, the percent change in diameter of the hydrogel when 

under the same applied force was calculated and plotted.    

 

Following this activity, students can present their results and discuss the role of hydrogel stiffness 

in tissue engineering as a class. In recent years scientists have found that cells behave very differently 

when they are cultured within a 3-D scaffold to encourage the production of a more true-to-life tissue.  

Hydrogels have been shown to be very beneficial for this purpose, and polymers like gelatin and alginate 

are often used for this approach.  The hydrogel provides an aqueous cell environment within which media 

containing nutrients for cells to grow can easily reach the cells and waste produced by the cells can be 

removed.  Researchers have found that the ability of cells to adhere and move in culture depends on ECM 

proteins and scaffold material, investigations into the role of the ECM have become much more diverse.  

In fact, recent work has demonstrated the importance of the matrix stiffness on the behavior of stem cells 

(49).  Through the use of hydrogels, the stiffness of the scaffold on which cells are cultured can easily be 

adjusted to investigate the effect on cell behavior.  Alginate is often used for this purpose, and through 

this lab students will learn the changes which occur when the material is cross-linked to form a gel and 

how to adjust this to produce matrices of variable stiffness. 
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6.4 Hazards 

Gloves should be worn to avoid direct contact with barium containing solutions or alginate cross-

linked with barium. For this reason, the second activity on understanding the link between cross-link 

density and stiffness can be performed with CaCl2 solutions only. 

 

6.5 Results and Discussion 

This activity was implemented in both a high school AP Chemistry and Organic Chemistry 

course.  Students in both classes showed great enthusiasm for the experiment, some even stated there was 

‘nothing’ they would have changed.   Student’s knowledge in the area of polymers was greatly increased 

while gaining an appreciation for how these materials are applied for tissue engineering purposes.  By 

establishing their own procedures, each student or group of students is provided a freedom not often 

experienced in the classroom.  This can help to encourage the students to realize their own abilities and 

apply their knowledge to explore other topics.  By performing a pre- and post- assessment of the students, 

the knowledge gained through these activities was measured.  Students who knew little about polymers 

initially gained an appreciation for their structure and how they can be used to form hydrogels (Figure 

6.8).  Discussing a cutting-edge topic like tissue engineering engaged students to think about the broader 

applications for these materials and provided for great talking-points during the laboratory activity.  

Interestingly, many students stated that “trying to come up with the experiment” was the least enjoyable 

portion of the experiment, however students also said that “being able to create our own experiment” was 

the most interesting part of the activity as well.  While freedom can be scary at first, students found it 

exciting to be able to develop their own experiments – an essential skill to become true scientists. 
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Figure 6.8 Student Impact 

Students were provided a questionnaire including the listed questions both prior to and following the 

experiment.  Their ability to answer the questions greatly improved following implementation of this 

activity, even on questions requiring a great deal of synthesis, like #4.  

 

 

6.6 Conclusions 

 A simple inquiry-based experimental approach to introduce students to polymers as synthetic 

biomaterials that can be used to mimic the ECM is presented.  This procedure can be implemented in a 

wide range of courses including chemistry, biology, or polymer science; however, the material is most 

suited for students in a course that covers the topic of polymer science.  Initially students gain an 

understanding of how to cross-link alginate and then how to alter the hydrogel stiffness by varying the 

cross-link density.  Students are then able to see an application for this material and gain an appreciation 

for how this and other polymers can be used to mimic the natural ECM, which spans a broad stiffness 

range from bone to fat tissue. 
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