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Understanding the complex and inherently multi-scale interface between a

charged electrode surface and a fluid electrolyte would inform design of more

efficient and less costly electrochemical energy storage and conversion devices.

Joint density-functional theory (JDFT) is an, in principle, exact theoretical frame-

work which bridges the relevant length-scales by joining a fully ab initio descrip-

tion of the electrode with a highly efficient, yet atomically detailed classical DFT

description of the liquid electrolyte structure. First, we introduce a universal ap-

proximate functional to couple any quantum- mechanical solute system with a

classical DFT for any liquid and present classical density- functionals for both

aqueous and non-aqueous fluids. This universal coupling functional predicts

solvation energies of neutral molecules to within near-chemical accuracy of 1.5

kcal/mol and captures the qualitative and quantitative features of fluid correla-

tion functions.

We go on to explore the suitability of JDFT to describe electrochemical sys-

tems, reviewing the physics of the underlying fundamental electrochemical con-

cepts and identifying the mapping between commonly measured electrochem-

ical observables and microscopically computable quantities. We then introduce

a simple, computationally efficient approximate functional which we find to be

quite successful in capturing a priori basic electrochemical phenomena, includ-



ing the capacitive Stern and diffusive Gouy-Chapman regions in the electro-

chemical double layer and potentials of zero charge for a series of metals. We

also show that we are able to place our ab initio results directly on the scale

associated with the Standard Hydrogen Electrode (SHE).

Leveraging the above theoretical innovations, we then predict the voltage-

dependent structure and energetics of solvated ions at the interface between

metal electrodes and an aqueous electrolyte, elucidating the origin of the non-

linear capacitance observed in electrochemical measurements. Finally, we dis-

cuss how JDFT calculations can determine the surface structure of a trained

SrTiO3 surface under operating conditions for water-splitting and explore why

this structure is correlated with higher activity than an untrained surface. We

predict the specular X-ray crystal truncation rods for SrTiO3, finding excellent

agreement with experimental measurements from the Cornell High Energy Syn-

chrotron Source (CHESS).
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CHAPTER 1

INTRODUCTION

1.1 Background

Throughout recorded history, humans have endeavored to understand the

mechanisms underlying the workings of the universe. Some turned to mythol-

ogy and the supernatural for explanations, while others attempted to use logic,

reason, and the power of the human mind – an ab initio or first principles ap-

proach. As early as 600 BC, the Greek philosopher Thales proposed that water

was the originating principle of nature and the source of all matter[270, 207].

According to historians, Thales noted the omnipresence of water in his daily

life and drew the conclusion that “water united all things” [77]. This quest to

determine the fundamental nature of matter continued with later Greek philoso-

phers, such as Empedocles, who added air, fire, and earth to the list of inde-

structible elements [252, 36]. In around 400 BC, Democritus proposed atoms,

meaning “uncuttable” in Greek, as the indivisible and impenetrable building

blocks of nature [1]. During the scientific revolution of the 17th century, Sir

Robert Boyle proposed that fundamental particles known as “corpuscles” ex-

isted in different sizes and shapes [31]. The idea that these particles could react

with each other to form compounds, which produce different collective proper-

ties based upon composition, built the foundation for modern chemistry [270].

In the early 19th century, British scientist John Dalton reinstated the term atom

to describe the tiny irreducible particles which constituted each chemical ele-

ment [57]. Of course, modern science has shown that atoms may actually be

reduced into electrons and nucleons, and the nucleons are even further divisi-
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ble into quarks. However, the concept of fundamental particles which compose

all matter has persisted to this day.

The concept that these fundamental particles interact with each other is

equally ancient; Empedocles proposed love and strife as the forces between

the four elements.[36]. In fact, it is electromagnetic attraction and repulsion

which dominate the interactions between fundamental particles at the atomic

scale. The first recorded description of electromagnetic force is also credited

to Thales, who observed that lodestone attracts iron in 600 BC [123]. Another

Greek philosopher, Theophrastus, first recorded in 300 BC that light objects were

attracted to amber rubbed with wool [21]; indeed, the word electricity derives

from the Greek word for amber. During the 18th century, Benjamin Franklin fa-

mously studied electricity, becoming the first to propose negative and positive

charges to describe the reason for the electrostatic attraction from amber [83].

In 1770, Coulomb determined that electrostatic force is inversely proportional

to the square of distance between the charged objects and directly proportional

to charge, making quantitative predictions of electrostatics possible. Even more

crucially to modern technology, Alessandro Volta discovered how to convert the

chemical energy stored in the elements into electrical energy, which could be

harnessed and stored for future use. In 1800, Volta constructed the first battery

from alternating layers of zinc and silver electrodes separated by paper soaked

in salt water [270].

Though Thales’s proposition of water as the only fundamental constituent of

matter was quickly dismissed, it is clear that water is crucial to human life, and

indeed all life on Earth. Understanding the nature of water and other liquids

would provide significant insight into many complex processes in the natural
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world. French scientist Antoine-Laurent Lavoisier discovered in the 18th cen-

tury that he could create water from oxygen and hydrogen gas, proving for the

first time that water is a chemical compound rather than a fundamental unit

[270]. Shortly thereafter, William Nicholson and Anthony Carlisle used Volta’s

newly discovered battery for the electrolysis of water, splitting the compound

into oxygen and hydrogen gas using electric current [64]. This demonstration

of water-splitting marks one of the first experiments in the field of electrochem-

istry, which studies chemical reactions at the interface between a solid electrode

and a liquid electrolyte. Though the fundamental atomic components of a single

water molecule were understood two centuries ago, prediction of the aggregate

behavior of liquid water from the properties of its constituent molecules has

proved more elusive. By the mid-19th century, collections of non-interacting

point particles in the gaseous state were shown to obey the ideal gas law [49],

but the strong interactions in liquids are not captured by this simple form. The

van der Waals equation of state, which won the Nobel prize in 1910, improves

upon the ideal gas law by including the effect of intermolecular attractions and

a nonzero molecule size [288]. However, finding an accurate and predictive

theory for liquids is still an active area of research today.

In 1687, Sir Isaac Newton founded classical mechanics as a unifying descrip-

tion of the interactions from the scale of invisible particles to the scale of cosmic

bodies [270, 195]. His laws of motion revolutionized modern science and led to

the development of calculus as the mathematical language of physics. Classi-

cal mechanics excels at predicting both the planetary orbits and the motion of

the macroscale objects we use in our everyday lives. However, there were still

some scientific mysteries that classical mechanics and electromagnetism alone

could not explain. In the early 19th century Joseph von Fraunhofer found dark
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lines at specific frequencies in the optical spectrum of sunlight [84]. Kirchoff

and Bunsen later explained these “Fraunhofer lines” by discovering that each

chemical element or compound absorbs and emits light at distinct frequencies,

providing a unique spectral signature [146]. However, the rationale for these

chemical fingerprints from fundamental physical principles remained elusive.

It soon became clear that some assumptions of classical mechanics no longer

apply at the atomic scale.

In 1896, J.J. Thomson provided a key piece of the puzzle when he discov-

ered the electron, a new fundamental particle contained within the atom, and

showed it to be around 2000 times less massive than the hydrogen atom.[278]

Meanwhile, scientists were puzzled by the nature of light; was it a wave, as had

been accepted by most scientists due to its ability to interfere with itself[314],

or a particle, as suggested first by Newton and then again by Albert Einstein

in 1905 to explain the photoelectric effect of metals [62] ? Finally, these experi-

mental contradictions were reconciled at the beginning of the 20th century with

the birth of quantum mechanics, which allowed light (and atomic-scale objects

like electrons) to exhibit both particle and wave behaviors. Using Schrodinger’s

equation and the wavefunction formulation of quantum mechanics, [245] we

can now solve atomic-scale problems to show that the unique spectral finger-

prints of the chemical elements result from the quantum mechanical properties

of their constituent electrons and nuclei. In principle, this quantum-mechanical

theory should continue to be valid at the macroscopic scale, but the number of

degrees of freedom required to construct the exact wavefunction make it practi-

cally impossible to use directly in applications. For systems of more than a few

atoms, the calculations required for a fully quantum-mechanical treatment are

prohibitive for humans to undertake alone.
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As understanding of quantum mechanics grew, approximations such as va-

lence bond theory [108] and linear combination of atomic orbitals [208] began

to make practical calculations feasible. These approximations generally rely on

the concept of single-electron orbital wavefunctions, which define the probabil-

ity of finding an electron in a specific region of space around an atomic nucleus.

In 1928, Bloch took the idea of quantum-mechanical orbitals and extended it

to periodic arrays of atoms to study the properties of electrons in solid, crys-

talline materials.[26] During World War II, John Woodyard introduced the idea

of modulating the electronic properties of semiconducting materials by doping

them with electron donating and accepting atoms.[306] This discovery enabled

computer chips to be developed from junctions of doped semiconductors[259]

and spurred a technological revolution; computers shrank from the macroscale

to the nanoscale in only 50 years. The first electronic computer, called ENIAC

(Electronic Numerical Integrator and Computer), consisted of 18,000 vacuum

tubes, weighed 30 tons, and occupied 1500 square feet. Today we can hold de-

vices with orders of magnitude greater computing power in the palms of our

hands. [270] The ubiquitous presence of computers has reshaped both modern

society and modern science; the computers first developed by physics have now

become essential tools for advancing the field of physics.

Just as the computer and internet revolution reshaped society in the latter

half of the 20th century, a new technological revolution in renewable energy has

the potential to change our lives in the first half of the 21st century. The need

for energy security in a complex global economy as well as the contribution of

fossil fuels to human-made climate change have made the quest for more effi-

cient and cost-effective renewable energy sources one of the grand challenges of

our modern age. Renewable energy devices such as batteries and supercapac-

5



itors store energy, while photoelectrochemical and fuel cells convert chemical

energy and/or light into electrical energy, but they are still too inefficient and

expensive to compete with gasoline and coal. Just like Volta’s first battery, these

electrochemical devices often consist of metal or semiconducting electrodes and

a liquid electrolyte, with the chemical processes key to energy storage and con-

version occurring at the interface between the solid and the liquid. This cru-

cial electrode-electrolyte interface is inherently multiscale, requiring a theory

which integrates the relevant length and time scales using both the quantum

and classical mechanics descriptions relevant to each subsystem, respectively.

Thus a fundamental, first principles understanding of electrochemical devices

will leverage all of the above concepts, as well as rely upon computers to solve

the complex equations which result from the basic physics.

In the remainder of this Introduction, we will describe the advances in com-

putational quantum and classical physics which enable the first principles de-

scription of both solid and liquid systems through Density-Functional Theory

(DFT). We will then summarize a rigorous and relatively new theory called

Joint Density-Functional Theory (JDFT) which joins these regions together. In

Chapter 2, we present the full realization of JDFT, which will enable atomically-

detailed, first principles studies of the liquid-solid interface. In Chapter 3, we

describe how to link ab initio computable quantities with electrochemical ob-

servables, using an approximate version of JDFT without microscopic details in

the liquid region. In Chapter 4, we demonstrate the power of an atomically-

detailed JDFT for predicting these electrochemical observables. In Chapter 5 we

present a combined JDFT and experimental study of the structure of a strontium

titanate (SrTiO3) electrode under water-splitting conditions. Finally, in Chap-

ter 6 we conclude this dissertation by discussing future opportunities for this
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research.

1.2 Electronic Density-Functional Theory

Electronic density-functional theory (DFT) has become an essential tool for de-

termining chemical and physical properties of diverse quantum mechanical sys-

tems, allowing computation of quantities from adsorption energies and bond

lengths of molecules on metal surfaces to band structures of insulating semi-

conductors. In this section we will review the background, fundamental devel-

opment, and novel extensions of DFT for electrons.

1.2.1 Quantum-Mechanical Background

The wavefunction formulation of quantum-mechanics describes the state of any

physical system of N electrons and L nuclei with masses me and MI and charges

e and −ZIe respectively through a many-body wavefunction

Ψ({~ri}, {~RI}) = Ψ(~r1,~r2, ...,~rN , ~R1, ~R2, ..., ~RL), (1.1)

where the position vectors ~ri and ~RI represent the spatial degrees of freedom

for the ith electron and the Ith nucleus respectively. The time-independent

Schrodinger equation [245] posits that this wavefunction must be an eigenstate

of the equation

ĤΨ = EΨ, (1.2)
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where E is the corresponding energy eigenvalue and Ĥ is the many-body

Hamiltonian [181]

Ĥ = −
~2

2me

∑
i

∇2
i +

1
2

∑
i, j

e2

|~ri − ~r j|
−

∑
i,I

e2

|~ri − ~RI |
−

~2

2MI

∑
I

∇2
I +

1
2

∑
I,J

ZIZJe2

|~RI − ~RJ |
. (1.3)

We have assumed for simplicity of discussion (as is very often the case) that non-

relativistic, purely electrostatic interactions provide an extremely good descrip-

tion of condensed matter systems. Therefore, this Hamiltonian contains only the

quantum-mechanical kinetic energy operator for both nuclei and electrons, as

well as the Coulomb interaction between all bodies. We note that in the remain-

der of this dissertation we will employ atomic units, setting ~ = kCe2 = me = 1,

to simplify the equations significantly. We have also neglected electron and nu-

clear spin degrees of freedom as they are largely irrelevant to the work pre-

sented here.

From a cursory examination of the sheer number of nuclear and electronic

degrees of freedom present in the fully rigorous Schrodinger equation, it is clear

that multiple approximations will be required for any practical calculation, even

with modern computers. The first modification we can make is known as the

Born-Oppenheimer approximation,[30] which relies upon the assumption that

the masses of the nuclei are far greater than that of the electron (MI >> me).

In this adiabatic limit, where any motion of the nuclei is slow on the scale of

electronic motion, the nuclear positions RI are fixed for a given electronic solu-

tion of the Schrodinger equation. The Born-Oppenheimer approximation thus

renders the last two terms in equation 1.3 irrelevant for a fixed configuration of

nuclei, and allows the effect of the nuclei upon the electrons to be contained in

an external potential

V̂nuc = −
∑

i,I

1

|~ri − ~RI |
. (1.4)
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Once the corresponding electronic wavefunction is determined, the average

density of electrons at position ~r is then

n(~r) = N
∫

d3r2...d3rn |Ψ(~r,~r2, ...,~rN)|2. (1.5)

Many quantum chemistry electronic structure methods, such as coupled

cluster (CC) and configuration interaction (CI), are based on the full quantum-

mechanical wavefunction for electronic degrees of freedom [17, 249]. However,

these methods are still too expensive to compute the properties of extended

systems, or even molecules with more than around ten atoms. Thus, many

theoretical methods [108, 208] utilize the independent electron approximation,

which assumes that one spin-up and/or one spin-down electron can exist in

each noninteracting single-particle orbital ψi(~r). The orbitals then each obey the

single-particle Schrodinger equation (in atomic units)

1
2
∇2

i ψi(~r) + Veff(~r)ψi(~r) = εiψi(~r), (1.6)

where εi is the energy eigenvalue of an electron in the ith orbital and Veff(~r) is

a local effective potential which includes the effects of both nuclear-electron

and electron-electron interactions. The ground state of the system is then con-

structed from the bands with the lowest energy eigenvalues, filling each band

with fi (0 ≤ fi ≤ 2) electrons by obeying the principles of exclusion [155]. The

probability of finding an electron in a given location now reduces to

n(~r) =
∑

i

fi|ψi(~r)|2. (1.7)

Of course, the independent electron approximation drastically reduces the

degrees of freedom required for calculation, but suffers from a lack of a gen-

eral prescription for the form of the effective potential Veff . The various theo-
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retical methods use different approximations for Veff depending on the phys-

ical context; for example, in a solid-state context one could employ the tight-

binding method[256] to calculate the band structure of a material. The Hartree

approximation[105] assumes that the electron-electron interaction may be de-

scribed by the mean-field interaction of the electron density n(r). This assump-

tion leads to the effective potential

Veff(~r) = Vnuc(~r) +

∫
d3r′

n(r′)

|~r − ~r′|
, (1.8)

where

Vnuc(~r) = −
∑

I

1

|~r − ~RI |
(1.9)

is the fixed local potential from the nuclei at positions {RI}. While the Hartree

approximation misses the important physical effects of electron exchange and

correlation, the form of Veff in Equation 1.8 provides a straightforward prescrip-

tion for solving the Schrodinger equation self-consistently because it is a func-

tional of only the electron density of the ground state n(~r). If an exact effective

potential could be found in terms of n(~r), that potential Veff[n(~r)] would enable

an exact solution to the many-body Schrodinger equation for electrons, with

the computational cost of only the independent-electron approximation. The

rigorous framework surrounding and means of discovering this exact effective

potential are the domain of electronic density-functional theory (DFT).

1.2.2 Foundation of Density-Functional Theory

In the early 1960’s, a theoretical physicist named Walter Kohn noted that metal-

lurgists had employed empirical models based upon only the electron density

n(~r) to successfully describe the properties of alloys [316]. He became curious
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to discover if a rigorous theoretical justification existed for the electron density

to fully determine any property of a many-electron system [150, 223]. His cu-

riosity lead him to develop density-functional theory, a new theoretical frame-

work for studying the properties of materials,for which he was co-awarded the

Nobel Prize in Chemistry in 1988. The rigorous basis of density-functional the-

ory is provided by two foundational papers authored by Walter Kohn and his

coworkers. [116, 151]

The powerful Hohenberg-Kohn Theorem, published in 1964, states that any

property of a system of many interacting electrons can be viewed as a functional

of the ground state electron density n(~r) (determined from the many-body wave-

function using Equation 1.5)[116, 181]. The proof is conducted by verifying the

uniqueness of the nuclear potential V̂nuc in Equation 1.4 – namely two external

potentials that differ by more than a constant cannot produce the same electron

density n(~r). The electron density therefore uniquely determines the nuclear po-

tential in the Hamiltonian, which in turn determines all known properties of the

quantum-mechanical system. The proof establishes the existence of a universal

functional FHK[n(~r)] which maps each electron density n(~r) to an external poten-

tial Vnuc[n(~r)] and energy value E[n(~r)]. The ground state energy E0 of any system

with fixed nuclear potential Vnuc(~r) from Equation 1.9 may then be determined

by a variational principle

E0 = minn(~r)

{
FHK[n(~r)] +

∫
Vnuc(~r)n(~r)d3r

}
. (1.10)

Almost 20 years later, Levy and Lieb presented the constrained search formu-

lation of the universal functional, which placed the above variational principle

underlying DFT on rigorous mathematical underpinnings [166, 169], resolving

certain mathematical issues in the original proof involving degeneracies.
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Despite the revolutionary importance of the Hohenberg-Kohn theorem, its

proof gives very little guidance on how to construct the functional FHK[n(~r)] and

how practical calculations may be carried out. A year later, in 1965, Kohn and

his postdoctoral associate Sham claimed that the ground state electron density

of an interacting system with many-body wavefunction Ψ is equivalent to the

ground state density of a carefully chosen non-interacting system with single-

particle orbitals ψi(~r) [151]. This ansatz comes from rewriting the Euler’s equa-

tions for the variational principle in Equation 1.10 as a set of coupled single-

particle Schrodinger equations (Equation 1.6). In each of these coupled equa-

tions, known as the Kohn-Sham equations, the effective potential Veff[n(~r)] is

computed from the density of the non-interacting eigenstates ψi(~r) using Equa-

tion 1.7. The prescription for determining the effective potential is straightfor-

ward – start with the Hartree approximation and add another potential Vxc[n(~r)]

to account for exchange, correlation, and any other many-body effects not al-

ready captured. This formulation leads to the effective potential

Veff[n(~r)] = Vnuc[n(~r)] +

∫
d3r′

n(r′)

|~r − ~r′|
+ Vxc[n(~r)], (1.11)

which leads to the exact solution when the exchange-correlation potential is

defined as

Vxc[n(~r)] =

〈
Ψ

∣∣∣∣∣∣∣−1
2

∑
i

∇2
i +

1
2

∑
i, j

1
|~ri − ~r j|

∣∣∣∣∣∣∣ Ψ
〉
− TKS [n(~r)] −

∫
d3r′

n(r′)

|~r − ~r′|
. (1.12)

The exchange-correlation potential in Equation 1.12 is framed as the difference

between the exact kinetic energy and the independent electron kinetic energy

TKS [n(~r)] added to the difference between the exact electron-interaction energy

and the Hartree approximation. Practical calculations require approximations

to Vxc, but the framework is exact in principle and is therefore improvable in

a rigorous way. Most importantly, the approach of Kohn and Sham offers the
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computational tractability of the independent electron approximation, yet pos-

sesses the potential accuracy of the many-body wavefunction methods.

1.2.3 Density-Functionals

The earliest example of a density-functional was created long before the

Hohenberg-Kohn theorem established the rigorous basis for DFT. In 1927,

Thomas and Fermi developed a functional form for the electron kinetic energy

based upon the electron density alone,

TT F[n(~r)] =

∫
d3r

(
3

10
(3π2)

2
3 n(~r)

5
3

)
, (1.13)

which they used in conjunction with the Hartree approximation to the electron-

interaction to create an energy functional [181, 277, 80]. This functional employs

the local density approximation (LDA), which provides the exact kinetic energy for

the non-interacting electron gas of constant density n(~r). The local approxima-

tion assumes that the electron density has little spatial variation; it idealizes the

energy contained in a point ~r with volume d3r and density n(~r) to be locally

equivalent to the energy contained in volume d3r of the non-interacting system

with constant density n. However, the Thomas-Fermi energy functional is inac-

curate for capturing even the qualitative features of chemical bonds and atomic

shell structure. In 1930, Dirac improved upon the Thomas-Fermi functional sig-

nificantly by including the local approximation for exchange,

Ex[n(~r)] = −

∫
d3r

3
4

(
3
π

) 1
3

n(~r)
4
3

 , (1.14)

which can be determined analytically from the homogeneous electron gas. The

resulting Thomas-Fermi-Dirac approximation to FHK[n(~r)] forms the basis of

many “density-only”, or “orbital-free”, functionals still in use today.
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Now we turn to the approximations to the exchange-correlation potential Vxc

(Equation 1.12) within Kohn-Sham density-functional theory. The piece of the

energy functional associated with the exchange-correlation potential[151] may

be written within the local density approximation as

EXC[n(~r)] =

∫
d3r n(~r)εXC[n(~r)] (1.15)

where Vxc(r) = εXC[n(r)] + n(r) δεXC
δn . This energy consists of the Dirac approxima-

tion to the exchange energy from Equation 1.14, as well as an LDA for the corre-

lation energy. The correlation energy is only known exactly in the high-density

(strong-correlation) and low-density (weak-correlation) limits of the homoge-

neous electron gas, so no analytic exact functional exists, even within the local

approximation. Before the advent of DFT, Wigner [303] determined a perturba-

tive expansion for the correlation energy which interpolates smoothly between

the high-density and low-density limits of the homogeneous electron gas. In

later years, Quantum Monte-Carlo simulations[42] determined the properties

of the electron gas at intermediate densities. These calculations have been used

to construct the various parameterizations of the LDA correlation energy used

in modern DFT calculations [214].

Many forms for the exchange-correlation energy exist beyond the local den-

sity approximation, which tends to over bind both molecules and materials and

leads to bond lengths and lattice constants smaller than the experimental value.

The most straightforward extensions of LDA are those in terms of the spatial

gradient of the electron density |∇n|, known as generalized gradient approx-

imations (GGA) [212]. Meta-GGA functionals [271] go one step further and

include second-order corrections in terms of the Laplacian ∇2n. Hybrid func-

tionals [260, 216] typically include a gradient-based exchange-correlation den-

sity functional in a linear combination with the Hartree-Fock exchange energy
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computed from the Kohn-Sham orbitals ψi(~r). The accuracy of these hybrid

functionals comes at high computational cost due to the double integral over

two spatial coordinates. Other energy functionals have been formulated to bet-

ter capture nonlocal dispersion effects; these van der Waals density-functionals

are typically orbital-dependent and have computational cost similar to the hy-

brid functionals [279, 158]. This litany of exchange-correlation functionals de-

veloped over the past decades bring us ever closer to the “divine functional”

[182] FHK[n(~r)], which would be universally exact.

1.2.4 Extensions of Density-Functional Theory

Beyond Zero Temperature

Very shortly after the proof of the Hohenberg-Kohn Theorem, Mermin analo-

gously proved thermal ensemble density-functional theory at finite temperature

T by constructing the grand potential in terms of the electronic density matrix

ρ̂.[187] Within Levy’s constrained search formulation, this temperature depen-

dent functional may be written as

FHK[n(~r),T ] = min
ρ̂→n(~r)

Tr
(
ρ̂Ĥ + kBT ρ̂ log (ρ̂)

)
, (1.16)

where kB is Boltzmann’s constant and Ĥ is the many-body Hamiltonian (Equa-

tion 1.3) within the Born-Oppenheimer approximation. Ensemble DFT has the

obvious advantage of direct calculation of thermal equilibrium properties such

as entropy, specific heat, and free energy. In addition, the smearing of the Fermi

surface and shorter range of the density matrix at high temperatures could aid

numerical convergence in some systems [181]. Ensemble DFT also resolves an
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issue with the convexity of the Hohenberg-Kohn functional; at zero tempera-

ture, FHK is not defined for all n(~r) because not all density fields may be obtained

from some many-body wavefunction [169]. For T > 0, however, the functional

FHK is smooth and expansions of the functional around reference systems (such

as the homogeneous electron gas) are not limited by singularities [223, 67].

However, the full Mermin functional does not easily lend itself to practical

calculations, so most common functionals are written in terms of the single par-

ticle form for the entropy,

S ( fi) = −
∑

i

[
fi log fi + (1 − fi) log (1 − fi)

]
. (1.17)

The grand potential for N0 electrons is then written as

Ω[n,T, µ] = E[n,T ] − µ

∑
i

fi − N0

 − kBTS ( fi). (1.18)

This finite temperature functional allows electrons to be thermally excited to

energy bands of eigenvalues εi which are unfilled in the T = 0 functional, with

partial occupancies fi = 1
eβ(εi−µ)+1 determined by the Fermi distribution at chemi-

cal potential µ [196], where β = 1
kBT . This functional may be minimized directly,

with continuously varying occupation numbers[213], to yield exponential con-

vergence of metallic systems.[86] This type of functional is also highly useful

for performing electrochemistry calculations at fixed chemical potential µ (as in

Chapter 3), where the number of electrons is treated as a continuous variable

[274].

Beyond Born-Oppenheimer

Thus far, we have considered electronic DFT in which the positions of the nuclei

are fixed. The nuclei can still move within the Born-Oppenheimer approxima-
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tion provided the motion is adiabatic, meaning that all electrons relax to the

ground state instantaneously relative to the timescale of nuclear motion. We

may therefore consider a potential energy surface for the nuclei

U({~RI}) = E0({~RI}) +
1
2

∑
I,J

ZIZJ

|~RI − ~RJ |
, (1.19)

which consists of the electronic ground state energy as a function of nuclear con-

figuration {~RI} plus the Coulomb interaction between the nuclei (the last term of

Equation 1.3). In the minimum energy (or ground state) nuclear configuration,

each nucleus must therefore obey the condition

FJ = −
dU({~RI})

d~RJ

= 0, (1.20)

meaning that the force FJ on the Jth nucleus must be zero. The ground state

energy is formally given by E0({~RI}) =
〈
Ψ0

∣∣∣Ĥ∣∣∣ Ψ0

〉
, where Ψ0 is the ground state

many-body wavefunction. In the exact ground state, d
dRJ
〈Ψ0|Ψ0〉 = 0, so Equa-

tion 1.20 may be rewritten as

FJ = −

〈
Ψ0

∣∣∣∣∣∣ dĤ
dRJ

∣∣∣∣∣∣ Ψ0

〉
+

∑
I

ZIZJ

|~RI − ~RJ |
2

(1.21)

by the Hellman-Feynman Theorem [110, 82]. Since the only term in Ĥ which

depends on the nuclear positions explicitly is V̂nuc, these forces {FJ} are straight-

forward to compute within the Hohenberg-Kohn theorem (Equation 1.10) as

FJ = −

∫
dVnuc(~r)

dRJ
n(~r) d3r +

∑
I

ZIZJ

|~RI − ~RJ |
2
. (1.22)

Using these Hellman-Feynman forces, many equilibrium and dynamical

properties associated with the nuclei may be computed within electronic DFT:

equilibrium geometries of molecules and crystals, phonons and vibrational

modes, and even the motion of the nuclei over time. The latter behavior is the

domain of ab initio molecular dynamics (AIMD) calculations, of which there
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are two main flavors. The more empirical Car-Parinello molecular dynamics

[38] uses a fictitious thermostat to reduce minimizing the Kohn-Sham functional

to the problem of solving a set of classical equations of motion, while treating

the electronic wavefunctions as a dynamical variable. The more rigorous and

straightforward Born-Oppenheimer molecular dynamics [209] minimizes the

Kohn-Sham functional directly and employs the Hellman-Feynman theorem to

move the nuclei.

To perform calculations unrestricted by the Born-Oppenheimer approxima-

tion, Capitani, et. al. proved a multicomponent version of the Hohenberg-Kohn

theorem, verifying the existence of a nonadiabatic unified density-functional in

terms of both electronic and nuclear densities [37]. This unified density func-

tional is given (in the Levy-Lieb constrained search formulation) by

E[n, {Nα}] = min
Ψ→n,{Nα}

〈
Ψ({~ri}, {~RI})|

∣∣∣Ĥ∣∣∣ Ψ({~ri}, {~RI})
〉
, (1.23)

where Ĥ is the full many-body Hamiltonian in Equation 1.3, n is the electron

density, Nα is the particle density of nuclei of type α, and Ψ({~ri}, {~RI}) is the many-

body wavefunction from Equation 1.3. The energy minimization is performed

over the configuration space of all wavefunctions which yield the specified elec-

tron density n and nuclear densities {Nα}. Each step of the Hohenberg-Kohn

proof can also be reproduced for the unified functional in the presence of an

external electric potential φ(~r), yielding

Eφ[n, {Nα}] = E[n, {Nα}] +

∫
d3r n(~r)φ(~r) −

∑
α

Zα

∫
d3r Nα(~r)φ(~r) (1.24)

Unified DFT has been employed within the the grand-canonical ensemble to

construct molecular DFT, which describes the simultaneous variation of the

electron and proton distributions in a molecule to within the accuracy of Kohn-

Sham DFT [293]. Molecular DFT allows electrons and nuclei numbers to fluctu-
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ate, allowing one molecule to transform into another and facilitating the mod-

eling of chemical reactions. Most crucially, unified DFT forms the basis for the

rigorous Joint Density-Functional Theory framework, which is presented in de-

tail in Section 1.4 and is utilized in all chapters of this dissertation.

1.2.5 Computational Details

In this dissertation, we will consistently employ particular theoretical, numeri-

cal, and software innovations to perform density-functional theory calculations.

First, all calculations are performed using periodic boundary conditions, with a

repeating real space unit cell defined by three-dimensional lattice vectors, and

a corresponding Brillouin zone in reciprocal space. As such, all external po-

tentials Vnuc(~r) in the Hohenberg-Kohn theorem respect the periodicity of the

crystal unit cell, and Bloch’s theorem[26] applies to the single-particle Kohn-

Sham orbitals ψi(~r). Therefore, all scalar fields f (~r) are represented in recip-

rocal space using plane-wave basis functions of frequency ~G, ei ~G·~r, such that

f (~r) =
∑

~G f ( ~G)ei ~G·~r. Additionally, the computational cost of including all elec-

trons within plane-wave DFT calculations is prohibitively high, namely due to

the high grid resolution required to capture the core electron orbitals. Thus,

we employ the pseudopotential approximation to DFT [230, 289], in which only

the Kohn-Sham orbitals of valence electrons are considered. The local effect of

the core electrons upon the valence electrons is folded into the potential Vnuc(~r),

which then represents both the nuclei and inert core electrons. The remain-

ing scattering properties of the ionic core are captured by additional nonlocal,

angular-momentum-dependent terms in the energy functional [228]. Finally, we

employ the software package JDFTx [267], based upon the original electronic
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structure software DFT++ [122] but updated to leverage features in the new

C++ standard and GPU parallelization through CUDA. This codebase is devel-

oped using an expressive software approach, which formulates DFT in terms of

linear algebra operators while obscuring numerical and algorithmic details by

leveraging templates, operator overloading, and other object-oriented features

of C+. Thus, the code itself is easily readable and straightforwardly modified to

introduce new physics and innovations in electronic structure calculations.

1.3 Classical Density-Functional Theory

The structure of liquids at the atomic scale critically influences the chemical re-

actions that drive modern technology and even the biological processes that are

responsible for sustaining life. However, these systems are difficult to model

because liquid phenomena result from the collective behavior of strongly inter-

acting molecules, complicating any theoretical description. Classical density-

functional theory (CDFT) has demonstrated great promise for elucidating this

behavior in diverse systems such as lipids, [87] polymers, [309, 88] confined

liquids, [191, 130] and electrochemical interfaces [310, 129].

Because of its ability to bridge atomic and macroscopic length scales [157,

309], CDFT is inherently a multiscale theory, but with a rigorous basis. Provid-

ing both three-dimensional microscopic detail of the liquid structure and effi-

cient scaling to large system sizes [262, 247], CDFT is a powerful tool for model-

ing energy storage and conversion devices. In fact, CDFT calculations have been

used to probe pore size effects [130, 129] and, thereby, hold promise to inform

design of better mesoporous supercapacitor, carbon sequestration [68], and bat-

20



tery [168] materials. Most importantly to this work, a highly accurate and ro-

bust classical DFT for the solvent is an essential ingredient of Joint Density-

Functional Theory. Below, we will briefly discuss the concepts surrounding,

advances in, and predictions of classical DFTs which are especially relevant to

JDFT calculations.

1.3.1 Classical DFT Background

Classical density-functional theory may be derived from the fully quantum-

mechanical many-body Hamiltonian by means of the unified density-functional

theory for electrons and nuclei [37] and Mermin’s finite temperature extension

of DFT [187]. Combining Equation 1.24 of Section 1.2 with Equation 1.16 yields

the unified, temperature dependent functional

F[n, {Nα},T ] = min
ρ̂→[n,{Nα}]

Tr
(
ρ̂Ĥ + kBT ρ̂ log (ρ̂)

)
, (1.25)

where ρ̂ is the many-body density matrix for electrons and nuclei and Ĥ is the

Hamiltonian in Equation 1.3. Including an external electrostatic potential φ(~r),

then minimizing over the electronic degrees of freedom leads to the classical

DFT functional

Ωφ[{Nα}] = min
n

F[n, {Nα},T ] +

∫
d3rφ(~r)

n(~r) −
∑
α

ZαNα(~r)


 . (1.26)

This functional still depends upon the form of the external potential φ(~r), but

weakly, since φ(~r) couples to a neutral charge distribution when the fluid is

neutral. In order to construct a universal classical fluid functional Ω[{Nα}] =

minn {F[n, {Nα},T ]}, we must neglect the second term in Equation 1.26. This ap-

proximation assumes that all electrons are closely tied to the nuclei, no electron
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transfer occurs, and that the fluid constituents are not highly polarizable. Un-

like the universal Hohenberg-Kohn functional in electronic DFT, Ω[{Nα}] still

depends on the masses Mα and charges Zα of each nucleus and must be redeter-

mined for a fluid with different chemical constituents.

Classical DFT therefore requires an approximation for the free energy Ω of a

particular inhomogeneous fluid directly in terms of its molecular or atomic site

densities {Nα}. Excellent approximations for model fluids, particularly the hard-

sphere fluid, have been known for a long time [102, 16], but the development of

accurate functionals for real liquids is still an area of active research.

Free-energy functional approaches for real liquids fall under two broad

classes. The first class of approaches [50, 120, 315, 265] require constructing

an effective short-ranged Hamiltonian for the liquid, and then theoretically ap-

proximating the free energy, typically using Wertheim’s thermodynamic pertur-

bation theory [299]. These functionals are easy to extend to other solvents and

thermodynamic state points, and are remarkably accurate for the free energy of

cavity formation, one of the two key contributions to solvation of electronic sys-

tems, even though they do not perfectly reproduce the pair correlations of the

fluid. However, most of these functionals do not properly account for dielectric

response, which is the other major contribution in solvation.

The second class of approaches [43, 44, 61, 171, 170, 319, 126, 127] is typi-

cally based on the weighted-density approximation (WDA) [55]. The weighted

density-functional approach typically convolves the liquid density N(~r) with a

weight function based on a pair potential model w(~r) to compute a smoothed,

or coarse-grained density

N̄(~r) =

∫
d3r′ w(|~r − ~r′|)N(~r). (1.27)
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Classical DFT functionals based on such weighted densities rely on pair correla-

tion functions of the fluid from molecular dynamics simulations or neutron and

X-ray scattering measurements. Such methods therefore rely on experimental

data available for few liquids at few state points, or the construction and testing

of a pair potential model followed by extensive molecular dynamics calcula-

tions to provide the needed correlation functions. Consequently, they are not

easily applicable to a new solvent or even to previously studied solvents under

different conditions.

1.3.2 Construction of a Classical DFT

In this work, we will employ a classical DFT which combines the generalizabil-

ity and excellent performance for cavity-formation free energies available from

the perturbation-theory based approach with the simplicity and low computa-

tional cost of a weighted-density approximation [262, 266]. Furthermore, this

classical functional is able to capture the nonlinear dielectric response quite ac-

curately compared to perturbation-theory based approaches. Below, we briefly

summarize the innovations required to construct a simplified, semi-empirical

classical DFT functional to approximate Ω[{Nα}].

Though many important physical effects arise from the structure and ori-

entation of the fluid molecules, many density-functionals are constructed in

terms of a single molecular density field, which places all atoms at the same site

[102, 16]. Orientation-dependent density-functionals are not widely available

because of the “inversion problem,” which refers to the challenge of employing

only atomic site densities to capture the entropy associated with the geometric
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structure of the molecules. Recent work by Lischner et. al. [170] offers a solution

to the inversion problem analogous to the Kohn-Sham formulation of electronic

DFT. Lischner chooses effective atomic site potentials acting upon each atom in

the noninteracting fluid (the ideal gas) as the independent variables instead of

the site densities. The geometric entropy is then captured by a constraint which

imposes the structure of the molecule upon the ideal gas free energy. Lischner

then went on to design a “Kohn-Shamified”classical DFT for water[171] which

used experimental correlation functions as input, however this preliminary wa-

ter functional became numerically unstable when minimized in the presence of

attractive external potentials. The preliminary work of Lischner and Petrosyan

above has been generalized and extended by Sundararaman et. al. [262, 266],

who chose the local electric field and local chemical potential as the independent

variables in an orientation-dependent liquid functional based on the weighted-

density approximation, allowing more complex interactions to be included and

offering superior numerical stability.

This new class of functional leverages fundamental measure theory (FMT)

[234, 272, 237], in particular the Carnahan-Starling form of FMT [39, 103], to

describe the hard sphere packing of solvent molecules and prevent unphysical

pileup of molecules in deep potential wells. Additional attractive interactions

between molecular sites in each solvent are included through an equation-of-

state-based WDA, parameterized to reproduce the properties of the bulk fluid

across the phase diagram. The Jeffrey-Austin equation of state [128] forms the

parameterization of the excess functional for water [262], while the Tao-Mason

equation of state has been successful for non-aqueous fluids such as CCl4 and

CHCl3 [266]. Sundararaman et. al. also developed a comprehensive treatment

of the mean-field electrostatic interaction between atomic sites, including con-
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tributions to the dielectric response from both rotations and molecular polar-

izability [266]. This classical DFT also employs molecular geometry and other

microscopic parameters determined directly from ab initio calculations (through

a procedure described in Section 2.4). Section 4.3.1 provides additional details

about the polarizable classical DFT functional for liquid water.

1.3.3 Microscopic Properties and Energetics

In order to be appropriate for use within the JDFT framework, the classical

density-functional theory for the solvent must be able to capture key micro-

scopic properties of the liquid essential to accurate free energies. One such key

property is the nonlinear dielectric response of the liquid to an applied electric

field. The nonlinear dielectric response is particularly important for polar sur-

faces in liquids and for electrochemical cells under applied voltage. In these

systems local electric fields can be quite large, and often the dielectric constant

of the nearby liquid is much lower than the dielectric constant of the bulk liq-

uid. Thus, surface energies under these conditions vary significantly from those

predicted by linear solvation theories [163] and require a more advanced theory

[100]. Classical DFT naturally captures nonlinear dielectric response through a

competition between the ideal gas entropy and the long-range Coulomb inter-

actions between charged sites on the solvent molecules [266].

Figure 1.1 displays the performance of the classical DFT [266] for the nonlin-

ear dielectric response compared to molecular dynamics simulations for both

nonpolar and polar solvents. Molecular dynamics simulations for water were

performed using TIP4P [4] and SPCE [22] pair potentials, while molecular dy-

25



Figure 1.1: Nonlinear dielectric response to an applied electric field in polariz-
able (solid lines) and rotations-only CDFT (dashed lines) compared to molecular
dynamics (black dots) for H2O (blue, left), CHCl3 (red, center), and CCl4 (green,
right).

namics simulations for CHCl3 and CCl4 were performed using recently devel-

oped polarizable pair potentials [156, 45]. All molecular dynamics simulations

were performed within the software base LAMMPS [221] using appropriate

rare event sampling techniques [85, 81]. For water, the highly polar solvent, a

rotations-only classical DFT suffices to capture much of the nonlinear dielectric

response, and the effect of polarizability is small. However, for the slightly po-

lar solvent CHCl3 and the nonpolar solvent CCl4, a polarizable classical DFT is

crucial to capturing the dielectric response. In fact, with a rotations-only theory,

nonpolar solvents are predicted to have only the dielectric response of vacuum.

Accurate prediction of the free energy required to form a cavity or interface

within the classical fluid is another essential requirement for JDFT calculations.

For nonpolar or uncharged solutes, cavitation energy dominates the free energy

of solvation. Computing the free energy per unit surface area required to solvate

a spherical cavity σ = ∆G
4πR2 , as a function of the cavity radius R tests the accuracy

of our predictions for cavitation. For planar interfaces (large R), this free energy

reflects the effect of cohesion in the liquid, and σ is simply the constant bulk

surface tension. For small solutes (small R), the effect of solvent exclusion dom-

inates instead, causing σ to vary linearly with R. Our classical DFT must be able
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Figure 1.2: CDFT predictions of sphere cavitation energy σ = ∆G
4πR2 as a function

of sphere radius R (solid line) compared to molecular dynamics (squares) for
H2O (blue,left), CHCl3 (red,center), and CCl4 (green,right). Bulk surface ten-
sion measured by experiment and predicted by molecular dynamics shown by
dotted black lines.

to capture cavitation in both these limits, as well as in the essential crossover

regime.

Figure 1.2 displays the predictions of the Polarizable CDFT for sphere cavi-

tation, compared to molecular dynamics simulations. Clearly, the shapes of the

curves predicted by MD and CDFT are in excellent qualitative agreement. One

significant feature of these curves is the overprediction of bulk surface tension

(asymptote of the curve as R → ∞) by the molecular dynamics simulations.

However, our classical density functional theories based upon an equation of

state are able to reproduce the bulk experimental surface tension by construc-

tion. Polarizable CDFT’s therefore offer an excellent choice for solvation of both

small and large solutes (as well as planar interfaces) within the JDFT framework.

1.4 Joint Density-Functional Theory

While electronic DFT (described in Section 1.2) is a highly accurate tool for

atomic scale problems in which a full quantum-mechanical treatment is neces-
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sary, its computational cost is often prohibitive for systems with more than a few

thousand atoms. Likewise, while classical DFT (described in Section 1.3) can ef-

ficiently treat large length scales by avoiding thermodynamic sampling of all

possible configurations of the liquid, the lack of quantum-mechanics prevents

any description of bonding and charge transfer. Ideally, we could combine the

advantages of both theories through multiscale modeling, in which a quantum-

mechanical solute is treated within electronic DFT while the fluid environment

is treated classically. Joint Density-Functional Theory (JDFT) [218], described in

detail in Chapter 2 provides a rigorous framework for just such a multiscale ap-

proach, enabling the study of previously intractable problems in fields ranging

from biology to electrochemistry.

The proof of JDFT varies only slightly from the derivation of classical DFT

presented in the previous section. The main difference is the division of the

fixed nuclei of the solute system (indexed by I) from the nuclei of the environ-

ment (indexed by α). We apply a renormalization approach and hold the solute

nuclei fixed while integrating over the solvent nuclear degrees of freedom so

that the Coulomb interaction from the nuclei of the explicit solute system is

now captured through the external potential

φ(~r) =
∑

I

ZI

|~r − ~RI |
. (1.28)

Beginning with the temperature-dependent unified DFT functional in Equation

1.25, we now minimize over only the electron density of the liquid environment

nlq and leave the electrons of the solute n as the independent variable, yielding

the exact (within a classical statistical-mechanical approximation for the solvent
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nuclei) functional

Aφ[n, {Nα},T ] = min
nlq

{
F[(n + nlq), {Nα},T ]+∫

d3r φ(~r)

n(~r) + nlq(~r) −
∑
α

ZαNα(~r)


 . (1.29)

The energy Aφ[n, {Nα},T ] may be written as

Aφ[n, {Nα},T ] = G[n, {Nα}, φ,T ] +

∫
d3r φ(~r)n(~r) (1.30)

in terms of the semi-universal functional

G[n, {Nα}, φ,T ] = min
nlq

F[(n + nlq), {Nα},T ] +

∫
d3r φ(~r)

nlq(~r) −
∑
α

ZαNα(~r)


 .

(1.31)

As in the case of the classical DFT, this semi-universal functional still depends

weakly upon the form of the external potential φ(~r) and the chemical identities

of the nuclei.

Some subtlety exists regarding the division of the total electron density into

the solute and solvent electron densities. The indistinguishability of electrons

dictates that meaningful assignment of electrons to the solvent and the solvent

is not possible in an exact framework, however any real approximation will

break the degeneracy. In most systems treated within JDFT, it is reasonable to

assume that the liquid molecules are nonreactive and that their electrons are

tightly bound and not easily polarized by the solute. Within that approxima-

tion, we may neglect the right-hand side of Equation 1.31 to find a more uni-

versal functional which does not depend on the nature of the solute system,

communicated through the external potential φ(~r).

In practice, we typically rewrite Equation 1.31 in terms of well-defined pieces

as

A[n(r), {Nα(r)}] = AHK[n(r)] + Ωlq[{Nα(r)}] + ∆A[n(r), {Nα(r)}], (1.32)
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where AHK[n(r)] is the Hohenberg-Kohn density-functional for the electrons of

the solute [116], Ωlq[{Nα(r)}] is a classical density-functional for the liquid envi-

ronment, and ∆A[n(r), {Nα(r)}] is formally defined as the difference between the

exact functional A and the well-known pieces AHK and Ωlq. Chapter 2 describes

each of these pieces in additional detail and presents a successful approximation

to the functional ∆A, which couples the solute system to the liquid environment.

In addition, we place implicit solvation models (which depend only upon the

electrons of the solute) within the rigorous framework of JDFT in Section 3.4.
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CHAPTER 2

MICROSCOPICALLY ACCURATE ELECTRON-FLUID COUPLING

FUNCTIONALS WITHIN EXPLICIT JDFT 1

2.1 Introduction

Liquid water covers over 70 percent of the surface of the Earth, and is essen-

tial to the survival of a myriad of lifeforms. However, this complex liquid is

far from well-understood, despite its significance. The polar nature of water,

along with the strong tendency to form hydrogen bonded networks, creates

strong, orientation-dependent interactions which prevent simple fluid models

from successfully capturing its behavior. Even simple, nonpolar fluids such as

the common chemical solvent carbon tetrachloride (CCl4), and its slightly po-

lar relative chloroform (CHCl3) exhibit features such as molecular polarizability

which are not easily captured by traditional fluid models. These molecular-

scale features lead to macroscopic properties of the liquid, including dielectric

response and surface tension, which can crucially impact processes occurring

in a liquid environment. The greatest theoretical challenge arises when atomic-

scale processes — for which a quantum-mechanical treatment is essential —

occur in contact with a fluid which exhibits these microscopically driven, yet

inherently large-scale and statistical phenomena.

A truly fundamental description of biological systems, such as solvated

DNA and proteins, and of technological systems, such as fuel and solar cells,

requires a simultaneous and complete description of the quantum-mechanical

1Co-author credits: R. Sundararaman assisted with the software implementation, the pro-
cedure for determining the microscopic parameters of the solvent molecule in Section 2.4, and
preliminary benchmarking of neutral molecule calculations.
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solute (broadly construed as a surface, polymer, molecule, or ion), the complex

liquid environment, and the coupling between the solute and liquid. These sys-

tems also require an accurate description of the liquid-solute coupling, which

captures the interaction between the liquid environment and the solute system.

Moreover, to access the experimentally relevant length and time scales, this the-

oretical description must also be computationally efficient. The development of

accurate and efficient methods to treat electronic systems in contact with liquid

thus would advance basic understanding in materials physics, microbiology,

pharmacology, and many other diverse fields, but despite the critical scientific

importance of the solute-solvent interface, no single theory has yet overcome

the inherent challenge of making solvation calculations both accurate and effi-

cient. Instead, a variety of models have arisen, each with its own strengths and

weaknesses; typically the models with sufficient accuracy are computationally

prohibitive, while those with sufficient speed are highly empirical and may not

generalize readily to new systems.

The common approaches to studying quantum-mechanical solvated sys-

tems may be divided into those which include explicit liquid molecules, and

those which model the fluid as some type of continuum. Solvated systems

may be calculated highly accurately using ab initio molecular dynamics[38, 209],

which treat the electrons of both the ensemble of water molecules and the so-

lute quantum-mechanically [192, 141, 147]. However, while these techniques

are ideal for benchmarking properties of liquid water, they are prohibitively

expensive for many applications as they require both explicit water electrons

and extensive sampling over the phase-space of likely liquid configurations. A

more computationally tractable method, the QM/MM approach [296, 136], em-

ploys classical molecular dynamics for the liquid, coupled to a full quantum-
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mechanical calculation for the solute. In the QM/MM method, the water is

modeled using empirical atomic site-potentials [22, 133, 4] and, commonly, the

water-solute interaction is simulated as simply electrostatics and van der Waals

repulsion for each explicit atom or functional group in the solute. Less com-

monly, the water-solute interaction may be treated using a density-only func-

tional [115, 114]. While these techniques may be reasonably efficient, they re-

quire a thermodynamic average over multiple configurations of the liquid to

facilitate the calculation of free energy differences.

In 2010, after the publication of JDFT, Wesolowski et al. [137] proposed an

alternate approach which embeds a quantum-mechanical system within an in-

tegral equation description of the liquid environment through the Frozen Den-

sity Embedding (FDE) framework [302, 300]. Integral equations are often de-

rived from pair potential models created for molecular dynamics simulations,

and thus do contain microscopic information about the response of the liquid

to the solute system. However, within the integral equation framework, cal-

culation of free-energy differences is not straightforward. Indeed, significant,

largely untested approximations are required to even make these computations

feasible [242, 143]. Because the free-energy formalism within integral equation

theory is more complicated, self consistent treatment of both the ab initio system

and the liquid is difficult to achieve, even for a small system. Another similar

solvation approach would couple a quantum-mechanical system to a perturba-

tion theory based reference interaction site model (RISM) [48] using common

force-field models [71]. This class of approach suffers from significant empiri-

cism introduced by these force-field models into the solute-solvent coupling.

Finally, no fundamental free-energy theorem undergirds the combination of in-

tegral equation theory with either the FDE framework or higher-order quantum
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chemistry methods.

To overcome the requirement for phase-space sampling or complex integral

equation formulations, some simplified, empirical solvation models replace the

microscopic details of the aqueous environment with a continuum description,

such as in the popular Polarizable Continuum Model (PCM). The simplest ap-

proach is to use spheres defined by the van der Waals radii of each of the so-

lute atoms or functional groups plus an effective spherical radius for solvent

molecules in order to define a solvation cavity, and then describe the fluid elec-

trostatics by using the continuum bulk dielectric constant placed outside the

cavity [281]. A more physical transition into the fluid region may be achieved

using isodensity cavitation, which determines the solvation cavity from the elec-

tron density of the explicit, solute system [75]. However the cavity is defined,

these models then attempt to simulate surface tension [243], dispersion,[7] and

other effects deemed important[280, 180] by including ad hoc corrections to the

free energy and fitting empirical parameters to large databases of solvation

data[231]. These polarizable continuum models may be placed in a rigorous

framework and made exact in principle [217], but the approximations required

for practical calculations remain the same.

While the predictions made by the aforementioned continuum models may

be highly accurate for those classes of systems included within the fitting

database [231], these methods are not generalizable to systems like polar elec-

trode surfaces under potential control. These simplified models do not include

the molecular-scale structure of the liquid environment, and therefore cannot

reliably capture nonlinear dielectric response or the complex interplay between

electrostatics, cavitation, and dispersion. Ideally, each of these physical effects
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should arise naturally from a full description of the thermodynamics and quan-

tum mechanics of the system, and should be accessible through a single varia-

tional principle. Such an approach would retain the advantages of the simpli-

fied models, such as a self-consistent solution without the need for thermody-

namic sampling and straightforward treatment of extended systems within a

plane-wave basis, while significantly reducing the empiricism. One additional

strength of a free energy approach is the direct access to thermodynamic aver-

ages from derivatives of the free energy functional.

This chapter will outline the path for coupling an in principle exact contin-

uum model for water — a classical density-functional theory which reproduces

equilibrium properties of the fluid, such as nonlinear dielectric response, cavita-

tion energy, and shell structure, from first principles [266] — to a fully quantum-

mechanical calculation of the solute system within the framework of Joint Den-

sity Functional Theory (JDFT) [218]. First, we will describe the rigorous JDFT

framework for study of an explicit solute system within a continuum liquid en-

vironment. We then present a computationally tractable and microscopically

accurate universal functional to couple quantum-mechanical systems with their

liquid environments. Next, we provide an initial exploration of the promise of

this universal coupling functional by computing solvation energies of a range of

small molecules in a variety of polar and nonpolar solvents (CHCl3, CCl4, and

H2O). Finally, we test the efficacy of this theory for extended systems by deter-

mining the structuring of liquid water in the presence of a graphene sheet. The

excellent performance of the JDFT approach on these test systems, compared

with both experiment and state-of-the-art theory, suggests that it has matured

into a predictive solvation theory which can bridge the gap between scalability

and accuracy.
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2.2 Theoretical Framework

Knowledge of the full equilibrium quantum-mechanical description of a solute

in contact with fluid allows the free energy of the system to be exactly deter-

mined by a single variational principle through the Joint Density Functional

Theory framework. Without such a framework, clearly this minimization prob-

lem can often be computationally infeasible due to the large number of liquid

electronic degrees of freedom and the need for thermodynamic averaging over

multiple nuclear degrees of freedom of the liquid. As described in section 1.4,

Petrosyan et. al. [218] present a rigorous proof which “integrates out” the liquid

electrons to construct a joint liquid-solute functional that is exact in principle.

They further manipulate the functional into a form which is straightforward to

approximate.

The free energy functional of the joint solute-liquid system may be con-

structed from well-defined quantities, leaving an unknown piece ∆A to be ap-

proximated,

A[n(r), {Nα(r)}] = AHK[n(r)] + Ωlq[{Nα(r)}] + ∆A[n(r), {Nα(r)}]. (2.1)

In Equation 2.1, AHK[n(r)] is the well-known Hohenberg-Kohn density-

functional for the electrons of the solute with electron density n(r) [116],

Ωlq[{Nα(r)}] is a classical density-functional for the liquid environment with

atomic site densities {Nα(r)} (for water α = O,H), and ∆A[n(r), {Nα(r)}] is formally

defined as the difference between the exact functional A and the well-known

pieces AHK and Ωlq. In this form, JDFT makes the Born-Oppenheimer approxi-

mation for the nuclei of the explicit, quantum mechanical solute system while
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the nuclei of the solvent remain fully quantum-statistical-mechanical. Addition-

ally, due to the indistinguishability of electrons, there is no unique assignment of

the electrons belonging only to the solute (n(r)). This lack of uniqueness implies

that in principle, a large set of n(r) will produce the minimum value of Equation

2.1. Of course, each of the terms in Equation 2.1 must be approximated for ac-

tual calculations, which will result in a unique decomposition of the electrons

belonging to the environment from those belonging to the solute.

The term AHK[n(r)] in Equation 2.1 is highly studied, and is typically formu-

lated in terms of Kohn-Sham single particle orbitals [151], with the electrostatic

portion of the Coulomb interaction treated within a mean-field (Hartree) ap-

proximation. A myriad of approximate functionals for the electron exchange

and correlation energy are available, including the Local-Density Approxima-

tion, multiple forms of the Generalized Gradient Approximation [212], and

even van der Waals corrected functionals [311, 233]. Higher level theories

such as Quantum Monte-Carlo (QMC) have also been implemented to describe

highly correlated quantum-mechanical solute systems within the JDFT frame-

work [246]. Finally, we note that when performing the decomposition of sol-

vent and solute electrons described above, it is essential that any electrons par-

ticipating in charge transfer reactions or covalent bonds be treated quantum-

mechanically within AHK.

Classical density-functionals for the term Ωlq[{Nα(r)}] are less widely avail-

able, likely because the typical hard-sphere reference fluid [211] is not an ideal

starting point for most small molecular fluids. For highly polar molecules like

water, information about the molecule orientation and geometry is required

to properly capture shell structure and dielectric response. There are sev-
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eral schools of thought regarding the design of orientation-dependent classical

density-functionals presented in the literature; as are summarized in Section 1.3.

The initial exploration of the promise of the JDFT framework by Petrosyan et.

al. employed a hard-sphere density-functional theory for water in terms of only

the oxygen site density NO(r), with no dependence on the hydrogen site den-

sity NH(r) [218] and therefore no sense of molecular geometry or orientation.

Another weakness of this preliminary classical DFT is the ad hoc and empirical

linear form of the dielectric function used to compute the electrostatic portion

of the energy. In the present work, we use the polarizable classical DFT based

on fundamental measure theory and the liquid equation of state which was re-

cently developed by Sundararaman et al. [262, 266] and is introduced in 1.3 and

described in detail for water in 4.3.1. This polarizable CDFT introduces an addi-

tional vector field ~Pα, the polarization density of site α, as an independent vari-

able in Ωlq. Section 1.3.3 demonstrates that this polarizable CDFT reproduces

the physical quantities relevant for free energy calculations for both polar and

nonpolar solvents; predictions for nonlinear dielectric response, surface tension,

and site-site correlation functions all compare favorably with experimental and

molecular dynamics results.

The functional ∆A[n(r), {Nα(r)}] which describes the coupling between a

classical density-functional theory for the liquid and the electronic density-

functional theory for the solute is largely unstudied, and remains an active

area of research. Water-solute interaction models used to calculate coupling

of quantum-mechanical systems to molecular dynamics [115, 114] may offer in-

sight, but these models ultimately couple point particles rather than site-density

fields, and so suffer the same pitfalls as classical molecular dynamics simula-

tions, such as the need to re-calibrate for each new solvent. Simplified, implicit
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solvation model approximations to JDFT, which do not consider the fluid struc-

ture explicitly, (see Section 3.4) may incorporate ideas from classical DFT, such

as nonlinear dielectric response [100] and non-locality [268], but they still lack

the effects of realistic structuring in the fluid.

Previous work on full, explicit JDFT for water [218, 219] employed “molec-

ular pseudopotentials” [144] Vps(r) to represent the electron coupling to a single

solvent molecule, resulting in a coupling functional which is linear in both so-

lute electron density n(r) and oxygen site density NO(r),

∆A =

∫
d3R

∫
d3rn(r)Vps(r − R)NO(R). (2.2)

This molecular pseudopotential coupling functional, combined with the empir-

ical oxygen-only classical DFT, yielded promising solvation energy results for

small molecules[218], but did not yield accurate shell structure in the fluid. Fur-

thermore, because molecular pseudopotentials do not capture the van der Waals

interaction between the solvent and solute systems, they fail to reproduce cor-

rect solvation trends for noble gas atoms, the alkanes, and other nonpolar so-

lutes [219].

When molecular pseudopotentials are employed within a classical density-

functional theory for water with both oxygen and hydrogen site densities, the

lack of screening from water electrons around the positively charged hydrogen

sites creates too much attraction for the electrons from the explicit system, caus-

ing unphysically deep potential wells. Deep potential wells have been observed

to create numerical instabilities in the minimization of the classical density-

functional, limiting the practicality of JDFT coupling functionals based upon

molecular pseudopotentials. In addition, these pseudopotentials are currently

parameterized only for water, and are not easily generalizable to other fluids.
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Construction of a molecular pseudopotential for a new solvent requires care-

ful spectroscopic measurements of the properties of an electron in contact with

that solvent, as well as empirical and largely arbitrary choices for the functional

form of Vps(r) employed to fit the spectroscopic data. Even for water, the various

molecular pseudopotentials available in the literature offer different predictions

for quantities like the “volume” of the solvated electron, yielding no clear choice

upon which to base a coupling functional.

Ideally, the prescription for the coupling functional should be solvent-

independent and highly transferable. A coupling functional based on electronic

density-functional theory would be universally applicable, but requires a re-

construction of the solvent electron density which was previously “integrated

out” in the proof of JDFT. The most promising path to performing JDFT calcula-

tions with explicit molecular geometry for a general solvent therefore requires

an accurate description of the electrons in the liquid and their interaction with

the explicit system. Below, we present a coupling functional which captures

precisely this interaction in a simple, solvent-independent form motivated from

the underlying physics and basic ideas in density-functional theory.

2.3 Universal Approximate Coupling Functional

In order for JDFT to be appropriate for wide use in many diverse fields, the

choice of coupling functional must not depend on the details of the particular

solvent. We therefore seek to develop a universal form, which could couple

any quantum-mechanical solute to any molecular solvent, given a properly pa-

rameterized classical DFT for the term Ωlq[{Nα(r)}] in Equation 2.1. To develop
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such a universal coupling functional, we first divide the full system into solute

and solvent subsystems. Then, for simplicity, we posit that a single functional

F [nS , {NS }] may describe the interactions in each subsystem in terms of the nu-

clear number densities {NS } (and nuclear charges {ZS }) and the electron density

nS of that subsystem. Thus, the coupling functional may be written quite gener-

ally and intuitively as

∆A = F [ntot, {NI ,Nα}] − F [n, {NI}] − F [nlq[{Nα}], {Nα}]. (2.3)

where the nuclei of the solute system are delta functions NI(r) = δ(r − RI) with

charges ZI . We note that the average electron density of the liquid, nlq, should

be a functional of the solvent atomic site densities {Nα}, yielding the total elec-

tron density ntot = n + nlq[{Nα}]. Section 2.3.3 describes the the specific prac-

tical approximation we employ to represent nlq[{Nα}]. This approximation is

tantamount to assuming that each solvent electron is bound in an orientation-

independent manner to a single nuclear site.

In Equation 2.3, the full coupling functional consists of the general functional

F evaluated upon the joint system, with the individual contributions from the

solute and liquid subsystems subtracted from the total (as the first two terms of

Equation 2.1 consider these contributions). Of course, the particular form cho-

sen for F is crucial in determining the accuracy and computational feasibility

of the universal coupling functional. Section 2.3.1 describes the density-only

DFT approach which we employ. Such subtraction-based approaches within

orbital-free DFT are commonly used to couple high-accuracy and low-accuracy

subsystems of a demanding calculation using embedding theory [53, 118] or

“Frozen Density Embedding” (FDE) [302]. However, these embedding theo-

ries are formulated in a solid-state context, where all nuclei and the resulting

nuclear potential are static, therefore the resulting frameworks are simple ex-
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tensions of Kohn-Sham electronic DFT. Though the subsystem embedding ap-

proach has previously been employed to study liquid subsystems [137], these

studies have not yet been placed on a rigorous basis because, when coupling liq-

uid and solid regions together, one must instead consider a statistical average of

nuclear positions in the liquid. In this situation, the underlying pure electronic

Hohenberg-Kohn theorem in Equation 1.10 no longer applies, as the external

potential acting upon the electrons is no longer constant. Thus, one may per-

form true liquid solvation calculations only within the free-energy framework

of JDFT.

2.3.1 Approximate Local Functional

The universal subsystem functional F may now be approximated by any elec-

tronic DFT functional which does not depend upon the quantum-mechanical

orbitals, traditionally known as density-only or orbital-free DFTs. Fortunately,

an efficient and highly stable density-only functional is well-known and has

been employed in the literature for a wide variety of applications [277, 80]. To

produce this functional, we simply approximate the orbital-dependent kinetic

energy operator from Kohn-Sham density-functional theory with the Thomas-

Fermi kinetic energy TTF, a functional of the electron density,

TTF[nS (r)] =

∫
d3r

{
3

10
(3π2)

2
3 nS (r)

5
3 + O(∇nS )

}
. (2.4)

Among the key physical effects which this local term captures is the electron-

cloud overlap due to Pauli exclusion, a physical effect which is necessary to

prevent the over-attraction of solute electrons to positively charged solvent nu-

clear sites, and which is not well-described within the molecular pseudopoten-

tial coupling approach.
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We next represent the mean-field electrostatic interactions of the total charge

density ρS (nS (r), {NS (r)}) (determined for the solvent from Equation 2.19 in Sec-

tion 2.4) as a multicomponent Hartree term,

EH[nS (r), {NS (r)}] =
1
2

∫
d3r

∫
d3r′

ρS (r)ρS (r′)
|r − r′|

. (2.5)

A more computationally feasible representation of this energy exists in fourier

space as

EH = ρ̃S K̂ρ̃S (2.6)

where ρ̃S denotes the fourier transform of the charge density and K̂ is the

Coulomb operator.

Finally, we include the effects of exchange and correlation within the local

density approximation [151] as

EXC[nS (r)] =

∫
d3rnS (r)εLDA[nS (r)] (2.7)

where εLDA[nS (r)] is the local-density approximation for the exchange correla-

tion potential [151, 214]. Including the generalized gradient approximation for

the exchange and correlation [212] as well as gradient corrections [298] for the

kinetic energy is a promising direction for future research. To date, however,

our attempts at this higher level of accuracy have proved numerically unsta-

ble when combined with the classical DFT because the introduction of gradient

terms results in high frequency features in the site densities Nα.

2.3.2 Beyond Local DFT

To correctly capture solvation effects, especially solvation of large, nonpolar

molecules, the nonlocal effect of polarizabilities of both the liquid and the solute
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must also be considered. In principle, these nonlocal effects could be included

through van der Waals density-functional theory; [279, 158] however, such the-

ories require a double integral over a nonlocal functional form and are therefore

quite computationally demanding. Some promising recent approaches do re-

duce the computational complexity of van der Waals density-functionals[233],

but these functionals are designed to use with the Kohn-sham orbital-dependent

kinetic energy and may not be fully accurate with an orbital-free treatment,

which overestimates electron repulsion. Thus, for this first level of approxi-

mation of the interaction between the solvent and explicit quantum-mechanical

system, we employ Grimme’s van der Waals pair interactions between the nu-

clei with a database of coefficients cS
6 and radii RS

6 derived from high-level quan-

tum chemistry calculations [97]. The contribution to the coupling functional F

from these pair interactions is

EvdW[{NS (r)}] = γ
∑

S

∑
S ′

∫
d3r

∫
d3r′

√
cS

6 cS ′
6 NS (r)NS ′(r′)

|RS
6 + RS ′

6 |
6

(2.8)

However, the choice of scaling prefactor γ is ambiguous – Grimme has only de-

termined the scaling prefactor for certain approximations to the exchange and

correlation (specifically 0.75 for PBE, 1.0 for TPSS, and 1.05 for B3LYP, among

other GGA, meta-GGA, and hybrid functionals) [97]. There is no prefactor de-

termined for density-only functionals or even the local density approximation.

Accordingly, following [263, 268], we must adjust this parameter based upon its

performance for solvation energies (see Section 2.6.1).

With the specification of the above nonlocal term, Equations 2.4, 2.5, 2.7, and

2.8 now fully prescribe our approximate density-only functional form,

F [nS , {NS }] = TTF[nS (r)] + EH[nS (r), {NS (r)}] + EXC[nS (r)] + EvdW[{NS (r)}]. (2.9)

Note that this coupling functional is based directly upon first principles physical
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effects and thus should be highly transferable. Moreover, this functional is sys-

tematically improvable as the community develops more accurate density-only

functionals.

2.3.3 Convolution Electron Density Model

An accurate description of the electron density of the solvent, nlq(r), is necessary

to properly couple an explicit electronic system to an orientation-dependent

classical DFT through Equation 2.9. However, the rigorous JDFT framework

integrates over the liquid electronic degrees of freedom, so that the solvent elec-

tron density nlq(r) must be computed efficiently from knowledge of only the

nuclear degrees of freedom, {Nα(r)}. The current accurate forms of the classical

density-functional theory for molecular solvents available to us [262, 266] do

not contain orientation information for the molecules contributing to the den-

sities Nα. Accordingly, from a computational perspective, the electron density

associated with each site α of the solvent molecule is most naturally taken as

having spherical symmetry about the atomic site center. The challenge of this

approach is to correctly reproduce the full electron density of a solvent molecule

as a superposition of spherical site models. We therefore begin with a reference

ab initio calculation to obtain the electron density of a quantum-mechanical sol-

vent molecule in solution. Following the procedure of [266] (also detailed in

Section 2.4) we then perform a least-squares fit of the resulting density to a pa-

rameterized set of spherical site densities.

For the water molecule, the resulting density model varies from the refer-

ence by a maximum of 0.1 a−3
0 and in most places is much more accurate (Fig-
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ures 2.1 and 2.2). The model does underestimate the electron density somewhat

in the location of the lone pair and along the oxygen-hydrogen bonds, but such

features are not possible to capture using site-centered spherical models. In

any event, the O-H bonds are not sterically accessible so their electron density

should not overlap significantly with the quantum-mechanical system. Addi-

tionally, we have performed preliminary aqueous solvation energy calculations

similar to those in Section 2.6.1 with a more detailed multi-site water model

(with extra spherical sites on the lone pair and the bonds) to confirm that the

details of the model within the interior the water molecule are unimportant,

giving identical solvation energies to within less than 1 mH. Similar sensitivity

analysis has been performed for the non-aqueous solvents CCl4 and CHCl3. As

the overlap between the electron densities of the solute and solvent is generally

small, capturing the asymptotic behavior of the solvent electron density should

provide sufficient accuracy for calculation of free energy differences.

Though these spherical electron density models properly reproduce proper-

ties of the liquid electrons for molecules with point nuclei fixed in well-defined

locations, the classical density-functional theory is written in terms of contin-

uum density fields Nα(r) for the atomic sites. The effective liquid electron den-

sity nlq(r) may be computed simply and directly as the sum of the convolutions

of each spherical site electron density nα(r) with the appropriate nuclear density

Nα(r),

nlq[{Nα(r)}] =
∑
α

Nα ∗ nα =
∑
α

∫
d3RNα(R)nα(r − R). (2.10)

The appropriate expression for nα may be found in Equation 2.16 of Section 2.4

and the required parameters are tabulated in Table 2.1. The electron density

nlq(r) may then be used directly in the kinetic and exchange-correlation func-

tionals making up F . The remaining Hartree term of the coupling functional re-
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quires the total charge density of the solvent ρlq, which also includes the nuclear

charge and the bound charge due to the polarizability of the liquid molecules as

prescribed in Equation 2.19 of Section 2.4.

A functional form similar to the above has been employed by Kaminski et.

al. for coupling integral equation theory for water to electronic DFT [137], but

has not yet been applied to the calculation of free energies of solvation. While

this choice of reconstructing the solvent electron density is somewhat arbitrary,

we will show in Section 2.6 that using this approximation, along with Equations

2.3 and 2.9 for solute-solvent coupling within the JDFT framework, truly has

predictive power for key quantities such as free energies of solvation and liquid

structure.

2.4 Ab initio solvent-molecule parameterization

The microscopic details of the solvent impact the free energies of solvation

which JDFT predicts through both the terms ∆A and Ωlq in Equation 2.1. The

electron-fluid coupling ∆A within JDFT, using Equations 2.3 and 2.9, employs

the solvent electron density nlq[{Nα}] and charge distribution rholq[{Nα}]. The ex-

ponential tails of the solvent electron density overlap with the corresponding

tails of the solute and therefore affect the solute-solvent interaction terms[162]

in joint density-functional theory.[218] Through the parameterization in Table

2.1 of Equations 2.11 and 2.12, we reproduce these key quantities for each indi-

vidual solvent molecule as faithfully as possible. We then reconstruct the charge

properties of the total fluid from the nuclear number densities {Nα} and nuclear

charges {Zα} according to Equations 2.10 and 2.19.
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The atomic-scale properties of the solvent molecule also impact the liquid

functional Ωlq through both the geometric constraint on the ideal gas free energy

and the electrostatic interactions amongst the liquid atomic sites. For the liquid

functional Ωlq, we approximate the mean field Coulomb interaction of the fluid

with itself using a different spherical shell model for the charge distribution

ρMF[{Nα}] [266], designed specifically to minimize self-interaction. This mean-

field self-interaction model requires accurate geometry and atomic site charges

for each constituent solvent molecule, so these microscopic properties have a

direct impact on both the short-range and long-range electric response of the

classical fluid.

The remainder of this section establishes the procedure for determining the

geometry, atomic site charges qα, and electron site densities nα from electronic

density-functional calculations of a single solvent molecule.

2.4.1 Solvent Environment

Solvent molecules in the liquid environment differ significantly from isolated

or gas phase molecules. Pair potential models created for molecular dynamics

simulations of liquids are calibrated to reproduce the thermodynamic proper-

ties of the liquid state, and give strong indication of these changes. For exam-

ple, the dipole moment of the SPC/E model water molecule is 2.35 Debye [22],

in agreement with estimates of 2.3-2.5 Debye [89] based on cubic susceptibility

measurements, and in contrast to the gas phase moment of 1.85 Debye [2].

To account for the effect of the surrounding liquid in our ab initio calcula-

tion, we perform calculations of a single quantum-mechanical solvent molecule
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in contact with an implicit solvation model to represent the effects of the sol-

vent environment. Specifically, we employ the nonlinear polarizable contin-

uum model [100], which approximates solvent effects in an electronic density-

functional calculation of a molecule by surrounding the molecule with a nonlin-

ear dielectric medium. In principle, we could obtain the solvent parameters self-

consistently within a solvation model which includes full microscopic detail. In

practice, however, we find that the parameters determined from a properly con-

strained and sufficiently detailed polarizable continuum model are adequate for

determining the needed microscopic details of solvent molecules in the solvent

environment.

2.4.2 DFT Calculation Details

All ab initio calculations were performed within the DFT++ framework [122] as

implemented in the open-source code JDFTx [267]. The solvent was modeled

by the nonlinear polarizable continuum model GLSSA13 [100]. We employed

the generalized-gradient approximation [212] using a plane-wave basis within

periodic boundary conditions and a single k-point (Γ) to sample the Brillouin

zone. Each molecule was computed within a supercell representation with a

distance of 40 a0 between each periodic image in each direction. All calcula-

tions presented employ optimized [230] norm-conserving Kleinman-Bylander

pseudopotentials [228]. A partial core correction [172] was required for the Cl

pseudopotential. A high plane-wave cutoff energy of 70 H was chosen so all

details in the electron density would be fully resolved on a fourier grid of (300)3

points.
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2.4.3 Solvent-Molecule Geometry

Accurate structure of the solvent molecule is crucial for accurate liquid free en-

ergy calculations, as it affects the long-range electrostatics as well as the geomet-

ric contribution to the ideal gas entropy. We obtain the solvent molecule geome-

try directly from the relaxed nuclear positions, {~Rα}, determined by the solvated

electronic density-functional calculation. Table 2.1 shows that the bond lengths

and angles, thus obtained, agree reasonably with popular molecular dynamics

models for water, chloroform and carbon tetrachloride.

2.4.4 Determination of Solvent Site Charges

The charges qα on each solvent atomic site impact the Coulomb interac-

tions among the liquid molecules and between the liquid and the quantum-

mechanical solute system. The mean field Coulomb kernel in the liquid func-

tional Ωlq in Equation 2.21 The norm of the liquid site electron density in Equa-

tion2.12, which is used to compute the coupling functional ∆A, is also deter-

mined from the site charge qα. We constrain the site charges to match the lowest

multipole moments of the ab initio solvent molecules, employing as many mo-

ments as necessary to constrain them (up to dipole for water, quadrupole for

chloroform, and octupole for carbon tetrachloride). The resulting site charges

qα are tabulated in Table 2.1.

The site charges determined by this procedure agree reasonably with those

of common pair potentials for the highly polar liquid water, whose thermody-

namic properties are sensitive to these parameters in molecular dynamics sim-

ulations. The site charges agree to a lesser extent for the weakly polar liquid
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chloroform. However, in nonpolar fluids, the bulk thermodynamic properties

do not constrain the multipole moments, since the magnitude of the Coulomb

interaction is insignificant compared to the magnitude of the dispersion interac-

tion. Thus, unsurprisingly, the empirically determined molecular dynamics site

charges for carbon tetrachloride [45] differ significantly from our ab initio values.

In fact, the octupole moment of our CCl4 model is 13.2 Debye-Å2 in much better

agreement with the experimental value of (15 ± 3) Debye-Å2 [73], compared to

0.5 Debye-Å2 for the model of Ref. [45]

2.4.5 Spherical Charge Density Functional Forms

To be used within the JDFT coupling functional in Section 2.3 the electron and

nuclear charge densities from the solvated electronic density-functional calcula-

tion must be expanded as a sum of spherical contributions around each atomic

site of the solvent molecule, as in Equations 2.10 and 2.19. Accurate calcula-

tions therefore require spherically symmetric functional forms which capture

the solvent electron and charge densities in the range at which they interact

with the quantum-mechanical system. Because the overlap between the solvent

and solute is minimal, especially in the core region of the solvent molecule, only

the mid-range and asymptotic behavior of the relevant solvent densities is im-

portant. To a certain extent, we can therefore choose smoothed and simplified

functions that represent the electron and nuclear charge densities within the

core region to optimize representability on a Fourier grid without changing the

interaction energies.

The charge due to the solvent core electrons and nuclei is confined to the
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Table 2.1: Microscopic solvent parameters for water, chloroform and carbon
tetrachloride from electronic density-functional theory, compared to molecular
dynamics models (Ref. [133] for H2O, Ref. [156] for CHCl3 and Ref. [45] for CCl4)
wherever applicable.

Solvent Property Density-functional Molecular Dynamics
H2O rOH 0.967 Å 0.9572 Å

θHOH 104.2◦ 104.52◦

qO -0.826 -0.8476
qH +0.413 +0.4238

Zel
O , a

el
O 6.826, 0.37 a0 -

del
O , ν

el
O 0.52 a0, 0.37 a0 -

Zel
H , a

el
H 0.587, 0.35 a0 -

del
H , ν

el
H 0.0, 2ael

H/
√
π -

χO, a
pol
O 3.73 a3

0, 0.32 a0 -
χH, a

pol
H 3.30 a3

0, 0.39 a0 -
CHCl3 rCCl 1.804 Å 1.79 Å

rCH 1.091 Å 1.1 Å
θHCCl 107.8◦ 107.2◦

qC -0.256 -0.175
qH +0.244 +0.211
qCl +0.004 -0.012

Zel
C , a

el
C 4.256, 0.49 a0 -

del
C , ν

el
C 0.67 a0, 0.48 a0 -

Zel
H , a

el
H 0.756, 0.36 a0 -

del
H , ν

el
H 0.0, 2ael

H/
√
π -

Zel
Cl, a

el
Cl 6.996, 0.45 a0 -

del
Cl, ν

el
Cl 1.01 a0, 0.51 a0 -

χC, a
pol
C 6.05 a3

0, 0.36 a0 8.84 a3
0, -

χH, a
pol
H 9.13 a3

0, 0.41 a0 0, -
χCl, a

pol
Cl 15.8 a3

0, 0.46 a0 13.8 a3
0, -

CCl4 rCCl 1.801 Å 1.77 Å
qC -0.980 -0.1616
qCl +0.245 +0.0404

Zel
C , a

el
C 4.980, 0.61 a0 -

del
C , ν

el
C 0.53 a0, 0.37 a0 -

Zel
Cl, a

el
Cl 6.755, 0.44 a0 -

del
Cl, ν

el
Cl 1.04 a0, 0.52 a0 -

χC, a
pol
C 5.24 a3

0, 0.35 a0 5.93 a3
0, -

χCl, a
pol
Cl 18.1 a3

0, 0.47 a0 12.89 a3
0, -
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interior regions of the molecule and does not overlap with the other solvent

molecules or the electronic system. For optimum Fourier resolvability, we

smooth it with a gaussian distribution of standard deviation σα = R0α/6. These

distributions then become zero to numerical precision at the atomic van der

Waals radius R0α, which is a reasonable estimate for the typical approach dis-

tance of that site to any other atom. This contribution to the charge density

from the core electrons and the nuclei has norm Zα, which is determined by the

pseudopotential choice for valence/core separation.

The electron densities of the solvent molecules do overlap somewhat with

the explicit quantum-mechanical system. Therefore, those functions which

monotonically decrease from a maximum at the site center (such as a simple ex-

ponential or gaussian) and only provide one degree of freedom (such as a decay

width a) are not sufficiently accurate to describe the valence electron densities

of the solvent molecules. When a width is chosen to reproduce only the asymp-

totic density tails, these monotonic functional forms disagree significantly with

the valence electron densities, even at atomic radii beyond the van der Waals

radius. These issues are compounded for atoms represented within the pseu-

dopotential framework, where the core electrons are missing (as in Figure 2.1).

For each site, we thus require a function which smoothly increases away from

the origin to account for the missing core electrons, yet has the correct asymp-

totic exponentially decaying behavior ∝ e−r/a.

For the valence electron density component attributed to site α, the (unnor-

malized) function

fα(~r) = erfc
(
rα − del

α

νel
α

)
e−rα/ael

α (2.11)

meets these criteria, with rα = |~r − ~Rα| as the distance from nucleus α, ael
α as the
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exponential decay length scale, del
α determining the location of the peak, and νel

α

determining the peak width. See Figure 2.1 for an illustration of the physical

meanings of these parameters ael
α , del

α , νel
α . For the hydrogen atom (or any other

atom where all core electrons are included explicitly), we fix del
α = 0 and νel

α =
2ael

α√
π

to create a function which is cuspless at the origin. We therefore can represent

the full valence electron density of the solvent molecule n(r) with the model

form

nmodel(~r) =
∑
α

Zel
α fα(~r)∫

V
d~r fα(~r)

, (2.12)

where Zel
α is the norm associated with the electron density component at site α

and the denominator is present to normalize the function fα(~r) over the calcula-

tion unit cell volume V . The norms of the electronic site densities Zel
α = qα + Zα

are determined from the appropriate site charges qα and ionic core charges Zα

and presented in Table 2.1.

2.4.6 Least-Squares Fit

The remaining electron density parameters ael
α , del

α , νel
α in Equation 2.12 are deter-

mined by a least-squares fitting procedure which minimizes the linear residual∫
d~r|n(~r) − nmodel(~r)|2. The core regions are included in the fit, but have a smaller

effect because there are far more values of ~r in the exponential tails. Table 2.1

shows the electron density fit parameters for all solvents considered.

Figures 2.1 and2.2 compare the valence electron density from the ab initio cal-

culations for water to the density produced by the fitted site-spherical model.

Note that the fit reproduces the electron density well in both the intermediate

and tail regions, which would overlap with an explicit electronic system and
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Figure 2.1: Individual site density models nO,H(~r) with parameters given in Ta-
ble 2.1 compared to the valence electron density n(~r) at each point in space.
Parameters del

O and νel
O are indicated by the dotted line and the width of the grey

box.

impact the accuracy of the coupling functional ∆A. Also, the residual in the core

regions has zero multipole moments to high order by construction and there-

fore does not contribute to the electric interaction with another non-overlapping

molecule.

2.4.7 Electronic site polarizability

Finally, the electronic polarizability χ(~r,~r′) in Kohn-Sham electronic density

functional theory is formally related to the susceptibility of the corresponding

non-interacting system,

χNI(~r,~r′) = −4
∑
c,v

ψc(~r)ψ∗v(~r)ψ∗c(~r′)ψv(~r′)
εc − εv

, (2.13)

by χ̂−1 = χ̂−1
NI − δ

2EHXC[n]/δn2. Here, (ψv, εv) and (ψc, εc) are occupied and un-

occupied Kohn-Sham orbital-eigenvalue pairs respectively, and EHXC[n] is the
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Figure 2.2: Error in the spherical density decomposition of Figure 2.1 at each
point in space

sum of the Hartree term and the exchange-correlation functional. In prac-

tice, we compute a large number of unoccupied Kohn-Sham eigenpairs of

the solvated solvent molecule, compute χ̂ from χ̂NI as a dense matrix in the

occupied-unoccupied basis ({ψ∗c(~r)ψv(~r)}), and then diagonalize χ̂ to obtain an

eigen-expansion χ(~r,~r′) =
∑

i Xiρi(~r)ρi(~r′). We find that 1000 unoccupied orbitals

and 500 eigenvectors in the final expansion results in better than 1 % conver-

gence in the total dipole polarizability of the molecule. The calculated isotropic

linear dipole polarizabilities are within 5 % of the experimental values [106] for

all three liquids.

The classical density functional requires the polarizability in the model form,

χ̂model given by

χmodel(~r,~r′) = −
∑
α

χα∇
′wα(|~r′ − ~Rα|) · ∇wα(|~r − ~Rα|) (2.14)

for one molecule with sites at positions ~Rα, with dipole polarizability strengths

χα and normalized range functions wα(r). In order to properly represent the ex-

56



ponential tail regions with a smooth core region, we pick a cuspless exponential

form

wα(r) =
r + apol

α

32π(apol
α )4

exp
 −r

apol
α

 (2.15)

for the normalized range functions. We then fit the site polarizability strengths,

χα, and widths, apol
α , to minimize the residual Tr

(
(K̂(χ̂ − χ̂model))2

)
which effec-

tively measures the error in the screening operator ε̂−1 = 1 − K̂χ̂, where K̂ is the

Coulomb operator. Table 2.1 lists the thus obtained polarizability parameters

for all three solvents. Note that the width parameters for a particular species

are relatively similar in different solvents, while the strengths differ. Also, the

empirically-fit polarizability parameters used for each atom in the pair-potential

models [156, 45] compare reasonably to our ab initio parameters for C and Cl, but

neglect the response at the H site.

2.4.8 Construction of Liquid Electron and Charge Densities

All the microscopic details required to compute the free energy of the joint

solvent-solute system through JDFT may now be determined from the param-

eters in Table 2.1. The electron site densities {nα} to be used in Equation 2.10 to

compute the total fluid electron density nlq are given by

nα(r) =
Zel
α fα(~r)∫

V
d~r fα(~r)

. (2.16)

The total site charge density kernels for interactions of the classical fluid with

an electronic system through JDFT (or with external potentials) are then given

by

ρα(r) =
Zα

(σα

√
2π)3

exp
(
−r2

α

2(σα)2

)
− nα(r). (2.17)
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The bound charge in the solvent may be computed from the polarization den-

sity of site α, ~Pα}, which is one of the independent variables in the functional

Omegalq, as

ρbound[{Nα, ~Pα}] = −∇ ·
∑
α

wα(r) ∗ Nα
~Pα. (2.18)

We note that in a real system the separation of the bound charge from the elec-

tronic density is artificial. However, in the approximation of Equation 2.16 the

electron density remains rigid when coupled to an external electric potential, so

the inclusion of the bound charge due to dipole polarizability captures changes

in the electron density in the presence of an applied electric field.

For the total charge density of the liquid, one can convolve the total site

charge density ρα(r) with Nα(r) and add in the bound charge ρbound(r), yielding

ρlq[{Nα}] =
∑
α

Nα ∗ ρα + ρbound. (2.19)

Combining Equations 2.19 and 2.17 and taking the limit σα → 0 yields an intu-

itive expression for the total charge density of the fluid

ρlq(~r) =
∑
α

ZαNα(~r) − nlq(~r) + ρbound(~r), (2.20)

where the contributions from the nuclei, electrons, and bound charge in the

solvent all clearly appear. For numerical purposes, we retain the slightly more

complicated expression which results from the choice of σα = R0α/6.

Using the convolution approach in Section 2.3.3, we also determine the anal-

ogous total charge density kernel ρMF for the mean-field self-interaction inter-

nal to the fluid. This charge density is identical to the one in Equation 2.19

above, except that it replaces both the charge density kernel rhoα
qα

and the po-

larization range kernel wα with a new spherical kernel wMF. This spherical

kernel minimizes the self-energy of the classical fluid under the constraint

58



wMF(r > RvdW) = 0, where {RvdW} is the molecular van der Waals radius, thus

placing all the charge on the surface of the constraining sphere,

wMF(r) =
δ(r − RvdW)

4πR2
vdW

. (2.21)

Equivalently, we can compute w̃MF(G) = j0(GRvdW) in Fourier space ( j0 is a spher-

ical Bessel function). Intuitively, distributing the charge of each site onto a

sphere centered on that site with a radius that is half the closest intermolecu-

lar separation minimizes the intra-molecular interaction while preserving the

intermolecular interaction. The fluid charge as experienced by the fluid is thus

fully specified as

ρMF(~r) =
∑
α

qαwMF(r) ∗ Nα(~r) − ∇ ·
∑
α

wα(r) ∗ Nα
~Pα(~r). (2.22)

The procedures outlined above make specific choices for residuals and func-

tional forms for fitting which are, of course, by no means unique. However, the

parameterization developed here approximates the full ab initio charge distri-

butions well for the studied solvents. As such, the above prescription enables

the construction of a coupling functional for a new solvent of interest, without

requiring extensive experimental or molecular dynamics data.

2.5 Computational Details

While Sections 2.2 and 2.3 fully prescribe the theory for JDFT calculations with

explicit fluid structure, practical calculations require significant additional nu-

merical, algorithmic, and software innovations.
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2.5.1 Self-Consistent Joint Minimization

One key advantage of JDFT which places the theory on a stronger footing than

other, more ad hoc, solvation theories is its formulation as a variational prin-

ciple. This variational approach makes self-consistent determination of both

the quantum-mechanical finite temperature ensemble state of the solute and

the equilibrium structure of the solvent quite computationally feasible. Find-

ing the minimum free-energy state is simply a matter of computing the joint

free-energy functional, then minimizing this functional with respect to both the

solute and solvent degrees of freedom, n(r) and {Nα(r)}, respectively. In practice,

the Kohn-Sham single particle orbitals {φi(r)} [151] are chosen as the indepen-

dent variables for representing the electron density of the solute, while the local

chemical potential µ(r) and the local electric field ~ε(r) are chosen as the indepen-

dent variables for representing the density and polarization state, respectively,

of the solvent [262].

While joint minimization of the full functional (Equation 2.1) with respect

to both solute and solvent degrees of freedom is theoretically possible and will

be implemented in the future, an alternating minimization scheme is currently

more practical. Specifically, we first perform a vacuum density-functional the-

ory calculation of the solute system. We then compute the coupling functional

from the vacuum electron density n(r) and charge density ρ(r) and minimize the

liquid and coupling functionals with respect to the site densities {Nα(r)}, while

the solute degrees of freedom are held fixed,

A = AHK[n(r)] + min
{Nα(r)}

(
Ωlq[{Nα(r)}] + ∆A[n(r), {Nα(r)}]

)∣∣∣∣
n(r)

. (2.23)

Next, the liquid degrees of freedom are held fixed while we minimize the solute
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and coupling functionals with respect to the electronic density,

A = Ωlq[{Nα(r)}] + min
n(r)

(AHK[n(r)] + ∆A[n(r), {Nα(r)}])|{Nα(r)} . (2.24)

We repeat this alternating minimization cycle until the system reaches conver-

gence.

Because each of the above steps is variational, the total energy decreases

monotonically during the minimization process. This procedure is quite simi-

lar to the “freeze and thaw” cycles used within FDE [301], but in that case the

electron density is only the independent variable, whereas here we alternate

between (solute) electron and (solvent) nuclear degrees of freedom. Indeed, we

find minimization of the coupling functional and the solute electronic functional

is straightforward and numerically stable. In fact, the electronic minimization

over Kohn-Sham orbitals may be performed either by direct minimization or

by using the self-consistent field (SCF) approach. However, the minimization

of the liquid and coupling functionals requires a highly robust conjugate gra-

dient algorithm [209] due primarily to the fundamental measure theory [237]

term in Ωlq, which causes the free energy to approach positive infinite values

when the molecular density approaches the hard sphere close packing limit.

This feature required us to develop a specialized control algorithm for accept-

ing and rejecting proposed steps, as well as for adjusting the trial step size in the

conjugate-gradient based line minimization. With this adjustment to the min-

imization algorithm, only systems with severe nonlinear behavior experience

difficulty converging.
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2.5.2 Software Implementation

The capability to perform JDFT calculations is fully implemented within the

JDFTx software package [267], a fully functional plane-wave DFT code which

works within periodic boundary conditions. JDFTx is based on the expressive

DFT software framework DFT++ [122], but is written to comply with the lat-

est C++ standard, taking full advantage of templates and other object-oriented

features. Its operators are GPU-parallelized using CUDA, and the code also

offers MPI-parallelization over the k-points in the electronic structure portion

of the calculation and over fluid orientations in the classical DFT fluid [262].

Band structure techniques [59], auxiliary Hamiltonian minimization of partially

filled bands at a constant chemical potential [86], both ultrasoft [289] and norm-

conserving pseudopotentials [230], and other DFT innovations are implemented

in JDFTx and are typically compatible with JDFT calculations.

The computational demands of the JDFTx implementation of JDFT are quite

competitive with other solvation theories. Typically, on the order of ten alternat-

ing minimizations are required to achieve self-consistency to 10 µH. Each elec-

tronic minimization step scales linearly or quadratically with the number of so-

lute electrons and linearly with the number of realspace gridpoints, as do typical

DFT calculations. Moreover, each fluid minimization step scales only with the

number of realspace gridpoints (volume of the unit cell) and does not depend on

the number of fluid molecules or electrons. For the most computationally demand-

ing systems in DFT (e.g. supercell surface calculations with thousands of elec-

trons), the fluid minimization therefore comes at only a fraction the cost of an

electronic minimization of the solute in vacuum. Most of the additional expense

is involved with the cyclic iteration of the electronic system to self-consistency
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with the fluid, thus a full JDFT calculation costs about an order of magnitude

(corresponding to the need for about ten cycles to reach convergence) more than

a vacuum DFT calculation of the same system. When compared to a full ab initio

molecular dynamics calculations of the same system, which would require tens

of thousands of electronic structure calculations along the molecular dynamics

trajectory, this performance of JDFT is exceptionally good. Moreover, we dras-

tically reduce the number of electrons required by “integrating out” the fluid

electrons within the classical DFT. These two factors lead to a radical reduction

in computational demands relative to explicit molecular dynamics.

2.6 Results

The density-only coupling functional defined through Equations 2.3, 2.9, and

2.10 has shown promising results for computing both free energies of solvation

and determining the structure of liquids around both planar and molecular so-

lutes.

2.6.1 Solvation Energies

Traditionally, free energies of solvation of small organic molecules have been

used to train and benchmark solvation theories. Small molecule solvation offers

an ideal training ground for new theories because all of the relevant physical

effects are captured when the training set includes sufficiently diverse chemi-

cal bonds and functional groups. Physical effects such as dielectric response,

dispersion, and cavity formation must work together harmoniously to provide
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Table 2.2: Molecules included in the fit of Grimme scaling parameter γ to
experimental solvation energies. Solvation Energy results are shown in Fig-
ures 2.3 and 2.4.

Molecule Chemical Formula H2O CHCl3 CCl4

acetamide C2H5NO X X ×

acetic acid C2H4O2 X X X
acetone C3H6O X X ×

anisole C7H8O X × X
benzene C6H6 X X X

dimethyl ether C2H6O X × ×

ethane C2H6 X × ×

ethanol C2H6O X X X
methane CH4 X × ×

methanol CH4O X X X
methylamine CH5N X X X

phenol C6H6O X X X
propane C3H8 X × ×

propanol C3H8O X X X
pyridine C5H5N X X X

tetrahydrofuran C4H8O X × ×

toluene C7H8 X X X
water H2O X X X

a cohesive theory. Multi-parameter, empirical polarizable continuum models

(PCM’s) [180, 280] use large molecule fitting sets[231] to reproduce experimen-

tal solvation energies to high accuracy. These theories require new parameters

for each new physical effect introduced, and therefore the most accurate theo-

ries are often the most empirical. JDFT offers a holistic, first-principles approach

in which the only adjustable parameter is due to the black-box treatment of the

van der Waals interaction using Grimme’s pair potentials [97].

To benchmark the performance of JDFT, we calculate solvation energies

for the series of small molecule solutes itemized in Table 2.2 in three diverse

solvents: polar and hydrogen bonded water (H2O), slightly polar chloroform
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(CHCl3), and nonpolar carbon tetrachloride (CCl4). The benchmarking set con-

sists of a total of Ns molecules per solvent, where Ns = {18, 12, 11} for s = {H2O,

CHCl3, CCl4}. In these calculations, we employ the generalized gradient ap-

proximation [212] for AHK, the liquid functionals by Sundararaman et. al.

[262, 266] for Ωlq, the coupling functional detailed in Sections 2.3 and 2.4, and

the computational procedure described in Section 2.5.1. Our DFT calculations

employ a 30 H plane-wave cutoff, unit cells which allow at least 15 Å of fluid

between periodic solute images in each dimension, ultrasoft pseudopotentials

[289], gamma point Brillouin zone sampling, and solute molecule geometries

relaxed in the continuum solvation theory CANDLE [264]. Since the Hellman-

Feynman forces on each solute atom of remained less than 1 mH a−0 1 after the

converged JDFT calculation, we have confidence that additional relaxation of

the atomic positions would yield insignificant changes in the free energies of

solvation.

We perform the full set of solvation energy calculations as a function of the

scaling parameter γ in Equation 2.8, then choose the value of γ which minimizes

the root-mean-square (rms) error in the solvation energy compared to experi-

mental measurements. To find a universal value for γ across all three solvents,

we minimize the following residual

σu(γ) =
1√∑

s Ns

√√∑
s

s∑
i=1

(Es,i(γ) − Eexp
s,i )2, (2.25)

where Ns is the number of molecules in solvent s, Es,i(γ) is the JDFT solvation

energy of the ith molecule in solvent s at parameter value γ, and Eexp
s,i is the

corresponding experimental solvation energy from References [180] for water,

[185, 92] for CHCl3, and [93] for CCl4. We also explore minimizing the rms error
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Figure 2.3: Solvation energies for H2O (blue), CHCl3 (red) and CCl4 (green) us-
ing universal parameter γ = 0.488.

for each solvent individually, minimizing the fit residual

σs(γs) =
1
√

Ns

√√
s∑

i=1

(Es,i(γs) − Eexp
s,i )2. (2.26)

The universal fit yields γ = 0.488, while the solvent-dependent fit yields γs =

{0.540, 0.393, 0.407} for s = {H2O, CHCl3, CCl4}, respectively. Table 2.3 reports

the rms and mean absolute errors in both the universal and solvent-dependent

cases.

Figure 2.3 shows a comparison of the calculated solvation energies for our

molecular test set with their experimental values for the universal model and

Figure 2.4 shows the same comparison for the solvent-specific models. Aqueous

solvation calculations are represented by blue squares, while solvation calcula-

tions in CHCl3 and CCl4 are shown by red circles and green triangles, respec-
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Figure 2.4: Solvation energies for H2O (blue), CHCl3 (red) and CCl4 (green) us-
ing solvent-dependent best fit parameters γ = 0.540, γ = 0.393, and γ = 0.407
respectively.

tively. Each form of the theory agrees with the experiment to within the energy

scale of thermal fluctuations (around kBT=1-2 kcal/mol). Table 2.3 tabulates

the precise solvation energy errors and scaling parameter γ for each solvent-

specific model and for the universal model. The excellent agreement of these

solvation energy results with experimental values strongly suggests that our

density-only coupling functional can successfully reproduce the interaction be-

tween a quantum-mechanical solute and a classical DFT description of its liquid

environment.

There are advantages to both the solvent-specific and universal coupling

functionals. When the solvent under study has experimental solvation energy

data to allow benchmarking, the solvent-specific model offers slightly more ac-
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Table 2.3: Best fit Grimme van der Waals scaling parameters for water, chloro-
form and carbon tetrachloride, and a proposed universal model.

Solvent γ Mean Absolute Error RMS error Universal RMS Error
[kcal/mol] [kcal/mol] [kcal/mol]

H2O 0.540 1.23 1.38 1.64
CHCl3 0.393 0.54 0.78 1.34
CCl4 0.407 0.40 0.46 1.05

Universal 0.488 1.18 1.42 (1.42)

curate performance. The spread in Figure 2.4 is slightly better than in Figure

2.3, indicating that the use of the Grimme form in the coupling functional is

not perfectly universal, requiring somewhat different values of γ to best cap-

ture higher-order multi-body screening effects in the different solvents. How-

ever, the results for the universal coupling functional based on this form with a

single value for γ are still quite exceptional. We note that for the JDFT-based

implicit solvation model SALSA, the Grimme scaling parameters for the sol-

vents under study are vastly different [268], indicating that the implicit model

is missing some underlying physics which becomes folded into γ. The simple

fact that a single functional form works well for such vastly different solvents

is evidence of the universality of this novel approach to solute-liquid coupling.

With the universal coupling functional there is no need to perform solvation-

energy calibration for each new solvent under study. This feature is especially

advantageous for electrochemical studies where novel battery solvents are to

be explored and experimental solvation energy data may not be available for

benchmarking.
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2.6.2 Real-space Liquid Structure

While continuum solvation theories can provide information about the electro-

static bound charge induced in the fluid by the solute, these theories make no

direct connection to the actual structure of the liquid and spatial distribution

of that charge. One clear advantage of JDFT over continuum solvation theories

is the ability to predict real-space structure of liquids in contact with electronic

systems. Minimization of the joint free energy functional 2.1 directly yields the

thermodynamic average structure of the liquid in the form of the site densities

{Nα}, with no effort required beyond the JDFT calculation. Obtaining compa-

rable information from molecular dynamics calculations requires costly ther-

modynamic sampling – for many systems of interest, particularly solid-liquid

interfaces, such liquid structure would be heroically expensive to obtain from

full ab initio molecular dynamics.

Figure 2.5 shows the resulting liquid structure for a variety of aqueous so-

lutes. The features of the oxygen (red) and hydrogen (blue) liquid site-density

fields reveal details about the physical effects in each case, with the quantum-

mechanical subsystem depicted simply by spheres for each solute atom. The

first example, methane, is an insoluble molecule and has a solvation shell sim-

ilar to that of a hard sphere, with no polar response in the fluid and a rather

weak peak in the shell structure. Water and methanol, by contrast, are both po-

lar molecules and the classical densities clearly respond to this polarity with the

hydrogens attracted more strongly to the positively charged sites and the oxy-

gens attracted more strongly to the negatively charged sites. Large shell struc-

ture peaks dominate the density profiles for both polar molecules. The classical

DFT description of the aqueous solution also clearly captures the presence of hy-
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Figure 2.5: Real-space liquid structure of classical DFT water around quantum-
mechanical methane (left), methanol (center), and water (right). The oxygen
(red) and hydrogen (blue) density fields represent the CDFT water, while the
atoms in the quantum-mechanical systems are represented by spheres (C=grey,
O=red, H=white). High density contours appear at 4 times the bulk O density
in water (red) and 2 times the bulk H density in water (blue). The translucent
grey contours depict the electron densities of the quantum-mechanical systems
at 0.4 Å−3 and 0.04 Å−3. Each image is 14 Å on each side.

drogen bonding, with the high oxygen-density contours at the hydrogen bond

locations in Figure 2.5 representing high probability that water molecules will

be present at those locations.

JDFT calculations with the non-aqueous solvents chloroform and carbon

tetrachloride provide similar real space structural information and Figure 2.6

shows self-solvation within these solvents. The symmetry imposed by each

solute is clearly visible in the fluid density response. The high density green

chlorine contour around CCl4, for example, indicates that the solvent molecules

are more ordered, with the more localized peaks perhaps due to the high sym-

metry of the molecule. The CHCl3 self-solvation demonstrates the orientation

preference of the surrounding molecules; the thin shell of blue hydrogen den-

sity around the solute molecule signifies that, at least in this particular planar

slice, all the chloroform molecules point their C-H bond outwards. The reduced

ordering for chloroform as compared to carbon tetrachloride is likely due to the

decreased symmetry.

70



Figure 2.6: Real-space liquid structure of solvation of quantum-mechanical
CHCl3 in classical DFT CHCl3 (left) and CCl4 in CCl4 (right). The carbon (light
grey), chlorine (light green) and hydrogen (blue) density fields represent the
CDFT water, while the atoms in the quantum-mechanical systems are repre-
sented by spheres (C=grey, Cl=green, H=white). High density contours appear
at 2.6 and 3 times the bulk solvent C density (grey) in CCl4 and CHCl3 respec-
tively and 1.3 times the bulk solvent Cl density (green) in the CCl4 image only.
The translucent grey contours depict the electron densities of the quantum-
mechanical systems at 0.4 Å−3 and 0.04 Å−3. Each image is 19.2 Å on each side.

2.6.3 Radial Distribution Functions

The spherical averages of the site densities {Nα(r)/Nb} (where Nb is the bulk sol-

vent density) around each atomic site β correspond to the radial distribution

functions (or correlation functions) gβα(r). Specifically, the radial distribution

functions capture the same information that is present in Figure 2.6 and in the

right panel of Figure 2.5, but with a spherical average performed over the den-

sity profiles. The classical DFT representing each solvent, as a complete de-

scription of the responses of the corresponding fluid, contains within it informa-

tion sufficient to derive the radial distribution functions through the Ornstein-

Zernike equation [202]. One test of the universal coupling functional is to de-

termine whether it couples an explicit, quantum-mechanical solute molecule to
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Figure 2.7: Oxygen radial distribution functions gOO from a quantum-
mechanical water molecule coupled to classical DFT water through JDFT (blue,
solid line) and from solving the Ornstein-Zernike equation within the classical
DFT water (black, dashed line).

the fluid in the same way the fluid molecules couple to themselves. Thus, we

verify that self-solvation of an explicit molecule within JDFT reproduces the

correlation functions of the fluid as determined by the Ornstein-Zernike equa-

tion (which describes the classical fluid’s internal coupling). Figure 2.7 shows

just this comparison between the spherically averaged oxygen density profiles

around a quantum-mechanical water molecule solvated in a classical density-

functional description of water (blue, solid line) compared to the Ornstein-

Zernike correlation functions of the classical DFT water (black, dashed line).

The agreement between the two is excellent, with the coupling functional re-

producing both the peak locations and the integrals under each peak (coordina-

tion numbers). The main difference between the two correlation functions is the
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slight spreading of the first peak in the JDFT correlation functions, an effect due

to some remaining Coulomb self-interaction error within the classical DFT.

Experimental radial distribution functions typically exhibit multiple peaks

from multiple solvation shells. Nonlinear PCM or any traditional continuum

model for liquid form only a a spherical cavity around the solute, with no sense

of this structure whatsoever. Even the liquid water classical density-functional

by Lischner et. al. only captures the first peak in gOO [171]. In contrast, the

equation-of-state-based liquid functionals employed in this work [266] capture

not only the primary but also the secondary and even tertiary solvation peaks.

Figures 2.8 and 2.9 show that JDFT combined with these liquid functionals and

density-only coupling captures multiple shell structure peaks for both aqueous

and non-aqueous fluids, with the carbon-carbon correlation functions for chlo-

roform and carbon tetrachloride in excellent agreement with classical molecular

dynamics simulations of these fluids [156, 45].

Figure 2.8 shows the oxygen radial distribution corresponding to the sol-

vation of water. The correlations from the model qualitatively reproduce the

features in the experimental correlations; however, the location of the second

oxygen peak is too far away. This discrepancy results from the fact that the

fundamental measure theory employed in the classical functional tends to pack

molecules in a close-packed structure rather than the tetrahedral packing ex-

pected for water. Clearly, this disagreement with experiment indicates a need

to improve the liquid-water functional (as opposed to the coupling functional)

because the coupling functional does reproduce the Ornstein-Zernike correla-

tions faithfully. Another key difference between the correlation functions is that

the first peak in the theoretical prediction is wider and less sharp than the ex-
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Figure 2.8: Oxygen radial distribution functions gOO from a quantum-
mechanical water molecule coupled to classical DFT water through JDFT (blue,
solid line), coupled to a Nonlinear PCM description of water (blue, dashed line),
and from experiment (blue points) [258].

perimental measurement, though the coordination number of the first solvation

shell is the same. As mentioned above, this suppression of the first peak is due

to the self-interaction error in the mean-field electrostatic energy of the fluid.

2.6.4 Liquid water structure next to graphene

Thus far, we have considered JDFT calculations of localized quantum-

mechanical systems. However, one strength of JDFT (and its implementation

in the plane-wave code JDFTx [267]) is the ability to tackle extended systems ef-

ficiently. Indeed, JDFT offers considerable advantage over molecular dynamics

calculations for surface calculations because it can provide the correct spatially-
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Figure 2.9: Carbon radial distribution functions gCC from a quantum-mechanical
molecule coupled to classical DFT solvent through JDFT (solid line) and from
polarizable molecular dynamics simulations (points) for chloroform (left,red)
and carbon tetrachloride (right,green) [266].

averaged liquid structure within a single, primitive unit cell of the surface. For

example, we can obtain the structure of water next to a graphene sheet using

a unit cell with only two carbon atoms, and thus only 8 solute electrons. Any

reasonable ab initio molecular dynamics calculation would require a 3x3 or 4x4

surface reconstruction of the graphene sheet, requiring 9-16 times more solute

electrons. Most significantly, JDFT calculations require no water electrons, com-

pared to the 10-100 water molecules with 10 electrons per water molecule re-

quired to simulate just a few water layers on graphene in AIMD. These fea-

tures reduce the number of electrons in even a single quantum-mechanical cal-

culation by orders of magnitude, offering extreme computational cost savings.

Finally, JDFT obtains the thermodynamic average water structure by construc-

tion, in the time required for only 10-20 DFT calculations of the solute alone,

as opposed to thousands to tens of thousands of time steps needed to extract

thermodynamic averages.

Figure 2.10 shows JDFT calculations of planarly-averaged oxygen (red) and

hydrogen (blue) density profiles for liquid water in contact with a quantum-
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mechanical graphene sheet located at z=0 Å, comparing the results to classical

and Car-Parinello molecular dynamics [38] (CPMD) calculations of the same

graphene system [229]. The JDFT calculations (left panel) employ a supercell

representation with single primitive cell of graphene at z=0 Å and 50 Å of fluid

between periodic images, spatial resolution corresponding to a 30 H plane-wave

cutoff, a 72x72x1 k-point mesh to sample the Brillouin zone, and ultrasoft pseu-

dopotentials [289]. To represent the solvent, we use the full JDFT functional

described in Section 2.6.1 with the optional choice of γ = 0.540 for liquid water.

(We actually find the liquid structure to be not highly sensitive to this choice.)

Figure 2.10 also provides comparison (right panel) to the oxygen density

profiles from the first principles CPMD approach and a series of classical po-

tential molecular dynamics calculations. The classical calculations allow tuning

of λ, the strength of the Lennard-Jones interaction between the carbon atoms in

the graphene and the oxygen atoms of the aqueous solvent. Clearly, tuning this

interaction affects the density profiles significantly by changing both the heights

and locations of the peaks. The value of λ = 0.7 agrees best with the CPMD cal-

culations, indicating that interaction strength most closely mimics the CPMD.

However, the CPMD uses the PBE exchange and correlation functional, which

is known to under bind and does not sufficiently capture van der Waals interac-

tions, which should contribute significantly to the graphene-water interaction.

The JDFT-calculated oxygen density profile shows excellent qualitative

agreement with the molecular dynamics simulations, demonstrating the effi-

cacy of the theory for fluid structure near planar interfaces. In particular, the

peak heights are in excellent agreement with both the CPMD and the λ = 0.7

classical MD simulations. However, the JDFT predictions for peak locations
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Figure 2.10: Planarly averaged oxygen (red, solid line) and hydrogen (blue,solid
line) densities from a quantum-mechanical graphene sheet located at z=0 cou-
pled to classical DFT water through JDFT (left) compared to Car-Parinello
(black, solid line) and classical molecular dynamics simulations (colored,
dashed lines) of the same system (right). Each dashed line represents a clas-
sical molecular dynamics simulation with a different strength (λ) of interactions
between the carbon atoms in the graphene and the oxygen atoms in the water
[229].

agree best with the classical MD simulations with λ = 1.0. This result likely

indicates that, indeed, the CPMD simulations do not fully capture the van der

Waals interaction, leading to an artificially long carbon-oxygen distance. The ef-

ficacy of JDFT for predicting water structure next to graphene allays some con-

cerns about the discrepancy between the experimentally-measured and JDFT-

predicted radial distribution functions for liquid water in Figure 2.8. Three di-

mensional tetrahedral packing around another tetrahedral water molecule may

be harder to capture with the limitations of an FMT reference fluid than fluid

structure at a planar interface. Regardless of the subtleties, the results in Figure

2.10 show that accurate liquid water structuring can be obtained at planar in-

terfaces with JDFT and suggest that JDFT is a promising theory for the study of

planar systems and interfaces in aqueous environments.
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2.7 Conclusion

While much progress has been made toward improvement of implicit solvation

models based upon the JDFT framework [163, 100, 268], this work represents the

first fully explicit JDFT calculations with a realistic classical density-functional

theory since the publication of the rigorous proof of the theorem and the accom-

panying preliminary results [218]. The present work offers the first realization

of full JDFT with an orientation-dependent classical DFT[262, 266] used for the

liquid functional, as well as the first explicit JDFT calculations in non-aqueous

solvents. Unlike previous JDFT calculations, which employed water-specific

and empirical molecular pseudopotentials to couple the liquid and solid re-

gions, this work describes and benchmarks a universal coupling functional, ap-

propriate to couple any solute to any solvent. We also describe the procedure

and software implementation for performing self-consistent solvation calcula-

tions within the JDFT framework. We show that our implementation of the

JDFT framework, used in conjunction with the orientation-dependent polariz-

able classical DFT and the herein developed universal coupling functional, cap-

tures aqueous and non-aqueous solvation free energies of small molecules with

a near-chemical accuracy of 1-2 kcal/mol. Finally, we offer the first demonstra-

tion of full JDFT for an extended system by predicting the structure of liquid

water in contact with a graphene sheet, resulting in good agreement with the

liquid structuring found in both classical and quantum-mechanical molecular

dynamics calculations.

While previous works have coupled liquid and solid subsystems together

within orbital-free DFT [302, 137], these types of multi-scale approach do not

possess a fully rigorous basis. The approximate partitioning of Kohn-Sham DFT
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into subsystems relies upon fixed locations of the nuclei in all subsystems, re-

sulting in a time-independent nuclear potential acting upon the electrons. Be-

cause the nuclei in a liquid are not fixed, additional statistical averaging over

their positions must be performed and the theorems underlying embedding ap-

proaches are no longer relevant. The framework of JDFT, by contrast, provides

a rigorous theorem in the case where the nuclei of the environment are not static

but instead form a statistical average continuum.

Molecular dynamics simulations require sampling over all possible configu-

rations of liquid to obtain thermodynamic averages, then costly thermodynamic

integration[148] if free energies are desired. Integral equation theories for the

liquid environment also suffer from pathologies associated with computation

of free energies [242, 143]. In contrast, JDFT calculations obtain free energies by

construction, from straightforward variational minimization of the in principle

exact free-energy functional with respect to liquid and solute degrees of free-

dom. In addition, thermodynamic averages, such as chemical potentials and

densities, may be obtained directly from derivatives of free energy functional at

the minimum free energy. JDFT also provides the structure of liquid and other

thermodynamic quantities, averaged over the experimentally relevant length

and time scales. Section 3.8.4, for example, describes in detail how thermody-

namic averages computed from the JDFT free energy functional are ideal for

comparison to experimental quantities such as potentials of zero charge.[163]

Finally, free energies are precisely the relevant quantities in computing free en-

ergy barriers within transition-state theory, opening up many new avenues of

future study for JDFT.

Of course, there are also some limitations on the classes of systems currently
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suitable for study within JDFT. Any electrons participating in charge-transfer

reactions or covalent bonds must be treated within the quantum-mechanical

portion of the calculation. When performing surface studies, some knowledge

of the surface coverage and orientation of strongly bonded adsorbates is there-

fore required, though weakly bonded or hydrogen bonded adsorbates may be

captured with sufficient accuracy by the classical liquid functional. In the case

of strongly bonded adsorbates, the real-space liquid atomic site densities natu-

rally provide preliminary information for the location and bonding configura-

tion of fully quantum-mechanical explicit solvent molecules. JDFT may also fail

to capture the dynamical limit, where zero-point motion of the solute is signif-

icant and the Born-Oppenheimer approximation no longer applies. When vi-

brational modes of the solute and solvent are strongly coupled to each other, ab

initio molecular dynamics is required to capture the vibrational frequencies, al-

though the potential of mean force remains well described by JDFT. Finally, the

treatment of charged solute systems within full JDFT still requires an unphys-

ical neutralizing background charge to prevent divergence of the electrostatic

energy within a periodic unit cell, unless provision is made for ionic species

within the classical DFT describing the solvent (as in Chapter 4).

The above limitations suggest some promising future areas for development

opportunities of JDFT. An ideal treatment of charged solute systems, such as

the electrode-electrolyte interface in electrochemistry, would require including

charged ionic species within the solvent as mentioned above. Such electrolyte-

liquid functionals would require an accurate and efficient multi-component

classical DFT for the solvent which could capture both the solvent-ion corre-

lation functions and the properties of the bulk liquid. Once we develop an ap-

propriate classical DFT for electrolyte liquids, we would then repeat for ionic
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solutes the solvation energy benchmarking already performed for neutral solute

molecules. Finally, extending JDFT into the dynamical limit offers the tantaliz-

ing possibility of Joint AIMD calculations, where the solute system is treated

within AIMD, while the solvent continues to be captured by the classical DFT.

The aforementioned limitations notwithstanding, the accurate and efficient

JDFT coupling functional developed in this work offers a promising new ap-

proach to a wide array of scientific problems. In Surface Science, the geometry

and composition of a solvated surface can differ significantly from the high-

vacuum surface structures studied in traditional DFT calculations. JDFT calcu-

lations of these systems can determine the relative surface energies of different

structures, and thus offer insight into surface composition and structure in so-

lution, which is difficult to probe experimentally. In Biology, certain chemical

processes occurring at the active sites of proteins depend critically on the pres-

ence and nature of the aqueous environment. In the past, such systems have

been studied classically, with force fields which may not capture the relevant

quantum mechanics[71] or with continuum models for the liquid, which may

not capture key aqueous structures such as salt bridges. JDFT provides an ideal

tool for this class of problem, with its ability to treat the active site quantum

mechanically while providing the detailed microscopic structure of the solvent

without the need for thermodynamic sampling. These are just a few examples

of the broad scientific impact achievable with the full realization of the JDFT

framework presented in this work.
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CHAPTER 3

AB INITIO ELECTROCHEMISTRY

3.1 Introduction

Ab initio calculations have shed light on many questions in physics, chemistry,

and materials science, including chemical reactions in solution [27, 273] and

at surfaces.[225, 96, 98] However, first principles calculations have offered less

insight in the complex and multi-faceted field of electrochemistry, despite the

potential scientific and technological impact of advances in this field. Because

the fundamental microscopic mechanisms involved in oxidation and reduction

at electrode surfaces are often unknown and are difficult to determine exper-

imentally, [250] rich scientific opportunities are available for theoretical study.

From a technological perspective, practicable first principles calculations could

become a vital tool to direct the experimental search for better catalysts with

significant potential societal impact: as just one example, economically viable

replacement of gasoline powered engines with fuel cells in personal transport

systems requires systems operating at a cost of $35/kW, whereas the current

cost is $294/kW, [12] due mostly to the expense of platinum-based catalyst ma-

terials.

The primary challenge which distinguishes theoretical study of electrochem-

ical systems is that including the liquid electrolyte, which critically influences

the functioning of the electrochemical cell, requires detailed thermodynamic

sampling of all possible internal molecular configurations of the fluid. Such

critical influences include (a) screening of charged systems, (b) establishment of

an absolute potential reference for oxidation and reduction potentials, and (c)
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voltage-dependence of fundamental microscopic processes, including the na-

ture of reaction pathways and transition states. While there have been attempts

at the full ab initio molecular dynamics approach to this challenge,[244, 99, 27]

such calculations are necessarily of the heroic type, require tremendous compu-

tational resources, and do not lend themselves to systematic studies of multiple

reactions within a series of many candidate systems. Such studies require de-

velopment of an alternate approach to first-principles study of electrochemistry.

3.1.1 Previous approaches

One response to the aforementioned challenges is to avoid the issue and lessen

the computational cost either by forgoing electronic structure calculation en-

tirely or by neglecting the thermodynamic sampling of the environment. Some

studies have employed classical molecular dynamics with interatomic poten-

tials; [304, 222] however, such semi-empirical techniques often perform poorly

when describing chemical reactions involving electron-transfer, which are cen-

tral to oxidation and reduction reactions.

The latter approach – single configuration ab initio calculations – neglects

key phenomena associated with the presence of an electrolyte liquid in equilib-

rium. The most direct single configuration ab initio approach pursued to date

is to study the relevant reactions on a surface in vacuum and to study trends

and correlations with the behavior in electrochemical systems.[199, 198] Some of

these studies are done in a constant charge or constant potential ensemble[173]

to allow variation of the applied electrode potential. This approach, however,

does not include critical physical effects of the electrolyte such as the dielec-
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tric response of the liquid environment and the presence of high concentra-

tions of ions in the supporting electrolyte. In response, an intermediate ap-

proach is to include a layer or few layers of explicit water molecules into the

calculation.[275, 125, 138, 283]

Such an approach is problematic for a number of reasons. First, actual elec-

trochemical systems can have rather long ionic screening lengths (30 Å for an

ionic concentration of 0.01 M), which would require large amounts of explicit

water. Second, simulation of the actual effects of dipolar and ionic screening

in the fluid requires extensive sampling of phase space, corresponding to very

long run times. Indeed, in some references, only one layer of frozen water with-

out thermal or time sampling is included. [254] Moreover, as most reactions

of interest occur at potentials away from the potential of zero charge, such cal-

culations must include a net charge, which can be problematic in typical solid-

state periodic supercell calculations. One may compensate for this charge with

a uniform charged background extending throughout the unit cell, both the liq-

uid and the solid regions,[125] but this distribution does not reflect the electro-

chemical reality. Other methods include an explicit reference electrode with a

corresponding negative surface charge to keep the unit cell neutral,[173] but this

requires a somewhat arbitrary choice of where to place the compensating elec-

trode and may not lead to realistic potential profiles. More recently, modeling

the electrolyte by a layer of explicit hydrogen atoms was shown to provide a

source of electrons for charged surface calculations while keeping the unit cell

neutral.[255] Again, however, this approach requires either judicious choice of

the locations of the corresponding protons which make up the corresponding

reference electrode or computationally intensive thermodynamic sampling.
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Another broad approach constructs an approximate a posteriori continuum

model[76] for both the dielectric response of the water molecules and the De-

bye screening effects of the ions and performs ab initio calculations where

the electrostatic potential is determined by solving Poisson-Boltzmann-like

equations.[203, 132, 56] Explicit inclusion of a few layers of explicit water

molecules and ionic species within the ab initio calculations can further enhance

the reliability of this approach without dramatic additional computational cost.

While including explicitly the most recognized physical effects of the electrolyte,

such Poisson-Boltzmann-like approaches do not arise from an exact underlying

theory. Thus, they may disregard physically relevant effects, such as the non-

locality and non-linearity of the dielectric response of liquid water and the sur-

face tension associated with formation of the liquid-solid interface. We note, for

instance, that a typical electrochemical field strength would be a 0.1 V drop over

a double layer width of 3 Angstroms, or 300 MV/m, a field at which the bulk

dielectric constant of water is reduced by about one-third, strongly indicating

that non-linear dielectric saturation effects are present in actual electrochemical

systems, particularly near the liquid-solid interface, and ultimately should be

captured naturally for an ab initio theory to be truly predictive and reliable.

3.1.2 Joint density-functional theory approach

This work begins by placing the aforementioned modified Poisson-Boltzmann

approaches on a firm theoretical footing within an, in principle, exact density-

functional theory formalism, and then describes the path to including all of the

aforementioned effects in a fully rigorous ab initio density functional. The work

then goes on to elucidate the fundamental physics underlying electrochemistry
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and provide techniques for computation of fundamental electrochemical quan-

tities from a formal perspective. The work then shifts focus and introduces an

extremely simplified functional for initial exploration of the potential of our

overall approach for practical calculations. The equations which result at this

high level of simplification resemble those introduced by others[132, 56] from

an a posteriori perspective, thus putting those works on a firmer theoretical foot-

ing and showing them in context as approximate versions of a rigorous under-

lying approach. We then work within this simplified framework to explore – in

more depth than previously in the literature – fundamental physical effects in

electrochemistry, including the microscopic behavior of the electrostatic poten-

tial near an electrode surface, the structure of the electrochemical double layer,

differential capacitances, and potentials of zero charge across a series of met-

als. The encouraging results which we obtain even with this highly simplified

functional indicate that the overall framework is sound for the exploration of

physical electrochemical phenomena and strongly suggests that the more accu-

rate functionals under present development [171] will yield accurate, fully ab

initio results.

Section 3.2 begins by laying out our theoretical framework, Section 3.3 de-

scribes connections between experimental electrochemical observables and mi-

croscopic ab initio computables. Section 3.4 introduces a simple approximate

functional which offers a computationally efficient means of bridging connec-

tions to experimental electrochemistry. Sections 3.5 and3.6 include technical in-

formation regarding implementation of our functional within a pseudopotential

framework. Section 3.7 provides specific details about electronic structure calcu-

lations of transition metal surfaces. Finally, Section 3.8 presents electrochemical

results for those metallic surfaces obtained with our simplified functional and
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Section 3.9 concludes the paper.

3.2 Theoretical Framework

As described in the Introduction, much of the challenge in performing realistic

ab initio electrochemistry calculations comes not only from the need to include

explicitly the atoms composing the environment but also from the need to per-

form thermodynamic averaging over the locations of those atoms. Recently,

however, it was proved rigorously that one can compute exact free-energies

by including the environment in a joint density-functional theory framework.

[217, 218] Specifically, this previous work shows that the free energy A of an

explicit quantum mechanical system with its nuclei at fixed locations while in

thermodynamic equilibrium with a liquid environment (including full quantum

mechanical treatment of the environment electrons and nuclei), can be obtained

by the following variational principle, [218]

A = min
n(r),{Nα(r)}

{G[n(r), {Nα(r)},V(r)]

−

∫
d3rV(r)n(r)} (3.1)

where G[n(r), {Nα(r)},V(r)] is a universal functional of the electron density of the

explicit system n(r), the densities of the nuclei of the various atomic species

in the environment {Nα(r)}, and the electrostatic potential from the nuclei of

the explicit system V(r). The functional G[n(r), {Nα(r)},V(r)] is universal in the

sense that it depends only on the nature of the environment and that its de-

pendence on the explicit system is only through the electrostatic potential of

the nuclei included in V(r) and the electron density of the explicit system n(r).

With this functional dependence established, one can then separate the func-
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tional into large, known portions and a smaller coupling term ultimately to be

approximated,[218]

G[n(r), {Nα(r)},V(r)] ≡ AKS [n(r)] + Ωlq[{Nα(r)}]

+ ∆A[n(r), {Nα(r)},V(r)] (3.2)

where AKS [n(r)] and Ωlq[{Nα(r)}] are, respectively, the standard universal Kohn-

Sham electron-density functional of the explicit solute system in isolation (in-

cluding its nuclei and their interaction with its electrons) and the ”classical”

density-functional for the liquid solvent environment in isolation. The remain-

der, ∆A[n(r), {Nα(r)},V(r)] is then the coupling term between the solute and sol-

vent.

For AKS [n(r)], one can employ any of the popular approximations to elec-

tronic density functional theory such as the local-density approximation (LDA),

or more sophisticated functionals such as the generalized-gradient approxima-

tion (GGA). [215] On the other hand, functionals Ωlq[{Nα(r)}] for liquid solvents

such as water are generally less-well developed, though the field has progressed

significantly over the past few years. For example, one recent, numerically effi-

cient functional for liquid water reproduces many of the important factors de-

termining the interaction between the liquid and a solute, including the linear

and nonlinear non-local dielectric response, the experimental site-site correlation

functions, the surface tension, the bulk modulus of the liquid and the variation

of this modulus with pressure, the density of the liquid and the vapor phase,

and liquid-vapor coexistence [171]. A framework employing such a functional

would be more reliable than the modified Poisson-Boltzmann approaches avail-

able to date, which do not incorporate any of these effects except for the linear

local dielectric response appropriate to macroscopic fields. Inclusion of the den-
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sities of any ions in the electrolyte environment among the {Nα(r)} is a natural

way to include their effects into Ωlq[{Nα(r)}] and provide ionic screening into the

overall framework.

Finally, developing approximate forms for the coupling ∆A[n(r), {Nα(r)},V(r)]

in Equation 3.2 remains an open area of research. In an early attempt, Pet-

rosyan and co-workers[218] employed a simplified Ωlq[{Nα(r)}] using a single

density field N(r) to describe the fluid. In that preliminary work, because such

an N(r) gives no explicit sense of the orientation of the liquid molecules, the

tendency of these molecules to orient and screen long-range electric fields was

included a posteriori into a simplified linear (but nonlocal) response function.

In a more complete framework with explicit distributions for the oxygen and

hydrogen sites among the {Nα(r)} the full non-local and non-linear dielectric re-

sponse can be handled completely a priori.[171] Beyond long-range screening

effects, the coupling ∆A[n(r), {Nα(r)},V(r)] must also include effects from direct

contact between the solvent molecules and the solute electrons. Because the

overlap between the molecular and electron densities is small, the lowest-order

coupling, very similar to the “molecular” pseudopotentials of the type intro-

duced by Kim et al.,[144] would be a reasonable starting point. Using such

a pseudopotential approach (with only the densities of the oxygen atoms of

the water molecules), Petrosyan and coworkers [218] obtained good agreement

(2 kcal/mole) with experimental solvation energies, without any fitting of pa-

rameters to solvation data. Combining a coupling functional ∆A similar to that

of Petrosyan and coworkers with more explicit functionals Ωlq[{Nα(r)}] for the

liquid[171] and standard electron density functionals AKS [n(r)] for the electrons,

is thus a quite promising pathway to highly accurate ab initio description of sys-

tems in equilibrium with an electrolyte environment.
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3.3 Connections to Electrochemistry

Turning now to the topic of electrochemistry, we present a general theoretical

framework to relate the results of ab initio calculations to experimentally mea-

surable quantities, beginning with a brief review of the electrochemical con-

cepts.

3.3.1 Electrochemical potential

In the electrochemical literature, the electrochemical potential µ̄ of the electrons in

a given electrode is defined as the energy required to move electrons from a ref-

erence reservoir to the working electrode. This potential is often conceptualized

as a sum of two terms, µ̄ = µint − FΦ, where µint is the purely chemical potential

(due to concentration gradient and temperature,chemical bonding, etc.), Φ is the

external, macroscopic electrostatic potential, and F is Faraday’s constant. (Note

that F = NAe has the numerical value of unity in atomic units, where chemical

potentials are measured per particle rather than per mole.) In the physics litera-

ture, this definition for µ̄ (when measured per particle) corresponds precisely to

the “chemical potential for electrons,” which appears for instance in the Fermi

occupancy function f = [e(ε−µ̄)/kBT + 1]−1.

3.3.2 Electrode potential

In a simple, two-electrode electrochemical cell, the driving force for chemical

reactions occurring at the electrode surface is a voltage applied between the
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reference electrode and working electrode. In the electrochemical literature, this

voltage is known as the electrode potential E, defined as the electromotive force

applied to a cell consisting of a working electrode and a reference electrode. In

atomic units (where the charge of an electron is unity), the electrode potential

is thus equivalent to the energy (per fundamental charge e) supplied to transfer

charge (generally in the form of electrons) from the reference to the working

electrode, assuming no dissipative losses. Under conditions where diffusion of

molecules and reactions occurring in the solution are minimal, this energy is

completely transferred to the electrons in the system, causing a corresponding

change in the electrochemical potential of the electrons in the working electrode.

An idealized two-terminal electrochemical cell controls the chemical poten-

tial of a working electrode µ̄(W) through application of an electrode potential E

(voltage) between it and a reference electrode of known chemical potential µ̄(R)

(See Figure 3.1(a)). With the application of the electrode potential E, the en-

ergy cost to the electrochemical cell, under reversible (lossless) conditions, to

move a single electron from the reference electrode to the working electrode

is dU = −µ̄(R) + µ̄(W) + E. Here, the electrode potential appears with a positive

sign, because to move a negative charge from the negative to positive terminal

requires a net investment of energy, and thus cost to the electrochemical cell,

against the source of the potential E. Under equilibrium conditions, we must

have dU = 0, so that E = µ̄(R) − µ̄(W).

As Section 3.4 shows, the electrostatic model which we employ for ionic

screening in this work establishes a fixed reference such that the microscopic

electron potential φ (the Coulomb potential energy of an electron at a given point)

is zero deep in the liquid environment far from the electrode (See Figure 3.1(b))
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– implying that the macroscopic electrostatic potential Φ (which differs in over-

all sign from φ) there is also zero. A convenient working electrode thus corre-

sponds to electrons solvated deep in the fluid, which will have electrochemical

potential µ̄(R) = µ(s)
int − FΦ = µ(s)

int, where µ(s)
int corresponds to the solvation energy of

an electron in the liquid. Referring the scale of the electrochemical potential to

such solvated electrons (so that µ(s)
int ≡ 0), we then have µ̄(R) = 0, so that E = −µ̄(W).

In sum, the opposite of the electronic chemical potential in our ab initio calcula-

tions corresponds precisely to the electrode potential relative to solvated elec-

trons. In practice, the choice of approximate density functionals Ωlq[{Nα(r)}] and

∆A[n(r), {Nα(r)},V(r)] sets the potential of a solvated electron; each model fluid

corresponds to a different reference electrode of solvated electrons. Section 3.8

demonstrates the establishment of the electrochemical potential of such a model

reference electrode relative to the standard hydrogen electrode (SHE).

3.3.3 Potential of zero charge (PZC)

and differential capacitance.

For any given working electrode, a specific number of electrons, and thus elec-

tronic chemical potential µ̄, is required to keep the system electrically neutral.

The corresponding electrode potential (E = −µ̄) is known as the potential of

zero charge. Adsorbed ions from the electrolyte or other contaminants on the

electrode surface create uncertainty in the experimental determination of the

potential of zero charge. One advantage to ab initio calculation is the ability to

separate the contribution due to adsorbed species from the contribution of the

electrochemical double layer, the latter being defined as the potential of zero free
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(a)

(b)

Figure 3.1: (a) Schematic of an electrochemical cell. The working electrode is
explicitly modeled while the reference electrode is fixed at zero. (b) Relationship
between the microscopic electron potential 〈φ(z)〉 (averaged over the directions
parallel to the surface), electrochemical potential, and applied potential for a Pt
(111) surface. The large variations in potential to the left of zPt correspond to
the electrons and ionic cores comprising the metal while the decay into the fluid
region is visible to the right of zPt.
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charge (PZFC). Experimentally, only the potential of zero total charge (PZTC),

which includes the effects of surface coverage, may be measured directly, and

the potential of zero free charge can only be inferred.[54] Ab initio approaches

such as ours allow for the possibility of controlled addition of adsorbed species

and direct study of these issues.

At other values of the electrode potential E, the system develops a charge per

unit surface area σ ≡ Q/A. From the relationship between these two quantities

σ(E), one can then determine the differential capacitance per unit area C ≡ dσ
dE .

The total differential capacitance of a metal is determined by both the density of

states of the metal surface CDOS, also known as the quantum capacitance,[175]

and the capacitance associated with the fluid Cfl. These capacitances act in se-

ries, so that full differential capacitance is given by

C−1 = C−1
fl + C−1

DOS. (3.3)

In typical systems, CDOS ∼ 100−1000µF/cm2 is larger than the fluid capacitance

(typically Cfl ∼ 15 − 100µF/cm2), so when the two are placed in series, the fluid

capacitance dominates.

The fluid capacitance may be further decomposed into two capacitors acting

in series,

C−1
fl = C−1

∆ + C−1
κ , (3.4)

as in the Gouy-Chapman-Stern model for the electrochemical double layer.[101,

46, 261] The surface charge on the electrode and the first layer of oppositely

charged ions behave like a parallel plate capacitor with distance ∆ between the

plates. ∆ indicates the distance from the electrode surface to the first layer of

ions – called the outer Helmholtz layer for non-adsorbing electrolytes. The
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capacitance per unit area for this simple model is C∆ = ε0
∆

, analogous to the

Helmholtz capacitance. For a gap size ∆ ∼ 0.5Å, this model leads to a “gap”

capacitance of about 20 µF/cm2. Additional capacitance arises from the diffuse

ions in the liquid. where the model for this capacitance Cκ = εbε0κcosh( eφ(∆)
2kBT )

is also well-known from the electrochemistry literature.[15] In the limit where

most of the voltage drop is found in the outer Helmholtz layer (φ(∆) ∼ kBT ),

this expression reduces to a constant value which depends only on the concen-

tration of ions in the electrolyte and the bulk dielectric constant of the fluid εb:

Cκ = εbε0
κ−1 . For water with a 1.0 M ionic concentration, the “ion” capacitance is

Cκ =240 µF/cm2, an order of magnitude larger than the “gap” capacitance. At

this high ionic concentration, the “gap” (Helmholtz) capacitance dominates not

only the fluid capacitance, but also the total capacitance. For lower concentra-

tions of ions, the magnitude of the “ion” capacitance becomes more comparable

to the “gap” capacitance and voltage-dependent nonlinear effects in the fluid

could become important.

3.3.4 Cyclic voltammetry

A powerful technique for electrochemical analysis is the cyclic voltammogram,

in which current is measured as a function of voltage swept cyclically at a con-

stant rate. Such data yield detailed information about electron transfer in com-

plicated electrode reactions, with sharp peaks corresponding to oxidation or

reduction potentials for chemical reactions taking place at the electrode sur-

face. Because current is a time-varying quantity and density-functional theory

does not include information about time dependence and reaction rates, careful

reasoning must be employed to compare ab initio calculations to experimen-
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tal current-potential curves. Previous work has correlated surface coverage of

adsorbed hydrogen with current in order to predict cyclic voltammograms for

hydrogen evolution on platinum electrodes.[138] This simple model for a cyclic

voltammogram is intrinsically limited at a full monolayer of hydrogen adsorp-

tion, rather than by the more realistic presence of mass transport and diffusion

effects, but nonetheless provides useful comparisons to experimental data.

Using a similar approach, our framework gives the predicted current density

J directly through the chain rule as

J =
dσ
dt

=
dE
dt

dσ
dE
≡ KC(E),

where K = dE
dt is the voltage sweep rate, and C(E) is the differential capacitance

per unit area at electrode potential E, as defined above. For the bare metal sur-

faces with no adsorbates studied in Section 3.8 of this work, only the double

layer region structure is visible, but the technique may be generalized to study

chemical reactions at the electrode surface. The current density curve is simply

proportional to the differential capacitance per unit area C as long as the state of

the system varies adiabatically and the voltage sweep rate is significantly slower

than the reaction rate. In the adiabatic limit, features in the charge-potential

curves calculated for reaction intermediates and transition states can be com-

pared directly with peaks in cyclic voltammograms to predict oxidation and

reduction potentials from first principles.

3.4 Implicit Solvent Models

For computational expediency and to explore the performance of the overall

framework for quantities of electrochemical interest, we now introduce a highly
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approximate functional. Despite its simplicity, we find that the model below

leads to very promising results for a number of physical quantities of direct

interest in electrochemical systems. The first step in this approximation is to

minimize with respect to the liquid nuclear density fields in the fully rigorous

functional [217] so that Equation 3.1 becomes

Ã = min
n(r)

(AKS [n(r), {ZI ,RI}]

+ ∆Ã[n(r), {ZI ,RI}]), (3.5)

with the effects of the liquid environment all appearing in the new term

∆Ã[n(r), {ZI ,RI}] ≡ min
Nα(r)

(Ωlq[Nα(r)]

+ ∆A[n(r),Nα(r), {ZI ,RI}]), (3.6)

where ZI and RI are the charges and positions of the surface nuclei (and those of

any explicitly included adsorbed species). This minimization process leaves a

functional in terms of only the properties of the explicit system and incorporates

all of the solvent effects implicitly. Up to this point, this theory is in principle

exact, although the exact form of ∆Ã[n(r), {ZI ,RI}] is unknown. For practical

calculations this functional must be approximated in a way which captures the

underlying physics with sufficient accuracy.

3.4.1 Approximate functional

In this initial work, we assume that the important interactions between the sol-

vent environment and the explicit solute electronic system are all electrostatic

in nature. Our rationale for this choice is the fact that most electrochemical pro-

cesses are driven by (a) the surface charge on the electrode and the screening
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due to the dielectric response of the liquid solvent and (b) the rearrangement of

ions in the supporting electrolyte. To incorporate these effects, we calculate the

electron potential φ(r) (the Coulomb potential energy of an electron at a given

point, which equals −e times the electrostatic potential) due to the electronic and

atomic core charges of the electrode and couple this potential to a spatially local

and linear description of the liquid electrolyte environment, yielding

Ã[n(r), φ(r)] = AT XC[n(r)]

+

∫
d3r{φ(r) (n(r) − N(r, {ZI ,RI}))

−
ε(r)
8π
|∇φ(r)|2 −

εbκ
2(r)

8π
(φ(r))2}, (3.7)

where AT XC[n(r)] is the Kohn-Sham single-particle kinetic plus exchange corre-

lation energy, n(r) is the full electron density of the explicit system (including

both core and valence electrons), and N(r, {RI ,ZI}) is the nuclear particle density

of the explicit solute system with nuclei of atomic number ZI at positions RI , εb

is the bulk dielectric constant of the solvent, and ε(r) and κ(r) are local values,

respectively, of the dielectric constant and the inverse Debye screening length

due to the presence of ions in the fluid. We emphasize that, despite the compact

notation in Equation 3.7, in practice we employ standard Kohn-Sham orbitals

to capture the kinetic energy and, as the appendices detail, we employ atomic

pseudopotentials rather than direct nuclear potentials, so that N(r, {RI ,ZI}) does

not consist in practice of a set of Dirac δ-functions.

To determine local values of the quantities ε(r) and κ(r) above, we relate them

directly to the local average density of the solvent Nlq(r) as

ε(r) ≡ 1 +
Nlq(r)

Nb
(εb − 1)

κ2(r) ≡ κ2
b

Nlq(r)
Nb

, (3.8)
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where Nb and εb are, respectively, the bulk liquid number density (molecules per

unit volume) and the bulk dielectric constant, and κ2
b = e2

εb kBT

∑
i NiZ2

i is the square

of the inverse Debye screening length in the bulk fluid, where Zi and Ni = ciNA

are the valences and number densities of the various ionic species. Finally, our

model for the local liquid density depends on the full solute electron density

n(r) at each point through the relation

Nlq(n) ≡
Nb

2
erfc

 ln (n/n0)
√

2γ

 , (3.9)

a form which varies smoothly (with transition width γ) from the bulk liquid

density Nb in the bulk solvent where the electron density from the explicit sys-

tem is less than a transition value n0 to zero inside the cavity region associated

with the solute, defined as those points where n(r) > n0. This form for Nlq(n)

reproduces solvation energies of small molecules in water without ionic screen-

ing to within 2 kcal/mol,[217] when the parameters in Equation 3.9 have values

γ = 0.6 and n0 = 4.73 × 10−3 Å−3.

The stationary point of the functional in Equation 3.7 determines the phys-

ical state of the system and is actually a saddle point which is a minimum

with respect to changes in n(r) (or, equivalently, the Kohn-Sham orbitals) and

a maximum with respect to changes in φ(r). Setting to zero the variation of

Equation 3.7 with respect to the single-particle orbitals generates the usual

Kohn-Sham, Schrödinger-like, single-particle equations with φ(r) replacing the

Hartree and nuclear potentials and results in the modified Poisson-Boltzmann

equation,

∇ · (ε(r)∇φ(r)) − εbκ
2(r)φ(r)

= −4π (n(r) − N(r, {RI ,ZI})) . (3.10)

Self-consistent solution of this modified Poisson-Boltzmann equation for φ(r)
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(a)

(b)

Figure 3.2: Microscopic and model quantities for Pt(111) surface in equilibrium
with electrolyte: (a) Pt atoms (white), electron density n(r) (green), and fluid
density Nlq(r) (blue) in a slice passing from surface (left) into the fluid (right)
with zPt = 5.95 Å indicating the end of the metal, (b) dielectric constant 〈ε(z)〉
and screening length 〈κ−1(z)〉 (averaged over the planes parallel to the surface)
for ionic concentrations of 1.0 M and 0.1 M along a line passing from surface
into the fluid. Position z − zPt measures distance from the end of the metal slab.
(See Sections 3.7 and 3.8.)

along with solution of the corresponding traditional Kohn-Sham equations de-

fines the final equilibrium state of the system.

Figure 3.2 illustrates the various concepts in this model using actual results

from a calculation of the Pt(111) surface, described in Sections 3.7 and 3.8. Fig-
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ure 3.2(a) shows the electron n(r) and liquid Nlq(r) densities in a slice through the

system which passes through the metal (left, z < zPt ) and the fluid (right, z > zPt).

We define the end of the metal surface zmetal by the covalent radius of the last

row of metal atoms (zPt = 5.95 Å). The ionic cores and the itinerant valence

electrons in the metal are visible, as well as the gap between the surface and the

bulk of the fluid. As shown in Figure 3.2(b), the local functions for the dielec-

tric constant ε(r) and the inverse Debye screening length κ(r) respect the correct

physical limiting values: εb and κb in the bulk solvent and ε = 1 and κ = 0 within

the surface. The rapid increase in dielectric constant for 0 Å < z− zPt < 1 Å corre-

sponds to the appearance of fluid on the right side and results in the localization

of significant charge from the fluid at this location. The inverse screening length

κ depends on the concentration of ions in the electrolyte through the bulk liquid

value κb. Figure 3.2(b) shows screening length as a function of distance from the

metal surface for both 0.1 and 1.0 molar bulk ionic concentrations. The large

screening lengths at positions less than zPt ensure proper vacuum-like behavior

within the metal surface, where all electrons are explicit and thus no implicit

screening should appear.

3.4.2 Asymptotic behavior of electrostatic potential

Unlike the standard Poisson equation, which has no unique solution for peri-

odic systems because the zero of potential is an arbitrary constant, the modified

Poisson-Boltzmann equation in Equation 3.10 has a unique solution in periodic

systems. To establish this, we integrate the differential equation over the unit

cell. The first term, which is the integral of an exact derivative, vanishes. The
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remaining terms then give the condition,∫
κ2(r)φ(r)dV =

4π
εb

(Qn − QN) , (3.11)

where Qn and QN are the total number of electronic and nuclear charges in the

cell, respectively. Any two φ(r) which differ by a constant C both can be valid

solutions only if C
∫
κ2(r) dV = 0, so that we must have C = 0 as long as κ(r) is

non-zero at any location in the unit cell. Thus, any amount of screening at any

location in space in the calculation eliminates the usual indeterminacy of φ(r) by

an additive constant, thereby establishing an absolute reference for the zero of

the potential.

To establish the nature of this reference potential, we first note that deep in

the fluid, far from the electronic system, the electron density approaches n(r) =

0 and the dielectric constant and screening lengths attain their constant bulk

values ε(r) → εb and κ(r) → κb. Under these conditions, the Green’s function

impulse response of Equation 3.10 to a unit point charge is

φ(r) =
exp (−κb r)

εb r
, (3.12)

a Coulomb potential screened by the dielectric response of the solvent and ex-

ponentially screened by the presence of ions. Next, we rearrange Equation 3.10

so that the left-hand side has the same impulse response as the bulk of the fluid

but with a modified source term,

εb∇
2φ(r) − εbκ

2
bφ(r) =

−4π
(
ρsol(r) + ρext(r)

)
(3.13)
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where we have defined

ρsol(r) ≡ n(r) − N(r)

ρext(r) ≡ −
1

4π
((εb − ε(r))∇2φ(r)

− (∇ε(r)) · (∇φ(r)) + εb

(
κ2(r) − κ2

b

)
φ(r)). (3.14)

The key step now is to note that all source terms clearly vanish in the bulk of

the fluid where ρsol(r) → 0, ε(r) → εb = constant, and κ(r) → κb. From the

exponential decay of the Green’s function Equation 3.12 and the vanishing of

ρsol+ρext in the bulk region of the fluid, we immediately conclude that φ(r)→ 0

deep in the fluid region, thereby establishing that the absolute reference of zero

potential corresponds to the energy of an electron solvated deep in the fluid

region.

3.4.3 Future Improvements

While offering a computationally efficient and simple way to study electro-

chemistry, the approximate functional in Equation 3.7 is highly simplified and

possesses several limitations which the more rigorous approach of Section 3.2

overcomes by coupling of an explicit solvent model for Ωlq[Nα(r)][171] to the

electronic system through an approach similar to the molecular pseudopoten-

tials proposed by Kim et al.[144] Such limitations include the fact that because

we employ a linearized Poisson-Boltzmann equation, we do not include the

nonlinear dielectric response of the fluid (which other approaches in the litera-

ture to date also ignore[132, 56]) or nonlinear saturation effects in the ionic con-

centrations, both of which become important for potentials greater than a few

hundred mV. Despite these limitations, we remain encouraged by the promis-
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ing results we obtain below for this simple functional and optimistic about the

improvements that working within a more rigorous framework would provide.

3.5 Implementation Within Standard

Electronic Structure Software

Here we consider the issues which arise when implementing the above frame-

work within a pre-existing electronic-structure code. We will focus on software

operating within the pseudopotential framework as this technique is commonly

used for surface calculations.

Such pseudopotential calculations, for computational efficiency, include the

nuclei and core electrons together as a unit and describe their combined effects

on the valence electron system through effective, ”pseudo”-potentials. Two sub-

tleties now arise. First, because the pseudopotentials describe the long-range

electrostatic interaction between the ionic cores and the electrons, the screening

of the long-range Coulomb part of the pseudopotentials by the electrolyte en-

vironment through Equation 3.10 must be handled properly. Second, because

the calculated (valence) electron density n(r) in the atomic core regions tends

to be relatively low in pseudopotential calculations, our definition of the liquid

density Nlq(n) as a local function of the local electron density n(r) through Equa-

tion 3.9 can lead to the unphysical presence of liquid within the atomic cores if

precautions are not taken.

As a matter of notation specific to this appendix, we separate conceptually

the valence electron density nv(r), calculated directly with the Kohn-Sham or-
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bitals, from the missing contribution nc(r, {RI}) due to the core electrons, which

clearly varies explicitly with the locations of the centers of the ions. By including

both electron and ionic (now, actually, valence-electron and ionic core) source

terms, the new energy functional in Equation 3.7 naturally provides electrolyte

screening of all of the relevant fields. The functional in Equation 3.7 then be-

comes

A[n(r), φ(r)] = AT XC[nv(r)]

+ EC[nv(r), nc(r, {RI}), φ(r)]

+ Ups[nv(r), {ZI ,RI}], (3.15)

where AT XC[nv(r)] is the Kohn-Sham single-particle kinetic plus exchange-

correlation energy, and

EC[nv(r),nc(r, {RI}), φ(r)] =∫
d3r{φ(r) (nv(r) − N(r, {ZI ,RI}))

−
ε(nv(r) + nc(r, {RI}))

8π
|∇φ(r)|2

−
εb κ

2(nv(r) + nc(r, {RI}))
8π

(φ(r))2} (3.16)

represents the previously described electrostatic contributions to the total en-

ergy functional (with N(r, {ZI ,RI}) ≡
∑

I ZIδ
(3)(r − RI) representing point charges

with the ionic valences ZI), and the term

Ups[nv(r),ZI ,RI] =∫ ∑
I

∆V (I)
ps (r − RI)

 nv(r) d3r, (3.17)

with

∆V (I)
ps (r − RI) ≡ V (I)

ps (r − RI) + ZIG(r − RI), (3.18)

represents the non-Coulombic components of the pseudopotential V (I)
ps (r), with

G(r) ≡ 1/|r| being the Coulombic Green’s function associated with a unit point
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charge in free space. Note that here and henceforth in this work ZI refers to the

charges of the ionic pseudopotential cores and not the nuclear atomic numbers.

Finally, Section 3.6 details how, for practical numerical reasons, we work not

with mathematical point charges but rather with narrow charge distributions

which we can resolve numerically.

The derivative of the functional A[n(r)] with respect to nv(r) at a point r

(which gives the local effective Kohn-Sham potential used for the electronic

wavefunction minimization) must also be adjusted to include the new dielec-

tric response and ionic screening terms,

∂

∂nv(r)
A[n(r)] =

∂

∂nv(r)
AT XC[nv(r)]

+
∑

I

∆V (I)
ps (r − RI)

+ φ(r) −
1

8π
(
∂ε

∂n
|∇φ(r)|2

+ εb
∂κ2

∂n
φ2(r)). (3.19)

Finally, Hellman-Feynman calculation of the forces on the atoms requires

care because of the dependence of both the ionic core density N(r, {ZI ,RI}) and

the model core electron density nc(r, {RI}) on the ionic positions RI . The final

result is

∇RI A = ∇RI EC + ∇RI Ups, (3.20)
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where

∇RI Ups =

∫ (
∇RI ∆V (I)

ps (r − RI)
)

nv(r) d3r

∇RI EC =

−
1

8π

∫
d3r

(
∂ε

∂n
|∇φ|2 + εb

∂κ2

∂n
(φ(r))2

)
× ∇RI nc(r, {RI})

−

∫
d3rφ(r)ZI∇RIδ

(3)(r − RI) (3.21)

While some of these derivatives have simpler analytical forms than those de-

scribed above, these forms render much simpler the numerical representation of

the relevant quantities, particularly the Dirac-delta functions and pseudopoten-

tials, as described in Section 3.6.

3.6 Numerical Details

The system-dependent modified Poisson-Boltzmann equation which appears

in our calculations does not have a direct analytic solution in either Fourier or

real space and, thus, requires a numerical solution such that we cannot employ

analytic Dirac δ functions to represent the ion-core charges. Instead, in our nu-

merical calculations, we employ ”smoothed” ion-core charge densities,

N(σ)(r, {ZI ,RI}) =
∑

I

ZIδ
(σ)(r − RI) (3.22)

where δ(σ) is a normalized, isotropic three-dimensional Gaussian of width σ

containing a single unit change. To the extent that the smoothed distributions

do not overlap with each other or the fluid regions, the replacement of the point

charges with these distributions will not affect the ”Ewald” energy among the
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charged atomic cores or the dielectric screening effects. In practice, we find good

numerical solutions by employing a relatively narrow width determined by the

spatial resolution of the calculation, so that σ corresponds to a distance of 1.40

points on the Fourier grid. (Specifically, this work employs a plane-wave energy

cutoff of 30 H, so that σ = 0.168 Å.) This choice of parameters ensures that there

is little overlap among the Gaussians and between the Gaussians and the fluid,

so that that this replacement has negligible effect on the screened interaction

among the atomic cores.

These smoothed distributions, however, do overlap with the valence elec-

trons, an effect which we must compensate. We compensate this local effect ex-

actly by replacing the point-charge response G(r) in the modification of the pseu-

dopotential in Equation 3.18 with the response corresponding to the smoothed

densities,

G(σ)(r) ≡
erf (|r|/

√
2σ2)

|r|
. (3.23)

We also represent the core-electron densities in Equation 3.8 that prevent fluid

penetration into the atomic cores, and whose form is thus not critical, with

Gaussian distributions

nc(r, {RI}) = C
∑

I

δ(rc)(r − RI). (3.24)

Alternately, for this density, one could use the core-electron density from the

partial core correction from an appropriately designed pseudopotential. Be-

cause the role of nc in our framework is simply to prevent penetration of fluid

into the ionic cores, the precise values of the norm C and width rc are not criti-

cal. We find that the choice C = 0.3 Å−3, rc = 0.2 Å works well for this purpose

for all the species in our calculations.

Finally, with the above definitions in place, we have taken care to make all re-

108



placements δ3(r)→ δ(σ)(r), G(r)→ G(σ)(r) and nc(r, {RI}) = C
∑

I δ
(rc)(r − RI) in the

appropriate places in the expressions for the total free energy, in the functional

derivatives appearing in the effective Kohn-Sham potential of Equation 3.19,

and in the expressions for the Hellman-Feynman forces on the atoms in Equa-

tion 3.20. These substitutions complete the numerical specification of the func-

tionals employed in our calculations.

We find that standard electronic structure methods work well with our func-

tionals. The one equation whose solution requires new algorithms is the modi-

fied Poisson-Boltzmann equation, which, unlike the standard Poisson equation,

does not have a direct analytic solution in Fourier space. To solve this equation,

we have, however, found a simple to implement, yet highly efficient precondi-

tioned conjugate gradient algorithm.

The portions of the functional which depend on the potential field φ(r) ap-

pear in EC in Equation 3.16, which is a quadratic functional whose maximum

corresponds to the solution of the modified Poisson-Boltzmann equation, Equa-

tion 3.10, and whose quadratic kernel is

Q = (∇ · ε∇ − εbκ
2)/(4π). (3.25)

We chose to solve this equation in Fourier space, where the diagonal elements

of this kernel have a very simple approximate form, which leads to the diagonal

preconditioner,

K(G) = (ε̄G2 + εbκ̄2)−1, (3.26)

where ε̄ = 1
Ω

∫
ε(r)d3r and κ̄2 = 1

Ω

∫
κ2(r)d3r are the average values of these pa-

rameters over the unit cell. This diagonal preconditioner completely ignores

the spatial variation of the dielectric constant. A more effective preconditioner

which may be obtained by building in this inhomogeneity – is calculated by
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first multiplying by
√

(K(G)) (the square root of the diagonal preconditioner) in

Fourier space, transforming to real space and dividing by ε(r), then returning to

Fourier space and again multiplying by
√

(K(G)). This inhomogeneous precon-

ditioner requires more time to evaluate for a single iteration than the diagonal

preconditioner, but reduces the total number of iterations required significantly.

3.7 Electronic Structure Methodology

All calculations undertaken in this work and presented in Section 3.8 were all

performed within the DFT++ framework [122] as implemented in the open-

source code JDFTx. [267] They employed the local-density or generalized-

gradient [215] approximations using a plane-wave basis within periodic bound-

ary conditions. The specific materials under study in this paper were plat-

inum, silver, copper, and gold. The (111), (110), and (100) surfaces of each

of these metals were computed within a supercell representation with a dis-

tance of 10 times the lattice constant of each metal (in all cases around 30 Å)

between surface slabs of thickness of 5 atomic layers. For these initial calcula-

tions, we were very conservative in employing such large regions between slabs

to absolutely eliminate electrostatic supercell image effects between slabs. We

strongly suspect that smaller supercells can be used in the future. All calcu-

lations presented employ optimized[230] norm-conserving Kleinman-Bylander

pseudopotentials[228] with single non-local projectors in the s, p, and d chan-

nels, a plane-wave cutoff energy of 30 H, and employ a 8 × 8 × 1 k-point

Monkhorst-Pack[190] grids to sample the Brillouin zone.

The JDFTx-calculated lattice constants of the bulk metals within both
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exchange-correlation approximations when using 8 × 8 × 8 k-point grids are

shown in Table 3.1. Clearly, the LDA and GGA lattice constants both agree

well with the experiment. Except where comparisons are specifically made with

LDA results, all calculations in this work employ GGA for exchange and corre-

lation.

Table 3.1: Cubic lattice constant (Å) in conventional face-centered cubic unit cell

Metal LDA GGA Experiment[3]
Pt 3.93 3.94 3.92
Cu 3.55 3.67 3.61
Ag 4.07 4.13 4.09
Au 4.05 4.14 4.08

3.8 Results

To evaluate the promise of our approach, we begin by studying the fundamental

behaviors of transition metal surfaces in equilibrium with an electrolyte envi-

ronment as a function of applied potential. We find that even our initial highly

simplified form of joint density-functional theory reproduces with surprising

accuracy a wide range of fundamental physical phenomena related to electro-

chemistry. Such transition metal systems, especially platinum, are of electro-

chemical interest as potential catalysts for both the oxygen reduction reaction

(ORR) and th hydrogen evolution reaction (HER). Molecular dynamics stud-

ies of the platinum system in solution, both at the classical [304] and ab initio

[244, 236] levels, to date have not fully accounted for ionic screening in the elec-

trolyte, which is essential to capturing the complex structure of the electrochem-

ical double layer and the establishment of a consistent reference potential.
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For the initial exploratory studies presented in this manuscript, we focus on

pristine surfaces without adsorbates in order to establish clearly the relationship

between theoretical and experimental quantities and to lay groundwork for fu-

ture systematic comparison of potential catalyst materials. Unless otherwise

specified, we carry out our calculations with screening lengths of 3 Å, corre-

sponding to monovalent ionic concentrations of 1.0 M. We employ these high

concentrations because most electrochemical cells include a supporting elec-

trolyte with high ionic concentration chosen to provide strong screening while

avoiding (to the extent possible) interaction with and adsorption on the elec-

trode. Note that, because our present model includes only ionic concentrations

and no other species-specific details about the ions in the electrolyte, our results

correspond to neutral pH. Future work will readily explore pH and adsorption

effects by including protons and other explicit ions in the electronic-structure

portions of the calculation. One great advantage of the present theoretical ap-

proach is the ability to separate the role of the non-adsorbing ions in the sup-

porting electrolyte from the role of the adsorbing ions that interact directly with

the surface.

3.8.1 Treatment of charged surfaces

in periodic boundary conditions

The application of voltage essential to the ab initio study of electrochemistry re-

quires precise treatment of charged surfaces not accessible to common electronic

structure approaches due to singularities associated with the Coulomb interac-

tion. In the case of a vacuum environment, the electrostatic potential φ(r) of
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even a neutral electrode approaches a physically indeterminate constant which

varies with the choice of supercell. As is well-known, this difficulty compounds

radically when a net charge is placed on the surface, resulting in a formally infi-

nite average electrostatic potential in a periodically repeated system. By default,

most electronic structure packages designed for use with periodic systems treat

this singularity by setting the G = 0 Fourier component of φ(r) to zero, equiva-

lent to incorporating a uniform, neutralizing charge background throughout the

region of the computation. This solution to the Coulomb infinity is not realistic

in electrochemical applications where the actual compensating charge appears

in the fluid and should not be present in the interior of the electrode.

Another option which has been employed in the electrochemical

context[203] is to include an oppositely charged counter-electrode located away

from the working electrode in the vacuum region of the calculation. However,

including an explicit density-functional electrode is often computationally pro-

hibitive as it requires doubling the number of electrons and atoms and requires

a large supercell to prevent image interaction. Implicit inclusion of a counter-

electrode through either coulomb truncation or an external charge distribution

[203] requires an arbitrary choice of the distribution of external charges repre-

senting the counter-electrode, and such arbitrary choices may result in unphys-

ical electrostatic potentials, even in the presence of a few explicit layers of neu-

tral liquid molecules. One realistic choice is to employ Debye screening as in

Equation 3.10. This approach ensures that the long-range decay of φ(r) into the

fluid corresponds to the behavior of the actual physical system, that the fluid re-

sponse contains precisely the correct amount of compensating charge, and that

the potential approaches an absolute reference, even in a periodic system.
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Another more explicit, and hence computationally expensive, option em-

ployed in the electrochemical literature is to add a few layers of explicit water

molecules to the surface and then include explicit counter-ions (protons) located

in the first water layer.[283] This approach models some of the most important

effects of the actual physical distribution of counter-ions, which really should

contain both localized and diffuse components, by considering only the first

layer of localized ions.

Figure 3.3(a) contrasts the potential profiles resulting from the aforemen-

tioned approaches in actual calculations of a Pt(111) electrode surface. Fig-

ure 3.3(a) displays the microscopic local electron potential energy function 〈φ(z)〉

for a surface at applied voltage E = −1.09V vs PZC which corresponds to a

charge of σ = −18 µC/cm2. The screened electron potentials generated by solu-

tion of Equation 3.10 at two different ionic strengths (c = 1.0 M and c = 0.1 M)

are compared to potential profiles for a similarly charged surface in vacuum,

with the net charge in the system neutralized either by imposing a uniform

background charge or by placing an oppositely charged counter electrode at one

Debye screening length from the metal surface. The two charge-compensated

vacuum calculations clearly do not correspond to the electrochemical behavior,

with far wider potential variations than expected. Figure 3.3(b) shows a de-

tailed view of the macroscopic electrostatic potential 〈Φ(z)〉 for the same charged

surface (obtained by subtracting the microscopic electron potential of the neu-

tral surface and switching the sign to reflect electrochemical convention) for the

JDFT calculated charged surface at two different ionic strengths. The charge-

compensated vacuum calculations would be off the scale of this figure, while

the macroscopic electrostatic potential for the JDFT calculations obtains the

value of the applied potential within the electrode and then approaches a well-
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established reference value of zero with the correct asymptotic behavior in the

fluid region.

3.8.2 Electrochemical double layer structure

The Gouy-Chapman-Stern model, described in Section 3.3.3, offers a well-

known prediction of the structure of the electrochemical double layer, to which

the potentials from our model correspond precisely. The electrostatic potential

profiles in the standard electrochemical picture include an initial, capacitor-like

linear drop in 〈Φ(z)〉 due to the outer Helmholtz layer (the Stern region), fol-

lowed by a characteristic exponential decay to zero deep in the fluid (the diffuse

Gouy-Chapman region). Our model naturally captures this behavior as a result

of (a) the localization of the dielectric response and screening to the liquid re-

gion as described by Nlq(r) through Equation 3.8 and (b) the separation between

the fluid and regions of high explicit electron density n(r) through the defini-

tion of Nlq(r) ≡ Nlq (n(r)) via Equation 3.9. Both the Stern and Gouy-Chapman

regions are clearly evident in Figures 3.3(b,c). We find the dielectric constant

transition region appearing in Figure 3.2(b), approximately the width of a water

molecule, to be essential to the accurate reproduction of the double layer struc-

ture. The potentials for charged surfaces in Figures 3.3(b,c) first show a linear

decay in the region 0 Å < z − zPt < ∆, corresponding to the “gap” between the

end of the surface electron distribution (zPt) and the beginning of the fluid re-

gion, precisely the behavior we should expect in the Stern region. For a Pt(111)

surface at applied voltage -1.09 V vs. PZC, ∆ = 0.6 Å, but the width of this gap

is voltage-dependent (as shown in Figure 3.4(b)) and also varies with metal and

crystal face. After the gap region, for ∆ < z−zPt < ∆+γ (where γ = 0.6 as in Equa-
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(a)

(b)

(c)

Figure 3.3: Microscopic electron potential energies 〈φ(z)〉 and macroscopic elec-
trostatic potentials 〈Φ(z)〉 averaged in planes for the Pt (111) surface as a function
of distance z − zPt from the end of the metal surface: (a) 〈φ(z)〉 for surface with
applied voltage E = −1.09 V vs. PZC in vacuum (green dashed) and in mono-
valent electrolytes of c = 1.0 M (red) and c = 0.1 M (blue) where the dotted lines
represent calculations with an explicit counter-electrode and the solid lines are
JDFT calculations (b) close-up view of 〈Φ(z)〉 for JDFT calculations with c = 1.0 M
(red) and c = 0.1 M (blue) and applied voltage E = −1.09 V vs. PZC (almost in-
distinguishable in the previous plot) (c) Variation of 〈Φ(z)〉 in JDFT monovalent
electrolyte of c = 1.0 M with E = {−1.09,−0.55, 0.0, 0.55, 1.09} V vs. PZC.
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tion 3.9), the dielectric constant in Figure 3.2(b) changes rapidly from about 10

to the bulk value εb ∼ 80, defining a transition region which ensures that no sig-

nificant diffuse decay in the potential occurs until beyond the outer Helmholtz

layer, thereby allowing proper formation of the diffuse Gouy-Chapman region

for z − zPt > ∆ + γ. We emphasize that we have not added these phenomena into

our calculations a posteriori, but that they occur naturally as a consequence of

our microscopic, albeit approximate, ab initio approach.

3.8.3 Charging of surfaces with electrode potential

To explore the effects of electrode potential on the surface charge and electronic

structure, Figure 3.4(a) shows the surface charge σ as a function of potential E

for a series of transition metal surfaces for an electrolyte of monovalent ionic

strength c = 1.0 M, without adsorption of ions to the surface. We find the aver-

age double layer capacitance of the Pt(111) surface – the slope of the correspond-

ing σ−E curve in Figure 3.4(a) – to be C=19 µF/cm2, in excellent agreement with

the experimental value of 20 µF/cm2.[205] Indeed, we find that a significant frac-

tion of our total capacitance is due to dielectric and screening effects in the fluid;

this agreement again supports our model for the electrolyte. The remainder is

associated with the “quantum capacitance” or density of states CDOS of the

surface slab in our supercell calculations.

Closer inspection of the charge versus potential data reveals that the slope

is not quite constant as a function of voltage. Indeed, taking the numerical

derivatives of the curves in Figure 3.4(a) yields values for the differential capaci-

tance that exhibit an approximately linear dependence on voltage. This voltage-
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dependence contrasts with studies performed using a different technique to

produce voltage-independent constant values for the capacitance[236], which

not only was limited to producing a constant value for the capacitance, but also

required computationally demanding thermodynamic sampling to model the

fluid.

To understand the origin of the above voltage-dependence of the ca-

pacitance, we employ the series model for differential capacitance in Equa-

tions 3.3 and 3.4, in which the total capacitance per unit area C is modeled as

a series combination of the capacitance associated with the density of states of

the metal, a Stern capacitance (C∆) across a gap of width ∆, and the (constant)

Gouy-Chapman capacitance associated with the inverse screening length κ. We

can then extract the “gap” capacitance as

∆

ε0
∼ C−1

∆ ≡ C
−1 − C−1

DOS −
κ−1

εbε0
. (3.27)

To verify that the voltage-dependence of this contribution indeed correlates to

changes in the gap associated with the Stern layer, we make an independent

definition of the width of the gap as ∆ ≡ zc − zMetal, where zc represents the

location where the presence of our model fluid becomes significant and zMetal

represents the location of the surface of the metal. Specifically, we define zc as

the point where the planar average of the inverse dielectric constant has fallen

by half from its value in the electrode (as in Figure 3.4(b)) since the polarization

of the fluid becomes significant when 〈ε−1(zc)〉 < 0.5. We determine zMetal from

the covalent radii of the metal surface atoms, but note that the specific choice of

zMetal is unimportant in the analysis to follow.

Figure 3.4(c) correlates the inverse gap capacitance C−1
∆

from the right hand

side of Equation 3.27 with the values of ∆ defined as in the previous paragraph.
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There is a striking linear trend with a slope within about ten percent of ε−1
0 ,

validating that the primary contribution to the voltage-dependence of the dif-

ferential capacitance within this model is from changes in the gap between the

fluid surface and where the dielectric screening begins. The ultimate origin of

this effect within the present approximation (in which the dielectric constant is

determined by the electron density through Equation 3.8) can be traced to the

increase in surface electrons with decreasing applied potential, which moves

the location of the fluid transition further away from the metal surface. In fact,

the experimentally determined capacitance of Pt(111) due to only the double

layer[205] (after subtracting the effects of counter-ion adsorption) has a voltage-

dependence quite similar to our prediction. Since the distance of closest ap-

proach of the fluid to the metal surface is determined by van der Waals interac-

tions and the addition of more electrons could indeed strengthen the repulsion,

the qualitative voltage-dependence of the “double-layer” capacitance even at

this simple level of approximation may indeed be capturing some aspects of the

underlying physics.

The double-layer capacitance notwithstanding, in physical systems the to-

tal capacitance is dominated by the effects of adsorption of counter-ions, and

so the qualitative voltage-dependence of the capacitance at this simple level of

approximation has limited practical relevance. Nonetheless, it is an important

feature of the electrochemical interface for those modified Poisson-Boltzmann

approaches in which the cavities are determined by contours of the electron

density. Future work in this area could capture the “ion-adsorption” portion of

the capacitance either by including explicit counter-ions within the electronic

structure portion of the calculation or by choosing a classical fluid functional

that includes a microscopic description of the counter-ions.
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(a)

(b)

(c)

Figure 3.4: (a) Surface charge σ as a function of applied voltage E for a series
of transition metal surfaces in an electrolyte of monovalent ionic strength c =

1.0 M (b) Inverse dielectric constant ε−1 as a function of distance from a Pt(111)
surface for multiple values of applied voltage (c) Inverse gap capacitance C−1

∆

as a function of the distance from the metal surface at which the fluid begins ∆.
The solid line indicates the best fit to the data with slope constrained to ε−1

0
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3.8.4 Potentials of Zero Charge and

Reference to Standard Hydrogen Electrode

To connect our potential scale (relative to an electron solvated in our model

fluid) to a standard potential scale employed in the literature and to confirm the

reliability of our model, Figures 3.5(a,b) show our ab initio predictions for poten-

tials of zero charge versus experimental values relative to the standard hydro-

gen electrode (SHE).[282] Within both the local density (LDA)[151] and general-

ized gradient (GGA)[215] approximations to the electronic exchange-correlation

energy, we have calculated the potentials of zero charge for various crystalline

surfaces of Ag, Au, and Cu, three commonly studied metals. We performed

a least-squares linear fit to the intercept of our data, leaving the slope fixed at

unity. (Note that the experimental data for Cu in NaF electrolyte were not in-

cluded in the fit, due to concerns discussed below.) The excellent agreement

between our results (with a constant offset) and the experimental data indicates

that joint density-functional theory accurately predicts trends in potentials of

zero charge, and encourages us that it can establish oxidation and reduction po-

tentials in the future. The improved agreement of GGA (rms error: 0.058 V) over

LDA (rms error: 0.108 V) underscores the importance of gradient-corrections to

this type of surface calculation.

The strong linear correlation with unit slope between the theoretical and

experimental data in Figures 3.5(a,b) indicates that the simplified Poisson-

Boltzmann approach reproduces potentials of zero charge well relative to some

absolute reference. The single parameter in the fit for each of the two panels

(namely, the vertical intercepts of each fit line) establishes the absolute relation-

ship between our zero of potential (implicit in each set of theoretical results)
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and the zero of potential on the standard hydrogen-electrode scale (implicit in

the experimental data). Specifically, we find that our zero of potential sits at

-4.91 V relative to the SHE for LDA and -4.52 V relative to the SHE for GGA.

Intriguingly, these values are close to the experimentally determined location of

vacuum relative to the the standard hydrogen electrode reference (-4.44 V)[282];

in fact, the GGA reference value is within a tenth of a volt. This apparent align-

ment is not altogether surprising due to the following argument: (1) our method

measures the difference in energy between an electron in the electrode and an

electron solvated deep in our model electrolyte, so that our potentials of zero

charge are measured relative to a solvated electron reference; (2) the energy of

a solvated electron relative to vacuum within the presently considered linearized

Poisson-Boltzmann model is zero because this approximation includes only elec-

trostatic effects; and (3) because the calculated potentials of zero charge in the

figures are thus relative to vacuum, the difference between our calculated results

and the experimental results should represent the constant difference between

the vacuum and SHE references.

Consideration of the breakdown of the potential of zero charge into phys-

ically meaningful quantities explains the difference between the LDA and

GGA results and elucidates the apparent success of the rather simple modi-

fied Poisson-Boltzmann approach in predicting PZC’s. Transferring an electron

from a metal surface to a reference electrode requires, first, removal of the elec-

tron from the surface and, then, transport of the electron through the relevant

interfacial layers of the liquid. The energy associated with the former process is

the work function, and the energy associated with the latter relates to the intrin-

sic dipole of the liquid-metal interface. As is well-known, there is an approxi-

mately constant shift between the predictions of the LDA and GGA exchange
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and correlation functionals for work functions of metals. In fact, Fall et al. report

that GGA metal work functions are approximately 0.4 V lower than the LDA

work functions,[74] corresponding well to the differences we find between the

vertical intercepts of Figures 3.5(a,b). Next, to aid consideration of the intrin-

sic dipole of the interface, Figure 3.5(c) explicitly compares our predictions for

work function with our predictions for potential of zero charge, including also

the corresponding experimental data for both quantities. (To place all values on

a consistent scale of potential, which we choose to be vacuum, we have added

the experimentally determined 4.44 V difference between SHE and vacuum to

the experimental PZC’s.) The data in Figure 3.5(c) suggest that the vacuum

work functions are harder to predict than potentials of zero charge, possibly

due to difficulty determining the value of the reference potential in the vacuum

region, an issue not present in our fluid calculations due to the screening in

Equation 3.10. The figure also indicates an approximately constant shift from

vacuum work function to potential of zero charge, suggestive of a roughly con-

stant interfacial dipole for each of the metal surfaces. However, the shift is not

exactly constant: both the experimental and theoretical data exhibit significant

fluctuations (on the order of 0.1 V) in the shift between work function and PZC

from one metal surface to another. Because the PZCs are determined to within

a significantly smaller level of fluctuation (0.06 V), these data indicate that the

Poisson-Boltzmann model captures not merely a constant interfacial dipole, but

also a significant fraction of the fluctuation in this dipole from surface to surface.

We note that Tripkovic et al. have also calculated the potentials of zero charge

for transition metal surfaces.[283] However, that approach requires calculation

of several layers of explicit water within the electronic structure portion of the

calculation, and those authors find the resulting potentials of zero charge to be
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dependent on the exact structure chosen for the water layers. While differing

orientations of water molecules at the interface may result in significant local

fluctuations in the instantaneous PZC, the experimentally measured potential

of zero charge is a temporal and spatial thermodynamic average over all liquid

electrolyte configurations rather than the value from any single configuration.

Direct comparison to experimental potentials of zero charge therefore should

involve calculation of a thermodynamic average.

As a matter of principle, derivatives of the free energy (which the JDFT

framework provides directly) yield thermodynamic averages. Therefore, an

exact free-energy functional would predict the exact, thermodynamically av-

eraged potential of zero charge, and classical liquid functionals, which capture

more microscopic details of the equilibrium liquid configuration[171] than the

present model, would be an ideal choice for future in-depth studies. Indeed,

such functionals are capable of capturing the relevant electrostatic effects even

when a single configuration of water molecules dominates the thermodynamic

average. (In such cases, minimization of the free-energy functional results in

localized site densities Nα(r) representing the dominant liquid configuration.)

Of course, in cases of actual charge-transfer reactions between the surface and

the liquid, the (relatively few molecules) involved in the actual transfer must

be included within the explicit electronic density-functional theory, whereas

the other electrolyte molecules may still be handled accurately within the more

computationally efficient liquid density-functional theory.

There is also reason to be sanguine regarding the ability of the modified

Poisson-Boltzmann approximation pursued in this work to capture interfacial

dipole effects. The macroscopic dielectric constant contained within the present
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model describes primarily the orientational polarizability of water, so that the

liquid bound charges resulting from the minimization of the free energy should

reflect the most dominant configurations of water molecules in the thermody-

namic average, even if only a single configuration dominates. On the electrode

side, the image charges corresponding to the bound charge also naturally ap-

pear, as a consequence of both the electrostatic coupling in our model and the

metallic nature of the surface described within electronic density-functional the-

ory. From an optimistic perspective, it is quite possible that a significant portion

of the electrostatics of the surface dipole would be captured even at the sim-

plified level of a Poisson-Boltzmann description. Ultimately, quantification of

how much of the effect is captured may only be verified by comparison to ex-

periment. For the systems so far considered, the excellent a priori agreement

between experimental measurements and our theoretical predictions indicates

that the relevant effects are indeed captured quite well. It appears that even a

simple continuum model (which only accounts for the effects of bound charge

at the interface and the corresponding image charges within the metal) can pre-

dict accurately key electrochemical observables such as potential of zero charge.

Certainly, for more detailed future studies, we would recommend exploring the

performance of more explicit functionals. However, the apparent accuracy and

computational simplicity of the current Poisson-Boltzmann approach render it

well-suited for high-throughput studies of electrochemical behavior as a func-

tion of electrode potential.

As a further example of the utility of the Poisson-Boltzmann approach, the

potential of zero charge calculation for copper illustrates how this theory can

be used as a highly controlled in-situ probe of electrochemical systems, with the

ability to isolate physical effects which are not possible to separate in the exper-
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(a) LDA

(b) GGA

(c) Comparison to Work Functions

Figure 3.5: Comparisons of ab initio predictions and experimental data[282] for
potentials of zero free charge (PZCs) and vacuum work functions: (a) ab initio
LDA predictions versus experimental PZC relative to SHE, (b) ab initio GGA
predictions versus experimental PZC relative to SHE, (c) ab initio GGA vacuum
work functions (solid line with squares) and PZC’s (solid line with circles), ex-
perimental work functions (dotted line) and PZC’s (dashed line) versus vacuum
for the same series of surfaces. Best linear fits with unit slope (dark diagonal
solid lines in (a) and (b)).
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iment. Specifically, in Figures 3.5 (a) and (b), for copper there are experimental

values for two different electrolytes, NaF and KClO4, which are both claimed

to be noninteracting with the metal surface.[282] Clearly, our theoretical val-

ues, which correspond to potentials of zero free charge without adsorption of

or chemical reaction with ions from the electrolyte, agree more favorably with

experimental data for the Cu surface in KClO4 than for the NaF electrolyte. Our

results suggest that future experimental exploration is warranted to investigate

potential interactions between the NaF electrolyte and the copper surfaces, or

into other possible causes of the discrepancy in potentials of zero charge. Per-

haps some polycrystalline impurities caused the experimental potentials of zero

charge of the supposed single-crystalline faces to become much more similar

than our calculations and the KClO4 data indicate they should be. Ab initio

calculations offer an avenue to study each of these potential causes indepen-

dently and to elucidate the mechanisms underlying the apparent experimental

disagreement.

Finally, although potentials of zero charge are quite readily observed in ex-

periments for less reactive metals such as silver and gold, measurement of the

potential of zero charge for platinum can be difficult because platinum is easily

contaminated by adsorbates. For this reason, more convoluted methods are em-

ployed to determine an experimental value for the potential of zero charge for

platinum. For instance, one may turn to ultra-high vacuum methods, where, by

definition, no molecules are adsorbed on the surface, and one may then attempt

to estimate the effect of the solution on the potential of zero free charge. [297]

Alternately, one may employ cyclic voltammograms to estimate the charge due

to adsorbates and then extrapolate the potential of zero free charge. [54] Our

ab initio method, however, gives the values for non-contaminated potentials of
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zero free charge directly, provided we establish the relation of our zero refer-

ence potential relative to that of the standard hydrogen electrode, which we

have done above.

For uncontaminated platinum, our method yields the potentials of zero free

charge shown in Table 3.2. Compared to other references in the literature, the

best agreement with our results is from an experiment which extrapolates the

potential of zero charge from ultra-high vacuum, eliminating the effects of un-

known adsorbates on the clean surface.[297] As with the results for Cu, the sig-

nificantly better agreement of our calculations with this latter experimental ap-

proach suggests that perhaps future experiments which measure potential of

zero charge should reconsider the effect of possible contaminants when extrap-

olating values for the potential of zero free charge.

Table 3.2: Platinum Potentials of Zero Free Charge (V vs SHE)

(110) (100) (111)
LDA 0.31 0.70 0.71
GGA 0.40 0.79 0.82

3.9 Conclusion

In this work, we extend joint density-functional theory (JDFT) – which combines

liquid and electronic free-energy functionals into a single variational principle

for a solvated quantum system – to include ionic liquids. We describe the theo-

retical innovations and technical details required to implement this framework

for study of the voltage-dependence of surface systems within standard elec-

tronic structure software. We establish a connection to the fundamental electro-

chemistry of metallic surfaces, accurately predicting not only potentials of zero
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charge for a number of crystalline surfaces for various metals but also an in-

dependent value for the standard hydrogen electrode relative to vacuum. Fur-

thermore, we show how future innovations in free energy functionals could

lead to even more accurate predictions, demonstrating the promise of the joint

density-functional approach to predict experimental observables and capture

subtle electrochemical behavior without the computational complexity required

by molecular dynamics simulations. These advantages render joint density-

functional theory an ideal choice for high-throughput screening calculations

and other applications in materials design.

We have built extensively upon the framework of joint density-functional

theory in the implicit solvent approximation,[217] extending it to include

charged ions in a liquid electrolyte. Beginning with an implicit model for the

fluid density Nlq(r) in terms of the electronic density of the surface, Nlq(r) =

Nlq(n(r)), we include an ionic screening length tied to the fluid density Nlq(r) in

the same way as done in previously successful models for the dielectric con-

stant. We also solve a previously unrecognized difficulty by including model

core electron densities within the surface to prevent artificial penetration of liq-

uid density into the ionic cores, which lack electrons in typical pseudopotential

treatments of the solid. Inclusion of this ionic screening allows us to provide a

consistent zero reference of potential and to resolve many difficulties associated

with net charges in periodic supercell calculations, thereby enabling study of

electrochemical behavior as a function of applied voltage.

With the framework to include electrode potential within joint density-

functional theory calculations thus in place, we then establish clear connections

between microscopic computables and experimental observables. We iden-
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tify the electronic chemical potential of density-functional theory calculations

with the applied voltage in electrochemical cells, and thereby extract a numer-

ical value of 4.52 V (within the GGA exchange-correlation functional) for the

value of the standard hydrogen electrode relative to vacuum, which compares

quite favorably to the best-accepted experimental value of 4.44 V.[282] We also

show that joint density-functional theory reproduces, a priori, the subtle voltage-

dependent behaviors expected for a microscopic electrostatic potential within

the Gouy-Chapman-Stern model and we extract potentials of zero free charge

for a series of metals commonly studied in electrochemical contexts, often find-

ing agreement with experimental values to within hundredths of volts.

This qualitatively correct prediction of electrochemical behavior and encour-

aging agreement with experiment demonstrate the capabilities of even a simple

approximation within the joint density-functional theory framework, and we

expect future improvements to the free-energy functional to be able to describe

more complex electrochemical phenomena. Future work should also general-

ize the approximate functional to include nonlinear saturation effects in ionic

screening within the current modified Poisson-Boltzmann approach, with an

approach along the lines of other works. [56] In electrochemical experiments,

the differential capacitance of charged metal surfaces often exhibits a minimum

at the potential of zero charge[15] (not seen in the linear continuum theory),

and more advanced theories including such nonlinear effects should be able to

capture this more subtle behavior. Additionally, recent developments in classi-

cal density functionals for liquid water [171] now can be implemented to study

electrochemical systems. Such classical density functionals can be extended to

include realistic descriptions of ions and are capable of capturing other essential

behaviors of electrolyte fluids, including features in the ion-ion and ion-water
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correlation functions due to differences in the structure of the anion and the

cation. [18] Finally, in systems where electrochemical charge-transfer reactions

are important or where chemical bonds of the fluid molecules are expected to

break, the relatively few reactant molecules should be treated within the explicit

electronic structure portion of the calculation, with the remaining vast majority

of non-reacting molecules handled within the more computationally efficient

liquid density-functional theory.

With advances such as those described above, joint density-functional the-

ory holds promise to become a useful and versatile complement to the tool-

box of currently available techniques for first principles study of electrochem-

istry. Unlike ab initio molecular dynamics (or any other theory involving ex-

plicit water molecules), this computationally efficient theory is not prohibitive

for larger system sizes. In fact, as the system size grows, the fraction of calcula-

tion time spent solving the modified Poisson-Boltzmann equation actually de-

creases, meaning that for larger systems, the calculation is only nominally more

expensive than calculations of the corresponding systems carried out in a vac-

uum environment. Also, because thermodynamic integration is not required,

the joint density-functional theory approach yields equilibrium properties di-

rectly and has a clear advantage over molecular dynamics simulations for cal-

culation of free energies. Immediate applications include the study of molecules

on metallic electrode surfaces as a function of applied potential and prediction

of the basic properties of novel catalyst and catalyst support materials. These

calculations could inform future materials design by offering an opportunity to

screen novel complex oxides and intermetallic materials in the presence of the

true electrochemical environment, thereby elucidating the fundamental physi-

cal processes underlying fuel cells and liquid-phase Graetzel solar cells.
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CHAPTER 4

ELECTROCHEMISTRY WITH MICROSCOPICALLY DETAILED

ELECTROLYTE THEORY 1

4.1 Introduction

The addition of negatively charged anions and positively charged cations to

liquid water introduces significant changes in the atomic-scale liquid structure

and bulk properties of the water. The disruption of the hydrogen bond net-

work in an aqueous electrolyte prompts the water molecules to form solvation

shells around the ions and alters the phase diagram of the liquid [11]. Infrared

spectroscopy measurements show that the influence of the electrolyte on the

water structure, sometimes extending far beyond a single solvation shell, de-

pends critically upon the type and concentration of ions and counter-ions [70]

— some ions are structure-makers, enhancing the hydrogen-bonded network of

the water, while others are structure-breakers [11]. The presence of ions alters

the dynamics of water molecules [253], causing rotation to occur more slowly

and involve more molecules.

Understanding how these phenomena depend on the presence of the ions in

the electrolyte is crucial to the field of biology, where aqueous ions drive key life-

sustaining processes. In biochemistry, for example, the strongly negative phos-

phate chain of adenosine triphosphate (ATP) attracts metal cations, especially

magnesium (Mg2+), which act as a cofactor to lower the transition-state barrier

for the hydrolysis reaction [142]. The hydrolysis of ATP releases stored chemi-

1R. Sundararaman provided code implementation of fundamental measure theory for mix-
tures of hard spheres and co-developed the charge-balance framework
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cal energy, which drives key processes in the human body, such as the transport

of sodium and potassium ions across the cell membrane. During the process of

transport, the cations and water molecules coordinate to key enzymes without

forming strong chemical bonds, maintaining the delicate physiologic balance

of potassium ions inside and sodium ions outside the cell [135, 251]. These

basic metabolic processes depend on subtle interactions between a quantum-

mechanical protein active site and an ion, all occurring in an aqueous environ-

ment. An accurate treatment of both the liquid electrolyte environment and

quantum-mechanical biomolecules would provide significant insight into these

chemical processes which maintain life, offering a promising avenue for future

research.

In this work, however, we will focus upon the field of electrochemistry,

where understanding the behavior of solvated ions at the electrode-electrolyte

interface as a function of applied potential is crucial to improving energy storage

and conversion devices. Batteries, solar water-splitting cells, and supercapaci-

tors must become more efficient and less costly to ensure our future energy se-

curity. However, the complexity of the interface between the charged electrode

surface and the fluid electrolyte [28] presents a challenge. In batteries, for exam-

ple, the working ion (commonly Li+) must break its shell of solvent molecules to

enter the electrode, allowing the battery to charge and discharge under poten-

tial cycling. One phenomenon which underlies both batteries and supercapaci-

tors is pseudocapacitance, which occurs at potentials where the dominant elec-

trode process is the desolvation and adsorption of ions, without the formation

of chemical bonds [5, 10]. Pseudocapacitance occurs when it is thermodynam-

ically favorable for the charge required for progression of an electrode process,

such as electrosorption or intercalation of an ion, to be a continuous function
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of the applied potential [52]. Some theoretical studies have been undertaken to

elucidate pseudocapacitive charging at the electrode surface [305, 167, 129], but

none has satisfactorily bridged the relevant length- and time-scales.

The simplest theoretical models for the free energy of an electrolyte treat

the ions and counter-ions as spherical particles then model the solvent with a

continuum dielectric constant ε, assuming a strong, fully dissociated electrolyte.

The Born model [200] estimates, from straightforward continuum electrostatics,

the solvation energy ∆G of a gas-phase ion of radius R and charge q to be

∆G = −
q2

2R

(
1 −

1
ε

)
. (4.1)

The Born model may also be extended to capture more microscopic information

by choosing the radius R to include both the size of the ion and the tempera-

ture dependent properties and dipole moment of the solvent [238]. Debye and

Huckel [60] proposed a contribution to the Helmholtz free energy due to charg-

ing a liquid of point ions embedded in a continuum dielectric. Assuming a

mean-field interaction of the ions with an average electrostatic field φ and find-

ing the variation of the Helmholtz free energy with respect to φ leads to the

nonlinear Poisson-Boltzmann equation,

ε∇ · (ε∇φ) =
∑
γ

−qγNb
γ exp

(
−qγφ
kBT

)
, (4.2)

where γ indexes over the charged species in the fluid with charge qγ and bulk

number density Nb
γ . The linearized form of the Poisson-Boltzmann equation,

valid at low field strength, is given in Equation 3.10. The nonlinear Poisson-

Boltzmann equation forms the mathematical basis for the Gouy-Chapman

model of the electrochemical double layer, and can be extended to model time-

dependent diffusion of ionic species to the electrode surface through the Nernst

equation [33]. These early theories of the electrolyte often serve as the basis
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for both modern implicit solvation models [174] and for equations of state for

electrolyte liquids [35].

Modern models of the electrolyte liquid include perturbation-theory based

equation of state descriptions, classical density-functional theory approaches,

and molecular dynamics calculations with classical pair potentials. When

placed in contact with a uniform charged wall to simulate the electrode surface,

these electrolyte fluid theories can be employed to model the structure of the liq-

uid at the electrochemical interface. Statistical Associated Fluid Theory (SAFT)

models build upon hard sphere and chain reference fluids using perturbation

theory and then fit multiple empirical parameters to reproduce experimental

state and vapor pressure data [35, 109, 91, 112]. These electrolyte equations of

state successfully account for the non-spherical shape of the solvent molecules

and for isotropic and orientation-dependent interactions in the bulk fluid, but

they do not extend easily to the non-uniform fluid. Classical density-functional

approaches based on fundamental measure theory can capture much of the

phenomenology associated with the electrochemical double layer, such as the

interplay between close-packing and electrostatics and the effect of charge in-

version [104, 149]. However, density-functional calculations of ionic liquid elec-

trolytes (which include no solvent molecules and can be modeled by charged

hard spheres) are most common [32], because the solvent-electrolyte interaction

is quite hard to capture accurately. Molecular dynamics with classical pair po-

tentials can capture interfacial structure in the fluid [167], but these calculations

require thermodynamic integration to compute free energies and the results are

often dependent upon the choice of model potential. Furthermore, these classi-

cal models for the fluid fail to describe specific adsorption of electrolyte, charge

transfer effects, or any processes which depend on the geometry and chemical
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identity of the electrode surface.

Of course, first-principles density-functional or quantum-chemical calcula-

tions of the electrode surface and any specific adsorbates can capture the rele-

vant effects of chemical bonding and charge transfer. Typical electronic struc-

ture calculations, however, fail to describe accurately systems in contact with

liquid, often neglecting entirely to include the fluid environment. In those cases

where ab initio calculations do include the effect of the electrolyte present un-

der typical electrochemical conditions, the atomic-scale details of the liquid are

usually ignored and replaced by a continuum dielectric medium [139, 163, 56].

Ab initio molecular dynamics (AIMD) calculations can capture the atomic-scale

details, but require computationally demanding thermodynamic sampling to

predict the structure of the liquid electrolyte and require thermodynamic inte-

gration to compute free energies. To be computationally feasible, AIMD surface

calculations either include only one or two layers of liquid water (without any

ions) or they artificially confine the liquid between electrode surfaces in a peri-

odic supercell representation [244, 210, 119, 290]. AIMD calculations which do

include screening are restricted to only one or two ions, limiting the physical

effects which can be investigated [154].

Additionally, calculations of charged systems performed under periodic

boundary conditions (without ions present to neutralize the charge) will suf-

fer from the well-known pathological divergence of the electrostatic energy.

More details of the electrostatic energy divergence which occurs in typical ab

initio calculations of charged systems are presented in Chapter 3. To prevent

this divergence, most simulations include a highly unphysical constant neutral-

izing net background charge across the entire unit cell. In cases where small
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free-energy differences can alter the qualitative predictions, such as the adsorp-

tion of molecules on a charged electrode surface, the errors introduced by such

a net background charge are quite concerning. Furthermore, at the charged

electrode-electrolyte interface, the lack of realistic screening from the ions may

cause AIMD simulations to overestimate the polarization and structuring of the

solvent molecules at the surface [305]. These challenges of treating charged sys-

tems are not confined only to first principles calculations at the atomic scale;

difficulties arise at all scales and with all types of modeling [194].

In contrast to the purely classical and perturbation-theory based models for

an electrolyte liquid, JDFT can capture the structural and quantum-mechanical

details of the electrode surface and the influence of these atomic-scale details

upon the electrochemical double-layer structure in the liquid. Unlike the tra-

ditional ab initio approaches used to compute the properties of the electrode,

the JDFT framework (presented fully in Chapter 2) generalizes to include the

screening effects of charged ions in aqueous solution upon the electrode surface,

naturally preventing divergence of the electrostatic energy. JDFT also naturally

captures a range of ionic concentrations which would be challenging to com-

pute in molecular dynamics due to the discrete nature of the ions. Finally, JDFT

also has the potential to capture the pseudocapacitive phenomena occurring in

batteries and supercapacitors because positively charging the surface by remov-

ing an electron is equivalent to the charge transfer of an electron from a surface

ion through the circuit [5, 52].

Chapter 3 connected ab initio computables to electrochemical observables

and showed how the implicit solvent approximation to JDFT (comparable to

a linearized Poisson-Boltzmann approach) is highly promising for electrochem-

137



ical calculations. We demonstrated how implicit JDFT calculations of charged

metal surfaces in aqueous electrolyte produces microscopic electrostatic poten-

tials which agree qualitatively with those potentials predicted by the famous

Gouy-Chapman-Stern (GCS) model in electrochemistry. The implicit solvation

model properly captures the linear charging regime of the GCS model, in which

the charge on the metal electrode varies linearly as a function of applied poten-

tial and capacitance is constant. Implicit JDFT also captures potentials of zero

charge with an accuracy better than 100 mV and establishes an absolute refer-

ence to place our calculations on the scale of the standard hydrogen electrode

(SHE). However, the charging curves presented in the electrochemistry litera-

ture are often nonlinearly dependent on the applied potential, leading to a dif-

ferential capacitance which also varies with potential [15, 95]. These nonlinear

features are related to pseudocapacitive and potential-driven changes in the in-

terfacial structure of the electrolyte at the electrode surface which are impossible

to capture with an implicit description of the liquid.

Explicit JDFT calculations with an atomically-detailed liquid, however,

should be capable of describing the structural changes in the electrolyte which

give rise to the dependence of the differential capacitance upon potential. This

chapter explores the ability of the JDFT framework with a classical DFT de-

scription of the liquid environment to capture complex, electrolyte-dependent

electrochemical behavior, including nonlinear capacitance. Section 4.2 describes

further connections between ab initio computables and electrochemical observ-

ables, namely differential capacitance measurements. Section 4.3 details the in-

novations in the JDFT classical liquid functional Ωlq and the liquid-solute cou-

pling functional ∆A required to capture the relevant physical effects in elec-

trolyte liquid. Section 4.4 introduces a framework to perform calculations of
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charged electrode surfaces under applied potential control and to relate the ap-

plied potential to standard reference electrodes in electrochemistry. Section 4.5

describes the approximations to the liquid and coupling functionals required to

implement specific monovalent electrolytes within JDFT. Section 4.6 shows the

predicted potentials of zero charge, interfacial liquid structure, and electrode

charge as a function of applied potential for single-crystalline metallic surfaces.

Section 4.7 concludes this chapter and offers future directions for the research

presented herein.

4.2 Further Connections to Electrochemistry

Section 3.3 presents a careful mapping of the quantities computed in JDFT calcu-

lations to the quantities measured in electrochemical experiments. This section

expands upon some of these electrochemistry concepts, specifically focusing on

the structure of the electrode-electrolyte interface and on experimentally mea-

sured differential capacitances.

4.2.1 Structure of Electrode-Electrolyte Interface

At the electrode-electrolyte interface, the interplay of quantum mechanics, elec-

trostatics, thermodynamics, and kinetics creates complex phenomena which are

challenging to predict theoretically and to characterize experimentally. Fig-

ure 4.1 presents a textbook picture of the electrochemical interface between a

metal electrode and an aqueous electrolyte under the influence of an applied

potential [15, 28]. The textbook interfacial structure of the electrolyte consists of

139



two main spatial regions: the compact (inner) layer and the diffuse layer. The

compact layer consists of ions which carry the opposite charge from the surface

and form a plane next to the electrode surface due to electrostatic attraction. If

at least one layer of water is present between the ions and the surface, the ions

are in the outer Helmholtz plane (OHP), while if the ions have broken their sol-

vation shells to associate with the electrode, the ions are in the inner Helmholtz

plane (IHP). The diffuse layer consists of both positively and negatively charged

ions which move to screen any charges which arise with a screening length that

depends on the electrolyte concentration as described in Chapter 3. The ions

in the diffuse layer typically exist within shells of solvent molecules because

breaking the shells comes at a significant energy cost, and most of the electric

field from the applied potential has already been screened by the compact layer.

4.2.2 Gouy-Chapman-Stern Model

As described in detail in Section 3.3, the total capacitance of the surface Cmay be

modeled as the capacitance from the inner layer Ci in series with the capacitance

from the diffuse layer Cd. Just as in Equation 3.4, the inverse capacitances are

additive, yielding a total capacitance

C−1 = C−1
d + C−1

i . (4.3)

In the idealized Gouy-Chapman-Stern theory[101, 46, 261] of the electrochemi-

cal double layer, the capacitance of the inner layer is a constant value,

Ci =
εε0

∆
, (4.4)
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Figure 4.1: Schematic of electrochemical interface [28] with water molecules
(red), cations (yellow), and anions (blue) occupying the inner Helmholtz plane
(IHP) and outer Helmholtz plane (OHP).
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where ε is the relative permittivity of the water between the electrode surface

and the compact layer of ions, ε0 is the permittivity of vacuum, 2 and ∆ is the

distance between the electrode and the layer of ions. The relative permittivity ε

may attain any value between the bulk value in the fluid (εb = 78 for water) and

the vacuum value of ε = 1, depending on whether water molecules are present

between the ions and the electrode surface and whether those water molecules

are free to polarize. In the compact layer, the electrostatic potential decreases

linearly from the constant value in the electrode (which is equal to the applied

potential as shown in Figures 3.3(c) and 4.12) to the value at the location of

the outer Helmholtz plane (φ∆ = φ(z − zsurf = ∆)). The inner layer capacitance,

unlike the diffuse layer capacitance described below, is expected to be largely

independent of ion concentration.

The capacitance due to the diffuse layer in the Gouy-Chapman model may

be derived by assuming the ions far away from the electrode surface obey the

nonlinear Poisson-Boltzmann equation in Equation 4.2. The solution to the

Poisson-Boltzmann equation yields the surface charge as a function of the elec-

trostatic potential at the outer Helmholtz plane to be

σ =

√
(8kBT εbε0Nb

γ)sinh
(
φ∆

2kBT

)
(4.5)

for a 1:1 electrolyte with bulk density Nb
γ and bulk dielectric constant εb [15]. Dif-

ferentiating the surface charge with respect to φ∆ yields the diffuse capacitance

Cd =

√
2εbε0Nb

γ

kBT
cosh

(
φ∆

2kBT

)
(4.6)

By employing the identity sinh(x) =
√

cosh2(x) − 1 and plugging in the physical

constants for an aqueous electrolyte at 25◦ C, the diffuse capacitance Cd in µF
cm2

2ε0 = 1 in atomic units and ε0 = 8.85 × 10−8 µF/cm

142



may be expressed in terms of the surface charge σ [206, 94] as

Cd = 19.46
√

(137.8C∗ + σ2), (4.7)

where C∗ is the electrolyte concentration in moles/liter and σ is the charge on

the electrode surface in µC
cm2 .

One significant consequence of this Gouy-Chapman-Stern series capacitance

model for low concentrations of the electrolyte is the emergence of a minimum

in the differential capacitance at the potential of zero charge (PZC). In fact, as

demonstrated in Figures 4.4 and 4.5 below, electrochemists often determine the

potential of zero charge by careful measurements of the location of the differen-

tial capacitance minimum [95, 159]. Figure 4.2 shows the constant capacitance

from the inner layer Ci, the capacitance from the diffuse layer Cd, and how the

two capacitances combine in series to yield the total capacitance of the surface

C for an ideal electrode in 0.001 M electrolyte. At potentials near the PZC the

diffuse capacitance dominates the total capacitance and creates a dip centered

upon the PZC, while at potentials far from the PZC the constant inner layer ca-

pacitance dominates. Figure 4.3 displays how the depth of the capacitance min-

imum increases with decreasing electrolyte concentration, becoming the dom-

inant feature for concentrations below around 0.1 M. In contrast, at the higher

concentration of 1.0 M the minimum is barely detectable, even in an idealized

model surface.

4.2.3 Capacitance Measurements of an Ideal Electrode

Systems which adhere to the Gouy-Chapman-Stern model and exhibit a roughly

constant inner layer capacitance over a wide potential range (typically more
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Figure 4.2: Breakdown of ideal total capacitance C (solid red line), diffuse layer
capacitance Cd (dotted blue line), and constant compact layer (dashed yellow
line) capacitance Ci = 20 µF

cm2 in a 0.001M electrolyte.

than 1 V) are considered to be ideally polarizable electrodes. In most real elec-

trochemical systems, however, phenomena such as saturation of the dielectric in

the inner layer, ions adsorbing and desorbing on the surface, and Faradaic oxi-

dation/reduction processes introduce potential-dependence into the inner layer

capacitance. The simple Gouy-Chapman-Stern model is unable to account suf-

ficiently for these subtleties [15].

Even the liquid mercury (Hg) electrode, considered to be the standard ide-

ally polarizable electrode, exhibits potential-dependent features in the differ-

ential capacitance [95]. The liquid nature of the mercury electrode eliminates

spurious capacitance due to roughness and grain boundaries and also due to

contamination of the working electrode [15], so any features in the differential

capacitance are likely due to structural changes in the interfacial fluid. Figure 4.4
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Figure 4.3: Idealized depiction of the appearance of a capacitance minimum at
the potential of zero charge with decreasing concentrations of 1.0 M (solid red
line), 0.1 M (dashed yellow line), 0.01 M (dotted blue line) and 0.001 M (dotted
purple line) for a constant compact layer capacitance Ci = 20 µF

cm2 .

shows differential capacitance curves, experimentally measured by Grahame,

for the mercury electrode in aqueous sodium fluoride (NaF) electrolyte at var-

ious concentrations. Grahame measured the potential of zero charge indepen-

dently by determining the location of the electrocapillary maximum [94] to be

-0.23 V vs SHE. 3 The PZC varies by less than 0.01 V with electrolyte concen-

tration, indicating that no chemisorption (which would shift the PZC to lower

values for higher electrolyte concentrations [94]) has occurred on the electrode

surface.

In the above foundational study of the mercury electrode in a nonadsorbing

NaF electrolyte, Grahame next utilized careful measurements to show that the

3Measurements were performed relative to Standard Calomel Electrode (SCE) and converted
to SHE.
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Figure 4.4: Frequency independent differential capacitance of liquid mercury
electrode [95] at electrolyte concentrations 0.916 M (solid red line), 0.1 M
(dashed yellow line), 0.01 M (dotted blue line), and 0.001 M (dotted purple
line). The capacitance of the compact layer extracted from the 0.916 M data
using Equation 4.3 and Equation 4.7 is also pictured (dashed/dotted red line).

Gouy-Chapman-Stern model is valid for an ideally polarized electrode [95]. Be-

cause the diffuse capacitance is expected to have only a small effect at high elec-

trolyte concentration, Grahame extracted the capacitance due to the compact

layer Ci from the measured total capacitance C at C∗ = 0.916 M using the series

capacitance model in Equation 4.3 and the expression in Equation 4.7 for Cd. The

integrated differential capacitance provides the surface charge σ in Equation 4.7

up to a constant, and ensuring the surface charge is zero at the independently

measured PZC provides the constant. The extracted inner layer capacitance Ci

is pictured in Figure 4.4. Grahame proceeded to show that using the extracted

Ci in the series capacitance model, with Equation 4.7 for Cd at the lower con-

centrations {C∗ = 0.1 M, 0.01 M, 0.001 M}, could almost exactly reproduce the

measured capacitances shown in Figure 4.4.
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One striking conclusion of Grahame’s mercury electrode study is that the

Poisson-Boltzmann approach which underlies the Gouy-Chapman model is

quite accurate for the predicting the features of the diffuse layer, without any

modifications required. An additional significant result is that, for an ideal elec-

trode, the series capacitance model behaves as expected, indicating the struc-

ture of the inner layer has very little dependence upon the concentration of the

electrolyte. The potential-dependent structure in the inner layer capacitance Ci,

however, differs significantly from the constant value predicted by the Gouy-

Chapman-Stern model. Not only do the features of Ci depend on potential, but

the average value (25 µF/cm2) is difficult to predict directly from Equation 4.4.

Choosing the relative permittivity of the water layer to be the bulk dielectric

constant of water (ε = εb = 78) implies that the ions in the outer Helmholtz

plane are, on average, located 28 Å away. Choosing the opposite limiting case,

in which no water is present between the ions and the surface (ε = ε0 = 1), im-

plies the ions are located a mere 0.35 Å away from the surface. Of course, reality

lies in between these two extremes, but there is no a priori method of predict-

ing which portion of the potential-dependent capacitance is due to dielectric

saturation of the water (changes in ε) and which portion is due to changes in

location of the first ion plane (changes in ∆). As we shall see in the remainder of

this chapter, JDFT calculations can readily provide the microscopic liquid struc-

ture at the interface, allowing a complete understanding of the origins of the

experimental capacitance measurements.
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4.2.4 Measurement of Specific Adsorption

Despite being unable to directly probe the structure of the fluid at the electrode-

electrolyte interface, electrochemists have developed analytical and experimen-

tal techniques which allow them to deduce the presence of specific adsorbates

on the electrode surface.

Parsons-Zobel Plots

One analytical technique developed to probe the presence of specific adsor-

bates and other non-ideal conditions in the electrochemical double layer was

pioneered by Parsons and Zobel [206]. These so-called Parsons-Zobel curves

plot the inverse total capacitance C−1 as a function of the inverse diffuse capaci-

tance C−1
d , computed using the numerical formula in Equation 4.7. The plot must

include a series of low to high electrolyte concentration points at a constant sur-

face charge σ. If the electrode behaves ideally at the chosen charge σ, the con-

stant charge curve has a constant slope with value unity and the intercept of

the curve with the vertical axis (the high concentration limit) provides the value

of the inverse inner layer capacitance C−1
i . A constant slope with a value lower

than unity indicates roughness on the electrode surface with a roughness coef-

ficient equivalent to the the inverse of the slope [286]. A slope which deviates

from a constant value for a particular charge could indicate the presence of spe-

cific adsorbates on the electrode surface. The surface charge which represents

the onset of specific adsorption may be determined by plotting Parsons-Zobel

curves for a series of charges and noting the lowest curve for which the slope

deviates from a constant. We note that the Parsons-Zobel method is equivalent

in principle to the method proposed by Grahame above [95], but provides a
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much more intuitive presentation of the data.

The Parsons-Zobel method has been employed successfully to detect the ad-

sorption of fluoride upon a polycrystalline silver surface at potentials above the

PZC [159]. Silver in sodium fluoride electrolyte is often considered to be an ide-

ally polarizable electrode because no strong chemisorption of the fluoride ion

occurs in the relevant potential window. However, IR spectroscopy measure-

ments of the Ag-O stretching frequency have indicated that the quantity of wa-

ter adsorbed on the silver decreases due to co-adsorption of fluorine above the

PZC [240]. Even though no chemical bond forms, the fluoride ion can still cross

into the inner Helmholtz plane and physisorb, qualitatively and quantitatively

altering the potential dependence of the differential capacitance.

Figure 4.5 shows the measured differential capacitance of polycrystalline sil-

ver in NaF as a function of potential for a series of electrolyte concentrations.

The decreasing capacitance minimum value as a function of decreasing concen-

tration is present in these measurements of silver in the proximity of the PZC,

similar to the concentration dependence of the capacitance for the ideal mer-

cury electrode in Figure 4.4. Unlike the measurements for mercury, however, as

the applied potential increases above the PZC the silver capacitance continues

to decrease significantly with decreasing concentration. On the Parsons-Zobel

plot, this data forms a nonlinear curve with an onset above the surface charge

σ = 6 µC
cm2 , indicating a strong likelihood that fluorine specifically adsorbs on the

silver surface above those charges.
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Figure 4.5: Differential capacitance of polycrystalline silver [159] measured at
ω = 1000 Hz and electrolyte concentrations 0.5 M (solid red line), 0.1 M (dashed
yellow line), 0.02 M (dotted blue line), and 0.01 M (dotted purple line).

Frequency Dispersion of Capacitance

Impedance spectroscopy measurements of the frequency dispersion of the dif-

ferential capacitance facilitate separation of the capacitance contribution of the

double layer from the contribution due to specific adsorption [140]. The static

definition of the differential capacitance, presented in Section 3.3 as C = dσ
dE , in-

cludes none of the time- or frequency-dependent behavior of the double layer.

Though the capacitance measurements for mercury, an ideally polarizable elec-

trode, in Figure 4.4 did not depend appreciably on the measurement frequency

ω, the capacitance measurements for polycrystalline silver in Figure 4.5 do

change significantly with frequency. At voltages near SHE, the capacitance for

silver in 0.02 M NaF measured at ω=6.25 Hz is nearly twice the value of the ca-

pacitance measured at ω=1000 Hz. The capacitance measured at ω=20 Hz of the

single-crystalline (111) face of silver in Figure 4.14 also exhibits higher values
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above the PZC. This significant frequency dispersion of the silver capacitance

provides substantial support for the presence of adsorbed F− on the electrode

surface.

Pajkossy and Kolb demonstrate [140] that comparing capacitance measure-

ments in the high and low frequency limits allows estimation of the total ca-

pacity due to the presence of explicit adsorbates. In the high-frequency limit

(ω → ∞) the electrode surface is in a frozen state and no time-dependent pro-

cesses may occur, so the capacity measured is purely due to the static double

layer (Cdl). By contrast, the total capacity (Cdl + Cad) will be measured in the

low-frequency, adiabatic limit (ω → 0), where the electrode surface and liquid

structure reach equilibrium and all thermodynamically favored adsorption pro-

cesses will occur. We note that these capacitances are distinct from the Ci and

Cd above, in that they combine in parallel rather than in series. The capacitance

due to adsorption may thus be measured as

Cad = C(ω→ 0) − C(ω→ ∞), (4.8)

and additional features of the impedance measurements can determine the rate

at which adsorption occurs [140]. Pajkossy et. al. attribute the frequency de-

pendence of the interfacial capacitance, even on electrodes typically considered

to be ideally polarized, to the relatively slow exchange of anions between the

outer and inner Helmholtz planes [204].

4.2.5 Opportunities for JDFT

Our goal is to understand the above electrochemical phenomena at the atomic

scale from an ab initio perspective: to explain the observed nonlinearities in the
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total capacitance by identifying the key structural changes in the compact layer.

In principle, JDFT computes the thermodynamically favored T > 0 minimum

energy state of the system, so it should be capable of predicting the total ca-

pacitance signal in the adiabatic limit. In practice, JDFT captures the complex

interplay between electrostatics and the entropy of packing which leads to the

properties of the inner and outer Helmholtz planes in the electrochemical dou-

ble layer, but it would not include any of the quantum-mechanical effects of

specific adsorption unless explicit adsorbed species are included in the calcu-

lations. In some cases the electrolyte could attain a lower minimum energy by

forming a chemical bond, leading to additional charging capacity. Furthermore,

the model electrode in JDFT calculations is also smooth, without the defects and

roughness of the real surface which can increase the surface area and thus the

capacitance. We therefore expect JDFT predictions with a pure classical DFT de-

scription of the adsorbates to under-predict experimental capacitances. We thus

expect that in any system in which chemical bonding becomes important, the

JDFT-computed capacitance should lie in between the static high-frequency ca-

pacitance measurement and the adiabatic low-frequency capacitance measure-

ment.

Perhaps the greatest opportunity for JDFT to provide new insights lies in the

fact that the separation of the interfacial fluid capacitance into two capacitors in

series via the Gouy-Chapman-Stern model is an artificial construct. While such

models may work well in some ideal systems, such electrochemical models lose

their predictive power when the physical assumptions involved break down

unexpectedly. Because JDFT treats the electrode-electrolyte interface through

a holistic, first-principles approach, it remains a predictive theory, within the

limits of the approximate functionals of course.
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4.3 Free Energy Functionals

This section presents the functionals Ωlq and ∆A which facilitate JDFT calcula-

tions of quantum-mechanical electrode surfaces in contact with an electrolyte

environment.

4.3.1 Classical Water Functional

Recent work by Lischner et. al. introduced a new classical density-functional

for water [170, 171], which solves the “inversion problem,” which had previ-

ously kept orientation-dependent functionals from widespread use, by choos-

ing effective site potentials as the independent variables. This work has been

extended by Sundararaman et. al. [262] to allow any independent variables

from which it is computationally feasible to calculate Pω(~r), the probability of

a water molecule at location ~r to possess orientation ω. Typically, the effective

local chemical potential µ(~r) and the effective local electric field ~ε(~r) are the inde-

pendent variables which best represent Pω(~r). This new free energy functional

(in atomic units) then takes the form

Ωlq[Pω] = T
∫

d3rPω(~r)(log Pω(~r) − 1) +

∫
d3r(Vα − µ)Nα + Fex[{Nα}, Pω], (4.9)

where the first term is the energy of a non-interacting ideal gas constrained to

the molecular geometry of water, the second term describes the linear coupling

of the site densities Nα(~r) (α = O,H) to external potentials Vα(~r) and the chemical

potential µ, and the third is an “excess” functional, including all other inter-

actions. As these developments first focused on singles species fluids, only a

single true chemical potential µ was needed in that work.
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Sundararaman et. al. [262] then developed an excess functional based upon

fundamental measure theory (FMT) for hard spheres [234, 272], the experimen-

tally measured equation of state for bulk liquid water [128], and both rotational

and polarizability contributions to the dielectric response [266]. This functional

is given by

Fex[{Nα, Pω] = ΦFMT[NO] +

∫
d3rN̄AEOS(N̄ ∗ wLJ,T ) + Φε[{Nα}, Pω], (4.10)

where the first term considers hard-sphere behavior, the second includes

isotropic attraction constrained to the equation of state of water, and the third

contains the long-range Coulomb interactions which contribute to the dielectric

response of the liquid. All parameters in this classical DFT functional are com-

pletely determined by basic physics and the bulk properties of liquid water,

such as surface tension, liquid-vapor coexistence, and the measured dielectric

constant.

The first two terms in Equation 4.10 capture the orientation-independent

short-range interactions between the water molecules, separated into a repul-

sive component and an attractive component. The repulsive interactions be-

tween the water molecules are computed using the White-Bear Mark II fun-

damental measure theory functional [103], ΦFMT, with a single hard sphere of

radius RHS
O centered on the oxygen site. This FMT functional uses the Tarazona

tensor functions of the weighted density [272] to reproduce the Percus-Yevick

equation of state and the direct correlations for a hard-sphere fluid. (We note

that without the tensor terms, FMT cannot describe hard-sphere freezing be-

cause the free-energy functional diverges under confinement [234], rendering it

unsuitable for use within JDFT.) Sundararaman et al. constrains the FMT hard-

sphere radius to reproduce the bulk liquid-vapor surface tension [262], yielding

RHS
O = 1.36Å for water, quite close to the van der Waals radius RvdW = 1.385Å
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determined from the exclusion volume in the water equation of state [19]. The

classical DFT for water thus accurately predicts the location of the first peak in

the oxygen-oxygen correlation function, which FMT places at 2RHS by construc-

tion.

Sundararaman et. al. also models the short- to mid-range attractions

through the term AEOS(N̄∗wLJ,T ), the excess per molecule Helmholtz free energy,

as determined from experimental measurements of the pressure of bulk water

p(N,T ) as a function of the density N and temperature T [262]. To determine this

excess free energy, one begins with the energy derived from the Jeffrey-Austin

equation of state for liquid water [128] and then subtracts the free energy cor-

responding to the Carnahan-Starling hard-sphere equation of state [39], since

ΦFMT already accounts for the repulsive portion of the free energy. The excess

free energy is then evaluated at the polarizability-weighted density

N̄ =

∑
α χαNα

χtot
(4.11)

(where χα is the effective dipole polarizability of site α from Table 2.1 and χtot

is the total dipole polarizability of the molecule) convolved with a normalized

attractive Lennard-Jones weight function [161]

wLJ(~r) =
9

8
√

2πσ3


1/4, r < 21/6σ(
σ
r

)6
−

(
σ
r

)12
, r ≥ 21/6σ

. (4.12)

For water, the polarizability is approximately isotropic, so most of the short-

ranged attraction is attributed to the molecule center (the oxygen site). Finally,

the Lennard-Jones diameter σ used in the weight function wLJ, which controls

the range of the intermolecular attraction, is specified to be 2RHS as is established

practice for Lennard-Jones fluids.
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The long-range electrostatic interactions between the fluid molecules are

captured via the last term in Equation 4.10, which is dependent on both the

atomic site densities {Nα} and the orientation Pω. Unlike the initial classical DFT

functional based upon the equation of state for water [262], which employed an

empirical scaling factor upon the mean-field Coulomb interaction [171] to cap-

ture the bulk dielectric constant, the polarizable classical DFT for water employs

the unmodified mean-field Coulomb interaction and then includes additional

terms to capture the contributions to the dielectric response from rotations and

polarizability [266]. These additional terms introduce a new independent vari-

able, the polarization density ~Pα(~r), into Ωlq. The total electrostatic contribution

to the excess functional is thus

Φε[{Nα}, Pω] =
1
2

∫
d3r

∫
d3r′

ρMF(~r)ρMF(~r′)
|~r − ~r′|

+Φpol[{Nα}, ~Pα]+Φrot[{Nα}, ~Pα] (4.13)

where ρMF is computed as described in Section 2.4, Φpol captures the electrostatic

energy due to polarizability, and Φrot captures the electrostatic energy due to the

rotations of the solvent molecules. The specific details for the two final terms

are irrelevant to the present work, but they do depend on microscopic quanti-

ties, such as the site polarizabilities χα from Table 2.1 and the dipole moment of

the solvent molecule, as well as bulk quantities such as the dielectric constant.

These details are presented fully in Reference [266]. Of course, for liquid wa-

ter, the dielectric response due to rotations of the molecule dominates, so the

inclusion of the polarizability terms has little impact on most calculations (as

demonstrated by Figure 1.1).
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4.3.2 Extension to Aqueous Electrolyte

Following the above construction for pure water, the liquid free energy may be

extended in a straightforward way to include the ions in the electrolyte. Specif-

ically, we generalize Equation 4.9 as

Ωlq = ΩNI +

∫
d3r(Vα − µα)Nα +

∫
d3rFex[{Nα}, Pω], (4.14)

where ΩNI includes the noninteracting energy of each liquid species, the second

term describes linear coupling to the external potential acting on each species

Vα and the individual species’ chemical potentials µα, and the third term is the

excess functional, which describes all other contributions. The noninteracting

energy, ΩNI = ΩH2O +
∑
γ ΩNI,γ, is simply the free energy of an ideal gas of water

molecules from [171], plus the free energy of an ideal gas of each ion. For a

monoatomic ionic species, the analytically exact non-interacting free energy is

ΩNI,γ = T
∫

d3rNγ(log Nγ − 1), (4.15)

and the most straightforward independent variable for these calculations is the

effective site potential ψγ(~r), which yields the given density Nγ(r) of a non-

interacting system.

Each ionic species (indexed by γ) may be approximated as a sphere of radius

RHS
γ with a site charge qγ. The main interactions between the ionic species and

water are thus (a) hard-sphere repulsion, captured by fundamental measure the-

ory for a mixture of hard spheres of different sizes [103], and (b) the mean-field

Coulomb interaction. Any interactions between the ions and the water not cap-

tured by the hard sphere and Coulomb terms may be grouped into a “mixing”

functional Fmix, which depends on the oxygen site density NO and the ion site

density Nγ for ion type γ. For this initial work, we choose to forgo consideration
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of NH because NO describes the primary center for non-electrostatic interactions

with the water molecules. Combining these effects together, the excess func-

tional for an aqueous electrolyte may be written as

Fex[{Nα}] = ΦFMT[NO, {Nγ}] +
1
2

∫
d3r

∫
d3r′

ρMF(~r)ρMF(~r′)
|~r − ~r′|

+
∑
γ

Fmix[NO,Nγ] + ∆FH2O, (4.16)

where ∆FH2O simply represents those parts of the excess functional for water in

Equation 4.10 which are not captured by mean-field coulomb and hard-sphere

interactions (the properties from the bulk water equation of state and the po-

larizability of water) [262, 266]. In the present work, we neglect the interac-

tions of the ionic species with themselves and each other beyond the mean-

field coulomb interaction between charged hard spheres, judging such effects

to be small due to the relatively low density of ionic species compared to wa-

ter molecules. We also ignore the polarizabilities of the ions within the classical

DFT, though the liquid water remains polarizable.

4.3.3 Coupling Functional for Electrolyte

In order to couple the classical DFT description of an aqueous electrolyte to a so-

lute system through JDFT, we must extend the coupling functional ∆A to include

ion-solute coupling. Because the liquid-solute coupling functional in Chapter 2

was shown to be independent of the choice of neutral solvent, we choose to em-

ploy the same form for this work as well. Ideally, we should test this coupling

functional on a trial set including solvated ionic species (in addition to neutral

molecules) in order to verify that it performs equally well for charged systems.

Indeed, benchmarking endeavors for solvated ions following the procedure of
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Section 2.6.1 will be the subject of future work. Section 4.5.4 sets forth all addi-

tional specific details required to extend the coupling functional to electrolyte

liquids.

4.4 Treatment of Charged Systems

In order for JDFT to be utilized for predictive calculations of electrochemical sys-

tems, we must establish a framework for computing the properties of charged

systems under the influence of an applied potential. This framework must natu-

rally handle both the balance of charge between the fluid and solute subsystems

and establish the relationship of the applied potential to the standard electro-

chemical reference electrodes. The following subsections elucidate the mathe-

matical and computational procedures required to determine the properties of

charged systems within explicit JDFT.

4.4.1 Charge Balance Framework

To prevent energy divergence due to a net charge in a periodic unit cell of vol-

ume V , the charge present in the electrolyte fluid must exactly cancel the net

charge in the explicit quantum-mechanical system, Qel = ρ̃el(G = 0), where

ρ̃el(G = 0) =
∫
ρeldV is the G = 0 component of the charge density of the

quantum-mechanical system. Mathematically, we can write this constraint on

the total charge in the unit cell Qtot as

Qtot =
∑
γ

Nγqγ + Qel = 0 (4.17)

where Nγ is the total number of ions of type γ with ion charge qγ.
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Density Scaling Procedure

However, we cannot achieve this required charge balance without an additional

framework for constraining the total charge in the fluid. The number of ions of

type γ (without this framework) is

N0
γ =

∫
N0
γ(~r)d3r, (4.18)

computed as the integral over the unit cell of the site density N0
γ(~r) determined

from the liquid free-energy functional Ωlq and the appropriate independent vari-

ables. For single-site or monoatomic ions, the independent variables are the ef-

fective site potentials ψγ(~r), so the atomic site densities (and therefore the total

number of atoms N0
γ ) are simply computed from the ideal gas free energy as

N0
γ(~r) = δΩNI

δψγ(~r) . Unfortunately, Equation 4.17 is not generally satisfied by the un-

scaled atomic site densities N0
γ(~r) resulting from any naive choice of effective site

potentials ψγ(~r).

To ensure the total charge of the fluid is equal and opposite to the charge of

the solute, we introduce a fugacity factor S B
γ (with electrochemical potential µ0)

which scales the atomic site densities according to their charges,

Nγ(~r) = N0
γ(~r) exp (−βqγµ0) = N0

γ(~r)S B
γ (4.19)

where β = 1
kBT for temperature T . The potential µ0 may then be determined from

the solution of Equation 4.17 with the fugacity-scaled site densities

Qtot =
∑
γ

N0
γqγ exp (−βqγµ0) + Qel = 0. (4.20)

In practice, we iteratively solve this equation using a Newton-Raphson algo-

rithm. The scaled atomic site densities Nγ(~r), as opposed to the unscaled densi-

ties N0
γ(~r), are then used to compute Ωlq and ∆A.
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Charge-Neutrality Constrained Minimization

The above procedure effectively performs a constrained minimization of the

free-energy functional with an added Lagrange multiplier λ and the constraint

given by Equation 4.20. In fact, Reference [100] describes how including the

charge-neutrality constraint imposed by the Lagrange multiplier λ is formally

equivalent to regularization of the divergent Coulomb energy. In this view, the

Lagrange multiplier λ is computed from the Euler-Lagrange equation as the

total derivative of the free energy functional A with respect to total charge on

the system, λ = dA
dQtot

. Since the the atomic density scale factors S B
γ used in the

total free energy functional depend implicitly on Qtot through the potential µ0,

we employ the chain rule to compute the Lagrange multiplier as

λ =
∑
γ

δA
δS B

γ

δS B
γ

δµ0

δµ0

δQtot
. (4.21)

From Equation 4.19, we compute δS B
γ

δµ0
= −βqγS B

γ and Equation 4.20 allows deter-

mination of δQtot
δµ0

= −β
∑
γ q2

γNγ. We may then compute the partial derivative with

respect to the scaling factor as

δA
δS B

γ

=
1

S B
γ

∫
d3r

δA
δNγ(~r)

Nγ(~r). (4.22)

Finally, combining all the above expressions yields the Lagrange multiplier

λ =
∑
γ

∫
d3r

δA
δNγ(~r)

Nγ(~r)
qγ∑

γ′ Q2
γ′Nγ′

(4.23)

Of course, this constrained minimization procedure also introduces some

additional terms into the gradient of Ωlq + ∆A with respect to the site densities

Nα(~r). The key quantity required for computation of the gradients of the free

energy with respect to the site densities is the Jacobian

δS B
γ

δN0
α

=
δS B

γ

δQtot

δQtot

δN0
α

. (4.24)
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where we use the same chain-rule expression for δS B
γ

δQtot
as in Equation 4.23. The

latter partial derivative can be computed from Equation 4.20 as δQtot

δN0
α

= qαS B
α ,

leading to a final expression for the Jacobian,

δS B
γ

δN0
α

=
qγqαS B

γS B
α∑

γ′ Q2
γ′Nγ′

. (4.25)

This Jacobian is then employed to compute the addition to the gradient of the

free energy A with respect to Nα(~r) due to the charge scaling procedure,

δA
δNα(~r)

=
δA

δN0
α(~r)

+
δA
δS B

γ

δS B
γ

δN0
α

1
S B
αMα

, (4.26)

where we have utilized Equations 4.22 and 4.25 and the number of sites of type

α in the molecule Mα.

The gradients of the free energy A with respect to Nα(~r) also propagate into

the gradients with respect to the independent variables (ψγ(~r) for a monoatomic

gas). These terms are therefore essential to restricting the conjugate gradient-

based minimization algorithm employed to find the minimum JDFT free en-

ergy to those solutions which are charge-balanced. We note that these terms are

only significant for the charged species in the liquid; both Equations 4.25 and

4.23 vanish for uncharged species. Nonetheless, in electrolyte calculations, the

neutral solvent molecules are indeed affected by these considerations indirectly

through their interactions with the charged electrolyte species.

4.4.2 Establishing Potential Reference

In order to directly compare JDFT predictions to experimentally measured cyclic

voltammograms, differential capacitances, and oxidation/reduction potentials

we must establish a relationship between the applied potentials computed by
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JDFT and the electrochemical reference electrodes, such as the Standard Hy-

drogen Electrode (SHE). Section 3.3 describes in detail the significance of the

asymptotic value of the total electrostatic potential φel deep in the fluid to the

establishment of a reference electrode. In this section, we will show how to en-

sure that the total potential acting upon the electrons deep within the fluid is

zero within JDFT calculations of charged fluids.

Reference [100] shows that the constrained minimization procedure de-

scribed in Section 4.4.1 above also precisely determines the G = 0 component

of the electrostatic potential φel and allows the establishment of an absolute po-

tential reference. In fact, when projecting the G = 0 component out for all elec-

trostatic interactions (as is standard practice in plane-wave DFT calculations)

the absolute potential far away from the electronic system is, in the case of

implicit solvent models with a nonlinear Poisson-Boltzmann description of the

electrolyte, exactly the Lagrange multiplier λ. Thus, choosing −λ as the G = 0

component of the total electrostatic potential ensures that (in an implicit sol-

vent) the asymptote of that electrostatic potential is zero deep in the liquid. This

formal definition of the absolute potential generalizes quite cleanly to explicit

JDFT, but does require several essential modifications.

Bulk Fluid Electron Potential

The first modification to the absolute potential reference required for an explicit

solvent involves the potential acting upon the electrons deep within the bulk

liquid, Vb
el. For the implicit solvent models presented in References [100] and

[163], this potential is δA
δρel

= 0 in the bulk liquid. However, for an explicit JDFT

calculation this electron potential is no longer negligible. We may define it pre-
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cisely as

Vb
el =

δA
δρel

∣∣∣∣∣{Nα}→{Nb
α}

n→nb
lq

, (4.27)

where Nb
α and nb

lq are, respectively, the atomic site densities and the electron

density in the bulk fluid. This bulk fluid electron density may be computed

simply as the sum over the bulk atomic site densities multiplied by the number

of electrons on each fluid site,

nb
lq =

∑
α

Nb
α

∫
d3r nα(r). (4.28)

Of course, the atomic site and electron densities depend on the composition of

the bulk fluid, and thus even in an aqueous solution different choices of elec-

trolyte yield slightly different values for the electron potential deep in the bulk

of the fluid.

When the liquid and solute are coupled via the functional ∆A presented in

Chapter 2, this electron potential is

Vb
el =

δF

δnS

∣∣∣∣∣{NS }→{Nb
α}

nS→nb
lq

, (4.29)

where F is the density-only functional in Equation 2.9, nS is the electron density,

and NS is the set of nuclear site densities. The most straightforward piece of the

fluid electron potential comes from the kinetic energy and exchange-correlation

parts of the density-only functional, δTT F
δnS

+ δEXC
δnS

. However, there is an additional

offset due to the mean-field Hartree term, which we discuss in Section 4.4.2

below.

For the electrolyte fluids considered in this thesis, Table 4.4 lists the values of

the electron potential in the bulk of the fluid. These values are related, though

not directly comparable, to the fluid-air interface potentials predicted in the lit-

erature [165]. These JDFT electron fluid potentials consider the self-consistent
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potential acting on an electron deep in the fluid, without considering the struc-

ture of the liquid which would form at the air/liquid interface. Because the in-

terfacial fluid structure would possess a dipole moment, the potential required

to move an electron through that dipole layer must be added to the bulk po-

tential from Equation 4.29 to allow direct comparison to the fluid-air interface

potentials predicted in the literature.

Charge Density Mismatch Potential

An additional correction to the G = 0 component of the electrostatic potential is

required due to the different representations of the fluid charge density used in

the classical liquid functional Ωlq and the coupling functional ∆A . The charge

density of fluid site α felt by the fluid is ρα(r)′ = qαwMF(r), determined from the

fluid site charges qα, Equation 2.21 for water, and Equation 4.55 for ions. In

contrast, the charge density felt by the electronic solute system is ρα(r) (from

Equation 2.17). These mismatched charge density models are both spherically

symmetric about the fluid site and they contain the same total charge, namely

ρ̃′α(0) = ρ̃α(0). The difference between the charge density models may thus be

defined as ∆ρα = ρα − ρ
′
α, which by definition has no G = 0 component (∆̃ρα(0) =

0). The charge model mismatch above means the total mean-field charge density

of the fluid as it interacts with itself is computed as ρMF(~r) =
∑
α Nα ∗ ρ

′
α (as

in Equation 2.22) while the charge density of the fluid as it couples with the

electronic system is ρC(~r) =
∑
α Nα ∗ ρα (as in Equation 2.19).

The total electrostatic energy (including the Lagrange multiplier constraint

upon charge neutrality from Equation 4.23) may therefore be written in terms
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of the above densities as

Uel =

∫
d3r

∫
d3r′

 1
2ρel(~r)ρel(~r′) + ρel(~r)ρC(~r′) + 1

2ρMF(~r)ρMF(~r′)
|~r − ~r′|


−λ

∫
d3r

[
ρel(~r) + ρMF(~r)

]
, (4.30)

where ρel(~r) is the total charge density of the electronic system, including elec-

trons and nuclei. At this point, it is helpful to define the total charge felt by the

fluid due to the electronic and mean-field charges as ρfl = ρel + ρMF. The total

electrostatic potential arising from that charge may then be found through the

Poisson equation

∇2φfl(~r) = −4πρfl(~r), (4.31)

leading to the real-space form

φfl(~r) =

∫
d3r′

ρfl(~r′)
|~r − ~r′|

. (4.32)

The potential φfl is a solution to Poisson’s equation for a neutral charge dis-

tribution, so there is no divergence or regularization required for the G = 0

component in Fourier space. It is also therefore straightforward to solve for this

potentials in fourier space as φ̃fl(G , 0) = 4π
G2 ρ̃fl.

We may now rewrite Equation 4.30 in terms of φfl and ρfl as

Uel =
1
2

∫
d3r φfl(~r)ρfl(~r) +

∫
d3r

∫
d3r′

ρel(~r)
∑
α(Nα ∗ ∆ρα)(~r′)
|~r − ~r′|

− λ

∫
d3r ρfl(~r),

(4.33)

where we have made the substitution

ρC(~r) = ρMF(~r) +
∑
α

(Nα ∗ ∆ρα)(~r). (4.34)

The first term in Equation 4.33 is the mean-field self-interaction of a neutral

charge density and the final term should be zero to satisfy the neutrality con-

straint imposed by the Lagrange multiplier. The self-interaction is straightfor-

wardly computed by using the fourier techniques above and projecting out the
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G = 0 component, as is standard practice within DFT calculations. The second

term, which now contains all the effect of the charge model mismatch, must be

dissected carefully in Fourier space to determine its G = 0 component.

Expressing the charge mismatch term from the electrostatic energy (second

term in Equation 4.33) in fourier space rather than real-space and separating the

energy due to the G , 0 terms from the energy due to the G = 0 terms, yields

U∆ =
∑
G,0

4π
G2 ρ̃el

∑
α

Ñα∆̃ρα + lim
G→0

4π
G2 ρ̃el(G)

∑
α

(Ñα(G)∆̃ρα(G))

 , (4.35)

where we take the limit as G → 0 to regularize the divergence of the Coulomb

operator for G = 0. To determine the scalar value of the G → 0 term, we may

rewrite it as

U∆(G = 0) =
Qel

V

∑
α

Nα lim
G→0

(
4π
G2 ∆̃ρα(G)

)
, (4.36)

in which we have used the integrals ρ̃el(0) = Qel and Ñα(0) = Nα for the net

electronic charge and the total number of atoms of type α with site charge qα

respectively, and included the proper volume normalization factor 1
V .

If we group the remainder of Equation 4.36 into a new constant

∆Cα = lim
G→0

(
4π
G2 ∆̃ρα(G)

)
, (4.37)

we obtain the simple form

U∆(G = 0) =
Qel

V

∑
α

Nα∆Cα. (4.38)

However, Equation 4.37 requires careful consideration due to subtleties of the

limit-taking. When ∆̃ρα(G) is expanded about the G → 0 limit, the leading term

depends on G2 because ∆̃ρα(0) = 0 and the function is spherically symmetric in

real-space. The exact form of the leading term in ∆̃ρα(G), and thus the numerical
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value of ∆Cα, depends on the functional forms chosen for the site charge models

ρα(r) and ρ′α(r).

To determine a prescription for computing the contribution to the electro-

static energy from Equation 4.36, we define a set of electrostatic potentials due

to the differences in site charge density model through the Poisson equation

∇2∆φα(r) = −4π∆ρα(r), (4.39)

and fourier solution ∆̃φα(G) = 4π
G2 ∆̃ρα(G). In terms of the potential ∆φα, the ex-

pression for Cα then becomes

∆Cα = ∆̃φα(0) =

∫
d3r ∆φα(r). (4.40)

We can relate the integral of the potential ∆φα(r) to the charge density ∆ρα(r)

through Gauss’s Law for a spherically symmetric charge distribution, resulting

in the more useful expression,

∆Cα = −
2π
3

∫
d3r r2∆ρα(r). (4.41)

The above equation for ∆Cα is straightforward to compute numerically using

the mean-field fluid site density ρ′α (from Equation 2.21 and the fluid site charges

qα) and the electronic coupling fluid site density ρα (from Equation 2.17). We

note that these G = 0 corrections are generally required for the charged atomic

sites of both neutral and charged molecules, so corrections for the oxygen and

hydrogen sites of water in an aqueous electrolyte are indeed necessary.

Finally, we may now determine the contribution to the potential offset due

to the charge mismatch as the difference between the G = 0 component of the

potential experienced by the electrons,

Ṽel(G = 0) =
δUel

δρel
(G = 0) =

∑
α

Nα

V
∆Cα − λ, (4.42)
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and the G = 0 component of the sum of the potentials experienced by the fluid

sites

Ṽfl(G = 0) =
∑
α

Mα

δUel

δNα

(G = 0) =
∑
α

Mα

(Qel

V
∆Cα − λqα

)
, (4.43)

where Mα is the number of sites of type α per molecule and qα = ρ̃′α(0) is the site

charge. For a monovalent electrolyte in a neutral solvent,
∑
α Mαqα = 0, so the

second term in Ṽfl(G = 0) does not contribute. Combining the charge mismatch

and bulk fluid electron potentials, we find the full G = 0 contribution to the

absolute potential for an explicit JDFT electrolyte to be

∆ = −Vb
el + Ṽel(G = 0) − Ṽfl(G = 0). (4.44)

Upon examination of Equation 4.33, it is also clear that the bulk fluid elec-

tron potential Vb
el has an additional contribution due to the charge mismatch.

Namely, we must add

δUel

δρel
(G = 0)

∣∣∣∣∣{Nα}→{Nb
α}

n→nb
lq

=
∑
α

Nb
α∆Cα (4.45)

to the kinetic energy and exchange-correlation components of the electron po-

tential. With this new contribution, the electron potential becomes

Vb
el =

δ(TT F[n] + EXC[n])
δn

∣∣∣∣∣
n→nb

lq

+
∑
α

Nb
α∆Cα (4.46)

and the G = 0 component of the absolute potential becomes

∆ = −
δ(TT F[n] + EXC[n])

δn

∣∣∣∣∣
n→nb

lq

+
∑
α

(
Nα

V
−

MαQel

V
− Nb

α

)
∆Cα − λ. (4.47)

Figure 4.8 shows that the unique choice of absolute potential presented in Equa-

tion 4.47 does ensure that the microscopic electron potential deep in the fluid

does indeed approach zero, allowing establishment of a reference electrode and

direct comparison to electrochemical measurements.
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4.5 Model Ions

We now describe the particular approximations which we utilize in this chapter

for the description of the ionic species in the electrolyte.

4.5.1 Quadratic Mixing Functional Approximation

As described in Section 4.3, the interactions amongst the different fluid com-

ponents (beyond hard sphere and Coulomb energy) are captured by distinct

portions of the functional Ωlq. We neglect both the self-interactions of the ionic

species and their interactions with other types of ions because the concentration

of ions is quite low (only one positive and one negative ion for every 55 water

molecules in a 1.0 M aqueous solution). The mid-range attractive interaction of

the water with itself is captured by the constrained weighted-density approxi-

mation in the term
∫

d3rN̄AEOS(N̄ ∗wLJ) of Equation 4.10. Because of the plethora

of experimental state data available for liquid water, the equation of state can be

used to constrain the attractive interaction for water to physical reality. Ideally,

we should also capture the mid-range interactions of the water with the ions in

Fmix[NO,Nγ] with a similar weighted-density approximation constrained by the

equation of state for electrolyte liquids.

The general form (ignoring ion-ion contributions beyond hard sphere and

electrostatic interactions) for such a weighted-density approximation between

two different density fields NO and Nγ with free-energy functionals AO,γ and Aγ,O

is

Fmix[NO,Nγ] =

∫
d3rNOAO,γ(Nγ ∗ wLJ) +

∫
d3rNγAγ,O(NO ∗ wLJ), (4.48)
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where the Lennard-Jones weight function wLJ from Equation 4.12 is normalized

(
∫

d3r wLJ(r) = 1). This normalization is necessary in order to ensure the correct

bulk free energy of the liquid AO,γ(Nb
γ ∗ wLJ) = AO,γ(Nb

γ). The contribution to the

free energy of the bulk fluid in volume V due to this weighted density-functional

is thus

Ωb
γ = V

(
Nb

OAO,γ(Nb
γ) + Nb

γAγ,O(Nb
O)

)
. (4.49)

In the dilute limit Nb
γ → 0, and we can consider only the leading term of AO,γ(Nb

γ),

reducing the bulk free energy to

Ωb
γ = VNb

γ(Nb
OaO,γ + Aγ,O(Nb

O)) (4.50)

where aO,γ is a constant and Nb
OaO,γ + Aγ,O(Nb

O) is a function of only the bulk

density of the water. The form of this function can, in principle, be con-

strained by the equation of state for the bulk electrolyte by considering dΩb
γ

dNb
γ

=

V(Nb
OaO,γ + Aγ,O(Nb

O)). Experimental data for the vapor pressures and fluid densi-

ties as a function of salt concentration are available in the literature for various

electrolytes (including the alkali halides) [35] and this data could be used to

constrain the form of dΩb
γ

dNb
γ
. Such a weighted-density approach can capture many-

body effects in nonuniform fluids [145] and mixtures of fluids [58].

For this first attempt at constructing a classical DFT for an aqueous elec-

trolyte, we consider only the leading order terms in Equation 4.48, yielding a

simplified quadratic mixing functional

Fmix[NO(~r),Nγ(~r)] = aγ

∫
d3rNO(~r)(wLJ ∗ Nγ)(~r) (4.51)

where aγ is a constant. With the choice of aγ = 4εγ
8
√

2πσ3
γ

9 , the interaction potential

between the oxygen density NO and the ion density Nγ takes on the traditional
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Lennard-Jones form [161] without the repulsive core,

VLJ(~r)


−εγ, r < 21/6σγ

4εγ
((

σγ
r

)12
−

(
σγ
r

)6
)
, r ≥ 21/6σγ,

(4.52)

where εγ is the potential energy scale and σγ is the interaction range. This attrac-

tive potential is shown by the solid red line in Figure 4.6 and the full Lennard-

Jones potential, including the repulsive core, is shown by the dotted red line.

In Fourier space, the mixing functional in Equation 4.51 thus becomes

Fmix[NO,Nγ] =

∫
d3G ÑO ˜VLJÑγ. (4.53)

This simplified form of the mixing functional captures only two-body interac-

tions and misses higher-order interactions, such as the interplay between the

water molecules in the coordination shell of an ion, which would be captured to

some extent by a full WDA with non-linear terms. We thus anticipate that this

first linearized approach will have difficulty exactly reproducing ion-water cor-

relation functions. Also, lacking higher-body interactions, we expect our func-

tional to bind too loosely the solvation shell of an ion, causing removal of an

ion or water molecule from solution to occur more easily than it should. We

thus anticipate that the vapor pressures of a liquid with the ion-water mixing

described by Equation 4.51 will be artificially too high.

4.5.2 Solvated ion-water clusters

To mitigate some of the above concerns with a simple quadratic mixing func-

tional, we propose treating the classical DFT ions not as bare particles, but

as clusters which include the first coordination shell of water molecules. For
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monoatomic ions such as the alkali cations and halide anions [227], this approx-

imation is quite reasonable given the tight binding of the first solvation shell

to the ion. For sodium and fluoride ions, for example, the deep first minima

observed in the molecular-dynamics generated ion-water correlation functions

indicate strong bonds between the ions and their coordinating water molecules

[152]. Considering an ion-water cluster as a single “molecular entity” within the

classical DFT captures these strong many-body interactions in the first solvation

shell, which would otherwise be neglected by the approximate quadratic form

of the mixing functional. The larger hard-sphere size for these clusters also pre-

vents difficulties from numerical instabilities in the functional which can arise

because of the number and variety of microscopic states available to small hard

spheres.

Indeed, several options are available for description of an ion-water clus-

ter within the liquid functional presented in Equation 4.14. As is presently the

case for the water molecules, each atom in the cluster could be considered as an

independent site, replacing Equation 4.15 for the ideal gas with the appropri-

ate geometrically-constrained and orientation-dependent multi-site form. The

independent variables for each ion would then become the local chemical po-

tential µγ(~r) the local electric field ~εγ(~r). To determine the locations of the atomic

sites in the ion-water cluster, we could use the ab initio determined minimum

free energy geometry of water around the ion. However, the artificial fixing

of the water molecule locations in the first solvation shell would result in over

structuring of the second shell of classical water around the ion-water cluster.

Also, each orientation-dependent ion adds three additional degrees of freedom

to the minimization of the classical functional. To avoid these drawbacks, we

instead coarse-grain each ion-water cluster as a single-site hard sphere but en-
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sure the proper interactions of these coarse-grained spheres with the classical

water through careful parameterization of the classical DFT functional.

4.5.3 Classical Functional Parameterization

In this section, we set forth the procedure for parameterizing the classi-

cal density-functionals for both unsolvated monoatomic ions and the coarse-

grained ion-water clusters described above. The main quantities which must

be determined for each electrolyte are the hard sphere radius RHS
γ used in the

fundamental measure theory, the range RMF
γ of the mean-field Coulomb kernel

in the fluid, and the range σγ and energy scale εγ of the attractive Lennard-Jones

potential in Equation 4.51. For the present, we restrict our focus to several com-

mon alkali halide electrolytes, though the procedures described herein should

be generalizable to other species and classes of electrolyte. To ensure physi-

cal behavior of the classical fluid, the values of all parameters are constrained

to either theoretical calculations or experimental data for the electrolytes under

consideration.

Ion hard-sphere radius

Because the hard-sphere radius RHS
γ tunes the location of the repulsive potential

arising from the fundamental measure theory for hard spheres and controls the

closest distance of approach of the surrounding particles, we can use ion-water

correlation functions predicted by molecular dynamics to establish its value. For

an unsolvated ion, the location of the first maximum, P(1)
γ , in the ion-water cor-

relation function determines the hard sphere radius of the ion, ensuring proper
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packing with the surrounding water. For an ion-water cluster, the first solvation

shell is included within the coarse-grained sphere, so the location of the second

maximum, P(2)
γ , determines the hard sphere radius instead. Because the correla-

tion function peak appears at the sum of the radii of the ion and the water, the

ion hard sphere radius can be defined as

RHS
γ = P(m)

γ − RHS
O , (4.54)

where RHS
O = 1.36Å. The values of RHS

γ determined from molecular dynamics

predicted correlation functions of selected alkali and halide ions [152] are shown

in Table 4.1 for both unsolvated ions and ion-water clusters. We note that the

locations of the first correlation function peaks from molecular dynamics also

compare quite favorably to the experimental values [178].

Coulomb range parameter

In our framework, the contribution to the mean-field charge density of the fluid

due to an ion of type γ with site charge qγ is

ρMF
γ (r) =

qγδ(r − RMF
γ )

4π(RMF
γ )2 . (4.55)

The predictions of the classical DFT can be sensitive to the choice of RMF
γ , so

careful calibration is required. If the value for RMF
γ is too small, the self energy

of the charge distribution dominates and creates a large artificial energy cost for

localization of the ions. If the value for RMF
γ is too large, all the charge from the

ion is placed near the exterior of the hard sphere, leading to over structuring of

the fluid. We determined RMF
γ by finding a mid-range value at which the solva-

tion energy of a charged hard sphere in classical DFT water was not sensitive to

the value of RMF
γ . These considerations lead to the choice RMF

γ =
RHS
γ
√

2
rather than

RMF
γ = RHS

γ , as is the case for our work with neutral fluids.
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Lennard-Jones Model

To determine the parameters σγ and εγ used in the Lennard-Jones pair poten-

tial wLJ, we simulate the solvation of a model ion within the classical DFT for

pure water. The model ion located at r = 0 consists of a hard sphere potential

which is infinite for r < RHS
γ + RHS

O , the mean field Coulomb kernel for the ion

ρMF
γ (r), and the attractive Lennard-Jones potential VLJ(r) from Equation 4.52. To

maintain a neutral unit cell for our model-ion solvation, we include a spheri-

cal counter-electrode around the model ion, far from the relevant structure in

the water. The model-ion potential, excluding the Coulomb interaction and

counter-electrode, is shown by the dotted black line in Figure 4.6, with the sepa-

rate attractive and repulsive components shown by the solid red and blue lines.

Solvation of this model ion in water should reproduce ion-water interactions

and correlation functions in the limit of a dilute electrolyte when σγ and εγ are

properly constrained. By construction, the location of the first peak in the model

ion-water correlation functions will agree with experiment because of the choice

of RHS
γ above.

Canonically, the Lorenz-Berthelot rules [29] for constructing Lennard-Jones

interaction potentials prescribe that the range parameter σγ for the interaction

between two particles should be the sum of their hard sphere radii. For the

purposes of our mixing functional, we choose

σγ =
RHS
γ + RHS

O

2
1
6

(4.56)

instead. This choice corresponds to placing the sum of the hard sphere radii at

the location of the minimum of the full Lennard-Jones potential, rather than

at the value where the potential crosses zero, which leads to more physical

(smaller) coordination numbers in the first peak of the water-ion correlation
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Figure 4.6: Sum of radii RHS
γ + RHS

O (solid blue line), attractive Lennard-Jones po-
tential from Equation 4.52 (solid red line) compared to full Lennard-Jones po-
tential with the same parameters (dotted red line), and the model-ion potential
excluding the Coulomb interaction (dashed black line)

function. Figure 4.6 displays the comparison between the location of the repul-

sive wall and the range parameter σγ. Table 4.1 shows the values of σγ and

the coordination numbers predicted, both by molecular dynamics and by our

model ions, for the electrolytes under study. Clearly, even for the revised defi-

nition of σγ, the combination of JDFT and the model ion overestimates the co-

ordination number compared to the molecular dynamics.

The energy scale εγ dictates the strength of the ion-water interaction, so that a

larger εγ leads to a higher ion solvation energy. We select the interaction strength

which provides the correct experimental ion solvation energy for our model ion

(or ion-water cluster) solvated in classical water [139]. (In practice, we compute

the solvation energy of our model ion at discrete values of εγ and then per-

form an interpolation to find the value which best reproduces the experimental

solvation energy.) Note that for the solvation energies we use either the bare
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Table 4.1: Hard sphere radius, σγ, and interaction strength εγ which param-
eterize the classical functional for each type of ion, along with the coordina-
tion numbers and solvation energies predicted by model ion solvation in classi-
cal DFT and the corresponding target values computed in molecular dynamics
[152]. 4

Fluid Ion RHS σ ε Pred. Target Pred. Target
(Å) (Å) (H) CN CN Esol (H) Esol (H)

Na+ 0.99 2.18 0.0046 7.4 5.8 -0.166 -0.164
Unsolvated K+ 1.43 2.49 0.0050 9.4 7.1 -0.140 -0.137

Ions F− 1.27 2.32 0.0007 8.6 6.3 -0.172 -0.166
Cl− 1.84 2.85 0.0013 11.1 7.2 -0.116 -0.119
Na+ 3.14 4.01 0.0039 20.1 18.3 -0.112 -0.121

Ion-water K+ 3.39 4.23 0.0037 24.9 19.4 -0.111 -0.120
Clusters F− 3.09 3.96 0.0033 24.4 19.4 -0.116 -0.119

Cl− 3.64 4.45 0.0030 29.3 - -0.113 -0.114

ion solvation energy or the solvation energy of an ion-water cluster with the

number of water molecules equivalent to the molecular dynamics coordination

number of the first solvation shell [152]. The best fit values for the interaction

strength εγ, the experimental solvation energies, and the solvation energies of

the parameterized model ion are all shown in Table 4.1.

Evaluation of Model Predictions

Figure 4.7 shows the ion-oxygen and ion-hydrogen correlation functions which

our model predicts for both the unsolvated ion and the ion-water cluster mod-

els of NaF electrolyte. The locations of the maxima and minima predicted from

molecular dynamics calculations are indicated by the upward triangles and the

downward triangles. For the sake of consistency, we have chosen the molecu-

lar dynamics calculations of Reference [152] to provide a comparison, but we

note that various experimental measurements, ab initio and classical molecular
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Figure 4.7: Ion-oxygen and ion-hydrogen correlation functions for Na+ and F−

solvated in classical DFT water predicted by the unsolvated and cluster model
ions, using the mixing functional parameters in Table 4.1. The points indicate
the maxima (upward triangles) and minima (downward triangles) predicted
from molecular dynamics calculations

dynamics predictions of these correlation function extrema provide a range of

valid predictions rather than a single value [317, 241, 177, 176, 34, 47, 239]. Com-

pared to the molecular dynamics results, the classical DFT predictions systemat-

ically overestimate the peak height and coordination number of the first solva-

tion shell and localize the water in a strong, narrow peak at the hard sphere ra-

dius. This very strong initial peak and the known defect in the Ornstein-Zernike

correlation functions for liquid water (See Section 2.6.3 for details) combine to

push the location of the second solvation shell too far away from the ion.

Several possibilities exist for extending the classical DFT functional, refining

our parameterization procedure, and improving the agreement of the classi-

179



cal DFT predictions with the molecular dynamics simulations and experimen-

tal measurements. Some of the inconsistencies between our results and the

MD simulations exist because our fitting procedure assumes the model ions

are point particles (delta functions with unit norm) and the model potential for

point ions (shown in Figure 4.6) consists of an infinitely hard wall followed by

a defined potential well. Because the classical DFT is quite sensitive to such

discontinuities in the potential, the liquid functional responds by creating lo-

calized peaks. Some of this localization is a consequence of the choice to use

the quadratic mixing functional in Equation 4.53 rather than a weighted den-

sity approximation. A weighted-density mixing functional based on the liq-

uid equation of state could bring the results predicted by the model into closer

alignment with the values in the literature. The expressions for the mean-field

charge densities of the ion in Equation 4.55 and of the water in Equation 2.21,

which contribute to the initial over structuring of the first peak and the pushing

back of the second peak in the correlation functions, could also be made more

physical if we developed a correction for the self-energy of the atomic sites in

the liquid functional. Finally, the coordination numbers (and vapor pressures as

we will see in Table 4.3) for the unsolvated anions are harder to reproduce com-

pared to the cations, perhaps because interaction is framed as an oxygen-anion

potential even though the anions are interacting most strongly with the posi-

tively charged hydrogens. Hence, we believe that introducing a dependence

upon the hydrogen density into the mixing functional could potentially remedy

the discrepancies between our model and the molecular dynamics predictions,

especially for the anions.
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4.5.4 Coupling Functional Details

Predictive JDFT calculations of a quantum-mechanical electrode surface in con-

tact with a classical DFT liquid require a coupling functional which can capture

the qualitative features of the electrode-electrolyte interface. As discussed in

Section 4.2.1 and shown in Figure 4.1, the interfacial electrolyte at a charged

electrode consists of a compact (Helmholtz) layer and a diffuse layer. In the

diffuse layer, the ions provide exponential screening to any charges which may

arise, with the amount of screening dependent on the ion concentration. In the

Helmholtz layer, the oppositely charged ions move as close to the solid elec-

trode surface as possible and form what amounts to a parallel plate capacitor.

Some ions remain in the outer Helmholtz plane, with at least one layer of water

in between the electrode and the ions. At some electrode potentials, the ions (es-

pecially anions) may cross the water layer into the inner Helmholtz plane and

either chemisorb or physisorb on the electrode surface.

With the universal coupling functional of Chapter 2 and the unsolvated

model ions, JDFT should naturally describe the capacitor-like behavior of ions

near strongly charged solutes by including a close-packed layer of ions in the in-

ner Helmholtz plane, prior to the liquid water shell structure. The diffuse expo-

nential ionic screening region near weakly charged solutes should also naturally

follow from simple electrostatics and exclusion. The van der Waals coefficients

and electron density models for the unsolvated ions are described below and

tabulated in Table 4.2.

However, following this same natural prescription in the case of the ion-

water cluster model would be problematic for two reasons. First, the ion-water

clusters described above are coarse-grained, feature spherical symmetry, and
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do not possess atomic sites for the water molecules, making it impossible to in-

clude the explicit electron density of the full cluster. Second, ion-water clusters

with a full description of the electron density of the first solvation shell would

not be able to move into the inner Helmholtz plane, as they cannot “break”

their solvation shells. In Section 4.6.4, we will show this movement into the

inner Helmholtz plane to be a crucial feature for understanding the potential

dependence of the differential capacitance. In light of these concerns, in our de-

scription of the coupling of ion-water clusters to the explicit electrode system,

we choose to model the electron density and van der Waals interaction of the

ion-water cluster as including only contributions from the ion at the center of

the cluster, using the same parameterization as shown for the unsolvated ions in

Table 4.2. In this description, ion-water clusters located at the inner Helmholtz

plane are “partially solvated”; the classical fluid sees the solvation shell of the

ion while the quantum-mechanical system does not. This choice does elimi-

nate some of the interaction of the ion solvation shell with the electrode sur-

face. However, this model still captures quite well the qualitative features of the

electrode-electrolyte interface, as we demonstrate below.

Van der Waals Coefficients

Reference [40] describes how water physisorption at metal surfaces is highly

dependent on van der Waals interactions. The coupling functional captures the

van der Waals interaction between the solute and solvent through the empirical

form of Grimme [97] (Equation 2.8). We choose the scaling parameter for the van

der Waals interaction to be γ = 0.540, the value which performs best for com-

puting molecular solvation energies in liquid water as shown in Section 2.6.1.
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However, we still require c6 and R6 coefficients for charged ionic species, which

are not available in the database of Grimme. For the R6 coefficients we use the

tabulated van der Waals radii of the ions [178]. We can estimate the c6 coeffi-

cients using Grimme’s formula,

c6 = 0.05NIpχ, (4.57)

where N has values 2, 10, 18, 36, and 54 for atoms from rows 1-5 of the periodic

table, Ip is the ionization potential (electron affinity for anions) in Hartree, and

χ is the atomic polarizability in atomic units.

Hohm et. al. have extended the set of c6 and R6 parameters to high atomic

number metal surfaces such as platinum and gold using the same procedure

as Grimme. Because ion polarizability and ionization potential data are avail-

able from computational chemistry databases [2, 153] and the literature [6, 189],

it should be straightforward to compute the c6 coefficients directly according

to the prescription of Grimme. However, to prevent inconsistency and unan-

ticipated errors, we scale the coefficient which appears in the database for the

neutral atom c0
6 by the ratio of the ion properties to the neutral atom properties.

Namely, for an ion of charge q, we use

cq
6 =

Iq
p

I0
p

χq

χ0 c0
6, (4.58)

where Iq
p and χq are the measured or calculated properties of the ion and I0

p and

χ0 are the properties of the neutral atom. The values for c6 and R6 which we infer

in this way for common monoatomic electrolytes are presented in Table 4.2.
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Table 4.2: Coupling Functional: Electron Density and van der Waals parameters

Ion Zel ael σel rel
c c6 R6

Na+ 8.138 0.197 0.413 0.715 0.325 1.144
K+ 8.323 0.355 0.456 0.822 1.484 1.485
F− 8.000 0.389 2ael/

√
π 0.0 0.630 1.287

Cl− 9.668 0.546 2ael/
√
π 0.0 3.543 1.639

Ion Electron-Density Models

Finally, to compute the coupling functional for an aqueous electrolyte, the liq-

uid electron density nlq and the total charge density due to the liquid ρC must

include contributions from the ionic species. We perform additional ab initio

calculations of the ionic species in solution using the procedure of Section 2.4

to determine the electron site densities ργ which contribute to both the electron

and charge densities in the liquid. The parameterizations of ργ resulting from

these ab initio calculations are also presented in Table 4.2 for several common

monoatomic electrolytes. We note that all ions have a nuclear density width

σnuc
γ = 0 (effectively a delta function) to prevent any possible unphysical over-

lap between the charges.

4.6 Results

Here we examine the performance of the electrolyte liquid and coupling func-

tionals described in Section 4.3 and the model aqueous sodium fluoride (NaF)

electrolyte proposed in Section 4.5. First, we benchmark the predictions of the

pure classical DFT electrolyte for key physical properties of the bulk fluid such
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as bulk densities and vapor pressures. We then present JDFT calculations within

the framework for charged systems in Section 4.4 for the structure and energet-

ics of the interface of aqueous NaF electrolyte with single-crystalline metallic

electrode surfaces. We compute potentials of zero charge from first principles to

demonstrate how JDFT predictions of the potential-dependence of electrochem-

ical processes such as specific adsorption of ions on the electrode surface may

be placed on the scale of the Standard Hydrogen Electrode (SHE). Finally, we

investigate the surface charge and capacitance as a function of applied potential

for the (111) crystal face of silver, compare our predictions with the experimental

measurements detailed in Section 4.2, and discuss how the structure of the fluid

at the electrode surface influences the features in the differential capacitance.

4.6.1 Vapor Pressures and Densities

The excess Helmholtz free energy Fex of the uniform classical fluid (Equation

4.16) at a fixed external pressure and fixed ion mole fraction fully determines

the bulk densities, chemical potentials, and vapor pressures of the water and

ions in the liquid. First, the bulk densities are determined by the fixed external

pressure through the equation

p = kBT
∑

I

Nb
I − Fex[Nb

I ] +
∑

I

Nb
I

dFex

dNI

∣∣∣∣∣
NI→Nb

I

, (4.59)

where T is temperature and Nb
I is the bulk density of the fluid component I

(where I = {H2O,Na+,F−} for aqueous NaF). The computation of the pressure

assumes a fixed mole fraction of the electrolyte (roughly 1:55 for ions of concen-

tration 1 M in water), so finding {Nb
I } simply involves scaling all the bulk liquid

densities by the same factor such that the scaled densities satisfy Equation 4.59.
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The chemical potentials µI are determined by the derivatives of the excess free

energy with respect to density as

µI =
dFex

dNI

∣∣∣∣∣
NI→Nb

I

−
dFex

dNI

∣∣∣∣∣
NI→0

, (4.60)

where the left-hand term is the potential in the bulk of the fluid and the right-

hand term is the potential in vacuum.

The vapor pressures PI may be computed from the chemical potentials µI

and bulk densities NI as

PI = kBT NI exp
(
µI

kBT

)
. (4.61)

We note that the mean-field Coulomb term of the excess Helmholtz free energy

Fex in the bulk fluid is negligible since the bulk fluid is neutral by construction

so the charge properties of the fluid have no influence on the vapor pressures.

For the water, the terms which contribute to the vapor pressure are the funda-

mental measure theory, weighted-density term based on the equation of state,

and the mixing functional Fmix between the ions and the water. For the ions, the

only terms which contribute are the FMT and the mixing functional between

the ions and the water. Any inaccuracies in Fmix would thus be expected to lead

to inaccuracies in the vapor pressure of the classical liquid. Table 4.3 displays

the bulk densities Nb
I , vapor pressures PI , and chemical potentials µI for the wa-

ter and the ions in 1 M aqueous NaF using both the unsolvated and ion-water

cluster model ions, with the values for pure water presented as comparison.

Because sodium fluoride is a non-volatile electrolyte, we expect the vapor

pressures PI of the ions to be orders of magnitude smaller than the vapor pres-

sure of the water. The vapor pressures of the sodium cations in both the un-

solvated and ion-water cluster models and of the fluoride anion in the cluster

model are much less than the vapor pressure of the water, as expected. How-
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Table 4.3: Bulk densities of liquid components Nb
I , vapor pressures PI , and

chemical potentials µI of the classical DFT fluid components, alongside abso-
lute ion solvation energies derived from experimental measurements [139].

Fluid Component Nb
I (Å−3) PI (kPa) µI (H) Esol (H)

Pure Water H2O 0.0333 3.1 -0.010 -0.010
Unsolvated H2O 0.0336 3.0 -0.010 -0.010

NaF Na+ 6.07 × 10−4 3.2 × 10−7 -0.021 -0.164
F− 6.07 × 10−4 9.7 × 103 0.0013 -0.166

Ion-water H2O 0.0316 1.6 -0.011 -0.010
clusters Na+ 5.72 × 10−4 8.0 × 10−25 -0.060 -0.121

NaF F− 5.72 × 10−4 3.4 × 10−15 -0.039 -0.119

ever, the vapor pressure of the fluoride anion in the unsolvated model is orders

of magnitude higher than the vapor pressure of water. The chloride anion in

the unsolvated model (not tabulated here) also exhibits a similarly high vapor

pressure, suggesting a systematic error in the mixing functional for the anions.

The chemical potentials µI of the fluid molecules, which determine the vapor

pressures, provide a better point of comparison with experimental data because

we expect the chemical potentials to be reflective of the solvation energies of

the molecules within the bulk liquid. As indicated by Table 4.3, the chemical

potential of liquid water within the classical DFT is, as expected, within 0.001

H of its experimental solvation energy in the limit of a dilute electrolyte [180].

Both the anions and the cations modeled by ion-water clusters have chemical

potentials of the right sign and order of magnitude compared to the absolute ion

solvation energies derived from experimental measurements [139], though the

values for the cations agree somewhat better than for the anions. In contrast, the

unsolvated ion chemical potentials are smaller by at least an order of magnitude

from the experimental reference, and in the case of anions, possess the incorrect

sign.
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The discrepancy between the model ion chemical potentials and the experi-

mentally derived solvation energies likely appears due to the quadratic approx-

imation to the ion-water mixing functional in Equation 4.51. Choosing to con-

strain the mixing functional interaction strength εγ by modeling discrete ions

does not translate into the correct energetics for the ions in the bulk liquid, es-

pecially for the unsolvated ions. Because the quadratic mixing functional is a

more physical approximation for the ion-water clusters (for reasons discussed

in Section 4.5), the chemical potential discrepancies are less severe for the clus-

ters. Furthermore, framing the interaction as occurring only with the oxygen

atoms is not ideal for the anions, which associate with the water molecules pri-

marily through the positively charged hydrogen atoms. Replacing the quadratic

mixing functional with the weighted-density approach of Equation 4.48 would

delocalize the model ions and likely capture more of the many-body interac-

tions. A weighted density approximation based upon the equation of state for

the electrolyte, would constrain the liquid vapor pressures and chemical poten-

tials of the ions to the experimental values, just as the term AEOS in Equation 4.10

does for water.

The ion chemical potentials, which are a consequence of the choice of model

ion and the form of the ion-water mixing functional Fmix, determine how much

energy must be added to the liquid in order for the ions to begin to precipitate

out of solution when in thermodynamic equilibrium. Models which produce

accurate values for the ion chemical potentials are thus crucial for a correct

description of the electrochemical interface, where solvation and desolvation

processes occur as a function of applied potential. Specifically, we expect the

model-ion values for chemical potential to influence the JDFT prediction of the

potential-dependent formation and structure of the compact layer next to the
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electrode-electrolyte interface. We will investigate further the dependence of

these structure and energy predictions upon the choice of model ion in Sec-

tion 4.6.3 below.

4.6.2 Potentials of Zero Charge

Before we can predict the subtle, potential-dependent features of the electrode-

electrolyte interface, we must ensure that our predictions for the electrochemi-

cal potential (µ) may be placed on the same voltage scale as the electrochemical

measurements. As described in Section 3.3.2, we first establish the potential of

an electron solvated deep within our model fluid as the JDFT reference elec-

trode. Figure 4.8 displays the microscopic Kohn-Sham potential acting on the

electrons for a neutral Ag(111) surface (averaged over the plane parallel to the

surface) as a function of z, the distance perpendicular to the surface. For com-

parison, the JDFT electrochemical potential µ for the silver surface is also shown

by the solid black line. This explicit JDFT result is comparable to the electron

potential for Pt(111) computed from implicit JDFT and shown in Figure 3.1b,

with the electrode potential applied as in Figure 3.1a. Explicit JDFT captures

more features in the potential due to the structuring of the fluid at the interface,

but the asymptotic value of the electron potential is still zero in the bulk fluid

(dotted black line), demonstrating that the framework in Section 4.4.2 functions

as intended. Therefore, just as in the implicit calculation, the applied potential

E required to move an electron from the bulk of the metal to deep in the fluid is

simply E = −µ.

We next determine the relationship of our reference electrode to the Standard
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Figure 4.8: Microscopic self-consistent Kohn-Sham potential for an Ag (111) sur-
face (solid red line) in NaF electrolyte (modeled by ion-water clusters) as a func-
tion of z, the distance perpendicular to the surface compared to the electrochem-
ical potential µ (dotted black line).

Hydrogen Electrode (SHE) in electrochemistry, following the potential of zero

charge calibration procedure set forth in Section 3.8.4. First, we compute from

JDFT the values of the electrode potential for which the (100), (110), and (111)

single-crystalline surfaces of copper, silver, and gold are neutral (no net charge).

The metal surface calculations were performed as described in Section 3.7, us-

ing the same pseudopotentials, k-point sampling, unit cells, and energy cutoffs

and the PBE exchange-correlation functional [212]. Figure 4.9 plots the JDFT-

computed PZC’s for both the unsolvated and cluster models in 1.0 M NaF elec-

trolyte, versus the experimentally measured values relative to SHE [282]. We

also include the PZC’s for the surfaces in pure water to model the limit of a

dilute electrolyte. (The electrode potentials for water are determined by sub-

tracting the arbitrary constant asymptote of the potential in the bulk fluid from

the JDFT-computed chemical potential µ, while the electrode potentials in the

electrolyte are automatically computed versus the JDFT reference electrode.)
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Figure 4.9: Calculated PZC’s in pure water (blue points), NaF with unsolvated
ions (magenta points), and NaF with ion-water clusters (red points) versus ex-
perimental measurements relative to SHE. The best linear fits to each set of the-
oretical predictions are shown by the diagonal solid lines and the potentials
relative to SHE of the reference electrodes in each liquid model are shown by
the horizontal dotted lines.

To quantify the accuracy of our predictions and place them on the scale of

the SHE, we perform a least-squares linear fit to each data set with the slope con-

strained to unity (shown by the solid lines in Figure 4.9). The intercepts of these

fits (shown by the dotted lines in Figure 4.9) establish the absolute relationship

between the zero of potential in each fluid and the zero of potential on the SHE

scale. Table 4.4 displays the root-mean-square error for the fit, which measures

the correlation of our predictions with the experimental measurements, for each

fluid model. The calculations which model the electrolyte as ion-water clusters

provide the most accurate predictions compared to the experiment, while those

using the unsolvated ions provide the least accurate predictions. The inaccu-
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Table 4.4: RMS deviation of theoretical predictions from experimental measure-
ments for several fluid models, the JDFT bulk fluid reference potential vs. SHE
determined from least-squares fitting procedure (Efl/SHE), the predictions for the
potential of fluid relative to vacuum (Efl/vac) from Equation 4.62, the JDFT bulk
fluid electron potential (Vb

el) determined from Equation 4.46, and the predicted
potential drop at the interface (Eint = Efl/vac − Vb

el)

Fluid RMS error Efl/SHE Efl/vac Vb
el Eint

Model (V) (V) (V) (V) (V)
Pure Water 0.11 6.46 2.02 1.67 0.35

Unsolvated NaF 0.14 6.69 2.25 1.86 0.39
Ion-water clusters NaF 0.10 6.37 1.93 1.45 0.48

racy of the unsolvated ion model is likely due to the ions precipitating out of

the liquid onto the metal surfaces. Indeed, Figure 4.11 shows that F− is present

on the metal surface at the PZC in the calculations of the Ag(111) surface using

the unsolvated ion model. Table 4.4 also shows the value of the JDFT reference

electrode for each fluid model relative to SHE, Efl/SHE, allowing us to establish

the absolute relationship between the applied potentials predicted by our calcu-

lations and the features in experimentally measured cyclic voltammograms and

differential capacitances.

The physical meaning of zero on the scale of our reference electrode is the

potential of an electron deep in the model liquid, as shown by the zero asymp-

tote of the electron potential in Figure 4.8. To remove an electron from the JDFT

model liquid to zero on the scale of the Standard Hydrogen Electrode, we must

decrease its potential by Efl/SHE, as determined by our PZC calibration proce-

dure. That removal process occurs in two main steps. First, the electron is re-

moved from the bulk model liquid to vacuum, decreasing its potential by the

value Efl/vac by desolvating and passing through the air/water interface poten-

tial. Second, the electron is brought from vacuum to zero on the SHE scale,
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decreasing its potential by the value Evac/SHE. The accepted value of the poten-

tial of vacuum versus SHE is Evac/SHE = 4.44 V [282]. The potential decreases

occurring in these two steps are additive such that

Efl/SHE = Efl/vac + Evac/SHE. (4.62)

The values of the bulk fluid potential relative to the absolute potential of vac-

uum, Efl/vac, determined from Equation 4.62 and the accepted value of Evac/SHE,

are shown in Table 4.4. This potential drop across the fluid-vacuum interface,

Efl/vac, may be interpreted as the energy an electron sheds as it moves through

the dipole layer at the interface. The predicted values of Efl/vac for pure water

and 1 M electrolyte are similar, suggesting that the structure of the dipole layer

of water at an uncharged interface is not perturbed significantly by the presence

of the ions. Figure 4.11 confirms that the structure of water changes very little

upon introduction of the ions, as expected from AIMD simulations [90]. We note

that our values of Efl/vac are reasonably close, but at least 1 V smaller than those

predicted by Leung et. al., who compute the fluid-air interface potential to be

EAIMD
fl/vac = +3.6 V from ab initio molecular dynamics calculations [165]. However,

pair potential models predict a significantly different value of ESPCE
fl/vac = −0.56 V

[257], and other values reported in the literature are highly variable [165].

The potential Efl/vac is also closely related to the electron potential Vb
el, which

is determined from Equation 4.46 and also presented in Table 4.4. As discussed

in Section 4.4.2, the potential Vb
el only includes the potential energy lost by an

electron as it desolvates and does not include the potential decrease due to the

interfacial dipole. The difference between the theoretical work functions and

theoretical PZC’s predicted from implicit JDFT in Figure 3.5c provides an es-

timate of ≈ 0.4 − 0.5 V for the value of the potential drop due to interfacial
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water at metal surfaces. This estimate is roughly comparable to the values of

the interfacial potential Eint = Efl/vac − Vb
el, computed for the liquid models under

consideration and presented in Table 4.4.

4.6.3 Electrolyte Structure and Charged Surfaces

With the above procedure to relate the applied potential in JDFT calculations

to the relevant scale for electrochemical measurements, we use JDFT to com-

pute the properties of a charged metal surface in contact with a classical DFT

description of an aqueous electrolyte. We consider the Ag(111) surface in 1.0 M

sodium fluoride, specifically because silver in NaF has been reported in the lit-

erature to be ideally polarizable and free from chemisorption, as discussed in

more detail in Section 4.2. The setup of the ab initio calculations is identical to

the setup of the calculations in Chapter 3, except the unit cell size is doubled

in the z-direction (perpendicular to the metal surface) to allow for structuring

in the fluid. Figure 4.10 shows the surface charge on Ag(111) as a function of

applied potential, computed with both unsolvated ions and ion-water clusters

as the model electrolyte. The charging curve for the unsolvated ions appears

to be somewhat less smooth, a numerical issue likely due to the grid resolution

and the increased localization of the water around unsolvated ions which we

observed in Figure 4.7. Clearly, the different ion models agree quite well for

negatively charged surfaces (below the PZC), but the predictions diverge for

positively charged surfaces (above the PZC).

The unique capability of JDFT to predict thermodynamically averaged in-

terfacial fluid structure allows us to investigate the origin of the discrepancy
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Figure 4.10: Comparison of the charge vs. potential for an Ag(111) surface in
1.0 M NaF electrolyte resulting from each choice of ion. Predictions for ion-
water clusters (red circles) and unsolvated ions (green triangles) versus SHE.
Interfacial liquid structure is shown in Figure 4.11 for specially marked points
(-,PZC,+).

between the ion models at positive charges. For specially marked points on the

charging curves in Figure 4.10 – one negative charge (-), zero charge (PZC), and

one positive charge (+) – Figure 4.11 displays the density profiles of the cations

(yellow), anions (blue), and oxygen atoms in the water (red) next to the surface.

For reference, the density profiles of the oxygen atoms in pure water next to a

neutral Ag (111) surface are shown by the dotted red line in each panel. Some

similar features exist in the interfacial structure predicted for unsolvated ions

and the structure predicted for ion-water clusters. As expected from the text-

book picture of Figure 4.1 [28], the cations remain solvated within their water

shells, even at large negative voltages, while the anions begin to move into the

inner Helmholtz plane at high positive voltages. We note that the small oxy-

gen peaks close to interface could represent a small chance of water adsorbed

through the oxygen atom on the metal surface, a phenomenon which has previ-
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Figure 4.11: Plane-averaged oxygen (red), sodium (yellow), and fluoride (blue)
densities as a function of z, the distance perpendicular to the surface as mea-
sured from the location of the last surface metal atom. Predictions from the
ion-water cluster model (left column) are compared to those from the unsol-
vated ion model (right column) for positively charged, neutral, and negatively
charged surfaces in 1.0 M NaF. The Na+ and F− site densities are magnified by
an order of magnitude for visibility. Electrode potential E is reported versus
PZC.

ously been observed by infrared spectroscopy [240].

Significant features also distinguish the structures predicted by the ion-water

clusters from those predicted by the unsolvated ions. The ion-water clusters
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exhibit a well-defined outer Helmholtz plane, localized at 8-10 Å after approx-

imately two layers of water. In contrast, the unsolvated ions seem to behave

more like a diffuse layer, penetrating closer to the surface but never forming a

defined outer Helmholtz plane. As the ion-water clusters move from the outer

Helmholtz plane to the inner Helmholtz plane as the potential increases, the sur-

face charge begins to increase nonlinearly as well. As explored in Section 4.6.1

above, the unsolvated anions have an unphysically high vapor pressure, so

they precipitate out of solution and into the inner Helmholtz plane, even when

there is no charge on the surface. Their movement into the inner Helmholtz

plane, however, is accompanied by a slight decrease in the slope of the sur-

face charge versus applied potential. The presence of unsolvated ions in the

inner Helmholtz plane at positive potentials also excludes the water from the

surface and drastically suppresses the structure of the following water layers.

The ion-water clusters create no such exclusion of the water from the surface –

if anything the water moves closer to the surface and exhibits more structure.

In Section 4.6.4 below, we discuss how these changes in the interfacial liquid

structure correlate with significant features in the differential capacitance.

The interfacial liquid structure also corresponds to features in the micro-

scopic electrostatic potential of the electrode-electrolyte interface. Figure 4.12

displays the difference between the Kohn-Sham potentials of the charged sur-

face and the neutral surface (shown in Figure 4.8) for a series of positive and

negative surface charges, with a negative sign applied to convert from elec-

tron potentials to electrostatic potentials. These potential profiles from explicit

JDFT are comparable to the electrostatic potentials pictured in Figure 3.3(c) com-

puted from the implicit solvent, with potential applied as in Figure 3.1a. In

both the implicit and explicit cases, the electrostatic potential is a constant in-
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Figure 4.12: Microscopic self-consistent electrostatic potential difference
between charged and neutral Ag (111) surfaces for surface charges
of σ = {−10.6,−5.3,+5.3,+10.6} µC

cm2 (corresponding to potentials E =

{−0.67,−0.34,+0.23,+0.41}) as a function of z, the distance perpendicular to the
surface. Electrolyte is 1.0 M NaF using the ion-water-cluster approximation.

side the metal surface (z < zsurf) with the value equal to the applied potential,

then quickly decays outside the surface. There is a clear definition of a linearly

decaying Stern region in the potential predicted by explicit JDFT. In the most

positively charged case, the potential decays sharply to a strong minimum, cor-

responding to the anion in the inner Helmholtz layer as shown in Figure 4.11

for E = 0.41 V. All the potential profiles in Figure 4.12 possess significant struc-

ture in the fluid, but this structure does decay with an exponential envelope,

reflective of the exponential decay evident in the Gouy-Chapman model for the

diffuse layer. Finally, the general continuity of the curves in Figure 4.12 indi-

cates that, unlike in the simple electrochemical model, there is no clearly defined

compact layer and diffuse layer in the real electrode-electrolyte interface.

The charge as a function of potential in Figure 4.10 and associated fluid struc-

ture in Figure 4.11 indicate that, as anticipated, the ion-water cluster model ap-

198



pears to be more physical than the unsolvated ion model when implemented

within a quadratic ion-water mixing functional. The presence of the fluoride

ions in the inner Helmholtz plane, even at neutral potential, the lack of a well-

defined outer Helmholtz plane, and the strong suppression of the liquid wa-

ter structure at positive charges are all warning signs that the unsolvated ions,

which possess unphysically high vapor pressure, also yield unphysical predic-

tions for electrochemical systems within a simple quadratic functional descrip-

tion. Furthermore, the decrease in the slope of the charge vs. potential curve

(capacitance) at positive potentials does not agree with the qualitative features

of the experimental charging curves [286]. Thus, for the detailed study of capac-

itance in Section 4.6.4 below, we concentrate upon the ion-water cluster model

(though we do present one capacitance result for the unsolvated ions in Fig-

ure 4.15 for reference).

4.6.4 Nonlinear Capacitance

To further explore the nonlinear features of the charge as a function of applied

potential for Ag(111) for the ion-water cluster model (shown in Figure 4.10), we

take the numerical derivative with respect to the potential to find the differen-

tial capacitance, resulting in the red solid curve in Figure 4.13. We now collected

data on a much finer grid than in Figure 4.10 to reduce noise in computing the

numeric derivative. We may then compare the structure of the interface shown

in Figure 4.11 to the nonlinearities in the capacitance curves. A slight minimum

appears in the capacitance curve at the potential of zero charge, a feature pre-

dicted by the Gouy-Chapman-Stern model for the electrochemical double layer

set forth in Section 4.2.2 and observed in experiments as in Figure 4.5. As shown
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Figure 4.13: Pure ab initio prediction for 1.0 M (solid red) and extrapolation from
the the high concentration result JDFT for low concentrations 0.04 M (dashed
yellow), 0.01 M (dotted blue), and 0.005 M (dotted purple) using known ex-
pression for ideal capacitance of the diffuse layer in Equation 4.7 and the series
capacitor model in Equation 4.3.

in the middle-left panel of Figure 4.11, all ions are located in the outer Helmholtz

plane at the PZC, and the structure of the water is perturbed minimally from

the structure of water when no electrolyte is present. Below the PZC, the capac-

itance rises slightly as the potential decreases, peaking at approximately 0.2 V

below the PZC then falling again. This region of the capacitance curve is corre-

lated to an increase of cations in the outer Helmholtz plane and an increase in

the structure of water at the surface. At about 0.1 V above the PZC, the capac-

itance rises dramatically, attaining more than a factor of two increase by about

0.3 V above the PZC, and then falls again with further increasing potential. This

dramatic rise in the capacitance occurs at the same potentials where fluoride

anions move from the outer Helmholtz plane to the inner Helmholtz plane, as

shown in the bottom-left panel of Figure 4.11.
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Figure 4.14: Concentrations range from 0.04 M (dashed yellow), 0.01 M (dotted
blue), and 0.005 M (dotted purple) [286].

Figure 4.14 displays the experimentally measured capacitance curves for

single-crystalline silver (111) in sodium fluoride [286].5 The experimentally

measured capacitance curves possess the same double-humped potential-

dependence as the JDFT calculations, which predict these qualitative features a

priori, without any input from the electrochemical models. The potential values

(versus the SHE) at which the features occur are also in excellent quantitative

agreement. However, the experimental curves for single-crystalline silver are

measured at low electrolyte concentrations and are not directly comparable to

the JDFT calculations without additional analysis.

While there is a slight capacitance minimum at the potential of zero charge

in the 1.0 M JDFT predictions, the inner layer capacitance dominates over the

diffuse layer capacitance at this concentration. Modeling lower concentrations

in JDFT is computationally challenging due to the large unit cell required to

5We have scaled the experimental data by dividing by the roughness coefficient 1.10 detected
by the Parsons-Zobel technique described in Section 4.2.4.
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neutralize the charge on the surface. The features of the Gouy-Chapman-Stern

model for the electrochemical double layer set forth in Section 4.2.2 therefore

provide a useful framework for the exploration of the concentration dependence

of the capacitance. Figure 4.13 displays the extrapolation of the high concentra-

tion capacitance to lower concentrations, using the series capacitance model in

Equation 4.3 and the model diffuse capacitance in Equation 4.7 as described in

Section 4.2.3. The JDFT results in Figure 4.13 may now be directly compared

to the experimental measurements in Figure 4.14, and the excellent qualitative

agreement remains.

Figure 4.15 displays our JDFT predictions for a concentration of 0.01 M si-

multaneously with the experimental measurements for single-crystalline silver

(111) [286], polycrystalline silver [159], and the ideally polarizable mercury elec-

trode [95]. We have also included the JDFT predictions (extrapolated to low

concentration) for the unsolvated ion model as well, clearly demonstrating the

superior qualitative agreement of the ion-water cluster model with the experi-

mental measurements. Our JDFT calculations exhibit the best qualitative agree-

ment with the Ag(111) measurements, but the quantitative values for capaci-

tance agree best with the ideally polarizable mercury electrode. The average

value of the JDFT-predicted capacitance is too low by almost a factor of two

compared to the experimental measurements of silver capacitance. There are

several possible explanations for this discrepancy, including the influence of ki-

netic processes, the presence of quantum-mechanical interactions between the

fluid and the surface which are not captured by a classical fluid model, and er-

rors in the JDFT predictions due to the primitive nature of our model ions and

mixing functional.
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Figure 4.15: Experimentally measured capacitances vs. applied potential com-
pared to JDFT predictions in 0.01 M NaF. Measurements include polycrystalline
silver at ω = 1000 Hz (purple) [159], Ag(111) at ω = 20 Hz (blue) [286], and an
ideally polarizable mercury electrode (yellow) [95]. JDFT-based extrapolations
for both unsolvated ions (green) and ion-water clusters (red). All electrode po-
tentials are plotted with respect to the PZC.

First, we explore the frequency-dependence of the experimental capacitance

measurements to determine the influence of kinetic processes. For example,

the process of an anion breaking its solvation shell and moving from the outer

Helmholtz plane to the inner Helmholtz plane may be kinetically limited, lead-

ing to a frequency dependence in the capacitance measurements as discussed in

Section 4.2.4 [140]. Namely, high-frequency capacitance measurements (ω→ ∞)

will miss kinetically limited processes like penetration through the outer layer

of liquid to the electrode surface and then adsorption. In principle, JDFT pre-

dicts the structure of the liquid at thermodynamic equilibrium, capturing all en-

ergetically favorable configurations regardless of the timescale, and so should

compare most directly to low-frequency capacitance measurements (ω → ∞).

In practice, however, JDFT does not capture chemical bonding between the

203



fluid and the electrode surface (unless such species are included explicitly in the

quantum-mechanical calculations), so in the cases where the kinetically-limited

process is quantum-mechanical in nature the JDFT predictions will agree best

with the high-frequency capacitance measurements.

Figure 4.16 shows the comparison of the renormalized JDFT predictions

(scaled by a factor of two to reflect quantitative discrepancies likely due to

oversimplification in our preliminary functionals) to the high-frequency (ω =

1000 Hz) [159] and low-frequency measurements (ω = 20 Hz) [286] of silver

capacitance. The JDFT predictions agree best with the low-frequency measure-

ments above the PZC and with the high-frequency measurements below the

PZC. Because infrared spectroscopy measurements of the Ag-O stretching fre-

quency suggest that the hump in the differential capacitance below the PZC is

due to chemisorption of the water molecules through the oxygen atom [240],

it is logical that the JDFT calculations are unable to capture this feature in the

low-frequency capacitance. However, the JDFT calculations successfully pre-

dict the movement of the F− atoms from the outer Helmholtz plane to the inner

Helmholtz plane, where they physisorb on the electrode surface without trans-

ferring charge. The JDFT capacitance predictions thus agree best with the low-

frequency measurements above the PZC, because the frequency dependence of

interfacial capacitance in that region is attributed to the relatively slow exchange

of anions between the outer and inner Helmholtz planes. [204]

Though the qualitative agreement between the JDFT predictions and the ex-

perimental measurements in Figure 4.16 is outstanding, JDFT underestimates

the capacitance by a factor of two. One hypothesis for the cause of the dis-

crepancy is that the surface area in the experiment was estimated incorrectly
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Figure 4.16: Experimentally measured capacitances vs. applied potential com-
pared to JDFT predictions in 0.01 M NaF. Measurements include polycrystalline
silver at ω = 1000 Hz (purple) and Ag(111) at ω = 20 Hz (blue) JDFT-based
extrapolation for ion-water clusters (red) is scaled by a factor of two in order to
compare to the qualitative features of the experimental measurements.

due to roughness on the surface. Because the results for Ag(111) have already

been scaled by the roughness coefficient determined by the Parsons-Zobel plot

(r111 = 1.10) [286], this explanation seems unlikely. To further investigate the

origin of the disagreement, we consider the expression for the capacitance per

unit area in a parallel plate capacitor Ci = ε0ε
∆

, where ∆ is the average distance

from the metal electrode to the counter-ions and ε is the relative permittivity

of the dielectric between the electrode and the counter-ions. Our discrepancy

could thus be due either to overestimation of the dielectric saturation of the wa-

ter in the inner layer (ε too small), or to over prediction of the distance between

the water and the counter-ions (∆ too large), or to some combination of the two

physical effects. Though Figure 1.1 demonstrates that the nonlinear dielectric

response of the classical water is quite accurate, our ion-water cluster model

implicitly assumes that the water molecules in the solvation shells of the ions
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are unable to polarize in response to the electrolyte. Furthermore, the simple

quadratic form of the ion-water mixing functional over-localizes the water near

the ions, so it is also possible that the location of the outer Helmholtz plane is

predicted incorrectly by our model. Finally, the ion-water cluster model coarse-

grains the charge density due to the half solvation shell of water around the

ions in the inner Helmholtz plane and the full solvation shell of water around

the ions in the outer Helmholtz plane, another significant approximation. Thus,

a more advanced water-ion mixing functional (such as a weighted-density ap-

proach) and a more microscopically accurate ion model will likely be required to

achieve quantitative agreement with the experiment. Despite these subtleties,

it remains quite impressive that a first attempt at explicit JDFT captures both

the features of the nonlinear capacitance and the origins of those features in the

interfacial structure of the liquid.

4.7 Conclusions

In the preceding chapter, we explored the promise of JDFT with an atomically

detailed classical DFT description of the liquid electrolyte for predictive cal-

culations of electrochemical systems, expanding upon the work presented in

Chapter 3. We developed a classical liquid functional Ωlq for the electrolyte and

investigated the efficacy of the JDFT coupling functional ∆A from Chapter 2 for

describing the interaction between a charged electrode surface and a classical

liquid. We have established a framework for considering an electrode under

applied potential control, ensuring the charge in the fluid balances the charge

on the electrode and preventing divergence of the electrostatic energy due to a

net charge in the periodic unit cell. We then demonstrated that our charge bal-
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ance framework, along with the potential of an electron deep within the bulk

fluid, naturally provides an absolute reference potential for comparison to elec-

trochemical measurements. Furthermore, we establish the relationship of our

reference electrode to the Standard Hydrogen Electrode, allowing the chemical

potential in our JDFT calculations to be directly related to the electrode potential

in differential capacitance measurements and cyclic voltammograms. Finally,

we showed that Explicit JDFT can capture the qualitative features of the non-

linear capacitance of metal electrodes in non-adsorbing electrolyte, connecting

the increased capacitance above the PZC with movement of the anions from the

outer Helmholtz layer to the inner Helmholtz layer.

The above success of JDFT at capturing the structure-driven changes in the

differential capacitance of Ag(111) is especially impressive given the primitive

nature of the ion-water mixing functional and the coarse-graining of the model

ions. Of course, the systematic under prediction of the numerical value of dif-

ferential capacitance by JDFT compared to the experimentally measured value,

as clearly demonstrated in Figure 4.16, is likely due to imperfections in the rel-

atively simple linear functional used to approximate the ion-water interaction.

The clear path forward for improving the liquid functional is to return to the

unsolvated ions, which caused the water to over structure and predicted an un-

physically high vapor pressure in this work, and correct the mixing functional

to mitigate these physical concerns. Constructing a weighted-density inspired

mixing functional based upon an equation of state for the electrolyte [35] would

both delocalize the water-ion interaction to prevent over structuring and repro-

duce the vapor pressures by construction. As the mixing functional is currently

framed as an ion-oxygen interaction only, we could also include the interaction

between the ions and the hydrogen atoms by evaluating our equation of state
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at the polarizability weighted density in Equation 4.11. If necessary to prop-

erly capture the electrolyte equation of state, we could also add ion-ion inter-

actions beyond the mean-field coulomb interaction and hard sphere repulsion.

The long-range structure making and breaking properties of ions could also be

captured by altering the effective temperature of water – structure-makers lower

the effective temperature while structure-breakers raise it [179].

Because the present coupling functional was designed using solvation of

neutral molecules in neutral solvents, it would be ideal to benchmark this func-

tional’s predictions for charged systems more carefully. Including large and

small ionic species in the training set of Table 2.2 and then refitting the van der

Waals scaling parameter to capture solvation energies of charged systems could

help create a more robust and versatile coupling functional, thereby increasing

the versatility of JDFT. As van der Waals interactions are crucial to capturing

the attraction between water molecules and metal surfaces [40], one should also

benchmark the accuracy of the procedure for extending the Grimme set of c6

and R6 coefficients to ions and high atomic number metals (described in Sec-

tion 4.5.4). Once the accuracy of the extended Grimme set and the performance

of the JDFT coupling functional has been verified for solvation of quantum-

mechanical ions in pure water, JDFT calculations of the ions in Table 4.1 could

be used (instead of molecular dynamics) to determine the correlation functions

and solvation energies which parameterize the mixing functional.

With the improved liquid and coupling functionals, we may conduct de-

tailed studies of other electrochemical systems which are well-characterized in

the literature to benchmark our new functionals. We could investigate the ca-

pacitance of the silver surface in other electrolytes, substituting potassium for
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sodium as the cation [285], and considering other halides as the anion [159, 134].

Chloride, in particular, has been shown to interact more strongly with the sil-

ver surface, providing an interesting test case for the ability of a classical func-

tional to capture specific adsorption without quantum mechanics. Investiga-

tion of the dependence of the differential capacitance on the particular single-

crystalline face exposed to the electrolyte could also reveal particularly fasci-

nating geometry-dependent effects. Choosing to study gold electrodes offers

additional exciting features to explore, including a dependence of the PZC of

gold on the electrolyte due to anion adsorption [140, 51, 284]. In reactive metals,

such as the Pt-group metals, and many of the other transition metals, experi-

ments suggest that the double layer is formed mostly by the adsorbed species

[204]. However, the literature also reports almost no electrolyte dependence in

the differential capacitance of platinum [117], which is surprising if the dou-

ble layer originates from adsorbed ions. To settle this discrepancy, one could

include explicit, quantum-mechanical anions on the platinum surface within

JDFT to verify the specific adsorption phenomena suggested in the literature.

After investigating the limitations and strengths of JDFT on well-

characterized single-crystalline electrodes in aqueous solutions, we may next

focus our attention on predictive calculations for supercapacitor and battery

electrode materials in contact with novel electrolytes [5, 10, 52, 72]. In super-

capacitors, pseudocapacitive charging is the main mechanism by which energy

storage occurs and the amount of capacitance available in a given electrode ma-

terial depends on the geometry. For example, matching the pore size to the size

of the solvated ion in hierarchical carbon structures [191, 130, 129] can lead to

an increase in capacitance which can be predicted by classical DFT methods.

However, for novel electrode structures such as metal organic frameworks, in
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which the chemical identity and quantum-mechanical effects in the electrode

are important, a full JDFT approach would be required to capture such effects.

In batteries, the potential dependence of the desolvation and intercalation of

the working ion (usually Li+), could be captured by using JDFT to determine

the potential at which the ions begin to move into the inner Helmholtz plane.

Finally, the reaction rates and kinetics of quantum-mechanical processes on the

electrode surface could be captured by joining transition state theory and AIMD

with JDFT to compute reaction barriers. Time-dependent electrolyte processes,

such as diffusion of reactants to the electrode surface, could be captured by

including dynamical info within the classical DFT in the spirit of the Nernst

equation [33, 131].
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CHAPTER 5

SRTIO3 ELECTRODES UNDER WATER-SPLITTING CONDITIONS 1

5.1 Overview and Motivation

5.1.1 Introduction to SrTiO3

Out of a myriad of multi-featured complex oxide materials, the perovskite stron-

tium titanate (SrTiO3 or STO) is one of the most fascinating because it is known

to split water under illumination with sunlight (see Figure 5.1 for the unit cell

of the bulk crystal). The products of hydrolysis under either basic or acidic con-

ditions are oxygen gas (O2) and hydrogen gas (H2),

2H2O
 2H2 + O2, (5.1)

though the reaction pathways are necessarily different in different electrolyte

environments. In recent years, scientific interest in generating electricity and

fuel from sunlight and water[201, 307] has grown due to concerns about en-

ergy security and climate change. STO is especially tantalizing because it per-

forms oxygen reduction and hydrogen evolution, even without the presence of

an applied voltage bias [308, 183], and yet, it is stable to dissolution under a

wide range of conditions [121]. In order to split water efficiently, however, the

band gap of the light-absorbing material (in this case bulk STO) should align

with the peak of the solar spectrum. Unfortunately, the band gap of STO is

1Co-author credits: D. Gunceler helped perform the vacuum structure search described in
section 5.4, and helped develop the hypothesis of the anatase-like structure for the activated
surface. M. Plaza, X. Huang, J. Rodriguez-Lopez, and the research groups of D. Schlom, H.D.
Abruña, and J.D. Brock performed the experiments. This work is under review in Nature Mate-
rials [220].
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Figure 5.1: At room temperature, STO is a cubic perovskite material with a lat-
tice constant of 3.91 Å. The Ti atom (silver) is at the body center surrounded by
an octahedron of O atoms (red). The Sr atoms (yellow) are at the corners of the
cube. The structure thus consists of alternating layers of SrO and TiO2

Figure 5.2: Solar Flux as a function of photon energy (eV) with peak at approx-
imately 2 eV [25]. STO band gap (3.2 eV) falls significantly beyond the peak
[63].

3.2 eV [63], which is somewhat too large for efficient absorption of the pho-

tons in sunlight (see Figure 5.2). Even though STO is not a commercially viable

water-splitting material, it remains an excellent fundamental system for study

of photo-catalyzed water splitting. Despite the simplicity of the STO water-

splitting system, the activated surface structure and the reaction mechanisms of

the STO surface in aqueous environments are largely unknown. Understanding

of the fundamental physics which allows strontium titanate to split water at no

applied bias would help inform the design of the energy materials of the future.
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5.1.2 Theoretical Studies of Water-Splitting Materials

Density-functional theory (DFT) has been applied successfully to study bulk

complex oxides such as STO [287, 23], and has also been instrumental in de-

veloping our understanding of physical phenomena associated with vacuum-

terminated surfaces [65], materials’ interfaces [9], nanomaterials [224, 291], and

molecules [41]. Theoretical studies of reaction pathways for water splitting on

ideal TiO2 surfaces [235, 291] and large photo-synthetic molecules [186, 312]

have been undertaken, but the literature has largely ignored fundamental sur-

face studies on the more complex oxides, such as the perovskites. Instead, stud-

ies of STO water-splitting to date have relied upon calculating properties that

correlate with high activity [292] or studying modifications to the bulk struc-

tures [69]. Many of these high-throughput studies ignore the effect of the liq-

uid environment completely. The dissociation of water has been studied using

force fields on rutile and anatase TiO2 [226], indicating that hydrogen bonding

between an explicitly adsorbed water layer and the liquid water is correlated

with the extent of water dissociation. However, the effects of voltage and ionic

strength are not considered in these force-field studies. Finally, X-ray measure-

ments have been combined with DFT to calculate the structure factors of ru-

tile (110) in liquid electrolyte [318], but these measurements did not consider

the water-splitting reaction.

Fundamental mechanistic studies of water splitting in a true electrochem-

ical environment are clearly needed to explain the nuances of photo-catalytic

activity of these more complex materials. However, first principles calculations

have not yet reached their full potential when applied to such systems, where

the presence of a liquid electrolyte strongly influences reduction and oxida-
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tion at the electrode surface. Joint density-functional theory[218] (described in

Chapters 3 and 2) builds upon the proven power of electronic structure calcula-

tions for understanding physical phenomena by adding a microscopically accu-

rate and simultaneously computationally tractable description of the liquid elec-

trolyte environment. Joint density-functional theory therefore has the potential

to become a vital tool for discovery of the fundamental microscopic mechanisms

involved in charge transfer processes at electrode surfaces, which are quite chal-

lenging to determine, either experimentally or with any other computational

method.

5.2 Experimental Background

We now review an electrochemical mystery regarding how STO behaves under

water-splitting conditions and solve this mystery through a novel synthesis of

theoretical and experimental techniques.[220]

5.2.1 Sample Preparation

To experimentally characterize the water-splitting properties of STO, our col-

leagues require a smooth, contaminant-free surface with a measurable activ-

ity for the oxygen reduction reaction in Equation 5.2. They used a com-

mercially available SrTiO3(001) single crystal wafer, which they then cleaned,

etched, and annealed at high temperature. Atomic Force microscopy (AFM)

measurements[24] in Figure 5.3 show the careful preparation results in a smooth

surface with single-layer thick atomic terraces due to a slight mis-cut of the sam-
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Figure 5.3: AFM image (Tapping mode AFM image of SrTiO3 after surface
preparation. The inset shows the height profile of the shadowed area of the
AFM image. Atomic terraces were about 0.5 nm in height and 90 nm in width

ple away from the perfect (001) truncation. After the initial surface preparation,

samples were annealed again at low oxygen pressure to produce oxygen va-

cancies, which are necessary to n-dope the sample and enhance the electrical

conductivity. UV-visible reflectance measurements[78] confirm the increased

conductivity of the sample after doping. Using the SECM technique descibed in

Section 5.2.2 below, our colleagues found the added conductivity provided by

the oxygen defects in the STO is necessary to produce water-splitting activity

(the undoped surface shows no activity).

5.2.2 Measurement of Water-Splitting Activity

The water-splitting reaction (Equation 5.1) produces hydrogen (H2) and oxygen

(O2) when an STO surface is illuminated with UV light (even when the circuit

is open and no bias is applied). Our colleagues employ Scanning Electrochem-

ical Microscopy (SECM) to determine the electrochemical activity of the STO

sample. SECM [13, 14, 160] is a versatile measurement technique in which a
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Figure 5.4: SECM in O2 substrate collection mode. Hg/Au amalgam tip detects
oxygen produced by the water splitting reaction at the SrTiO3 electrode at open
circuit.

specially designed micro-electrode tip is brought within microns of a substrate

and biased to produce a current when specific reactions occur on the surface

(Schematic in Figure 5.4). The tip composition is chosen to be sensitive to a par-

ticular product of the reaction. In this case, an Au/Hg amalgam tip can be used

to detect O2 gas [188] through the oxygen reduction reaction (ORR),

H2O + 2O2 + 4e− 
 4OH−. (5.2)

The SECM tip can remain stationary in order to measure surface composition

and reactivity as a function of time, or it can be moved across the surface to

determine spatial variations. SECM studies can also be carried out while the

substrate is under illumination with a UV lamp, and can measure almost in-

stantaneous changes in photo-catalyzed oxygen and hydrogen evolution as a

function of the illumination.

Our collaborators used the SECM technique described above to measure the

rate of generation of O2 from the water splitting reaction on STO under a vari-

ety of experimental conditions. Figure 5.5 shows the O2 current as a function

of time, for a sequence of sample conditions with no applied bias (e.g. at open

circuit potential or OCP). The dark and light stripes indicate where UV light has
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Figure 5.5: SECM collection with UV light on/off: (blue) 0.1 M NaOH before
biasing potential, (red) after biasing to 0.8 V vs. Ag/AgCl for 40 minutes, (black)
upon immersion in 0.1 M H2SO4 and (green) after returning to 0.1 M NaOH. The
oxygen generation rate is proportional to the current.

been turned off and on so water splitting stops and starts. Because the oxygen

generation rate is proportional to the current, these current traces relate directly

to water-splitting activity. Because the instantaneous reaction rate is highly vari-

able, the average reaction rate provides the most accurate results. Thus, the inte-

gral of the current with respect to time (corresponding to the amount of oxygen

produced in a fixed time) is the best measure of water-splitting activity.

First, the STO sample, prepared using the procedure of Section 5.2.1, is

freshly immersed in a basic solution of 0.1 M NaOH (top, blue curve) at OCP.

Then, the electrode is biased to an oxidizing voltage of 0.8 V vs Ag/AgCl for

about 40 minutes then returned to OCP. After this biasing, the activity of the

electrode at OCP increases by about 260% (second, red curve). If the sample is

then immersed in acid, the activity (third, black curve) vanishes because there

is no OH− intermediate to drive the reaction. However, when the sample is re-

turned to the basic solution at OCP (last, green curve), it once again attains the

enhanced activity. Therefore, it appears that biasing the sample to an oxidiz-

ing potential irreversibly trains the surface to exhibit a higher activity for water

splitting. However, the electrochemistry alone gives no indication of the origin
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of this training.

5.2.3 X-ray Reflectivity Measurements

Another tool which provides clues about this mystery is X-ray reflectivity,

specifically measurement of the crystal truncation rods at the surface [8, 232].

Figure 5.7 shows the crystal truncation rods (CTR), which are a direct measure-

ment of the amplitude of the structure factor squared versus the wavevector ~q

in reciprocal lattice units (r.l.u.), for STO under several different conditions. An

infinite perfect crystal would produce intensity only at the Bragg peaks, or at

the integer values of the wavevector ~q. When the crystal is terminated, how-

ever, signal appears between the Bragg peaks. Variations in this signal occur

when the atoms at the surface are strained so they are no longer in their bulk

crystalline positions, thus allowing crystal truncation rods to be used to analyze

surface structures with sub-Angstrom resolution. High intensity X-rays, such

as those from a synchrotron, are required in order to provide sufficient signal

between the Bragg peaks, so the measurements are performed at CHESS (Cor-

nell High Energy Synchrotron Source). Figure 5.6 shows the experimental setup

for these reflectivity measurements, including a specialized area detector, a UV

lamp for shining light on the sample, and an electrochemical cell for performing

operando measurements while the water-splitting reaction is in progress.

Figure 5.7 shows the experimental data for the specular (0 0 L) truncation

rods of the STO sample (a) in air, (b) freshly immersed in liquid at open circuit

potential (OCP), and (c) after biasing to an oxidizing potential. The signal be-

tween the Bragg peaks differs significantly between each sample, indicating a
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Figure 5.6: Schematic of the experimental set-up for in situ X-ray reflectivity of
SrTiO3 during photoassisted electrochemistry

different surface structure is present in each. In order to track these changes in

the surface, we therefore define a reaction coordinate as the value of the struc-

ture factor squared at qz = 1.5 in reciprocal lattice units and show a schematic of

how the surface changes in Figure 5.8. As the surface is first put into liquid at

OCP, and then again as it is biased to oxidizing potentials, the reaction coordi-

nate increases. This reaction coordinate therefore appears to be correlated with

the higher activity for water splitting. Finally, the initial CTR measurements of

the immersed surface were repeated with 0.1 M CsOH to verify that the surface

structure is not sensitive to the choice of cation in the electrolyte.

Because the X-ray signature of the final, trained surface (in red) is stable,

despite submerging the sample in acid and removing it from the liquid, these

results indicate the higher activity may be the result of a significant and irre-

versible structural change of the surface. Because the X-ray intensity increases

rather than decreases as the activation of the surface proceeds, this change is

not just due to increasing roughness [232], but actually indicates some increase

in surface ordering. The vacuum surface has been characterized both theoreti-

cally and experimentally [65], and it has been found to be a double-terminated
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Figure 5.7: (0 0 L) structure factor of SrTiO3 in air (blue), in 0.1 M NaOH at open
circuit before (black) and after (red) biasing at +0.8 V vs. Ag/AgCl. Solid lines
correspond to best fits to atomic models which minimize χ2.

Figure 5.8: Reaction coordinate map to the evolution of |F|2 at (0 0 1.5) r.l.u.
of samples under different conditions: Blue, doped or undoped SrTiO3 in air;
Black, doped SrTiO3 in 0.1 M NaOH or 0.1 M CsOH before biasing; Red, doped
SrTiO3 in 0.1 M NaOH after biasing

TiO2 surface (meaning the terminating layers are TiO2/SrO/TiO2/TiO2) with a

2 × 1 reconstruction parallel to the surface. However, the exact structure of the

surface under bias, and in electrolyte is heretofore undetermined. The operando

surface (while operating and actively splitting water) could have a different ter-

mination, reconstruction, or geometry than the vacuum surface. In particular,

the operando surface likely has molecules or reactants/products such as OH− or

H2O adsorbing and de-adsorbing at active sites.
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Typically, experimentalists determine the surface structure by non-linear

least squares fitting of the locations of the lattice planes, the occupancies of the

atoms in those planes, and the widths of the planes (also known as Debye Waller

factors) to the experimental |F|2 data. They use the reduced chi-squared param-

eter,

χ2 =
1

N − n − 1

N∑
i=1

(S i − f (qi))2

σ2
i

, (5.3)

to measure the quality of the fit to be optimized. Here, N is the total number

of data points; n is the number of adjustable parameters; σi is the experimen-

tal error at the scattering wave vector qi, mainly from the stochastic noise in

the photon-counting statistics; S i is the measured experimental data at qi; and,

S (qi) is the expected X-ray signal at qi, calculated from the assumed atomic po-

sitions, vacancy concentrations, and Debye-Waller factors. The solid lines in

Figure 5.7 show the fit-based interpretation of the CTR data for the STO after

biasing. The choice of atomic model is not unique, and significantly different

choices of surface composition can lead to comparably high levels of accuracy

in the fit because of the high number of adjustable parameters available. There

is also no guarantee that the structures produced from pure fitting to the X-

ray data are realistic. For example, when the atoms are placed in the X-ray fit

locations, the DFT-computed forces on the atoms are often quite large, indicat-

ing structures far from equilibrium. It would be far preferable to have a way

to predict this structure directly from fundamental physics – without a purely

empirical fitting procedure.
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5.3 Theoretical Determination of Surface Structures

The JDFT framework[218], even with a simplified description of the liquid en-

vironment, has been proven reliable for mapping electrochemical observables

to ab initio computables in [163] and Chapter 3. A single DFT calculation which

makes specific choices for the orientation of the liquid molecules at the electrode

surface [283, 132] is insufficient to predict electrochemical observables because

the effects of screening from the electrolyte on the surface often depend on the

spatially and temporally averaged structure of the liquid, not a single configu-

ration. A classical liquid functional, on the other hand, captures the microscopic

details of the thermodynamically averaged interfacial liquid structure and pro-

vides highly accurate predictions of solvated atomic structure and the electronic

properties of solvated systems.

5.3.1 Crystal Truncation Rods from JDFT

Once the relaxed atomic positions, electron density, and fluid density profiles

are determined from a JDFT calculation with a given stoichiometry and surface

configuration, we may use them to compute the X-ray structure factor F(~q) with

no adjustable parameters. We do not require tabulated form factors, nor is there a

need to guess the relevant oxidation states of the surface atoms. The main quan-

tity required for a completely first principles prediction of a crystal truncation

rod (CTR) is the total electron density (including valence, core, and fluid elec-

trons) averaged over the planes perpendicular to the X-ray scattering vector. In

the present case of specular reflection, we compute this average over the planes

parallel to the surface (the x- and y-coordinates), leaving the electron density as
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Figure 5.9: Schematic of X-ray structure calculation from first principles, with
a region representing each of the 3 terms from Equation 5.4. The DFT lattice
constant is a0 and az is half the length of the DFT supercell in the z-direction (see
Figure 5.17)

a function of the coordinate perpendicular to the surface (the z-coordinate). We

thus first calculate ntot(~r) from JDFT using Equation 2.1 from Chapter 2 and then

average it over the plane parallel to the surface to find n̄tot(z) =
!

ntot(~r)dxdy.

With this electron density profile, the structure factor for a specular X-ray CTR

(~q = q⊥ = [0 0 2πL/a0]) is then

F(~q) =

∫ a0

0
n̄bulk(z)eiq⊥zdz

1 − eiq⊥a0
+

∫ az

0
n̄tot(z)eiq⊥zdz +

nb
f le

iq⊥az

iq⊥
. (5.4)

Figure 5.9 displays the physical origin of each of the terms in Equation 5.4

for an STO surface with a two-layer TiO2 termination. The first term in Equa-

tion 5.4 gives the scattering from a (semi-)infinite bulk crystal below the surface

from locations z = 0 to z = −∞, whose electron density we take to be that of

an unperturbed, infinite bulk crystal. The numerator of this term represents the

scattering from a single unit slab of thickness a0, and the denominator repre-

sents the phase sum for the semi-infinite collection of layers. In practice, we

obtain the planarly averaged electron density n̄bulk(z) from an ab initio bulk unit

cell calculation with lattice constant a0. The last term, similarly, represents the

scattering from a semi-infinite layer of bulk liquid of average electron density

nb
f l extending from location az to ∞. Because of the translational invariance of
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the fluid far from the surface, this bulk electron density is constant.

The second term, which includes all the important interfacial effects, is sim-

ply the fourier transform of the total electron densityn̄tot(z) from the JDFT cal-

culation of the surface. Finally, we note that this total density n̄tot(z) includes

several key components: 1) the valence electron density n(~r) of the quantum

mechanical electrode, 2) the valence electron density n f l(~r) of the fluid, deter-

mined by the atomic fluid density fields and a single quantum mechanical cal-

culation for each type of fluid molecule, and 3) the core electron density ncore(~r),

determined by the all electron calculations used to generate the atomic pseu-

dopotentials. Section 5.5 describes further numerical and computational details

of these calculations.

5.3.2 JDFT-guided Least-Squares Fitting

Nonlinear least-squares fitting allows the atoms to move away from their JDFT

minimum energy positions to consider the effect of non-equilibrium processes

and develop partial occupancies and Debye-Waller factors to account for de-

fects and disorder. We may ensure the physicality of these fits by minimizing a

residual R2 which includes both χ2 from Equation 5.3 and a penalty function to

prevent the fit positions {ηI} from varying significantly from the JDFT predicted

positions {ZI},

R2 = χ2 +
1
2

κ

kBT

∑
I

(ηI − ZI)2. (5.5)

In this new residual, the tabulated form factors for the explicit atoms located at

fit positions {ηI} and the electron density of the fluid n f l(~r) predicted from JDFT

are combined to compute the structure factor S (qi) in χ2. The constant κ
kBT in
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Equation 5.5 determines the relative weight of the penalty function compared

to χ2, and may be related to an effective spring constant κ and temperature-

dependent energy scale kBT .

Two figures of merit characterize the quality of the resulting fit. First, the

root-mean-squared displacement of the fit positions of the atoms from the JDFT-

predicted positions,

zrms =

√
1
NI

∑
I

(ηI − ZI)2, (5.6)

gives a direct measure of the spatial distortion from the pure ab initio structure.

Second, the calculated JDFT excitation energy of the fit structure gives a mea-

sure of the distortion relative to the known inaccuracies of density-functional

theory. Any fit structure which has an excitation energy of only a few times

kBT per fit atom (the inherent accuracy of typical approximations to density-

functional theory) and a zrms of around 0.1 Å (the typical extent of atomic vibra-

tions in bulk crystals) would be considered physically realizable.

5.4 First Principles Predictions for Strontium Titanate

With the combination of the JDFT framework in Chapter 2, the recipe for cal-

culating crystal truncation rods from first principles in Equation 5.4, and the

JDFT-guided fitting procedure in Equation 5.5, we are able to make meaningful

theoretical predictions for operando X-ray signatures. Previous work [318] has

established that DFT calculations can be a valuable tool for interpreting CTR’s

of TiO2 in a liquid environment, but that work did not include the water split-

ting reaction and involved theory that considered only ideal vacuum surfaces,

without including the liquid environment or the relaxation of the surface in the
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presence of the liquid. JDFT, on the other hand, provides a prediction of not

only the interfacial liquid structure, but also the effect of the screening from the

liquid environment on the electronic structure of the electrode and the positions

of each atomic layer. Finally, the JDFT constrained fitting procedure allows us to

consider any additional variation away from the ideal surface due to disorder,

defects, and non-equilibrium processes.

JDFT does, in fact, predict hydrogen bonding and physisorption effects ac-

curately (see Figures 2.8 and 2.10 in Chapter 2), so associative water adsorption

is captured within the classical liquid functional. However, covalent bonds or

charge transfer reactions between the liquid molecules and electrode must be in-

cluded in the quantum mechanical portion of the calculation (FKS [n(~r] in Equa-

tion 2.1). For each surface termination or stoichiometry considered, we must

thus consider hydroxide, water, and oxygen chemisorption explicitly within the

quantum-mechanical functional. Additionally, reconstructions of the solid ma-

terial parallel to the surface which result from rearrangements of the electrode

atoms must be considered explicitly (though the classical DFT fluid does ac-

count for statistical averages over reconstructions of the fluid parallel to the

surface, including partial coverages of water, even when working with a single

unit cell of SrTiO3). The extremely large phase space of possible configurations

of the solid surface which must be explored makes this endeavor quite daunt-

ing, and virtually impossible to approach with molecular dynamics due to the

additional complication of thermodynamically sampling the liquid. JDFT is an

ideal technique for this problem because it is both computationally efficient and

microscopically accurate.

To consider all potential SrTiO3 surface terminations which could be partic-
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ipating in the water splitting reaction, we performed a large scale JDFT search

over many stoichiometries and surface compositions [124]. We explored surface

structures with different number of terminating SrO or TiO2 layers and hori-

zontal reconstructions (1 × 1, 2 × 1 and
√

2 ×
√

2), including several structures

presented in the literature [65, 66, 248]. Adsorbed species involved in the water-

splitting reaction (O2−, OH− and H2O) were also considered on each surface. To

reduce the computational demands, JDFT calculations were performed at vary-

ing levels of approximation for the liquid. We first evaluated a large number

of surfaces within implicit solvation theory [100], and the promising candidates

were then recalculated with explicit JDFT [266, 262]. Finally, we considered

those surfaces which were stable, but not necessarily the global minimum of

free energy. We chose to include local free energy minima for two reasons. First,

the water splitting reaction is a non-equilibrium process with multiple interme-

diate states. Second, the global minimum of free energy is difficult to determine

because chemical potentials for reaction constituents such as O (needed to com-

pare free energies of non-stoichiometric surfaces) depend on the details of the

particular reaction pathway and local concentration gradient, so are difficult to

obtain from simple pH arguments.

5.4.1 Surface In Air

Figure 5.11 shows the CTR predictions for some of the best candidates for the

surface in air found in the large-scale structure search. The three best-agreeing

structures are all double TiO2 terminated; one is the 2×1 reconstruction from the

literature [65], the second has a higher symmetry 1×1 unit cell, and the third has

adsorbed OH on the surface. The realspace images for these three candidates
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Figure 5.10: Realspace images of potential candidates for domains on STO in
air: (a) 1 × 1 unit cell with no adsorbates; (b) 1 × 1 unit cell with adsorbed OH;
(c) relaxed 2 × 1 reconstruction from the literature [65]

are shown in Figure 5.10. Some features of each CTR agree reasonably well with

the experiment (blue squares), but overall none of the individual calculations

reproduces the experimental X-ray signal across the full range of wavevectors.

Since the experimental data does not appear to show the extra diffraction spots

associated with a long-range reconstruction, STO in air likely includes a mix-

ture of short-range reconstructed domains. This result is in agreement with the

experimental interpretation for STO in air [111, 294]. One could then attempt to

model the effect of the mixture of reconstructed domains by combining the cal-

culations for individual surfaces into a weighted average with the weights fit to

the experimental data. In Figure 5.12 we show a structure factor (purple dotted

line) which is a linear combination of the structure factors computed for the can-

didate surfaces in Figure 5.10, with the 2 × 1 reconstruction as the most heavily

weighted structure. Clearly, the agreement between the experimental data and

the linear combination of structure factors is much better than the agreement for

any of the pure structure factors alone.
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Figure 5.11: First principles CTR predictions compared to experimental X-ray
signal (green squares) for the three candidate surfaces in Figure 5.10: (a) dotted
green line (b) dashed purple line (c) solid black line

Alternatively, it is possible to address the imperfections in the air surface

using the vacuum DFT-guided fitting procedure in Equation 5.5 with constant

κ
kT = 20 Å−2. The best fit structure in air has a total DFT-calculated excitation

energy from the relaxed vacuum structure in the literature [65] of only 0.26 eV,

or 0.012 eV (less than kT/2) per atom included in the fit. The JDFT-guided fitting

procedure yields the structure factor (solid green line) in Figure 5.12, which is

almost indistinguishable from the experimental data. The rms displacement in

the best fit positions compared to the DFT-predicted positions is zrms = 0.035 Å

with a maximum change of 0.2 Å for a single atom.
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Figure 5.12: JDFT-informed CTR fits compared to experimental X-ray signal
(green squares) for the STO surface in air using two different methods: linear
combination of the fully ab initio CTR predictions in Figure 5.11 (dotted purple
line) and minimizing the penalty function in Equation 5.5 to constrain the fit to
the known vacuum structure[65] (solid green line).

5.4.2 Freshly Immersed Surface

For a SrTiO3 surface freshly immersed in a liquid electrolyte, JDFT-calculated

crystal truncation rods (CTRs) agree with X-Ray reflectivity measurements with

no parameters whatsoever fit to the experimental X-Ray data. The surface config-

uration which agrees best (CTR shown by the solid black curve in Figure 5.13

and structure shown in Figures 5.14(a) and 5.17(a)) is a double TiO2 terminated

surface with no specific chemical adsorption (only physisorbed water provided

automatically by the JDFT fluid). The z-positions (distance perpendicular to the

interface) for each atom in this structure are presented in Table 5.1 in the lattice

coordinates of the bulk STO unit cell. Because the CTRs are highly dependent
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upon the slight displacements of atomic layers away from their bulk positions,

the excellent agreement with the experiment indicates the high accuracy of the

JDFT-predicted atomic positions and liquid structure.

Additionally, Figure 5.13 indicates the superior agreement for the CTR pre-

diction when including the thermodynamically sampled liquid within JDFT

(solid black curve), compared to including a single explicit layer of water in

a vacuum calculation (dashed blue curve). The vacuum calculation includes re-

laxed water molecules which dissociate, covalently bond with the surface, and

alter the atomic structure, while the JDFT calculation assumes liquid water with

shell structure. An additional feature of the classical DFT description is that,

unlike adding a layer of explicit water molecules, CDFT allows water to attain

a partial coverage on the surface within a calculation of a single unit cell and is

not constrained to integral numbers of water molecules within the cell.

Additional features of the STO-water interface may be discovered upon

examination of the real-space images in Figure 5.14. These images are each

3a0 = 11.82Å by 30 Å in dimension. We include the Sr, Ti, O, and H atoms

of the quantum mechanical surface as yellow, grey, red, and blue spheres with

radii exactly half their van der Waals radii. The valence electron density of the

quantum mechanical system is represented by dual green contours, appearing

at n(~r) = 0.1 Å−3 and n(~r) = 0.013 Å−3. The purple-blue background appears

where the fluid oxygen density NO reaches at least half the bulk density of liq-

uid water (Nb = 0.033 Å−3) mapped onto a plane with surface normal pointing

out of the page. The red and blue contours represent the oxygen and hydrogen

densities in the liquid, respectively, where NO(~r) = NH(~r)/2 = 1.1Nb. Thus, con-

tours are only present in locations with significant shell structure in the fluid.
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Figure 5.13: JDFT predicted CTR (solid black line) which agrees best with X-ray
measurements (black triangles) for freshly immersed STO surface compared to
the vacuum CTR for the same surface composition with a single water molecule
per unit cell relaxed within DFT (dashed blue line).

As shown in Figure 5.14(a), the freshly immersed, “untrained” surface may

be contained in a single unit cell parallel to the surface. This JDFT-predicted

surface therefore possesses a higher degree of symmetry and is quite distinct

from the 2 × 1 reconstruction which is a free-energy minimum in vacuum or

air calculations presented in the literature [65, 107]. Despite its simplicity, this

surface composition matches the experimental X-ray data far more closely than

any of the more complicated reconstructions considered. We thus hypothesize

that the screening from the liquid passivates the strong fields which drive the

process of reconstruction and therefore leads to more symmetric surface. The

extent of fluid density contours at the surface and extending into the bulk of the

fluid also indicates noteworthy structure in the interfacial water. One potential
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Figure 5.14: (a) The JDFT structure for the (001) surface of STO at open circuit
before biasing. (b) The activated JDFT structure for the (001) surface of STO at
open circuit after biasing. Yellow spheres are Sr, red are O, and silver are Ti
atoms. Green, red, and blue density contours represent electron, oxygen, and
hydrogen density respectively.

explanation for this highly ordered liquid structure is a match between the min-

imum oxygen-oxygen distance in the TiO2 layers on STO (2.79 Å) and the same

quantity in cubic ice (2.90 Å with a cubic ice lattice constant of 6.69 Å).

5.4.3 Activated surface

It was a greater challenge to identify the structure of the more com-

plex, “trained” SrTiO3 electrode surface, which reorders after biasing under

water-splitting conditions. Of the approximately 100 surface topologies and
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chemistries explored, nearly all failed to agree with the experimental CTR for

the activated surface, with the difference being most striking in the middle

range of scattering vectors, between the first and second Bragg peaks (as mea-

sured by the reaction coordinate |F|2 at ~q = 2π
a0

[001.5]). After this intensive search,

finally a structure with a triple layer Ti-rich termination yielded a promising re-

action coordinate. The identified structure is anatase-like in the stacking of the

Ti atoms (see Figure 5.17(b) for a clear picture of the layer stacking), but is under

a strain of over 3% from the anatase lattice parameter.

Close investigation of the real-space data presented in Figure 5.14(b) pro-

vides additional information about the interfacial structure and possible func-

tion of the activated surface. This trained surface is terminated by non-

stoichiometric TiO2−x with x = 0.25, consisting of two layers of TiO2, then a layer

of Ti2O2, and finally one hydroxide bonded to the outermost titanium. Further-

more, comparing the trained surface in Figure 5.14(b) to the freshly immersed

surface in Figure 5.14(a) reveals that at least one layer of SrO has been stripped

from the surface during activation, possibly explaining the irreversibility of the

training process. The fluid density profile in Figure 5.14(b) also indicates the

orientation and location of the water molecules binding to the surface, therefore

offering insight into potential mechanisms by which water splitting might pro-

ceed. Namely, the small pockets of fluid oxygen density shown on the trained

surface in the same plane as the adsorbed hydroxide could indicate a possible

active site for the water-splitting reaction.

The predicted CTR for this structure with no fit parameters is shown by the

red dotted line in Figure 5.15. While this prediction is clearly not an exact match

to the experimental data, our exhaustive search for alternatives (as well as the
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Figure 5.15: Comparison between CTR predictions for minimum energy JDFT
structure with no fitted parameters whatsoever (dotted red line), the best JDFT-
guided fit to that structure (solid red line), and experimental data (red triangles)
for the trained surface.

success of the JDFT-guided fitting procedure described below) leaves us con-

fident that the discrepancies are due to non-equilibrium processes during for-

mation, defects, and disorder at the surface. To account for the aforementioned

processes, we used the JDFT-guided fitting procedure and the objective function

in Equation 5.5 with constant κ
kT = 10 Å−2. Table 5.2 tabulates, for the activated

surface, the best fit positions, occupancies, Debye-Waller factors, and distortions

from the ideal JDFT-determined positions. The corresponding CTR prediction

for the best fit structure is shown by the solid red line in Figure 5.15.

The best fit structure has a total DFT-calculated excitation energy from the

ab initio minimum energy structure of only 0.73 eV, or 0.045 eV (less than 2kT )
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per atom of the 16 atoms included in the fit. The rms displacement in the best fit

positions compared to the JDFT-predicted positions is zrms = 0.11 Å with a max-

imum change of 0.22 Å for a single atom. We judge these distortions, close to

the underlying uncertainties of density-functional theory, to be quite reasonable

given the non-equilibrium nature of the surface. Finally, the partial occupancy

(near 0.5) of the top Ti atom in the fit suggests a stoichiometry between TiO2 and

Ti2O2. Kinetic processes or oxygen vacancies from the n-type doping diffusing

to the surface can readily account for this level of oxygen-deficiency from our

idealized structure.

5.4.4 Uncertainty Analysis

There is also some resulting uncertainty in the fluid structure due to flexibility

in our construction of the functional ∆A in Equation 2.1 of Chapter 2, which cou-

ples the surface and the fluid. Namely, we choose the Grimme van der Waals

scaling parameter γ in ∆A based upon solvation of neutral molecules rather than

polar surfaces. If we allow that parameter to vary within the physical range of

0 ≤ γ ≤ 1.0, we obtain a range of structure factor predictions which corresponds

to adjusting the strength of the van der Waals binding of water to the polar sur-

face. In the spirit of ensemble error analysis [265, 193], Figure 5.16 indicates the

corresponding range of JDFT predictions for the CTRs in Figures 5.13 and 5.15.

The agreement with experimental data remains good for all plausible choices of

γ.

A similar sensitivity analysis could be performed upon each of the partial oc-

cupancies, Debye-Waller factors, and atomic positions tabulated in Table 5.2 and
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Figure 5.16: JDFT results from Figures 5.13 and 5.15 with a sensitivity analysis
performed on the construction of the coupling functional (describing interac-
tions between the fluid and the electrode). Black and red points represent the
experimental data for the freshly immersed and trained surfaces respectively,
while the corresponding grey and pink shaded regions represent the full range
of physical predictions for the effect of a non-reacting fluid on the surface.

used to compute the JDFT-guided fit residual from Equation 5.5. Since this full

analysis would be quite a significant project, we content ourselves with qualita-

tive explorations of the response of the trained surface CTR signal in Figure 5.15

to each of these variables. The key feature which was not possible to capture

fully in the set of ab initio calculations is the inflection point at ~q = 2π
a0

[001.5]. An-

other significant discrepancy between the best fully ab initio prediction (dotted

red line) and the fit (solid red line) is the location of the minimum in the range

0.5 ≤ qza0
2π ≤ 1.0. In order to capture these significant features with the fit, it was

not sufficient to simply introduce distortions in position compared to the ab ini-

tio structure. Disorder in the structure, introduced through the Debye-Waller
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Table 5.1: Calculated positions z in bulk STO lattice coordinates

Atom z
Ti 0.000
O 0.000
O 0.000
Sr 0.500
O 0.500
O 0.991
Ti 0.999
O 1.008
O 1.498
Sr 1.500
O 1.935
Ti 1.997
O 2.066
O 2.493
Ti 2.557
O 2.653

factors, and the partial occupancy of the top titanium atom were both influen-

tial variables in capturing the inflection point, allowing the predicted signal to

be suppressed in the range 1.5 ≤ qza0
2π ≤ 2.0. In order to capture the location

of the minimum in the low-q regime, distortion and disorder was required in

a TiO2 layer buried several layers beneath the surface. As the Debye-Waller

factors have minimal importance below the first Bragg peak, the structure dis-

tortion was the more important factor in reproducing the features in the low-

wavevector regime.
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Table 5.2: Best fit positions z (bulk STO lattice coordinates), distortions from the
ideal JDFT-determined positions ∆z (as a fraction of the bulk lattice constant),
partial occupancies, and Debye-Waller factors.

Atom z ∆z Occupancy Debye-Waller Factor
Ti 0.000 0.0000 1.00 0.0037
O 0.000 0.0000 1.00 0.0048
O 0.000 0.0000 1.00 0.0048
Sr 0.500 0.0000 1.00 0.0044
O 0.500 0.0000 1.00 0.0048
Ti 1.007 0.0139 1.00 0.0037
O 0.945 -0.0566 1.00 0.0865
O 0.992 -0.0177 1.00 0.0048
Sr 1.514 0.0168 1.00 0.0044
O 1.513 0.0028 1.00 0.1689
O 1.966 0.0024 1.00 0.0263
Ti 1.998 0.0036 1.00 0.0713
O 2.077 0.0215 1.00 0.1899
O 2.561 0.0401 1.00 0.0048
Ti 2.587 0.0463 1.00 0.0037
O 2.646 -0.0365 1.00 0.0048
Ti 3.121 -0.0246 1.00 0.2276
O 3.226 -0.0107 1.00 0.0277
O 3.320 0.0017 1.00 0.0593
Ti 3.429 0.0179 0.48 0.0037
O 3.919 0.0471 1.00 0.0954
H 4.014 0.0000 1.00 0.0000

5.5 Numerical and Computational Details

5.5.1 Electronic DFT

We performed all ab initio calculations within the DFT++ framework[122] as im-

plemented in the open-source code JDFTx [267]. To solve for the minimum en-

ergy electronic wavefunctions (and the corresponding independent variables in

the fluid calculations) we employed direct minimization via the conjugate gradi-
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ents algorithm [209]. We used fully periodic boundary conditions with a plane-

wave basis and a plane-wave energy cutoff of 800 eV to sample these electronic

wavefunctions. To approximate the exact Kohn-Sham exchange-correlation en-

ergy in the electronic DFT functional, we employed the generalized-gradient

approximation [212]. At all times, we employ optimized norm-conserving

Kleinman-Bylander pseudopotentials [230, 228] to handle the separation be-

tween the valence and core electrons. The Sr and Ti pseudopotentials require

a partial core correction [172], which captures the essential features of the core

electron density in the spatial region where the valence electrons are present.

We use a single unit cell of SrTiO3 for the bulk crystal calculation, which

was then used to construct the surface geometries and to provide the electron

density n̄bulk(z) for use in Equation 5.4. The bulk calculation also determined the

DFT calculated lattice parameter of SrTiO3 to be a0 = 3.94 Å, less than 1% above

the experimental lattice constant[287]. In order to ensure accurate results for the

larger systems, we used the bulk system as a test case to check energy conver-

gence with both plane-wave energy cutoff and k-point sampling. The choice of

an 800 eV plane-wave cutoff and a 4×4×4 k-point mesh[190] (to sample the Bril-

louin zone) provides energy convergence in the bulk system to the accuracy of

DFT calculations (around room temperature kBT ). All surface calculations em-

ployed this same plane-wave cutoff and a k-point set which provides sampling

equivalent to a 4 × 4 × 4 k-point mesh in the bulk.

The supercells for the SrTiO3 surfaces were constructed as symmetric,

double-surfaced periodic slab geometries. These supercell geometries are

demonstrated in Figure 5.17 for the relevant surfaces in liquid. The vacuum

surfaces have been shown previously in Figure 5.10 for a single side only, but
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are constructed using the same symmetric slab geometry as the surfaces in liq-

uid. We used the minimal real-space unit cell in the x and y directions (parallel

to the surface) but maintained k-point sampling commensurate with the bulk

calculation (A 1 × 1 real-space cell with 4 × 4 × 1 k-point sampling for the exam-

ples shown). All unit cells were constructed to be inversion symmetric about

z = 0 with a distance of 2 ∗ az ≈ 40a0 ≈ 160Å between the centers of the peri-

odic surface images. Note that such a large distance was employed to allow for

structuring in the fluid densities at the surface. Some of the high-throughput

screening calculations in vacuum and in simplified fluid theories without shell

structure[100] instead employed Coulomb truncation to prevent image interac-

tion. We obtain the geometry of the SrTiO3 surfaces directly from the relaxed

nuclear positions {~RI} of the JDFT calculation. The total forces on the atoms

were relaxed to less than 5 meV/Å, indicating highly converged calculations.

5.5.2 Joint DFT

To perform a full JDFT[218] calculation of the surface in contact with a liquid

environment, we must specify the liquid functional Ωlq[{Nα(~r)}] and the coupling

functional ∆A[n(~r), {Nα(~r)}] in Equation 2.1 of Chapter 2. We used a classical

liquid functional Ωlq for water[262, 266] with only rotational contributions to

the dielectric response. (Polarizability contributions to dielectric response are

negligible for water and slow convergence significantly due to 3 extra degrees

of freedom.) We sampled the orientation probability of the water molecules in

an ideal gas representation from [262] and used 144 quadrature points over all

Euler angles.
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Figure 5.17: DFT supercells for the freshly immersed (a) and activated (b) sur-
faces. Sr, Ti,O, and H atoms are yellow, silver,red, and blue respectively. Unit
cells are truncated in the z-direction and should extend to z = ±az, where
az ≈ 20a0 ≈ 80Å. The activated surface (b) has been rotated 90◦ in the x-y plane
from Figure 5.14 to better display the anatase-like stacking of the Ti atoms
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To couple the fluid to the quantum-mechanical SrTiO3 electrode, for ∆A we

use (1) the mean-field coulomb interaction between the charge density of the

surface and the charge density of the fluid and (2) density-only DFT between

the valence electrons of the fluid nfl(~r) and the valence electrons of the surface

n(~r). As described in [162] and Chapter 2, for the density-only DFT coupling

we use the Thomas-Fermi[277] orbital-free expression for the kinetic energy of

the electrons and the local density approximation[151] for the exchange and

correlation. Finally, in computing the coupling ∆A = A[n + nfl] − A[n] − A[nfl], we

take the electron density of the fluid to be

nfl(~r) =
∑
α=O,H

∫
d~RNα(~R)nα(|~R − ~r|), (5.7)

where Nα is the average density of atomic site α and the electron densities for the

atomic sites nα are determined from ab initio calculations as described in [266]

and Section 2.4 of Chapter 2. Finally, we directly minimize the fluid and elec-

tron degrees of freedom in an alternating scheme using a conjugate gradients

algorithm[209].

5.5.3 Core Electrons

Core electrons ncore(~r) are not included in DFT calculations performed within

the pseudopotential representation, but they are essential to reproducing X-ray

signatures. We determine the spherically symmetric core electron density for

each atomic species S using the all-electron pseudopotential generation code

Opium[230, 228], which exports nS
core(r) on a logarithmic radial grid. For all

atoms of species S I at positions ~RI in the quantum mechanical calculation, and
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for oxygen atoms in the fluid, we add in core electrons with a total density

ncore(~r) =
∑

I

nS
core(|~(r − ~RI |) +

∫
d~RNO(~R)nO

core(|~R − ~r|). (5.8)

In practice, to avoid real-space resolution errors, we perform these operations

as convolutions in fourier space.

With the core and fluid valence electron densities in place we now have a

prescription to calculate ntot(~r) and nb
fl in Equation 5.4. The total electron den-

sity includes both valence and core electrons from the liquid and the quantum

mechanical system,

ntot(~r) = n(~r) + nfl(~r) + ncore(~r). (5.9)

Finally, the bulk fluid electron density is simply determined from the bulk fluid

site density Nb
α as

nb
fl =

∑
α=O,H

Nb
α

∫
d~rnα(r), (5.10)

which is, as expected, just the bulk fluid density of the water times the total

number of electrons per fluid molecule.

5.6 Conclusions

5.6.1 Implications for water-splitting on SrTiO3

Our successful joint theoretical and experimental study has determined a pro-

posed geometry for the surface of strontium titanate in a basic (e.g. high pH)

electrolyte, as well as the microscopic structure of water in contact with this

surface. Knowledge of these structures provides key insights into the origin of
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several observed phenomena. For example, the apparent irreversibility of train-

ing the surface described in Section 5.2.2 may now be understood as the loss

of a layer of surface Sr atoms from the immersed surface in Figure 5.14(a) to

form the structure in Figure 5.14(b). Once the positive Sr ions have been driven

from the surface under applied positive bias, they are unlikely to return even

after a return to open circuit potential. We can also begin to understand why

this irreversibly trained surface is correlated with a near-tripled activity for wa-

ter splitting compared to the freshly immersed surface – this structure exhibits

anatase-like stacking of the TiO2 layers rather than the perovskite-like stacking

of the TiO2 layers on the other surfaces. Because anatase TiO2 is also a known

catalyst for water splitting[295], it is possible that similar mechanisms dominate

the reaction for anatase-terminated SrTiO3.

Some questions about the exact nature of this activated surface, how it is

formed, and how it facilitates the water-splitting reaction continue to remain

open. The JDFT-guided fitting procedure suggests the activated surface is

oxygen-deficient. Are these oxygen vacancies from actual water splitting on

surface or are they bulk vacancies which have diffused to surface under applied

potential? Are these defects and their associated states important for catalyzing

water-splitting? To conduct future studies of this system, one should start from

the JDFT-determined activated structure and corresponding fluid densities to

begin investigating intermediate states involved in the water-splitting reaction.

Detailed mechanistic understanding could then be gained from evolving the

system from initial to intermediate to final states using transition state theory.

Finally, this study lends promise to the idea of creating a device with a

strained perovskite oxide as a light-absorbing substrate with a few monolay-
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Figure 5.18: JDFT-guided fits (solid lines) for experimental CTR data from Fig-
ure 5.7 (points): STO surface in air (blue); after immersion in basic solution
(black); and after biasing to oxidizing potential (red). The JDFT-guided fitting
can reproduce experiment as well as pure fitting, but ensures physically realiz-
able surface structure.

ers of epitaxial TiO2 to catalyze the water-splitting reaction. Perovskite oxides

are highly tunable both by strain[23] and cation substitution, and so it may be

possible to create a material with a band-gap well matched to the solar spec-

trum. Detailed investigation into oxygen evolution on perovskites [184, 269]

indicates that this type of device might actually be physically realizable.

5.6.2 Future Outlook

The novel synthesis of joint density-functional theory and X-ray reflectivity pre-

sented in this work also offers great promise for elucidating surface structure of
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any crystalline material in any environment – with potential impact in many

diverse fields. JDFT can predict X-ray structure factors with absolutely no fit-

ted parameters, while least squares fitting offers the flexibility to account for

disorder, defects, non-equilibrium processes and the errors of DFT. As shown

in Figure 5.18, the JDFT-guided fits for all three surfaces are almost indistin-

guishable from the experimental data, with chi-squared values comparable to

the fitting to atomic models typically done to analyze X-ray data. The JDFT-

guiding, however, ensures that the resulting structures are physically realizable,

thus providing critical additional information, particularly for surface structure

studies in which the X-ray data is limited and thus may have hundreds of poorly

constrained fit parameters and no unique choice of model. When the theoretical

predictions and structural information are combined with novel electrochemi-

cal methods for measurement of reaction rates, an almost full characterization

of a novel material is possible. The synthesis between advanced electrochemi-

cal measurements, X-ray determined operando structural information, and JDFT

may well create new paradigm for close collaboration between experiment and

theory in surface science.
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CHAPTER 6

OUTLOOK

In this dissertation, we have developed and benchmarked a microscopically

accurate theory which captures the physics underlying the electrode-electrolyte

interface. We first presented an overview of the rigorous theoretical framework

of JDFT (Section 1.4), which enables predictive and efficient multi-scale calcu-

lations by joining an electronic density functional theory for a solute system

(Section 1.2) with a classical liquid environment. We reviewed recent advances

in the classical liquid functionals for aqueous and non-aqueous solvents (Sec-

tion 1.3) and extended these liquid functionals to capture aqueous electrolyte

solutions in both continuum implicit (Section 3.4.1) and atomically-detailed ex-

plicit (Section 4.3) theories. We developed a universal approximation for the

coupling between the quantum-mechanical solute and the classical liquid and

demonstrated the accuracy of this coupling functional for computing both free

energies of solvation and liquid structure (Chapter 2). We constructed a frame-

work for considering charged systems in JDFT, both in the implicit solvent ap-

proximation (Section 3.8.1) and with the microscopically-detailed classical DFT

electrolyte functionals (Section 4.4). We connected ab initio computable quanti-

ties with electrochemical measurements (Sections 3.3 and 4.2), bridging the gap

between the electrochemistry terminology and the underlying physical effects.

Finally, we offered a variety of JDFT predictions relevant to electrochemistry,

including the structure of water at a graphene surface (Section 2.6.4), potentials

of zero charge for single-crystalline metallic surfaces (Sections 3.8.4 and 4.6.2),

the nonlinearity in the differential capacitance of the Ag(111) surface in sodium

fluoride electrolyte (Section 4.6.4), and the structure of a SrTiO3 electrode under

water-splitting conditions (Section 5.4).
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The development of a computationally efficient, yet microscopically accu-

rate theory for the solid-liquid interface opens many new avenues for future re-

search. The existing classical liquid and coupling functionals may be improved

by the inclusion of additional physical effects, allowing an even more accurate

description of the microscopic details and energetics of solvation. We may also

construct classical liquid functionals for new solvents and electrolytes, follow-

ing the procedure set forth in Reference [266], Section 2.4 and Section 4.3. Even

within the present level of approximation, JDFT is poised to offer predictive

calculations for a variety of electrochemical and biological systems. JDFT calcu-

lations of the electrode-electrolyte interface can provide invaluable insight into

the physical processes and thermodynamics underlying high-precision basic re-

search studies of model electrode surfaces. In addition, JDFT can offer an effi-

cient, high throughput computational technique for screening novel electrolytes

and electrode materials, eliminating the need for costly and time-consuming

experimental synthesis and characterization. In biological systems, JDFT can

become a key tool for computational drug design and fundamental studies of

the the active sites in proteins and DNA, offering an atomically detailed de-

scription of the fluid without the need for thermodynamic sampling. Finally,

JDFT-guided fitting procedures allows us to combine input from theory and ex-

periment to account for the disorder, defects, and non-equilibrium processes

which are present in real electrochemical devices and under physiological con-

ditions.

Further benchmarking and development of the classical liquid and coupling

functionals within JDFT would enhance the accuracy of the theory and extend

its applicability, creating even more opportunities for future research. Though

the coupling functional in Chapter 2 can accurately describe the interactions
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between a variety of solutes and several common solvents, suggesting it may

be universally applicable, additional study of the generalizability of this func-

tional is warranted and further improvements are possible. The training set of

molecules in Section 2.6.1 employed to fit the Grimme scaling parameter and

benchmark the solvation energy performance of JDFT is quite small compared

to the training sets of molecules commonly employed by popular quantum-

chemical solvation models and it includes only neutral molecules. To provide

a direct comparison with other universal solvation models (with more empir-

ical parameters and no microscopic structure [180]), we could benchmark the

performance of JDFT on a larger, more diverse set of neutral solute molecules

and charged ions. To avoid the need for fitting the Grimme scaling parame-

ter altogether, we could implement and test a van der Waals density-functional

[233] within our orbital-free DFT coupling functional. We could also calibrate

and benchmark our coupling functional for joining the explicit classical DFT to

higher level quantum-chemistry calculations, leveraging the JDFT framework

developed for Quantum Monte-Carlo calculations [246]. Finally, our form of the

coupling functional effectively excludes all extended states from the explicit liq-

uid, preventing a correct treatment of excited states. Ideally, we should develop

a frequency-dependent coupling functional, which only excludes low-energy

extended states but allows the higher-energy scattering states to penetrate into

the liquid.

To accurately capture the structure and dynamics of the liquid environment,

we should also consider additional development of the classical liquid function-

als, both for the pure solvent and for mixtures of the solvent with electrolyte. To

improve the classical DFT for the solvent, we should consider reference fluids

beyond fundamental measure theory, which assumes all fluid components pack
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as hard spheres. As shown in Section 2.6.3, while the hard-sphere approxima-

tion leads to accurate fluid structure in chloroform and carbon tetrachloride,

FMT does not capture the tetrahedral packing of water molecules. We thus re-

quire a reference fluid with a tetrahedral or chain reference which still possesses

the stability of FMT to joint minimization with an electronic system. To improve

the classical DFT for electrolytes, we could develop a weighted density form of

the ion-water mixing functional in Section 4.5, based upon the equation of state

data for an aqueous electrolyte [35]. Such a weighted density form would per-

haps enhance the stability and physicality of the model ions by constraining

the vapor pressure to experimental values, capturing more of the many-body

effects in the first solvation shell, and rendering the ion-water cluster approxi-

mation for the ions to be unnecessary.

At present, all the explicit JDFT calculations have ignored time-dependence

and other dynamical effects, focusing on only thermodynamically favored, min-

imum energy states. Extension of JDFT to Joint ab initio molecular dynamics

(J-AIMD) would allow the quantum-mechanical solute system to evolve over

time while in contact with the classical liquid. However, several practical and

theoretical challenges to the implementation of J-AIMD remain. In principle,

transition state theory should allow prediction of phenomena such as energy

barriers for chemical reactions and diffusion of particles on an electrode surface

from equilibrium JDFT calculations. JDFT calculations can also predict vibra-

tional motion of the solute in contact with the solvent in the adiabatic limit, for

low frequency modes where the water is able to reorient on a shorter timescale

than the vibrations. However, in situations where the vibrational modes of the

fluid interact significantly with the vibrational modes of the solute, JDFT free

energies and potential energy surfaces for the explicit solute atoms may be in-
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accurate. The above inaccuracy may prove a challenge for performing predic-

tive J-AIMD calculations. Extending the classical DFT to the dynamical limit,

using techniques similar to Reference [131], alongside a frequency-dependent

coupling functional could provide a way forward for generally applicable J-

AIMD calculations.

Some disadvantages to microscopically detailed JDFT calculations include

the increased computation time compared to vacuum DFT for large systems

and the significant effort required to extend these calculations to new fluids.

The implicit approximation to JDFT presented in Chapter 3, which possesses a

computational cost similar to vacuum DFT and is easily generalizable to new

solvents, is therefore an excellent tool for high-throughput screening. This effi-

cient implicit fluid model enables rapid, voltage-dependent screening of novel

supercapacitor and battery electrolytes (and screening of the electrode mate-

rials in contact with these solvents), in order to identify desired attributes for

performance and stability. Furthermore, an implicit JDFT calculation which re-

laxes the nuclear positions of the electronic system can be a useful first step in

studies of large systems which may be far away from the minimum energy con-

figuration. For example, electrode surfaces with adsorbed reactant molecules

or biomolecule structures predicted from classical MD or X-ray crystallography

may benefit from an initial implicit JDFT calculation before a more accurate ex-

plicit JDFT study.

JDFT calculations of the electrode-electrode interface in a variety of sys-

tems, ranging from model graphene electrodes in aqueous solution to com-

plex oxide electrodes in novel battery electrolytes will provide unique insights

into the structure and energetics of electrochemical devices. For example,
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.
Figure 6.1: Nanostructured carbon with pores of diameter 10 Å, computed in
contact with classical DFT for water (Section 4.3.1) using the coupling functional
in Chapter 2

explicit JDFT calculations allow the study of confinement effects of liquids

in nanoporous electrode materials. Figure 6.1 displays a model for a three-

dimensional nanoporous carbon electrode material with classical DFT liquid

confined within. Unlike local implicit solvation model calculations [163, 100],

explicit JDFT includes information about the size of the fluid molecules, lead-

ing to the formation of discrete structure within the confined liquid. Develop-
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ing classical DFT functionals for novel supercapacitor electrolytes and consid-

ering them within this nanoporous electrode structure as a function of pore size

will enable predictions of the optimum combination of pore size and electrolyte

composition which maximizes the energy storage capacity of the supercapaci-

tor.

JDFT will also enable fundamental studies of ion solvation and desolvation

at model graphene surfaces in conjuction with X-ray reflectivity measurements

performed at Argonne National Laboratory. Batteries with multivalent work-

ing electrolytes like Mg2+ or Al3+, which carry double or triple the charge of Li+,

could theoretically store much more energy. Experimental characterization of

multivalent ion plating on a model electrode surface silicon carbide (SiC) coated

with epitaxial graphene [197] is already underway. We plan to use JDFT calcu-

lations of ions at such a well-defined graphene interface to help interpret data

from X-ray diffraction based techniques [79], which can resolve atomic positions

with sub-Angstrom resolution. Because low atomic number ions (Li+ etc.) are

difficult to image, they are replaced with heavier, but chemically similar ions

like Rb+, Sr2+, and Y3+, and the behavior of the lighter ions must be extrapolated

from trends. We will therefore use JDFT-calculated solvation structure and free

energies to validate these trends, and predict the plating behavior of ions onto

the model electrode surface. Each working ion must also break its surround-

ing shell of solvent molecules in order to plate onto the cathode and transfer

charge. We will use transition state theory within JDFT to predict reaction path-

ways for ion de-solvation, yielding fundamental insight into rate-limiting pro-

cesses in electrodeposition, corrosion, and even ion transport through cellular

membranes.
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In the complex and multi-faceted field of electrochemistry, an ideal theory

is not always sufficient — we must account for disorder, defects, and non-

equilibrium processes. Ideally, we should combine all available theoretical and

experimental information and synthesize it to form a complete picture. Fol-

lowing the JDFT-guided fitting procedure in Section 5.3.2 we can begin with a

pure JDFT description of a model system and find adjustable parameters which

describe physical sources of uncertainty. We can then fit those parameters to

the experimental data, with a penalty function to prevent unphysical deviation

from the theoretical predictions and quantify sources of error. This concept can

be extended to experimental characterization techniques from X-ray diffraction

to spectroscopy, therefore developing a toolbox of available software to provide

synergy between theory and experiment.

Using JDFT guided by experimental X-ray measurements conducted at Ar-

gonne National Laboratory, we will elucidate fluid structure and reaction path-

ways on complex oxide electrodes. Using the well-known LiMn2O4 spinel cath-

ode material [276] as a model system, JDFT will address the complex problems

of ion intercalation [313] and formation of the solid electrolyte interphase (SEI)

[113] in batteries, probing the interfacial structure and reactivity of complex ox-

ide battery cathodes. Unique X-ray reflectivity and related spectroscopy tech-

niques [79] will be used to characterize the cathode surface in vacuum/air [20]

and in liquid before/after cycling [113]. JDFT-guided fitting will predict the

chemical composition, geometry, and termination of the electrode surface as in

Chapter 5. JDFT will also provide an atomic-scale description of the chemical

pathways driving Mn-dissolution and novel electrolyte decomposition [164] at

high potentials, processes which ultimately limit the capacity and lifetime of

batteries.
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The pioneering work we have undertaken in this dissertation to obtain a

microscopically-detailed, yet efficient, theoretical description of solid-liquid in-

terfaces offers significant reward and impact. Though we have focused in this

work upon the use of JDFT to elucidate phenomena in electrochemical systems,

the theory itself will find application far beyond electrochemistry. One signifi-

cant outcome of this work is a range of methods and software, enabling collabo-

ration between theory and experiment on future problems related (or unrelated)

to the electrode-electrolyte interface. Cross-disciplinary combination of JDFT

with experimental measurements will broaden basic understanding of funda-

mental processes in materials science, biochemistry, and many other fields.
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