F-Square Geometries for n = 3, 4, 5, and 6 by

W. T. Federer, F. C. Lee and J. P. Mandeli

BU-591-M*

August 1976

ABSTRACT

Through the use of complete sets of mutually orthogonal F-squares, the concept of F-square geometries has been introduced. This follows from the one-to-one correspondence of complete sets of mutually orthogonal latin squares and projective geometry. The cases of n = 3, 4, 5, and 6 as the order of the F-square are considered. The case for n = 3 is completely resolved where it is shown that there is only one geometry, the projective. The case for n = 4 is partially resolved and four F-square geometries have been found. It is not known if there are more. The case for n = 5 has not been investigated, but one geometry for the complete set of orthogonal latin squares does exist. No one has as yet found an F-square geometry for n = 6. A study of <u>all</u> F-square geometries for these cases will be useful for considering other values of n.

^{*} In the Mimeo Series of the Biometrics Unit, Cornell University, Ithaca, New York, 14853.

F-Square Geometries for n = 3, 4, 5, and 6

BU-591-M*

W. T. Federer, F. C. Lee and J. P. Mandeli

August 1976

1. INTRODUCTION

It is well known that for latin squares of order three,

- (i) a complete set of orthogonal latin squares, denoted by OL(3,2) exist. and
- (ii) there is a single transformation set.

With the introduction and development of F-square design theory by Hedayat [1969] and Hedayat and Seiden [1970] and from section XV of a paper by Federer <u>et al.</u> [1971], where A. Hedayat shows the equivalence of various combinatorial systems starting with an OL(n,n-1) set, the question arises as to the use of F-square design theory in a one-to-one correspondence with other combinatorial systems. As a first step we shall look at <u>all possible</u> complete sets of F-squares. We shall call each one an <u>F-square geometry</u> and shall be studying <u>complete sets of</u> <u>F-square geometries</u> for n = 3, 4, 5, and 6. The case for n = 3 is very simple. The case for n = 4 becomes considerably more difficult and the difficulty increases with n since the number of possible cases becomes increasingly large.

First of all, an F-square of order n with m symbols is denoted as $F(n; \lambda_1, \dots, \lambda_m)$ -square. The λ_i are integers and refer to the frequency of any given symbol in a row or in a column. When the λ_i are ones, a latin square of order n is indicated. Also, $\sum_{i=1}^{m} \lambda_i = n$ for any F-square. A set of t mutually orthogonal F-squares with the same number, m, of symbols will be denoted as $OF(n; \lambda_1, \dots, \lambda_m; t)$ to correspond to the notation OL(n, t) for t orthogonal latin

300100 1

In the Mimeo Series of the Biometrics Unit, Cornell University, Ithaca, New York, 14853.

squares. If the number of symbols in the complete set of orthogonal F-squares varies, then we use the notation

$$\sum_{i=1}^{n} OF(n; \lambda_{1}, \dots, \lambda_{i}; N_{i}, \lambda) \quad \text{for all} \quad \lambda_{h}, \quad h=1, \dots, i,$$

to indicate that there are $N_{i\lambda}$ F-squares with i symbols for each possible set of $\lambda_h.$

Note that there are $(n-1)^2$ degrees of freedom associated with the row X and column interaction and that these are the only degrees of freedom available for constructing F-squares. In an F-square with i symbols there are (i-1) degrees of freedom among the i symbols. Hence, $\sum_{i=2}^{n} N_i \lambda_i (i-1) = (n-1)^2$ for all possible sets of λ_i , for a complete set of F-squares.

The idea of many complete sets for each n may be somewhat new for most people, but a discussion for n = 3, 4, 5, and 6 below should clarify what is meant by the complete set of F-square geometries of order n.

2. THE CASE FOR
$$n = 3$$

The possible sets of λ_h , h=1,..., $i \leq 3$ in an $F(3; \lambda_1, \dots, \lambda_i)$ -square are 1,1,1 and 2,1. Note that 1,2 is merely a permutation of the set 2,1. A complete set of orthogonal $F(3; \lambda_1, \dots, \lambda_i)$ -squares is given by the terms of the summation

$$OF(3;2,1;N_1) + OF(3;1,1,1;N_2)$$
.

The possible values for N₁ and N₂, given that N₁(2-1) + N₂(3-1) = $(3-1)^2 = 4$ are:

Nl	N ₂	F-square geometry given by
0	2	0L(3,2) set
2	1	does not exist
4	0	does not exist

7 . .

The members of an OL(3,2) set are

$$L_{1} = \begin{bmatrix} A & B & C \\ B & C & A \\ C & A & B \end{bmatrix} \qquad L_{2} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

A permutation of the last two rows of L_p produces L_1 .

The problem of producing a complete set of orthogonal F-squares for $N_1 = 2$ and $N_2 = 1$ resolves itself if one is able to decompose a latin square of order three into two orthogonal F(3;2,1)-squares. Hence, the following theorem:

Theorem 2.1. It is impossible to decompose a latin square of order three into an orthogonal pair of F(3;2,1)-squares.

<u>Proof.</u> It is immaterial whether one uses L_1 or L_2 so we shall show that L_2 cannot be decomposed into two orthogonal F(3;2,1)-squares. Consider the following set of orthogonal single degree of freedom contrasts for a 3 x 3 square:

2. row l versus row 2 + + + - - 0 0 3. row l+2 vs. row 3 + + + + + - - 2 -2 4. col. l vs. col. 2 + - 0 + - 0 + - 0	1.	mean	+	+	+	+	+	+	+	+	+
	2.	row 1 versus row 2									
4. col. 1 vs. col. 2 + - 0 + - 0 + - 0	3.	row 1+2 vs. row 3									
	4.	col. 1 vs. col. 2	+	-	0	+	-	0	+	-	0

Contrast

5.	columns 1+2 vs. 3									-2	
6.	A versus B					0				-	
7.	A + B vs. C	+	+	-2	+	-2	+	-2	+	+	
8.	a + b vs. c					+					
9.	unknown = (?)	a _{ll}	a 12	^a 13	^a 21	⁸ 22	^{a.} 23	^a 31	^a 32	^a 33	

Contrast 8 forms an F(3;2,1)-square if we put a symbol, say x, where the pluses occur in the contrast, and a second symbol, say y, where the minus two occurs. This F-square follows as does the unknown in contrast 9:

Cont	raș	t. 8	_		Con	trast	9	-
x	x	у		۰.	a _{ll}	^a 12 ·	^a 13	
У.,	x	x		*	^a 21	^a 22	^a 23	
x	У	x		·s · · ·	a31	. ^a 32	^a 33	
			-	• .				-"

Note that for contrast 8 we could have taken a + c vs. b or b + c vs. a to obtain the F(3;2,1)-square and that these three ways exhaust the possibilities for forming F(3;2,1)-squares. Since the sum of the coefficients must equal zero and since the sum of products of coefficients in any two rows must be zero the <u>only</u> possible values for the a_{rs} are given below:

a _{ll} = 1	a ₁₂ = -1	a ₁₃ = 0
a ₂₁ = 0	a ₂₂ = 1	^a 23 ^{= -1}
a ₃₁ = -1	a ₃₂ = 0	a ₃₃ = 1

and the second second

- 47--

There is no way to form an F(3;2,1)-square from the above since there are three, not two, coefficients, i.e., 1, -1, and 0. Thus, the complete set of F-squares for $N_1 = 2$ and $N_2 = 1$ does not exist.

Consider now the case where $N_1 = 4$ and $N_2 = 0$. Since the orthogonal F(3;2,1)squares must be formed by contrasts of the form a + b versus c and A + B versus C (or some permutation of the symbols), from the full set of 9 orthogonal contrasts, seven will be specified as above. The remaining cannot take on any other values than +1, -1, and 0 as described above. Hence, it is impossible to form an OF(3;2,1;4) set, resulting in the following theorem:

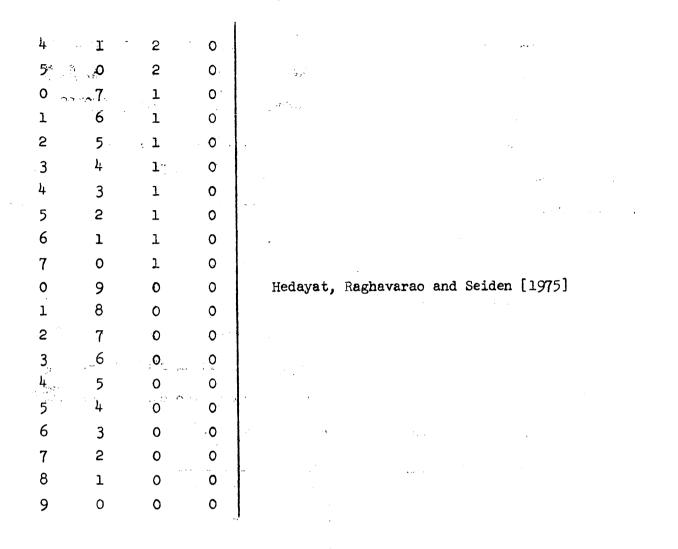
Theorem 2.2. The OF(3;2,1;4) set does not exist.

It is possible to form a pair of orthogonal F(3;2,1)-squares by taking one square from L_1 and one from L_2 above. It is not possible to obtain more than two.

3. THE CASE FOR n = 4

The possible configurations of the λ_{h} , h=1,..., $i \leq 4$ in $F(4; \lambda_{1}, \dots, \lambda_{i})$ -squares are: 1,1,1,1; 2,1,1; 2,2; and 3,1. Note that $\sum_{h=1}^{i} \lambda_{h} = 4$. A complete set of mutually orthogonal F-squares of order 4 is indicated as follows:

 $OF(4;3,1;N_1) + OF(4;2,2;N_2) + OF(4;2,1,1;N_3) + OF(4;1,1,1;N_4)$.

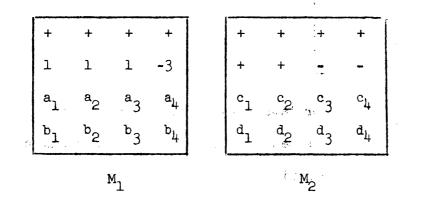

Subject to the constraint that $\sum_{i=1}^{4} N_i = (4-1)^2 = 9$, the possible values for the N_i are given below:

- 5 -

	Nl	N ₂	^N 3	N ₄	Complete set given by
ŕ	0	0	0	3	OL(4,3)-set
	0	l	1	2	does not exist (see below)
	l	0	1	2	does not exist (see below
	0	3	0	2	given below
	1	2	0	2	does not exist (see below)
	2	1	0	2	does not exist (see below)
	3	0	0	2	does not exist (see below)
	0	0	3	1	
	0	2 1	2 2 2	1	
	l			1	
	2	0	2	1	
	0	4	1	1	(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	l	3	l	1	
	2	2	1	1	
	3	l	1	l	
	4	0	l	1	en anter esta esta esta esta esta esta esta esta
	0	6	0	1	Mandeli [1975]
	l	5	0	1	
	2	4	0	1	
	3	3	0	1	$\mathbb{P}_{\mathcal{A}} = \mathbb{P}_{\mathcal{A}} = \mathbb{P}_{\mathcal{A}} = \mathbb{P}_{\mathcal{A}}$
	4	2	0	1	
	5	·l	0	1	the second state of the state o
	6	0	0	1	
	0	1		0	
	1	0	4	0	
	0	2		0	-
	1	1	-	0	
	2			0	
	0	5	2	0	
	1	4		0	
	2	3		0	
	3	2	2	0	

/

.


3.1. Solution for $N_4 = 2$. For latin squares of order 4 there are two transformation sets, one of which is mateless and one which can be used to construct an OL(4,3) set such as the following:

	A	В	С	D		a	b	с	đ		α	β	γ	δ
T. =	в	A	C	D	Ŧ _	đ	с	Ъ	a	L. =	γ	δ	α	β
¹ 1 ⁻	с	D	A	В	^L 2 =	ъ	a	đ	с	¹ 3 =	δ	γ	β	α
	D	C	B	A		с	d	a	Ъ		β	α	δ	Y

If a and α are set equal to A, b and β to B, c and γ to C, and d and δ to D, one may observe that L_2 and L_3 can be converted into L_1 by a simple row permutation

- 7 -

of the last three rows. In addition, it is known that any pair of orthogonal latin squares of order 4 can be extended to form an OL(4,3) set. Thus, any two of L_1 , L_2 , or L_3 may be used and the problem is to show how to decompose the remaining latin square into combinations of F(4;2,1,1)-, F(4;2,2)-, and/or F(4;3,1)-squares. Suppose that L_1 and L_2 are the latin squares in the set for $N_4 = 2$. Then, our problem is to decompose L_3 into F-squares. The <u>only</u> F-squares with two symbols that are possible are the F(4;3,1)-square and the F(4;2,2)-square. The former implies the contrast $3\alpha - \beta - \gamma - \delta$ and the latter implies the contrast $\alpha + \beta - \gamma - \delta$ among the four symbols. Note that although there are an infinite number of sets of contrasts for n = 4, these two from Helmert polynomials and from the 2^2 factorial are the <u>only</u> ones giving rise to F-squares. Therefore, one needs only to investigate the following two cases to determine if L_2 can be decomposed into three F-squares with two symbols:

For M_1 , note that

$$a_1 + a_2 + a_3 + a_4 = 0$$

 $a_1 + a_2 + a_3 - 3a_4 = 0$.

The only solution for a_{4} is $a_{4} = 0$, and if all 16 cells of a 4 x 4 square are used, one cannot form a F-square. Hence, M_{1} cannot be completed to form a set of three orthogonal F-squares with two symbols. Likewise, the same holds for the b_g coefficients.

In M₂,

$$c_1 + c_2 + c_3 + c_4 = 0$$

 $c_1 + c_2 - c_3 - c_4 = 0$.

Therefore,

 $c_1 + c_2 = 0$ and $c_3 + c_4 = 0$

are solutions for these two conditions. Possible solutions for c_1 and c_2 are +1 and -1 or 0 and 0, or multiples thereof. Likewise, these are the possible solutions for c_3 and c_4 . Therefore, the possible sets of solutions are:

1	-1	0	0	l	-1	l	-1
0	0	l	-1	l	-1	- 1	1

The first set does not produce F-squares, but the second one does. Hence, the only decomposition of L_3 into F-squares with two symbols is into three F(4;2,2)-squares.

Now consider the decomposition of L_3 into an F(4;2,1,1)-square plus an F-square with two symbols. First combine any two symbols of L_3 into a single symbol to form the F(4;2,1,1)-square, e.g., let $\alpha = \delta = \alpha$. Then, form the contrast of $2\alpha - \beta - \gamma$. The only contrast orthogonal to this contrast is $\beta - \gamma$. The remaining orthogonal contrast would be α versus the original δ . This last contrast does not form an F-square.

Another way of looking at this problem probably could be using a result due to S. S. Shrikhande (personal communication from A. Hedayat, 8/12/76). He showed that if a matrix contains the first 4t-2 rows of a Hadamard matrix the only way to make this an orthogonal matrix is to complete the Hadamard matrix. This implies the existence of F(4;2,2)-squares only. The above then leads to the following theorem:

Theorem 4.1. The only decomposition of a latin square from the OL(4,3) set is into three F(4;2,2)-squares.

3.2. Solution for $N_4 = 1$. Here one needs to consider the solution for a latin square from the set OL(4,3) and a latin square from the other transformation set which is an orthogonally mateless latin square. The only solution for the 16 cases is the one for which $N_4 = 1$, $N_3 = N_1 = 0$, and $N_2 = 6$. Mandeli [1975] has given the solution for both transformation sets. The solution for the remainder of the cases is an open problem.

3.3. Solution for $N_{l_4} = 0$. Of the 29 possibilities for complete sets of F-squares when $N_{l_4} = 0$, only one has been solved, and that is for the OF(4;2,2;9) set. Some decomposition and composition theorems are needed for these solutions.

4. THE CASE FOR n = 5

The possible configurations of the λ_{h} , $h=1, \dots, i \leq 5$ in $F(5; \lambda_{1}, \dots, \lambda_{i})$ are: 1,1,1,1,1; 2,1,1,1; 2,2,1; 3,1,1; 4,1; and 3,2. Note that the $\sum_{h=1}^{i} \lambda_{h} = 5$. Consider a complete set of mutually orthogonal $F(5; \lambda_{1}, \dots, \lambda_{i})$ -squares such that there are N_{i} of the ith type and denoted as $OF(5, \lambda_{1}, \dots, \lambda_{i}; N_{i})$, where $\sum_{i=2}^{5} N_{i}$ (i-1) = $(5-1)^{2} = 16$. A complete set of mutually orthogonal F-squares will have the following numbers of types: $OF(5;3,2;N_{1}) + OF(5;4,1;N_{2}) + OF(5;3,1,1;N_{3})$ + $OF(5;2,2,1;N_{4}) + OF(5;2,1,1,1;N_{5}) + OF(5;1,1,1,1;N_{6})$. The possible values

the state of the second sec

•

	Nl	^N 2	N ₃	N ₄	N ₅	^N 6	Complete set given by
_	0	0	0	0	0	4	OL(5,4)-set
	0	1	0	0	1	3	
	l	0	0	0	1	3	:
	0	0	0	2	0	3	
	0	0	1	1	0	3	
	0	0	2	0	Ō	3	
	0	2	0	1	0	3	
	1	l	0	1	0	3	
	2	0	0	l	0	3	
	0	2	l	0	0	3	
	1	1	1	0	0	3	
	2	0	1	0	0	3	
	0	4	0	0	0	3	
	1	3	0	0	0	3	
	2	2	0	0	0	3	
	3	1	0	0	0	3	
	4	0	0	0	0	3	
	0	0	1	0	2	່ 2	
	0	2	0	0	2	2	
	1	1	0	0	2	2	
	2	0	0	0	2	2	
	0	l	0	2	1	2	
	1	0	0	2	1	2	
	0	1	2	0	1	2	
	l	0	2	0	1	2	
	0	1	1	1	1	2	х х
	1	0	1	1	1	2	•
	0	7	0	1	'n	2	
	l	6	0	1	l	2	
	2	5	0	l	l	2	
	3	4	0	1	1	2	· · · · · · · · · · · · · · · · · · ·
						ļ	· · ·

- 11 -

3	0	1	1	2							
2	0	1	1	2					•7	, · · · ·	
1	-) au <mark>O</mark>	.1.	1	2							
0	• 0 • •			. 2 .			• •	*			
7	1 .	0	1	2		•,					
6	1	0	1	2							
5	1	0	1.	2							
4	1	0	l	2				÷			
3	1	0	1.	2							
2	1	0	1	2							
1	1	0	1	2							
0	1	0	1	2							
9	0	0	1:	2							
8	0	0	1	2 '	1						
7	0	0	1	2							
6	0	0		2							
5	0	0	1	2							
4	0	0	1	2			<u>.</u>				
3	0	0	1	2							
2	0	0	1,	2							
1	0	0	1	2			۰.				
0	0	0	1	2							
0	0	4	0	2							
0	1	3	0	2							
2	0	3	0	2							
1	0	3	0	2							
0	0	3	0	2							
0	2	2	0	2							
2	1	2	0	2							
1	1	2	0	2							
0	1	2	0	2							
4	0	2	0	2							
3	0	2	0	2							
2	0	2	0	2	}						

- 12 -

.

6

3 4

6

4

2 0

						1
4	0	0	2	0	2	
0	0	3	1	0		
0	2	2	1	0	2	
1	1	2	l	0	2	
2	0	2	1	0	2	
0	4	1	1	0	2	
1.	3	1	1	0	2	
2	2	1	l	0	2	
3	1	1	1	0	2	
4	0	1	1	0	2	
0	6	0	1	0	2	
1	5	0	l	0	2	
2	4	0	1	O L	2	
3	3	0	1	0	2	
4	2	0	1	0	2	
5	1	0	1	0	2	
6	0	0	1	0	2	
0	0	4	0	0	2	
0	2	3	0	0	2	
1	l	3	0	0	2	
2	0	3	0	0	2	
0	4	2	0	0	2	
1	3	2	0	0	2	
2	2	2	0	0	2	
3	1	2	0	0	2	
4	0	2	0	0	2	
0	6	1	0	0	2	
1	5	l	0	0	2	
2	4	1	0	0	2	
3	3	1	0	0	2	
4	2	1	0	0	2	
5	1	1	0	0	2	
6	0	1	0	0	2	
0	8	0	0	0	2	
1	0 7	0	0	0	2	

- 13 -

. .

•

•

2	6	0	0	0	2	
3	5	0	0	0	2	
4	4	0	0	0	2	
5	3	0	0	0	·2	A
6	2	0	0	0	2	Those above for $N_6 = 2,3$
7	1	0	0	0	2	that exist should be obtainable
8	0	0	0	0	2	from the $OL(5,4)$ -set
0	1	0	1	3	1	
l	0	0	l	3	1	
0	l	l	0	3	ุ่า	
l	0	l	0	3	1	
0	3	0	0	3	1	
1	2	0	0	3	l	
2	1	0	0	3	Ĩ	
3	0	0	0	3	1	
0	0	0	3	3	1	- ,
0	0	1	2	2	1	
0	2	0	2	2	1	
l	l	0	2	2	1	
2	0	0	2	2	1	
0	0	2	1	2	1	
0	2	1	1	2	1	
1	1	1	1	2	`l	
2	0	1	1	2	1	
0	4	0	1	2	1	
1	3	0	1	2	ı	
2	2	0	l	2	ı	
3	1	0	1	2	1	
4	0	0	l	2	1	
0	0	3	0	2	1	
0	2	2	0	2	l	
l	l	2	0	2	1	
2	0	2	0	2	1	
0	4	l	0	2	1	
1	3	1	0	2	1	

- 14 -

.

	2	2	1	0	2	1	• • •		
· •	3	ì	1	0	· ^2	rom			
		0	1	0 +	2	9 1 28.	:		
		6	0	0	2	1			
	ì	5	0	0	2	1			
	2	4	0	0	2	1			
	3	3	0	0	2	1		· · · · · ·	
	4	2	0	0	2	1			
	5	1	0	0	2	1			
	6								
× .	••••••		• ••		1	1	· · · · · ·	• • • • •	
					1 1				
e de la deservación d									
അഞ്ച മും		•		•	1	1	2	· ·	
,				· · ·	, 1	. <u> </u>		<i>c.</i>	
· .			e na jen	;	1 1	1 ·			
								· •	
		*		•					
•	•	•	2	•	i	1			
		•	ten en en se		1	1		t a get	
		•		$\frac{1}{2}$	1	1	1. A.		
					17	ļ		¢ .	
					1	1			
					1	ì			
					l	1			
				• •	•	:	4		
					•	•			•

etc. for other combinations of the N_i down to the last case where $N_1 = 16$, $N_2 = N_3 = N_4 = N_5 = N_6 = 0$. Because of the very large number of cases, some decomposition and composition theorems are needed to obtain the solution for classes rather than single cases. Note that if $N_6 \ge 2$, the F-squares under consideration must come from a decomposition of latin squares from the OL(5,4) set. For $N_6 = 1$, there are two transformation sets, one of mateless latin squares of order 5 and the other which is a member of an OL(5,4) set. Note that only one case, i.e., for the OL(5,4) set, has been solved in the complete set of F-square geometries.

5. THE CASE FOR n = 6

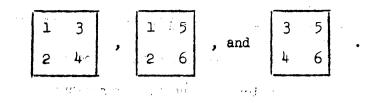
No one has as yet obtained a complete set of orthogonal $F(6;\lambda_1,\dots,\lambda_i)$ squares, for i=2,3,…,6. The maximum number so far obtained is an OF(6;2,2,2;7) + OF(6;1,1,1,1,1,1) set. Two F(6;2,2,1,1)-squares, if orthogonal to the above, would be needed to complete the set. Likewise, the addition of six OF(6; λ_1, λ_2)squares would also complete the set. Many such combinations are possible, but so far a complete set of mutually orthogonal F-squares has not been obtained.

In this connection there are ten possible F-squares of order 6. These are:

F(6;5,1)	F(6;3,2,1)	F(6;2,1,1,1,1)
F(6;4,2)	F(6;2,2,2)	F(6;1,1,1,1,1,1)
F(6;3,3)	F(6;3,1,1,1)	
F(6;4,1,1)	F(6;2,2,1,1)	

A complete set should be obtainable as some combination of the following: $OF(6;5,1;N_1) + OF(6;4,2;N_2) + OF(6;3,3;N_3) + OF(6;4,1,1;N_4) + OF(6;3,2,1;N_5)$ $+ OF(6;2,2,2;N_6) + OF(6;3,1,1,1;N_7) + OF(6;2,2,1,1;N_8) + OF(6;2,1,1,1,1;N_9)$ $+ OF(6;1,1,1,1,1;N_{10})$. We know, for example, that N_{10} must be one or zero since no pair of orthogonal latin squares of order six is possible. In order to reduce the possible combinations of N_i such that $\sum_{i=1}^{10} N_i$ (i-1) = 25 = (6-1)², some results of composition and decomposition would be desirable to eliminate certain combinations of the N_i . For example, is it possible to decompose a latin square of order six into one F(6;3,3)-square and two F(6;2,2,2)squares? One could do the following for a latin square of order six:

1 - 01	2 - 00	3 - 11	4 - 10	5 - 21	6 - 20
2 - 00	1 - 01	4 - 10	3 - 11	6 - 20	5 - 21
3 - 11	4 - 10	5 - 21	6 - 20	1 - Ol	2 - 00
4 - 10	3 - 11	6 - 20	5 - 21	2 - 00	1 - 01
5 - 21	6 - 20	1 - Ol	2 - 00	3 - 11	4 - 10
6 - 20	5 - 21	2 - 00	1 - 01	4 - 10	3 - 11


•	70	10	۱.
	1.8	In.	•
	700	\mathcal{U}	

In the above the following representation to a 2 × 3 factorial has been made:

	·· •	ange en	Symbol in F(6;3,3)
l = 01	3 = 11	5 = 21	1
2 = 00	4 = 10	6 = 20	0
Symbol in F(6;2,2,2) 0	1	2	

Thus any 6×6 square can be decomposed, via 2×3 factorial representation, into an F(6;3,3)-square and an F(6;2,2,2)-square. But, can another square of the latter type be formed from the interaction contrast coefficients? This has not yet been done. It is, however, simple to form another F(6;2,2,2)-square orthogonal to the previous two as follows: Form all possible tetrads in the above 2 x 3 table; these are:

`..

Considering all interaction contrasts, we form an F(6;2,2,2)-square as below. If in each pair of rows in the original latin square, we set the symbols as follows:

.

Rows		Symbols	
1 & 2	1 & 4 = 0	2 & 3 = 1	5 & 6 = 2
3 & 4	1 & 6 = 0	2 & 5-= 1	3 & 4 = 2
5 & 6	3 & 6 = 0	4 & 5 = 1	1 & 2 = 2

Although this procedure makes use of interaction contrasts, this is not a correct decomposition of the original latin square of order six.

a Real data in the second s

×. 1

LITERATURE CITED

- Federer, W. T., A. Hedayat, E. T. Parker, B. L. Raktoe, Esther Seiden, and R. J. Turyn [1971]. Some techniques for constructing mutually orthogonal latin squares. M.R.C. Technical Summary Report No. 1030, Mathematics Research Center, University of Wisconsin.
- Hedayat, A. [1969]. On the theory of the existence, nonexistence, and the construction of mutually orthogonal F-squares and latin squares. Ph.D. Thesis, Cornell University, June.
- Hedayat, A., D. Raghavarao, and Esther Seiden [1975]. Further contributions to the theory of F-squares design. Annals of Statistics 3:712-716.
- Hedayat, A. and Esther Seiden [1970]. F-square and orthogonal F-squares design: A generalization of Latin square and orthogonal Latin squares design. Annals of Mathematical Statistics 41:2035-2044.
- Mandeli, J. P. [1975]. Complete sets of F-squares. M.S. Thesis, Cornell University, August.