F-Square Geometries for $n=3,4,5$, and 6
 by

W. T. Federer, F. C. Lee and J. P. Mandeli

ABSIRACT

Through the use of complete sets of mutually orthogonal F-squares, the concept of F-square geometries has been introduced. This follows from the one-to-one correspondence of complete sets of mutually orthogonal latin squares and projective geometry. The cases of $n=3,4,5$, and 6 as the order of the F-square are considered. The case for $n=3$ is completely resolved where it is shown that there is only one geometry, the projective. The case for $\mathrm{n}=4$ is partially resolved and four F-square geometriss have been found. It is not known if there are more. The case for $n=5$ has not been investigated, but one geometry for the complete set of orthogonal latin squares does exist. No one has as yet found an F-square geometry for $\mathrm{n}=6$. A study of all F-square geometries for these cases will be useful for considering other values of n.

[^0]
1. INIRODUCTION

It is well known that for latin squares of order three,
(i) a complete set of orthogonal latin squares, denoted by $O L(3,2)$ exist, and
(ii) there is a single transformation set.

With the introduction and development of F-square design theory by Hedayat [1969] and Hedayat and Seiden [1970] and from section XV of a paper by Federer et al. [1971], where A. Hedayat shows the equivalence of various combinatorial systems starting with an $O L(n, n-1)$ set, the question arises as to the use of F-square design theory in a one-to-one correspondence with other combinatorial systems. As a first step we shall look at all possible complete sets of F-squares. We shall call each one an F-square geometry and shall be studying complete sets of F-square geometries for $n=3,4,5$, and 6. The case for $n=3$ is very simple. The case for $n=4$ becomes considerably more difficult and the difficulty increases with n since the number of possible cases becomes increasingly large.

First of all, an F-square of order n with m symbols is denoted as $F\left(n ; \lambda_{1}, \cdots, \lambda_{m}\right)$-square. The $\dot{\lambda}_{i}$ are integers and refer to the frequency of any given symbol in a row or in a column. When the λ_{i} are ones, a latin square of order n is indicated. Also, $\sum_{i=1}^{m} \lambda_{i}=n$ for any F-square. A set of mutually orthogonal F-squares with the same number, m, of symbols will be denoted as $O F\left(n ; \lambda_{1}, \cdots, \lambda_{m} ; t\right)$ to correspond to the notation $O L(n, t)$ for t orthogonal latin

[^1]squares. If the number of symbols in the completerset of orthogonal F-squares varies, then we use the notation
$$
\sum_{i=1}^{n} O F\left(n ; \lambda_{1}, \cdots, \lambda_{i} ; \mathbb{N}_{i \lambda}\right) \text { for all } \lambda_{h}, \quad h=1, \cdots, i \text {, }
$$
to indicate that there are $N_{i \lambda}$ F-squares with i symbols for each possible set of λ_{h}.

Note that there are $(n-1)^{2}$ degrees of freedom associated with the row x. column interaction and that these are the only degrees of freedom available for constructing F-squares. In an F-square with i symbols there are (i-l) degrees of freedom among the i symbols. Hence, $\sum_{i=2}^{n} N_{i}(i-1)=(n-1)^{2}$ for all possible sets of λ_{i}, for a complete set of F-squares.

The idea of many complete sets for each n may be somewhat new for most people, but a discussion for $n=3,4,5$, and 6 below should clarify what is meant by the complete set of F-square geometries of order n.
2. THE CASE FOR $n=3$

The possible sets of $\lambda_{h}, h=1, \cdots, i \leqslant 3$ in an $F\left(3 ; \lambda_{1}, \cdots, \lambda_{i}\right)$-square are $1,1,1$ and 2,1. Note that 1,2 is merely a permutation of the set 2,1 . A complete set of orthogonal $F\left(3 ; \lambda_{0}, \cdots, \lambda_{i}\right)$-squares is given by the terms of the summation

$$
O F\left(3 ; 2,1 ; \mathbb{N}_{1}\right)+O F\left(3 ; 1,1,1 ; N_{2}\right)
$$

The possible values for N_{1} and N_{2}, given that $N_{1}(2-1)+N_{2}(3-1)=(3-1)^{2}=4$ are:

N_{1}	N_{2}	F-square geometry given by
0	2	OL(3,2) set
2	1	does not exist
4	0	does not exist

The members of an $\mathrm{OL}(3,2)$ set are

$$
L_{1}=\begin{array}{|lll}
A & B & C \\
B & C & A \\
C & A & B \\
a & b & c \\
c & a & b \\
b & c & a \\
\hline
\end{array}
$$

A permutation of the last two rows of L_{2} produces L_{1}.
The problem of producing a complete set of orthogonal F-squares for $N_{l}=2$ and $N_{2}=1$ resolves itself if one is able to decompose a latin square of order three into two orthogonal $F(3 ; 2,1)$-squares. Hence, the following theorem:

Theorem 2.1. It is impossible to decompose a latin square of order three into an orthogonal pair of $F(3 ; 2,1)$-squares.

Proof. It is immaterial whether one uses I_{1} or L_{2} so we shall show that I_{2} cannot be decomposed into two orthogonal $F(3 ; 2,1)$-squares. Consider the following set of orthogonal single degree of freedom contrasts for a 3×3 square:

Contrast

1. mean	+	+	+	+	+	+	+	+	+
2. row 1 versus row 2	+	+	+	-	-	-	0	0	0
3. row $1+2$ vs. row 3	$+$	+	+	+	+	+	-2	-2	-2
4. col. 1 vs. col. 2	+	-	0	+	-	0	+	-	0

5. columns $1+2$ vs. $3 \mid+\quad+-2 \ldots+2$
6. A versus B
7. $A+B$ vs. C
8. $a+b$ vs. c
9. unknown $=(?)$

$$
a_{11} a_{12} a_{13} a_{21} a_{22} a_{23} a_{31} a_{32} a_{33}
$$

Contrast 8 forms an $F(3 ; 2,1)$-square if we put a symbol, say x, where the pluses occur in the contrast, and a second symbol, say y, where the minus two occurs. This F-square follows as does the unknown in contrast 9:

Contrast. 8

x	x	y
y,	x	x
x	y	x

Contrast 9

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Note that for contrast 8 we could have taken $a+c$ vs. b or $b+c$ vs. a to obtain the $F(3 ; 2,1)$-square and that these three ways exhaust the possibilities for forming $F(3 ; 2,1)$-squares. Since the sum of the coefficients must equal zero and since the sum of products of coefficients in any two rows must be zero the only possible values for the $\dot{a}_{r s}$ are given below:

$$
\begin{array}{|l|l|l|}
\hline a_{11}=1 & a_{12}=-1 & a_{13}=0 \\
a_{21}=0 & a_{22}=1 & a_{23}=-1 \\
a_{31}=-1 & a_{32}=0 & a_{33}=1 \\
\hline
\end{array}
$$

There is no way to form an $F(3 ; 2,1)$-square from the above since there are three, not two, coefficients, i.e., 1,-1, and 0 . Thus, the complete set of F-squares for $N_{1}=2$ and $N_{2}=1$ does not exist.

Consider now the case where $N_{1}=4$ and $N_{2}=0$. Since the orthogonal $F(3 ; 2,1)$ squares must be formed by contrasts of the form $a+b$ versus c and $A+B$ versus C (or some permutation of the symbols), from the full set of 9 orthogonal contrasts, seven will be specified as above. The remaining cannot take on any other values than $+1,-1$, and 0 as described above. Hence, it is impossible to form an $\operatorname{OF}(3 ; 2,1 ; 4)$ set, resulting in the following theorem:

Theorem 2.2. The $O F(3 ; 2,1 ; 4)$ set does not exist.

It is possible to form a pair of orthogonal $F(3 ; 2,1)$-squares by taking one square from I_{1} and one from L_{2} above. It is not possible to obtain more than two.

3. THE CASE FOR $n=4$

The possible configurations of the $\lambda_{h}, h=1, \cdots, i \leq 4$ in $F\left(4 ; \lambda_{1}, \cdots, \lambda_{i}\right)$ squares are: $1,1,1,1 ; 2,1,1 ; 2,2$ and 3,1 . Note that $\sum_{h=1}^{i} \lambda_{h}=4$. A complete set of mutually orthogonal F-squares of order 4 is indicated as follows:

$$
O F\left(4 ; 3,1 ; N_{1}\right)+O F\left(4 ; 2,2 ; N_{2}\right)+O F\left(4 ; 2,1,1 ; N_{3}\right)+O F\left(4 ; 1,1,1,1 ; N_{4}\right)
$$

Subject to the constraint that $\sum_{i=1}^{4} N_{i}=(4-1)^{2}=9$, the possible values for the N_{i} are given below:

N_{1}	N_{2}	N_{3}	N_{4}	Complete set given by
0	0	0	3	OL (4,3)-set $\quad \therefore$
0	1	1	2	does not exist (see below)
1	0	1	2	does not exist (see below
0	3	0	2	given below
1	2	0	2	does not exist (see below)
2	1	0	2	does not exist (see below)
3	0	0	2	does not exist (see below)
0	0	3	1	:
0	2	2	1	
1	1	3	1	
2	0	2	1	
0	4	1	1	\%
1	3	1	1	
2	2	1	1	.
3	1	1	1	
4	0	1	1	\cdots
0	6	0	1	Mandeli [1975]
1	5	0	1	
2	4	0	1	
3	3	0	1	$\therefore \therefore$
4	2	0	1	
5	1	0	1	
6	0	0	1	
0	1	4	0	$\therefore:$
1	0	4	0	
0	2	3	0	-
1	1	3	0	
2	0	3	0	- .
0	5	2	0	
1	4	2	0	
2	3	2	0	
3	2	2	0	

4	1	2	0
5	0	2	0
0	7	1	0
1	6	1	0
2	5	1	0
3	4	1	0
4	3	1	0
5	2	1	0
6	1	1	0
7	0	1	0
0	9	0	0
1	8	0	0
2	7	0	0
3	6	0	0
4	5	0	0
5	4	0	0
6	3	0	0
7	2	0	0
8	1	0	0
9	0	0	0

Hedayat, Raghavarao and Seiden [1975]
3.1. Solution for $\mathbb{N}_{4}=2$. For latin squares of order 4 there are two transformation sets, one of which is mateless and one which can be used to construct an $O L(4,3)$ set such as the following:

$$
\left.\left.L_{1}=\begin{array}{|llll}
A & B & C & D \\
B & A & C & D \\
C & D & A & B \\
D & C & B & A
\end{array}\right] \quad L_{2}=\begin{array}{|cccc}
a & b & c & d \\
d & c & b & a \\
b & a & d & c \\
c & d & a & b \\
\hline
\end{array}\right] \quad L_{3}=\begin{array}{|cccc}
\alpha & \beta & \gamma & \delta \\
\gamma & \delta & \alpha & B \\
\delta & \gamma & B & \alpha \\
\beta & \alpha & \delta & \gamma \\
\hline
\end{array}
$$

If a and α are set equal to A, b and β to B, c and γ to C, and d and δ to D, one may observe that L_{2} and L_{3} can be converted into L_{1} by a simple row permutation
of the last three rows. In addition, it is known that any pair of orthogonal latin squares of order 4 can be extended to form an $O L(4,3)$ set. Thus, any two of L_{1}, L_{2}, or L_{3} may be used and the problem is to show how to decompose the remaining latin square into combinations of $F(4 ; 2,1,1)-, F(4 ; 2,2)$ - , and/or $F(4 ; 3,1)$-squares. Suppose that I_{1} and I_{2} are the latin squares in the set for $N_{4}=2$. Then, our problem is to decompose L_{3} into F-squares. The only F-squares with two symbols that are possible are the $F(4 ; 3,1)$-square and the $F(4 ; 2,2)$-square. The former implies the contrast $3 \alpha-\beta-\gamma-\delta$ and the latter implies the contrast $\alpha+\beta-\gamma-\delta$ among the four symbols. Note that although there are an infinite number of sets of contrasts for $n=4$, these two from Helmert polynomials and from the 2^{2} factorial are the only ones giving rise to F-squares. Therefore, one needs only to investigate the following two cases to determine if I_{3} can be decomposed into three F-squares with two symbols:

For M_{1}, note that

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}+a_{4}=0 \\
& a_{1}+a_{2}+a_{3}-3 a_{4}=0
\end{aligned}
$$

The only solution for a_{4} is $a_{4}=0$, and if all 16 cells of a 4×4 square are used, one cannot form a F-square. Hence, M_{1} cannot be completed to form a set
of three orthogonal F-squares with two symbols. Likewise, the same holds for the b_{g} coefficients.

In M_{2},

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}+c_{4}=0 \\
& c_{1}+c_{2}-c_{3}-c_{4}=0 .
\end{aligned}
$$

Therefore,

$$
c_{1}+c_{2}=0 \quad \text { and } \quad c_{3}+c_{4}=0
$$

are solutions for these two conditions. Possible solutions for c_{1} and c_{2} are +1 and -1 or 0 and 0 , or multiples thereof. Likewise, these are the possible solutions for c_{3} and c_{4}. Therefore, the possible sets of solutions are:

$$
\begin{array}{cccccccc}
1 & -1 & 0 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & -1 & -1 & 1
\end{array}
$$

The first set does not produce F-squares, but the second one does. Hence, the only decomposition of I_{3} into F-squares with two symbols is into three $F(4 ; 2,2)$ squares.

Now consider the decomposition of L_{3} into an $F(4 ; 2,1,1)$-square plus an F-square with two symbols. First combine any two symbols of L_{3} into a single symbol to form the $F(4 ; 2,1,1)$-square, e.g., let $\alpha=\delta=\alpha$. Then, form the contrast of $2 \alpha-\beta-\gamma$. The only contrast orthogonal to this contrast is $\beta-\gamma$. The remaining orthogonal contrast would be α versus the original δ. This last contrast does not form an F-square.

Another way of looking at this problem probably could be using a result due to S. S. Thrikhande (personal communication from A. Hedayat, 8/12/76).

He showed that if a matrix contains the first 4 t-2 rows of a Hadamard matrix the only way to make this an orthogonal matrix is to complete the Hadamard matrix. This implies the existence of $F(4 ; 2,2)$-squares only. The above then leads to the following theorem:

Theorem 4.1. The only decomposition of a latin square from the $O L(4,3)$ set is into three $F(4 ; 2,2)$-squares.
3.2. Solution for $N_{4}=1$. Here one needs to consider the solution for a latin square from the set $O L(4,3)$ and a latin square from the other transformation set which is an orthogonally mateless latin square. The only solution for the 16 cases is the one for which $N_{4}=1, N_{3}=N_{1}=0$, and $N_{2}=6$. Mandeli [1975] has given the solution for both transformation sets. The solution for the remainder of the cases is an open problem.
3.3. Solution for $N_{4}=0$. Of the 29 possibilities for complete sets of F-squares when $N_{4}=0$, only one has been solved, and that is for the $\operatorname{OF}(4 ; 2,2 ; 9)$ set. Some decomposition and composition theorems are needed for these solutions.

4. THE CASE FOR $n=5$

The possible configurations of the $\lambda_{h}, h=1, \cdots, i \leq 5$ in $F\left(5 ; \lambda_{1}, \cdots, \lambda_{i}\right)$ are: $1,1,1,1,1 ; 2,1,1,1 ; 2,2,1 ; 3,1,1 ; 4,1$; and 3,2 . Note that the ${ }_{h}{\underset{1}{i}}_{1}^{1} \lambda_{h}=5$. Consider a complete set of mutually orthogonal $F\left(5 ; \lambda_{1}, \cdots, \lambda_{i}\right)$-squares such that there are N_{i} of the $i^{\text {th }}$ type and denoted as $0 F\left(5, \lambda_{1}, \cdots, \lambda_{i} ; N_{i}\right)$, where $\sum_{i=2}^{5} N_{i}(i-1)$ $=(5-1)^{2}=16$. A complete set of mutually orthogonal F-squares will have the following numbers of types: $\operatorname{OF}\left(5 ; 3,2 ; N_{1}\right)+O F\left(5 ; 4,1 ; N_{2}\right)+O F\left(5 ; 3,1,1 ; N_{3}\right)$ $+\operatorname{OF}\left(5 ; 2,2,1 ; N_{4}\right)+\operatorname{OF}\left(5 ; 2,1,1,1 ; N_{5}\right)+\operatorname{OF}\left(5 ; 1,1,1,1,1 ; N_{6}\right)$. The possible values
for the N_{i} are:

4	3	0	1	1	2
5	2	0	1	1	2
6	1.	0	1	1	2
7	0	\bigcirc	1	1	2.
0	7	1	0	1	2
1	6	1	0	1	2
2	5	1	0	1.	2
3	4	1	0	1	2
4	3	1	0	1	2
5	2	1	0	1	2
6	1	1	0	1	2
7	0	1	0	1	2
0	9	0	0	1.	2
1	8	0	0	1.	2
2	7	0	0	1	2
3	6	0	0	1	2
4	5	0	0	1	2
5	4	0	0	1	2
6	3	0	0	11	2
7	2	0	0	1	2
8	1	0	0	1	2
9	0	0	0	1	2
0	0	0	4	0	2
0	0	1	3	0	2
0	2	0	3	0	2
1	1	0	3	0	2
2	0	0	3	0	2
0	0	2	2	0	2
0	2	1	2	0	2
1	1	1	2	0	2
2	0	1	2	0	2
0	4	0	2	0	2
1	3	0	2	0	2
2	2	0	2	0	2
3	1	0	2	0	2

2	6	0	0	0	2	
3	5	0	0	0	2	
4	4	0	0	0	2	
5	3	0	0	0	2	
6	2	0	0	0	2	Those above for $N_{6}=2,3$
7	1	0	0	0	2	that exist should be obtainable
8	0	0	0	0	2	from the OL(5,4)-set
0	1	0	1	3	1	
1	0	0	1	3	1	
0	1	1	0	3	1	
1	0	1	0	3	1	
0	3	0	0	3	1	
1	2	0	0	3	1	
2	1	0	0	3	1	
3	0	0	0	3	1	
0	0	0	3	2	1	\because
0	0	1	2	2	1	
0	2	0	2	2	1	
1	1	0	2	2	1	
2	0	0	2	2	1	
0	0	2	1	2	1	-
0	2	1	1	2	1	
1	1	1	1	2	1	
2	0	1	1	2.	1	
0	4	0	1	2	1	
1	3	0	1	2	1	
2	2	0	1	2	1	
3	1	0	1	2	1	
4	0	0	1	2	1	
0	0	3	0	2	1	
0	2	2	0	2	1	
1	1	2	0	2	1	
2	0	2	0	2	1	
0	4	1	0	2	1	
1	3	1	0	2	1	

classes rather than single cases. Note that if $N_{6} \geq 2$, the F-squares under consideration must come from a decomposition of latin squares from the $\mathrm{OL}(5,4)$ set. For $N_{6}=1$, there are two transformation sets, one of mateless latin squares of order 5 and the other which is a member of an OL(5,4) set. Note that only one case, i.e., for the $O L(5,4)$ set, has been solved in the complete set of F -square geometries.

5. THE CASE FOR $n=6$

No one has as yet obtained a complete set of orthogonal $F\left(6 ; \lambda_{1}, \cdots, \lambda_{i}\right)$ squares, for $i=2,3, \cdots, 6$. The maximum number so far obtained is an $\operatorname{OF}(6 ; 2,2,2 ; 7)$ $+\operatorname{OF}(6 ; 1,1,1,1,1,1 ; 1)$ set. Two $F(6 ; 2,2,1,1)$-squares, if orthogonal to the above, would be needed to complete the set. Likewise, the addition of six $0 F\left(6 ; \lambda_{1}, \lambda_{2}\right)$ squares would also complete the set. Many such combinations are possible, but so far a complete set of mutually orthogonal F-squares has not been obtained.

In this connection there are ten possible F-squares of order 6. These are:

$F(6 ; 5,1)$	$F(6 ; 3,2,1)$	$F(6 ; 2,1,1,1,1)$
$F(6 ; 4,2)$	$F(6 ; 2,2,2)$	$F(6 ; 1,1,1,1,1,1)$
$F(6 ; 3,3)$	$F(6 ; 3,1,1,1)$	
$F(6 ; 4,1,1)$	$F(6 ; 2,2,1,1)$	

A complete set should be obtainable as some combination of the following:
$\mathrm{OF}\left(6 ; 5,1 ; \mathrm{N}_{1}\right)+\mathrm{OF}\left(6 ; 4,2 ; \mathrm{N}_{2}\right)+\mathrm{OF}\left(6 ; 3,3 ; \mathrm{N}_{3}\right)+\mathrm{OF}\left(6 ; 4,1,1 ; \mathrm{N}_{4}\right)+\mathrm{OF}\left(6 ; 3,2,1 ; \mathrm{N}_{5}\right)$
$+O F\left(6 ; 2,2,2 ; N_{6}\right)+O F\left(6 ; 3,1,1,1 ; N_{7}\right)+O F\left(6 ; 2,2,1,1 ; N_{8}\right)+O F\left(6 ; 2,1,1,1,1 ; N_{9}\right)$
$+\operatorname{OF}\left(6 ; 1,1,1,1,1,1 ; N_{10}\right)$. We know, for example, that N_{10} must be one or zero since no pair of orthogonal latin squares of order six is possible.

In order to reduce the possible combinations of N_{i} such that $\sum_{i=1}^{10} N_{i}(i-1)$ $=25=(6-1)^{2}$, some results of composition and decomposition would be desirable to eliminate certain combinations of the N_{i}. For example, is it possible to decompose a latin square of order six into one $F(6 ; 3,3)$-square and two $F(6 ; 2,2,2)$ squares? One could do the following for a latin square of order six:

LS(6)

$1-01$	$2-00$	$3-11$	$4-10$	$5-21$	$6-20$
$2-00$	$1-01$	$4-10$	$3-11$	$6-20$	$5-21$
$3-11$	$4-10$	$5-21$	$6-20$	$1-01$	$2-00$
$4-10$	$3-11$	$6-20$	$5-21$	$2-00$	$1-01$
$5-21$	$6-20$	$1-01$	$2-0$	$3-11$	$4-10$
$6-20$	$5-21$	$2-00$	$1-01$	$4-10$	$3-11$

In the above the following representation to a 2×3 factorial has been made:

			\ldots	Symbol in $F(6 ; 3,3)$
$1=01$	$3=11$	$5=21$	1	
$2=00$	$4=10$	$6=20$	0	
Symbol in $F(6 ; 2,2,2)$	0	1	2	

Thus any 6×6 square can be decomposed, via 2×3 factorial representation, into an $F(6 ; 3,3)$-square and an $F(6 ; 2,2,2)$-square. But, can another square of the latter type be formed from the interaction contrast coefficients? This has not yet been done. It is, however, simple to form another $F(6 ; 2,2,2)$-square orthogonal to the previous two as follows: Form all possible tetrads in the above 2×3 table; these are:

1	3			
2	4	,	1	5
:---:	:---:			
2	6	, and	3	5
:---:	:---:			
4	6	.		

Considering all interaction contrasts, we form an $F(6 ; 2,2,2)$-square as below. If in each pair of rows in the original latin square, we set the symbols as follows:

Rows

$1 \& 2$	$1 \& 4=0$	$2 \& 3=1$	$5 \& 6=2$
$3 \& 4$	$1 \& 6=0$	$2 \& 5=1$	$3 \& 4=2$
$5 \& 6$	$3 \& 6=0$	$4 \& 5=1$	$1 \& 2=2$

Although this procedure makes use of interaction contrasts, this is not a correct decomposition of the original latin square of order six.

ITTERATURR CITED

Federer, W. T., A. Hedayat, E. T. Parker, B. L. Raktoe, Esther Seiden, and R. J. Turyn [1971]. Some techniques for constructing mutually orthogonal latin squares. M.R.C. Technical Summary Report No. 1030, Mathematics Research Center, University of Wisconsin.

Hedayat, A. [1969]. On the theory of the existence, nonexistence, and the construction of mutually orthogonal F-squares and latin squares. Ph.D. Thesis, Cornell University, June.

Hedayat, A., D. Raghavarao, and Esther Seiden [1975]. Further contributions to the theory of F-squares design. Annals of Statistics 3:712-716.

Hedayat, A. and Esther Seiden [1970]. F-square and orthogonal F-squares design: A generalization of Latin square and orthogonal Latin squares design. Annals of Mathematical Statistics 41:2035-2044.

Mandeli, J. P. [1975]. Complete sets of Fasquares. M. S. Thesis, Cornell University, August.

[^0]: * In the Mimeo Series of the Biometrics Unit, Cornell University, Ithaca, New York, 14853.

[^1]: * In the Mimeo Series of the Biometrics Unit, Cornell University, Ithaca, New York, 14853.

