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Wind and solar can provide an endless supply of clean electricity, affording us

all the benefits that modern society has to offer without the debilitating and in-

equitable effects of pollution. Unfortunately, these distributed energy resources

stand in stark contrast to the central-station synchronous power plants of the

past, and we have yet to remember how to work with naturally occurring flows

of energy. In this future, both electricity demand and supply are inextricably

linked to the weather. In response, I present a collection of open-source tools

that center around meteorology – the underlying driver of future electrical grid

and air quality uncertainty. I begin with a spatial study focusing on solar de-

velopment and show how sunny winter days might cause as many problems

as cloudy summer ones. I then showcase novel tools that will lower the barrier

to entry for meteorological modeling and are aimed at giving each government

and non-profit agency access to in-house wind and solar forecasts. Building

upon these, I propose an integrated framework for quantifying air-quality co-

benefits associated with renewable energy development, which improves the

case for further investment.
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CHAPTER 1

INTRODUCTION

At this point in history, society at large has recognized that global warming

represents a clear and present danger to life as we know it. Despite a compli-

cated patchwork of geopolitical priorities, the vast majority of the world came

together to sign the Paris Accord in 2015. While not legally binding, this pro-

vided a good faith offering from nations of the world to begin to draw down

fossil fuel emissions whilst leaving vast reserves in the ground unburned. Many

U.S. states and cities gave teeth to their promises by penning legislation aimed at

rapidly decarbonizing their industries, their buildings, and their transportation

systems over the next 20 to 30 years. At the center of these laws and aspirations

lies the largest single machine ever built – the electricity grid.

But, this system – connecting thousands of power plants to millions of busi-

nesses and residences using bundles of thin steel wires – remains chronically

underfunded. Today, an average piece of U.S. grid infrastructure is forty years

old even alongside consistent increases in spending on transmission and dis-

tribution infrastructure. Damage from extreme weather, shifting patterns in

generation and consumption, and looming bankruptcies plague the players in

the modern electricity business daily. Therefore, we require new paradigms to

fund the grid and ensure its reliability. Furthermore, if we hope to use the grid

as the mechanism by which to decarbonize our society, then we require tools

that deepen our understanding of where and when emissions are produced and

what actions can displace the resources that cause them.

Fundamentally, a decarbonized grid must harness Earth’s naturally occur-

ring flows of energy, increasingly from the wind and sun, which requires not
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only accurate weather data products but the ability to act on the information

contained within these data. Figure 1.1 depicts the strong – and ever-growing

– influence of the weather on the grid. Public and private sector entities al-

ready apply a patchwork of weather forecasts and reanalysis data for grid plan-

ning and operations. But such fragmented approaches fail to capture key link-

ages putting future grid reliability at risk. In response, this thesis documents

open-source tools centered around meteorology to aid in renewable energy in-

tegration in a way that strategically reduces CO2 and criteria air pollutants. My

methods strive for internal consistency and can easily be adapted to new regions

around the world.

Meteorology

Wind

Solar

Storage

Demand

Emissions

Power 
System

Regional 
Air Quality

Health

Figure 1.1: Diagram depicting the influence of meteorology upon the power
system, air quality, and public health.

For much of this work, New York State (NYS) acts as a test-bed to demon-

strate these tools due to several attractive features. First, electric power markets

in NYS are deregulated and are operated independently from other states. This
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means that NYS doesn’t have to contend with as many complicated interstate

dynamics during electricity planning. Rather, state policies can be directly im-

plemented by the New York Independent System Operator (NYISO). In 2019,

NYS passed the most ambitious state-level climate change policy to date, the

Climate Leadership and Community Protection Act (Climate Act), which re-

quires 100% zero-carbon electricity by 2040, 9 GW of offshore wind by 2035, and

10 GW of distributed solar by 2030. Finally, NYS is geographically and econom-

ically diverse with a majority of the population and energy demand concen-

trated Downstate surrounding New York City but with a majority of existing

power plants and prime land for renewable development located Upstate. This

configuration represents a classic “centralized” approach to electricity gener-

ation and distribution, which increases the risk of catastrophic failures when

faced with extreme weather, cyber attacks, or simply deferred maintenance.

Therefore, reliably providing enough clean power to Downstate NY offers an

interesting challenge.

A brief summary of the four major projects featured in the coming Chapters

is as follows:

In Chapter 2, I assess the implications of utility-scale solar development. Af-

ter mapping available land across NYS, I designed development scenarios in

line with NYS’s renewable portfolio standards. Through this study, we learned

that New York’s species of “duck curve” will likely occur during sunny winter

days. During such periods, flexibility resources will become highly valuable

due to the potential for high ramps, but the wholesale cost of electricity will

likely remain in negative territory during the midday with large quantities of

zero marginal cost resources on the system.
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Chapter 3 addresses offshore wind resources in the Northeastern U.S. While

this region has the potential for vast wind farms, development remains nascent.

I assess a multiphysics ensemble of WRF-simulated horizontal wind speeds in

the New York Bight. This constitutes the most detailed analysis of WRF perfor-

mance for offshore wind in the Northeast completed to date. For the first time,

I had access to LiDAR data at multiple locations, which allowed me to com-

ment on WRF biases in four dimensions. As expected, WRF wind speed biases

increased with height, but biases also differed substantially between the two

buoys even in estimates generated by the same member. This offers additional

compelling evidence that extrapolating power generation from one location to

another offshore causes errors. In other words, electricity planners and oper-

ators in the U.S. lack the observational data necessary to determine the spa-

tiotemporal bias patterns in offshore wind, which are necessary to intimately

understand resource coincidence and availability. I found that no single mem-

ber performed the best in all stability classes but that the setup devised by Optis

et al. [1] performed the best on average. Finally, I reported that the ensemble as

a whole showed classical signs of underdispersion as well as a greater tendency

to underpredict wind speeds offshore.

In Chapter 4, I take the first steps at breaking down the barriers to entry for

customizing a WRF model for any application in any region called OptWRF.

Generally, WRF setups are iteratively improved by a team of experts over a pe-

riod of months to years putting in-house meteorological modeling out of reach

for many governments and nonprofits across the world. OptWRF optimizes

a WRF setup using a genetic algorithm. I showed that the setup found by

OptWRF for the dual purpose of wind and solar downscaling outperformed all

the setups recommended by NCAR in the WRF User’s Guide for every month
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of the year. The novel fitness function that I designed for combined wind and

solar analysis featured a metric called wind power density, which allows for the

direct comparison of errors in wind and solar resources. Such a metric can aid

planners in investigating contingencies for periods of shortfall and excess gen-

eration alike. In other words, this combined metric offers a convenient way to

characterize errors in a future variable renewable energy-dominated system. In

addition to creating a database of viable WRF setups, I crafted a random-forest-

based postprocessing algorithm to shed light on the effect that the parameteri-

zation of each major physical process has upon total model error.

Finally, in Chapter 5, I present an integrated framework – named OneMet –

that uses consistent meteorology to forecast renewable energy generation, dis-

patch power plants or flexible resources to meet the remaining net load, and

assess air quality. I argue that this internal consistency can offer more consistent

bias patterns thereby making it easier to bias-correct using established statisti-

cal postprocessing techniques. Methods developed in Chapters 2-3 inform re-

newable energy development patterns, and their associated power generation

profiles are derived from WRF. These profiles are then fed into an in-house rep-

resentation of the New York State power system, and the resulting dispatch pat-

tern dictates CO2 and criteria pollutant emissions. Finally, updated emissions

estimates drive a chemical transport model, which elucidates the air quality

benefits – and trade-offs – associated with a particular renewable development

scenario. Therefore, OneMet can inform government incentives for renewables

seeking to encourage a pathway that will reap the greatest emissions and air

quality benefits.
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CHAPTER 2

STRATEGIC PLANNING FOR UTILITY-SCALE SOLAR PHOTOVOLTAIC

DEVELOPMENT – HISTORICAL EVENTS REVISITED

Abstract

Rapidly growing utility-scale solar photovoltaic (PV) holds promise for address-

ing energy and environmental challenges posed by high electricity demand

days (HEDDs). We assessed the implications on strategic planning of future

solar development in an emerging solar market, New York State (NYS) in the

U.S., by synthesizing information on electrical infrastructure, tax assessment,

geographical constraints and measured meteorological data. Considering three

solar PV penetration scenarios (4500 MW, 6000 MW, and 9000 MW), we exam-

ined the impact of distributed utility-scale solar farms on peak demand reduc-

tion and ramping requirements during historical peak events. Our results reit-

erate that, across NYS, a wealth of low-value land exists to support utility-scale

solar PV and that generation from these resources can reduce peak demand by

up to 9.6% under the 9000 MW scenario. In addition, peak demand reduction

displays locational and temporal dependency. Contingent upon local meteo-

rology, a solar farm can reduce demand during the peak hour by anywhere

between 10 and 74% of its rated capacity during summer HEDDs. However,

the highest ramping requirements are more likely to occur during winter than

summer. Furthermore, because developers cannot predict performance dur-

ing the annual system peak, current capacity valuation methodologies for solar

projects may not be adequate to promote a healthy competitive market for solar.

Incorporating a broader spectrum of peak demand conditions into variable re-
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source capacity valuation would improve strategic planning, not only in NYS,

but across quickly growing solar markets worldwide.

2.1 Introduction

High electricity demand days (HEDDs) are usually driven by intensified us-

age of air conditioning during prolonged hot and humid summer periods. As

the climate changes, regional heat waves are predicted to become more fre-

quent [26], increasing the quantity of HEDDs and the magnitude of peak en-

ergy demand [31]. High energy costs, dangerous temperatures, and air pollu-

tion during HEDDs pose great challenges in maintaining grid reliability and

protecting public health [40]. Recent rapid development of distributed energy

resources (DERs) provides an economically viable opportunity to mitigate im-

pacts of HEDDs.

DERs broadly include distributed generation (DG), energy efficiency, de-

mand response, and energy storage. Driesen and Katiraei argue that restruc-

turing the electrical system to accommodate higher penetrations of DERs can

improve reliability [17]. Subsequent work showed the vast potential that re-

newable DERs possess in mitigation of greenhouse gas emissions [9]. However,

siting numerous small generation resources further complicates power system

planning, so an increasing amount of work has aimed to develop multi-objective

optimization techniques for locating various types of DERs to attain the greatest

overall benefit [10]. On the demand side, energy efficiency measures, dynamic

pricing, and demand response programs have already been widely adopted

to slash peak demand [40]. New flexible technologies, such as Vehicle-to-Grid
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(V2G), may provide additional effective methods of reducing peak [37]. On the

supply side, solar photovoltaic (PV) is the most promising form of renewable

DG due to its comparatively low installed cost and because peak solar genera-

tion coincides with mid-day system peak demand [12].

The U.S. states that have dedicated carve-outs for solar within their renew-

able portfolio standards (RPS) (e.g. Arizona, Delaware, Nevada, Massachusetts,

New Mexico, etc.) installed 722% more capacity between 1997 and 2009, on av-

erage, than those without [33]. However, since these carve-outs are often spec-

ified on a statewide basis, they fail to value the location-based benefits of solar.

Similarly, traditional net metering incentives appear as a credit on a customer’s

monthly utility bill. Such a mechanism cannot elicit responses from behind-the-

meter solar owners on time scales at which the day ahead or real time electricity

markets operate. Furthermore, high system ramping rates resulting from ag-

gressive solar PV penetrations may become an unintended consequence of high

solar penetrations [8]. Under such scenarios, diurnal peak load tends to shift

toward evening hours and many dispatchable generators remain idling during

the day to avoid incurring exorbitant start-up costs during the evening ramp

[16]. As such, steeper ramping requirements could lead to higher total emis-

sions from thermal generators as emission rates deviate considerably during

start-up, up-ramping, and part-load operation when compared with steady-

state operation [36]. As articulated by [27], integration of solar and wind re-

sources can only go so far given current system flexibility limitations - some-

thing that must be addressed in future legislation.

To fully realize potential benefits of DERs, solar PV in particular, on HEDDs

requires improved quantification of several key impacts that DERs have on the
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power system during the planning stage. First, benefits of DERs are locationally

and temporally dependent due to existing power system network infrastructure

and patterns of electricity consumption. Also, since DERs are frequently inter-

connected within power distribution systems, independent system operators

(ISO) or regional transmission organizations (RTO) have neither visibility nor

control over distributed generation, which makes it necessary to account for in-

termittency to ensure bulk power system reliability [7]. Finally, the impact of

solar PV on system flexibility requirements should be assessed.

Various methodologies exist for siting intermittent resources and determin-

ing their impact. Previous studies have estimated solar PV resource potential

at national scale in the US [18], China [21], and Australia [30]. One study looks

specifically at environmental and health benefits associated with expanded so-

lar development in the US [38]. Nikolakakis et al. designed an optimization

model to determine the maximum penetration of intermittent resources in New

York under a specific grid flexibility scenario assuming no transmission con-

straints [27]. Trade-offs between siting PV farms to maximize energy production

or to minimize reserves were recently explored [35]. Pietzcker et al. used a cou-

pled energy-economy-climate model to determine what role solar technologies

might play in decarbonization of the power sector [29].

Specifically, GIS provides a useful aid in identifying and evaluating poten-

tial solar farm sites. One study, by Brewer et al., incorporates survey data to

assess site suitability based upon public attitudes about solar farm locations

[13]. Sanchez-Lozano uses a multi-criteria decision analysis (MCDA) technique

to evaluate alternative locations for solar farm development [32]. While both of

these studies offer developers valuable information on where they should site
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individual solar farms, they provide little insight into long-term renewable inte-

gration planning. Recently, Yushchenko et al. treated a larger scale by conduct-

ing a MCDA assessment across West Africa to identify areas for grid-connected

PV development [39]. However, they note that future estimates should include

an economic evaluation to accompany an estimate of technical potential.

As such, the two main objectives in this study are: a) implement a GIS-based

siting approach considering individual properties in a study region with non-

ideal solar resources, and incorporate locational and temporal resource char-

acteristics to estimate the impact of intermittent generation on peak load and

ramping requirement during HEDDs; b) assess the current valuation method

for installed solar capacity. The two objectives are closely connected because

the peak load reduction potential is a critical component in valuating installed

capacity. Using diverse data sources in a regional siting exercise can add to the

discussion among academics, developers, and policy-makers about best prac-

tices for regional solar development and what impact different development

trends may have upon electricity markets. Due to the capital-intensive nature

of solar projects, how solar capacity is valued could determine if utility-scale

solar projects remain viable investments. Furthermore, the energy value of so-

lar decreases with increasing penetration of zero marginal cost resources [22].

Therefore, characterizing the extent to which solar farms mitigate peak demand

and compensating them accordingly remains an open and vital task.

For this study, a bottom-up approach is defined as one that identifies appro-

priate locations for solar farms by assessing individual contiguous tracts of land

of sufficient size, slope, and property class to support solar farm development.

Such a method provides advantages over a top-down approach where an aver-
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age capacity is specified over a study region. Specifically, using substation loca-

tions and geographic information for each site, a judgment can be made about

which sites may be interconnected at relatively low cost. Finally, in knowing

the exact geographic location of each potential solar farm, it becomes possible

to target those sites for development which are located nearer to load pockets

or are in locations where the solar resources – dictated by local meteorological

conditions – are most favorable.

New York State (NYS) is taken as a testbed for demonstrating our method

introduced above due to several attractive characteristics. NYS’s Clean Energy

Standard (CES) mandates that 50% of all electricity be generated via renewable

energy by 2030 – an estimated 70,500 GWh [7], which will provoke major in-

vestment in renewable energy infrastructure over the next decade. The New

York State Public Service Commission (NYSPSC) has transitioned away from

net metering to a new compensation mechanism for DERs known as the Value

of Distributed Energy Resources (VDER) framework [41], which seeks to en-

compass locational, temporal, and environmental values provided by DERs.

Therefore, results presented here can assist policy-makers with VDER imple-

mentation. Synthesizing granular datasets containing tax classification, sub-

station location, and various geographic constraints, we estimated the spatial

distribution of solar farms across NYS and modeled hourly solar output during

HEDDs identified between 2010 and 2015. Then, a comprehensive evaluation

of electricity system benefits provided by distributed solar farms, inclusive of

intermittency considerations, was conducted during times when the system ex-

periences the most stress. Finally, we recommend capacity valuation alterna-

tives which can potentially create a mechanism to achieve state RPS targets and

greenhouse gas reduction goals.
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The remainder of this article is organized as follows: Section 2.2 describes

our methodology. Net load profiles, peak demand reduction magnitudes, and

ramping rate curves are presented and their implications discussed in Section

2.3. Finally, Section 2.4 draws conclusions as well as stipulates on future re-

search aimed at improving utility-scale solar farm development.

2.2 Method

Figure 2.1 illustrates the overall method. We start with NYS-wide tax prop-

erty data collected during assessment, and filter, then rank all properties based

upon a set of criteria that affect the likelihood of those properties being devel-

oped into solar farms. Then, we model electricity outputs from the selected

solar farms under three penetration scenarios using historical meteorological

conditions and evaluate the impact on peak demand reduction and ramping

requirements.

NYS Tax Data

Filter parcels 
by:

•Property class 

•Size 

•Substation 
proximity

•Land slope

Rank sites by:

•Population 
density

•Resource 
quality

Estimate hourly 
PV output 
under each 
scenario:

•4500 MW

•6000 MW

•9000 MW

Construct net 
load curves & 

LDCs. Calculate 
peak load 
reduction.

Figure 2.1: Flow chart depicting a bottom-up approach for utilizing tax data to
draw conclusions about electricity system impacts associated with future solar
PV development.
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2.2.1 Utility-scale solar photovoltaic farm development

We utilized granular datasets including NYS-wide tax property classifications,

electrical substation locations, and geographic constraints to estimate a spatial

distribution of solar farms. Where solar farms are sited will determine whether

or not they displace electricity generated by conventional generators and there-

fore whether or not they mitigate greenhouse gas emissions. As predicting

precise locations encompasses numerous uncertainties, our focus lies on broad

trends rather than the likelihood of development for any individual site.

Site selection process

Property classes from the NYS real property system suitable for utility-scale so-

lar farms were identified and compared against those hosting 15 existing solar

farms. Methods for filtering and exclusion of land are summarized in Figure 2.2.

A 2015 statewide tax property dataset [3], obtained from the NYS Office of In-

formation Technology Services, containing property boundaries and associated

tax information for every taxable piece of land within NYS formed the basis for

site selection. Figure 2.2a depicts property boundaries in a region near Buffalo,

NY.

Table 2.1 in Section 2.5 lists property classes considered appropriate for fu-

ture utility-scale solar farm development (listed as “Future” or “Both”), prop-

erty classes currently hosting solar farms, and explanations of any discrepan-

cies. Land that is fairly flat, clear of trees and buildings, and often vacant pro-

vides the simplest, most efficient, and most economical base for solar farm de-

velopment. Property classes reflecting productive farmland were avoided due
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(a) Original (b) Property class filter

(c) Property size filter (d) Substation filter

(e) Slope filter Eliminated
Remaining

Figure 2.2: Properties remaining after each filter has been applied are colored
in dark purple while light purple properties are those eliminated by the filter.
(a) shows all original properties and their boundaries, (b) shows properties ex-
cluded due to unsuitable land classes, (c) shows which properties are larger
than 10 acres, (d) depicts which properties are within 1-mile of a distribution
level substation, and (e) shows all properties that have an average slope below
5%.

to anticipated future protection, but abandoned and vacant agricultural lands

were considered. Remaining properties after property class filtering are shown

in Figure 2.2b.

Properties were also filtered based on size, slope, and power system inter-

connection cost. Only solar farms of 2 MW (nameplate capacity) or above – re-
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quiring a minimum of 10 acres either on individual properties or collections of

contiguous properties – were considered as this capacity represents a common

threshold between utility-scale and commercial-scale solar. Since commercial-

scale solar installations often occur on different property classes than utility-

scale solar, this distinction is important. The 10-acre size for a 2-MW solar farm

is selected based on the National Renewable Energy Laboratory’s (NREL) esti-

mate for solar PV installation density 39 MW km−2 [28], which was confirmed

by existing NYS solar farms. Land meeting both property class and size require-

ments are shown in Figure 2.2c.

Furthermore, properties were excluded if their average slope derived from

the US National Elevation Dataset [34] (the finest resolution, 1/3 arc-second,

was used for the current study) exceeded 5% – see Figure 2.2d – as additional

costs incurred during initial development become prohibitive [4]. This fact was

confirmed by examining existing NYS solar farms. Finally, properties were ex-

cluded if not located within a 1-mile radius of a distribution-level (up to 115 kV)

substation as depicted in Figure 2.2d. Locations for distribution-level substa-

tions within New York were obtained from Transmission AtlasTM for the East-

ern Interconnect region [2]. Euclidean distance to the nearest distribution level

substation was calculated and used as a surrogate to represent power system

interconnection costs, which are estimated by NREL at $500,000/mile [14]. Al-

though many studies assume no new interconnection lines will be installed for

projects below 10 MW, local developer feedback suggested that capital costs

for 2 MW farms become too great if the interconnection point is further than

one mile away. Note that we do not consider if lines have required capacity or

transfer capability to accommodate proposed solar farms.
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A major shortcoming inherent to the filtering methodology is the exclusion

of all land within New York City (NYC). This occurs because no NYC properties

within property classes deemed appropriate for utility-scale solar development

meet size requirements. However, as this methodology seeks to strategically

deploy solar near load pockets, a solar PV capacity of 706 MW was assumed for

NYC under each scenario. The estimate was obtained by linearly interpolating

forecasted solar electricity production values reported for 2027 by the New York

Independent System Operator (NYISO) [6] out to year 2030. Although this ca-

pacity counted toward the total statewide PV penetration, no solar generation

values were calculated for Zone J (shown in Figure 2.3) as the model assumes

utility-scale PV installations.

Site Ranking

With a focus on peak demand reduction, sites were ranked based on surround-

ing population density derived from 2016 census data – a proxy for electricity

demand. Conversely, Yushchenko et al. considered a maximum distance from

human settlements favorable for utility-scale PV installations to allow for future

urban development [39]. Therefore, this study provides a perfect contrast and

can aid policy-makers balancing urban development costs with energy transi-

tion infrastructure costs. This quantity shows greatest sensitivity to the chosen

radius. For this study, we set this parameter to 5 miles around the centroid of

each proposed site location. To consider solar resource quality, the average pop-

ulation density was multiplied by a solar resource drought factor obtained by

dividing the annual average number of solar resource drought days at the near-

est meteorological station by 365. Solar resource drought days are defined as
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any day where daily average global horizontal irradiance (GHI) falls below 84

W m−2 [20].

Solar penetration scenarios

The effect of different solar PV penetrations was investigated under three sce-

narios, i.e., 4500 MW, 6000 MW, and 9000 MW. These scenarios are based on

projections stemming from NYS’ target of 3000 MW installed by 2023. The tar-

get capacities in the three scenarios were obtained through an adoption model

projecting explosive growth in solar PV installations in the short term following

by a leveling off of installations around 2025 as market saturation occurs [5].

Zonal allocation was achieved by calculating the average zonal peak load over

the 40 highest historical electricity demand days and assigning a fractional ca-

pacity to each zone by dividing the zonal average peak load by the state peak

load. The highest ranked sites in each zone were selected to meet zonal targets.

2.2.2 Hourly solar PV output

For each selected solar site, we used geographic coordinates at the centroid to

locate the closest of 32 airport-based meteorological stations across NYS shown

in Figure 2.3. Hourly solar GHI data were obtained from ASOS observations

processed using an adapted Meyers and Dale model [11] and made available

through the Northeast Regional Climate Center at Cornell University. GHI is

the sum of direct (DNI) and diffuse (DHI) radiation received on a horizontal

plane. Values for DNI were estimated using NREL’s DISC model [25]. DISC is

a quasi-physical model that predicts DNI from GHI recognizing that air mass is
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the dominant parameter in the relationship between normal and global atmo-

spheric transmittance.

Figure 2.3: NYCA load zones depicted with letters A - K. Here, Zones A - F are
referred to as "upstate zones" and Zones G - K as "downstate zones". Weather
station locations are shown and identified by their three character abbreviations.

Using ambient temperature, wind speed, GHI, and DNI at the clos-

est weather station, we employed NREL’s solar PV System Advisor Model

(PVSAM), a robust model for estimating electricity production from grid-

connected solar PV arrays [19], to determine AC energy output at each site.

PVSAM evolved and incorporated functionality from Sandia National Labora-

tory’s photovoltaic array performance model [23], which was later improved by

De Soto et al. [15], as well as a grid-connected inverter model [24]. This model

accounts for multiple loss assumptions, reported in Table 2.2 in Section 2.5, in its

estimate of electricity generation. Azimuth angles of 180° clockwise from due

north and array tilts equal to latitude were assumed. Each farm was modeled in

2 - 3 MW blocks composed of CS6X-315P modules manufactured by Canadian

Solar connected to a single SC2200-US 385V inverter manufactured by SMA So-

lar Technologies. This hardware pair was chosen because it appears in multiple
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projects approved for construction within the NY-Sun database [1], which con-

tains information about all operational solar projects across the state as well as

those in the interconnection queue.

2.2.3 Net load profiles, peak demand reduction, and ramping

rates

The NYISO operates NYS’s power grid (also known as New York Control Area,

NYCA) and wholesale electricity markets. There are eleven NYCA load zones

(A - K) as marked in Figure 2.3. Net load profiles and ramping rates were calcu-

lated at a regional level bisecting NYS into upstate Zones A - F (shown in light

blue in Figure 2.3) and downstate Zones G - K (shown in dark blue in Figure

2.3). Zones were grouped in this manner due to the presence of the Central-

East transmission constraint within NYCA. When this constraint is active, no

additional power can be transferred across the interface between upstate and

downstate zones, thereby making it impossible for zones downstate to take ad-

vantage of resource flexibility within upstate zones. For example, if cooling load

during a HEDD in NYC increases by 5 MW when the Central-East constraint is

active, a resource within Zones G - K with an adequate response rate must be

dispatched to meet this load even if there is excess electricity being generated

by solar upstate that could otherwise balance this demand increase. Therefore,

as a system operator, the NYISO must ensure that sufficient flexible ramping

capability exists independently within each of these two regions to balance the

bulk power system for all reasonable fluctuations in net load.

Since wholesale electricity prices are set at the sub-zonal level, peak demand
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represents a more local issue. However, because most end-use customers pay

zonal electricity prices, we chose to study peak reduction at the zonal level as

well.

Net load profiles by NYISO zone

In order to analyze the impact of different solar PV penetration scenarios on

NYISO zonal and regional load conditions, we calculated the hourly net load

profiles by load zone under each scenario. Historical load data are publicly

available through NYISO. Generation by each solar farm developed under a

scenario was estimated using the methodology described in Section 2.2.2. Elec-

tricity produced by all solar farms within each load zone was then summed

together and subtracted from the zonal load over the same period to obtain the

net load, as shown in Equation 2.1,

Zonal Net Load = NYISO Load −
N∑

i=1

(Solar Farm Generation)i (2.1)

where N is the number of solar farms selected for development within the load

zone under the chosen PV scenario.

Zonal load duration curves and peak demand reduction

Net load profiles are used to compute load duration curves (LDCs) and peak

demand reduction. LDCs are created by sorting net load from highest to lowest,

depicting what fraction of the time various generation capacities are required.

LDCs allow for long-term planning of what category of generation capacity –

baseload, load following, or peaking – should be developed to satisfy forecasted

demand changes.
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Two distinct methods exist for defining peak demand reduction. A sim-

ple method takes total solar generation during a NYISO historical peak load

hour. The other method is to define peak reduction as the difference, in MW,

between the maximum of the LDCs constructed from the NYISO historical load

and modeled net load during any given day, which accounts for shifting of peak

load toward evening hours when solar resources provide less electricity. This

‘delayed peak’ is what the NYISO must accommodate during future system op-

erations. The first method usually reports higher numerical values in peak de-

mand reduction, but the second method was used because it provides a better

metric to assess the peak demand reduction value of solar resources.

Ramping rate curves

Ramping rates were calculated by subtracting the net load during the previous

hour from the net load during the current hour as shown in Equation 2.2.

Ramping Rate =
(Net Load)t − (Net Load)t−1

1 hour
(2.2)

Ramping rates were calculated (in MW/h) and plotted over a temporal period

matching that for net load.

2.3 Results and Discussion

2.3.1 Spatial distribution of projected solar farm sites

As illustrated in Figure 2.4, different spatial distributions of solar PV farm sites

resulted from each capacity penetration scenario. In this study, spatial distribu-
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tion specifically refers to the organization of solar farms across the state. The

678 highest-ranked sites fulfill the 4500 MW capacity scenario. The number of

sites under the 6000 MW and 9000 MW capacity scenarios are 920 and 1320,

respectively.

Figure 2.4: Solar farm distribution across NYS. Blue points correspond to sites
selected under only the 4500 MW scenario. Gold points correspond to sites
added moving to the 6000 MW scenario, and dark red points correspond to
sites added under the 9000 MW scenario.

The map clearly shows that a sufficient quantity of low-value land exists

across the state where solar PV could be deployed – a feature consistent with

other GIS studies: Brewer et al. reported that between 43-71% of all land within

California counties chosen for the study was suitable for solar PV development

[13], and Yushchenko et al. reported a total PV generation potential of up to

686,686 TWh/year for West Africa [39]. Ranking sites primarily by population

density resulted in many sites clustered tightly together, which could cause local

over-generation decreasing the locational marginal price (LMP) of electricity at

the sub-zonal level. However, such sub-zonal level effects are tempered when

net load is aggregated at the zonal level. As mentioned previously, although

wholesale prices are set at the sub-zonal level, most end-use customers pay the
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zonal price justifying this aggregation. Regardless, future work must address

sub-zonal level analysis of distribution systems with high solar PV penetra-

tions. It should be noted that the distributions depicted depend on the filtering

and ranking criteria presented in Section 2.2.1. Our study is focused on demon-

strating an integrated approach inclusive of market values, not on predicting

precisely where solar farms will be developed.

2.3.2 Implications for system flexibility and peak load reduc-

tion

Peak load requirements during summer

Table 2.4 in Section 2.5 lists the 40 highest electricity demand days, their peak

load, and GHI values during the peak load hour on each day. Historically, the

highest loads have occurred in early evening hours from June through Septem-

ber. To illustrate the effect that increased solar development will have upon

system peak, we selected an extreme summer episode running from July 15-19,

2013, which overlaps with one of longest historical heat waves ever recorded

– lasting for seven days. On July 19, 2013, NYS as well as NYC hit its high-

est historical electricity demand. For this episode, the LDC depicted in Figure

2.5c clearly shows that solar provides a valuable peak mitigation service for

the upstate region (Zones A - F) during the summer season. Similar trends for

the downstate region (Zones G - K) are observed in Figure 2.9c in Section 2.5.

Under the 9000 MW penetration scenario, solar causes slight and infrequent dis-

placement of baseload resources during mid-day in the upstate zones. Ramping

rates, shown in Figures 2.5b and 2.9b, are lower during morning hours but in-
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crease in the late afternoon for the upstate zones where the majority of solar

resources are installed.
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Figure 2.5: (a) Shows net load profiles for upstate Zones A - F under each of
the three scenarios during the heat wave spanning from July 15-19, 2013. Peak
load for this episode under the no solar scenario reached 12,573 MW. (b) De-
picts ramping rates for Zones A - F over the same temporal period. Solar farms
mitigate a significant portion of peak load without causing significant cycling
of thermal power plants. The highest ramping rate calculated (1,171 MW h−1)
occurred under the 9000 MW scenario. (c) Gives load duration curves for Zones
A - F under each of the three scenarios during the heat wave spanning from July
15-19, 2013. These confirm that peak load is reduced and shows that little to no
baseload capacity is displaced by solar generation from the baseline scenario.

Figure 2.7 provides a summary of historically observed peak loads and max-

imum ramping rates as well as those modeled for each scenario for both upstate
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and downstate regions in NYS. Over 40 historical HEDDs (listed in Table 2.4),

utility-scale solar PV resources reduce peak demand between 0.7-7.0%, 0.7-8.2%,

and 0.7-9.6% among different zones under the 4500 MW, 6000 MW, and 9000

MW scenarios, respectively. Mean peak demand reduction values within each

zone under each scenario are summarized in Table 2.3 in Section 2.5. Large de-

viations from the mean occur because output from a solar farm during a single

hour is highly sensitive to meteorological conditions. For example, a sudden

increase in local cloud coverage leads to a subsequent drop in solar PV output.

Ramping rates are physically constrained by an electricity network’s existing

infrastructure, and peak demand reduction does not guarantee a reduction in

ramping rates. Although solar developers may seek to install solar PV in regions

with favorable resources or high LMP to increase their revenue stream, system

planners need to ensure that local power systems can accommodate changes in

ramping rates. Depicted in Figure 2.7, the maximum ramping rate in the upstate

region (Zones A - F) reached 1,096 MW h−1 historically and could reach 1,694

MW h−1 under the 9000 MW scenario. This ramping rate exceeds proven ramp-

ing capability by 55%. Therefore, utilities and operators should evaluate cur-

rently available ramping capability and estimate an optimal solar PV capacity –

or upper limit – within each region given existing grid infrastructure. Utilizing

current operational paradigms, the NYS electricity system can comfortably ac-

commodate 4500 MW of additional solar during summer months, but increased

flexibility becomes necessary before solar PV capacity reaches 6000 MW.
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Ramping requirements during winter

During winter months, diurnal peak electricity demand falls outside the gen-

eration window for solar PV. As a result, solar generation provides no peak

reduction but still affects ramping requirements. Therefore, it is prudent to ana-

lyze the impact of solar generation during the winter season. As in summer, we

illustrate this impact via an extreme winter episode.
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Figure 2.6: (a) Shows net load profiles for upstate Zones A - F under each of
the three scenarios over a cold spell spanning from January 22-26, 2014. Peak
loads as high as 10,914 MW were observed and are not reduced by solar PV
generation. (b) Depicts ramping rates for Zones A - F over the same tempo-
ral period. The most drastic increases in required ramp rate occurs to meet the
evening peak load, which has more than doubled on some days. The highest
ramping rate – 2,356 MW h−1 – occurs under the 9000 MW scenario. (c) Gives
load duration curves for Zones A - F for each of the three scenarios over the
winter cold spell spanning from January 22-26, 2014. No peaking capacity is
displaced by solar PV generation, but a significant amount of baseload genera-
tion is displaced during mid-day if solar electricity is considered must-take.

A winter peak episode spanning from January 22-26, 2014 occurred during

a cold spell in the wake of a moderate snow storm. Most places across NYS

experienced temperatures remaining in the teens for the entire week. These

freezing temperatures were accompanied by sunshine on several days which
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can easily be seen in the net load curves plotted in Figure 2.6a for the upstate

region, and Figure 2.10a for the downstate region. Daytime solar production is

particularly evident on January 24. Accompanying strong solar production is an

equally strong up-ramp as peak load hits after the sun sets as shown clearly in

Figure 2.6b. As expected, solar generation does not aid in peak reduction during

the winter as is evident from common maximum values in LDCs depicted in

Figures 2.6c and 2.10c. However, solar generation under the 9000 MW scenario

often displaces upstate baseload generators around mid-day during winter.

With solar displaying deep displacement of baseload power generation dur-

ing the mid-day, load-following generators would need to be cycled in order to

avoid any solar curtailment during this episode. As noted previously, this can

lead to higher overall emissions if generators remain idle. Under the 9000 MW

scenario, depicted in Figure 2.7, the maximum up-ramping rate in the upstate

region (Zones A - F) could reach 2,754 MW h−1 – a 151% increase from the max-

imum historical ramping rate observed within the region (1,096 MW h−1). Con-

sequently, ramping requirements in the upstate region during winter represent

the greatest concern for future system planning. However, as a greater fraction

of the heating and transportation sectors become electrified, winter load pat-

terns may shift. Conjointly, introduction of new technologies such as a flexible

ramping product in the NYISO wholesale market, electrical energy storage, and

fast-response natural gas facilities will aid in accommodating increased ramp-

ing requirements on the supply-side to a certain degree.
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Figure 2.7: Bar chart depicting a summary of peak load (left) and ramp rate
(right) split by region, season, and scenario over the entire temporal period from
2010 - 2015. Summer encompasses June through August, and winter encom-
passes November through March each year. Note that peak loads and maxi-
mum observed ramping rates do not generally occur during the same hour.

2.3.3 Implications for installed capacity valuation

In the draft VDER proposed by NYSDPS, there are three compensation op-

tions for the installed capacity of a DER project [41], which are directly associ-

ated with peak demand reduction and critical to the project’s financial viability.

These options are: 1) a small $/kWh credit for every kWh injected to the grid,

2) a higher $/kWh value for each kWh injected to the grid between 2 and 6pm

from June 1 through August 31 (i.e., summer peak hours), or 3) a lump sum pay-

ment in terms of $/kW injected during the system peak hour (i.e., the one hour

each year when the NYISO system peak occurs). The first option is proportional

to the annual capacity factor. For the second option, we define the summer peak

production factor (SPPF), as shown in Equation 2.3, to facilitate comparisons,

SPPFi =

∑
h∈H(Energy Generation)h

(Nameplate Capacity) · (460 Hours)
, (2.3)
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where h represents each individual hour within the set H of 460 summer peak

hours occurring between 2-6 pm, inclusive, spanning June 1 through August 31

during a single year i. For the third option, we define the peak hour production

factor (PHPF), shown in Equation 2.4 below:

PHPFi =
Energy Generationph

(Nameplate Capacity) · (1 Hour)
, (2.4)

where ph represents the single hour for a given year i when the NYISO system

peak occurred.

Figure 2.8 shows the mean values (as points) and ranges (as error bars) of

annual capacity factors, SPPFs, and PHPFs calculated for each year between

2010 and 2015 at all NYS meteorological stations (locations shown in Figure 2.3).

Mean values of SPPFs at individual sites are within a narrow range between 0.24

and 0.33 – much higher than the corresponding annual capacity factors ranging

from 0.11 to 0.16. Thus, on average, a solar farm in NYS contributes between

24-33% of its capacity toward summer peak demand reduction. Mean SPPFs

(inclusive only of peak hours) are 65-171% higher than the average annual ca-

pacity factors (inclusive of all hours), confirming that favorable solar resources

often coincide with peak load hours. PHPF values differ substatially among

different years at any given location and across different stations ranging from

0.10 to 0.74. Such variations remain unsurprising as cloud cover drastically de-

creases output during unlucky hours.

Our analysis implies several key challenges in developing sound valuation

methodologies for solar projects from a system planning perspective. Ideally,

a competitive market for solar development should incentivize projects to per-

form well during system peak hours thereby displacing power produced from

the most expensive fossil-fueled generators. As the annual capacity factors and
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SPPFs (corresponding to the first and second options described above) experi-

ence smaller fluctuations from year to year, these metrics provide solar devel-

opers with desired financial consistency. However, neither of these two options

truly capture the role that solar resources play in meeting system peak demand

– the underlying purpose of the installed capacity market. The merit of the tra-

ditionally required third option is its contingency on the single hour of the year

when demand peaks. Therefore, the effect of resource intermittency is implicitly

considered as evinced by the significant variability observed in PHPFs. Unfor-

tunately, since the hour of the system-wide peak is unpredictable beforehand

and long-term solar forecasting remains wildly inaccurate, option three proves

too volatile to act as an effective market signal to solar developers.

As such, a combination of two options (options 1 and 3, or options 2 and

3) may be more effective than simply exempting DER generators completely

from valuation based on system peak performance – as currently proposed by

VDER. However, it is important to bear in mind that adding additional com-

plexity may erect a barrier hindering further solar development. The overall

approach presented in this chapter can assist system planners and solar devel-

opers with strategic resource siting. In this way, clear incentives may be de-

signed that ensure adequate system capacity, alleviate congestion, and provide

developers with predictable revenue streams.
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Figure 2.8: Scatter plot with points representing the mean value of the annual
capacity factor, the summer peak production factor (SPPF), and the peak hour
production factor (PHPF). Error bars show the range of each factor, which was
calculated using electricity generated by a 2 MW solar farm. Single factors were
calculated for each year between 2010-2015 at each of 32 NYS meteorological
stations. Stations are sorted by zone.

2.4 Conclusions

In this chapter, we assembled a set of comprehensive and spatially granular

datasets, combined with meteorological and electricity system data, to assess

the impact of utility-scale solar on power systems. The bottom-up approach

we adopted estimated the spatial distribution of solar farms across NYS in GIS

using tax classification data, electricity network infrastructure data, and census

data to determine the effect of solar farm development on peak load and ramp-

ing rate within different regions using real-world meteorological data from his-

torical events.

We showed that on average, a solar farm in NYS generates between 24-33%

of its nameplate capacity during peak demand hours and confirmed that favor-

33



able solar resources are generally correlated with high energy demand hours. In

addition, peak demand reduction displays locational and temporal dependency.

During the system peak hours between 2010 and 2015, a solar farm generated

anywhere between 10 and 74% of capacity. Such variability in performance dur-

ing system peak creates uncertainty in a solar farm’s installed capacity payment

thereby making it more difficult to obtain project financing. Therefore, an al-

ternative installed capacity compensation mechanism that values all summer

peak hours in addition to the system peak and sends a more predictable market

signal to developers should be established.

Our results clearly demonstrated the importance of evaluating ramping

requirements alongside peak demand reduction. While solar generation of-

ten reduces peak load during summertime, it tends to displace baseload re-

sources during wintertime. Examining historical summer peak and winter peak

episodes indicated that maximum ramping rates will likely take place during

wintertime under high solar penetration scenarios. As such, system flexibility

constraints during wintertime should be assessed.

Due to the highly uncertain nature of local public support surrounding so-

lar farms, a shortcoming of this and related research is its inability to consider

the social science aspect of solar siting. Clearly, public opinion must be char-

acterized fully before a truly accurate spatial distribution of solar farms can

be constructed. Further, substation location was the only electrical infrastruc-

ture data used in this methodology. Future work will consider more detailed

treatment of electrical infrastructure, imports and exports to and from adja-

cent electricity markets, and the role that electrical energy storage may play in

enhancing flexibility of grid-connected solar PV. Finally, future work will also
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encompass micro-meteorological conditions by supplementing meteorological

data obtained from weather stations with that obtained via numerical weather

prediction.

Although results presented here use NYS data, the approach can be gener-

alized to aid in developing or assessing compensation methodologies for the

demand reduction value and installed capacity value of solar projects in other

deregulated electricity markets.
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2.5 Supporting Information

Table 2.1 shows which property classes where solar farms have been developed

in the past as well as those were deemed adequate to support utility-scale solar

farms in the future. Less than 1% of properties within the tax dataset have no

assigned property class. A limitation of this dataset is that only one property

class can be assigned to each property, so only the code for the property class

that takes up a majority of the land is reported. Detailed information about all

NYS property codes can be obtained from the New York State Department of

Taxation and Finance.
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Figure 2.9: (a) shows net load profiles for downstate Zones G - K under each
of the three scenarios during the heat wave spanning from July 15-19, 2013.
Solar generation clearly has a much smaller effect on net load downstate as far
fewer suitable properties are available here. Peak load for this episode under the
no solar scenario reached 21,705 MW. (b) depicts ramping rates in Zones G - K
under each of the three scenarios over the same temporal period. Highest ramps
remain during the morning ramp, and the highest ramp rate (1,520 MW h−1)
occurred under the no solar scenario. (c) gives load duration curves for Zones
G - K under each of the three scenarios during the heat wave spanning from July
15-19, 2013. Peak load is reduced by a modest amount when compared with the
upstate zones.
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Table 2.1: The first two columns give property class codes and descriptions for
land either on which existing solar farms are located or that assumed suitable
for future utility-scale solar PV farm development. The third column identifies
if a property class has seen solar development, is assumed to see solar devel-
opment in the future, or both. Lands classified under all codes without “Fu-
ture” or “Both” listed in column three were excluded. Column four provides
a justification for discrepancies between historically observed and future solar
development for a property class.

Code Description Existing/ Justification
Future

140 Truck Crops – Not Muck-
lands

Existing Future protection expected

240 Rural Residence with
Acreage

Both N/A

241 Primary residential, also
used in agricultural produc-
tion

Existing Future protection expected

311 Residential Vacant Land Future Can be repurposed with PV

320 Rural Future Catch all category

321 Abandoned Agricultural
Land

Future Solar already exists on produc-
tive farm land

322 Residential Vacant Land
Over 10 Acres

Both N/A

323 Other Rural Vacant Lands Both N/A

330 Vacant Land Located in
Commercial Areas

Both N/A

340 Vacant Land Located in In-
dustrial Areas

Future Similar to 340

613 Colleges and Universities Existing Does not generally have enough
land for PV development

652 Office Building Existing Does not generally have enough
land for PV development

714 Light Industrial Manufac-
turing and Processing

Both N/A

720 Mining and Quarrying Future Can be repurposed with PV af-
ter retirement

852 Landfills and Dumps Both N/A

877 Electric Power Generating
Facility – Other Fuel

Existing Only classified as this after con-
struction
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Table 2.2: Loss factors assigned within NREL’s System Advisor Model PV Mod-
ule

Description Loss

Average soiling 5.0%
Module mismatch 2.0%
Diodes and connections 0.5%
DC wiring 2.0%
Tracking error 0.0%
Nameplate 0.0%
DC power optimizer loss 0.0%
AC wiring 1.0%

Table 2.3: Mean and standard deviation of peak demand reduction values for
each load zone. Mean taken over the peak demand reduction on the 40 highest
electricity demand days, which explains the high standard deviation values (i.e.,
cloud cover and therefore solar irradiance on each high electricity demand day
shows a great deal of variability). All values are rounded to the nearest MW.
Values in zones H,I, and K do not change because so few sites were selected
that all available sites in these zones were developed under each scenario. No
sites in zone J were selected using the current methodology.

Load Zone 4500 MW 6000 MW 9000 MW

Zone A 179(±54) 199(±57) 227(±63)
Zone B 135(±37) 157(±42) 185(±42)
Zone C 155(±56) 180(±61) 203(±66)
Zone D 15(±9) 15(±9) 16(±10)
Zone E 70(±37) 80(±42) 92(±45)
Zone F 103(±57) 121(±61) 138(±63)
Zone G 118(±58) 144(±71) 173(±81)
Zone H 14(±7) 14(±7) 14(±7)
Zone I 3(±1) 3(±1) 3(±1)
Zone J 0(±0) 0(±0) 0(±0)
Zone K 38(±11) 38(±11) 38(±11)
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Figure 2.10: (a) shows net load profiles for downstate Zones G - K under each
of the three scenarios during a cold spell spanning from January 22-26, 2014.
Peak loads as high as 14,086 MW were observed and are not reduced by solar
PV generation. (b) depicts ramping rates in Zones G - K over the same tem-
poral period. Only small changes in ramping rates are seen in this region, but
the highest (1,117 MW h−1) occurs under the 9000 MW scenario. (c) gives load
duration curves for Zones G - K for each of the three scenarios over a cold spell
spanning from January 22-26, 2014. No peaking capacity or baseload capacity
will be displaced by solar in this region under any of the considered scenarios.
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Table 2.4: Highest historical electricity demand days in NYS.

Rank Date Hour

1 July 19, 2013 17
2 July 22, 2011 16
3 July 21, 2011 17
4 July 6, 2010 17
5 July 18, 2013 17
6 July 17, 2013 17
7 July 7, 2010 16
8 July 15, 2013 17
9 July 17, 2012 17
10 July 16, 2013 17
11 July 18, 2012 14
12 June 21, 2012 15
13 July 12, 2011 15
14 Sept 2, 2010 16
15 Sept 1, 2010 17
16 July 8, 2010 17
17 June 20, 2012 17
18 Aug 31, 2010 17
19 July 20, 2011 17
20 Sept 11, 2013 17
21 July 29, 2015 17
22 Aug 5, 2010 17
23 Sept 8, 2015 17
24 June 29, 2012 17
25 July 16, 2012 17
26 Aug 4, 2010 17
27 June 9, 2011 14
28 July 11, 2011 17
29 June 8, 2011 17
30 July 20, 2015 16
31 July 6, 2012 17
32 July 19, 2011 18
33 Aug 17, 2015 17
34 July 5, 2012 16
35 July 16, 2010 17
36 July 28, 2015 17
37 July 23, 2013 17
38 Aug 1, 2011 16
39 July 8, 2013 17
40 June 28, 2010 14
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CHAPTER 3

SPATIAL BIASES REVEALED BY LIDAR IN A MULTIPHYSICS WRF

ENSEMBLE DESIGNED FOR OFFSHORE WIND

Abstract

Numerical weather predictions (NWPs) have become essential in offshore wind

energy planning and operations. Thus, rigorous assessments of NWP model

performance are critical to integrating offshore wind power into existing power

systems. Taking advantage of two LiDAR buoys launched off the coast of New

York in 2019, we assess the performance of a multiphysics Weather Research and

Forecast (WRF) model ensemble with a 1.33-km spatial resolution for estimat-

ing the power system impacts associated with New York’s offshore wind target.

Our work is the first to report WRF horizontal wind speed biases not only at

multiple heights above sea level but at two locations while still considering all

seasons. WRF tends to overpredict wind speeds during spring and summer and

underpredict wind speeds during winter. However, the patterns in wind speed

biases differ substantially between the two buoys offering compelling evidence

against spatially uniform biases, which impacts the performance of numerous

bias correction methods frequently used to post-process WRF data. Therefore,

additional measurements of wind speeds throughout the lower atmosphere are

necessary to fully characterize bias patterns. With the recent goal set by the U.S.

to install 30 GW of offshore wind by 2030 – largely along the East Coast, mis-

predictions carry important policy implications. Absent accurate offshore wind

uncertainty forecasts, power system operators throughout the Eastern Intercon-

nection will be forced to dispatch their most expensive and likely high emitting
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power plants to compensate for periods of underperformance.

3.1 Introduction

Despite staggering global contractions across many industries, solar and wind

developers set records in 2020 [28]. The United States was no exception adding

19.2 GW of solar [44] and 14.2 GW of wind [13], which accounted for 81% of new

capacity. However, even with renewable portfolio standards in place and access

to technologies proven in other parts of the world, the United States remains

behind when it comes to offshore wind. Two proof-of-concept projects – the

Block Island Wind Farm totaling 30 MW and the Coastal Virginia Offshore Pilot

project totaling 12 MW – account for all the offshore wind connected to the US

power grid. Still, projects at various stages of the offshore wind development

pipeline have swelled to 35.3 GW [38]. Given the multi-year regulatory and

industrial timelines associated with these projects, governments and non-profit

agencies need robust assessment tools today in order to analyze the impacts on

energy and social systems as this transition happens.

As observational wind speed data above the surface level are difficult to

come by, numerical weather predictions (NWPs) provide vital insight into

boundary layer meteorology and wind power prediction. In particular, the

Weather Research and Forecasting (WRF) model [45] is ideally suited for con-

ducting everything from short-range forecasts [51, 6] to regional wind resource

assessments [11, 32]. Draxl et al. used WRF to create the WIND Toolkit for

the entire United States [11]. WRF’s flexible framework can be attributed to the

staggering number of schemes available for parameterizing subgrid-scale pro-
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cesses, i.e., physical phenomena that are not directly resolved by the model at

the user-specified grid spacing. For wind energy analyses, the choice of plane-

tary boundary layer (PBL) scheme likely has the highest impact on model results

as it controls how profiles are represented in the lowest part of the atmosphere.

Specifically, turbulence is mostly a subgrid-scale process in mesoscale models,

and PBL schemes seek to capture the turbulent fluxes of heat, moisture, and

momentum that occur in the lower troposphere [9]. Previous work has looked

at how well different PBL schemes simulate winds under different atmospheric

stability conditions [12], conducted a WRF physics sensitivity analysis for winds

over complex terrain [14], created ensembles to improve wind speed prediction

near turbine hub height [10], and reported the value of downscaling various

global datasets with WRF for regional wind resource assessments [16]. Fitch

et al. introduced a wind farm parameterization (WFP) that represents an in-

dividual wind turbine with a turbulent kinetic energy source and momentum

sink, which captures turbine-turbine interactions, as well as the minor effect that

wind farms have upon mesoscale meteorology [15], which has subsequently

been evaluated for both onshore [33] and offshore [29] applications.

The number of studies applying WRF to offshore wind has exploded in re-

cent years compelling Banta et al. to suggest that offshore wind energy can pro-

vide a backdrop for making improvements to NWP models[4]. Broadly, these

studies fall into two main categories a) assessment, sensitivity, or validation

of offshore winds and b) longer-term wind resource assessments (e.g., regional

wind climatologies); often, the wind resource assessments offer some validation

thereby covering both categories. Gryning and Floors compare WRF forecasts

and downscalings to a LiDAR buoy in the North Sea [22]. Giannakopoulou and

Nhili assess four PBL schemes and two reanalysis products, ERA-Interim and
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NCEP FNL, using data from a 100 m mast in the North Sea [17]. A similar val-

idation was performed for an ERA-Interim downscaling using a larger domain

in the same region [5]. Kikuchi et al. use measurements from an offshore mast

in Japan to nudge WRF improving the modeled wind speeds [30]. Comparing

WRF to LiDAR measurements, Goit et al. found that WRF tends to overestimate

wind speeds at higher altitudes off the coast of Japan [21]. Several studies also

validate offshore wind produced by WRF using surface-level wind speed mea-

surements at buoys extrapolated to wind turbine hub heights [8]. Offshore wind

resource assessments were conducted using WRF for the North Sea [26, 35], the

North and Baltic Seas [23], Europe [25], Alaska [32], Northwest India [31], China

[34, 26], Japan [46], and Chile [36].

In the United States, Archer et al. expressed the need for more offshore ob-

servations and uncertainty characterization [3] later estimating offshore wind

forecast errors at wind turbine hub height by analyzing the forecast errors at

23 onshore wind farms across the U.S. East Coast [1]. Separately, Archer et al.

analyzed data collected at a meteorological mast during the 2000s in Nantucket

Sound and reported that unstable atmospheric conditions dominate [2]. Pichug-

ina et al. stress the importance of high-resolution LiDAR measurements by com-

paring two forecast models – the NCEP Rapid Refresh (RAP) and the North

American Mesoscale Forecast System Rapid Refresh (NAMRR) – each run over

the Gulf of Maine with and without ingesting data from ship and land-based

LiDAR measurements [41].

While many WRF studies consider offshore wind or the Northeastern U.S.,

few look at the intersection of these, and none have validated WRF wind speeds

using continuously available LiDAR data. Turbines rely on winds in the low-
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est part of the atmosphere where turbulent mixing creates complicated flow

patterns not only in three-dimensional space but across time as well. There-

fore, a complete model validation should ideally assess each of these dimen-

sions. Of course, previous studies have made use of available data often relying

on land-based measurements, surface wind speed measurements, or reanalysis

data products, which cannot capture the complicated spatiotemporally vary-

ing behavior of wind speeds aloft. Here, we validate a multiphysics ensem-

ble of WRF models, each member (i.e., WRF simulation with a distinct set of

physics parameterizations) of which has been used for wind studies previously,

by comparing them to data from the two LiDAR buoys off the coast of New

York. The New York State Energy Research and Development Authority (NY-

SERDA) funded the LiDAR buoys, which went online in August and September

2019, respectively [18, 19]. These buoys give us insight into the trends in WRF

horizontal wind speed biases in four dimensions improving on previous data-

limited validation work.

3.2 Method

This section covers two major topics. First, we explain the WRF model, the

multiphysics ensemble created for this study, and how we chose representative

simulation periods. Then, we cover model validation – both from the perspec-

tive of individual members and from the ensemble as a whole.
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3.2.1 Offshore Wind Observational Data

In this study, we leverage a unique public offshore wind dataset that provides

wind speed observations up to 200 m. This data comes from two EOLOS FLS-

200 buoys that NYSERDA contracted DNV GL to deploy in the New York-New

Jersey Bight. The locations of these two buoys are shown in panel a) of Figure

3.1. For the remainder of this chapter, we will refer to the buoy further to the

north and east as the “north buoy” and the buoy further to the south and west

as the “south buoy.” The image in panel b) on the right in Figure 3.1 shows

what these buoys look like floating on the ocean. Wind speed measurements

are available every 20 m up to 200 m above sea level (a.s.l.). Before deployment,

each buoy was tested to ensure that mean wind speeds did not deviate by more

than 1% from benchmark observations and that at least 90% of measurements

had an absolute wind speed difference of within 5% and less than 0.5 m s−1 from

the benchmark observations [18, 19]. DNV GL reported a systematic uncertainty

on the order of 2% for the floating LiDAR buoys for all heights that they com-

pared from wind speeds between 4 - 16 m s−1. To the best of our knowledge, this

is the longest-running offshore wind dataset providing observations at multiple

heights and multiple locations within the same region anywhere in the United

States.

3.2.2 WRF Ensemble Setup

WRF’s flexibility poses both challenges and opportunities. A staggering num-

ber of possible customizations make WRF the go-to tool for forecasting and

downscaling studies alike across myriad diverse regions and applications.
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a) b)

Figure 3.1: a) on the left shows the locations of the north buoy and the south
buoy, respectively. b) on the right shows one of the EOLOS FLS-200 buoys in
operation (Photo provided by Ocean Tech Services Inc).

However, tracking WRF’s performance over a set of studies considering the

same region or application becomes difficult as model setups are sometimes

institutionalized and gradually improved over multiple projects. This is espe-

cially prevalent in the case where institutional models are passed down from an

earlier study.

Here, we create an ensemble using WRF physics setups that already appear

in the WRF offshore wind literature. Five major physical processes cannot be

resolved by the WRF model and are instead parameterized. These include mi-

crophysics, radiation (separate schemes handle longwave (LW) and shortwave

(SW) radiation), the land surface (LSM), the PBL, and cumulus clouds. Note

that WRF run with a grid spacing below about 4 km begins to resolve clouds

directly, so we turn off the cumulus scheme below this grid spacing threshold.

A separate surface layer scheme parameterizes the fluxes exchanged between

the land surface and the PBL, but the choice of the surface layer scheme is heav-

53



ily constrained by the PBL scheme. Several more minor parameterizations are

also available in WRF (e.g., lake physics and urban canopy), but we omit these

because they should have little to no effect on winds offshore, and therefore, it

is likely that these were left at the WRF defaults in previous studies.

Table 3.1 provides information about parameterization schemes used in the

five WRF setups from the literature adopted for this work. Each of these se-

tups was chosen for a specific reason. Optis et al. [40] and Veron et al. [50]

are the only studies that use WRF for offshore wind in the Northeastern US.

The domain configuration used by Optis et al. is similar to the one we use in

this work except that our finest domain has a horizontal resolution of 1.33 km

rather than 3 km. We included the Lee and Lundquist setup [33] because, al-

though they conducted their validation over the continental US, their work is

currently the most comprehensive evaluation of the WRF WFP, which can eas-

ily be implemented offshore. The final two setups were both taken from Draxl

et al. [12]. The difference between these two setups lies in the choice of PBL and

surface layer parameterization schemes. Specifically, Draxl et al. found that the

setup with the YSU PBL scheme (we call this setup Draxl 2014a) outperforms

the rest when the atmosphere is unstable at Høvsøre, and the setup with the

MYJ scheme (we call this setup Draxl 2014b) performs the best during stable

and very stable conditions. Given that previous work reported a high preva-

lence of unstable atmospheric conditions off the coast of Massachusetts [2], we

wanted to investigate if these trends in PBL scheme performance hold in the

Northeastern US as well.
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Table 3.1: WRF Model Setups

Optis 2021 [40] Veron 2018 [50] Lee 2017 [33] Draxl 2014a [12] Draxl 2014b [12]

Microphysics Thompson Thompson Thompson Aerosol Thompson Thompson
LW Radiation RRTMG RRTM RRTMG RRTM RRTM
SW Radiation Goddard Dudhia RRTMG Dudhia Dudhia
LSM Noah Noah Noah Noah Noah
PBL MYNN2 MYJ MYNN2 YSU MYJ
Cumulus None BJM Kain-Fritsch Kain-Fritsch Kain-Fritsch
Surface Layer Revised MM5 Eta Similarity Revised MM5 Revised MM5 Eta Similarity

WRF model domain and boundary condition data

The modeling domain, shown in Figure 3.2, consists of three two-way nested

domains with horizontal resolutions of 12 km, 4 km, and 1.33 km, respectively.

The largest domain, represented by the bounding box of Figure 3.2, is centered

over the Northeast United States. The intermediate domain (d02) is outlined in

white, and the finest domain (d03), which we use for all analysis, is outlined in

red. All three domains have 36 levels in the vertical direction, and the pressure

at the model top is 5000 Pa. The eta levels were set manually (Table 3.4 in Sec-

tion 3.5.1 gives the exact eta levels) to ensure that 6 vertical levels represented

approximately the lowest 200 m above ground level. This should better accom-

modate the WRF WFP, which performs better when a greater number of cells

exist lower in the modeling domain [33]. We used a 45 second time step in the

coarse domain for all simulations, and for the finest domain (d03), we changed

the output data resolution to 10 minutes to match that of the validation data (see

Section 3.2.3). Refer to Section 3.5.2 for the remaining constant WRF namelist

parameters. ERA5 data provided by the European Centre for Medium-Range

Weather Forecasts (ECMWF) was used as boundary condition data for each of

the five members [27].
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Figure 3.2: WRF domain configuration. The largest domain has a horizontal
resolution of 12 km and is shown by the figure’s bounding box covering the
Northeastern US. Intermediate domain, d02, has a horizontal resolution of 4
km, and the smallest domain, d03, which we use for analysis, has a horizontal
resolution of 1.33 km.

Simulation periods

Given the computational cost of running WRF simulations at 1.33 km resolu-

tion, we selected four “representative weeks” in 2020 and ran each ensemble

member for a continuous period of 8 days initialized at 00:00 UTC. The first day

is used as a spin-up period and omitted from the validation data. We chose a

single representative week in each season by borrowing an optimization tech-

nique from energy-economy models aimed at integrating intermittent renew-

ables [42]. This is accomplished by minimizing the error between the duration

curves for the entire time series and for the representative period. To obtain

the duration curve from a given time series we sort the values in the time se-

ries in descending order. In this case, we used the 100 m wind speed at one of

the buoys for all of 2020 to select a single 7-day representative period in each

season. Here, we specified the seasons as January - March, April - June, July -
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September, and October - December. We added the additional condition that no

more than 10% of the buoy time series could be missing during a representative

period, and we used the time series from the south buoy to select the represen-

tative period for the first three seasons, and the time series from the north buoy

to select the Winter period. This was done because the south buoy had a greater

quantity of missing data. However, as most of the data at the south buoy was

missing from mid-October through December 2020 we used the north buoy data

for the winter instead. The representative weeks are shown in Table 3.2.

Table 3.2: Representative Weeks for Simulations (all 2020)

Winter Spring Summer Fall

Feb 5 - 11 Jun 3 - 9 Jul 1 - 7 Nov 26 - Dec 2

3.2.3 WRF Ensemble Validation

For this study, we bisect ensemble validation by first assessing the performance

of each ensemble member separately before looking at the performance of the

five-member ensemble as a whole. Both use the same observational data source

for validation – from the two LiDAR buoys.

Individual ensemble member performance

We use several common verification statistics to judge how well each ensemble

member performed based on data from both LiDAR buoys. We calculate the

mean bias in horizontal wind speed at each height for each member by first

determining the absolute error for each variable in each 10-minute interval and

then calculating the mean over each representative period. We also compute
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the root mean square error (RMSE) for each variable. Finally, we include the

wind profile error (WPE), introduced by Draxl et al. [12], which we compute by

averaging the RMSE errors at each height available from the buoy data between

40 m and 200 m. In each case, the WRF data was interpolated to match the buoy

heights. To visually communicate the relative performance of each ensemble

member with respect to the observations, we use a subset of the wind speeds

to create a Taylor Diagram. The statistics displayed on a Taylor diagram allow

for a quick visualization of how much of the RMSE can be attributed to poor

correlation and difference in variance between the model and the observations

[47].

Performance based on atmospheric stability

Previous work by Draxl et al. shows that different WRF PBL parameterizations

perform better under different atmospheric stability regimes [12]. Furthermore,

they found that no single PBL parameterization performs the best under all at-

mospheric stability regimes. As such, we determine the atmospheric stability

regime using the Obukhov Length, L, which compares mechanical effects to

buoyancy [39]. In other words, in a neutral atmosphere where buoyancy is ab-

sent, L is infinite. Equation 3.1 defines the Obukhov length

(3.1)L = −
u3
∗

κ g
T0

H0
ρcp

,

where u∗ is the friction velocity, κ = 0.4 is the von Kármán constant, g is the

acceleration due to gravity, T0 is the temperature near the surface, H0 is the

surface heat flux (upward defined as positive), and ρ and cp are the density and

specific heat of air, respectively.
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Since no direct measurements of the surface heat flux are available, we esti-

mate the value of L using an iterative technique first presented by Van Vijk et al.

[48] but also used in more recent studies [37, 2]. Different studies often adopt

different thresholds for L to denote the stability regimes. Here we adopt the

thresholds used by Archer et al., which define −100 < L < −5 as very unstable,

−500 < L < −100 as unstable, |L|> 500 as neutral, 100 < L < 500 as stable, and

5 < L < 100 as very stable [2].

Overall ensemble performance

Energy system planners could benefit from ensemble forecasts. In fact, proba-

bilistic wind forecasts are already working their way into power systems opera-

tions within some regions of the US [7]. Therefore, we also validate the column

of wind speeds for our WRF ensemble using verification rank histograms. Rank

histograms have long been a tool for assessing the quality of ensemble forecasts

and diagnosing errors in the mean and spread of an ensemble [24]. The rank

histogram seeks to verify the probabilities provided by an ensemble for a given

variable. Each of the n ensemble members gives one estimate of this variable,

and if these estimates are pooled into a vector and sorted in ascending order, the

observation should have an equal chance of occupying each rank between 1 and

n+ 1. A rank of 1 represents the case where all the estimates from all the ensem-

ble members are higher than the observation. Continuing this process, for each

point in a sample – e.g., for each time-step in the WRF simulation – should then

result in a uniform histogram created with the rank values. In other words, the

observations occupy each rank the same number of times in an ideal ensemble.

Biases show up in rank histograms as overpopulation of the highest or lowest
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ranks of the histogram, and dispersion errors produce concave or convex his-

tograms. We create a rank histogram at each buoy for horizontal wind speeds

at each vertical level.

3.3 Results and Discussion

3.3.1 Ensemble Member Validation

To our knowledge, this is the first WRF validation study that has had access to

data from multiple offshore buoys, which allows us to assess how biases in hor-

izontal wind speeds vary not only across time but across space as well. Biases

of the five WRF ensemble members are shown in Figure 3.3. From these plots,

we note that a slight positive bias in horizontal wind speed exists for all of the

members at nearly every level, and biases tend to be greatest in the lower to

middle levels. However, no member overestimates mean wind speeds by more

than 0.95 and 0.77 m s−1 at the south and north buoy, respectively. The Draxl

2014a, Veron 2018, and Optis 2021 members have the lowest biases overall, but

Draxl 2014a and Veron 2018 underestimate wind speeds above 140 m whereas

Optis 2021 overestimates wind speeds at the first several levels. Since we ob-

serve a similar overestimation from Lee 2017, we partially attribute this to the

MYNN2 PBL scheme used by both of these two members.

These mean biases over the full simulation period cannot tell the full story.

When biases are plotted by season, as shown in Figure 3.4 for the north buoy,

more trends in the biases appear. Overall, the ensemble performs best during

the Winter, with a maximum absolute bias of 0.42 m s−1. All members show a
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Figure 3.3: Mean bias of WRF ensemble members predicting wind speed (m s−1)
averaged over all four seasons at the south (left) and north (right) buoys.

negative bias above 120 m, and Draxl 2014a, Draxl 2014b, and Veron 2018 all

have negative biases for the entire column. We attribute this to a prevalence of

higher wind speeds during the winter period, which WRF tends to underpre-

dict. Of course, this means that any wind energy analyses informed by WRF-

simulated winds, in turn, will underpredict wind power by a power of three

greater than the wind speed underprediction. In the case where an underpre-

diction of wind speeds fails to capture winds that exceed the cut-out speed of

wind turbines, available wind power may be drastically overestimated.

Most members performed worse during the Summer and much worse dur-

ing the Spring simulation periods, with positive biases reaching 1.72 m s−1 for

Lee 2017. Still, during those seasons each member showed similar bias trends

(i.e., each member generally overpredicted wind speeds). Overpredicting wind

speeds during the Summer poses a particular challenge to operators grappling

with peak electricity demand. Therefore, positive biases in wind power pre-

diction would exacerbate already expensive electricity costs on high electricity

demand days. Biases during the Fall period proved the most unique varying

in both magnitude and direction across ensemble members. The Veron 2018
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Figure 3.4: Mean bias of WRF ensemble members predicting wind speed (m
s−1) averaged over each representative period in each of the four seasons at the
north buoy.

member deviated substantially from the other members underpredicting wind

speeds – sometimes significantly – at all levels. We can directly attribute this

deviation to the BJM cumulus scheme as this is the only difference between

the Veron 2018 and Draxl 2014b member, which produced much smaller biases

during the Fall period. These results show that researchers should proceed with

caution when selecting a WRF setup for a wind energy analysis if the season in

which the setup was validated does not match that of their application. Since

the south buoy was missing data for the fall representative period, we present

the seasonal breakdown in biases in Section 3.5.3 in Figure 3.10. Mostly, similar

bias trends up the column exist at the south buoy for the other three seasons,

but the magnitudes of the differences are larger reiterating the importance of
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localized offshore wind measurements for model validation exercises.

The mean RMSEs (shown in Figure 3.5) tell a similar story to that of the

biases varying across all members at all levels from 2.04 to 3.47 m s−1 and from

1.90 to 2.77 m s−1 at the south and north buoys, respectively. Unlike the mean

biases, however, the greatest RMSE tended to occur at higher levels (above 100

m) – likely due to higher winds at these levels. Looking at each individual

season (shown in Figures 3.12 and 3.11 in Section 3.5.4), we observe again the

highest RMSE values higher in the atmosphere during the Spring and Summer

months.

Figure 3.5: Root mean squared error (RMSE) of WRF ensemble members pre-
dicting wind speed (m s−1) averaged over all four seasons at the south (left) and
north (right) buoys.

The WPE provides a single performance metric that summarizes errors span-

ning a wind turbine’s rotor area. The Optis 2021 member showed the lowest

WPE at both the south and north buoys (see the bolded values in Table 3.3).

Similar to the bias and RMSE values, higher WPEs were calculated for the south

buoy.

Taylor diagrams offer a convenient depiction of model performance with

respect to observations. Specifically, they communicate the standard deviation,
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Table 3.3: Mean Wind Profile Error Values (m s−1)

Optis 2021 Veron 2018 Lee 2017 Draxl 2014a Draxl 2014b

South buoy 2.78 2.85 3.00 2.87 3.15
North buoy 2.38 2.39 2.56 2.41 2.59

correlation with observations, and the skill associated with a set of modeled

data. We plot the horizontal wind speeds at 20 m, 100 m, and 200 m for each

ensemble member on Taylor diagrams using different colored markers at the

south and north buoys (shown in Figure 3.6). Distance from the origin indicates

the standard deviation of the variable with a dotted line marking a standard

deviation equal to one – matching that of the observations. The zenith angle

corresponds to how well correlated a variable is with observations; a zenith

angle of 90°indicates a perfect correlation. Finally, isopleths indicate the skill

score.

Figure 3.6: Taylor diagrams depicting the standard deviations, correlation coef-
ficient, and skill scores for horizontal wind speeds at 20 m, 100 m, and 200 m for
each ensemble member. The left diagram shows data at the south buoy, and the
right diagram shows data at the north buoy.

Looking at the Taylor diagrams, we can immediately make several major ob-
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servations. First, the Optis 2021 member has the highest skill across each height

at both buoys, and the Draxl 2014b member has the lowest. Also, all members

have higher skill in downscaling 200 m wind speeds than 100 m and 20 m wind

speeds, but the standard deviation in 20 m wind speeds is captured better than

those at 100 m or 200 m due to lower wind speeds. Finally, the clustering pat-

terns of variables at both the south and north buoys are similar, but the standard

deviations are higher and the correlations are lower at the south buoy leading to

lower skill scores. This offers additional evidence to our previous point that the

precise location of the offshore wind validation data matters by showing that

model skill at two locations within the same offshore region deviate from one

another significantly.

3.3.2 Effect of Atmospheric Stability on Wind Speed Profiles

Previous work by Draxl et al. showed that WRF performance varies substan-

tially based on atmospheric stability conditions [12]. We plotted the log wind

speed profiles at the south (Figure 3.7) and north (Figure 3.8) buoys. Note that,

unlike the bias and RMSE presented previously, we did not interpolate WRF

winds to the heights available at the buoys, but we simply plotted the wind

speed profiles from the WRF ensemble up to 200 m. At the south buoy, all the

ensemble members capture the vertical wind speed profile accurately in very

stable, stable, and neutral conditions, although they show a slight tendency to

overpredict the profile, which is consistent with our earlier discussion on bias

and RMSE. Lee 2017 and Optis 2021 have the most difficulty reproducing a neu-

tral profile because they overpredict wind speeds at the second vertical level

(near 30 m). All the members have a more difficult time reproducing the wind
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speed profile in stable and very stable atmospheres. For stable atmospheres,

none of the members capture the bending back of the wind speed profile ob-

served at the southern buoy. In very stable conditions, WRF fails to predict both

the magnitude and the shape of the wind speed profile. We partially attribute

this to the fact that very stable conditions are often characterized by lower wind

speeds, which WRF tends to overpredict. As other studies have remarked,

researchers should characterize atmospheric stability as it clearly affects WRF

model performance.

Figure 3.7: Log wind speed profiles separated by stability class at the south
buoy for both the observations and each WRF ensemble member. The number
of time steps that fall into each stability class is listed in the subtitle of each plot.

Interestingly, we see different patterns at the north buoy, which are shown

in Figure 3.8. All the members underpredict the wind speeds in unstable con-

ditions, and they also fail to capture the elbow at 100 m that shifts the profile

toward higher wind speeds. Also, all members capture the shape of the stable

profile better at the north buoy although the Lee and Optis 2021 profiles show
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the same overprediction at the second vertical level.

Figure 3.8: Log wind speed profiles separated by stability class at the north buoy
for both the observations and each WRF ensemble member. The number of time
steps that fall into each stability class is listed in the subtitle of each plot.

3.3.3 Performance of the WRF Ensemble for Offshore Wind

Studies

As is clear from the validation exercises we performed on each ensemble mem-

ber, no single member presents itself as the best setup for predicting wind

speeds at all heights in all atmospheric stability conditions. As such, the full

multiphysics ensemble could be used to produce a more complete picture of

offshore winds across all heights and conditions. We created rank histograms

to assess the bias and spread of the ensemble as a whole. A rank histogram is

plotted for 100 m wind speeds at both locations (shown in Figure 3.9). For wind

speeds at the south buoy shown on the right, the ensemble appears to be quite
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underdispersed and negatively biased as well – the observation falls into the

first rank about 55% of the time. In a perfect ensemble, we would expect that

an observation falls into each rank about 16.7% of the time, which corresponds

to the dotted line in the histograms. This means that all the ensemble mem-

bers produce wind speed downscalings higher than those observed at the south

buoy with a frequency of 55%. Such an ensemble could cause problems if used

by a utility for a long-term planning exercise. Looking at the rank histogram

for the north buoy, shown on the left in Figure 3.9, we observe a lower proba-

bility that the observation falls into the first rank – only about 35%. This rank

histogram suggests that the ensemble is underdispersed at the north buoy be-

cause ranks one and six are both high rather than skewed substantially toward

higher or lower ranks. Therefore, using the ensemble mean to carry out a wind

resource assessment at the surrounding the north buoy location is more appro-

priate and should offer an improvement over using a single ensemble member

to carry out such an analysis. Of course, without additional measurement data,

we have no way of knowing how far this behavior extends around the buoy.

Numerous methods exist for the postprocessing of ensemble forecasts that

can correct errors in the ensemble mean and/or spread [49]. Two of the most

common techniques are ensemble model output statistics (EMOS) [20] and

Bayesian model averaging (BMA) [43]. Either of these can provide probabilistic

forecasts across the entire simulation domain using a combination of previous

model output and observations as training data. Naturally, this training data

only reflects the bias patterns associated with the locations where observations

exist, so either uniform bias patterns or good coverage of observations produces

the best forecasts. Here, we found that biases differ substantially between the

north and south buoy locations calling into question the accuracy of offshore
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wind probabilistic forecasts produced using common ensemble postprocessing

techniques. Unfortunately, absent additional observational data, we cannot fur-

ther assess these post-processing techniques. Therefore, future work should

continue to assess offshore wind ensemble forecasting methods as more data

become available.

Figure 3.9: Rank histograms for 100 m horizontal wind speed at both the south
(right plot) and north (left plot) LiDAR buoy locations. We clearly see evidence
of both a negative bias and underdispersion at the south buoy but perhaps only
underdispersion at the north buoy.

3.4 Conclusion

In this study, we validated a multiphysics WRF ensemble using data from two

floating LiDAR buoys located in the New York Bight. We found that biases

in horizontal wind speeds generally increase with height, and the Draxl 2014a,

Veron 2018, and Optis 2021 ensemble members have the lowest biases making

them the best choices for long-term offshore wind analyses in the Northeast
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US. Similarly, the highest RMSE values occur at or above 100 m. However, the

member biases vary significantly among different seasons with overpredictions

in the Spring and Summer and underpredictions in the Winter and Fall, so re-

searchers should be careful adopting a WRF model setup if the season used

for validation does not match that of their application. Furthermore, we note

that similar trends are seen at the north and south buoys, but the magnitude

of biases and RMSE values is higher at the south buoy. This highlights the im-

portance of collecting offshore wind data at multiple locations even in the same

region, which echos many other offshore wind studies. This would also miti-

gate the effects that missing data has on validation analysis. That being said,

all other studies in this area (e.g., [17, 12, 2]) have only looked at wind speed

observations from multiple heights at a single location, so the extent to which

WRF wind speed biases vary across the Northeastern US remains a question for

further research.

We found that the Optis 2021 setup had the highest model skill score and

the Draxl 2014b setup had the lowest across multiple heights and geographic

locations meaning that if a single WRF model setup must be used for an off-

shore wind analysis in the Northeastern US, the Optis 2021 setup is the best

choice. However, researchers should note that this setup often overpredicts

wind speeds, especially below 80 m above sea level, which could be linked

to the MYNN2 PBL scheme. Additionally, other setups (e.g., Draxl 2014b and

Veron 2018) perform better than the Optis 2021 setup for stable conditions,

which is consistent with previous work by Draxl et al. We found that the Draxl

2014b setup performs well for stable conditions in the Northeast US as well. As

such, if the study period is concerned with predominantly stable atmospheric

conditions, then this setup is more appropriate.

70



Finally, we determined that the multiphysics ensemble is underdispersed at

both the north and south buoy locations, and additionally, the ensemble is nega-

tively biased at the south buoy. Statistical correction of this multiphysics ensem-

ble is left for future work but is complicated by the lack of observational data

and nonuniform bias patterns offshore. Still, some advantage may be gained by

using the ensemble mean over a single model setup for the region surrounding

the north buoy.
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3.5 Supporting Information

3.5.1 WRF Eta Levels

The custom eta levels used in the model are shown in Table 3.4

Table 3.4: WRF Eta Levels

1.000, 0.9975, 0.995, 0.990, 0.985, 0.980,
0.970, 0.960, 0.950, 0.940, 0.930, 0.920,
0.910, 0.900, 0.880, 0.860, 0.840, 0.820,
0.800, 0.770, 0.740, 0.700, 0.650, 0.600,
0.550, 0.500, 0.450, 0.400, 0.350, 0.300,
0.250, 0.200, 0.150, 0.100, 0.050, 0.000

3.5.2 WRF Namelist Parameters

Constant WRF namelist parameters are provided in Table 3.5. Any parameters

not listed in the table were left at their WRFv4.0 default values.
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Table 3.5: Constant Namelist Options

interval_seconds 10800
history_interval 60, 60, 10
time_step 30
max_dom 3
e_we 111, 148, 136
e_sn 83, 115, 136
e_vert 36, 36, 36
num_metgrid_levels 38
num_metgrid_soil_levels 4
dx 12000, 4000, 1333.333
dy 12000, 4000, 1333.333
grid_id 1, 2, 3
parent_id 1, 1, 2
i_parent_start 1, 41, 81
j_parent_start 1, 10, 39
parent_grid_ratio 1, 3, 3
parent_time_step_ratio 1, 3, 3
swint_opt 1
radt 15, 5, 1
bldt 0, 0, 0
cudt 0, 0, 0
surface_input_source 1
num_soil_layers 4
num_land_cat 21
damp_opt 0

3.5.3 Bias Comparison at the South Buoy

Seasonal biases at the South Buoy are shown in Figure 3.10 (see Figure 3.4 in

the main text for those at the North Buoy). While most members show similar

bias trends going up the column, i.e., the largest biases occur between 100 - 180

m, the magnitudes of the biases at the south buoy are substantially higher than

those seen at the north buoy.
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Figure 3.10: Mean bias of WRF ensemble members predicting wind speed (m
s−1) averaged over each representative period in each of the four seasons at the
south buoy.

3.5.4 RMSE Comparison at Both Buoys

A similar story follows from the seasonal breakdown in RMSE shown in Figure

3.11 and Figure 3.10 for the north and south buoys, respectively. The notable

deviation in the trend occurs for the Lee 2017 and Optis 2021 members during

the winter where RMSE values at the south buoy are lower than those at the

north buoy.
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Figure 3.11: Root mean squared error (RMSE) of WRF ensemble members pre-
dicting wind speed (m s−1) averaged over each representative period in each of
the four seasons at the north buoy.
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Figure 3.12: Root mean squared error (RMSE) of WRF ensemble members pre-
dicting wind speed (m s−1) averaged over each representative period in each of
the four seasons at the south buoy.

3.5.5 Potential Errors from Orographic Waves

We initially hypothesized that poor performance at the south buoy could be at-

tributed to orographic waves emanating from the coast of New Jersey. With the

south buoy located closer to land, perhaps such forcing from the land affected

the south buoy to a greater degree than the north buoy, and if the wavelength

of these orographic waves was mispredicted by WRF, this could potentially ex-

plain the errors in wind speeds up to 200 m. However, upon inspection of low-

level clouds offshore, which we define with a threshold of 850 hPa, we observed

no overarching orographic cloud patterns. Figure 3.13 shows these mean low-
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level clouds for each simulation week for the Lee 2017 member.

Figure 3.13: Mean low-level cloud fraction for each simulation period for the
Lee 2017 member defined by an 850 hPa threshold. A cloud fraction equal to 1
corresponds to full cloudiness at every level below the threshold for every time
step in the simulation. Buoy locations are denoted with a grey “x.”

3.5.6 Stability by Wind Speed

Stability class overlaid on a histogram of wind speed distributions are shown in

Figure 3.14 and Figure 3.15 for the south and north buoys, respectively. Trends

are largely similar, but WRF tends to overpredict very stable conditions in all

members, and each member represents the top of the wind speed distribution

slightly differently.
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Figure 3.14: Histograms showing stability by wind speed at the south buoy
location for each of the five WRF ensemble members and for the LiDAR data
(lower right subplot).

3.5.7 Stability by Hour

In this section, stability class is overlaid on the histogram showing the hour of

the day at the south (Figure 3.16) and north (Figure 3.17) buoys. Of course, this

histogram is uniform unless some data is missing (e.g., the case for the LiDAR

buoys). Again, sll the WRF members tend to overpredict very stable conditions

especially during the night. Also, several members tend to overpredict unstable
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Figure 3.15: Histograms showing stability by wind speed at the north buoy
location for each of the five WRF ensemble members and for the LiDAR data
(lower right subplot).

conditions near sunset at the south buoy. Unstable and very unstable conditions

occur more often at the south buoy, which could be a contributing factor to the

increased member biases observed here.

87



Figure 3.16: Breakdown of stability conditions by hour of the day at the south
buoy location for each of the five WRF ensemble members and for the LiDAR
data (lower right subplot).
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Figure 3.17: Breakdown of stability conditions by hour of the day at the north
buoy location for each of the five WRF ensemble members and for the LiDAR
data (lower right subplot).
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CHAPTER 4

GENETIC ALGORITHM SELECTION OF THE WEATHER RESEARCH

AND FORECASTING MODEL PHYSICS TO SUPPORT WIND AND

SOLAR ENERGY INTEGRATION

Abstract

To make a future run by renewable energy possible, we must design our power

system to seamlessly collect, store, and transport the Earth’s naturally occurring

flows of energy – namely the sun and the wind. Such a future will require accu-

rate representations of wind and solar resources and their associated variability

permeate power systems planning and operational tools. Practically speaking,

we must merge weather and power systems modeling. Although many mete-

orological phenomena that affect wind and solar power production are well-

studied in isolation, no coordinated effort has sought to improve medium- and

long-term power systems planning using numerical weather prediction (NWP)

models. One modern open-source NWP tool – the weather research and fore-

casting (WRF) model – offers the complexity and flexibility required to integrate

weather prediction with a power systems model in any region. However, there

are over one million distinct ways to set up WRF. Here, we present a methodol-

ogy for optimizing the WRF model physics for forecasting wind power density

and solar irradiance using a genetic algorithm. The top five setups created by

our algorithm outperform all of the recommended setups. Using the simula-

tion results, we train a random forest model to identify which WRF parameters

contribute to the lowest forecast errors and produce plots depicting the perfor-

mance of key physics options to guide energy researchers in quickly setting up
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an accurate WRF model.

4.1 Introduction

Propelled by the Paris Climate Agreement in 2016 and the urgent need to reduce

greenhouse gas emissions, the world’s capacity to produce electricity from re-

newable energy grew by 184 GW in 2019 alone. This increase comprises nearly

80% of all growth in electricity production, dwarfing that of fossil fuels [1]. The

vast majority of global new additions harvest energy from wind and solar ac-

counting for 118 GW (64%) and 61 GW (33%), respectively. However, electricity

generated by these sources is both intermittent and variable, as we cannot con-

trol where the wind blows nor when the sun will shine. Accordingly, numeri-

cal weather predictions (NWPs) are becoming indispensable ingredients in the

cocktail of electricity systems operations and planning [43, 42, 35].

One NWP tool in particular–the Weather Research and Forecasting (WRF)

model [60]– is the favored tool for wind and solar across scales. For exam-

ple, WRF underlies operational forecasting systems tuned for both wind [70]

and solar [31], provided the forecast system to create NREL’s wind tool kit

[11], and helped uncover the costs of uncoordinated wind farm development

[39]. Developed under the guidance of the National Center for Atmospheric

Research (NCAR), WRF is a mesoscale, non-hydrostatic NWP modeling system

that produces forecasts by numerically integrating the dynamical equations of

fluid flow – the Euler equations. However, since turbulence exists across many

scales in the atmosphere, WRF cannot explicitly resolve all of the dynamics us-

ing a grid spacing on the kilometer scale; thus, sub-grid scale processes must
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be parameterized – i.e., specified using empirical relations or simplified phys-

ical models [53]. Microphysics, radiation, the planetary boundary layer (PBL),

the land surface, and cumulus clouds are all parameterized. A number of pa-

rameterization schemes for each process have been designed and painstakingly

tailored to a broad range of applications. Operationalizing the WRF model from

scratch for use in a different region or for a different application is no small task.

There are in excess of one million different combinations of the parameteriza-

tion schemes that dictate how sub-grid scale processes are represented within

the WRF model framework. To make matters worse, while some parameteri-

zation schemes are compatible with others, many combinations cause WRF to

fail.

In more recent releases of WRF, NCAR has included example “physics op-

tion sets,” but warns that these are merely meant as starting points for testing

the model for a given application (WRF ARW User’s Guide v4.2). In the absence

of an existing WRF physics option set, new users are left to scour the literature

in hopes of finding works with similar applications or in regions to their own.

Rarely do these articles document in detail the lengthy process by which they

arrived at their final setup for WRF, and fewer still compare distinctly different

physics option sets. This complexity puts operationalizing a WRF model out of

reach for many potential users.

Testing all plausible combinations of WRF parameterization schemes re-

mains impossible. Accordingly, studies typically conduct sensitivity analyses

with one or more schemes (e.g., [2, 5, 33, 21, 16, 49, 57, 51]). Stergiou et al.

even use multi-criteria decision analysis to aid in assessing sensitivity to model

physics [62]. To reduce systematic bias from poor parameterization scheme
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choices, we propose a comprehensive methodology for operationalizing a WRF

model that works in any region for any application of interest.

Recently, researchers have adopted algorithms that mimic evolution to

“breed” optimal solutions to computational problems. Collectively, these op-

timization strategies are called “evolutionary algorithms” (EAs) [68]. A subset

of EAs, called “genetic algorithnms” (GAs), act as a digital-analog to natural

selection by encoding variables as “genes” which combine to form an “indi-

vidual” [47]. Each individual achieves a fitness score based upon how well

it performs with respect to a user-defined objective. Applying this approach,

we develop and evaluate a GA for breeding an optimal WRF model to predict

wind and solar energy integration in the Northeastern US. The parameteriza-

tion schemes comprising WRF are analogous to the genetic material comprising

DNA; changes to the WRF code affect its macroscale behavior just as changes

to the genetic material of an organism will affect its macroscale structure. These

genes are mixed and matched between sequential “generations” of models, and

the “fittest” models are then hybridized with each other to produce a new gener-

ations of models. We will refer to this approach as “OptWRF” for the remainder

of this manuscript.

EAs and GAs have aided in WRF parameter tuning before, but usually to

optimize parameters within a scheme [28, 8]. Diaz-Isaac et al. used a GA to se-

lect a subset of a 45-member multi-physics ensemble based on the flatness of the

rank histogram and found that they could improve the representation of model

error variances with few ensemble members [10]. In a brief study, Oana and

Spataru are the only researchers who have used a GA for initial WRF parameter

selection [50]. They report promising early results for humidity and temper-
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ature forecasts but note that further study is necessary to assess the utility of

using a GA to aid in WRF model setup.

Although many studies design a WRF model for wind or solar resources sep-

arately, no studies have sought to optimize – or even assess – WRF’s ability to

downscale reanalysis data for the dual purpose of wind and solar. Such a model

would immediately halve the computational cost. Among those concerned with

wind energy, researchers have introduced and benchmarked a wind farm pa-

rameterization [15, 14, 32, 34] and assessed WRF’s sensitivity to different spatial

resolutions, different boundary condition data sources, different PBL schemes

[20, 12, 52], parameters within PBL schemes, or some combination of these

[22, 7, 17, 67]. Others assessed how well a single WRF physics option set per-

forms before conducting a wind resource analysis [44]. Some of these analyses

culminated in public meteorological data products to aid in wind power inte-

gration (e.g., NREL’s WIND Toolkit [11]).

Many studies also customize WRF for solar energy. WRF-SOLAR pro-

vides a WRF physics option set for solar energy forecasting [31], and urban

WRF-SOLAR extends this by adding an urban canopy model and building en-

ergy model [19]. Two recent studies assessed how well the European Centre

for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System

(IFS) and the North American Model (NAM) Global Forecast System (GFS) per-

formed for short-term solar forecasting [43, 37] and another evaluated the per-

formance of different shortwave parameterization schemes in predicting GHI

[69]. In this work, we explore the feasibility and computational cost of choos-

ing an initial physics option set for combined wind-solar analyses using a GA.

Further, we aim to uncover – for the first time – the influence that each physics
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category and individual parameterization scheme has upon the final model out-

put. We provide the first database enabling new users to quickly assess which

physics option sets work best for wind and solar analyses in the Northeastern

US and how they compare to those recommended by NCAR.

The remainder of this chapter is organized as follows: in Section 4.2 will

discuss our methodology for developing and applying the genetic algorithm

to WRF model setup, in Section 4.4 we discuss our results with an emphasis

on the influence of physics options on WRF output and applying this method to

operationalize a WRF model in an arbitrary location for an arbitrary application,

and finally, Section 4.5 provides a conclusion and final recommendations for

applying the OptWRF methodology.

4.2 Method

This method section is divided into two major subsections. We begin with a de-

scription of the WRF model and associated setup options in Section 4.2.1, as each

model represents an individual in the OptWRF GA. The following explanations

in Section 4.2.2 provide specifics of the GA algorithm operators and control pa-

rameters that produce better WRF forecasts through successive generations.

4.2.1 The Weather Research and Forecasting Model

WRF produces mesoscale forecasts by numerically integrating the dynamical

equations of fluid flow, and parameterizes those processes that cannot be re-

solved at the user-defined grid spacing [60]. Microphysics, radiation (separate
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schemes handle longwave and shortwave radiation), planetary boundary layer

(PBL), land surface, and convection (at a horizontal grid spacing above ∼4km

[60]) are parameterized. Through parameterization, WRF attempts to capture

all key couplings that affect the earth system at the mesoscale resulting in an

accurate overall forecast or downscaling of wind and solar variables.

Model Parameterizations

During WRF model initialization, choices for parameterizing various unresolv-

able processes must be specified. One scheme is chosen for each of the six ma-

jor parameterizations – microphysics, long and shortwave radiation, PBL, land

surface, and cumulus – that govern how WRF runs. Each unique combination

of parameter choices, therefore, constitutes a new physics option set for WRF.

Note that the surface layer (i.e., the interface layer between the PBL and the

land surface) is parameterized separately in WRF, but as the scheme choice is

heavily constrained by the choice of PBL physics, we chose to select the sur-

face layer scheme based upon the PBL scheme. If multiple choices exist, we

use the revised MM5 Monin-Obukhov scheme [29]. See Section 4.6.3 for a full

discussion about dependencies among different parameterization options and

schemes. Parameterization schemes will become the building blocks – the genes

– upon which our genetic algorithm is constructed.

Different methods or schemes for parameterization have been developed

over the years sometimes capturing underlying physics more accurately and

other times offering a speed up when compared with previous parameterization

techniques. For this work, we use parameterizations available in WRF version

4.2.1 [59]. Parameters within each scheme can also be tuned to further customize
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the model, which increases the number of possible unique WRF “instances” by

orders of magnitude. Since previous research has already dealt with optimiza-

tion of parameters within individual schemes [28, 8], we omit this added com-

plexity here and all internal scheme parameters are left at their default values.

In all cases, when one parameterization option is swapped for another, nonlin-

ear coupling among different parts of the model can lead to drastically different

model results that often cannot be readily diagnosed.

WRF model domain and boundary condition data

The focus of this work is upon the parameterizations that govern how physi-

cal processes within WRF are represented. Therefore, the majority of the WRF

namelists options – particularly those governing the model domain and dynam-

ics – are kept constant for each model run as are the boundary conditions. The

modeling domain is centered over the Northeast United States and has a 12km

horizontal resolution with 36 levels in the vertical direction. The pressure at the

model top is 5000 Pa, and the eta levels were set manually (Table 4.2 in Section

4.6.1 gives the exact eta levels). The time step used for all simulations was set

to 45 seconds to reduce the likelihood of Courant-Friedrichs-Lewy (CFL) errors

as we made every effort to accommodate the broadest array of physics param-

eterizations. A copy of our constant WRF namelist parameters is included in

Section 4.6.2. ERA-Interim data created by the European Centre for Medium-

Range Weather Forecasts (ECMWF) was used as boundary condition data for

all downscaling [9].
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4.2.2 Genetic Algorithm

We have employed a simple genetic algorithm (GA) to identify a WRF physics

option set that performs better than out-of-the-box recommendations from

NCAR. It’s important to note that a GA does not guarantee an optimal solu-

tion, but improves the solution space through an iterative evolutionary process.

Each WRF physics option set combined with a specific run date represents an

individual within this population. GAs are constructed from a number of oper-

ators that govern how the algorithm functions: fitness, selection, crossover, and

mutation. Figure 4.1 depicts a general layout for the algorithm. These processes

are repeated once per generation until a pre-specified number of generations

are reached. Each operator will be described in greater detail in the sections

that follow.

Physics schemes as genes; WRF simulations as individuals

Like any real population, the space of possible individuals depends indelibly

upon the gene pool. Genes represent the basic building block upon which a

population is built, and for this case, physics schemes created for each of the six

major physical processes parameterized within the model are each encoded as

one of six genes. These processes are microphysics with 25 schemes, longwave

radiation with 8 schemes, shortwave radiation with 8 schemes, land surface

with 6 schemes, PBL with 11 schemes, and cumulus with 14 schemes (See Sec-

tion 4.6 for a complete list of parameterization schemes). To set up a WRF model

run, exactly one parameterization scheme from each category must be chosen.

Combinatorially, this allows for 1,478,400 distinct possible WRF model setups.

Taking model run date into account, that number swells to 539,616,000. Each
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Figure 4.1: Schematic diagram of the genetic algorithm used for determining a
near optimal set of physics parameters for the WRF model based upon an ar-
bitrary application-specific fitness function. The number of generations (cycles
through the diagram) can be tuned by the user based upon size of the ensemble,
available time, and computational resources.

of these distinct model setups corresponds to a single individual that together

makes up a population for the genetic algorithm.
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The fitness function

In order to judge how well each individual within the population performs,

a metric for judgment must be specified. For the application of medium- to

long-term power systems planning, we care about WRF’s ability to downscale

meteorological variables affecting wind and solar energy production. We cre-

ated a metric dubbed the wind power density (WPD), which varies with the

cube of the turbine hub height (100m) wind speed, to judge model performance

based on wind speed. Performance based on solar energy was judged by model-

calculated GHI. The fitness function shown in Equation 4.1 calculates the ac-

cumulated errors between a WRF model realization and the ERA5 reanalysis

dataset [25] in WPD and GHI across time (t) and across all model grid cells (g)

as shown below. While WPD and GHI both have units of W m−2, a correction

factor was employed to ensure that accumulated errors in each quantity during

the year 2011 were the same. Reanalysis products blend observations with past

short-range forecasts providing the most complete picture of global weather in

existence making them an ideal choice for testing the skill of a gridded model.

(4.1)

fitness
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Population initialization and tournament selection

A population within the GA is composed of WRF models with different physics

and/or run dates. During population initialization, the namelist files governing

how each model will run are written. First, physics schemes for the six ma-

jor parameterization options are selected randomly from the options available

(See Section 4.6 for the complete list). Throughout testing, we uncovered nu-

merous incompatibilities while attempting to run the WRF model a certain way.

When possible, these physics scheme incompatibilities were incorporated into

the initialization function signaling the operator to avoid these combinations.

The run date is selected randomly within the year. This year was selected for

convenience, and a comparison of performance for different years was beyond

the scope and computational resources available for this work, but the choice

to select start dates within a single year was made deliberately to ensure that

seasonal variability was taken into account without having to consider meteo-

rological variability on longer time scales. Experiments were run using several

population sizes, containing 50 - 200, whose performance will be discussed in

Section 4.4.

Following population initialization, the fitness of each member of the pop-

ulation was calculated by running each WRF model. All the models in a

generation were submitted to a cluster simultaneously using Python’s concur-

rent.futures module. Each model was allocated a maximum of six hours on

eight cores for a maximum of 48 core hours per simulation – the vast majority

of models finished in that amount of time. Those models that failed to finish

within the allotted six hours were terminated and assigned a large fitness value.

Likewise, those models that failed due to physics scheme incompatibilities or
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other WRF model vicissitudes were assigned a high fitness value. Recall that

the fitness value represents the accumulated model error, so lower fitness val-

ues are desirable.

With fitness values calculated, the selection operator identifies individuals

within the existing population and constructs a mating population from which

offspring will be conceived. Tournament selection creates a mating population

that has both strength and diversity. In tournament selection, 10% of the exist-

ing population is selected randomly, and the individual with the highest fitness

in this group is placed in the mating population. Tournament selection is contin-

ued iteratively until the mating population is half the size of the existing popu-

lation. Previous research has investigated the sensitivity of output with respect

to many of these GA control parameters [45], but such analysis was beyond the

scope of this work. The randomization introduced by tournament selection is

designed to keep the GA from converging to a sub-optimal local minimum pre-

maturely by ensuring that the population contains individuals carrying genes

with a greater variety of fitness values than just the ones at the top, which we

carry through to future generations regardless.

The crossover operator

An offspring population is formed via two separate mechanisms – crossover

and elitism. Elitism simply takes a prescribed number of individuals – one-

third of the population in this study – and places them in the offspring popula-

tion unchanged. The crossover operator is responsible for filling the remaining

two-thirds of the offspring population. The crossover operator randomly selects

two individuals from the mating population and gives them a 50% chance to
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form two offspring. When crossover does happen, a single gene (i.e., a physics

scheme) is selected at random, and swapped between the two individuals cre-

ating two new offspring.

The mutation operator

After the offspring population has been filled, mutation provides a mechanism

to introduce additional genes into individuals that their parent models did not

contain. The mutation operator is applied to each offspring in the population,

and the probability of a mutation occurring is equal to one over the population

size. In other words, on average, one member of each offspring population

will experience a mutation. When a mutation occurs, a single gene within an

individual is randomly changed – one physics scheme is swapped for another in

one model. Researchers previously delved into both the best operators to carry

out mutation [6] and the optimal mutation probability [23]. After mutation, the

final version of the offspring population is complete. The cycle (in Figure 4.1)

begins again and this population becomes the parent population for the next

generation. Only once the prescribed number of generations have elapsed are

the best models extracted from the final population.

4.3 Results

By running OptWRF with a population size of 200 over 10 generations, 2000

simulations were initialized. Of those, 1823 distinct simulations – considering

the date of model initialization and physics option set together – ran success-

fully. The balance of the 2000 total simulations can be accounted for either
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via the 8% (16 simulations) that are passed into each successive generation un-

changed (a total of 144 simulations) or failed for one of many possible reasons

along the way. We also retained some additional simulations run during al-

gorithm testing to bolster the data used in the analysis of WRF model behav-

ior based upon physics option sets (see Section 4.3.3). The top five perform-

ing physics option sets are shown in Table 4.1. Note that the best perform-

ing physics option set (NSSL 1 moment microphysics, RRTMG longwave and

shortwave radiation, Pleim-Xiu land surface model, BouLac PBL, and old Kain-

Fritsch cumulus) appears three times in the top seven demonstrating its ability

to produce low error values when WRF is initialized on different days. All the

top-performing physics option sets found by OptWRF offer an improvement to

the WRF User Guide-Recommended physics option sets as shown in Table 4.1.

Table 4.1: Highest Performing OptWRF and WRF User Guide-Recommended
Setups. Improvements are reported with respect to the highest performing
setup recommended in the WRF user guide, which is shown directly below the
midrule. Plus signs indicate a performance improvement, and minus signs in-
dicate a performance deterioration.

Date Microphysics LW Rad SW Rad LSM PBL Cumulus Fitness Improvement

OptWRF Setups

Dec 13 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu BouLac Old KF 7858. +16.0%
Jan 14 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu BouLac Old KF 7859. +16.0%
Dec 13 Thompson RRTMG Dudhia Pleim-Xiu BouLac KF 8207. +12.2%
Dec 02 Sbu-Ylin RRTMG RRTMG Pleim-Xiu BouLac Old KF 8480. +9.3%
Jan 14 NSSL 1 Moment RRTMG Dudhia Pleim-Xiu BouLac Old KF 8488. +9.2%
Dec 02 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu BouLac Old KF 8519. +8.9%
Jan 14 NSSL 1 Moment RRTMG CAM Pleim-Xiu BouLac KF 8601. +8.0%

WRF User Guide-Recommended Setups

Dec 13 Thompson RRTMG RRTMG Noah MYJ Tied TKE 9351. N/A
Dec 13 WSM6 CAM CAM Noah YSU KF 16071. -71.9%
Dec 13 Thompson RRTMG RRTMG Noah YSU Grell-Freitas 16117. -72.4%
Dec 13 WSM5 RRTMG Goddard Noah MYJ KF 16704. -78.6%
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4.3.1 Annual Comparisons

We designed OptWRF to cover the greatest possible number of physics op-

tion sets initialized on random days throughout a single year. Of course, there

is an inherent trade-off between coverage and computational cost. Running

simulations over longer time periods, or with multiple time periods dispersed

throughout the year, would have given us more insight into how skilled a partic-

ular physics option set was at downscaling a diverse set of meteorological con-

ditions, but we would have been able to investigate fewer physics option sets

with the same computational resource. Since we sought to determine how dif-

ferent parameterization options affected wind and solar forecast errors, higher

coverage of physics option sets better matched the goals of this work.

Still, we wanted greater confidence that physics option sets ultimately se-

lected by OptWRF outperformed the WRF User Guide recommendations across

a variety of meteorological conditions. We ran the top five physics option sets

selected by OptWRF and four from the WRF User Guide (Table 4.1) for the entire

year of 2011 in a series of single-day simulations similar to the original experi-

ment. Monthly mean fitness values for each of the five physics option sets found

by OptWRF outperformed each of the four from the WRF User Guide (Figure

4.2). Note that several of the simulations initialized in July and August for the

NCAR 1 physics option set failed to run, so these monthly means were gener-

ated using data from fewer simulations. However, it is unlikely this affected the

overall trend presented here.
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Figure 4.2: Plot matrix with each of nine panels highlighting the monthly mean
fitness of one physics option set and the results from the other eight plotted
in grey. physics option sets selected by OptWRF are highlighted in teal and
appear in the first five panels; whereas physics option sets recommended by
NCAR in the WRF User Guide are highlighted in navy blue and occupy the
final four panels. Each of the sets chosen by OptWRF outperformed each of
the sets recommended by NCAR in all months of 2011 providing compelling
evidence that these physics option sets produce better forecasts across seasons
and diverse meteorological conditions.

4.3.2 Wind and Solar Trends

Simulations are judged based upon the fitness function (Equation 4.1). For this

application, we designed the fitness function to deliberately consider wind and

solar resources equally on an annual basis as we would like the forecast skill

to be equal for both wind and solar energy. We chose GHI to benchmark so-

lar energy as this depends on both the diffuse and direct components of solar

radiation – although both are shortwave [41]. We integrated the GHI for one

single-day simulation period and plotted it across the entire domain for both

the best-performing WRF simulation and the ERA5 reanalysis (Figure 4.3a-b).

This integration was performed using the hourly values for GHI in kW m−2,

which when summed over a day, result in kWh m−2 day−1. Clouds, moisture,
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and aerosol creation or advection are largely responsible for the sharp GHI gra-

dients shown in such single-day snapshots.

a) b)

c) d)

e) f) g)

Figure 4.3: Panels a and b show global horizontal irradiance (GHI) across the
entire modeling domain in kWh m−2 day−1 for a one-day WRF simulation ini-
tialized on December 13, 2011 00 (UTC) and the ERA5 reanalysis. Similarly,
panels c and d show the wind power density (WPD) also in kWh m−2 day−1.
Data shown in b, d, f, and g is taken from the best-performing simulation pro-
duced by OptWRF. Errors in the GHI (panel f) and WPD (panel g) contribute to
the overall model fitness (panel e).

The same method was applied to produce WPD plots for both the best-

performing WRF simulation and the ERA5 reanalysis (Figure 4.3c-d). Since
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wind power depends on the cube of the wind speed, the WPD is plotted on

a log scale.

Visualizing the fitness is simply a matter of combining the errors incurred

by a WRF simulation with respect to the ERA5 reanalysis, controlling for day

length in the GHI error, and correcting the WPD error so the two error metrics

are of the same order of magnitude. Fitness varies across the domain with the

errors in GHI and WPD (Figure 4.3e-g), and errors are the highest where mete-

orological extremes are poorly captured. A panel of scatter plots showing GHI

error, WPD error, and fitness values for each of the almost 2000 simulations is

shown in Figure 4.7 in the Supplemental Information.

4.3.3 Effects of Physics Parameterizations

In order to determine the absolute effect that each physics parameterization

scheme has upon the fitness value, we made use of a random forest regressor

[4]. This method was chosen because the physics parameterization options are

non-ordinal categorical variables; so principle component analysis cannot shed

much light on the effect that each physics option has upon the model output.

Random forest allowed us to one-hot encode each parameterization scheme as

a feature so each could be considered separately. Although the random for-

est regressor assigns a weight (importance) to each feature, these weights are

relative, and their shortcomings are well documented [63]. To determine the

importance of each parameterization scheme, we employed the SHapley Ad-

ditive exPlanation (SHAP) Python Package [38]. SHAP provides a high-speed

exact algorithm for explaining the output of tree-based machine learning mod-
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els and has been shown to correctly rank the contributions of predictor variables

to model output [24]. The SHAP values for each radiation and each planetary

boundary layer parameterization scheme in each model are shown in box plots

in Figure 4.4 and Figure 4.5, respectively. When a scheme is turned on (i.e., used

in a WRF forecast), an orange box is used, and when a scheme is turned off (i.e.,

not used in a WRF forecast), a blue box is used. Negative SHAP values corre-

spond to those schemes – either turned on or off – that push the fitness (error)

value lower while positive SHAP values correspond to those physics options

that push the fitness (error) value higher. In other words, when an orange box

appears to the left of the zero SHAP value line, the scheme improves the WRF

forecast skill when used.

Looking at the radiation schemes shown in Figure 4.4, several perform quite

poorly while only a couple contribute to lower fitness (error) in a majority of

cases. Clearly, shortwave FLG, longwave Held-Suarez, and shortwave New

Goddard are linked to much higher errors in GHI and WPD as all non-outlier

SHAP values are positive. WRF users investigating wind and solar integration

should avoid using these schemes. Unfortunately, no schemes can be linked to

an overwhelming reduction in error; so we can offer no clear choice of radiation

schemes. The shortwave RRTMG scheme is the only one linked to a modest

reduction in forecast errors in nearly all cases. This is consistent with the best

physics option sets selected by OptWRF (see Table 4.1). Longwave RRTMG and

longwave FLG are both linked to lower errors in the majority of cases and repre-

sent the best choices for longwave radiation. All remaining schemes contribute

to higher errors in the majority of cases and therefore users should carry out fur-

ther model tuning exercises if they want to use one of these schemes for wind

and solar integration.
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Turning now to the performance of the planetary boundary layer schemes

shown in Figure 4.5, only a couple contribute to higher error most of the time

and several perform well. Only the MYNN3 scheme is linked to higher errors

in GHI and WPD in almost all cases, but ACM2, MYNN2, TEMF, and YSU are

all linked to higher errors a majority of the time. Therefore, users should avoid

these schemes for wind and solar integration if at all possible or carry out fur-

ther model tuning if the use of these schemes is warranted for some ancillary

reason. For example, this raises an issue for the WRF wind farm parameteri-

zation [15], which is currently only compatible with the MYNN2 scheme. We

will engage this point further in Section 4.4. Encouragingly, the BouLac scheme

appears to drive down GHI and WPD errors substantially in all cases that it is

used making it an easy choice for a PBL scheme. GBM, MYJ, QNSE, Shin-Hong,

and UW schemes are also all linked to lower errors for the majority of models in

which they were activated. Section 4.6.7 presents SHAP values plots for the re-

maining parameterization schemes (microphysics, land surface, and cumulus).

4.4 Discussion

As with any modeling approach, there are caveats that affect the applicability of

this approach, which warrant further discussion. Foremost, we want to stress

the importance of the choice of domain and fitness function. Then, we discuss

why certain physics options sets may have outperformed others.
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Figure 4.4: SHAP values explain the impact that each random forest model fea-
ture (WRF parameterization scheme) has upon model error. Radiation param-
eterization schemes are listed along the left axis, and boxes are created from
all the WRF model runs. Orange bars correspond to WRF models where the
parameterization scheme was activated; whereas the blue bars correspond to
those where the scheme was deactivated. Negative SHAP values correspond
to those schemes that reduce model error (improving the forecast); whereas
positive SHAP values correspond to those schemes that increase model error.
Therefore, those schemes with orange bars centered furthest to the left produce
the best WRF forecasts. The namelist options for all longwave and shortwave
radiation schemes are included in Tables 4.5 and 4.6 in Section 4.6.3, respectively.

4.4.1 Domain and Fitness Function

All the results presented here are inextricably linked to how well WRF can pre-

dict GHI and WPD across the entire domain covering most of the eastern United

States. We chose this domain to overlap with the Ozone Transport Commis-

sion’s domain and its placement enables researchers studying one of the three
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Figure 4.5: Planetary boundary layer parameterization schemes are listed along
the left axis, and boxes are created from all the WRF model runs. Orange bars
correspond to WRF models where the parameterization scheme was activated;
whereas the blue bars correspond to those where the scheme was deactivated.
Those schemes with orange bars centered furthest to the left produce the best
WRF forecasts. The namelist options for all PBL schemes are included in Table
4.8 in Section 4.6.3.

major eastern regional transmission organizations – PJM Interconnection, New

York ISO, and New England ISO – direct insight into the best-performing WRF

physics option set across the entire region. However, the fitness function judges

all errors across this domain equally; so we caution users who study primar-

ily a small subset within this domain and encourage them to undertake further

benchmarking. For example, the best performing model produced by the GA

incurred high errors in WPD off the coast of North Carolina (see Figure 4.3g).
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As such, this model setup would almost certainly not be the best choice for sim-

ulating the power output from an offshore wind farm there.

On a related note, our approach applies to a variety of spatial and temporal

scales. For this work, we selected a 12-km domain across the eastern United

States and ran many one-day simulations within 2011 to balance computational

resources with coverage of many different physics option sets. Users could eas-

ily modify this setup in several ways (i) change the location, spatial extent, or

grid spacing of the domain, (ii) include a nested domain in which to judge er-

rors, and (iii) extend the time period for each simulation or the time period from

which model start dates are drawn. Keep in mind that, barring a reduction in

the spatial extent of a domain or an increase in grid spacing, each of these mod-

ifications will increase the computational cost of running OptWRF. For some

studies, using a single year as we have here is appropriate. For example, short-

to medium-term power systems capacity planning exercises generally utilize

historical peak demand for a single season or year. On the other hand, long-

term capacity planning exercises (e.g., planning wind and solar facility deploy-

ments through 2050) should incorporate simulations from a longer time period

to capture variability at larger scales (e.g., interannual cycles, ENSO, and inter-

decadal cycles) that will affect how much energy a wind or solar facility will

produce over its lifetime.

4.4.2 Best Physics Option Sets

We turn now to a discussion of why these particular physics option sets (refer

back to Table 4.1) may have produced the best downscaling of GHI and WPD.
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To frame this discussion, we will zoom in on a portion of our domain, New York

State, to discuss the spatial pattern in the GHI errors (shown on the left in Figure

4.6) and WPD errors (shown on the right in Figure 4.6). Errors in GHI appear

uniform across much of NYS with the largest errors occurring off the coast, to

the South and East, of Long Island. We attribute these to clouds that are resolved

in the WRF downscaling but not in the ERA5 reanalysis. However, since these

features sit offshore, their presence represents no concern for forecasting solar

resources over land thereby potentially making this model more attractive in

practice. An extension of this work could consider only the GHI over land.

Modestly high GHI error values occur near the Great Lakes and near the White

Mountains in Northern New Hampshire. We stipulate that these errors may

stem from the added physical complexity associated with the transition from

lake to land and the wake of a mountainous region, respectively. In other words,

the microphysics scheme likely omits some of this complexity and mispredicts

the spatial or temporal extent of clouds in these areas.

Interestingly, we found that the NSSL single-moment scheme (see [40] for

the original NSSL two-moment scheme) selected by OptWRF was linked to

higher errors in a majority of cases, shown in Figure 4.8. Since the same is true

for the other two microphysics schemes used in the best-performing models

(Thompson [65] and Sbu-Ylin [36]), the microphysics scheme does not appear

to strongly influence GHI and WPD error values. This stands in contrast to

the radiation schemes (Refer back to Figure 4.4) where both the longwave and

shortwave RRTMG [27] schemes are linked to lower errors. Longwave RRTMG

is based on the correlated-k method [48] that generates required k-distributions

and optical depths using a line-by-line radiative transfer model drawing data

from the HITRAN database [58]. We found that this new “look-up-table” pa-
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Figure 4.6: The left panel shows a zoomed-in view depicting GHI error over
New York State and parts of the Northeastern United States – the same quantity
as plotted in Figure 4.3f. The largest errors in GHI occurred off the southern
and eastern coasts of Long Island, NY. The right panel shows a zoomed-in view
depicting WPD error over New York State and parts of the Northeastern United
States – the same quantity as plotted in Figure 4.3g. The spit of land between
Lake Erie and Lake Ontario as well as the White Mountains in Northern New
Hampshire have the largest errors in WPD. However, the area off the coast of
Long Island, NY also has moderately high WPD errors.

rameterization method [53] outperforms the longwave schemes based upon the

older broadband emissivity method [61] (e.g., see [13]).

Turning to errors in WPD shown in the right panel of Figure 4.6, we observe

some expected trends. The highest errors occur between Lake Erie and Lake

Ontario and near the White Mountains in Northern New Hampshire. Since the

spit of land between the two Great Lakes is approximately 36km wide, it can

be spanned by three WRF grid cells (12km) and is on the same order as the

ERA5 grid (∼30km). Therefore, it’s not surprising that winds deviate here as

the benchmark data represents this feature so coarsely. For the White Mountain

region, winds likely deviate due to the complex terrain. Most PBL parameteri-

zations – with the possible exception of the YSU scheme [26] – poorly represent

unresolved orographical features existing in mountainous terrain and remains

an open area of research [29, 30, 22]. Draxl et al. reported that the choice of

PBL schemes depends on atmospheric stability [12]. Unfortunately, the BouLac
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scheme [3] selected by OptWRF was not part of their study. Therefore, the per-

formance of this scheme under different stability regimes remains a subject for

future work. Of course, the PBL scheme exchanges heat and moisture fluxes

with the surface layer scheme but these fluxes are ultimately determined by the

physics represented in the land surface model. Therefore, we want to highlight

that the Pleim-Xiu land surface model [66], which was developed in conjunction

with the ACM2 PBL scheme [55, 56] and the Pleim-Xiu surface layer scheme

[54], was selected in isolation of its companion schemes by OptWRF. Clearly,

future work should continue to explore hidden synergies among WRF’s many

parameterization schemes.

4.5 Conclusion

We developed a methodology that utilizes a genetic algorithm to aid in the setup

and benchmarking of a numerical weather prediction model (WRF) with hun-

dreds of thousands of potential physics option sets. This method can be applied

over any region, and the fitness function can be tailored to a specific application

(or variable) to find a more optimal model physics option set. The benefits of

the method are that it allows users to a) find a model setup in the absence of

an inherited model or similar application existing within the literature, b) easily

discover sensitivities to different physics option sets and model run dates that

would not otherwise be apparent, and c) provides users with multiple options

– allowing them to choose a quicker sub-optimal model. Of course, running a

GA with WRF models as the individual computational unit is inherently com-

putationally expensive; so not all researchers will have access to computational

resources necessary to carry out such an expensive exercise. We have therefore
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stored all the models run throughout the course of this work in an SQL database

and will be included with the Supplemental Information.

The dataset produced by this work will aid future researchers in medium

to long-term power systems planning. The sheer number of meteorological

data products creates a high barrier to entry for the atmospheric sciences.

This creates a problem for energy system planners who historically conducted

long-term planning exercises with simple models to predict electricity demand

growth and help them to decide where to invest in new power plants and lines

that would support the system several decades into the future. The prolifera-

tion of renewable energy demands a much more complex approach to system

planning integrated intimately with meteorological modeling. Weather now not

only loosely dictates how much electricity people use but is responsible for ex-

actly how much renewable energy will be supplied. Since many of the param-

eterization options were developed before the rapid deployment of renewable

energy, there is no reason to believe that the prediction of renewable energy

production was even a passing consideration for the designers of these physics

schemes. Our results provide an exhaustive view of how well each physics

scheme operates when judged on wind and solar energy prediction – power

systems researchers can use these directly to quickly set up a WRF modeling

effort.

Open-source software tools and publicly accessible datasets are vital to both

the meteorological modeling community and the energy systems community.

We have put all the code used in this work – namely an OptWRF python pack-

age – on a public GitHub site in the hopes that others can make use of this

methodology producing and disseminating datasets in different geographic re-
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gions or for different applications. The meteorological modeling community is

one containing a wealth of freely available data modeling products; the WRF

model is a prime example. The power systems community has some work to

do, but a similar approach will help more regions across the world develop re-

newable energy and decarbonize their electricity systems faster.

To be sure, there are some areas for improvement in tailoring a GA to effec-

tively set up a WRF modeling effort. GA control parameters are important tools

to help guide the algorithm toward the best solution, and while we adopted the

population size and elite percentage from previous work [46], other recommen-

dations were omitted to reduce complexity. For example, Mills et al. found that

an adaptive mutation rate could improve GA efficiency. The domain, physics,

and dynamics of the WRF model itself are also exceedingly complex. Future

work could investigate GA solution sensitivity to horizontal and vertical grid

spacing specified in each WRF model – an incredibly computationally expen-

sive task as it would require repeating the work described here at a variety of

different grid resolutions. We also have not investigated the sensitivity of the

GA solution to the geographic location where the WRF models are run. We

expect that different parameterization options will perform better in different

geographic areas, but there is little way to know how well the model setups re-

ported in Section 4.3 may apply to an arbitrary location across the globe. The

best physics option sets reported here are probably most relevant to climates,

latitudes, and topographical regimes similar to that of the Northeastern United

States, but the OptWRF approach could be deployed anywhere (e.g., in the trop-

ics where the relative contributions of solar radiative heating and the Coriolis

force are markedly different). Finally, some work has been done to optimize the

control parameters within an individual parameterization option to improve the
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forecast skill (e.g., [28, 8]). This work could be integrated into the current frame-

work as a second step after the model physics has been selected during the

first. Each of these future directions would require staggering computational

resources; so we echo again the importance of making such WRF performance

analytics available to the broader user community who may lack necessary re-

sources.

Not all environmental nonprofits, local governments, community colleges,

and the like have the knowledge or budget to painstakingly tailor a forecasting

system to fit their needs over a period of years. However, as developers of

wind and solar float ever-cheaper bids, planners across institutions require tools

to make sense of an increasingly interconnected system. As the weather will

dictate both electricity supply and demand, WRF is the indispensable open-

source tool that can help all planners decarbonize their systems. This work takes

the first major step toward making location and application forecasts using WRF

more accessible.
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4.6 Supporting Information

4.6.1 WRF Eta Levels

The custom eta levels used in the model are shown in Table 4.2. Note that these

were set manually to accommodate the use of the WRF wind farm parameter-

ization (WFP) [15], which performs better when a greater number of cells exist

lower in the modeling domain. For those applications that omit the WFP, de-

fault levels will suffice.

Table 4.2: WRF Eta Levels

1.000, 0.9975, 0.995, 0.990, 0.985, 0.980,
0.970, 0.960, 0.950, 0.940, 0.930, 0.920,
0.910, 0.900, 0.880, 0.860, 0.840, 0.820,
0.800, 0.770, 0.740, 0.700, 0.650, 0.600,
0.550, 0.500, 0.450, 0.400, 0.350, 0.300,
0.250, 0.200, 0.150, 0.100, 0.050, 0.000

4.6.2 WRF Namelist Parameters

Constant WRF namelist parameters are provided in Table 4.3. Any parameters

not listed in that table were left at their WRFv4.0 default values.

4.6.3 WRF Physics Parameterization Options

All the physics parameterizations options available within WRF version 4.2.1

are given below along with their respective namelist identifiers.
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Table 4.3: Constant Namelist Options

interval_seconds 10800
history_interval 60
time_step 45
max_dom 1
e_we 192
e_sn 192
e_vert 36
num_metgrid_levels 38
num_metgrid_soil_levels 4
dx 12000
dy 12000
swint_opt 1
radt 15
bldt 0
cudt 0
surface_input_source 1
num_soil_layers 4
num_land_cat 21
damp_opt 0

Dependencies among parameterizations

Given their diverse development origins, it is often impossible to tell whether

or not a given scheme is even compatible with an arbitrary set of other physics

options unless that set-up is reported in previous literature. Some parameteriza-

tion dependencies are also documented in the WRF User’s Guide. During this

study, we discovered that, generally, well over 50% of randomly chosen physics

option sets contain incompatibilities not explicitly reported in the User’s Guide.

4.6.4 Notes on parallelism and computing

WRF runs best compiled for distributed memory parallelism in a high-

performance computing (HPC) system such as NCAR Cheyenne supercom-
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Table 4.4: WRF Microphysics (MP) Parameterization Options

Scheme Name Namelist Option

Kressler 1
Lin 2
WSM 3 3
WSM 5 4
Eta 5
WSM 6 6
Goddard 7
Thompson 8
Milbrandt 2-moment 9
Morrison 2-moment 10
CAM 5.1 11
Sbu-Ylin 13
WDM 5 14
Ferrier 15
WDM 6 16
NSSL 2-moment 17
NSSL 2-moment w/ CCN 18
NSSL 1-moment 19
NSSL 1-moment LFO 21
NSSL 1-moment no hail 22
Thompson Aerosol 28
Huji (fast) 30
Huji (full) 32
P3 50
P3 2-moment 51

Table 4.5: WRF Longwave Radiation (LW) Parameterization Options

Scheme Name Namelist Option

RRTM 1
CAM 3
RRTMG 4
New Goddard 5
FLG 7
RRTMG (fast) 24
Held-Suarez 31
GFDL 99
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Table 4.6: WRF Shortwave (SW) Radiation Parameterization Options

Scheme Name Namelist Option

Dudhia 1
Goddard 2
CAM 3
RRTMG 4
New Goddard 5
FLG 7
RRTMG (fast) 24
GFDL 99

Table 4.7: WRF Land Surface (LSM) Parameterization Options

Scheme Name Namelist Option

5-layer 1
Noah 2
RUC 3
Noah-mp 4
CLM4 5
Pleim-Xiu 7

Table 4.8: WRF PBL Parameterization Options

Scheme Name Namelist Option

YSU 1
MYJ 2
QNSE 4
MYNN 2 5
MYNN 3 6
ACM 2 7
BouLac 8
UW 9
TEMF 10
Shin-Hong 11
GBM 12

puter [59]. Within this environment, new users can copy pre-compiled WRF

executables, which substantially lowers the barrier to entry as an arbitrary num-

ber of complexities can arise when compiling WRF on a different system. WRF’s

workflow is also quite constrained especially when interacting with an HPC
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Table 4.9: WRF Cumulus Parameterization Options

Scheme Name Namelist Option

Kain-Fritsch 1
BJM 2
Grell-Freitas 3
GFS SAS 4
Grell-3D 5
TiedTKE 6
Zhang-McFarlane 7
Modified Kain-Fritsch 10
Multi Kain-Fritsch 11
New GFS SAS 14
New TiedTKE 16
Grell-Devenyi 93
HWRF GFS SAS 84
Old Kain-Fritsch 99

scheduler. For example, the WRF preprocessing system (WPS) is generally com-

piled in serial and only needs to be run once for each domain; whereas both

the Real and WRF executables are compiled in parallel and must be run each

time any of the namelist options change. In this study, we submitted multiple

Real and WRF parallel jobs to the scheduler at the same time from different

threads using the python concurrent.futures module. However, as some WRF

helper scripts (e.g. link_grib.csh) presume that users will run WRF from the

current directory, modifications were necessary. All python code and modified

WRF scripts are available in our public OptWRF GitHub repository [64].
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4.6.5 Day Length Model

Equation 4.2, reproduced from Forsythe et al. [18], provides a method for esti-

mating day length based upon latitude and day of the year.

D = 24 −
24
π

arccos
sin pπ

180 + sin Lπ
180 sin ϕ

cos Lπ
180 cos ϕ

, (4.2)

where,

θ = 0.2163108 + 2 arctan (0.9671396 tan 0.00860 × (J − 186)),

and,

ϕ = arcsin (0.39795 cos θ).

D is the day length (inclusive of twilight), L is latitude, J is Julian date, and p is

the daylight coefficient, in degrees. We retained the value of 0.8333 for p from

Forsythe et al., and both θ and ϕ are in radians.

4.6.6 Error and Fitness Scatter Plots

Below is a panel of scatter plots showing GHI error, WPD error, and fitness

values for each of the almost 2000 OptWRF simulation which comprises our

database. Note the seasonal nature of the GHI error values – higher in the sum-

mer – but that this seasonality is removed by the day length model. A difference

in fitness values still appears with seasonality but this can be at least partially

attributed to the larger variability in wind during the winter and spring.

4.6.7 Shapley Value Plots for Microphysics, Land Surface, and

Cumulus Schemes
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Figure 4.7: Scatter plots showing GHI error, WPD error, and fitness values on
the top, middle, and bottom, respectively. Each individual point corresponds to
a single (of more than 2000) distinct WRF simulation. GHI error clearly shows a
seasonal trend attributable to the changing number of daylight hours through-
out the year. This provides a visual justification for the correction of this error
metric by daylight fraction. WPD error shows a greater spread during the non-
Summer months, but no other obvious seasonal patterns exist. Notice that WPD
error values are approximately four orders of magnitude higher than those for
GHI error warranting a correction factor. Finally, overarching trends in both the
GHI and WPD errors are represented in the fitness values.
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Figure 4.8: SHAP values explain the impact that each random forest model fea-
ture (WRF parameterization scheme) has upon model error. Microphysics pa-
rameterization schemes are listed along the left axis, and boxes are created from
all the WRF model runs. Orange bars correspond to WRF models where the
parameterization scheme was activated; whereas the blue bars correspond to
those where the scheme was deactivated. Negative SHAP values correspond
to those schemes that reduce model error (improving the forecast); whereas
positive SHAP values correspond to those schemes that increase model error.
Therefore, those schemes with orange bars centered furthest to the left produce
the best WRF forecasts.

138



Figure 4.9: SHAP values explain the impact that each random forest model fea-
ture (WRF parameterization scheme) has upon model error. Land surface pa-
rameterization schemes are listed along the left axis, and boxes are created from
all the WRF model runs. Orange bars correspond to WRF models where the
parameterization scheme was activated; whereas the blue bars correspond to
those where the scheme was deactivated. Negative SHAP values correspond
to those schemes that reduce model error (improving the forecast); whereas
positive SHAP values correspond to those schemes that increase model error.
Therefore, those schemes with orange bars centered furthest to the left produce
the best WRF forecasts.
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Figure 4.10: SHAP values explain the impact that each random forest model
feature (WRF parameterization scheme) has upon model error. Cumulus pa-
rameterization schemes are listed along the left axis, and boxes are created from
all the WRF model runs. Orange bars correspond to WRF models where the
parameterization scheme was activated; whereas the blue bars correspond to
those where the scheme was deactivated. Negative SHAP values correspond
to those schemes that reduce model error (improving the forecast); whereas
positive SHAP values correspond to those schemes that increase model error.
Therefore, those schemes with orange bars centered furthest to the left produce
the best WRF forecasts.
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CHAPTER 5

AN INTERNALLY CONSISTENT FRAMEWORK FOR DETERMINING

THE AIR QUALITY CO-BENEFITS OF WIND AND SOLAR

DEVELOPMENT

Abstract

Wind and solar enjoy broad support and therefore offer a politically feasible

way to combat climate change in the absence of policies that directly regulate

carbon emissions. However, wind and solar provide society with additional

benefits by displacing electricity generated by power plants that cause harm-

ful air pollution. These “co-benefits” can be quantified by linking a numerical

weather prediction tool, the Weather Research and Forecasting (WRF) model for

example, with a chemical transport model, such as the Community Multiscale

Air Quality (CMAQ) model. Historically, weather modeling has taken a back

seat in these studies. But in a future where our electricity comes largely from

wind and solar, the weather plays a central role in the reliability of all systems.

Therefore, we propose a framework for determining the air quality co-benefits

of future wind and solar development that relies on the same WRF downscaling

to produce estimates for wind and solar generation as well as provide meteoro-

logical inputs for CMAQ. As an example, we determine the changes in ozone

and PM2.5 concentration across the Northeastern United States associated with

expected near-term wind and solar development in New York State (NYS).
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5.1 Introduction

How about that weather? This question often escapes our lips when we find

ourselves searching for the correct words to fill that awkward space between

us and a stranger. But awkwardly enough, the same question captures our un-

certainty about the future smooth operation of post-industrial society. Govern-

ments across the world have pledged to wean their economies off fossil fuels,

and most have hopped on the electric train – that is, decarbonize the economy

by electrifying everything and generating clean electricity using renewable en-

ergy. In this future, the weather is promoted from a subject for small talk to

the lifeblood of society. This means we require tools built around the weather,

characterizing its uncertainty, and devising contingencies for when it behaves

unexpectedly.

Of course, a fundamental challenge that stymies decarbonization is that the

mechanisms by which economic growth is achieved – and the underlying struc-

ture of the economy – are at odds with efforts to mitigate climate change. This

conflict exists because unregulated markets cannot decarbonize society at a rate

necessary to avoid climate catastrophe [31]. Such markets fail to value negative

externalities associated with fossil-based energy production and consumption.

Existing research theorizes alternative economic structures (e.g. circular econ-

omy [15] and degrowth [20]), but societal reorganizations of this magnitude

tend to happen on generational time scales. To avoid the worst effects of cli-

mate change this century, we require a method for “correcting” markets, which

would improve the value proposition of renewable energy and put a price on

emissions and environmental degradation. In the United States, we have un-

fortunately remained unsuccessful at passing any national-scale legislation that
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would put a price on carbon, and nearly all progress in regulating emissions has

worked by expanding the Clean Air Act. Many of us remember all too well the

failures of the Waxman-Markey cap and trade bill in 2009 followed by the Clean

Power Plan in 2015. Therefore, an alternative way to aid the market in transi-

tioning the US to a clean economy is by valuing the co-benefits of renewable

energy (e.g., air quality, water quality, public health, etc.).

Here, we focus on the air quality improvements associated with future re-

newable energy development. The justification for this is three-fold. First, re-

newable energy development has been driven both by market forces as well as

government incentives, and while the levelized cost of energy for wind and so-

lar often beats that of conventional resources, these zero marginal cost resources

tend to cannibalize their own profits as more of them appear within the same

electrical system. Second, the Clean Air Act is arguably the most successful

piece of environmental legislation of all time in the US and can be utilized to

further climate goals given the current state of congressional gridlock. Finally,

the supply of renewable energy and air quality both depend intimately on the

weather, so a framework that investigates them together offers greater internal

consistency.

Existing literature has sought to quantify the air quality benefits associated

with an array of climate and clean energy scenarios. A substantial number of

studies tackle this problem using purely data-driven methods including spatial

autocorrelation [35], quantile regression [21], and the Environmental Kuznets

Curve (EKC) [5]. While these methods offer computationally efficient methods

for teasing out the relationship between air pollution and renewable energy,

they do not attempt to capture the physics driving air pollution, and therefore,
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cannot elucidate changes in air pollution patterns that may result from a future

policy action. Such studies must employ a chemical transport model (CTM) and

devise a methodology for estimating expected emissions changes under a given

policy. A recent review by Gallagher and Holloway remarks on the sparsity

of studies occupying this interdisciplinary space and highlights the disconnect

between research focusing on energy and climate as opposed to air quality and

health [13].

Still, over the past decade, several multidisciplinary studies have quantified

emissions changes based on an existing inventory and used a CTM to determine

the commensurate change in pollutant concentrations over a region or country.

Three main methods exist to develop a new emissions inventory for a sector of

interest. The first simply scales an existing emissions inventory by making as-

sumptions about the emissions response to a given action. For example, Gam-

marra et al. use published emissions factors and projected changes in the Span-

ish energy system coupled to the CHIMERE model to investigate the air quality

benefit of increased electric vehicle (EV) use and biofuel blending [14]. Also,

Peng et al. investigated the benefit of sending electricity generated with a mix of

coal and renewables vs. coal only via proposed transmission lines in China us-

ing WRF-CHEM [27]. The second approach utilizes an energy-economy model

to forecast changes in the generation mix and corresponding emissions over

the long term. In this category, Plachinski et al. study increased efficiency and

renewable energy in a 2024 policy scenario for Wisconsin using the MyPower

electricity sector model [28]. MyPower produces annual load duration curves

for each power plant in Wisconsin that were used to estimate emissions changes

before CMAQ provided air quality concentration changes across the entire great

lakes region in response to Wisconsin’s policy. Schmid et al. used the TIMES
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PanEU model to predict changes in the energy mix and emissions across the

European Union, but here, a reduced-form air quality model, EcoSense, pro-

vided external pollutant cost factors for a subsequent run of TIMES PanEU [30].

Similar studies have been conducted using different region-specific modeling

frameworks in both the US [10] and Australia [24]. Pan et al. considered several

combinations of automation, electrification, and ride-sharing in the US trans-

portation sector using the IEA’s Mobility Model (MoMo). MoMo outputs were

used to adjust the 2011 EPA national emissions inventory, which was then fed

into CMAQ [26]. Finally, Abel et al. looked at the co-benefits of energy efficiency

using EPA’s AVERT tool [4].

However, energy-economy models usually include only crude representa-

tions of the power system, which seek to balance the total electricity supply and

demand across a large region for a set of representative days. This approach

does not take into account existing transmission constraints or fully character-

ize the availability of renewable energy. Therefore, the third method addresses

these shortcomings by using an economic dispatch model to inform changes

in power plant emissions. Looking to determine the impact that plug-in EVs

and additional wind energy development would have on air quality in South-

ern California, Razeghi et al. coupled the Spatially and Temporally Resolved

Energy and Environment Tool (STREET) to the University of California Irvine –

California Institute of Technology (UCI-CIT) atmospheric chemistry and trans-

port model [29]. Interestingly enough, they found that, while EVs will generally

benefit urban air quality, vehicle charging profiles have little impact on air qual-

ity. Others have used commercial models PROSYM from ABB and GridView

from Hitachi to estimate emissions changes associated with renewable energy

development or energy-efficiency [6, 3].
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While three studies exist that successfully couple dispatch models, one fo-

cuses on a relatively small region in California, and the remaining two rely on

proprietary representations of the power system. Analyses focusing on small re-

gions tend to ignore the broader regional air quality impacts of local policies as

pointed out by Gallagher [13]. Proprietary models not only increase the barrier

to entry for groups with limited resources, but modeling assumptions are often

difficult if not impossible to track down thereby limiting reproducibility. In this

work, we develop a framework, which we refer to as OneMet, for assessing the

air-quality co-benefits of renewable energy development and climate policy in

New York State (NYS) that centers around WRF as a versatile tool to predict re-

newable energy supply and provide inputs to CMAQ. We build this framework

using only open-source models and data resources – including a representation

of the NYS power system created in-house and a machine learning-based elec-

tric generating unit (EGU) emission estimation tool. Recognizing that air quality

is an inherently regional issue, we adopt the CMAQ domain used by the Ozone

Transport Commission (OTC). In this way, we supplement the existing method-

ology that Northeastern states already use to devise their implementation plans.

The remainder of this chapter is organized as follows Section 5.2 explains the

details of OneMet, Section 5.3 presents results covering a 8-day high electricity

demand period in 2016, Section 5.4 engages in a discussion on the performance

and limitations of OneMet as well as opportunities for extending the framework

to other policies and regions. Finally, Section 5.5 summarizes our conclusions.
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5.2 Method

Challenges abound in determining the air quality co-benefits associated with

variable renewable energy development. Numerous physical processes and

man-made systems overlap adding layers of complexity. We designed OneMet

(depicted in Figure 5.1) to manage these complicated components and deliver

the air quality benefits at a spatial resolution of 4 km across the Ozone Transport

Commission’s high-resolution domain, which focuses on the Northeast Corri-

dor. The framework consists of five major steps 1) determining future wind

and solar development patterns, 2) deriving wind and solar generation profiles

using WRF, 3) dispatching power plants, 4) estimating power plant emissions

based on dispatch patterns, and 5) calculating air pollutant concentrations using

CMAQ. In the subsections that follow, we will expand upon each of these com-

ponents in greater detail while focusing on renewable energy targets in NYS to

demonstrate the advantages of OneMet.

5.2.1 Future Wind and Solar Development

Exactly where and when new wind and solar facilities come online depends on a

combination of the value proposition for developers, federal to local incentives,

permitting processes, and public perceptions surrounding individual projects.

We have discussed the complexity of these issues in the context of utility-scale

solar siting in previous work [33, 32], and we adopt the same methodology for

determining the locations of individual solar facilities presented in Sward et al.

[33]. Briefly, we filter land from a NYS tax dataset based on class, size, slope, and

distance to a distribution-level substation, rank the remaining sites by popula-
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Figure 5.1: Flow chart depicting the main components of the OneMet frame-
work. Blue blocks indicate third-party open-source tools, green blocks indicate
internally developed tools, and gray blocks indicate files that are transferred
among the various programs. Note that the update emissions block consists of
three steps that are shown in the larger dotted rectangle on the left.

tion density and resource quality, and select sites up to a certain policy-relevant

level. For this study, we chose a relatively modest solar installation number

of 2700 MW to reflect existing solar policy goals in NYS while accounting for

projects that are already in the development pipeline. This step simply provides

locations and nameplate capacities of future solar developments and, therefore,

can easily be swapped for an alternative methodology in a different region.

Given that offshore wind permitting and development timelines span sev-

eral years, we chose to model four lease areas for which the New York State
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Energy Research and Development Authority (NYSERDA) has already signed

contracts shown in Figure 5.2. Empire Wind 1 and Sunrise Wind won the 2018

solicitations, which we model with nameplate capacities of 816 MW and 880

MW, respectively. Empire Wind 2 and Beacon Wind won NYSERDA’s 2020 so-

licitations, which we model with nameplate capacities of 1264 MW and 1232

MW, respectively. In total, this sums to 4192 MW of offshore wind – almost half

of NYS’s 9 GW target for 2035. These nameplate capacities were obtained by

placing 8 MW turbines up to the number of turbines that most closely matches

the nameplate capacity listed in the corresponding NYSERDA solicitation. In

determining exact turbine locations, we assumed that the turbines were sep-

arated by five turbine diameters on both major axes. The remaining offshore

lease area shown in Figure 5.2, South Fork Wind Farm, is much smaller than the

others, so we chose to omit this site. Like that used to determine future solar

facilities, the method used to determine individual turbine locations is flexible.

5.2.2 WRF for Wind, Solar, and CMAQ

Meteorological modeling is the common thread connecting variable renewable

energy and air quality researchers. However, while energy researchers have

adopted ever more sophisticated methods for improving forecasts (e.g., ensem-

ble forecasting [22], statistical post-processing [34], etc.), meteorological model-

ing remains on the back burner in most air quality studies. This must change

particularly for those studies seeking to quantify the air quality co-benefits asso-

ciated with renewable energy. In such studies, common base-year meteorology

oversimplifies the compounding weather-dependent effects of renewable en-

ergy supply on air quality. Therefore, we propose using the same WRF model
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Figure 5.2: Map showing the locations of the four lease areas under study, Em-
pire Wind 1, 2, Beacon Wind, and Sunrise Wind, off the coast of New York State.
Map reproduced from NYSERDA [2].

output to estimate renewable energy generation and run CMAQ.

Setting up and benchmarking WRF for an arbitrary application can be a

daunting task, and in Chapter 4, we propose a method for optimizing the WRF

model for any application in any region, which we referred to as OptWRF. How-

ever, the computational burden of OptWRF is substantial for nested domains,

so we adopted the best-performing member from the multiphysics WRF en-

semble that we investigated in Chapter 3 – the setup proposed by Optis et al.

[25]. We feel justified in this choice not only because this setup performed well

when benchmarked against NYSERDA’s two offshore wind lidar buoys mak-

ing it the obvious singular choice for investigating wind energy in the North-

eastern United States, but because its ability to predict offshore wind speeds at

multiple vertical levels should translate to a solid prediction of the synoptic-
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scale winds – i.e., the same winds that drive interstate pollutant transport. The

Optis setup uses Thompson microphysics, RRTMG longwave radiation, God-

dard shortwave radiation, the Noah land surface model, the MYNN2 planetary

boundary layer scheme, no cumulus scheme, and the revised MM5 surface layer

scheme. As shown in the diagram (Figure 5.1), we leverage the OptWRF code

base to run WRF, which is available on GitHub at jeffreysward/met4ene.

Figure 5.3: Map showing the two WRF domains centered over the Northeastern
US. The coarse 12 km domain covers the entire US but is later windowed by
MCIP. The fine 4 km domain covers only the OTC region.

Our WRF domain matches the one used by OTC states to conduct air pollu-

tant analyses, shown in Figure 5.3. This domain consists of two two-way nested

domains with spatial resolutions of 12 km and 4 km, respectively, uses a Lam-

bert Conformal map projection, and contains 36 vertical layers up to a pressure

level of 5000 hPa. Additional details are given in the WRF namelist included in

Section 5.6.1. We also edited the WRF Registry to have WRF write the surface

downward direct normal irradiance and diffuse irradiance to the output file.
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We ran WRF for 11 days starting on August 5, 2016, 00:00 (UTC), and used the

ERA5 reanalysis [18] for initial and boundary conditions. In other words, we

dynamically downscaled ERA5 over the Northeastern US.

Upon completion, WRF outputs were processed in two separate ways – one

produced wind and solar generation profiles – the left pathway in Figure 5.1 –

while the other provided CMAQ-ready meteorology files – the right pathway in

Figure 5.1. Hourly wind generation profiles for each turbine were created using

a published power curve for an 8 MW reference wind turbine [9] and WRF hor-

izontal wind speeds interpolated to 100m. Since we do not account for turbine-

turbine interactions, this represents an upper limit for wind power production.

However, this WRF setup is compatible with the wind farm parameterization

[12], which can offer improved wind power profiles. Hourly solar generation

profiles are created with the help of a customized version of PVLib-Python

[19] that can ingest WRF meteorological data. We use the default PVWatts

photovoltaic module and inverter parameters, the Sandia Array Performance

Model with open rack glass-polymer configuration, and assume modules have

a fixed tilt equal to the site’s latitude. We chose the default PVWatts represen-

tations here for clarity and consistency, but PVLib-Python includes numerous

ways to represent individual solar facilities more realistically if such informa-

tion is available. Our code allowing users to generate wind and solar profiles

using WRF output data is available in the jeffreysward/wrf2power repos-

itory on GitHub.

CMAQ-ready meteorological inputs were created using the Meteorology-

Chemistry Interface Processor (MCIP) version 5.3.3. We processed only subsets

of the WRF domain setting X0 = 141, Y0 = 15, NCOLS = 273, and NROWS = 246
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for the 12 km domain, and X0 = 87, Y0 = 9, NCOLS = 126, and NROWS = 156

for the 4 km domain.

5.2.3 Generator Unit Commitment and Economic Dispatch

Earlier, we alluded to the challenge associated with estimating future power

plant operational profiles. To accomplish this realistically requires information

about the power system’s topology. However, a majority of US grid infrastruc-

ture is classified as critical infrastructure information, and even if it existed in

the public domain, the grid is too complex to model exhaustively for planning

purposes. Therefore, reduced form models are necessary to make the problem

tractable. Some such models appear in the literature (e.g., Buonocore et al. [6]

and Abel et al. [3]). Unfortunately, both of these studies included industrial

partners with proprietary grid modeling software meaning that the underlying

topology and model assumptions remain hidden from the research community.

To combat this challenge, Liu et al. recently published an open-source repre-

sentation of the NYS electric grid [23], which we adopt here. Briefly, this repre-

sentation is a WARD-type equivalent of the Northeastern Power Coordinating

Council (NPCC) 140-bus system with a reduced number of busses outside of

NYS. To calculate operational profiles for each generator in NYS, we ran a DC-

Optimal Power Flow (OPF) using MATPOWER [36] using this network topol-

ogy. We assumed that both Empire Wind facilities would inject power into New

York Independent System Operator (NYISO) load zone J, whereas Sunrise and

Beacon wind would inject power into NYISO zone K. Individual solar facilities

were added to the system at the bus nearest to their geographic locations. Both
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wind and solar are modeled with zero marginal cost meaning that they rank at

the top of the dispatch stack. Sample dispatch patterns for two units are shown

in Figure 5.4. As evinced from these plots, DC-OPF was run independently

hour-to-hour. Future work will incorporate generator ramping constraints by

running a multiperiod DC-OPF.

Figure 5.4: Generator profiles under the base case (solid purple lines) and with
renewables case (dashed orange lines). The top plot shows the Allegany Gen-
eration Station, which acts as a baseload/load following resource remaining on
most of the time, but it turns off more often in the renewables case. The bottom
plot shows Vernon Blvd Unit 2, which acts more like a peaking unit but turns
on less frequently during the renewables case.
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5.2.4 Generator Emissions Estimation

While studies often directly scale emissions using new generation profiles, we

take a more nuanced approach that seeks to capture the non-linear relation-

ship between load and EGU emissions. Namely, EGU emissions deviate from

expected values during start-up, ramping, and part-load operation [16]. There-

fore, we apply a reduced model for predicting NOx, SO2, and CO2 emission

rates developed by Gu et al. [17]. This approach makes use of EPA’s continu-

ous emissions monitoring systems (CEMS) data reported by each EGU greater

than 25 MW to build separate machine learning models for each pollutant. The

model for NOx directly estimates the emission rate, but the models for SO2 and

CO2 predict the heat input and use equations from Appendices D and G to Part

75 of Title 40 of the Code of Federal Regulations to calculate the emission rates

of SO2 and CO2, respectively. Note that this approach for SO2 is only appropri-

ate for gas-fired units and therefore suffices in NYS where no EGUs burn coal.

With this step, we have concluded the portion of the method depicted within

the dashed black box in the diagram shown in Figure 5.1.

From here, preparing CMAQ-ready emissions files remains a multi-step pro-

cess but is aided by the Eastern Regional Technical Advisory Committee (ER-

TAC) EGU Tool [11]. This tool offers an alternative to ICF’s Integrated Plan-

ning Model (IPM) for EGU emissions projection and formatting. Here we sim-

ply use it to fill values for the remaining criteria pollutants and for data for-

matting. Explicitly, we run the ERTAC EGU Tool preprocessing step, which

produces a calc_hourly_base.csv file, update this file with emissions cal-

culated from the machine learning model discussed earlier, perform a quality

assurance check that no negative emissions values appear, and run the remain-
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ing ERTAC EGU Tool steps. We used the CONUS 16.0 inputs for the ERTAC

EGU Tool, which can be obtained from the Mid-Atlantic Regional Air Manage-

ment Association (MARAMA). ERTAC EGU outputs were then processed using

version 4.7 of the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling

System [7]. We note two important caveats with the implementation of SMOKE.

First, we reverted back one version from the current release of SMOKE (version

4.8) due to numerous compile time and runtime errors that we believe stemmed

from the GNU compilers (version 9.3.1) running alongside older hardware and

software on our system. Second, courtesy of NYDEC, we corrected a source-

code error in SMOKE that resulted in a one hour time-shift of EGU emissions

inventories prepared using the ERTAC EGU Tool. Finally, we have reached the

final blue block, CMAQ, shown in Figure 5.1.

5.2.5 The Community Multiscale Air Quality Model

We run two simulations using version 5.3.3 of the Community Multiscale Air

Quality (CMAQ) Model [8] with the same meteorological inputs. The first is

a base case with EGU emissions produced using a default run of the ERTAC

EGU Tool and the second captures the emissions changes associated with the

additional wind and solar installations. The remaining emissions needed to

run CMAQ were produced from version 1 of the 2016 EPA emissions modeling

platform and were prepared by NYDEC. CMAQ is run for both the 12 km and 4

km domains with 35 layers in the vertical direction for eight days from August

6 - 13, 2016. We have wrapped much of the process shown in Figure 5.1 into the

jeffreysward/cmaqpy repository available on GitHub.
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5.3 Results

From the CTM results, we can determine the air quality co-benefits across the

Northeastern US associated with NYS renewable energy development goals.

For this study, we modeled changes in the NOx and SO2 emissions for all major

power plants in NYS. Maps showing the percent difference in the emissions of

these pollutants are given in Figure 5.5a and 5.5b, respectively. Since CMAQ cal-

culates point source plume rise within the model (“in-line”), the inlineto2d

CMAQ utility is required to visualize these emissions on the modeling grid.

Grid cells colored blue indicate a reduction in point source emissions and vice

versa for red cells. Gray cells have the same emissions under both scenarios,

and white cells contain no point source emissions. We only modeled changes

for generators in NYS, so we expect all grid cells outside NYS to remain gray or

white.

Notice that the largest emissions changes occur near New York City (NYC)

and on Long Island. The reason for this is two-fold. First, the majority of people

in NYS reside in or around NYC, so a numerous fast-response power gener-

ation resources are located there. Also, this is where the new offshore wind

resources will interconnect with the grid displacing emissions from fossil gen-

erators. Emissions change in both directions (increases and decreases) with re-

spect to the base scenario. A modest decrease in NOx emissions can be seen at

most grid points in Figure 5.5a, but two grid cells (i.e., one in NYC and one in

Northern NYS) show substantial increases. Similarly, most point sources expe-

rience a decrease in average SO2 emissions in Figure 5.5b, but two grid points

(e.g., one in lower Hudson Valley and one in Northern NYS) show substantial

increases.
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(a)

(b)

Figure 5.5: The upper panel shows the mean percent difference in NOx emis-
sions from the base cast to the renewables case on August 6th, 2016 for the
CMAQ-ready in-line point source emissions files prepared by SMOKE. Red cells
indicate an increase in emissions, blue cells indicate a decrease in emissions, and
gray cells indicate no change in emissions. The lower panel shows the mean
percent difference in SO2 emissions for the same day. Note that we window the
domain over NYS as point source emissions should only change here.

While CMAQ provides concentration fields for myriad pollutants, we

present results for PM2.5 (Figure 5.6) and O3 (Figure 5.8). The coarse, 12 km,

domain extends far beyond our focus area of New York State. This is partially

because pollution does not recognize state lines, but rather travels wherever the

weather dictates, and partially to avoid placing a domain boundary over steep

158



geographical features where large vertical gradients can cause nonphysical phe-

nomena to appear in the results. The highest PM2.5 concentrations in Figure 5.6a

occur in the South Central US, where extractive industry and biomass burning

can cause high particulate concentrations. However, heavy rain fell across parts

of Southeastern Louisiana from August 11 - 13, dropping up to 30 inches of

rain. We see this manifest as reduced PM2.5 concentrations along the Louisiana

Gulf Coast up toward cancer alley where numerous refineries often contribute

to poor air quality. Concentrations surrounding NYS are as expected with lower

concentrations occurring over the Adirondack Mountains and higher concen-

trations downwind of industry-heavy Toronto, Canada. Looking at the differ-

ence in PM2.5 concentrations shown in Figure 5.6b, the largest reductions occur

downwind of Watertown, NY with modest reductions visible across much of

NYS and New England. This indicates that the additional renewable energy

development displaced energy from gas and oil units during this period. How-

ever, we also note that the background concentration of PM2.5 is quite low across

most of NYS, so the corresponding changes in the absolute pollutant concentra-

tions are small.

Zooming in, the 4 km domain covers much of the Northeast Corridor. PM2.5

concentrations have fallen here over the past couple of decades as the region

has worked to phase out coal and heavier fuel oils. The effect of these trends is

visible in the mean PM2.5 concentration plot shown in Figure 5.7a, where most

concentrations fall within the 2 - 6 µg/m−3 range with only isolated points reach-

ing 10 µg/m−3. From Figure 5.7b, we observe that the greatest improvements in

this area occur downwind of the lower Hudson Valley and Long Island. Some

modest increases are also visible highlighting the importance of quantifying the

air quality impacts associated with complicated changes in power plant dis-
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(a)

(b)

Figure 5.6: The upper panel depicts the mean PM2.5 concentration over the full
12 km domain for the entire CMAQ model run. Darker brown colors correspond
to higher pollutant concentrations. The lower panel shows the mean absolute
difference in PM2.5 concentrations for the full model run. Blue corresponds to a
decrease in concentration whereas red corresponds to an increase.

patch patterns. In other words, renewable energy development might not mean

better air for everyone at all times – even if it improves air quality on average.

The relationships are convoluted.

The highest ozone values occur over the Northern Great Plains (as seen in

Figure 5.8a) and can be partially attributed to NOx that comes with heavy sum-
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(a)

(b)

Figure 5.7: The upper panel depicts the mean PM2.5 concentration over the 4
km domain for the entire CMAQ model run. Darker brown colors correspond
to higher pollutant concentrations. The lower panel shows the mean absolute
difference in PM2.5 concentrations for the full model run. Blue corresponds to a
decrease in concentration whereas red corresponds to an increase.

mer thunderstorm activity. Higher values also occur over the Great Lakes and

in industry or metropolitan adjacent coastal regions where precursors are ad-
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vected offshore into favorable conditions for ozone formation. Changes be-

tween the renewable development scenario and the base case show more varia-

tion for NOx than PM2.5, which follows from the complex relationship between

NOx emissions, volatile organic compound (VOC) emissions, and O3 pollution.

Often during the summer in the Northeast where natural vegetation sources

contribute to VOC concentrations, a decrease in NOx emissions causes a de-

crease in O3 concentrations. This appears to be the case downwind of Water-

town, NY shown in Figure 5.8b.

On the other hand, lower Hudson Valley, NYC, and Long Island all see a sub-

stantial increase in O3 concentrations. There are multiple possible explanations.

Less vegetation and high vehicle NOx emissions could mean that O3 formation

is VOC-limited in these areas. In such a case, reductions in NOx emissions can

cause an increase in O3 concentrations. This phenomenon is often called the

“weekend effect” as it is most often observed on weekends when vehicle NOx

emissions subside. But, it is also possible that the absolute NOx emissions in

some grid cells are driving these changes but are poorly represented in Figure

5.5a because it compares only relative differences at each grid cell.

Results from the higher resolution, 4 km, domain help to elucidate these pat-

terns. Notice that the increase in O3 concentrations in the lower Hudson Valley

shown in Figure 5.9b matches the location with the lowest absolute O3 con-

centration in the domain shown in Figure 5.9a. In other words, the renewable

energy development scenario has higher ozone concentrations in this area, but

since the area has lower baseline concentrations, the increase might not pose

any additional issues for air quality compliance. We also note that this episode

coincides with the summer peak electrical demand day in NYS, which occurred
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(a)

(b)

Figure 5.8: The upper panel depicts the mean O3 concentration over the full
12 km domain for the entire CMAQ model run spanning August 6 - 13, 2016.
Brighter yellow colors correspond to higher pollutant concentrations. The lower
panel shows the mean absolute difference in O3 concentrations for the full
model run. Blue corresponds to a decrease in concentration whereas red cor-
responds to an increase.

on August 11, 2016 [1]. Summer peaks in NYS are driven primarily by cooling

load – meaning that NYS experienced unusually hot and humid conditions dur-

ing this period. Both renewable energy performance and air quality would have

been affected by these conditions to some degree, so future work should char-

acterize impacts over several ozone seasons before reporting the full air quality

163



(a)

(b)

Figure 5.9: The upper panel depicts the mean O3 concentration over the 4 km
domain for the entire CMAQ model run spanning August 6 - 13, 2016. Brighter
yellow colors correspond to higher pollutant concentrations. The lower panel
shows the mean absolute difference in O3 concentrations for the full model run.
Blue corresponds to a decrease in concentration whereas red corresponds to an
increase.
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co-benefits of a renewable energy development scenario.

5.4 Discussion

While we have taken steps to explain and simplify methodological steps in the

OneMet framework, it remains a complex cross-disciplinary modeling setup.

Several components comprising OneMet are flexible enough to be directly

swapped with a similar method of a researcher’s choosing. Here, we discuss

the broader applicability of OneMet along with any caveats.

5.4.1 Power Plant Dispatch and Emissions Modeling

Of course, the exact method by which emission changes are modeled will de-

cide the resultant the air quality co-benefits produced by the framework. We

chose to estimate air quality changes using a publicly available reduced-form

machine learning model built using EPA CAMD data and an open-source repre-

sentation of the NYS power system. Such a combination balances accuracy with

transparency – two ingredients essential in tools aiming to quicken the pace of

electricity sector decarbonization. While several private-sector companies have

created impressive dispatch models, none of these companies can hope to con-

tribute to electricity sector planning across every corner of the system. There-

fore, planners should exercise caution in using proprietary models, and better

yet, incentives for developing open-source energy planning data tools and re-

sources should be offered at the federal, state, and local levels. During the win-

ter storm in Texas in 2021, we witnessed again that existing markets and regu-
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lations cannot adequately incentivize power system reliability in the face of low

probability events. As far back as the California Electricity Crisis, lower than

expected renewable resource availability played a role. With extreme weather

and the number of inverter-based resources connecting to the grid increasing,

we cannot even afford subpar forecasts – let alone another Enron. The best an-

tidote to this remains clear modeling assumptions backed up by a reliable data

network.

Two important modifications would improve the accuracy of the dispatch

and emissions models for use in any arbitrary power system. First, the dispatch

model employed here considers each time period independently. Therefore, no

interhourly information is taken into account meaning that we cannot capture

generator ramping capabilities and the emissions impacts associated with dif-

ferent ramping patterns. Future work lies in expanding the economic dispatch

model to a multi-period multi-area paradigm. Moving on to emissions esti-

mates, recall that we predicted SO2 by first estimating a generator’s heat input

before calculating SO2 based on the equation provided in federal regulations.

However, this equation for the SO2 emission rate from Appendix D of Part 75

to 40 CFR applies only to gas-fired units. This calculation is appropriate in NYS

where all coal units have been retired, but a separate model that directly esti-

mates the SO2 emission rate would be necessary for systems where coal units

still operate regularly. As many states are interested in phasing out coal in the

coming years, characterizing the amount of coal-fired electricity that may be

displaced by renewables would almost certainly produce high air-quality co-

benefits of renewables when compared with the more complicated benefits as-

sociated with changes in ozone precursors.
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5.4.2 WRF Meteorology for Air Quality

Here, we adopted a WRF setup from a successful offshore wind simulation

study. But, different WRF setups perform differently in different regions and

for different applications as we discuss in detail in Chapter 4. Given enough

computational resources, we could devise a fitness function considering WRF

wind and solar forecast errors as well CMAQ air quality concentration errors

and find a better setup for WRF. A simpler first step could add observational

nudging to the WRF modeling process and determine which initial and bound-

ary condition datasets result in the best performance. Finally, as we touch on

in Chapter 3, the present and future of forecasting are probabilistic. As such,

the OneMet framework should eventually evolve to ingest probabilistic wind

and solar profiles and produce probabilistic air quality concentrations. Each of

these additions adds a substantial computational burden, so sensitivity analy-

ses should explore if additional complexity results in a commensurate increase

in understanding.

5.5 Conclusion

We developed and demonstrated an open-source framework – which we call

OneMet – for quantifying the air quality co-benefits associated with wind and

solar development. Related studies within the existing literature conduct sepa-

rate analyses to determine renewable energy generation profiles and pollutant

concentrations over the same region. But, both depend primarily on under-

lying meteorological conditions. Therefore, our framework derives wind and

solar estimates from the same WRF output that drives CMAQ’s chemical trans-
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port model. Such internal consistency reduces potential sources of bias thereby

making it simpler to characterize and correct those that remain.

To demonstrate OneMet’s performance, we quantified co-benefits associated

with NYS’s near-term renewable energy development policy goals. Specifically,

we modeled an additional 4192 MW of offshore wind and 2700 MW of solar

for 8 days in August 2016. We showed reductions in PM2.5 concentrations up

to 0.5% in parts of NYS with more modest improvements across New England.

Changes in O3 were mixed with modest decreases in some Upstate NYS regions,

but larger increases near 0.5% in the lower Hudson Valley, NYC, and Long Is-

land. We want to stress that these results represent an 8-day snapshot with un-

common meteorological conditions and that fully characterizing the co-benefits

of renewable energy will require a substantially longer simulation period. How-

ever, the main focus of this work was to present the integrated OneMet frame-

work, so we leave additional simulations for future study.

Several additions would improve the OneMet framework. Critically, future

work will expand the dispatch model to capture multi-period multi-area inter-

actions. This will elucidate necessary ramping requirements and their associ-

ated air quality implications. Also, it will make it possible to study the impact

of policy – or indeed a lack thereof – in neighboring electricity markets. Ad-

ditional work should also better characterize the uncertainty in air-quality co-

benefits. In other words, how much do WRF and CMAQ modeling assumptions

affect the overall result? Therefore, future work seeks to transform this frame-

work into one that can provide probabilistic pollutant concentrations informed

by probabilistic wind and solar forecasts.

Finally, we advocate for open-source renewable energy planning tools and
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data where modeling assumptions are exposed for discussion, verification, and

sensitivity analyses. Only with such an approach can we hope to collaborate

across sectors to achieve a zero-carbon power sector in the future.
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5.6 Supplemental Information

5.6.1 WRF Namelist Parameters

Constant WRF namelist parameters are provided in Table 5.1. Any parameters

not listed in that table were left at their WRFv4.0 default values.
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Table 5.1: Constant Namelist Options

interval_seconds 10800
history_interval 60, 60
time_step 45
max_dom 2
e_we 472, 226
e_sn 312, 253
e_vert 35, 35
num_metgrid_levels 38
num_metgrid_soil_levels 4
dx 12000, 4000
dy 12000, 4000
swint_opt 1
radt 15, 5
bldt 0, 0
cudt 0, 0
surface_input_source 1
num_soil_layers 4
num_land_cat 21
damp_opt 0
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CHAPTER 6

MAJOR CONTRIBUTIONS AND FUTURE WORK

Broadly speaking, in this thesis, I have taken two well-known community

models, assessed and customized them for renewable energy development in

the Northeastern United States, and used them in a novel framework for in-

vestigating the power system caveats and air quality benefits of evolving into a

decarbonized society. But with large modeling effort, perfect is the enemy of the

good. As such, this chapter aims to concisely describe my contributions from

the preceding chapters, revisit assumptions, and conceptualize future paths for

the OneMet framework.

In Chapter 2, I conducted a spatial analysis to aid in strategic long-term plan-

ning for utility-scale solar development. Through this analysis, I examined land

in New York State on a parcel by parcel basis to determine whether it might

realistically host a solar farm. From this study, it was clear that the most attrac-

tive land from a solar developer’s standpoint was located Upstate. Indeed sub-

sequent work by Venktesh V. Katkar showed that farmland accounted for the

lion’s share of land where solar would be the easiest to develop. Considering

three different scenarios describing PV build-out across the state, I determined

that these new resources could substantially offset peak demand during sum-

mer high electricity demand days. PV offers less value during the winter as

the sun is down during the winter peak, and frequent cloudiness substantially

reduces capacity factors. However, on sunny winter days, which have lower

midday demand than the summer, PV can substantially increase system-wide

flexibility requirements. As such, a mechanism to shift load to the middle of

the day during the winter or store this infrequent winter sun would mitigate
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operational challenges associated with utility scale-PV development.

Of course, as much as researchers and planners attempt to map out ex-

pected future development, energy systems have and always been part of the

fabric of local communities. Historically, these groups have focused primarily

on salient technical, economic, or legal issues while blatantly overlooking the

inhabitants of these communities. This omission has led to poor support or out-

right opposition stalling many otherwise viable solar projects. Therefore, a great

deal of future work should develop guidelines for a more community-centric

approach to spatial modeling algorithms. Furthermore, traditional "decide-

announce-defend" development models inspire opposition, particularly within

well-resourced communities. As such, more interactive and responsive siting

processes should be devised along with associated metrics for tracking this goal.

While utility-scale solar farms may not pose the existential health threats that

fossil fuel plants or waste incinerators do, this should not suggest that their

siting is without equity implications. Therefore, future work should continue

to question the environmental justice implications associated with all energy

development regardless of how clean and green – actually or ostensibly – the

development claims to be.

In Chapter 3, I assessed the performance of multiple physical setups of the

Weather Research and Forecasting (WRF) model across different seasons using

data from LiDAR buoys at multiple locations offshore for the first time. Perfor-

mance varies substantially not only among the different setups but between the

two buoys for the same setup. Such spatial nonuniformity in biases calls into

question the accuracy of offshore wind probabilistic forecasts produced using

common ensemble postprocessing techniques as it remains impossible to truly
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characterize the uncertainty in offshore wind forecasts.

Given the Biden Administration’s goal to develop 30 GW of offshore wind

by 2030, future work must develop tools to characterize this resource – and its

associated variability – in greater detail. Local ensemble forecasts could inform

ISOs, DSOs, and smart cities about likely offshore wind generation levels, which

offers the closest thing we have to baseload power in the variable renewable

energy world. Ensemble postprocessing techniques would improve these pre-

dictions but require substantial observational data. With enough wind power

scattered along the east coast to rival New York State’s summer peak load, a

network of instruments – ideally LiDAR – should supply data in near real-time.

While the private sector will, be instrumental in carrying out the physical con-

struction of these wind farms, the data cannot remain locked within the private

sector. These data must flow into government planning models and propri-

etary forecaster codes alike. Only with such open data practices can we hope

to supply the necessary tools for operating the power system under a majority

variable renewables paradigm.

In Chapter 4, I presented a methodology for optimizing the WRF model

setup in any region for any application using a genetic algorithm. I demon-

strate this approach, which I called OptWRF, for wind and solar resources in

the Northeastern U.S. As computer resources become cheaper and more readily

available, this method could be applied by governments or non-profit organi-

zations who want to conduct wind and solar resource assessments or produce

their own operational forecasts. Today, such a task requires iterations of ardu-

ous WRF model tuning.

Numerous improvements could make OptWRF more effective and acces-
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sible. While the code base is currently open-source a substantial amount of

additional work would be required to make the code base easily portable to a

variety of systems. Improving the modularity would also make it easier to plug

and play with different WRF domains, boundary condition data sources, and

fitness functions. Further work could include optimization of a wider set of

parameters including parameters within each physics scheme. Through this, it

would be possible to characterize the sensitivity of the wind and solar estimates

to each of these wider parameters – something that we’ve already done for the

major parameterization options. Finally, additional effort could be spent mak-

ing OptWRF run more efficiently by changing the behavior or the structure of

the underlying genetic algorithm.

Finally, in Chapter 5, I construct an internally consistent framework for

quantifying the air quality co-benefits associated with specific wind and so-

lar development scenarios. This framework – dubbed OneMet – is designed

to help researchers assess which scenarios provide the greatest reduction in air

pollutant concentrations thereby building a more compelling case for additional

renewable energy development. Collaborative work on an open-source power

system representation for New York State by Liu et al. [2] and emissions mod-

eling by Gu et al. [1] represent critical components of OneMet. OneMet offers

internal consistency by deriving wind and solar generation profiles from the

same WRF downscaling that provides inputs to CMAQ. No other framework

determines the air quality co-benefits of renewable energy using such an inter-

nally consistent open-source method.

Several important changes could improve OneMet’s accuracy and impact.

First, improvements in both the dispatch model and the emissions model would
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provide better accuracy in estimating the emissions changes caused by new re-

newable energy developments. Notably, the dispatch model currently runs a

simple DC optimal power flow algorithm, which cannot capture hour-to-hour

dependencies including generator ramping constraints. Second, SMOKE and

CMAQ rely on a roundabout set of scripts, which could be more cleanly encap-

sulated within the existing CMAQPy python package that I created alongside this

project. Finally, a great deal of work – at least a dissertation or two – could focus

on adapting and expanding this framework to quantify the health co-benefits

of renewable energy development, particularly in disadvantaged communities.

The test simulation included in Chapter 5 indicates that renewable energy de-

velopment will not result in improved air quality in all locations at all times.

As with all development, trade-offs exist. Legislation in several states, New

York included, already requires a specific percentage of clean energy spend-

ing to realize benefits in disadvantaged communities, but the tools required to

characterize and achieve this currently do not exist. OneMet represents a solid

foundation.
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