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USING THE R( ) NOTATION FIR REDUCTIONS IN SUMS OF SQUARES 

WHEN FITTING LINEAR MODELS* 

S. R. Searle 
Biometrics Unit, Cornell University, Ithaca, New York 

Summary 

March, 1972 

R(~) is defined as the reduction in sum of squares due to fitting the linear 

model E(~) = ~· Thus R(~) = l'~(~'~)-~'~· The difference between the reduc­

tions due to fitting a model E(~) = ~l~l + ~2~2 and a sub-model E(~) = ~l~l is 

defined as 

This notation provides unequivocal description of sums of squares in the analysis 

of unbalanced (i.e., 'messy') data. Through a general result for the expected 

value of E[R(~2 /~1 )] it also provides estimators of variance components (Hender­

son's Method 3). It does, however, contain potential pitfalls; for example, in 

fitting the model for the 2-way crossed classification, 

it must be appreciated that 

E(y .. k) = 
l.J 

1. 

Reductions in ~ of squares 

~ + ai + ~- + Y·. ' J l.J 

Definitions 

The R( )-notation is defined by denoting as R(~) the reduction in sum of 

squares due to fitting the familiar linear model 

* Paper prepared for the session on "Messy Data Methodology" at the Spring Regional 
Meetings of ENAR of the Biometric Society, held in Ames, Iowa, April 26-28, 1972. 
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E(¥) == Xb (1) 

Thus, where bo is any solution to the normal equations 

X'Xb0 == t~ } (2) 

say 

(3) 

where (~'~)- is a generalized inverse of ~·~, meaning that it is any matrix satis-

(4) 

The right-hand side of (4) represents, in familiar manner, the sum of products 

of the elements of the solution vector ~0 multiplied by the corresponding elements 

of the right-hand sides ~'¥ of the normal equations. In this form R(~) is readily 

~ calculated. It can also be expressed as 

( 5) 

We take (4) and (5) as our formal definition of R(~). 

Suppose~ is partitioned into 2 vectors ~l and ~2 so that the model is 

( 6) 

The reduction in sum of squares for fitting this is denoted by 

~l~l ~l~2 
- I ~i] 

R (~l' ~2) = y' (X ~) r - -1 

~2~1 ~2~2 LX' -2 

(7) 
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this being the direct analogue of (5). In connection with (6) we might also 

consider the sub-model 

(8) 

for the fitting of which the reduction in sum of squares is 

( ) 1 ( 1 )- I 
R ~l = l ~l ~l~l ~1l • (9) 

1.2. Differences between reductions 

Differences between reductions in sums of squares are also acco~~odateJ by 

the notation. For example, the difference between R(~1,~2 ) of (7) and R(~1 ) of 

(9) is denoted R(~2 l~1 ): 

(10) 

In combination with the models(6) and (8) the symbol R(~2 l~1 ) indicates exactly 

what it means: the reduction in sum of squares due to fitting E(~) = ~l~l + ~~2 

over and above that due to fitting E(~) = ~1~1 • It can also be described more 

succinctly as the reduction in sum of squares due to fitting ~l and ~2 over and 

above fitting ~1; or as due to fitting ~2 after ~l' in this latter description 

taking care to understand that by "~2 after ~1" we mean ~~~l and ~2 over and 

above ~1 11 • But in this manner the meaning of the symbol R(~2 J~1 ) is clarion 

clear. 

The notation is quite general and can be used for regression models, for 

familiar linear models involving main effects and interactions, and for combina-

tions of the two, namely covariance models. 
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1.3. The 2-way classification 

Adapting the notation to the 2-way classification we use as the reduction 

in sum of squares 

(11) 

In this model i = 1,2,···,a, j = 1,2,···,b, k = 1,2,•••,n .. for n . . /= 0 for s 
~J ~J 

cells, and yij is the interaction effect between the ith level of the a-factor 

and the jth level of the f3-factor. The c;:, ~ andy in the symbol R(!l,c;:,~,y) 

represent the a-effects, the f3-effects and the y-effects respectively. 

Similar to (11) we have 

R(ll) for fitting E(yijk) = ll 

R(!l,~) for fitting E(yijk) = ll +a. 
~ 

R(ll,~) for fitting E(yijk) = 1J.+f3. 
J 

R(ll,<;:,~) for fitting E(y. 'k) = ll +a. + f3 .• 
~J ~ J 

(12) 

(13) 

(14) 

(15) 

All of these R's are calculated in accord with (5) by appropriate definition of 

X used there. We are concerned here not with methods of calculation but with 

the clarity of description provided by the R( ) notation. 

2. Partitioning and describing ~of squares 

Together with 

SSE = ~~~ - R(!l,c;:,~,y) , 

the reductions in sums of squares shown in (11)-(15) can, as is well known, be 
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used for partitioning the total sum of squares ~~~ in at least two different 

ways. 

Table 1 

R(~) = R(~) 

~(~/~) = R(~,~) - R(~) 

R(~!~,~) = R(~,~~~) - R(~,~) 

R(yi~,~~~) = R(~,~~~1 y) - R(~,~~~) 

SSE 

Total 

Table 2 

R(~) = R(~) 

R(~/~) = R(~,~) - R(~) 

R(C:/~,~) = R(~,~~~) - R(~,~) 

R(y/~,c:,~) = R(~ 1~1 §1 y) - R(~,~~~) 

SSE 

Total 

2.1. ~variety of descriptions 

Sum of squares due to fitting: 

~ 

~~~ after ~ 

~,~,~ after ~~~ 

~~~~ ~, y after ~,c:,~ 

~ 

~~~ after ~ 

~~~~~ after . ~~~ 

~~~~~,y after ~,<;:, ~ 

The descriptions given on the right of these tables are implicit in the 

R's given on the left, and they relate directly to the models shown in (11)-(15). 

For example, R(C:/~) is the reduction in sum of squares due to fitting E(y .. k) 
~J 

= ~ +a. of (13) over and above that due to fitting E(y .. k) = ~ of (12). An 
~ ~J 
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abbreviated form of the descriptions can also be used; e.g., the terms in 

Table 1 can be described as 

R(ll) due to ll 

R(<;;lll) due to <;;, after ll 

R(t3lll,<;!) due to §, after ll and a: 
(16) 

R(ylll,<;;,§) due to y, after ll, <;: and § 

Alternative descriptions sometimes used are 

R(ll) due to ll, ignoring <;;,§,y 

R(<;!!ll) due to <;;, adjusted for ll, ignoring §,y 

R(§/ll,<;!) 
(17) 

due to §, adjusted for ll,~, ignoring y 

R(:yjll,<;!1 §) due to y, adjusted for ll,<;:,@ • 

These are sometimes abbreviated through not mentioning ll because its presence is 

considered to be "obvious"; e. g. 

R(<;!jll) due to <;;, ignoring §,y 

R(§lll,<;!) due to §, adjusted for C: 1 ignoring Y. (18) 

R(y_lll,<;;,§) due to y, adjusted for~,§ 

Of the 4 styles of description, that of Tables 1 and 2 or its abbreviated 

form (16) is preferred. In (17) the use of "ignoring § and y" in the descrip­

tion of R(C:/Il) connects this sum of squares to the model involving ~' c:, § and 

y; but there is no need for this. R(<;;lll) is the difference between the sums of 

squares due to fitting the two models E(y1 .k) = ll +a:. and E(y .. k) = ll, and this 
J ~ ~J 

fact is quite unrelated to the model E(y .. k) = ll +a. + t3. + y. .• It is there-
~J ~ J ~J 

fore irrelevant to describe R(<;;!ll) in terms of "ignoring ~ and y. Descriptions 
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(17) and their shorter form (18), which inaccurately omits reference to ~, are 

therefore not as appropriate as the descriptions in Table 1 or their shorter 

form (16); and even (16) demands cautious use to ensure that it is interpreted 

in the manner of Table 1. 

2.2. Possible confusions 

The descriptions in Tables 1 and 2 show just what each reducticn in sum 

of squares is; and this is implicit in the corresponding symbol of the R-notation. 

Furthermar e, this notation precludes confusion such as can arise from other 

inaccurate and loose forms of description. For example, R(~,~), R(C:!~) and 

R(C:I~,§) are clearly distinct and their meanings are easily recognized. In 

contrast, the exact meaning of the oft-used and ill-defined phrase "the sum of 

squares due to the a-effects" is not clear, and there is no guarantee as to which 

of these terms is meant by it. The positive clarity provided by the R-notation 

is clearly advantageous. 

2.3. Balanced and unbalanced data 

Distinguishing between R(~j~) and R(~l~,§) is unimportant with balanced 

(equal subclass numbers) data, because these two sums of squares are then the 

same. But the distinction is vitally important with unbalanced (unequal sub­

class numbers) data, because R(~/~) and R(~l~,~) then represent two entirely 

different things; and the notation makes this clear. Furtlermore, the notation 

succinctly identifies the distinction, whereas any careless or incomplete use of 

words readily clouds it. In addition, although the distinction is well known, 

many of us have learnt it only after much heartache. Perhaps wider use of the 

R( )-notation in teaching would lead to quicker understanding of the differences 

entailed, not only in the relatively simple case of Tables 1 and 2 but also in 
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cases involving more than 2 factors. It would also lead to a better understand-

ing of the relationships of unbalanced data to those of balanced data; e.g., that 

with balanced data R(~/~) of Table 1 and R(~l~,~) of Table 2 both become 

a - - 2 bn I: (y. - y ) • i=l 1 •• ••• 

Tables 1 and 2 are the basis of analysis of variance tables and ensuing 

F-statistics, which, under normality assumptions, can be used for testing certain 

hypotheses (see, e.g., Searle [1971], pp. 305-313). With unbalanced data these 

hypotheses take no simple form as they do with balanced data, and the R( )-

notation is of little help in identifying the differP.nt hypotheses. However the 

notation does have advantages in the estimation of variance components. 

1· Variance component estimation 

3.1. A general result 

It is shown in Searle [1968] that the expected value of R(~2 1~1 ) given in 

(10) is 

The advantage of this result is that the right-hand side does not involve ~1 ; 

it is in terms of only E (b2b2') and ~. This means that by judicious' partition-
- - e 

ings of any model E(~) = ~ into various forms E(~) = ~l~l + ~~2 a series of 

expressions can be developed from (19) for estimating variance components directly. 

For example, partitioning E(y .. k) = ~+a. + ~. + yij so that ~, a and ~ constitute 
~J ~ J - -

~l and y constitutes ~2 makes 

(20) 
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and from (19) its expectation is a function of E(1y') and a!· Since, in familiar 

variance components models with they-effects being random E(yy') =~I, the 
-- y 

expectation of (20) is, through (19), a linear combination of r? and a2 • 
Y e 

Similarly the expectations of R(f?,y/IJ.,~) and R(~1 ~,y!ll) are linear combinations 

of ~' ~~ ~ and ~' ~~ ~' ~ respectively. By this means, together with SSE, 

estimators of the variance components are obtainable. This is, of course, 

Henderson's [1953] Method (3). Its whole basis rests upon (19), which is a 

useful algorithm for applying the method. 

3.2. Computing methods 

A useful comment on computing (19) is made in Mount and Searle [1972]. They 

point out that 

is symmetric and idempotent so that in (19) the term in E(~2£2) can be expressed 

as 

where 

X - x_ (X'X fx_•x_ -2(1) - ~~ -1-1 ~~~~ 

is the matrix of the usual least squares predicted values of the columns of !2, 

derived by regressing ~ column of ~ on ~ the columns of !1 • For example, 

for (20), E(b2b21 ) of (21) is E(vy') = r?r when s sub-classes have data in them. 
- - ~- y s 
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Then, on writing the model (ll) as 

(22) 

the expected value of (20) is, through (19) and (21), 

"' = tr{ [ X - X ( rv A ) ] 1 [ X -y -y ~,~,~ -y 

= d2 tr[~'( N A)~ ( rv A)]+ cr2 (s- a- b + l) (23) Y -y ~,~,~ -y ~,~,~ e 

where 
A 

~y(~,a:,t3) = ~y - ~y(~,a:,t3) 

= {o ( )} for k = 1,2,··· ,s -k;y ~,a:,t) (24) 

is the N X s matrix whose columns (denoted by ~) are columns of deviations of 

observed values from predicted values (i.e., columns of estimated residuals) 

derived by regressing each of the s columns of X on all the columns of [ 1 X X_A]. 
-y -a: ~ 

Substituting (24) into (23) gives 

s 

E[R(yl~,~,§)] = a~ L ( 
k=l 

N 

L o~k: Y (~,a:, t3)) + cr: ( s - a - b + 1) 
£:1 

(25) 

where o nk·. ( A) is the estimated residual corresponding to the .e,tn element 
;:, • y ~,a:,~ 

in the kth column of X after regressing the columns of X on [1 X X ] Thus 
-y -y -a: -t3 • 

the coefficient of cr2 in (25) is a sum of sums of squares of estimated residuals. y 

The characteristic just developed in (25), that of the coefficient of a 

cr2 in (19) being a sum of sums of squares of estimated residuals is true quite 
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generally whenever E(~2~2) in (19), and equivalently (22) 1 has the form of a diagonal 

matrix having matrices a2! for its sub-matrices. For example, consider deriving 

E[R(~,y/~,~)] for the model (22). For (19) we have ~i = [~ ~'] and ~2 = [y' y'] 

with ~l and ~ having corresponding values. r. cfa~a Q J 
Furthermare, E(~2~2) == 0 a2r • 

L - y-s 

Hence, from (19) 

where 

w = l-1'1 

~b! 

Thus 

X J -y 
0 - a2~ ]} 

y .. s 

1'X ] -- -s 

~b~s 
[1 ~sJ • 

x).(r - w)x a2} ....... - - -y y 
+a2(s-a) 

X'(I- w)x J2 e 
-y - - -y y 

(26) 

(27) 

and from the form of VJ in (26) this is, following the A-notation of (23) 

~ tr[t.'( )A ( )] + J2 tr[A'( )A ( )] + a2 (s- a). a -a ~,s -a ~,s y -y ~,s -y ~,s e 
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So we see that the coefficients of o2 and a2 are sums of sums of squares of a Y 
estimated residuals just as is that of a2 in (25). 

y 

3.3. Mixed models 

A particular advantage of the general result (19) is in mixed models. So 

long as ~l includes all the fixed effects of a mixed model, (19) leads to variance 

components estimators that are unencumbered by the fixed effects in the model. 

For example, suppose that in the model (11) and (22) the ~'s are fixed effects. 

Then (25) and (27), together with SSE, provide estimators of ~' d2 and d2. a y e 

This is, of course, one of the merits of Henderson's Method 3- that it yields 

estimators of the variance components of a mixed model without interference from 

the fixed effects. 

3.4. ~warning 

One aspect of (19) must not be overlnoked. The form of R(~2 1~1 ) whose 

expectation is given in (19) is such that ~1,~2 constitute between them the full 

model under which expectation is being taken. In other words R(~2 1~1 ) = R(~1 ,~2 ) 

- R(~1 ) is the difference in reductions in sums of squares due to fitting the 

full model and some sub-model thereof. This is the case with all the terms con-

sidered in sections 3.1 and 3.2. But it is not the case, for example, with 

R(~ ~~,§) = R(~,~;§) - R(~,~). The expected value in (19) does not apply to 

R(~l~,§) for the model (11) and (22) because ~,~,§ do not constitute the elements 

of that model, under which expectation is being taken. Of course, the expectation 

of R(~J~,~) could be obtained from (19) under the model y = ~1 + X a + X ~ + E, 
- - - -a- -~- -

but not under the model (11) and (22). 
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4 .1. Conditions 

On the face of it, R(~2 !~1 ) of (10) is a valid expression for any partition­

ing~· = [~{ ~2] of~ in the modelE(~) = Xb. It goes without saying, however, 

that in this partitioning all effects corresponding to the same factor should 

be in either ~l or ~2 , this being necessary for purposes of interpretation. 

Another condition on ~land ~2 must also be upheld, in order for R(~2 1~1 ) 

to be other than identically zero: ~l cannot contain the effects of an inter­

action factor unless all of that factor's lower order interactions and main 

effects are also in ~1 • The same must also be true for ~1 ,~2 taken together. 

We illustrate this second condition with an example from the 2-way classi-

fication model of (11) and (22). 

4.2. Illustration 

In denoting R(~!~,~,y) by R(~2 /~1 ) we have ~{ = [~ ~' y'], which contains 

interaction effects y .. but not the main effects ~. involved in those interactions. 
2J J 

Because of this, ~l does not satisfy the second condition of section 4.1, and 

R(~/~,~,y) is therefore identically zero. This we now show. 

Formally we have 

(28) 

As in (11), R(~'~'~'y) is the reduction in sum of squares due to fitting 

~ + ai + ~. + y .. ' 
J 2J 

(29) 
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and so, as is well-known, 

a b 

= \ \ ~. /n .. 
'- '- l.J• l.J 

i=l j=l 

for n .. I= 0 • 
l.J 

(30) 

Similarly R(~,~,y) is, by definition, the reduction in sum of squares due to 

fitting the model 

This is indistinguishable from the model for a 2-way nested (hierarchical) 

classification, for which the reduction in sum of squares is familiar as 

a b _2 
r: r: y .. /n.. i.e. 

i=l j=l l.J• l.J• 

Hence 

and so, in ( 28 ) 

a b 

R(~,~,y) = L. IY~j.Jnij for nij /= 0. 
i=l j=l 

a b 

R(~,~~~,y) ~ R(~,~,y) = L L ~j.Jnij 
i=l j=l 

R(t3!~,a,y) - o. - - -

for n .. /= 0 
l.J 

To emphasize this result we demonstrate it with a small example. The 

example is then further used to demonstrate a procedure for calculating a 

non-zero value that can, quite erroneously, be used in place of (32). 

(31) 

(32) 
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4. 3. Example 

Suppose for 2 rows and 3 columns, i.e., a= 2 and b = 3 in (11), the 

numbers of observations in the 6 cells are those of Table 3. 

Table 3. 

i j = 1 

1 3 
2 2 

Totals n • j 5 

n .. values. 
l.J 

j = 2 j = 

2 1 

0 2 

2 3 

3 Totals 

6 
4 

n = 

n. 
l.• 

10 

The normal equations corresponding to the model (29) for these n .. -values are 
l.J 

Equation 
number 

i 

ii 

iii 

iv 

v 

vi 

vii 

viii: 

ix 

X 

xi 

~ 10 : 6 4 I 5 2 3 3 2 l 2 2 
f I o .............. ~ ·- ...................... ---- ........ -...... -.... -...... - ...... - -- .. - ... - ... .. 
I j I 

6 . 6 

4 4 

. 3 2 1 : 3 2 l 

2 
. 

0 2 ' • 
' 

2 2 
--- -7 - ........... ~-- - • ------ 'P ... --- .. -- ... - ----- --

5 3 2 : 5 3 2 

2 I 2 0 2 2 

312 3:. 1 2 
' ' - - ... - ~- .... - .. - - i ..... - ...... - .. - - .... - .. ,._ -- ... -- .. - -- ..... -

I : 
3'3 ·:3 3 

2 2 • . • 2 2 

1 1 l 1 

2 2 2 2 

2 2 : • 2 ; • 2 

- 0 ~ 
jJ. 

o;f 

.0 
Yll 

0 
Yl2 

0 
Yl3 

0 
Y21 

Y• • • 

Yl• • 

Y2 • • 

y. 2. 

(33) 

Y11 • 

Y12 • 

Yl3• 

Y23· 

The equation numbers i,ii,··· are for ease of reference; the dots in the 

0 0 0 matrix represent zeros; and 1J. ,a1,··· are the elements of a solution vector b 
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for the normal equations X'Xb0 = X'y of (2). - -- - -
Equations (33) are ll equations in ll unknowns; but they have rank 5. 

This is because there are 6 linearly independent relationships among the equa-

·ions: ii and iii sum to i; iv, v and vi sum to i; vii, viii and ix sum to ii; 

ix and x sum to iii; vii and x sum to iv; :viii and v are the same; and ix and 

xi sum to vi. Of these 7 relationships the last (and others) is a consequence 

of the preceding 6, and so they constitute 6 linearly independent relationships. 

A solution of (33) can therefore be obtained by putting 6 elements of the solu-

tion vector equal to zero, crossing out the corresponding equations and solving 

what remains. The simplest set of 6 elements to put equal to zero is 

0 
IJ. = 0 = 0 o = 0 o = ~o = ~o = ~o 

1 2 1 2 3 
(34) 

Doing this, and crossing out the corresponding equations, i.e., numbers i through 

vi, leaves 

0 
3Yll = yll· 

0 
21'12 = yl2· 

0 

yl3 = yl3· 
0 

21'21 = y21· 
0 

21'23 = y23· 

with the familiar solution 

Using R(~) of (4) then gives 

2 3 

R(IJ.,~ 1 ~,y) = I I~j./nij for nij ~ 0 

i=l j=l 

as in (30 ). 

(35) 

(36) 

(37) 



- 17 -

Now the model for calculating R(~,~,y) is 

The normal equations for this corresponding to then .. 1 s of Table 3 are 
~J 

Equation 
number 

i I 6 4 2 -- ~00 -10 I . 3 2 l 2 y •.• 
.. . .. - .. ~-.- .......... ·-- ...... - - . - .. --- --.. - ...... 

ii' 6 6 . 3 2 l apo Yl • • 

iii' 4 ' 4 
. 

2 2 ago 
' . I . 

Yz • • . . .... -- ~-- ... - .. --- ... --.--- ..... ---- ..... --
' 

iv' 3 
I 

3 2 yOO 3 . I ll Yll• ' I 

v' 2 2 2 00 
'Yl2 Y1z • 

= 
vi' 1 1 l 2 ypg Yl3· 

vii' 2 2 • 2 y~f Y21 • 

viii': 2 2 2 co _ Y2:3• '\(83 

(38) 

(39) 

Here we have 8 equations in 8 urilinowns; and they too have rar~ 5 because there 

are 3 linearly independent relationships among them: ii 1 and iii' sum to i'; 

iv', v' and vi' sum to ii'; and vii' and viii' sum to iii'. A solution is 

therefore obtained by putting 3 elements of the solution vector equal to zero, 

the easiest being 

00 
~· 

Using this, and crossing out corresponding equations from (39), namely i' 

through iii', leaves 
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00 
3Yll = Yu. 

00 
2Yl2 = Yl2. 

00 
yl3 = yl3· 

00 
2Y21 = y21· 

00 
2Y23 = y23• 

which are exactly the same as (35), with solution 

00 -
y~J· = y .. ..... ~J· 

Hence R(~) of (4) gives 

2 

for n .. I= 0 • 
l.J 

3 

= I \ y~. /n .. 1.. ~J· ~J 
i=l j=l 

for n .. I= 0 
l.J 

(40) 

(41) 

(42) 

as in (31); and so R(~/~ 101 y) = 0 as in (32). All this is quite straightforward 

and well-known. 

4.3. Other solutions of normal eguations 

Although the most easily obtainable solution to (33) is that shown in 

(36) derived from using (34), it is not an uncommon practice to use in place of 

(34) such expressions as 

ao 0 
0 + a2 = 1 

f30 + f30 0 
0 + f33 = 1 2 

0 0 0 
0 yll + yl2 + yl3 = 

(4 3) 
0 0 

0 y21 + y23 :::; 

0 0 
0 yll + y21 = 

0 
+ y~3 0 yl3 = 
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or, perhaps 

cP = 0 = f3o _ ·yo _ Yo _ '\Jo _ Yo 
2 3 - 13 - . 23 - 121 - 12 (44) 

The first of these, (43), is analogous to the procedure frequently used with 

balanced data of having effects sum to zero; and (44) is that of putting certain 

'last' effects equal to zero. When using (43), they and equations (33) are 

solved simultaneously. With (44) corresponding equations of (33) are crossed 

out. In neither case will the solution vector be the same as (36) but, through 

the well-known invariance property of reductions in sums of squares, R(~,~'~'y) 

will in both cases be exactly as in (37). For example, using (44) in (33) and 

crossing out equations from (33) that correspond to (44), leaves the equations 

6 - ~0 10 5 2 3 y ••• 

6 6 3 2 3 af Y1 • • 

5 3 5 3 t3f = y •1. (45) 

2 2 2 ~ y •2. 

3 3 3 3 0 
- '{11 Yll• 

The solution to these is 

- flo l -1 -1 0 1 y ••• 

af -1 3 l -2 -3 Y1 • • 

f3r = i -1 1 2 0 -2 y •1. (46) 

{3~ 0 -2 0 3 2 Y·z • 

vP1 1 -3 -2 2 4f Yll• 
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from which the reduction in sum of squares is, from (4), 

0 
= ~ y ••• (47) 

Tedious algebra reduces this to (37). 

2· Erroneous computing methods 

5. l. Computing procedure 

The calculation of R(~) as outlined in (1), (2) and (4), and typified more 

specifically in the example just given is as follows. 

Table 4. Computing Procedure for R(~) 

(a): Write the model as E(~) = ~ of (1); 

(b): Write the normal equations as X1Xb 0 = ~~~ of (2); 

(c): Amend the equations to be of full rank, usually by setting some elements 

of the solution equal to zero, as typified in (34 ), (40) and (44 ); 

(d): Obtain a solution b 0 from the amended equations; 

(e): Calculate R(~) as ~0 '~'l of (4). 

The 5 steps in this computing procedure, and their sequence, are important. 

The starting point is (a), the model, from which are derived the normal equa-

tions (b). Since any solution of these suffices to yield R(~) we amend the 

equations as in (c), to derive a solution ~ 0 in (d) and use it in (e) to 

calculate R(~). The expressions already used in this procedure for calculating 

R(IJ.,'::,§,y) and R(~J-,':: 1 ::£) for the 2-way classification are summarized in Table 5. 
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Table 5. Examples of using the Computing Procedure 
for R(~) of Table 4 

Procedure 
step 

(a): model 

(b) normal equations 

(c): amended equations 

(d): solution 

(e): calculation 

For R(~,~,§,y) 

Case 1 Case 

(29) (29) 

(33) (33) 

(35) (45) 

(36) (46) 

(37) (47) 

. 
2 

For R(~ 1~1 y) 

(38) 

(39) 

(40) 

(41) 

(42) 

As seen in (37) and (42), R(~ 1~1 §1 y) and R(~,~,:y·) are identically equal and so 

R(~/~ 1~1 y), their difference, is identically zero as previously discussed. 

5. 2. !:_ wrong ~ .£!. normal equations 

The model corresponding to R(~ 1~1 y) is the same as that corresponding to 

R(~,g,~,y) after reducing it by omitting the t3 1 s. It is important to observe 

at what point in the computing procedure this reduction of the model has to 

take place. It is at point (a), the writing down of the model. This is so 

because (a) is the foundation of the computing procedure. Thus the derivation 

of R(~1 ~1 y) from the model corresponding to R(~,~~~1 y) starts from reducing the 

model (29) by omitting the t3's and so getting the model (38). Derivation of 

each R( ) then proceeds in accord with Table 4, as shown in Table 5. 

An error that is sometimes made is to implement the reduction not at step 

(a) but after step (c). In the case of the amended equations (35) the reduc-

tion of omitting the t3's is of no consequence, since the t3's are already gone 

from (35) through being put equal to zero in (34), the precursor of (35). But 

this inconsequential effect is not universal. 
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Suppose the amended equations (45) had been used. The calculation of 

R(f.l,~1 !? 1 y) is unaffected, as noted after (47). But if the reduction of omitting 

~'s is now implemented, in anticipation of deriving R(f.l,~ 1 1) from (45), the 

result is in fact, not R(f.l,~,y). For, omitting ~'s from (45) gives the equations 

with solution 

10 6 3 

-

6 6 3 

3 3 3 

1-Lo 

yP = 
0 

'Yll 

l 
12 

flo 

o;f = 
0 

Yll 

3 -3 0 

-3 7 -4 

0 -4 8 

Computing ~0 '~'~ from this, as in (4), gives 

0 0 0 0 
b 'X'y = 1-L y + a: y + y y - -- •.• 1 1·· ll 11• 

y ••• 

Y1 • • (48) 

Yll• 

y ... 
Yl • • (49) 

Y11 • 

(50) 

and no amount of algebra, tedious or otherwise, will reduce this to R(l-!,~,y) 

of (42 ). 

The clue to the fact that (48) does not lead to R(l-!,~,y) is that equations 

(48) have rank 3 whereas the correct normal equations corresponding to R(l-!,~,y), 

namely (39), have rank 5. Taking account of reducing the model after step (c) 

of the computing procedure in Table 6 is therefore wrong; the correct place is 

at its foundation, the model, at step (a). 
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We will refer to the model E(y .. k) = ~ +a. + S. + y1J. as the~ model and 
~J 1 J 

the model obtained by omitting the f3j 's, nan1ely E (yi .k) = ~ + a. + y. . as the 
J 1 1J 

reduced model. In brief, the computing procedure of Tables 4 and 5 for R(~,a,(3,y) 

is the sequence 

(a) full model 

(b) normal equations for full model 

(c) amended equations for full model 

(d) solution 

(e) calculation. 

And the sequence for R(~ 1~ 1 y) is 

(a) 
ell model 

duce the model 

(b) normal equations for reduced model 

(c) amended equations for reduced model 

(d) solution 

(e) calculation 

The sequence is not 

(a) full model 

(b) normal equations for the full model 

(c) ~amended equations for the full model 

educe the amended equations 

(d) solution 

(e) calculation 

Implementation of the reduction from the full model comes at (a), in the model, 

and not at (c), in the amended equations. 
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Consequences ~ variance component estimation 

If erroneous computing for R(~ 1~1 y) is used in R(~,~~~,y) - R(~ 1~ 1 ~) for 

R(~l~,~,y) the latter will not be zero, as it should be. Use of (19) for evaluat­

ing the expected value of R(~/~,~,y) and equating it to the erroneous non-zero 

computed value will therefore give a wrong equation for estimating variance 

components. True it is that the wrongly computed expression for R(~,~,y) is 

just a quadratic form in the vector of observations l and could be used for 

variance component estimation; so it could. But its expected value would not 

be in accord with what (19) gives for the expected value of R(~'~'~'y) - R(~,~,y). 
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