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Abstract

We study the expressiveness and performance of full-text search languages. Our main motivation
is to provide a formal basis for comparing such languages and to develop a model for full-text search
that can be tightly integrated with structured search. We develop a formal model for full-text search
based on the positions of tokens (words) in the input text, and develop a full-text calculus (FTC) and
a full-text algebra (FTA) with equivalent expressive power. This suggests a notion of completeness for
full-text search languages and can be used as a basis for a study of their expressiveness. We show that
existing full-text languages are incomplete and developCOMP, a complete full-text search language. We
also identify practical subsets ofCOMPthat are more powerful than existing languages, develop efficient
query evaluation algorithms for these subsets, and study experimentally their performance.

1 Introduction

There has been a lot of interest in full-text search over flat files [3, 31], relational databases [4, 22], and more
recently, XML documents [2, 6, 15, 18, 21, 33]. The expressiveness of such languages ranges from simple
Boolean search to phrase matching to general proximity search with distance predicates. Unfortunately,
there is no existing work that systematically compares these different full-text search languages, either from
an expressiveness or a performance point of view; we believe that this void is mainly due to the lack of a
powerful formal model for full-text search. This also makes it difficult to seamlessly integrate with structured
search, which is usually based on the formal underpinnings of the relational model. In this paper, we attempt
to lay down the formal foundations for full-text search languages, and to compare the expressiveness and
performance of different languages.

Our first contribution (Section 2) is the development of a formal model for full-text search languages.
At an abstract level, such languages require the ability to manipulate individualtokens(or words) and their
positionsin the input text and return the nodes (e.g., documents, tuples, or XML elements) that satisfy the
full-text search condition. We thus define a formal model based on the positions of tokens in the input
text. Based on this model, we define a notion of completeness and develop an associated full-text calculus
(FTC) based on first-order logic and a full-text algebra (FTA) based on the relational algebra. We also show
how the FTC and FTA can be extended to capture the notion of scores, such as scores computed using
TF-IDF [3, 28].

Our second contribution (Section 4) is to show that existing languages are incomplete. We thus propose
COMP, a new complete full-text search language based on the FTC.COMPnaturally generalizes existing
Boolean full-text search languages and is able to express primitives such as order specifications between
words, paragraph scoping and word distance.

Our third distribution is the design of a scoring framework that can be used within our full-text search
model. The scoring framework does not mandate a fixed scoring method but allows the use of large class of
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existing scoring methods. In Section 3, we describe the framework and show how it can be used with two
of the most popular scoring methods: TF-IDF [28] and probabilistic scoring [19, 38]

Our fourth contribution (Sections 5 and 6) is the identification of practical subsets ofCOMPthat are sig-
nificantly more powerful than existing full-text search languages, but which can still be evaluated in a linear
scan over inverted list data structures, which are commonly used in full-text search. We also experimentally
evaluate our proposed algorithms using real and synthetic data sets.

2 Full-Text Model, Full-Text Calculus and Algebra

At its core, a full-text search specification has two components: (1) thesearch context, which specifies the
set ofcontext nodes(e.g., document corpus in an IR system, tuples in a relational database or elements in
XML documents) over which the full-text search is to be performed and, (2) thefull-text condition, which
specifies the condition that should be evaluated on each context node. Only the context nodes that satisfy the
full-text condition qualify as answers. As an illustration, consider the following example from the XQuery
Full-Text Use Cases Document [35].

Example 1 (Use Case 10.4): Given an XML document that contains book and article elements, find the
book elements containing the “efficient” and the phrase “task completion” in that order with at most 10
intervening tokens.

In this example, the context nodes are book elements (and not articles), and the full-text search condition
is: contains the keyword “efficient” and the phrase “task completion” in that order with at most 10 inter-
vening tokens. Note that the search condition includes multiple primitives: Boolean AND, phrase matching,
order specifications, and distance predicates.

Thus, in order to specify a full-text search query, we need (1) a language to specify the context nodes
and, (2) a language to specify the search condition (the full-text search language). For (1), we can use
SQL in the case of relational data, XQuery in the case of XML documents, or simply the entire document
collection in the case of traditional IR systems. Since SQL and XQuery have well-defined formal semantics,
we focus on the full-text search language. We first present our model, before discussing the FTC, the FTA,
and scoring issues.

2.1 Full-Text Model

We first introduce two aspects of our model: a model for context nodes, and our requirement for complete-
ness.

2.1.1 Modeling Context Nodes

Existing models for context nodes are insufficient for expressive full-text search. For instance, the XQuery
data model for the book element in Figure 1 treats all the text under an element as a single text node
(ignore the numbers in parentheses for now). This model is enough to identify sub-strings in the text
and evaluate queries such asfind author nodes containing ’Elina’. However, it is insufficient to answer
queries such asfind books that contain the tokens ’usability’ and ’testing’ with 3 intervening tokens. Most
IR models solve part of this problem by tokenizing the input text, and representing each token sepa-
rately. Thus, in our example, the text in the context node would be modeled as the “bag of words”
{book, id, 1000, author,Elina, Rose, . . .}. However, this model still cannot capture the distance between
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<book(1) id(2)="usability(3)">
<author(4)>Elina(5) Rose(6)</author(7)>
<content(8)> Usability(9) Definition(10)

<p(11)> Usability(12) of(13) a(14)
software(15) measures(16)

how(17) well(18) the(19)
software(20) supports(21)
achieving(22) an(23)

efficient(24) software(25).
</p(26)>
</p(27)> A(28) software(29) is ...

More(37) on(38) usability(39)
of(40) a(41) software(42) ...

</content(284)>
</book(285)>

Figure 1: Positions Example

tokens (some IR languages, however, do support limited forms of distance predicates; see Section 4.2 for
more details).

In this paper, we explicitly model thepositionof a token in a context node. We argue that this model,
although simple, is powerful enough to capture the semantics of existing full-text search languages. Further,
it serves as the formal basis for defining position-based predicates such as proximity distance and order
predicates. In Figure 1, we have used a simple numeric position (within parenthesis) for each token. Our
proposed model, however, does not dictate any specific implementation of positions and is extensible with
respect to the set of predicates. More expressive positions that capture the notions of lines, sentences and
paragraphs can be used, and this will enable more sophisticated predicates on positions.

We now define our formal model.N is the set of context nodes,P is the set of positions, andT is the
set of tokens. The functionPositions : N → 2P maps a context node to the set of positions in the context
node. The functionToken : P → T maps each position to the token stored at that position. In the example
in Figure 1, if the context node is denoted byn, thenPositions(n) = {1, 2, ..., 28}, Token(1) = book,
Token(2) = id, and so on.

2.1.2 Requirement for Completeness

The full-text search language should be at least as expressive as first-order logic formulae specified over the
positions of tokens in a context node.

The above requirement identifies tokens and their positions as the fundamental units in a full-text search
language, and essentially describes a notion of completeness similar to that of relational completeness [13]
based on first-order logic. We note that other notions of completeness can certainly be defined based on
higher-order logics, but as we shall soon see, defining completeness in terms of first-order logic allows for
both efficient evaluation and tight integration with the relational model. One other issue to note in the above
requirement is that each context node is considered separately, i.e., a full-text search condition does not span
multiple context nodes or documents. This is in keeping with the semantics of existing full-text languages,
and while other extensions are certainly possible, we do not consider them here.
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2.2 Full-Text Calculus

The full-text calculus defines the following predicates to model basic full-text primitives.

• SearchContext(node) is true iff node ∈ N (recall thatN is the set of context nodes).

• hasPos(node, pos) is true iff pos ∈ Positions(node). This predicate explicitly captures the notion
of positions in an XML node.

• hasToken(pos, tok) is true iff tok = Token(pos). This predicate captures the relationship between
tokens and the positions in which they occur.

A full-text language may also wish to specify an additional set of position-based predicates,Preds,
depending on user needs. The calculus is general enough to support arbitrary position-based predicates.
Specifically, given a setV arPos of position variables, and a setConsts of constants, the calculus can
support any predicate of the form:pred(p1, ..., pm, c1, ..., cr), wherep1, ...pm ∈ V arPos andc1, ..., cr ∈
Consts. For example, we could definePreds = {distance(pos1, pos2, dist), ordered(pos1, pos2),
samepara(pos1, pos2), diffpos(pos1, pos2)}. Here,distance(pos1, pos2, dist) returns true iff there are
at mostdist intervening tokens betweenpos1 andpos2; ordered(pos1, pos2) is true iff pos1 occurs before
pos2; samepara(pos1, pos2) is true iff pos1 is in the same paragraph aspos2; diffpos(pos1, pos2) is true
iff pos1 andpos2 are different positions.

2.2.1 Full-Text Calculus Queries

A full-text calculus query is of the form:{node|SearchContext(node)∧QueryExpr(node)}. Intuitively,
the query returnsnodes that are in the search context, and that satisfyQueryExpr(node). QueryExpr(node),
hereafter called thequery expression, is a first-order logic expression that specifies the full-text search con-
dition. node is the only free variable in the query expression. The structure of the query expression is
recursively defined as follows.

• hasPos(node, posi) is a query expression wherenode is the free variable andposi ∈ V arPos.

• hasToken(posi, tok) is a query expression, whereposi ∈ V arPos andtok ∈ Consts.

• pred(pos1, ..., posm, c1, ..., cr) is a query expression, wherepred ∈ Preds, posi ∈ V arPos and
cj ∈ Consts.

• If qe1 andqe2 are query expressions,¬qe1, qe1 ∧ qe2, andqe1 ∨ qe2 are query expressions.

• If qe is a query expression, then∃posi(hasPos(node, posi)∧qe), and∀posi(hasPos(node, posi) ⇒
qe) are query expressions, whereposi ∈ V arPos.

A full-text calculus query has the conventional semantics of first-order logic. The form of the quantifi-
cation in the last bullet guarantees that the query expression in the full-text calculus can be evaluated using
only the positions and tokens in the context node, without having to look at other positions. This notion is
similar to the notion of safety for the relational calculus.

We now provide some examples of full-text calculus queries. The following query returns the context
nodes that contain the tokens ’test’ and ’usability’.

{node|SearchContext(node) ∧ ∃pos1(hasPos(node, pos1) ∧ hasToken(pos1,
′ test′)∧
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∃pos2(hasPos(node, pos2) ∧ hasToken(pos2,
′ usability′)))}

In the subsequent examples, we only show the query expression since the rest of the query is the same. The
following query returns the context nodes that contain the token ’test’ and the token ’usability’ with at most
5 intervening tokens.

∃pos1(hasPos(node, pos1) ∧ hasToken(pos1,
′ test′) ∧ ∃pos2(hasPos(node, pos2)∧

hasToken(pos2,
′ usability′) ∧ distance(pos1, pos2, 5)))

The following query returns the context nodes that contain two occurrences of the token ’test’ and do not
contain the token ’usability’.

∃pos1(hasPos(node, pos1)∧hasToken(pos1,
′ test′)∧∃pos2(hasPos(node, pos2)∧hasToken(pos2,

′ test′)
∧diffpos(pos1, pos2) ∧ ∀pos3(hasPos(node, pos3) ⇒ ¬hasToken(pos3,

′ usability′))))

2.3 Full-Text Algebra

We now define our full-text relations and algebra operators. The underlying data model for our algebra is
a full-text relationof the formR[CNode, att1, ..., attm] where the domain ofCNode isN (context nodes),
and the domain ofatti isP (positions).R satisfies the following properties.

• R has always at least the attributeCNode. This captures the context node for full-text search. The
remaining attributes inR capture the essence of full-text search, which is to manipulate positions.

• Each tuplet in a full-text relation should satisfy the condition that for all the positionspos in t, pos ∈
Positions(t.CNode). The intuition is that a full-text search query can only manipulate positions
within a single context node.

A full-text algebra expression is based on the following full-text relations that characterize the search
context nodes, their positions, and the tokens at these positions.

• SearchContext(CNode): This relation contains a tuple (node) for eachnode ∈ N .

• HasPos(CNode, att1): This relation contains a tuple for each (node,pos) pair that satisfies:node ∈
N ∧ pos ∈ Positions(node). Intuitively, this relation relates context nodes to their positions.

• Rtoken(CNode, att1): This is a family of relations, one for eachtoken ∈ T . Rtoken contains a tuple
for each (node,pos) pair that satisfies:node ∈ N ∧pos ∈ Positions(node)∧ token = Token(pos).
Intuitively, Rtoken contains positions that containtoken, and is similar to an inverted list in IR.

We note that while eachRtoken relation is finite, there number of such relations will be infinite ifT is
infinite. However, this does not lead to a problem in defining the algebra because each algebra expression is
finite, and can only refer to a finite set of such relations. Also, physically instantiating the potentially infinite
set ofRtoken relations is not a problem because only a finite sub-set of these relations will be non-empty
(because the search context is finite), so only this finite set of relations will have to be explicitly stored. This
is in fact what happens in current implementations of inverted lists.

In addition, as in the calculus, we have a set of position-based predicatesPreds.
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2.3.1 Full-Text Algebra Operators and Queries

The full-text algebra operators are similar to the relational operators, but with two important differences.
First, full-text algebra operators only operate on full-text relations (as defined above), and not on arbitrary
relations, due to the nature of full-text search. Second, full-text algebra operators implicitly enforce that
each operation only manipulates positions within a single node, and not across nodes. These two properties
ensure that the full-text algebra is equivalent to the full-text calculus in characterizing full-text search. A
full-text algebra expression is defined recursively as follows.

• SearchContext is an algebra expression that returns the tuples in the full-text relationSearchContext.

• HasPos is an algebra expression that returns the tuples in the full-text relationHasPos.

• Rtoken is an algebra expression that returns the tuples in theRtoken relation, wheretoken ∈ T .

• If Expr1 is an algebra expression,πCNode,att1,...,atti(Expr1) is an algebra expression. IfExpr1

evaluates to the full-text relationR1, the full-text relation corresponding to the new expression is:
πCNode,att1,...,atti(R1), whereπ is the traditional relational projection operator. The attribute names of
the result full-text relation are renamed to have consecutiveatti’s. Note thatπ alwayshas to include
CNode in the full-text algebra - this enforces the property that full-text search is always scoped within
a single context node.

• If Expr1 andExpr2 are algebra expressions, then(Expr1 1 Expr2) is an algebra expression, If
Expr1 andExpr2 evaluate toR1 andR2 repectively, then the full-text relation corresponding to
the new expression is:R1 1R1.CNode=R2.CNode R2, where1R1.CNode=R2.CNode is the traditional relational
equi-join operation on theCNode attribute. The duplicateCNode attribute is projected out in the result
full-text relation, and the position attributes are renamed to be consecutiveatti’s. Note again how the
full-text algebra does not allow operations across nodes because the only predicate that is permitted
in the join is equality between the attributesCNode of the two relations.

• If Expr1 is an algebra expression, thenσpred(att1,...,attm,c1,...,cq)(Expr1) is an algebra expression,
wherepred ∈ Preds. If Expr1 evaluates toR1, the full-text relation corresponding to the new
expression is:σpred(att1,...,attm,c1,...,cq)(R1), whereσ is the traditional relational selection operator.

• If Expr1 andExpr2 are algebra expression, then(Expr1 −Expr2), Expr1 ∪Expr2, andExpr1 ∩
Expr2 are algebra expressions. These−, ∪ and∩ operators have the same semantics as in traditional
relational algebra.

A full-text algebra query is a full-text algebra expression that produces a full-text relation with a single
attribute (this attribute has to beCNode by definition). The set of nodes in the result full-text relation defines
the result of a full-text algebra query.

We now provide some examples of full-text algebra queries that correspond to the calculus example in
Section 2.2.1. The following query returns the context nodes that contain the token ’test’ and ’usability’:
πCNode(Rtest 1 Rusability)

The following query returns the context nodes that contain the token ’test’ and the token ’usability’
within a distance of 5:πCNode(σdistance(p1,p2,5)(Rtest 1 Rusability))

The following query returns the context nodes that contain two occurrences of the token ’test’ and
do not contain the token ’usability’:πCNode((σdiffpos(att1,att2)(Rtest 1 Rtest)) 1 (SearchContext −
πCNode(Rusability)))

6



2.4 Equivalence of Calculus and Algebra and Its Applications

Theorem 1 Given a set of position-based predicatesPreds, the full-text calculus and the full-text algebra
are equivalent in expressive power.

The proof is in Appendix A, and is similar to the equivalence proof for the relational calculus and algebra.

The equivalence of the full-text calculus and algebra suggests a notion of completeness for full-text search
languages. This provides a formal basis for comparing the expressive power of different query languages,
as we shall do in the next section. To the best of our knowledge, this is the first attempt to formalize the
expressive power of full-text search languages, either for flat documents or for XML documents. Developing
a full-text algebra in terms of relations also provides a foundation for tightly integrating, optimizing and
evaluating structured (relational or XML) queries with full-text search.

The full-text algebra also enables us to rank query results by leveraging existing work on the proba-
balistic relational model developed in the context of IR [19, 38]. Specifically, the probabilistic relational
model includes a probability attribute for each tuple that specifies its relevance to the result relation. A tuple
with a high probability is very relevant to the result relation, while a tuple with low probability is not. In
addition, the model defines how these probabilities are propagated through traditional relational operators.
In our context, we simply need to add a new probability attribute to our full-text relations. We can then rely
on these techniques to propagate this attribute through the algebra operators, and produce ranked results.

3 Scoring

Scoring (or ranking) is an important aspect of full-text search. However, there is no standard agreed-upon
method for scoring full-text search results. In fact, developing and evaluating different scoring methods is
still an active area of research [14, 18, 21, 20, 27, 33, 19, 38]. Thus, rather than hard-code a specific scoring
method into our framework, we describe a general scoring framework based on the FTC and the FTA, and
show how some of the existing scoring methods can be incorporated into this framework. Specifically, we
now show how TF-IDF [28] and PRA [19, 38] scoring methods can be incorporated. We only describe how
scoring can be done in the context of the FTA; the extension to the FTC is similar.

3.1 TF-IDF Based Scoring

TF-IDF is one of the most common IR scoring methods [28].
Our scoring framework is based on two extensions to our model: (1) per-tuple scoring information and

(2) scoring transformations. Per-tuple scoring information associates a score with each tuple in a full-text
relation, similar to [19]. However, unlike [19], the scoring information need not be only a real number (or
probability); it can be any arbitrary type that can be extended for the needs of the scoring method. Scoring
transformations extend the semantics of FTA operators to transform the scores of the input full-text relations.
For example, a selection operator can scale the scores based in the selection predicate (such as distance) and
so on.

We now show how TF-IDF scoring can be captured using our scoring framework. We use the following
widely-accepted TF and IDF formulae for a noden and a tokent: tf(n, t) = occurs(n, t)/unique tokens(n)
andidf(t) = ln(1+db size/df(t)), whereoccurs(n, t) is the number of occurrences oft in n, unique tokens(n)
is the number of unique tokens inn, db size is the number of nodes in the database, anddf(t) is the
number of nodes containing the tokent. The TD-IDF scores are aggregated using the cosine similarity:
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score(n) = Σt∈qw(t) ∗ tf(n, t) ∗ idf(t)/(||n||2 ∗ ||q||2), whereq denotes the bag of search tokens in the
query,w(t) denotes the weight of the search tokent and|| · ||2 is theL2 measure.

To model TF-IDF, we associate a numeric score with each tuple. Intuitively, the score contains the TF-
IDF measure for all the positions in the tuple. Initially, theRt relations contain the static scores: theidf(t)
for the tokent at that position divided by the product of the normalization factorsunique tokens ∗ ||n||2.
This is theL2 normalized TF-IDF measure for each position containing the tokent. Thus, if we sum all the
scores inRt, we get exactly theL2-normalized TF-IDF measure oft with regards ton. It is also important
to note that all of the scoring information inRt can be precomputed.

To capture TF-IDF score of search tokens, the above tuple score can be scaled byweight(t)/
(unique search tokens ∗ ||q||2), whereunique search tokens is the number of unique search tokens in
the queryq. This scale factor is query-dependent and cannot be precomputed. Thus, we can consider that
the persistent index structures contain theidf(t)/(unique tokens ∗ ||n||2) score. When theRt relation is
processed, the precomputed score is multiplied byidf(t)/unique search tokens ∗ ||q||2 to obtain the final
score for a tuplet:

t.score = idf(t)2/(unique tokens ∗ unique search tokens ∗ ||n||2 ∗ ||q||2)
.

We now describe the scoring transformations for each FTA operator.

• Given two expressionsExpr1 andExpr2 that evaluate to the full-text relationsR1 andR2, a tuplet1
in R1, a tuplet2 in R2 andt3 in (Expr1 1 Expr2) wheret3 is the result of joiningt1 andt2, i.e.,
t1.CNode = t2.CNode, the score formula associated with join is:

t3.score = t1.score/|R2|+ t2/|R1|

Above, | · | denotes the cardinality of the relation. We need to scale down thet1.score andt2.score
because their relevance decreases due to the increased number of tuples (solutions) in the resulting
relation. Informally, one can think of this as “the first law of thermodynamics” for conservation of
energy: the join conserves the total score (energy) of the input relations because it neither adds nor
removes solutions (tuples).

• Given an expressionπCNode,att1,...,atti,score(Expr1) whereExpr1 evaluates toR1 and all tuples
t1 . . . tn in R1 that project out onto the same output tuplet3 (i.e., they share thesame values for
the projected attributes), the score formula associated with projection is:

t3.score = Σi=1,..,nti.score

Projection also obeys the above score-conservation: the new relation should have the same total score
as the original one.

• Givenσpred(att1,...,attn,c1,...,cm)(Expr1) whereExpr1 is an algebra expression whose corresponding
full-text relation isR1. Let R2 is the resulting relation. Ift2 is a tuple inR2 such thatt1 = t2, then:

t2.score = t1.score

.
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• Given an expression¬Expr1 whereExpr1 evaluates toR1 andt is a tuple inR1, the score formula
associated with the negation is:t.score = 1 − t.score (tie negation to difference in the definition of
the algebra).

• Given(Expr1∪Expr2) whereExpr1 andExpr2 are algebra expressions whose corresponding full-
text relations areR1 andR2 andt1 is a tuple inR1 andt2 is a tuple inR2 andt3 is the result of the
union oft1 andt2, the score formula associated with the union is:

t3.score = t1.score + t2.score

.

We assume that ifti.score = 0 if @ti ∈ Ri ti = t3 for i = 1, 2; i.e., missing tuples are assumed to
have score 0.

• Given(Expr1−Expr2) whereExpr1 andExpr2 are algebra expressions whose corresponding full-
text relations areR1 andR2. Let R3 is the resulting relation. Ift3 is a tuple inR3 such thatt1 = t3,
then:

t3.score = t1.score

.

• Similarly, given(Expr1 ∩ Expr2) whereExpr1 andExpr2 are algebra expressions whose corre-
sponding full-text relations areR1(CNode, att1, ..., attn) andR2(CNode, att1, ..., attn). Let R3

is the resulting relation. Lett1 is a tuple inR1 and t2 is a tuple inR2 such thatt1.CNode =
t2.CNode, t1.att1 = t2.att1, ..., t1.attn = t2.attn, andt3 ∈ R3 be the resulting tuple, then:

t3.score = Min(t1.score, t2.score)

.

The following theorem holds.

Theorem 2 The TF-IDF propagation of scores preserves the traditional semantics of TF-IDF for conjunc-
tive and disjunctive queries.

Proof sketch.We consider restricted FTC expressions of the form{node | hasPos(node)∧QueryExpr(node)}
whereQueryExpr(node) can be one of the following

• hasPos(node, p) ∧ hasToken(p, t) for somep ∈ P, t ∈ T
• (QueryExpr1(node))∧(QueryExpr2(node)) for some restricted FTC expressionsQueryExpr1(node)

andQueryExpr1(node)

• (QueryExpr1(node))∨(QueryExpr2(node)) for some restricted FTC expressionsQueryExpr1(node)
andQueryExpr1(node)
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We assume that all search tokens are distinct. This can be achieved by considering the search token
position in the query to be part of the search token. Notice that this does not influence the TF-IDF score of
query results. Let two search tokenst1 andt2 have the same TF measuretf and IDF measureidf . Let the
weight of the first one bew1 and the weight of the second one bew2. Then their combined TF-IDF score is
(w1 ∗ tf ∗ idf + w2 ∗ tf ∗ idf)/(||n||2 ∗ ||q||2) = (w1 + w2) ∗ tf ∗ udf/(||n||2 ∗ ||q||2), i.e. it is the same
as a token with weightw1 + w2.

We use structural induction on the restricted FTC expressionE. We will prove the following invariant.
Let E1 is a subexpression ofE. LetAExpr1 be its corresponding FTA expression. Then, for every attribute
atti in the resulting relationR1 of AExpr1 and its corresponding search tokenqi, the following holds
∀u ∈ πCNode,atti(AExpr1) u.score = score(u.CNode, qi). Here,score(n, qi) = w(qi) ∗ tf(n, qi) ∗
idf(qi)/(||n||2 ∗ ||q||2) is the score of the search context noden ∈ N with respect to the tokenqi.

• Let E = hasPos(node, p) ∧ hasToken(p, t) for somep ∈ P, t ∈ T , i.e. we are searching for the
tokent. The corresponding FTA expression isπCNode(Rt). The score of everyn ∈ N is

score(n) =
∑
u∈Rt

u.score =
∑
u∈Rt

idf(t)2

unique tokens ∗ unique search tokens ∗ ||n||2 ∗ ||q||2 (1)

=
occurs ∗ idf(t) ∗ idf(t)

unique tokens ∗ unique search tokens ∗ ||n||2 ∗ ||q||2 (2)

=
w(t) ∗ tf(n, t) ∗ idf(t)

||n||2 ∗ ||q||2 (3)

This is exactly the TF-IDF score with respect to the search tokent.

• LetE = (QueryExpr1(node))∧(QueryExpr2(node)). LetQueryExpr1(node) andQueryExpr2(node)
have corresponding FTA expressionsAExpr1 andAExpr2 respectively. LetR1 andR2 be the results
of the evaluation ofAExpr1 andAExpr2. Remember that the search tokens (i.e. postition attributes
in the resulting full-text relations) are distinct. As in the proof of Theorem 1, the FTC expressionE
evaluates to the relationR(CNode, att1, ..., attn) that is the result ofAExpr1 1 AExpr2.

Letatti is a position attribute ofR. Without loss of generality,atti also belongs to the relationR1. Us-
ing the induction hypothesis, we get that∀u ∈ πCNode,atti(AExpr1) u.score = score(u.CNode, qi).
We have thatπCNode,atti(AExpr1 1 AExpr2) = πCNode,atti(AExpr1) becauseAExpr1 and
AExpr2 evaluate to relations that have no position attributes in common. Furthermore, for every
tuple u ∈ R1, there exist exactly|R2| tuplesv1, ..., v|R2|, each with scoreu.score/|R2|, such that

u.CNode = vj .CNode ∧ u.atti = vj .atti for j = 1, ..., |R2|. Consequently,
∑|R2|

j=1 vj .score =
u.score = score(u.CNode, qi).

Letv ∈ πCNode,atti(AExpr1 1 AExpr2) = πCNode,atti(AExpr1). Thus, there exist tuplesv1, ..., v|R2|
such thatv.CNode = vj .CNode ∧ v.atti = vj .atti for j = 1, ..., |R2|. Therefore,v.score =∑|R2|

j=1 vj .score = score(u.CNode, qi).

• The caseE = (QueryExpr1(node)) ∨ (QueryExpr2(node)) is similar to the previous one.

QED
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Further, this scoring method is more powerful than traditional TF-IDF because it can be generalized
to arbitrarily complex queries (not just simple conjunctive and disjunctive queries) by defining appropriate
scoring transformations for the other operators. For instance, we can define a scoring transformation for
distance selection predicates thereby extending the scope of TF-IDF scoring.

3.2 Probability Based Scoring

One of the popular scoring methods employed by the IR community is using probability-based measures
to indicate the relevance of a context node to a full-text search condition. The formal underpinnings for
this work is specified by the probabilistic relational model [19, 38]. Specifically, this model includes a
probability attribute for each tuple that specifies its score (relevance) to the result relation. A tuple with a
high probability score is very relevant to the result relation, while a tuple with low probability score is not. In
addition, the model defines how these probabilities are propagated through traditional relational operators.

It is easy to incorporate the above probability-based scoring in the FTA; we simply need to add a new
probability attribute to the full-text relations. This new attribute will represent the probability (score) of each
tuple in the full-text relation. Since all FTA operations are specified in terms of relational algebra operations,
we can directly use the techniques in the probabilistic relational model to propagate the scores for arbitrarily
complex FTA expressions.

The probabilistic relational algebra is the most prominent scoring method in full-text search [19]. This
algebra operates on tuples with a score attribute. The score of a tuple represents the probability associated
with that tuple. A score formula is associated with each operator with transforms its input tuples scores
into output tuples scores. We adapt the relational probabilistic model to our algebra. Every full-text relation
Rtoken, wheretoken ∈ T , is augmented with ascore attribute. Conceptually, the score of a tuple inRtoken
represents the probability that that tuple containstoken. Hence, the value ofscore should be a float between
0 and 1. This value can be computed using a variety of techniques, including TF and IDF [31]. For example,
if TF-IDF is used, then the score of each tuple could be defined as IDF/NF, where NF is the normalizing
factor used in computing the TF-IDF score (using the formula TF*IDF/NF). We associate a score formula
with each operator in our algebra. Each formula guarantees that output tuples will have a score value
between 0 and 1. In the following, we assume that every full-text relationRi has ascore attribute.

• Given an expressionπCNode,att1,...,atti,score(Expr1) where Expr1 evaluates toR1 and all tuples
t1 . . . tn in R1 that project out onto the same output tuplet3 (i.e., they share thesame values for the
projected attributes), the score formula associated with projection is:
t3.score = 1− (1− t1.score)× (1− t2.score)× . . .× (1− tm.score)
This formula aggregates the scores of input tuples whose value is between 0 and 1 into a single score
whose value is between 0 and 1.

• Given two expressionsExpr1 andExpr2 that evaluate to the full-text relationsR1 andR2, a tuplet1
in R1, a tuplet2 in R2 andt3 in (Expr1 1 Expr2) wheret3 is the result of joiningt1 andt2, i.e.,
t1.CNode = t2.CNode, the score formula associated with join is:

t3.score = t1.score× t2.score Note that the join preserves the fact that the score of tuples has to be
a value between 0 and 1.

• Given an expressionσpred(att1,...,attm,c1,...,cq)(Expr1) whereExpr1 evaluates toR1, the score formula
associated with a predicate depends on the predicatepred. Therefore, given a tuplet in R1, its score
is defined as follows:
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t.score = t.score × f wheref is a function associated with the predicate and evaluates to a value
between 0 and 1. For example, the function associated with the predicatedistance(p1, p2, dist) is:
f = 1− |t.p1 − t.p2|/dist.

• Given an expression¬Expr1 whereExpr1 evaluates toR1 andt is a tuple inR1, the score formula
associated with the negation is:t.score = 1 − t.score (tie negation to difference in the definition of
the algebra).

• Given(Expr1∪Expr2) whereExpr1 andExpr2 are algebra expressions whose corresponding full-
text relations areR1 andR2 andt1 is a tuple inR1 andt2 is a tuple inR2 andt3 is the result of the
union oft1 andt2, the score formula associated with the union is:t3.score = 1 − (1 − t1.score) ×
(1− t2.score)

• Given two expressionsExpr1 andExpr2 that evaluate to the full-text relationsR1 andR2, a tuplet1
in R1, a tuplet2 in R2 and t3 in (Expr1 ∩ Expr2) wheret3 is the result of joiningt1 and t2, i.e.,
t1.CNode = t2.CNode, the score formula associated with join is:t3.score = t1.score × t2.score
Intuitively, the intersection can be interpreted as a join on all attributes.

• The score for the caseExpr1 −Expr2 can be derived usingExpr1 −Expr2 = Expr1 ∩ ¬Expr2.

4 Completeness of Full-text Search Languages

In this section, we show the incompleteness of existing full-text languages with respect to the algebra and
calculus. We then define a complete full-text language based on the full-text calculus that naturally general-
izes existing languages.

4.1 Incompleteness of Boolean Full-Text Search Languages

Boolean full-text search languages are commonly used in IR, and have also been proposed for XML full-
text search [18, 33]. A typical syntax for such languages, which we shall callBOOL, is given below. The
simplest query is a search token, which can either be a string literal (such as ’test’) or the keywordANY,
which matches any token in a node. In addition, the query can be composed with Boolean operators.

Query := Token| NOTQuery| QueryANDQuery| QueryORQuery
Token := StringLiteral| ANY

We can recursively define the semantics ofBOOLin terms of our calculus. If the query is a StringLiteral
’token’ , it is equivalent to the calculus query expression∃p(hasPos(n, p) ∧ hasToken(p,′ token′)).
If the query isANY, it is equivalent to the expression∃p(hasPos(n, p)). If the query is of the formNOT
Query , it is equivalent to¬Expr, whereExpr is the calculus expression forQuery . If the query is of the
form Query1 AND Query2 , it is equivalent toExpr1 ∧ Expr2, whereExpr1 andExpr2 are calculus
expressions forQuery1 and Query2 respectively. ORis defined similarly. As an example, the query
’test’ AND NOT ’usability’ is equivalent to the calculus query expression:∃p1(hasPos(n, p1)∧
hasToken(p1,

′ test′)) ∧ ¬(∃p2hasPos(n, p2) ∧ hasToken(p2,
′ usability′)).

Obviously,BOOLcannot express position-based predicates. However, we now show that even if we
disallow such predicates in the calculus (i.e.,Preds = φ), BOOLis still incomplete ifT is infinite.

Theorem 3 If T is infinite, there exists a full-text query that can be expressed in the full-text calculus with
Preds = φ, but which cannot be expressed byBOOL.
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Proof Sketch:We shall show that no query inBOOLcan express the following calculus query:
∃p(hasPos(n, p)∧¬hasToken(p, t1)) (i.e.,find context nodes that contain at least one token that is nott1),
wheret1 ∈ T . The proof is by contradiction. Assume that there exists a queryQ in BOOLthat can express
the calculus query. LetTQ be the set of tokens that appear inQ. We construct two context nodesCN1 and
CN2. CN1 contains only the tokent1. CN2 contains the tokent1 and one other tokent2 ∈ T − (TQ∪{t1})
(such a tokent2 always exists becauseT is infinite andQ is finite). By the construction, we can see that
CN1 does not satisfy the calculus query, whileCN2 does. We will now show thatQ either returns both
CN1 or CN2 or neither of them; since this contradicts our assumption, this will prove the theorem.

Let CQ be the calculus expression equivalent toQ. We show by induction on the structure ofCQ that
every sub-expression ofCQ (and henceCQ) returns the same Boolean value forCN1 andCN2. If the
sub-expression is of the form∃p(hasPos(n, p) ∧ hasToken(p, token)), it returns true for bothCN1 and
CN2 if token = t1, and false iftoken 6= t1 (by construction ofCN1 andCN2 - recall thattoken appears
in Q). If the sub-expression is of the form∃p(hasPos(n, p)), it returns true for bothCN1 andCN2. If
the sub-expression is of the form¬Expr, then it returns the same Boolean value for bothCN1 andCN2

becauseExpr returns the same Boolean value (by induction). A similar argument can also be made for the
∧ and∨ Boolean operators.2

If we limit T to be finite, however, we can prove thatBOOLis complete withPreds = φ.

Theorem 4 If T is finite, every query that can be expressed in the full-text calculus withPreds = φ can be
expressed inBOOL.

The proof is presented in Appendix A. The main intuition is that, ifT is finite, we can express queries
such as:∃p(hasPos(n, p) ∧ ¬hasToken(p, t1)) in BOOLby explicitly listing all the tokens that are not
t1. AlthoughBOOLis complete under this assumption, it is not always practical because even for simple
queries such as the one above, we need to explicitly list all possible tokens other thant1 in the query.

4.2 Incompleteness of Existing Predicate-Based Full-Text Search Languages

We now consider full-text languages that have position-based predicates in addition to Boolean operators [3,
7]. A typical syntax for such a language, which we shall callDIST , is given below.

Query := Token| NOTQuery| QueryANDQuery| QueryORQuery| dist(Token,Token,Integer)
Token := StringLiteral| ANY

The semantics ofDIST is the same asBOOL, except for the addition ofdist(Token,Token,Integer) .
This construct is the equivalent of thedistance predicate introduced in the calculus (Section 2.2), and spec-
ifies that the number of intervening tokens should be less than the specified integer. More formally, the
semantics of dist(t1,t2,d) for some tokenst1 andt2 and some integerd is given by the calculus expression:
∃p1(hasPos(n, p1)∧hasToken(p1, t1)∧∃p2(hasPos(n, p2)∧hasToken(p2, t2)∧distance(p1, p2, d))).
If t1 or t2 is ANYinstead of a string literal, then the correspondinghasToken predicate is omitted in the
semantics. We now show thatDIST is incomplete with respect to the calculus so long asT is not trivially
small. We can also prove similar incompleteness results for other position-based predicates.

Theorem 5 If | T |≥ 2, there exists a full-text query that can be expressed in the full-text calculus with
Preds = {distance(p1, p2, d)}, but which cannot be expressed byDIST .

Proof Sketch:We shall show that no query inDIST can express the following calculus query:
∃p1(hasPos(n, p1)∧∃p2(hasPos(n, p2)∧hasToken(p1, t1)∧hasToken(p2, t2)∧¬distance(p1, p2, 0))),
wheret1 ∈ T , t2 ∈ T andt1 6= t2 (i.e., find context nodes where the tokenst1 and t2 do not appear next
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to each other at least once). The proof is by contradiction. Assume that there exists a queryQ in DIST
that can express the calculus query. We now construct two context nodesCN1 andCN2 as follows.CN1

contains the tokenst1 followed by t2 followed by t1. CN2 contains the tokenst1 followed by t2 followed
by t1 followed by t2. By the construction, we can see thatCN1 does not satisfy the calculus query, while
CN2 does. Using induction on the structure ofQ similar to the proof of Theorem 3, we can show thatQ
either returns bothCN1 or CN2 or neither of them. This is a contradiction.2

4.3 A Complete Full-Text Query Language

We now present a new languageCOMPbased on the full-text calculus that is complete even in the presence
of arbitrary position-based predicates.COMPshares the same syntax asBOOLfor simple Boolean queries,
but naturally generalizesBOOLwith position variables to achieve completeness. Thus, simple queries retain
the same conventional syntax, while new constructs are only required for more complex queries.

Query := Token| NOTQuery|QueryANDQuery|QueryORQuery| SOMEVar Query| EVERYVar Query| Preds
Token := StringLiteral| ANY| Var HASStringLiteral| Var HAS ANY

Preds := distance(Var,Var,Integer)| diffpos(Var,Var)| ...
The main additions toBOOLare theHASconstruct in Token, and theSOME, EVERYand Preds constructs in
Query (the semantics of the other constructs remain unchanged fromBOOL). TheHASconstruct allows us to
explicitly bind position variables (Var) to positions where tokens occur. The semantics for ’var1 HAStok’ in
terms of the calculus, wheretok is a StringLiteral is:hasToken(var1, tok). The semantics for ’var1 HAS
ANY’ is: hasPos(n, var1). While theHASconstruct allows us to explicitly bind position variables to token
positions, theSOMEandEVERYconstructs allows us to quantify over these positions. The semantics of
’SOMEvar1 Query’ is∃var1(hasPos(n, var1)∧Expr), whereExpr is the calculus expression semantics
for Query. The semantics of ’EVERYvar1 Query’ is ∀var1(hasPos(n, var1) ⇒ Expr), whereExpr
is the calculus expression semantics for Query. Finally, the Preds construct allows for the definition of
arbitrary position-based predicates. The semantics of a predicate ’pred(var1,...,varp,c1,...cq)’, is simply:
pred(var1, . . . , varp, c1, . . . , cq).

As an illustration of the power ofCOMP, the following two queries express the calculus queries used to
prove the incompleteness ofBOOLandDIST in Theorems 3 and 5, respectively.

SOMEp1 (NOTp1 HASt1)
SOMEp1 SOMEp2 (p1 HASt1 ANDp2 HASt2 AND NOTdistance(p1,p2,0))

We can prove thatCOMPis complete (the proof is in the appendix).

Theorem 6 Every query that can be expressed in the full-text calculus using predicatesPreds can be
expressed byCOMPusingPreds.

5 Query Complexity and Evaluation Algorithms

While one important aspect of a full-text language is expressibility (discussed in the previous section),
another important aspect is query complexity, i.e., the efficiency of evaluating a query in a full-text language.
In this section, we study the query complexity of different full-text languages and develop efficient query
evaluation algorithms. Due to space constraints, we will only sketch the algorithms to evaluateNPRED
queries.

Like other formal languages, full-text languages have a tradeoff between expressibility and query com-
plexity: the more expressive the language, the greater its query complexity. We formalize this notion by
developing a complexity hierarchy of full-text languages based on the inverted list [28] model for query

14



evaluation commonly used in the IR community (see Section 5.1.2). At the top of our complexity hierarchy
is COMP, which is the most expressive but which also has the greatest query complexity. At the bottom of
the hierarchy isBOOL, which is the least expressive but also has the lowest query complexity. We also iden-
tify two new classes of languages between these two extremes:PPRED, which stands for a subset ofCOMP
restricted to “Positive” PREDicates, andNPRED, which stands for a subset ofCOMPrestricted to “Negative”
PREDicates (we shall formally define positive and negative predicates in Sections 5.5 and 5.6).PPRED
includes most common full-text predicates, such asdistance andsamepara , but is more powerful than
existing full-text languages such asDIST . NPREDis a superset ofPPREDand includes the negations of
most common full-text predicates.

An interesting result of our study is that the query evaluation complexity ofPPREDis linear in the
size of the query token inverted lists, and quadratic in the size of the query. Specifically, in Section 5.5,
we present an algorithm wherebyPPREDqueries can be evaluated in a single scan over the query term
inverted lists. This illustrates a practical application of our formalism: developing full-text languages such
asPPREDthat are more powerful than existing full-text predicate languages (such asDIST ), but which can
still be evaluated efficiently in a single scan over inverted lists. Similarly, we also show in Section 5.6, that
the query evaluation complexity ofNPREDis linear in the size of the query inverted lists but, in some case,
exponential in the size of the query – this additional complexity is the price paid for negation.

We note that our focus in this section is on establishing query complexityupper boundsfor the various
full-text languages by developing concrete, efficient, and practical query evaluation algorithms (especially
for PPREDandNPRED). Exploring query complexity lower bounds is beyond the scope of this paper, and
is part of future work. We now start by describing our complexity model.

5.1 Complexity Model

Our study of the complexity of full-text search languages is similar in spirit to the vast body of work on the
complexity of database query languages (e.g., [8, 9, 23, 36]). However, there are two main reasons why the
complexity results for database query languages do not directly apply to our setting.

First, our focus is specifically on full-text search using the inverted list model for data organization
(which is the commonly used model in the IR community). Thus, our complexity parameters are expressed
in terms of this model, and we establish upper bounds by developing concrete query evaluation algorithms
based on this model. In contrast, most database query languages work with arbitrary relations (not just
full-text relations and inverted lists); while this leads to more general results, these results do not isolate the
complexity of full-text primitives in the context of the inverted list model.

Second, most database query language complexity studies treatexpression complexity(i.e., the complex-
ity of evaluating a query as a function of the size of the query, assuming the database is the same) [9, 36]
anddata complexity[23, 36] (i.e., the complexity of evaluating a query as a function of the size of the data,
assuming that the query is the same) separately. In contrast, we are interested incombined complexity(de-
fined, but not explored in [36]), whereby we want to determine the complexity of evaluating a query as a
function ofboththe query size and the data size in order to study theirrelative impacton query performance.

5.1.1 Query Model

We characterize aCOMPquery Q by the following parameters. Since the other full-text languages that we
consider are subsets ofCOMP, these parameters apply to these languages as well.

• toksQ: The number of tokens in Q, including string literals and the universal tokenANY.
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"software"   inverted list

75       81    
1         3    12   39
51       56   59
89       96  102  108

cn         PosList

"usability"   inverted list

cn         PosList

1         25    29   42

Figure 2: Inverted Lists Examples

• predsQ: The number of predicates in Q.

• opsQ: The number of operations in Q, where an operation can beNOT, AND, OR, SOME, or EVERY.

The above parameters characterize the total size of aCOMPquery since they capture all the primitives
that can appear in a query.

5.1.2 Data Model

As mentioned earlier, we use the inverted list model [28] for representing context nodes. For each token
tok that appears in at least one context node inN , there is an associated inverted listILtok. ILtok contains
a list of one or moreentries. Each entry is a pair:(cn, PosList), wherecn is the id of a context node
that containstok, andPosList is the list of positions incn that containtok. The positions inPosList are
ordered based on their order of occurrence incn, and the entries inILtok are ordered based on the ids of
the context nodes. Intuitively,ILtok corresponds to the physical representation of the full-text relationRtok

in the FTA. Figure 2 shows example inverted lists for theusability andsoftware tokens, where the
document in Figure 1 is one of the context nodes and has id 1.

In addition to the inverted lists, there is also a list,ILANY , which contains one entry for each context
node inN . Each entry is the pair:(cn, PosList), wherecn is the id of a context node, andPosList is
the list of positions that occur incn. Again, the positions inPosList are ordered based on their order of
occurrence incn, and the entries inILANY are ordered based on the ids of the context nodes. Intuitively,
ILANY corresponds to the physical representation of theANYfull-text relation in the FTA.

One important restriction on inverted lists is that they can only be accessed sequentially (some IR imple-
mentations allow restricted random accesses, but we do not consider these extensions here). Specifically, the
only way to access an inverted listILtok (similarly, forILANY ) is to open acursor. Each cursor sequentially
scansILtok and supports the following two operations.

• nextEntry() : The first nextEntry() call moves the cursor to the first entrye in ILtok, and returns the
id of the context node ine. Each subsequent call advances the cursor to the next entry inILtok and
returns the corresponding context node id. When all entries have been scanned, nextEntry() returns
NULL. The entry pointed to by the cursor at any time is called thecurrent entry.

• getPositions(): This call returns the list of all positions (PosList) in a given entry int he inverted list.

We assume that each invocation of the above operations is executed inO(1) (i.e., constant) time.
Finally, to quantify the size of the inverted lists, we use the following parameters. We useT to denote

the set of all tokens that appear in the context nodesN .
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• cnodes: |N | (the number of context nodes).

• pos per cnode: max(cn,PosList)∈ILANY
(|PosList|) (the maximum number of positions in a con-

text node).

• entries per token: maxtok∈T (|{e|e ∈ ILtok}|) (the maximum number of entries in a token in-
verted list).

• pos per entry: maxtok∈T max(cn,PosList)∈ILtok
(|PosList|) (the maximum number of positions

in an entry in a token inverted list).

We note that the above parameters are conservative in the sense that they use the maximum values for the
number of positions per context node, etc.; we do this to keep the model simple. However, as we shall soon
see, these conservative parameters are still sufficient to clearly separate the query evaluation complexity of
the full-text languages that we consider.

5.2 Summary of Complexity Results

NPRED

COMP
O(cnodes * (pos_per_doc)^toks_Q * (preds_Q + ops_Q + 1))

PPRED
O(entries_per_token * pos_per_entry * toks_Q * (preds_Q + ops_Q + 1))

BOOL−NONEG
O(entries_per_token * toks_Q * (ops_Q + 1))

O(entries_per_token * pos_per_entry * toks_Q * min(narity^npreds_Q,toks_Q!) * (preds_Q + ops_Q + 1))

BOOL
O(cnodes * toks_Q * (ops_Q + 1))

Figure 3: Complexity Hierarchy

Figure 3 summarizes our complexity results; we present the details in the subsequent sections. We
represent each language by a bounding box and depict the query complexity of that language (expressed in
terms of our complexity parameters) within the bounding box; note that these are upper bounds on the query
complexity. If the bounding box of a language A encloses the bounding box of another language B, then all
queries in B can be expressed in A. If the bounding boxes of two languages A and B intersect, but no one
bounding box contained in the other, then there are some queries that can be expressed in A but not in B,
and vice versa.

As shown, the main results are:

• The query complexity ofCOMPis polynomial in the size of the inverted lists and exponential in the
size of the query.

• The query complexity ofBOOLwithout negation (BOOL-NONEG) is linear in the size of the query
token inverted lists, and linear in the size of the query.

• The query complexity ofBOOL(with negation) is linear in the size of theANYlist, and linear in the
size of the query.

• The query complexity ofPPREDis linear in the size of the query token inverted lists, and linear in the
size of the query.
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• The query complexity ofNPREDis linear in the size of the query token inverted lists, and possibly
exponential in the size of the query.

The above complexity results demonstrate the potential for performance savings usingPPREDand
NPRED: they reduce the query complexity frompolynomial in the size of the data (forCOMP) to linear
in the size of the data.

We now discuss the complexity results and query evaluation algorithms in more detail. Due to space con-
straints, we only briefly discussBOOLandCOMP, and focus mainly on developing efficient query evaluation
algorithms forPPRED. We will only sketch the implementation ofNPREDdue to space limitations.

5.3 BOOL: Evaluation and Complexity

As mentioned in Section 4.1,BOOLis commonly used in IR systems. We first consider a subset ofBOOL
calledBOOL-NONEG, which does not haveANYand does not allowNOTas the first operator. It has the
following grammar (note thatNOTcan only appear along with anAND).

Query := Token| QueryAND NOTQuery| QueryANDQuery| QueryORQuery
Token := StringLiteral
A common way to evaluate queries in the above language is to merge [28] the inverted lists for the query

tokens. For example, consider the query(’software’ AND ’users’ AND NOT ’testing’)
OR ’usability’ . The query can be evaluated by mergingILsoftware andILusers (for the firstAND) to
determine the context node ids that contain both tokens. This result can then be merged withILtesting to
determine the context node ids that do not contain’testing’ (for NOT). Finally, this result can be merged
with ILusability to determine the union of the context node ids (forOR). Since the inverted list entries are
sorted by the context node ids, each merge can be done in a single scan over the query token inverted lists.
Since the total size of the relevant parts of the query token inverted lists isentries per token×toksQ (since
BOOL-NONEGignores positions), and each inverted list entries are scanned at most once for each operator,
the query evaluation complexity ofBOOL-NONEGis: O(entries per token× toks Q× (opsQ + 1).

In contrast toBOOL-NONEG, BOOLallowsANYandNOTto appear anywhere in the query (Section 4.1).
SinceANYandNOTrequire access toILANY (to find all positions in a context node), andILANY has
cnodes entries, the query complexity ofBOOLis: O(cnodes× toks Q× (opsQ + 1)).

A scoring formula is associated with each Boolean operator inBOOLandBOOL-NONEGas is defined
in [19]. Initially, a score is associted with each entry in the inverted lists and are modified by each Boolean
operator in the query plan.

5.4 COMP: Evaluation and Complexity

As discussed in Section 4.3,COMPhas a one-to-one mapping to the FTC. Since the FTC is a Quantified
Boolean Formula (QBF), it is LOGSPACE-complete for data complexity (complexity in the size of the
database) and PSPACE-complete for expression complexity (complexity in the size of the query) [36]. It
is an open question as to whether LOGSPACE is a strict subset of PTIME (polynomial time), and whether
PSPACE is a strict subset of EXPTIME (exponential time). Thus, for all practical purposes given our current
knowledge, we can only devise a query evaluation algorithm that is polynomial in the size of the data and
exponential in the size of the query. We now outline one such algorithm.

The basic idea is to translate the FTC expression corresponding to aCOMPquery into an equiva-
lent FTA expression (using the equivalence of FTC and FTA given in Section 2.4). The FTA expres-
sion can then be evaluated using regular relational operators. As an illustration, consider the follow-
ing COMPquery: SOMEp1 SOMEp2 ( p1 HAS ’usability’ AND p2 HAS ’software’ AND
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R2R1

scan ("usability") scan ("software")

R

distance (R, 5)

not samesentence (R)

samepara (R)

R

join (R1, R2)

R

project (R, CNode)

R

Figure 4: Query Plan Example

samepara( p1, p2) AND ¬ samesentence( p1, p2) AND distance( p1, p2,5)) (return context
nodes that contain the words ”usability” and ”software” in the same paragraph, in that order, within at most
5 words of each other). The resulting FTA expression tree is shown in Figure 4.

The complexity of evaluating aCOMPquery is thus bounded by the complexity of the FTA operators.
Since all FTA operators except the join operator have complexity linear in the size of their input, we focus
on the join operator. If the join operator takes in two inputsI andJ , andI hasp tuples for context nodecn,
andJ hasq tuples for context nodecn, then the result hasp · q tuples for context nodecn (since the full-text
join operator always performs an equi-join on the context nodes). Thus, the worst case complexity of a join
is a cartesian product of the number of tuplesper context node. Since there can be at mosttoksQ joins in a
COMPquery, and the query can access theILANY relation in general (with sizecnodes× pos per cnode),
the complexity of aCOMPis:

O(cnodes× (pos per cnode)toksQ × (predsQ + opsQ + 1))
Scoring inCOMPis handled by each operator in the query plan as defined in Section 3. This also applies

to PPREDandNPPRED.

5.5 PPRED: Evaluation and Complexity

PPREDis a subset ofCOMPthat restricts the use of negation and only allows “positive” predicates (which
will shall formalize soon), which actually include most common predicates used in the IR community. The
surprising aspect ofPPREDis that, by placing these restrictions, it can guarantee that queries can be run in
linear time over the size of the query inverted lists, instead of inpolynomialtime; for large, practical data
sets, this translates to a huge gain in performance. The grammar forPPREDis given below, where Query*
refers to a Query with no free variables.

Query := Token| QueryAND NOTQuery* | QueryANDQuery| QueryORQuery| SOMEVar Query| EVERY
Var Query| Preds

Token := StringLiteral| Var HASStringLiteral
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Preds := distance(Var,Var,Integer)| ordered(Var,Var)| ...
Like BOOL-NONEG, PPREDonly allows negations to appear in the context of anANDand cannot ex-

plicitly specific ANY. Both of these restrictions ensure thatILANY does not need to be accessed during
query processing. Since query operations can be implemented in a linear scan over the query inverted lists
in the presence of “positive” predicates, we have the following query complexity forPPRED:

O(entries per token× pos per entry × toksQ × (predsQ + opsQ + 1))

We now describe the intuition behind positive predicates and how it enables an efficient linear query
evaluation algorithm. We then formalize the properties and algorithms.

5.5.1 Positive Predicates: Intuition

Intuitively, positive predicates are those that are true in a contiguous region in the position space, and are
false outside of this region. For instance, thedistance predicate is true in the region where both positions
are within the distance limit, and false outside this region. A more complex example of a positive predicate
is ordered , where the region specifies the part of the position space where the positions are in the required
order. Other common full-text predicates such assamepara , window , etc. are also positive predicates.
Given positive predicates, how can we use their property to devise efficient query evaluation algorithms?

Recall from the complexity discussion inCOMPthat the main source of complexity stems from the
evaluation of the join operation, which computes the cartesian product of the number of tuplesper context
node. If the query contains only positive predicates, we can avoid computing this cartesian product, while
still producing the correct results. The key idea is toskip overcontinuous regions of positions in the cartesian
product by exploiting the property of positive predicates, without missing any answer to a query. This
skipping over is done inincreasing orderof positions, and hence can be done in a linear scan over the
inverted lists.

As an illustration, consider the following query:SOMEp1 SOMEp2 ( p1 HAS ’usability’ AND
p2 HAS ’software’ AND distance( p1, p2,5)) (return context nodes that contain the words ”us-
ability” and ”software” within at most 5 words of each other). Consider evaluating the query over the
inverted lists shown in Figure 2. A naive evaluation plan would be to joinILusability andILtesting on the
context node, and compute the cartesian product of positions, and then apply the distance predicate. For the
context node with id 1, this corresponds to computing 9 pairs of positions (3 in each inverted list), and then
only selecting the final pair (39,42) that satisfies the distance predicate. However, it is sufficient to determine
the answer by only scanning 6 pairs of positions (3 + 3 instead of 3 * 3).

Specifically, we start with the smallest pair of positions (3,25) and check whether it satisfies the distance
predicate. Since it does not, we movethe smallest positionto get (12,25). Since this does not satisfy the
predicate again, we move the smallest position to get (39,25), and so on until we find the solution (39,42).
Note that we only scan each inverted list position exactly once, so the complexity is linear in the size of the
inverted lists. The reason we were able to move the smallest position is because the distance predicate is
true in a contiguous region, and if the predicate is false for the smallest position in the region, we can infer
that it is also false for other positions without having to explicitly enumerate them.

5.5.2 Positive Predicates: Definition

We now formally define positive predicates.
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Definition 1 [Positive Predicates]A n-ary position-based predicatepred is said to be a positive predicate
iff there existsn functionsfi : Pn → P (1 ≤ i ≤ n) such that:

∀p1, ..., pn ∈ P (¬pred(p1, ..., pn) ⇒
∀i∀p′i ∈ P pi ≤ p′i < fi(p1, ..., pn) ⇒

∀p′1, ..., p′i−1, p
′
i+1, ..., p

′
n ∈ P

p1 ≤ p′1, ..., pi−1 ≤ p′i−1,
pi+1 ≤ p′i+1, ..., pn ≤ p′n ⇒ ¬pred(p′1, ..., p

′
n)

∧
∃j fj(p1, ..., pn) > pj

Intuitively, the property states that for every tuple of positions that do not satisfy the predicate (a) there
exists a contiguous area, in which all tuples do no satisfy the predicate; this area is specified in terms of
the functionsfi(p1, ..., pn), which specifies the lower bound of the next possible solution, and (b) at least
onefi(p1, ..., pn) has value greater thanpi; this specifies which position inverted list can be moved forward
without compromising correctness.

As mentioned earlier, predicates such asdistance, samepara, ordered are positive predicates. For
instance, for the 2-ary distance predicate (we only count position parameters in the arity),f1(p1, p2) = p1+1
if p2 > p1, and= p1 otherwise. Similary,f2(p1, p2) = p2 + 1 if p1 > p2, and= p2 otherwise.samepara
andordered have similarfi functions.

5.5.3 PPREDQuery Evaluation Algorithms

We now present the algorithm for evaluating aPPREDquery. The query is first rewritten to push down
projections wherever possible so that spurious positions are not propagated. Given the resultingPPRED
query, an operator tree is constructed based on the FTA operators. Figure 4 shows a sample query evaluation
plan for the query in Section 1. Since we do not want to materialize the entire output full-text relation
corresponding to an operator, each operator exposes a new API for traversing its output. This API ensures
that successive calls can be evaluated in a single scan over the inverted list positions. We denote the output
full-text relation for an operatoro, R which hasn position columns. The API, defined below, maintains
the following state:node, which tracks the current node, andp1, ..., pn, which track the current positions in
node.

• advanceNode(): On the first call, it setsnode to be the smallest value inπnode(R) (if one exists;
elsenode is set to NULL). It also sets position values,p1, ..., pn such that: (node, p1, ..., pn) ∈
R ∧ ∀p′1, ..., p′n(node, p′1, ..., p

′
n) ∈ R ⇒ p′1 ≥ p1 ∧ ... ∧ p′n ≥ pn (i.e., it sets positionsp1, ...pn to

be the smallest positions that appear inR for thatnode; we will always be able to find such positions
due to the property of positive predicates). On subsequent calls,node is updated to the next smallest
value inπnode(R) (if one exists), andp1, ..., pn are updated as before.

• getNode(): Returns the current value ofnode.

• advancePosition(i,pos): It sets the values ofp1, ..., pn such that they satisfy:(node, p1, ..., pn) ∈
R ∧ pi > pos ∧ ∀p′1, ..., p′n(node, p′1, ..., p

′
n) ∈ R ∧ p′i ≥ pos ⇒ (p′1 ≥ p1 ∧ ... ∧ p′n ≥ pn) (i.e., the

smallest values of positions that appear inR and that satisfy the conditionpi > pos), and returns true.
If no such positions exist, then it setspis to be NULL and returns false.

21



• getPosition(i): Returns the current value ofpi.

Given the operator evaluation tree in Figure 4, the general evaluation scheme proceeds as follows. To find
a solutionadvanceNodeis called on the top project operator which simply forwards this call to the distance
selection operator below it. The latter tries to find a solution by continuously callingadvancePositionon
the ordered selection operator below it until it finds a satisfying tuple of positions (see more details about the
exact algorithm below). The ordered selection operator behaves in a similar manner: it advances through the
result tuples of the underlying operator until it finds a tuple that satisfies it. The evaluation proceeds down
the tree until the leaves (the scan operators) are reached. The latter simply advances through the entries
in the inverted lists. Notice that the entire evaluation is pipelined and no intermediate relations need to be
materialized.

We now show how the differentPPREDoperators can implement the above API. The API implementa-
tion for the scan operator is straightforward since it directly operates on the inverted list. We will thus focus
on the join operator (Algorithm 1) and the select operator for evaluating predicates (Algorithm 2). The
algorithms for the project (Algorithm 3), union (Algorithm 4), and set difference (Algorithm 5) operators
are essentially the same as in the relational model.

Algorithm 1 shows how the API is implemented for the join operator. We only show the implemen-
tation of theadvanceNode andadvancePos methods since the other methods are trivial. Intuitively,
advanceNode performs an sort-merge join on the node. It then sets the positionspi to the correspond-
ing positions in the input.advancePosition(i,pos) moves the position cursor on the corresponding
input.

Algorithm 2 shows how the API is implemented for the select operator implementing predicatepred
with functionsfi (see definition in the beginning of the section). Each invocation ofadvanceNode ,
advancesnode until one that satisfies the predicate is found, or there are nonodes left. The satisfy-
ing node is found using the helper methodadvancePosUntilSat , which returns true iff it is able
to advance the positions of the currentnode so that they satisfy the predicatepred. The implemen-
tation of advancePosition is similar. It first advances the position on its input, and then invokes
advancePosUntilSat until a set of positions that satisfypred are found.

TheadvancePosUntilSat function first checks whether the current positions satisfypred. If not,
it uses thefi functions to determine a positioni to advance, and loops back until a set of positions satisfying
pred are found, or until no more positions are available. This is the core operation in the select operator:
scanning the input positions until a match is found. The properties of positive predicates enable us to do this
in a single pass over the input.

Algorithm 3, Algorithm 4, and Algorithm 5 contain a typical implementation similar to the one often
used for relational algebra operators. TheadvanceNodefunction for the project operator is trivial. The
advancePositionfunction for the same operator saves the current values of the projected-out columns and
advances the specified cursor until a new set of values for the projected-out columns is found. The union
operator performs a merge between the two inputs, always returning the smaller node identifier (foradvan-
ceNode) or the smaller tuple in lexicographic order (foradvancePosition). Finally, the difference operator
implements only theadvanceNodefunction (it works only at the level of nodes) by always returning the
first node from the first input not found in the second input.

5.5.4 Correctness and Complexity

We now present a sketch of the proof of correctness of the above algorithm. The proof has two parts: (1)
soundness, i.e., every result returned by the algorithm is a result of evaluating the correspondingPPRED
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Algorithm 1 PPRED Join Evaluation Algorithm
Require: inp1, inp2 are the two API inputs to the join, and havec1 andc2 position columns, respectively

1: Node advanceNode(){
2: node1 = inp1.advanceNode();
3: node2 = inp2.advanceNode();
4: while node1 != NULL && node2 != NULL && node1 != node2do
5: if node1< node2then node1 = inp1.advanceNode();
6: elsenode2 = inp2.advanceNode();end if
7: end while
8: if node1 == NULL‖ node2 == NULLthen
9: return NULL;

10: else{node1 == node2}
11: setpi (i < c1) to inp1.getPosition(i);
12: setpi (i ≥ c1) to inp2.getPosition(i− c1);
13: node = node1;
14: return node1;
15: end if}
16:
17: boolean advancePosition(i,pos){
18: if i < c1 then
19: result = inp1.advancePosition(i,pos);
20: if resultthen
21: pi = inp1.getPostion(i);
22: end if
23: return result;
24: else
25: //Similary for inp2

26: end if}

query and (2) completeness, i.e., proving that the algorithm does not miss any query results.
First, to prove the soundess we use structural induction on the structue of the operator evaluation tree.

• If the current operator is a scan operator for the tokent, the corresponding FTA expression isRt. Then,
advanceNodemoves the cursor to the first inverted list entry corresponding to the next context node,
andadvancePositionmoves the cursor to the next inverted list entry. Given the direct correspodence
between the inverted list and the token relationRt, the new position obviously belongs to the result of
the FTA expression.

• If the current operator is a selection operator for the positive predicatepred(p1, ..., pm, c1, ..., cq), then
the corresponding FTA expression isAlgExpr = σpred(att1,...,attm,c1,...,cq)(Expr

′), whereExpr′ cor-
responds to the nested operator sub-tree. Let’s consideradvanceNode. Lines 2 and 4 guarantee that
the current result always satisfiesExpr′ (induction hypothesis). The loop inlines 15-20 quarantees
that the current solution also satisfies the predicatepred. The loop in lines 3-5 will not end until both
the nested sub-expression and the predicate are satisfied. Therefore,advanceNodealways produces
correct results. Further, similar conclusions can be made foradvancePosition.

• If the current operator is a join operator between te sub-treesT1 andT2, it corresponds to the FTA
expressionAlgExpr = E1 1 E2, whereEi corresponds toTi for i = 1, 2. The advanceNode
algorithm is a trivial sort-merge join. Therefore, the algorithm-produced result is correct (it is a result
of AlgExpr) iff the results produced by the evaluation ofT1 andT2 are correct. This is true by
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Algorithm 2 PPRED Predicate Evaluation Algorithm
Require: inp is API inputs to the predicate withc position columns

1: Node advanceNode(){
2: node = inp.advanceNode();
3: while node != NULL && !advancePosUntilSat()do
4: node = inp.advanceNode();
5: end while
6: return node;}
7:
8: boolean advancePosition(i,pos){
9: success = inp.advancePosition(i,pos);

10: if !successthen return false;endif
11: pi = inp.getPos(i);
12: return advancePosUntilSat();}
13:
14: boolean advancePosUntilSat (){
15: while !pred(p1, ..., pc) do
16: find somei such thatfi(p1, ..., pc) > pi

17: success = inp.advancePos(i, fi(p1, ..., pc);
18: if !successthen return false;end if
19: pi = inp.getPosition(i);
20: end while

21: return true;}

the induction hypothesis.advancePositionsimply dispatches the call to the correct cursor from the
nested sub-trees and thus, it trivially preserves the correctness.

• If the current operator is a project operator that projects out the columnsi1, ..., im, then the corre-
sponding FTA expression isAlgExpr = πCNode,att1,...,attn−m(E

′), where theatti’s are the remaining
columns andE′ corresponds to the nested operator sub-treeT ′. advanceNodeis trivially true because
moving the context node always produces a new tuple. With respect toadvancePosition, we can say
that the loop in lines 14-30, guarantees that the algorithm produces the next distinct tuple of projected
columns. Again, using the induction hypothesis forE′ andT ′, the correcness is trivial.

• If the current operator is a union operator between the sub-treesT1 andT2, then the correspoding FTA
expression isAlgExpr = E1 ∪ E2,whereE1 andE2 correspond toT1 andT2. The implementations
of bothadvanceNodeandadvancePositionget the next smallest (in lexicographic order) tuple from
the input streams. By the induction hypothesis forT1, T2, E1, E2, our algorithm trivially preserves
the correcness.

• If the current operator is a set-difference operator between the sub-treesT1 andT2, then the corre-
spoding FTA expression isAlgExpr = E1 − E2,whereE1 andE2 correspond toT1 andT2. The
implementations ofadvanceNodegets the next smallest (in lexicographic order) tuple from the first
input stream that is not in the second input stream. By the induction hypothesis forT1, T2, E1, E2,
our algorithm trivially preserves the correcness.

The second part of the proof proves the completeness of the algorithm and is a bit more complex. We
prove completeness by inductively showing for each operator thatadvanceNodeand theadvancePosition
preserve the invariants shown in the beginning of Section 5.5.3, i.e. they always find minimal solutions for
the corresponding operator tree. Therefore, they cannot ”miss” solutions.
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Algorithm 3 PPRED Project Evaluation Algorithm
Require: inp is API inputs to the project operator;i1, ..., im are the columns to be projected out

1: Node advanceNode(){
2: node = inp.advanceNode();
3: return node;}
4:
5: boolean advancePosition(i,pos){
6: if i ∈ {i1, ..., im} then
7: error();
8: end if
9:

10: //save current positions
11: for all j = 1, ..., m do
12: qj = inp.getPosition(ij);
13: end for
14: repeat
15: success = inp.advancePosition(i,pos);
16: if !successthen return false;endif
17: for all j = 1, ..., m do
18: nqj = inp.getPosition(ij);
19: end for

20: until ∃j qj 6= nqj }

• Let the current operator be a scan operator for the tokent. Then,advanceNodemoves the cursor to
the first inverted list entry corresponding to the next context node, andadvancePositionmoves the
cursor to the next inverted list entry. Given the direct correspodence between the inverted list and the
token relationRt, the new position obviously belongs to the result of the FTA expression. Further, the
minimality of the result (in lexicographic order) is implied by the presence of ”the first inverted list
entry corresponding to next context node” and ”next inverted list entry”.

• Let the current operator be a selection operator for the positive predicatepred(p1, ..., pm, c1, ..., cq).
The soundness of the algorithms guarantees the(node, p1, ..., pn ∈ R part of the properties. We will
show minimality. We will focus on theadvancePosUntilalgorithm. If it finds a minimal solution,
the completeness of bothadvanceNodeandadvancePositiontrivially follows. Line 15 guarantees
that !pred(pi1 , ..., pim , c1, ..., cq). Let advancePosUntilchooses indexi0 in line 16. The positive-
predicates property guarantees that there is at least one such index. Further, the same property guar-
antees that!pred(p′i1 , ..., p

′
im

, c1, ..., cq) for everyp′i1 , ..., p
′
im

, pi0 ≤ p′i0 < f(pi1 , ..., pin), i.e. there is
no solution forpi0 ≤ p′i0 < f(p1, ..., pn). Further, let line 17 moves the cursors to(p′′1, ..., p

′′
n). The

induction hypothesis guarantees that this is the smalles tuple that satisfies the nested sub-expression.
Further, we will loop in lines 15-20 untilpred(p′′i1 , ..., p

′′
im

, c1, ..., cq) gets satisfied. Thus, we have
minimality also with respect topred.

• Let the current operator be a join operator between te sub-treesT1 andT2. As already pointed out, the
advanceNodealgorithm is a trivial sort-merge join, which guarantees the minimality of the solution
(given the induction hypothesis).advancePositionsimply dispatches the call to the correct cursor
from the nested sub-trees and thus, it trivially preserves the minimality too.

• Let the current operator be a project operator that projects out the columnsi1, ..., im and with a nested
operator sub-treeT ′. advanceNodeis trivially true because moving the context node always produces
a new tuple with the minimal possible context node (given the induction hypothesis forT ′. Similarly,
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Algorithm 4 PPRED Union Evaluation Algorithm
Require: inp1, inp2 are API inputs to the union operator;minIdx is the index of the last input advanced (-1 initially)

1: Node advanceNode(){
2: if minIdx == -1 ||inp1.getNode() ==inp2.getNode()then
3: hasMore1 = inp1.advanceNode() != NULL;
4: hasMore2 = inp2.advanceNode() != NULL;
5: else
6: hasMoreminIdx = inpminIdx.advanceNode() != NULL;
7: end if
8:
9: //do a merge

10: if ! hasMore1 then
11: if ! hasMore2 then
12: return NULL;
13: else
14: returninp2.getNode();
15: end if
16: else
17: if ! hasMore2 then
18: returninp1.getNode();
19: else if inp2 ≺ inp1 then
20: //inp2 precedes lexicographicallyinp1

21: minIdx = 2;
22: returninp2.getNode();
23: else
24: minIdx = 1;
25: returninp1.getNode();
26: end if
27: end if}
28:
29: boolean advancePosition(i,pos){
30: //Similar to advanceNode but callinginp1.advancePosition andinp2.advancePosition}

the loop in lines 14-30 guarantees that the algorithm produces the next (in lexicographic order) distinct
tuple of projected columns. Again, we use the induction hypothesis forT ′. Therefore, the algorithm
advancePositionis also complete.

• Let the current operator be a union operator between the sub-treesT1 andT2. The implementations
of bothadvanceNodeandadvancePositionget the next smallest (in lexicographic order) tuple from
the input streams. By the induction hypothesis forT1 andT2, our algorithms trivially preserve the
minimality, i.e. they are complete.

• Let the current operator be a set-difference operator between the sub-treesT1 andT2. The imple-
mentations ofadvanceNodegets the next smallest (in lexicographic order) tuple from the first input
stream that is not in the second input stream. By the induction hypothesis forT1, our algorithm
trivially preserves the minimality. Therefore, it is complete.

The query evaluation complexity for thePPREDevaluation algorithm is given by:
O(entries per token× pos per entry × toksQ

× (predsQ + opsQ + 1))
Intuitively, every node and every position within a node is processed at most once. For every combina-

tion of positions, we process each operator at most once. Note how the complexity compares with the naive
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Algorithm 5 PPRED Difference Evaluation Algorithm
Require: inp1, inp2 are API inputs to the difference operator;

1: Node advanceNode(){
2: repeat
3: node =inp1.advanceNode();
4: if node == NULLthen
5: return NULL;
6: end if
7:
8: while node> inp2.getNode()do
9: inp2.advanceNode();

10: end while
11: until node< inp2.getNode()
12:
13: return node;}
14:
15: boolean advancePosition(i,pos){
16: error(); //only node-level cursor movement is allowed}

approach in Section 5.1.2.

5.6 NPRED: Evaluation and Complexity

We now define the second class of full-text search predicates callednegative predicates, which are designed
to capture the negations of common full-text search predicates. For instance,not-distance, which is the
negation of thedistancepredicate, is a negative predicate. Similarly,not-orderedandnot-sameparaare also
negative predicates.

We show that even for this rich class of negative predicates, query evaluation can still be done in a linear
scan over the positions in the inverted list, where the number of scans depends on the size of the query (and
does not depend on the size of the data). However, unlike the case of positive predicates, query evaluation
cannot always be done in a single scan of the positions. The extra scans are the price paid for negation. We
note that the proposed algorithms can also support positive predicates in addition to negative predicates.

5.6.1 Negative Full-Text Predicates

Definition (Negative Predicates): An n-ary position-based predicatepred is said to be a negative predicate
iff

∀p1, ..., pn ∈ P ¬pred(p1, ..., pn) ⇒
∃i1, ..., in pi1 ≤ ... ≤ pin

∧∀p′in ∈ P pi1 ≤ p′in ≤ pin ⇒
∀p′i1 , ..., p′in−1

∈ P
Bounded(p′i1 , ..., p

′
in

, pi1 , ..., pin)
⇒ ¬pred(p′1, ..., p

′
n) where

Bounded(p′i1 , ..., p
′
in

, pi1 , ..., pin) ≡
pi1 ≤ p′i1 ≤ p′i2 ∧ pi2 ≤ p′i2 ≤ p′i3 ∧ ...

∧pin−1 ≤ p′in−1
≤ p′in
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Intuitively, the property says that if a negative predicate is false for a given set of positions ordered as
(pi1 ≤ ... ≤ pin), then it is also false for every other set of positionsp′i1 , ..., p

′
in

bounded bypi1 ≤ ... ≤ pin

(denoted throughBounded(p′i1 , ..., p
′
in

, pi1 , ..., pin)). A list of positionsp′i1 , ..., p
′
in

is said to be bounded by
another list of positionspi1 ≤ ... ≤ pin if the ordering of the positions is preserved and eachp′ij is bounded
by (less than) its correspondingpij . In other words, negative predicates can only be made true byextending
the interval between the smallest and the largest positions. Note that for positive predicates, we needed to
contractthis interval.

Considernot-distance, the negation ofdistance, which returns true if the positions exceed a certain
distance.not-distanceis a negative predicate because it can only be made true by extending the window
(distance). Similarly, the negation of other positive predicates such asorder andsamepara, referred to as
not-orderandnot-samepara, are also negative predicates.

The NPRED language for negative predicates is similar to the PPRED language, except that it allows
for both positive and negative predicates in the selection operators.

5.6.2 Query Evaluation Overview

The addition of negative predicates to the query language increases the complexity of query evaluation when
compared to positive predicates. To see why this is the case, consider the queryπnode(σnot−distance(att1,att2,40)

(Rassignment 1 Rjudge)) (find nodes that contain tokens “assignment” and “judge” that are at least 40 posi-
tions apart). Now consider the inverted lists in Figure 2. ThePPREDevaluation strategy (Section 5.5.3) of
moving the smallest of the two positionsp1 andp2 does not work in this case because the distance between
p1 andp2 may never grow (recall that we want the distance to exceed 40, and moving the smallest position
may always keep the positions withing 40 tokens of each other).

Instead of thePPREDevaluation strategy of moving the smallest position fordistance, for not-distance,
we wish to fix one position and move the other one until the predicate is satisfied. But which ofp1 or p2 do
we fix and which one do we move? Obviously, we have to try both alternatives because both alternatives
(we do not know a priori which one) could lead to valid solutions: (100, 34) and (50, 97). Consequently,
instead of scanning the inverted lists just once, we may have to scan themas many times as the arity of the
negative predicate(in this case, twice). For each scan, we fix a partial order among the cursors: the positions
pointed by the cursors must be ordered as specified by the partial order. Later if we need to evaluate another
negative predicate, we may either use the existing partial order or extend it if the order is not sufficient (i.e.,
it does not specify the order between a couple of cursors). Since multiple partial orders enforce a total order
in the worst-case, we may have to scan the inverted list position up totoks Q! times, wheretoks Q is the
number of query tokens.

Below we present an algorithm for evaluatingNPREDqueries. It resolves the non-determinism outlined
in the previous paragraph by runningtoks Q! threads of the evaluation algorithm, wheren is the number
of search tokens. Each thread uses anordering permutationi1, ..., in of {1, ..., n}. The latter specifies an
ordering of the cursors over the query token inverted lists. Ifp1, ..., pn are the current positions, then the
invariant is thatpi1 ≤ ... ≤ pin . Thus, when trying to satisfy a negative predicate, the algorithm moves
always the iterator over the inverted list that points to the largest position.

It must be noted that the presented algorithm is not the most efficient. As we discussed above, we
need orderings only among cursors that are used in negative predicates, i.e., we need a partial order among
these cursors. On the other hand, the ordering permutation imposes a total order which is needed only if all
positions are used in negative predicates. We chose to present this less efficient algorithm because it demon-
strates the main points of the query evaluation while keeping the presentation simple. Our implementation
generates only the necessary partial orders.

28



Algorithm 6 NPREDJoin Evaluation Algorithm
Require: inp1, inp2 are the two API inputs to the join, and havec1 andc2 position columns, respectively;i1, ..., in specifies a

permutation of the position columns
1: boolean advancePosition(index,pos){
2: repeat
3: if index < c1 then
4: result = inp1.advancePosition(index,pos);
5: if resultthen
6: pindex = inp1.getPosition(index);
7: end if
8: else
9: result = inp2.advancePosition(index-c1,pos);

10: if resultthen
11: pindex = inp2.getPosition(index-c1);
12: end if
13: end if
14: if result then
15: k = {j | ij = index}
16: violated = (pindex < pij+1 )
17: end if
18: if violatedthen
19: pos =pindex

20: index++
21: end if
22: until !result || !violated

23: return result;}

5.6.3 NPREDQuery Evaluation Algorithms

The query evaluation algorithm forNPREDis similar toPPREDwith two exceptions: (1) each query eval-
uation thread is associated with a unique total order of query inverted list positions, and (2) theNPRED
selection operators in a given thread only move the cursor that corresponds to the largest position in the total
order associated with that thread. We only describe the join algorithm and the predicate evaluation algo-
rithm; the other operator algorithms are only minor modifications of the correspondingPPREDevaluation
algorithm to take cursor ordering into account.

Algorithm 6 presents the join algorithm forNPRED. It is based on the same evaluation interface as the
one defined forPPREDin Section 5.5. TheadvanceNodemethod is identical to thePPREDcase and is
omitted. TheadvancePositionmethod is also similar to the one used forPPREDbut it also ensures that the
positions are always in the order specified by the permutationi1, ..., in.

Algorithm 7 presents the predicate evaluation algorithm forNPRED. It differs from Algorithm 2 only
in theadvancePosUntilSatmethod which, unlike for positive predicates, moves the cursor pointing to the
largest position to “extend” the gap between positions.

5.6.4 Correctness and complexity

Intuitively, the proof for correctness of the above algorithms is similar to the one forPPRED. Again, we
have two parts: soundness and completeness. The soundness can be proven per evaluation thread and the
proof is analogous to the soundness proof forPPRED. The difference is just in the join algorithm where
lines 15-21 ensure that the ordering among inverted-lists cursors is preserved. It is not hard to see that in the
case ofadvancePosition, we need to check whether the order is violated only for the position that has been
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Algorithm 7 NPREDPredicate Evaluation Algorithm
Require: inp is API inputs to the predicate withc position columns;i1, ..., in specifies a permutation of all position columns

1: boolean advancePosUntilSat (){
2: while !pred(p1, ..., pc) do
3: index = Max{j | pij is one ofp1, ..., pc}
4: success = inp.advancePos(index, fi(p1, ..., pc));
5: if ! successthen
6: return false;
7: end if
8: end while

9: return true;}

moved (lines 14-21). Indeed, the order for the other positions is guaranteed to be correct by the induction
hypothesis. As before,advancePosUntilSatloops until it finds a satisfying position-variable assignment.

For the completeness part, we will consider only the presented algorithms that have a non-trivial differ-
ence to theirPPREDcounterparts. Intuitively, we need to prove the minimality of the found solution only on
a per-thread basis. If every thread finds a minimal solution, then minimal solution among all thread solutions
is the global minimal solution. The latter holds because we have a thread for every possible ordering of the
positions in a solution.

Thus, we need to show that given a thread, the algorithms for the join and selection operators preserve
the minimality.

• Let the current operator be a selection operator for the positive predicatepred(pi1 , ..., pim , c1, ..., cq)
with a sub-treeT ′. The soundness of the algorithms guarantees the(node, p1, ..., pn ∈ R part
of the properties. We will show minimality. As before, we will focus on theadvancePosUn-
til algorithm. If it finds a minimal solution, the completeness of bothadvanceNodeand advan-
cePosition trivially follows. Now, line 2 ensures that for the current set of positions(p1, ..., pn),
pred(pi1 , ..., pim , c1, ..., cq) = false. First, observe that the property of negative predicates guar-
antees that for the minimal solution(p′1, ..., p

′
n), we havepim < p′im . It follows from the induction

hypothesis, that the solution(p′1, ..., p
′
n) is the minimal solution forT ′ such thatp′′im > pim . Then, the

loop in lines 2-8 guarantees that we stop movingim-th cursor once we find the first (minimal) set of
positions that is a solution toT ′ and satisfes the predicate. Thus, we have minimality.

• Let the current operator be a join operator between te sub-treesT1 andT2. The difference from the
PPREDcase stems from the fact that we need to ensure that the ordering permutation is satisfied
by the current set of positions. It can be seen from lines 14-21 that in case of an order violation, it
is resolved in an order of increasing positions. Therefore, given the induction hypothesis, the join
algorithm always finds the minimal set of positions that satisfy the ordering permutation.

The query evaluation complexity forNPREDis similar toPPRED, except that there aretoksQ! different
evaluation threads. Thus, the resulting complexity is:

O(entries per tok× pos per entry × toks× toksQ!× (predsQ + opsQ + 1))
The scoring method presented in Section 5.5 can be directly applied forNPRED. As before, the com-

putation of scores can be done in constant time and does not affect the complexity of the query evaluation
algorithm.
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6 Experiments

We performed experiments on both real and synthetic data sets. Due to lack of space, we report our exper-
iments on real data and only mention similar results on synthetic data. The goals of our experiments are
(1) to compare the performance of the evaluation algorithms in Section 5 and study the trade-offs between
language expressiveness and complexity and, (2) to study the effect of the query parameters listed below on
each algorithm.

• tokQ: The number of tokens in Q, including string literals and the universal tokenANY.

• predQ: The number of predicates in Q.

• opQ: The number of operations in Q, where an operation can beNOT, AND, OR

6.1 Summary of Results

Our results validate the complexity study presented in Section 5. We show that we can order our algorithms
by performance:BOOL¹ PPRED¹ NPRED¹ COMP. This was expected given the expressibility of the
languages. On the other hand, the interesting fact is thatPPREDachieves greater expressibility (the ability
to evaluate predicates) thanBOOLat a marginally larger cost. On average,PPREDperforms better than
NPREDfor positive predicates due to the fact thatPPREDdoes not need to generate all permutations of
the inverted lists. In general,NPREDhas noticeably better performance thanCOMPfor both positive and
negative predicates. We also observe that in practice, our algorithms perform better than their worst case
complexity. In particular,COMPmight find a solution early and hence, avoid performing a Cartesian product
which explains that sometimesCOMPis not much worse thanNPRED. Our experiments also show that all of
the algorithms perform very similarly when queries do not contain predicates.

6.2 Experimental Setup

We implemented the algorithms forBOOL, PPRED, NPRED, andCOMPin C++. The evaluation algorithm
for BOOLfollows the method outlined in the example in Section 5.3. The algorithm forCOMPconverts the
query to an FTA expression and evaluates the latter as in the relational algebra. We ran our experiments on
a AMD64 3000+ computer with 1GB RAM and one 200GB SATA drive, running under Linux 2.6.9.

To quantify the size of the scanned inverted lists, we use the following parameters (T denotes all tokens
that appear in the context nodesN ).

• cnodes: |N | (the number of context nodes).

• pos per cnode: max(cn,PosList)∈ILANY
(|PosList|) (the maximum number of positions in a node).

• entries per token: maxtok∈T (|{e|e ∈ ILtok}|) (the maximum number of entries in a token in-
verted list).

• pos per entry: maxtok∈T max(cn,PosList)∈ILtok

(|PosList|) (the maximum number of positions in an entry in a token inverted list).

We present the experiments for the effects of thetokQ, predQ, cnodes, andpos per entry query
parameters given above. The experiments on the other parameters supported the conclusions from the sum-
mary above and are omitted in the interest of space. To test the influence of each parameter on query evalu-
ation performance, we fixed the other parameters to their default values and varied the values of the studied
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Figure 5: Varying Number of Query Tokens (INEX)

parameter. In particular, we used: queries with 1 to 5 query tokens (default 3) to testtokQ; queries with 0
to 4 predicates (default 2) to testpredQ; 2500, 6000 (default), and 10000 context nodes to testcnodes;
query tokens with at most 5, 25 (default), and 125 positions per inverted list entry to testpos per entry.

In order to understand the comparative behavior of our algorithms, we plot them all on the same graph.
Each algorithm is run with a different query. While the labelsBOOL, PPRED, NPREDandCOMPrepre-
sent each algorithm,PPRED-POS, NPRED-POSandCOMP-POS(resp.,NPRED-NEGandCOMP-NEG)
report queries with positive predicates only (resp., negative predicate only) for each algorithm. Since the
performance of our algorithms is similar when queries have no predicates, we only reportBOOLfor such
queries.

6.3 Data, Queries and Results

We used the INEX 2003 XML document collection dataset1 which is 500MB large with a little over 12000
documents that contain articles from 17 IEEE journals between 1997 and 2001. Since we are interested in
full-text search, we ignored the XML structure and indexed the documents as flat.

Figure 5 shows the performance of our algorithms when varying the number of tokens in the input
query and keeping the input data fixed. Figure 6 shows the performance of our algorithms when varying
the number of predicates in the input query and keeping the input data fixed. Both experiments show that
BOOLandPPREDgrow slowly linearly in each of the query size parameters, whileCOMPandNPREDgrow
exponentially, the former is faster. Both figures show thatPPREDcan achieve greater expressibility than
BOOLat marginally worse performance.

The big difference in the evaluation time for positive and negative predicates can be explained with the
difference in the selectivity of negative predicates: it is higher than the selectivity of the positive predicates.
In fact, we used the negation of the positive predicates to generate the negative predicates queries. This
explains why the performance ofCOMP-NEGis bad: large selectivity means it needs to scan many tuples
to find a solution. In this case,NPREDis better thanCOMPfor the same queries because it does a more
intelligent scan of the inverted lists. It ”searches” for the solution, whileCOMPjust blindly enumerates the
entire join. The pruning that doesNPREDdecreases significantly the influence of selectivity.

Although not reported, our experiments on synthetically generated data had similar results when varying
the number of tokens and the number of predicates in queries.

Figure 7 shows the performance of our algorithms when varying the number of context nodes. As it can
be seen,PPREDandBOOLoffer the best scalability: slow linear decrease in performance. The scalability of

1http://www.is.informatik.uni-duisburg.de/projects/inex03/
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Figure 6: Varying Number of Query Predicates (INEX)

Figure 7: Varying Number Context Nodes (INEX)

NPREDis acceptable (the evaluation time increases linearly in the size of the database) whileCOMPdoes not
scale very well – exponentially. The results for the scalability when we increase the number of positions per
inverted list entry (Figure 8) show similar results. This directly influences the size of the join of the inverted
lists, thus increasing the number of potential results. Again,PPREDandBOOLare the best, butNPREDalso
displays only a small increase.

7 Related Work

Most IR research [3][31] has focused on methods for relevance estimation and efficient evaluation of key-
word queries. In this context, full-text languages have been developed to implement specific primitives, but
their formal properties have not been studied. This observation also applies to XML full-text search lan-
guages such as XQuery/IR [6], XIRQL [18], XSEarch [15], XRANK [21], XXL [33] and Niagara [37]. In
fact, we can represent these languages (see Sections 4.1 and 4.2). Several other works have used relational
systems to store inverted lists and translate keyword queries to SQL [11, 17, 22, 29, 30, 37] but they do not
study completeness.

Clarke et al. [5] propose a formal model for full-text search with some leverage of structure such as
chapters and paragraphs. The model is based on intervals of positions and supports a fixed set of predicates
(not) containing, (not) contained in, one of/both of, followed by. Thus, this model is less general than
ours and it may be hard to extend it because it is based on intervals of positions. This coarser granularity
inherently looses some information since not all positions in an interval may be relevant to the query. No
study of expressiveness is provided.
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Figure 8: Varying Number of Positions Per Inverted List Entry (INEX)

8 Conclusion

We presented a simple, yet powerful formalization of full-text search languages as a basis for studying
expressiveness and efficiency. We believe that this work is an important first step for full-text search much
like the relational model laid the foundation of extensive database research. We are planning to add new
full-text primitives such as stemming, thesaurus and stop-words. We would also like to explore how our
formalization in terms of the relational model enables the joint optimization of structured and full-text
queries. Finally, we want to study the complexity implications of scoring and top-k techniques [10, 16, 25,
32].
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A Proofs of Theorems

Theorem 1: Equivalence of the Full-Text Calculus and Algebra

Lemma 1. For every full-text algebra expression that only uses position-based predicates from the set
Preds, there exists an equivalent full-text calculus expression that only uses position-based predicates from
the same setPreds.
Proof Sketch:We will prove that for every algebra expressionAlgExpr, which evaluates to a relation
R(CNode, att1, att2, ..., attk), k ≥ 0, there exists a calculus query expressionCalcExpr(n, p1, ..., pk)
with free variables{n, p1, ..., pk}, such that{(n, p1, ..., pk) | SearchContext(n) ∧ hasPos(n, p1) ∧ ... ∧
hasPos(n, pk) ∧ CalcExpr(n, p1, ..., pk)} = R.

The proof is by induction on the structure ofAlgExpr.

• If AlgExpr = SearchContext, then CalcExpr(n) = (∃p hasPos(n, p) ∧ hasPos(n, p)) ∨
¬(∃p hasPos(n, p)∧hasPos(n, p)). CalcExpr(n) is always true; therefore,{n | SearchContext(n)∧
CalcExpr(n)} is equal to the full-text relationSearchContext by its definition.

• If AlgExpr = HasPos, thenCalcExpr(n, p1) = hasPos(n, p1), i.e. {(n, p1) | SearchContext(n)∧
hasPos(n, p1)} is equal to the full-text relationHasPos by its definition.

• If AlgExpr = Rtoken, thenCalcExpr(n) = hasToken(p,′ token′). {(n, p1) | SearchContext(n)∧
hasPos(n, p1) ∧ hasToken(p1,

′ token′)} is equal to the full-text relationRtoken by its definition.

• If AlgExpr = πCNode,att1,...,atti(AlgExpr′), whereAlgExpr′ is a full-text algebra expression whose
equivalent calculus query expression isCalcExpr′(n, p1, ..., pm) andAlgExpr′ evaluates to
R′(CNode, att1, att2, ..., attm), m ≥ i, thenCalcExpr(n, p1, ..., pi) = ∃pi+1 hasPos(n, pi+1) ∧
...∃pm hasPos(n, pm) ∧ CalcExpr′(n, p1, ..., pm). {(n, p1, ..., pi) | SearchContext(n)∧∧

j=1,...,i hasPos(n, pj)∧CalcExpr(n, p1, ..., pi)} = πCNode,p1,...,pi{(n, p1, ..., pm) | SearchContext(n)∧∧
j=1,...,m hasPos(n, pj) ∧ CalcExpr′(n, p1, ..., pm)} = πCNode,p1,...,pi(R

′).

• If AlgExpr = AlgExpr1 1 AlgExpr2, whereAlgExpr1 andAlgExpr2 are full-text algebra ex-
pressions that evaluate toRi(CNode, att1, ..., attmi) for i = 1, 2, and their equivalent calculus query
expressions areCalcExpri(n, p1, ..., pmi) for i = 1, 2 ,thenCalcExpr(n, p1, ..., ..., pm1+m2) =
CalcExpr(n, p1, ..., pm1)∧CalcExpr(n, pm1+1, ..., pm1+m2). {(n, p1, ..., pm1+m2 | SearchContext(n)∧∧

j=1,...,m1+m2
hasPos(n, pj) ∧ CalcExpr(n, p1, ..., pm1) ∧ CalcExpr(n, pm1+1, ..., pm1+m2} =

R1 1 R2.

• If AlgExpr = σpred(att1,...,attm,c1,...,cq)(Expr
′), whereExpr′ is a full-text algebra expression that

evaluates to the relatonR′ and the equivalent calculus query expression isCalcExpr′(n, p1, ..., pk),
thenCalcExpr(n, p1, ..., pk) = CalcExpr′(n, p1, ..., pk)∧pred(att1, ..., attm, c1, ..., cq). {(n, p1, ..., pk) |
SearchContext(n)∧∧

j=1,...,k hasPos(n, pj)∧CalcExpr′(n, p1, ..., pk)∧pred(att1, ..., attm, c1, ..., cq)} =
σpred(att1,...,attm,c1,...,cq)R

′.

• Let AlgExpr = AlgExpr1 ∪ AlgExpr2, whereAlgExpr1 andAlgExpr2 are full-text algebra ex-
pressions that evaluate toRi for i = 1, 2 and their equivalent calculus query expressions are
CalcExpri(n, p1, ..., pk) for i = 1, 2, thenCalcExpr(n, p1, ...pk) = CalcExpr1(n, p1, ...pk) ∨
CalcExpr2(n, p1, ...pk). {(n, p1, ..., pk) | SearchContext(n) ∧∧

j=1,...,k hasPos(n, pj)∧
(CalcExpr1(n, p1, ...pk)∨ CalcExpr2(n, p1, ...pk))} = R1 ∪R2.
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• Let AlgExpr = AlgExpr1 ∩ AlgExpr2, whereAlgExpr1 andAlgExpr2 are full-text algebra ex-
pressions that evaluate toRi for i = 1, 2 and their equivalent calculus query expressions are
CalcExpri(n, p1, ..., pk) for i = 1, 2, thenCalcExpr(n, p1, ...pk) = CalcExpr1(n, p1, ...pk) ∧
CalcExpr2(n, p1, ...pk). {(n, p1, ..., pk) | SearchContext(n) ∧∧

j=1,...,k hasPos(n, pj)
∧(CalcExpr1(n, p1, ...pk) ∧ CalcExpr2(n, p1, ...pk))} = R1 ∩R2.

• Let AlgExpr = AlgExpr1 − AlgExpr2, whereAlgExpr1 and AlgExpr2 are full-text algebra
expressions that evaluate toRi for i = 1, 2 and their equivalent calculus query expressions are
CalcExpri(n, p1, ..., pk) for i = 1, 2, thenCalcExpr(n, p1, ...pk) = CalcExpr1(n, p1, ...pk) ∧
¬CalcExpr2(n, p1, ...pk). {(n, p1, ..., pk) | SearchContext(n) ∧∧

j=1,...,k hasPos(n, pj)∧
(CalcExpr1(n, p1, ...pk) ∧ ¬CalcExpr2(n, p1, ...pk))} = R1 −R2.

This completes the structural induction. The requirement that full- text algebra queries evaluate to a
relation with a singleCNode attribute ensures that the correspondingCalcExpr expression will have only
one free variable -n. Therefore,{n|SearchContext(n) ∧ CalcExpr(n)} is a valid calculus query.2

Lemma 2. For every full-text calculus expression that only uses position-based predicates from the set
Preds, there exists an equivalent full-text algebra expression that only uses position-based predicates from
the same setPreds.
Proof Sketch:We will prove that for every query calculus expressionCalcExpr(n, p1, ..., pk) with free
variables{n, p1, ..., pk}, k ≥ 0, there exists an algebra expressionAlgExpr, which evaluates to a relation
R(CNode, att1, att2, ..., attk), such that{(n, p1, ..., pk) | SearchContext(n)∧∧

j=1,..,k hasPos(n, pj)∧
CalcExpr(n, p1, ..., pk)} = R.

The proof is by induction on the structure ofCalcExpr.

• If CalcExpr(n, p) = hasPos(n, p), thenAlgExpr = HasPos. The proof of the equivalence is the
same as the analogous case from Lemma 1.

• If CalcExpr(n, p) = hasToken(p,′ token′), thenAlgExpr = Rtoken. The proof of the equivalence
is the same as the analogous case from Lemma 1.

• If CalcExpr(n, p1, ..., pk) = pred(p1, ..., pk, c1, ..., cq), thenAlgExpr = σpred(p1,...,pk,c1,...,cq)

(HasPos 1 ... 1 HasPos), where the number of joins isk. Obviously,R = {(n, p1, ..., pk) |
SearchContext(n) ∧∧

i=1,...,k hasPos(n, pi) ∧ pred(p1, ..., pk, c1, ..., cq)}.
• If CalcExpr(n, p1, ..., pl, q

′
1, ..., q

′
m, q′′1 , ..., q′′c ) = CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∧

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c ), wherek = l + m + c, CalcExpr1, andCalcExpr2 are cal-

culus query expressions with equivalent algebra expressionsAlgExpr1 andAlgExpr2, which eval-
uate toR1(CNode, att1, ..., attk, att′1, ..., att′m) andR2(CNode, att1, ..., attl, att′′1, ..., att′′c ), then
AlgExpr = (AlgExpr1 1 πCNode,q′′1 ,...,q′′c AlgExpr2) ∩ (πCNode,q′1,...,q′mAlgExpr1 1 AlgExpr2). R =
{(n, p1, ..., pl, q

′
1, ..., q

′
m, q′′1 , ..., q′′c ) | (n, p1, ..., pl, q

′
1, ..., q

′
m) ∈ R1 ∧ (n, p1, ..., pl, q

′′
1 , ..., q′′c ) ∈ R2}

= {(n, p1, ..., pl, q
′
1, ..., q

′
m, q′′1 , ..., q′′c ) | CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∧

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c )}, which is exactly what we wnated to show.

• If CalcExpr(n, p1, ..., pl, q
′
1, ..., q

′
m, q′′1 , ..., q′′c ) = CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∨

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c ), wherek = l + m + c, CalcExpr1, andCalcExpr2 are cal-

culus query expressions with equivalent algebra expressionsAlgExpr1 andAlgExpr2, which eval-
uate toR1(CNode, att1, ..., attk, att′1, ..., att′m) andR2(CNode, att1, ..., attl, att′′1, ..., att′′c ), then
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AlgExpr = (AlgExpr1 1 πCNode,q′′1 ,...,q′′c AlgExpr2) ∪ (πCNode,q′1,...,q′mAlgExpr1 1 AlgExpr2). R =
{(n, p1, ..., pl, q

′
1, ..., q

′
m, q′′1 , ..., q′′c ) | (n, p1, ..., pl, q

′
1, ..., q

′
m) ∈ R1 ∨ (n, p1, ..., pl, q

′′
1 , ..., q′′c ) ∈ R2}

= {(n, p1, ..., pl, q
′
1, ..., q

′
m, q′′1 , ..., q′′c ) | CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∨

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c )}, which is what we wanted to show.

• Let us consirder the caseCalcExpr(n, p1, ..., pk) = ¬CalcExpr′(n, p1, ..., pk), whereCalcExpr′

is a calculus query expression that is equivalent to the algebra expressionAlgExpr′, which evaluates
to R′(n, p1, ..., pk). If k > 0, thenAlgExpr = (HasPos 1 ... 1 HasPos) − AlgExpr′, where
the number of joins isk. R = {(n, p1, ..., pk) | SearchContext(n) ∧ ∧

i=1,...,k hasPos(n, pi) ∧
¬CalcExpr′(n, p1, ..., pk)}, which is what we wanted to show.

If k = 0, thenAlgExpr = SearchContext− AlgExpr′ andR = {n | SearchContext(n) ∧
SearchContext(n) ∧ ¬CalcExpr′(n)}

• If CalcExpr(n, p1, ..., pk) = ∃pk+1 hasNode(n, pk+1)∧CalcExpr′(n, p1, ..., pk+1), whereCalcExpr′

is a calculus query expression that is equivalent to the algebra expressionAlgExpr′, which eval-
uates toR′, thenAlgExpr = πCNode,p1,...,pkR

′ and R = {(n, p1, ..., pk) | SearchContext(n) ∧
∃pk+1 (n, p1, ..., pk+1) ∈ R′} = {(n, p1, ..., pk) | SearchContext(n)∧∃pk+1 CalcExpr′(n, p1, ..., pk+1)}.

• Let CalcExpr(n, p1, ..., pk) = ∀pk+1 hasNode(n, pk+1) ⇒ CalcExpr′(n, p1, ..., pk+1), where
CalcExpr′ is a calculus query expression that is equivalent to the algebra expressionAlgExpr′.
We use the equationCalcExpr(n, p1, ..., pk) = ¬∃pk+1 ¬CalcExpr′(n, p1, ..., pk+1) and apply the
previous case..

For every calculus query, its query expression has only one free variable,n, therefore the equivalent
algebra query evaluates to a relation that contains a single column,CNode. Therfore, it is a valid algebra
query.2

The above two Leammas prove the equivalence of the full-text calculus and algebra.

Theorem 4: Completeness of BOOL whenT is finite

Proof Sketch:Let F = {n | SearchContext(n) ∧ P (n)} be a calculus query expression. We will prove
that there exists an equivalentQueryexpressionE in BOOL. Without loss of generality, we assume that
every quantified variable inF has a unique name. Let these position variable names bep1, p2, ..., pm.

We first normalizeP (n) using the sequence of equivalence transformations presented below.

1. (Sink Negations)Move all negations down to the predicateshasPos(n, pi) and hasToken(pi, t).
Replace any repetitive negations¬¬A with A. Invert quantifiers:¬∃p hasPos(n, p) ∧ A is replaced
with ∀p hasPos(n, p) ⇒ ¬A and¬∀p hasPos(n, p) ⇒ A is replaced with∃p hasPos(n, p) ∧ ¬A.

2. (Group)Move every expression of the formhasToken(pi, t) and¬hasToken(pi, t) out of the scope
of any quantifier over a variable different frompi. This is possible becausehasToken is applied on
only one position variable. Formally, the transformation is a repeated application ofQpj A ◦ B 7→
B ◦ Qpj A whereQ ∈ {∃,∀}, ◦ ∈ {∧,∨}, andB has no free variablepj . Use the commutativity of
∧ and∨ to group the above predicate expressions next to each other and right afterhasPos(n, pi).
We get a propositional formula with propositions of the formQipi Ai(n, pi) whereQi ∈ {∃, ∀}.

3. (Remove universal quantification)Remove any universal quantifers by replacing∀pi hasPos(n, pi) ⇒
X with ¬∃pi hasPos(n, pi) ∧ ¬ X. We get a propositional formula over propositions of the form
∃pi hasPos(n, pi) ∧Bi(n, pi).
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4. (Local DNF)Convert eachBi(n, pi) to DNF.

5. (Split) Replace∃p hasPos(n, p) ∧ (X(n, p) ∨ Y (n, p)) with (∃p′ hasPos(n, p′) ∧ X(n, p′)) ∨
(∃p′′ hasPos(n, p′′) ∧ Y (n, p′′)) to ∃pi hasPos(n, pi) ∧ Bi(n, pi) for every disjunct inBi(n, pi).
Let the new position variables beq1, ..., qk. We get a propositional formula over propositions of the
form ∃qj hasPos(n, qj) ∧ Cj(n, qj) whereCj is a conjunction.

6. (Global DNF)ConsiderF to be a propositional formula over propositions of the form∃qj hasPos(n, qj)∧
Cj(n, qj). Convert it to a DNF.

We defineQE(F ) for a calculus query expressionF as the equivalent query in BOOL.
We observe that after the normalizationF = {n | SearchContext(n) ∧ (

∨
i

∧
j Di,j)} =

⋃
i

⋂
j{n |

SearchContext(n) ∧ Di,j}, where eachDi,j is either of the form∃q hasPos(n, p) ∧ C(n, q) or of the
form ¬∃q hasPos(n, p) ∧ C(n, q), as in stepGlobalDNF from the normalization. Therefore,F can be
decomposed into the calculus expressionsFij = {n | SearchContext(n) ∧ Dij} and it is not difficult to
see thatQE(F ) = (QE(F1,1) AND... ANDQE(F1,r1)) OR... OR(QE(Fs,1) AND... ANDQE(Fs,rs)). Thus,
we can focus only on converting eachFi,j .

As seen above, eachFi,j is of the form∃p hasPos(n, p)∧∧
r Hr(n, p) or of the form¬∃p hasPos(n, p)∧∧

r Hr(n, p), whereHr(n, p) is hasToken(p, t) or¬hasToken(p, t). In either case, we can consider there
are no duplicates amongHr(n, p); otherwise, we can simply eliminate them.

Let us first consider the case whereFi,j = ∃p hasPos(n, p) ∧∧
t Ht(n, p).

• If there existsr1 andr2 such thatHr1(n, p) = hasToken(p, t1), Hr2(n, p) = hasToken(p, t2), and
t1 6= t2, then the condition ”one token per position” (Section 2.2) is violated. Therefore,Fi,j is the
empty set.QE(Fi,j) = ANY AND NOT(t1OR...ORtc)) , whereT = {t1, ..., tc} is the set of all
tokens. Intuitively, this query returns the empty set because it requires the result nodes to contain a
token that is not inT , which is impossible.

• If there existsr1 andr2 such thatHr1(n, p) = hasToken(p, t) andHr2(n, p) = ¬hasToken(p, t)
then this is an obvious contradiction andFi,j is the empty set. We defineQE(Fi,j) = ANY AND
NOT(t1OR...ORtc)) as above.

• Let there existsr1 and there does not existr2 such thatHr1(n, p) = hasToken(p, t) andHr2(n, p) =
¬hasToken(p, t). Then we can ignore anyHr(n, p) which contains¬hasToken(p, t′) for some
token t′ 6= t. The latter are trivially satisfied. In this case,Fi,j = {n | SearchContext(n) ∧
∃p hasPos(n, p) ∧ hasToken(p, t)}, which is exactly the semantics forQE(Fi,j) = t.

• The last case isFi,j = {n | SearchContext(n) ∧ ∃p hasPos(n, p) ∧ ¬hasToken(p, ti1) ∧
... ∧ ¬hasToken(p, tiv). This expression can be interpreted as the condition thatn contains a to-
ken from the complement{tj1 , ..., tju} of {ti1 , ..., tiv} with regards to the setT : {tj1 , ..., tju} =
T − {ti1 , ..., tiv}. Due to the finiteness ofT , Fi,j = {n | SearchContext(n) ∧ ∃p hasPos(n, p) ∧
(hasToken(p, tj1) ∨ ... ∨ hasToken(p, tju))} =

⋃
r{n | SearchContext(n) ∧ ∃p hasPos(n, p) ∧

hasToken(p, tjr)}. The latter is trivially equivalent to the queryQE(Fi,j) = tj1 OR ... OR tju .

In caseFi,j = ¬∃p hasPos(n, p) ∧ ∧
t Ht(n, p), thenQE(Fi,j) = NOTQE(¬Fi,j), where¬Fi,j is

transformed as in the previous case.
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Theorem 6: Completeness of COMP

Proof Sketch:We will prove that every calculus query can be represented by a COMP queryCompQuery.
We use induction on the structure of the query expressionCalcExpr(n, p1, ..., pk).

• If CalcExpr(n, p) = hasPos(n, p), thenCompQuery = p HAS ANY. This is equivalent toCalcExpr
by definition.

• If CalcExpr(n, p) = hasToken(p,′ token′), thenCompQuery = p HAS ’ token’ . This is equiv-
alent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pk) = pred(p1, ..., pk, c1, ..., cq), thenCompQuery = pred(p1, ..., pk, c1, ..., cq).
This is equivalent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pl, q
′
1, ..., q

′
m, q′′1 , ..., q′′c ) = CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∧

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c ), wherek = l + m + c, CalcExpr1, andCalcExpr2 are cal-

culus query expressions with equivalent COMP queries beCompQuery1 andCompQuery2, then
CompQuery = CompQuery1 AND CompQuery2. This is equivalent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pl, q
′
1, ..., q

′
m, q′′1 , ..., q′′c ) = CalcExpr1(n, p1, ..., pl, q

′
1, ..., q

′
m)∨

CalcExpr2(n, p1, ..., pl, q
′′
1 , ..., q′′c ), wherek = l + m + c, CalcExpr1, andCalcExpr2 are cal-

culus query expressions with equivalent COMP queries beCompQuery1 andCompQuery2, then
CompQuery = CompQuery1 OR CompQuery2. This is equivalent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pk) = ¬CalcExpr′(n, p1, ..., pk), whereCalcExpr′ is a calculus query ex-
pression that is equivalent to the COMP queryCompQuery′, thenCompQuery = NOT CompQuery′.
This is equivalent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pk) = ∃pk+1 hasNode(n, pk+1)∧CalcExpr′(n, p1, ..., pk+1), whereCalcExpr′

is a calculus query expression that is equivalent to the COMP queryCompQuery′, thenCompQuery
= SOMEpk+1 ( CompQuery′ ) . This is equivalent toCalcExpr by definition.

• If CalcExpr(n, p1, ..., pk) = ∀pk+1 hasNode(n, pk+1) ⇒ CalcExpr′(n, p1, ..., pk+1), where
CalcExpr′ is a calculus query expression that is equivalent to the COMP queryCompQuery′, then
CompQuery = EVERY pk+1 ( CompQuery′ ) . This is equivalent toCalcExpr by definition.
2
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