Expressiveness and Performance of Full-Text Search Languages

Chavdar Botev Sihem Amer-Yahia Jayavel Shanmugasundaram
Cornell University AT&T Labs—Research Cornell University
cbotev@cs.cornell.edu sihem@research.att.com jai@cs.cornell.edu
Abstract

We study the expressiveness and performance of full-text search languages. Our main motivation
is to provide a formal basis for comparing such languages and to develop a model for full-text search
that can be tightly integrated with structured search. We develop a formal model for full-text search
based on the positions of tokens (words) in the input text, and develop a full-text calculus (FTC) and
a full-text algebra (FTA) with equivalent expressive power. This suggests a notion of completeness for
full-text search languages and can be used as a basis for a study of their expressiveness. We show that
existing full-text languages are incomplete and devé&l@MPa complete full-text search language. We
also identify practical subsets GOMRhat are more powerful than existing languages, develop efficient
query evaluation algorithms for these subsets, and study experimentally their performance.

1 Introduction

There has been a lot of interest in full-text search over flat files [3, 31], relational databases [4, 22], and more
recently, XML documents [2, 6, 15, 18, 21, 33]. The expressiveness of such languages ranges from simple
Boolean search to phrase matching to general proximity search with distance predicates. Unfortunately,
there is no existing work that systematically compares these different full-text search languages, either from
an expressiveness or a performance point of view; we believe that this void is mainly due to the lack of a
powerful formal model for full-text search. This also makes it difficult to seamlessly integrate with structured
search, which is usually based on the formal underpinnings of the relational model. In this paper, we attempt
to lay down the formal foundations for full-text search languages, and to compare the expressiveness and
performance of different languages.

Our first contribution (Section 2) is the development of a formal model for full-text search languages.
At an abstract level, such languages require the ability to manipulate indivimkeads(or words) and their
positionsin the input text and return the nodes (e.g., documents, tuples, or XML elements) that satisfy the
full-text search condition. We thus define a formal model based on the positions of tokens in the input
text. Based on this model, we define a notion of completeness and develop an associated full-text calculus
(FTC) based on first-order logic and a full-text algebra (FTA) based on the relational algebra. We also show
how the FTC and FTA can be extended to capture the notion of scores, such as scores computed using
TF-IDF [3, 28].

Our second contribution (Section 4) is to show that existing languages are incomplete. We thus propose
COMPa new complete full-text search language based on the EGBAMaturally generalizes existing
Boolean full-text search languages and is able to express primitives such as order specifications between
words, paragraph scoping and word distance.

Our third distribution is the design of a scoring framework that can be used within our full-text search
model. The scoring framework does not mandate a fixed scoring method but allows the use of large class of

existing scoring methods. In Section 3, we describe the framework and show how it can be used with two
of the most popular scoring methods: TF-IDF [28] and probabilistic scoring [19, 38]

Our fourth contribution (Sections 5 and 6) is the identification of practical subs@®bfRhat are sig-
nificantly more powerful than existing full-text search languages, but which can still be evaluated in a linear
scan over inverted list data structures, which are commonly used in full-text search. We also experimentally
evaluate our proposed algorithms using real and synthetic data sets.

2 Full-Text Model, Full-Text Calculus and Algebra

At its core, a full-text search specification has two components: (19¢hech contextwhich specifies the

set ofcontext nodege.g., document corpus in an IR system, tuples in a relational database or elements in
XML documents) over which the full-text search is to be performed and, (Zuthtext condition which

specifies the condition that should be evaluated on each context node. Only the context nodes that satisfy the
full-text condition qualify as answers. As an illustration, consider the following example from the XQuery
Full-Text Use Cases Document [35].

Example 1 (Use Case 10.4)Given an XML document that contains book and article elements, find the
book elements containing the “efficient” and the phrase “task completion” in that order with at most 10
intervening tokens.

In this example, the context nodes are book elements (and not articles), and the full-text search condition
is: contains the keyword “efficient” and the phrase “task completion” in that order with at most 10 inter-
vening tokensNote that the search condition includes multiple primitives: Boolean AND, phrase matching,
order specifications, and distance predicates.

Thus, in order to specify a full-text search query, we need (1) a language to specify the context nodes
and, (2) a language to specify the search condition (the full-text search language). For (1), we can use
SQL in the case of relational data, XQuery in the case of XML documents, or simply the entire document
collection in the case of traditional IR systems. Since SQL and XQuery have well-defined formal semantics,
we focus on the full-text search language. We first present our model, before discussing the FTC, the FTA,
and scoring issues.

2.1 Full-Text Model

We first introduce two aspects of our model: a model for context nodes, and our requirement for complete-
ness.

2.1.1 Modeling Context Nodes

Existing models for context nodes are insufficient for expressive full-text search. For instance, the XQuery
data model for the book element in Figure 1 treats all the text under an element as a single text node
(ignore the numbers in parentheses for now). This model is enough to identify sub-strings in the text
and evaluate queries such fasd author nodes containing 'Elina’ However, it is insufficient to answer
gueries such afnd books that contain the tokens 'usability’ and 'testing’ with 3 intervening tokktust

IR models solve part of this problem by tokenizing the input text, and representing each token sepa-
rately. Thus, in our example, the text in the context node would be modeled as the “bag of words”
{book, id, 1000, author, Elina, Rose, . ..}. However, this model still cannot capture the distance between

<book(1) id(2)="usability(3)">
<author(4)>Elina(5) Rose(6)</author(7)>
<content(8)> Usability(9) Definition(10)
<p(11)> Usability(12) of(13) a(14)
software(15) measures(16)
how(17) well(18) the(19)
software(20) supports(21)
achieving(22) an(23)
efficient(24) software(25).
</p(26)>
</p(27)> A(28) software(29) is ...
More(37) on(38) usability(39)
of(40) a(41) software(42) ...
</content(284)>
</book(285)>

Figure 1: Positions Example

tokens (some IR languages, however, do support limited forms of distance predicates; see Section 4.2 for
more details).

In this paper, we explicitly model thgositionof a token in a context node. We argue that this model,
although simple, is powerful enough to capture the semantics of existing full-text search languages. Further,
it serves as the formal basis for defining position-based predicates such as proximity distance and order
predicates. In Figure 1, we have used a simple numeric position (within parenthesis) for each token. Our
proposed model, however, does not dictate any specific implementation of positions and is extensible with
respect to the set of predicates. More expressive positions that capture the notions of lines, sentences and
paragraphs can be used, and this will enable more sophisticated predicates on positions.

We now define our formal modelV is the set of context node®, is the set of positions, arfl is the
set of tokens. The functioRositions : N' — 2F maps a context node to the set of positions in the context
node. The functiooken : P — 7 maps each position to the token stored at that position. In the example
in Figure 1, if the context node is denoted bythen Positions(n) = {1,2,...,28}, Token(1) = book,
Token(2) = id, and so on.

2.1.2 Requirement for Completeness

The full-text search language should be at least as expressive as first-order logic formulae specified over the
positions of tokens in a context node.

The above requirement identifies tokens and their positions as the fundamental units in a full-text search
language, and essentially describes a notion of completeness similar to that of relational completeness [13]
based on first-order logic. We note that other notions of completeness can certainly be defined based on
higher-order logics, but as we shall soon see, defining completeness in terms of first-order logic allows for
both efficient evaluation and tight integration with the relational model. One other issue to note in the above
requirement is that each context node is considered separately, i.e., a full-text search condition does not span
multiple context nodes or documents. This is in keeping with the semantics of existing full-text languages,
and while other extensions are certainly possible, we do not consider them here.

2.2 Full-Text Calculus

The full-text calculus defines the following predicates to model basic full-text primitives.

e SearchContext(node) is true iff node € N (recall that\V is the set of context nodes).

e hasPos(node, pos) is true iff pos € Positions(node). This predicate explicitly captures the notion
of positions in an XML node.

e hasToken(pos,tok) is true iff tok = Token(pos). This predicate captures the relationship between
tokens and the positions in which they occur.

A full-text language may also wish to specify an additional set of position-based predifates;,
depending on user needs. The calculus is general enough to support arbitrary position-based predicates.
Specifically, given a seVarPos of position variables, and a sétonsts of constants, the calculus can
support any predicate of the formpred(p1, ..., pm, c1, ..., ¢), Wherepy, ...p,, € VarPos andey, ...,c, €
Consts. For example, we could definereds = {distance(posi, posa, dist), ordered(posi, poss),
samepara(posi, poss), dif fpos(posi, posa)}. Here,distance(posi, posa, dist) returns true iff there are
at mostdist intervening tokens betweemws, andposs; ordered(posi, posz) is true iff pos; occurs before
pose; samepara(posi, poss) is true iff pos; is in the same paragraph asss; di f fpos(posi, posa) is true
iff pos; andposs are different positions.

2.2.1 Full-Text Calculus Queries

A full-text calculus query is of the form{node|SearchContext(node) A QueryExpr(node)}. Intuitively,

the query returnsodes that are in the search context, and that satisfyry Expr(node). QueryExpr(node),
hereafter called thquery expressiaris a first-order logic expression that specifies the full-text search con-
dition. node is the only free variable in the query expression. The structure of the query expression is
recursively defined as follows.

e hasPos(node, pos;) is a query expression whenmgde is the free variable angbs; € VarPos.
e hasToken(pos;,tok) is a query expression, whepes; € VarPos andtok € Consts.

e pred(posi, ..., posm, c1,...,¢y) IS @ query expression, whepeed € Preds, pos; € VarPos and
c; € Consts.

If ge1 andges are query expressionsges, ge1 A gea, andge; V geo are query expressions.

If ge is a query expression, thépos; (hasPos(node, pos;) Aqe), andVpos;(hasPos(node, pos;) =
ge) are query expressions, wheses; € VarPos.

A full-text calculus query has the conventional semantics of first-order logic. The form of the quantifi-
cation in the last bullet guarantees that the query expression in the full-text calculus can be evaluated using
only the positions and tokens in the context node, without having to look at other positions. This notion is
similar to the notion of safety for the relational calculus.

We now provide some examples of full-text calculus queries. The following query returns the context
nodes that contain the tokens 'test’ and 'usability’.

{node|SearchContext(node) A Iposi(hasPos(node, pos1) A hasToken(posy, test’)\

4

Jposa(hasPos(node, posa) A hasToken(posa,’ usability')))}
In the subsequent examples, we only show the query expression since the rest of the query is the same. The
following query returns the context nodes that contain the token 'test’ and the token ’usability’ with at most
5 intervening tokens.
Jposi(hasPos(node, pos1) A hasToken(posi, test’) A Iposa(hasPos(node, posa) A
hasToken(posa, usability’) A distance(posi, posa,5)))
The following query returns the context nodes that contain two occurrences of the token 'test’ and do not
contain the token 'usability’.
Jposi (hasPos(node, pos1) AhasToken(posy, test')AIposa(hasPos(node, posa) NhasT oken(poss,’ test’)
Adif fpos(pos1, posa) A Vposs(hasPos(node, poss) = —hasToken(poss,’ usability'))))

2.3 Full-Text Algebra

We now define our full-text relations and algebra operators. The underlying data model for our algebra is
afull-text relationof the formR[CNode, att;, ..., att,] where the domain afNode is N (context nodes),
and the domain odtt; is P (positions).R satisfies the following properties.

¢ R has always at least the attribut®ode. This captures the context node for full-text search. The
remaining attributes iR capture the essence of full-text search, which is to manipulate positions.

e Eachtuplet in a full-text relation should satisfy the condition that for all the positipmsin t, pos €
Positions(t.C Node). The intuition is that a full-text search query can only manipulate positions
within a single context node.

A full-text algebra expression is based on the following full-text relations that characterize the search
context nodes, their positions, and the tokens at these positions.

e SearchContext(CNode): This relation contains a tuple.¢de) for eachnode € N.

e HasPos(CNode, atty): This relation contains a tuple for eachofle,pos) pair that satisfiesnode €
N A pos € Positions(node). Intuitively, this relation relates context nodes to their positions.

® Rioken(CNode, atty): This is a family of relations, one for ea¢bken € 7. Rk, CONtains a tuple
for each fuode,pos) pair that satisfieszode € N Apos € Positions(node) Atoken = Token(pos).
Intuitively, R;oren CONtains positions that containken, and is similar to an inverted list in IR.

We note that while eacR..xen relation is finite, there number of such relations will be infinit&ifs
infinite. However, this does not lead to a problem in defining the algebra because each algebra expression is
finite, and can only refer to a finite set of such relations. Also, physically instantiating the potentially infinite
set of Ryoxen relations is not a problem because only a finite sub-set of these relations will be non-empty
(because the search context is finite), so only this finite set of relations will have to be explicitly stored. This
is in fact what happens in current implementations of inverted lists.

In addition, as in the calculus, we have a set of position-based predi¢atds.

2.3.1 Full-Text Algebra Operators and Queries

The full-text algebra operators are similar to the relational operators, but with two important differences.
First, full-text algebra operators only operate on full-text relations (as defined above), and not on arbitrary
relations, due to the nature of full-text search. Second, full-text algebra operators implicitly enforce that
each operation only manipulates positions within a single node, and not across nodes. These two properties
ensure that the full-text algebra is equivalent to the full-text calculus in characterizing full-text search. A
full-text algebra expression is defined recursively as follows.

e SearchContext is an algebra expression that returns the tuples in the full-text reldrchContext.
e HasPos is an algebra expression that returns the tuples in the full-text relgdisPos.
e Rioxen IS @n algebra expression that returns the tuples ir{he, relation, whergoken € 7.

e If Expry is an algebra expressioncyode att: ... att; (Fzpri) is an algebra expression. Bzpri
evaluates to the full-text relatiory, the full-text relation corresponding to the new expression is:
TeNode attsatt; (R1), Wherer is the traditional relational projection operator. The attribute names of
the result full-text relation are renamed to have consecutivg’s. Note thatr alwayshas to include
CNode in the full-text algebra - this enforces the property that full-text search is always scoped within
a single context node.

e If Expry and Expr, are algebra expressions, thefzpr; X Exprs) is an algebra expression, If
Ezpr; and Expre evaluate toR; and R,y repectively, then the full-text relation corresponding to
the new expression iRy Xg, cNode—R,.CNode R2, WhereXg, cyode—r,.cnode IS the traditional relational
equi-join operation on théNode attribute. The duplicat€Node attribute is projected out in the result
full-text relation, and the position attributes are renamed to be conseattiyis. Note again how the
full-text algebra does not allow operations across nodes because the only predicate that is permitted
in the join is equality between the attributeiéode of the two relations.

e If Expry is an algebra expression, thepred(attl,...,attm,cl,...,cq)(Exprl) is an algebra expression,
wherepred € Preds. If Expri evaluates taR;, the full-text relation corresponding to the new
eXPression IS, c(atts, ... attn,cs,....cq) (R1), Whereo is the traditional relational selection operator.

e If Expry andExpro are algebra expression, thefixpr; — Exprs), Expri U Expre, andExzpry N
Ezxpry are algebra expressions. ThesgJ andn operators have the same semantics as in traditional
relational algebra.

A full-text algebra query is a full-text algebra expression that produces a full-text relation with a single
attribute (this attribute has to li®ode by definition). The set of nodes in the result full-text relation defines
the result of a full-text algebra query.

We now provide some examples of full-text algebra queries that correspond to the calculus example in
Section 2.2.1. The following query returns the context nodes that contain the token 'test’ and 'usability’:
TCNode (Rtest X R'usabili‘cy)

The following query returns the context nodes that contain the token ’test’ and the token 'usability’
within a distance of 57TCNode(Udistance(pl,p2,5) (Rtest N Rusability))

The following query returns the context nodes that contain two occurrences of the token ’test’ and
do not contain the token 'usability"teyode ((Tdif fpos(atty atts) (Rtest X Riest)) X (SearchContext —

TcNode (Rusability)))

2.4 Equivalence of Calculus and Algebra and Its Applications

Theorem 1 Given a set of position-based predicatéseds, the full-text calculus and the full-text algebra
are equivalent in expressive power.

The proof is in Appendix A, and is similar to the equivalence proof for the relational calculus and algebra.

The equivalence of the full-text calculus and algebra suggests a notion of completeness for full-text search
languages. This provides a formal basis for comparing the expressive power of different query languages,
as we shall do in the next section. To the best of our knowledge, this is the first attempt to formalize the
expressive power of full-text search languages, either for flat documents or for XML documents. Developing
a full-text algebra in terms of relations also provides a foundation for tightly integrating, optimizing and
evaluating structured (relational or XML) queries with full-text search.

The full-text algebra also enables us to rank query results by leveraging existing work on the proba-
balistic relational model developed in the context of IR [19, 38]. Specifically, the probabilistic relational
model includes a probability attribute for each tuple that specifies its relevance to the result relation. A tuple
with a high probability is very relevant to the result relation, while a tuple with low probability is not. In
addition, the model defines how these probabilities are propagated through traditional relational operators.
In our context, we simply need to add a new probability attribute to our full-text relations. We can then rely
on these techniques to propagate this attribute through the algebra operators, and produce ranked results.

3 Scoring

Scoring (or ranking) is an important aspect of full-text search. However, there is no standard agreed-upon
method for scoring full-text search results. In fact, developing and evaluating different scoring methods is
still an active area of research [14, 18, 21, 20, 27, 33, 19, 38]. Thus, rather than hard-code a specific scoring
method into our framework, we describe a general scoring framework based on the FTC and the FTA, and
show how some of the existing scoring methods can be incorporated into this framework. Specifically, we
now show how TF-IDF [28] and PRA [19, 38] scoring methods can be incorporated. We only describe how
scoring can be done in the context of the FTA; the extension to the FTC is similar.

3.1 TF-IDF Based Scoring

TF-IDF is one of the most common IR scoring methods [28].

Our scoring framework is based on two extensions to our model: (1) per-tuple scoring information and
(2) scoring transformations. Per-tuple scoring information associates a score with each tuple in a full-text
relation, similar to [19]. However, unlike [19], the scoring information need not be only a real number (or
probability); it can be any arbitrary type that can be extended for the needs of the scoring method. Scoring
transformations extend the semantics of FTA operators to transform the scores of the input full-text relations.
For example, a selection operator can scale the scores based in the selection predicate (such as distance) anc
So on.

We now show how TF-IDF scoring can be captured using our scoring framework. We use the following
widely-accepted TF and IDF formulae for a nodand a token: ¢t f (n, t) = occurs(n,t)/unique_tokens(n)
andidf (t) = In(14+db_size/df (t)), whereoccurs(n, t) is the number of occurrencestah n, unique_tokens(n)
is the number of unique tokens i db_size is the number of nodes in the database, dfid) is the
number of nodes containing the tokenThe TD-IDF scores are aggregated using the cosine similarity:

score(n) = Yyeqw(t) * tf(n,t) = idf (t)/(||n]l2 * ||ql|2), whereq denotes the bag of search tokens in the
query,w(t) denotes the weight of the search tokeand|| - || is the L, measure.

To model TF-IDF, we associate a numeric score with each tuple. Intuitively, the score contains the TF-
IDF measure for all the positions in the tuple. Initially, tRerelations contain the static scores: thg(t)
for the tokent at that position divided by the product of the normalization factorgjue_tokens x ||n||2.
This is theLs normalized TF-IDF measure for each position containing the tok&hus, if we sum all the
scores inRk;, we get exactly thd.o-normalized TF-IDF measure ofwith regards ta. It is also important
to note that all of the scoring information i, can be precomputed.

To capture TF-IDF score of search tokens, the above tuple score can be scaledhby(t)/
(unique_search_tokens % ||q||2), whereunique_search_tokens is the number of unique search tokens in
the queryq. This scale factor is query-dependent and cannot be precomputed. Thus, we can consider that
the persistent index structures contain t#g(t) / (unique_tokens * ||n||2) score. When the&, relation is
processed, the precomputed score is multiplieddfyt) /unique_search_tokens x ||q||2 to obtain the final
score for a tuple:

t.score = idf (t)?/(unique_tokens * unique_search_tokens ||n||2 * ||q||2)

We now describe the scoring transformations for each FTA operator.

e Given two expression8xpr, and Expry that evaluate to the full-text relatioBs andR,, a tuplet;
in Ry, a tuplety in Ry andts in (Expry X Exprg) wherets is the result of joining; andts, i.e.,
t1.CNode = to.C'Node, the score formula associated with join is:

ts.score = t1.score/|Ra| + ta/|R1|

Above, | - | denotes the cardinality of the relation. We need to scale dowty theore andts.score

because their relevance decreases due to the increased number of tuples (solutions) in the resulting
relation. Informally, one can think of this as “the first law of thermodynamics” for conservation of
energy: the join conserves the total score (energy) of the input relations because it neither adds nor
removes solutions (tuples).

e Given an expressiofMcyode atts,...att; score (£Tpr1) Where Expry evaluates taR; and all tuples
t1...t, In Ry that project out onto the same output tuple(i.e., they share thesame values for
the projected attributes), the score formula associated with projection is:

t3.score = Yj—1,_ nt;.score

Projection also obeys the above score-conservation: the new relation should have the same total score
as the original one.

o GIVeNOy,ci(atty, ... attn c1,....cm) (EZPT1) Where Expry is an algebra expression whose corresponding
full-text relation isR;. Let R is the resulting relation. If; is a tuple inRs such that; = t,, then:

ta.score = ty.score

e Given an expression Expr; where Exzpr, evaluates td?; andt is a tuple inRy, the score formula
associated with the negation isscore = 1 — t.score (tie negation to difference in the definition of
the algebra).

e Given(Expri U Expry) whereExzpr, and Expro are algebra expressions whose corresponding full-
text relations ar&,; and R, andt; is a tuple inR; andts is a tuple inR, andts is the result of the
union oft1 andts, the score formula associated with the union is:

ts.score = ty.score + to.score

We assume that if;.score = 0 if #t; € R; t; = t3 fori = 1,2; i.e., missing tuples are assumed to
have score 0.

e Given(Expr, — Expry) whereExzpr; and Exprs are algebra expressions whose corresponding full-
text relations areR?; andR,. Let R3 is the resulting relation. Ifs is a tuple inR3 such that; = ¢3,
then:

t3.score = ty.score

e Similarly, given(Expri N Expre) where Expr; and Expro are algebra expressions whose corre-
sponding full-text relations ar&, (CNode, atty, ..., att,) and Ry(C' Node, atty, ..., att,). Let R3
is the resulting relation. Let; is a tuple inR; andt. is a tuple in Ry such thatt;.CNode =
to.CNode, ty.att; = ts.atty, ..., t1.att, = to.att,, andts € Rs be the resulting tuple, then:

ts.score = Min(ty.score, ty.score)

The following theorem holds.

Theorem 2 The TF-IDF propagation of scores preserves the traditional semantics of TF-IDF for conjunc-
tive and disjunctive queries.

Proof sketchWe consider restricted FTC expressions of the f¢ride | hasPos(node) A\QueryExpr(node)}
whereQueryExpr(node) can be one of the following

e hasPos(node,p) N\ hasToken(p,t) forsomep € P,t € T

o (QueryExpri(node))\(QueryExprs(node)) for some restricted FTC expressidpsery Expri (node)
andQueryExpri (node)

o (QueryExpri(node))V(QueryExpra(node)) for some restricted FTC expressidpsery Expri (node)
andQueryExpri(node)

We assume that all search tokens are distinct. This can be achieved by considering the search token
position in the query to be part of the search token. Notice that this does not influence the TF-IDF score of
query results. Let two search tokemsandis have the same TF measurgand IDF measurédf. Let the
weight of the first one ba; and the weight of the second onedg Then their combined TF-IDF score is
(wy *tf xidf +wa xtf =idf)/([|n]l2 * [|q||2) = (w1 +wa) x tf * udf /(||n]|2 * ||¢|]2), i.€. itis the same
as a token with weighir; + ws.

We use structural induction on the restricted FTC expreskiowe will prove the following invariant.

Let F; is a subexpression df. Let AFExpr, be its corresponding FTA expression. Then, for every attribute
att; in the resulting relationR; of AFxzpr; and its corresponding search tokgn the following holds

Yu € ToNodeatt; (AExpr1) u.score = score(u.CNode,q;). Here,score(n,q;) = w(q) * tf(n,q) *

idf (gi)/(|In||2 * ||¢||2) is the score of the search context nede N with respect to the toked.

e Let £ = hasPos(node,p) A hasToken(p,t) for somep € P,t € T, i.e. we are searching for the
tokent. The corresponding FTA expressionigy,q.(R¢). The score of every € N is

idf (1)*
score(n) = Q;Rt H-score = uzeth unique_tokens x unique_search_tokens x ||n||2 * ||g||2 @
_ occurs * idf (t) * idf (t) @)
unique_tokens x unique_search_tokens x ||n||2 * ||q||2
_ w(t) «tf(n,t) *idf (t) 3)

[[n]l2 * |q]|2

This is exactly the TF-IDF score with respect to the search token

o Let F = (QueryExpri(node))\N(QueryExpro(node)). LetQueryExpri(node) andQuery Expra(node)
have corresponding FTA expressioh& xpr, andA Ezprs respectively. LeR; and R, be the results
of the evaluation o Expr; and AEzpre. Remember that the search tokens (i.e. postition attributes
in the resulting full-text relations) are distinct. As in the proof of Theorem 1, the FTC expreBsion
evaluates to the relatioR(C'Node, atty, ..., att,) that is the result oA Expry X AExprs.

Letatt; is a position attribute oR. Without loss of generalitytt; also belongs to the relatid®, . Us-

ing the induction hypothesis, we get that € 7c N ode,att, (AExpri) u.score = score(u.C' Node, g;).

We have thattonode,art, (AExpri X AExpra) = TcNode,att;(AExpri) becauseAFExpr; and
AFEzxpry evaluate to relations that have no position attributes in common. Furthermore, for every
tupleu € Ry, there exist exactlyRs| tupleswvy, ..., v|p,|, €ach with score:.score/| Ra|, such that
u.CNode = v;.CNode A w.att; = vj.att; for j = 1,...,|Ra|. ConsequentlyZ'Rz‘

i1 vj.score =
u.score = score(u.CNode, q;).

Letv € ToNode,att; (AExpr1 X AExpre) = ToNode,att; (AExpry). Thus, there existtuples, ..., U|Ry|

).
such thatv.CNode = v;.CNode A v.att; = vj.att; for j = 1,...,|Rs|. Therefore,.score =
Z‘j]g vj.score = score(u.C' Node, g;).

e The casel = (QueryExpri(node)) V (QueryExpra(node)) is similar to the previous one.

QED

10

Further, this scoring method is more powerful than traditional TF-IDF because it can be generalized
to arbitrarily complex queries (not just simple conjunctive and disjunctive queries) by defining appropriate
scoring transformations for the other operators. For instance, we can define a scoring transformation for
distance selection predicates thereby extending the scope of TF-IDF scoring.

3.2 Probability Based Scoring

One of the popular scoring methods employed by the IR community is using probability-based measures
to indicate the relevance of a context node to a full-text search condition. The formal underpinnings for
this work is specified by the probabilistic relational model [19, 38]. Specifically, this model includes a
probability attribute for each tuple that specifies its score (relevance) to the result relation. A tuple with a
high probability score is very relevant to the result relation, while a tuple with low probability score is not. In
addition, the model defines how these probabilities are propagated through traditional relational operators.

It is easy to incorporate the above probability-based scoring in the FTA; we simply need to add a new
probability attribute to the full-text relations. This new attribute will represent the probability (score) of each
tuple in the full-text relation. Since all FTA operations are specified in terms of relational algebra operations,
we can directly use the techniques in the probabilistic relational model to propagate the scores for arbitrarily
complex FTA expressions.

The probabilistic relational algebra is the most prominent scoring method in full-text search [19]. This
algebra operates on tuples with a score attribute. The score of a tuple represents the probability associated
with that tuple. A score formula is associated with each operator with transforms its input tuples scores
into output tuples scores. We adapt the relational probabilistic model to our algebra. Every full-text relation
Rioxen, Wheretoken € T, is augmented with acore attribute. Conceptually, the score of a tupleRixen
represents the probability that that tuple contairken. Hence, the value aicore should be a float between
0 and 1. This value can be computed using a variety of techniques, including TF and IDF [31]. For example,
if TF-IDF is used, then the score of each tuple could be defined as IDF/NF, where NF is the normalizing
factor used in computing the TF-IDF score (using the formula TF*IDF/NF). We associate a score formula
with each operator in our algebra. Each formula guarantees that output tuples will have a score value
between 0 and 1. In the following, we assume that every full-text reldjdmas ascore attribute.

e Given an expressiolcyode atts ... atts,score (Fxpr1) Where Expry evaluates taR; and all tuples
t1...t, in Ry that project out onto the same output tupl€(i.e., they share thesame values for the
projected attributes), the score formula associated with projection is:
tg.score =1 — (1 — ty.score) x (1 — tg.score) X ... x (1 — ty,.score)

This formula aggregates the scores of input tuples whose value is between 0 and 1 into a single score
whose value is between 0 and 1.

e Given two expression8xpr, and Expr, that evaluate to the full-text relatio®s andR,, a tuplet;
in Ry, a tuplety in Ry andts in (Expry X Exprg) wherets is the result of joining; andts, i.e.,
t1.CNode = to.C'Node, the score formula associated with join is:
ts.score = ti.score X to.score Note that the join preserves the fact that the score of tuples has to be
a value between 0 and 1.

e Given an expression,,cq(att,,....atta,c1,....cq) (Ezpry) whereExzpr; evaluates t®,, the score formula
associated with a predicate depends on the predicaté Therefore, given a tuplein R4, its score
is defined as follows:

11

t.score = t.score x f wheref is a function associated with the predicate and evaluates to a value
between 0 and 1. For example, the function associated with the predisai@ce(p;, p2, dist) is:

f=1—|tp1 — t.pa|/dist.

e Given an expressionFExpry where Expr, evaluates t®, andt is a tuple inR, the score formula
associated with the negation isscore = 1 — t.score (tie negation to difference in the definition of
the algebra).

e Given(Exzpri U Exzpry) whereExzpr, and Expro are algebra expressions whose corresponding full-
text relations ar&; andR, andt; is a tuple inR; andt, is a tuple inR, andts is the result of the
union oft1 andt,, the score formula associated with the uniontisscore = 1 — (1 — t;.score) X
(1 — ta.score)

e Given two expressionBxpr, and Fxpry that evaluate to the full-text relatio®s andR,, a tuplet;
in Ry, a tuplety in Ry andts in (Expr; N Expry) wherets is the result of joiningt; andts, i.e.,
t1.CNode = t.C Node, the score formula associated with join ig:score = ti.score X ty.score
Intuitively, the intersection can be interpreted as a join on all attributes.

e The score for the casBzpr; — Fxpro can be derived usingxzpry — Expro = Expry N —Expro.

4 Completeness of Full-text Search Languages

In this section, we show the incompleteness of existing full-text languages with respect to the algebra and
calculus. We then define a complete full-text language based on the full-text calculus that naturally general-
izes existing languages.

4.1 Incompleteness of Boolean Full-Text Search Languages

Boolean full-text search languages are commonly used in IR, and have also been proposed for XML full-
text search [18, 33]. A typical syntax for such languages, which we shalB&\, is given below. The
simplest query is a search token, which can either be a string literal (such as 'test’) or the kéyword
which matches any token in a node. In addition, the query can be composed with Boolean operators.

Query := Tokerl NOTQuery| QueryANDQuery| QueryORQuery

Token := StringLitera] ANY
We can recursively define the semanticEB@OLin terms of our calculus. If the query is a StringLiteral
‘token’ , it is equivalent to the calculus query expressigrihasPos(n,p) A hasToken(p, token’)).
If the query iSANY, it is equivalent to the expressiatp(hasPos(n,p)). If the query is of the fornrNOT
Query , itis equivalent to-Ezpr, whereEzpr is the calculus expression fQuery . If the query is of the
form Queryl AND Query2 , itis equivalent toEzprl A Expr2, whereExprl and Expr2 are calculus
expressions foQueryl andQuery2 respectively. ORis defined similarly. As an example, the query
'testt AND NOT 'usability’ is equivalent to the calculus query expressiom; (hasPos(n, p1) A
hasToken(py, test’)) A =(3pahasPos(n, pa) A hasToken(pa,’ usability')).

Obviously, BOOLcannot express position-based predicates. However, we now show that even if we
disallow such predicates in the calculus (ireds = ¢), BOOLis still incomplete if7 is infinite.

Theorem 3 If 7 is infinite, there exists a full-text query that can be expressed in the full-text calculus with
Preds = ¢, but which cannot be expressedBQOL

12

Proof SketchWe shall show that no query BOOLcan express the following calculus query:
dp(hasPos(n, p) A\—hasToken(p,t1)) (i.e.,find context nodes that contain at least one token that ig;not
wheret, € 7. The proof is by contradiction. Assume that there exists a q@eryBOOLthat can express
the calculus query. Lef, be the set of tokens that appeardn We construct two context nodésV; and
C'N,. C'N; contains only the tokefy. C' N, contains the tokety and one other tokets € 7 — (7o U{t1})
(such a token, always exists becausg is infinite and@ is finite). By the construction, we can see that
C'N; does not satisfy the calculus query, whiléV, does. We will now show tha@ either returns both
C Ny or C N, or neither of them; since this contradicts our assumption, this will prove the theorem.

Let Cg be the calculus expression equivalen@o We show by induction on the structure Gf, that
every sub-expression @y (and hencelg) returns the same Boolean value forV; and C'Ns. If the
sub-expression is of the forAp(hasPos(n,p) A hasToken(p, token)), it returns true for botiC’ N; and
C N, if token = t1, and false iftoken # t1 (by construction of”' N, andC' Ns - recall thattoken appears
in Q). If the sub-expression is of the forAp(hasPos(n,p)), it returns true for botlC'N; andC' N. If
the sub-expression is of the formEzpr, then it returns the same Boolean value for bO6tN; andC N,
because&xpr returns the same Boolean value (by induction). A similar argument can also be made for the
A andV Boolean operatorsl

If we limit 7 to be finite, however, we can prove tiBDOLis complete withPreds = ¢.

Theorem 4 If 7 is finite, every query that can be expressed in the full-text calculusRyvitlds = ¢ can be
expressed iBOOL

The proof is presented in Appendix A. The main intuition is thaf/ iis finite, we can express queries
such as:3p(hasPos(n,p) A —hasToken(p,t1)) in BOOLby explicitly listing all the tokens that are not
t1. AlthoughBOOLis complete under this assumption, it is not always practical because even for simple
queries such as the one above, we need to explicitly list all possible tokens othér iéme query.

4.2 Incompleteness of Existing Predicate-Based Full-Text Search Languages

We now consider full-text languages that have position-based predicates in addition to Boolean operators [3,
7]. A typical syntax for such a language, which we shall Ea8T, is given below.

Query := Toker] NOTQuery| QueryANDQuery| QueryORQuery| dist(Token,Token,Integer)

Token := StringLitera| ANY
The semantics d)IST is the same aBOOL. except for the addition afist(Token, Token,Integer)
This construct is the equivalent of théstance predicate introduced in the calculus (Section 2.2), and spec-
ifies that the number of intervening tokens should be less than the specified integer. More formally, the
semantics of dist(,t2,d) for some tokeng; andt, and some integet is given by the calculus expression:
dp1(hasPos(n,p1) ANhasToken(pi,t1) AIpa(hasPos(n, p2) AhasToken(pa,ta) Adistance(py, pa2,d))).
If ¢1 or t5 is ANYinstead of a string literal, then the correspondingT oken predicate is omitted in the
semantics. We now show thBAST is incomplete with respect to the calculus so londais not trivially
small. We can also prove similar incompleteness results for other position-based predicates.

Theorem 5 If | 7 |> 2, there exists a full-text query that can be expressed in the full-text calculus with
Preds = {distance(p1, p2, d)}, but which cannot be expressedD\ST .

Proof SketchWe shall show that no query DIST can express the following calculus query:
dp1(hasPos(n, p1) AIpa(hasPos(n, pa) NhasT oken(pi, t1) AhasT oken(pa, t2) A—~distance(p1, p2,0))),
wheret, € 7,ty € T andty # ts (i.e., find