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ABSTRACT

Allocentric motion, in which the user moves with respect to an external sub-

ject’s coordinate system, is commonly used in the context of rendering and ma-

terial design, but little scientific work exists to support this scheme over ego-

centric motion, in which a user works according to their own coordinate sys-

tem. We examine the effectiveness of these two navigation schemes with a user

study spanning a standard desktop workstation, ”fish tank” virtual reality, and

a head-mounted display. Our results do not indicate a difference in performance

between these schemes, a result we analyze in the discussion section.
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CHAPTER 1

INTRODUCTION

A common occupation in the animation industry is that of the materials de-

signer. These artists spend most of their time in the process of material under-

standing: either by tuning reflectance models to match design references, by

evaluating the quality of virtual materials, or by scanning a surface visually to

detect optical abnormalities. Professional material design tools like Maya’s Hy-

pershade [2] employ an allocentric scheme for user interaction, in which the

designer orbits the object of interest to better observe a material.

Our goal in this work is to interrogate this widespread usage of allocentric

interfaces in the performance of material understanding tasks. In this thesis, we

present a user study in which the material understanding tasks of comparison,

tuning, and scanning were performed in three hardware configurations differ-

ing in exocentricity. We also provide a statistical analysis of the results and a

qualitative discussion of our observations during the trials.

We begin in this chapter with an explanation of materials followed by a dis-

cussion of egocentric and allocentric schemes for navigation. In Chapter 2 we

consider our work in the context of the existing literature in the fields of Com-

puter Graphics, Human-Computer Interaction, and Cognitive Science. Chapter

3 details our experimental design and execution. We present our results with

analysis in Chapters 4 and 5, respectively, before rendering our suggestions for

future work in Chapter 6, and stating our conclusions in Chapter 7
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Figure 1.1: The Stanford Bunny assigned (from left to right) metallic,
isotropic, anisotropic, and brick-textured materials.

1.1 Materials

Materials are an abstraction of surface reflectance and volumetric scattering

models which characterize the way that virtual objects interact with light in a

rendering environment. Materials approximate the microscopic structure of an

object, not it’s larger geometric features [39]. Thus two virtual objects with iden-

tical shape can be modeled with different materials, as shown in Figure 1.1. In

the context of photorealistic image synthesis, materials are designed to approxi-

mate the true optical behavior of physical references. Even in non-photorealistic

contexts, materials artists spend a great deal of time approximating a complex

physical materials like wood, rust, and hair.

The simplest materials are uniform across a surface or volume and interact

with light in clear, predictable ways. The reflective behavior of matte wall paint

can be approximated by an ideal diffuse material. By contrast, an ideal specular

material mimics a polished silver mirror [33].

More complicated materials may vary across the surface of a virtual object.

This document, for instance is black where there is text and white elsewhere.

Thus color varies across the surface of the page. This spatial variation in re-
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flectance is sometimes called texture. Color is not the only reflectance feature

that may vary spatially across a surface. Roughness, anisotropy, iridescence,

and myriad other optical properties contribute to texture.

Real-world materials tend to have texture. Wood exhibits interlocking pat-

terns of light and dark often called “grain.” A rusty pipe ranges from glossy

silver to matte orange in a pattern determined by wear on different parts of the

metal. The feathers of a pigeon vary from dull grey at the tail to iridescent green

and purple at the neck. These complex patterns of reflectance are difficult to

replicate and evaluate for the designers of virtual materials working in the film

and video gaming industries. This is partially due to the fact that the evaluation

of a surface reflectance model requires a practitioner to observe it from many

different directions and in many different lighting conditions to understand the

full behavior of the texture.

Our user study uses the challenge of evaluating materials with complex tex-

tures as a performance test for several navigation schemes. Our goal is to deter-

mine the relationship between success in this realm and the choice of navigation

scheme.

1.2 Egocentric and Allocentric Schemes

A spatial reference frame is a mental model which allows person to describe

the positions of objects in space. Egocentric reference frames place objects with

respect to the observer. Allocentric reference frames consider the spatial rela-

tionships between objects and some landmark external to the observer [23]. It is

worth noting that hybrid schemes involving the simultaneous use of egocentric
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and allocentric reference frames are also possible and perhaps the mode [5].

Figure 1.2: Left to right: egocentric, hybrid, and allocentric descriptions of
the position of a hare.

Figure 1.2 illustrates spatial thinking by way of egocentric, hybrid, and allo-

centric reference frames. (We refer to these as egocentric, hybrid, and allocen-

tric reasoning, respectively.) The scenes in Figure 1.2 are identical physically

but their descriptions demonstrate the speaker’s spatial reference frame. In the

egocentric example, the hare is positioned relative only to the speaker. In the

allocentric example, position is given only in relation to an external object – the

tortoise. In the hybrid example, the hare is triangulated with information from

the speaker’s heading and the tortoise’s position.

While some tasks are clearly egocentric or allocentric, many hybrid tasks

rely on both egocentric and allocentric reasoning in varying amounts. One way

to model this is a spectrum of exocentricity ranging from purely egocentric to

purely allocentric, with most activities falling in between [11]. This spectrum is

visualized in Figure 1.3.

Material understanding tasks have most commonly been solved with purely

allocentric motion models – the navigation schemes designers use to interact with

materials. The dominant paradigm in material design software requires users

to orbit their view around a fixed object whose material they would like to eval-

4



Figure 1.3: Many tasks can be arranged along a continuum between
mostly egocentric and mostly allocentric.

uate. Our user study examines whether or not this choice of allocentric motion

model affects material understanding in such a design tool.

1.3 Contribution

To evaluate the effectiveness of egocentric and allocentric navigation schemes

that humans may use to understand the reflective properties of materials, we

conducted a user study in which human subjects’ performance of material un-

derstanding tasks was evaluated in several paradigms representing different

points on the spectrum of exocentricity. Our analysis shows no significant effect

of the exocentricity of an interface on the material understanding that it enables,

indicating that little is to be gained by breaking with material design tradition.
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CHAPTER 2

RELATED WORK

This thesis explores the performance of users completing several common

material understanding tasks across several hardware configurations meant to

represent various points on the spectrum of exocentricity from egocentric to

allocentric. In this chapter, we briefly visit the spaces of material perception and

material design user studies to show the novelty of our experiment therein.

2.1 Material Perception

The unconscious processes by which humans visually assess the physical, tex-

tural, and functional properties of materials is both much-studied and poorly

understood [14]. Although our work does not directly involve neurological or

psychological models of material perception, the adjacency of our work to this

rich field merits mention. We direct the reader to [15] for its excellent top-down

overview of visual perception. Alternatively, those with a Computer Graphics

background are encouraged to read [43], especially Section III, which focuses

solely on the relevant sub-field of material perception.

2.2 Egocentricity and Allocentricity

Our interest in discovering whether egocentric, allocentric, or hybrid motion

models affect material understanding is not unprecedented. Researchers have

investigated similar questions of exocentricity in various domains for decades,

although not directly toward material understanding tasks.
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There is a body of evidence suggesting that egocentric and allocentric rea-

soning are neurologically distinct phenomena. For instance, Gramman et al.

observed that subjects displaying egocentric and allocentric preferences exhib-

ited divergent alpha-blocking patterns as measured by EEG while simulating

turns in a virtual tunnel [18], an observation corroborated by subsequent cor-

relate studies [34, 10]. Other work has indicated that rotations are better un-

derstood egocentrically while translations are most intuitive in an allocentric

scheme [20], and that human subjects have individual biases toward egocentric

or allocentric navigation modes [17].

The observation of neurological divergence in egocentric and allocentric rea-

soning has inspired a broad array of research in human-computer interface de-

sign. While some research posits that humans are predisposed toward a prefer-

ence for egocentric control schemes [30, 36, 6, 5], the majority of studies indicate

that differing levels of exocentricity are better suited to different tasks. One line

of research, for example, showed that a novel allocentric scheme empowered

drone pilots in indoor spaces [12], while another showed improved spatial lo-

calization in a virtual tennis game in the egocentric mode [1]. Another study

in virtual navigation indicated that scene geometry determines the efficacy of

egocentric and allocentric navigation schemes [48]. Perhaps most similar to this

thesis is the work of Qi et al., who determined that the egocentric motion af-

forded by a head-mounted display was inferior to the hybrid navigation mode

of fish tank VR for volume visualization [35].

It has been shown that egocentric and allocentric motion models affect the

brains of users in distinct ways and that some tasks are better suited to differing

levels of exocentricity. Our study is the first to apply this line of thought to the
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topic of material understanding tasks.

2.3 Material Design Interfaces

While material understanding has not been codified in the HCI literature, its

application to material design interfaces has been a topic of study. We discuss

several interesting material designers in this section to identify the typical treat-

ment of material understanding tasks. For clarity and brevity, we will refer to

these design interface as material designers, and we will refer to the human con-

sumers of the interfaces as artists or users.

Figure 2.1: A screenshot of Maya’s Hypershade material designer,
reprinted from public documentation [2].

The standard paradigm for a material designer is best illustrated by Maya’s

Hypershade tool [2], which presents an allocentric view of a shaded object as

well as a flowchart and sliders for editing material parameters (Figure 2.1).
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More exotic material designers have been studied, but have not seen commer-

cial implementation. Kerr and Pellacini produced a material designer for novice

users which offers image-based navigation through a material parameter space

[22]. The same experiment measured no improvement between users who nav-

igated through physical material parameters over users who navigated through

images which corresponded to a perceptual shading model [31]. While novel,

the parameter-space navigation featured only an allocentric view of the object,

whereas our work evaluates egocentric, allocentric, and hybrid motion models

for material understanding.

Other material designers give the user an understanding of structure at var-

ious scales during design. One system simultaneously displays a macroscopic

view of the object of interest and a microscopic view of the material with which

it is adorned [49, 50], controlled allocentrically. Another class of material de-

signers focuses on manipulating illumination [41, 8, 37], but does not interrogate

spatial navigation schemes.

Finally, it has been noted that the majority of material design user studies

have been conducted on novice users, and that any conclusions drawn from

these studies may have biases that make them inapplicable to real-world mate-

rial design pipelines [38]. Our experiment too was conducted on novices, and

thus may not generalize to experienced material design artists, although we

think this risk is sufficiently small.

While a diverse collection of material design questions has been addressed

by existing research, we are not aware of any studies which diverge from the

allocentric navigation model in favor of an egocentric or hybrid one. We intend

to address this question in the forthcoming thesis.
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CHAPTER 3

EXPERIMENTAL DESIGN

3.1 Overview

Our experiment was designed to determine if the exocentricity of a display sys-

tem affects user performance in material understanding tasks. The research

question occurred to us after presenting several volunteers with wood samples,

which they were asked to evaluate visually. We were interested by the fact that

all of our volunteers moved their heads around the wooden surface while as-

sessing it. From this, we hypothesized that an egocentric navigation scheme – in

which users could move their heads to observe changes in reflection across the

surfaces of virtual objects – would enable human subjects to better understand

the reflective properties of virtual objects when compared to a more allocentric

scheme.

We decided to test our hypothesis by measuring user performance in three

distinct tasks, each of which mirrored one of the three primary material design

skills: comparing materials to a reference, tuning reflectance model parameters,

and scanning surfaces for optical anomalies. Users were asked to complete each

task once on various hardware configurations. All three tasks featured interac-

tion with common anisotropic materials. The focus on anisotropy was designed

to force users to change their viewpoints frequently during each task, thereby

engaging with the navigation model we provided. The tasks surveyed were:

1. Comparison of shaded wooden blocks to a reference.

2. Tuning of a diffraction grating until it matched an exemplar.

10



3. Scanning brushed metallic surfaces for changes in brush direction.

We discuss each of these tasks in greater detail in Section 3.3.

The three tasks above gave us a broad sampling of material design skills to

test. In order to test our hypothesis that egocentric motion would assist in these

skills, however, we needed multiple user interfaces which diverged in exocen-

tricity. We chose to examine three separate hardware configurations which rep-

resented different locations on the spectrum of exocentricity. The configurations

employed were:

1. A head-mounted display (HMD), in which virtual motion was encoded

one-to-one by user movement.

2. A ”fish-tank” virtual reality system, in which users could both move their

heads to change their views and orbit objects allocentrically.

3. A viewport configuration in which users could only orbit allocentrically.

Due to the motion models allowed in each configuration, we hold that the

head-mounted display is a primarily egocentric scheme, that the viewport con-

figuration is a primarily allocentric scheme, and that the fish-tank configuration

is a truly hybrid scheme. These configurations are detailed further in Section

3.4.

Our experiment was chosen to be within-subject for hardware configurations

to minimize nuisance variance due differential user performance. This was

deemed especially important given the small number of users in our study.

Conversely, the experiment was designed to be between-subjects for material un-

11



Scanning Comparison Tuning
User 1st 2nd 3rd User 1st 2nd 3rd User 1st 2nd 3rd

0 V F H 6 V F H 12 V F H
1 H V F 7 H V F 13 H V F
2 F H V 8 F H V 14 F H V
3 V H F 9 V H F 15 V H F
4 H F V 10 H F V 16 H F V
5 F V H 11 F V H 17 F V H

Table 3.1: The order in which each user utilized the Viewport (V), Fish
Tank (F), and Head-Mounted Display (H) configurations.

derstanding tasks in order to avoid overwhelming users with training on three

separate tasks.

3.2 Participants

We recruited 19 participants and used software logging and observation to

record them in each of the three experimental conditions: Viewport, Fish Tank

VR, and HMD VR. Participants were paid twenty dollars for roughly thirty min-

utes of their time. All participants reported normal or corrected-to-normal vi-

sion. One participant had difficulty understanding the assigned task and pro-

duced erratic results. This participant’s data was removed from the dataset and

replaced with that of a subsequent participant’s. Our resultant population of

18 participants (10 women, 8 men, ages 18-33) was organized into three groups

of equal size. Each of the Comparison, Tuning, and Scanning tasks were com-

pleted by one such group of 6 participants. Subjects completed their tasks in the

Viewport, Fish Tank, and HMD configurations in the partial-factorial ordering

shown in Table 3.1.
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3.3 Tasks

In order to understand the effect of egocentric, allocentric, and hybrid motion

models on material understanding, we required tasks which represented com-

mon material understanding functions. We chose three specific material un-

derstanding tasks which corresponded to the primary material understanding

activities most common in the animation industry. We refer to these user tasks

as the Comparison, Tuning, and Scanning tasks, and explain them below.

3.3.1 Comparison

Figure 3.1: The virtual scene in the Comparison Task populated with a pair
of identical blocks.

Holistic comparison of a virtual material to a reference is fundamental to

material design; thus it served as a vital testbed for our evaluation of egocentric

and allocentric motion schemes for material understanding. In the Comparison

Task, participants were presented with a several pairs of virtual wooden boxes

13



and asked to identify whether or not they were the “same.”

The virtual setting of the Comparison Task – shown in Figure 3.1 – was mod-

elled after the Cornell Box [16]. The design of this scene lends several advan-

tages to the Comparison Task. Firstly, the scene contains a single light source,

simplifying evaluation of the material. Secondly, the red and blue walls give ob-

vious but non-intrusive landmarks to help users keep track of which block they

are looking at. Finally, the simplicity of the scene made it easy to implement and

interact with. To assist in depth perception, each surface in the scene was given

a diffuse texture. Two green ”X” markers were also added to the floor next to

the boxes to suggest good starting positions to users.

We used a real-time implementation of the Marschner Finished Wood Model

to simulate light transport on the blocks [26]. Aside from physical accuracy, the

advantage of using this model is that it includes several tunable texture param-

eters, each with differing levels of visual salience and anisotropy. We presented

users with pairs of wooden blocks differing in either wood fiber orientation,

fiber highlight width, diffuse color, or fiber color. The differences in these tex-

ture parameters are not clear or even visible in some configurations of light and

user position, as Table 3.2 demonstrates. This property of the shading model en-

couraged users to move around more when comparing the blocks, which forced

them to engage with the given motion model.

In the course of the Comparison Task, users were presented with 16 pairs of

blocks. Each pair was either identical or differed by exactly one shading compo-

nent (as illustrated in Table 3.2). Some of the blocks were consistent with actual

wood samples, with each of their shading components coming directly from a

measurement of the same piece of wood. Other “chimera boxes” used param-
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Table 3.2: Each row shows a single block in three lighting conditions. The
material rendered in each row (except the first) differs from the
default material in a single shading parameter.
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eters from several different wood samples. Chimera boxes were included to

nullify the potential bias that boxes with one modified texture parameter might

look inexplicably “unnatural.” The accuracy of each user response was mea-

sured as a boolean reporting whether or not the user was correct. The time taken

for each decision was measured as the duration between the time a new pair of

wooden blocks was loaded into the virtual environment, and the moment the

subject declared them the same or different verbally.

3.3.2 Tuning

Figure 3.2: Iridescent shields for the Tuning Task.

While holistic comparison is an important step in the overall execution of

the material design process, local evaluation of small adjustments in a shading

model is required for the minute parameter tweaks on which designers spend

much of their time. The Tuning Task was designed to assess user performance of

these small-scale changes under egocentric and allocentric navigation schemes.

In this task, users were shown a pair of virtual iridescent shields and asked to
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adjust a hidden parameter of one shield until it matched the other (Figure 3.2).

Iridescence was chosen for the Tuning Task for its dramatic dependence on

viewpoint. In order to compare the tunable shield to the reference shield, users

were forced to move back and forth between the pair in order to see them from

congruent viewpoints. This encouraged users to make small changes to the

tunable shield parameter and immediately return to the reference, mirroring

the kind of small adjustments we were interested in observing.

The iridescence shader coloring the shields was implemented based on a

diffraction grating model originally due to Jos Stam [13]. Users adjusted the

grating spacing to alter the appearance of the shield. The diffraction grating

model was selected because of its simple parameterization by grating distance

and easily visible anisotropy.

As in the Comparison Task the virtual setting of the Tuning task was a mod-

ified Cornell Box. Several additional changes were made for the Tuning task

to facilitate user evaluation. The two shields were placed beside each other a

short distance away so that the user could move back and forth between the

two quickly. For this reason, the one central light had to be replaced by two

spotlights – one per shield – so that the spatial relationship between each shield

and its source of illumination was the same. Finally, the room was darkened

from the original to better show the iridescent materials of the shields.

Over the course of the Tuning Task, users were presented with eight pairs of

virtual shields (fewer than the sixteen pairs of blocks in the Comparison Task,

chosen to keep each session less than an hour in duration). Each pair was com-

posed of a reference and a doppelganger. Users were asked to tune the diffrac-
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tion grating distance of the doppelganger until it matched that of the reference.

The diffraction grating model of the shields was not explained to users. They

were instead asked to match the shields solely based on their own perception

of visual similarity. Users were permitted to adjust the parameter until they

were satisfied with its similarity. Once they reported satisfaction, a new pair of

shields was loaded.

Timing information was measured as in the Comparison task. Accuracy was

measured as the linear distance from the reference value of the tuning parameter

to the value of the tuning parameter effected by the user.

3.3.3 Scanning

Figure 3.3: A hidden star in the Scanning Task.

Scanning for optical anomalies, the final material understanding task com-

pleted frequently by material designers, is important for avoiding visual dis-

turbances in rendered animations. Whereas comparison and tuning require in-
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teraction only with the material, scanning necessitates that users understand

the interactions between surface, material, and illumination. The Scanning task

was built to evaluate how egocentric and allocentric motion models contribute

to success in this multifaceted material understanding problem. In the Scanning

Task, users were asked to find a hidden shape on brushed metal cylinder.

The brushed metallic material was selected to force users to adjust the po-

sitions of both the cylinder and themselves with respect to a fixed light source.

The anisotropic shader used to represent this material was based on a Bruce

Walter’s 2007 microfacet model [46], but simplified to run the GPU. Brushed

metal has an unusual highlight behavior that is uniform along the direction of

brushing. This highlight is only visible from certain configurations of light, cam-

era, and surface. Therefore to see any disruptions in the highlight that might re-

veal a hidden shape, users needed to move themselves and the cylinder relative

to the fixed light source. The cylinder itself was brushed in a uniform direction

except for a triangle, square, or star (the hidden shape) on the surface which

was brushed in a contrasting direction (Figure 3.3).

The virtual setting of the Scanning Task differed significantly from the Com-

parison and Tuning tasks. Rather than inside the Cornell Box, the user and ob-

ject were placed at the end of a long virtual tunnel with one overhead light and

a far-away directional light coming from the opposite end of the tunnel. The

tunnel was designed to encourage users to find grazing angles of light off of

the surface of the cylinder, as these angles were most likely to reveal the hidden

shape. The overhead light was added to increase the number of configurations

which could reveal the shape, since pilot experiments showed that a single light

source made the task too difficult.
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Users were given a total of twelve cylinders per configuration to evaluate

(more than in the Comparison Task but less than in the Tuning, again to com-

ply with time constraints). Each cylinder was given a random color to indicate

that a new cylinder had been loaded between trials. This choice came as a re-

sult of feedback that users perceived the twelve cylinders to be a single object

whose brush direction was changing over time, causing confusion and frustra-

tion. Timing was measured as the duration from the moment each new object

was loaded into the scene to the moment the user called out the shape of the

anomaly perceived on the surface of the object. Accuracy was measured as in

the Comparison Task.

3.4 Apparatus

Users were asked to interact with virtual scenes constructed and simulated us-

ing the Unity3D Game Engine [42]. All shading models required for the tasks

were implemented as Unity shaders in the Nvidia Cg shading language [28].

To interact with these virtual scenes, users employed three unique hardware

configurations, each corresponding to a different level of exocentricity. In or-

der from most allocentric to most egocentric, we refer to these UI modes as the

Viewport Configuration, the Fish Tank Configuration, and the Head-Mounted Dis-

play (HMD) Configuration. Each participant completed a single task three times

– once in each of the three hardware configurations. Trials were protected from

analytical nuisance factors by partial combinatorial counterbalancing (as shown

earlier in Figure 3.1).

All of the code used to run the experiment can be found in the author’s
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github repository1.

3.4.1 Viewport Configuration

Figure 3.4: A non-participant volunteer examines a wood sample using
the Viewport Configuration.

The Viewport Configuration is similar to the actual material design experi-

ence most common in the animation industry. In this configuration, users stand

at a desk and interact with a virtual scene shown through a widescreen desktop

monitor. A picture of the apparatus can be seen in Figure 3.4. In the View-

port Configuration, users interact with the virtual scene using a subject-orbiting

control scheme similar to those available in Maya and Unity [2, 42]. This con-

figuration is distinctly allocentric, as all navigation occurs with respect to a co-

ordinate system internal to the computer program, namely that of the subject,

rather than the natural coordinate system of the user. Unlike common material
1https://github.com/jeb482/morphomaterial
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design tools, the Viewport configuration does not use a mouse-and-keyboard

for orbiting. Instead, the user operates an Oculus Touch controller to orbit and

zoom. This decision was made to avoid using separate input devices for the

three configurations. The Oculus controller can be used in virtual reality and

desktop conditions, while a mouse-and-keyboard is difficult to use with a head-

mounted display.

3.4.2 Fish Tank Configuration

Figure 3.5: A lab-mate models the tracked helmet employed in the Fish
Tank Configuration.

The Fish Tank Configuration is inspired by the eponymous 1993 Interchi pa-

per in which a desktop monitor was augmented with a head-tracking system so
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that the image could be updated to match the viewer’s position with respect to

the screen [47]. This modification allows the display to replicate view frustum

effects like parallax. The resultant system gives the viewer the impression that

she is looking through a window into a 3D space, rather than at a screen con-

taining a flat images. It also allows the user to move her head for new views of

the subject of interest.

We used the Oculus Rift tracking system and Oculus Touch controllers to

construct a fish tank VR installation. The decision to use Oculus tracking elim-

inates the nuisance factor of using multiple tracking systems between the Fish

Tank and HMD configurations, and simplifies our system design, since Oculus

tracking architecture is already in place. To provide head tracking without a

head-mounted display, we affixed an Oculus Touch controller to the back of a

bicycle helmet (Figure 3.5) and asked users to wear the helmet while interacting

with the fish tank screen. Our initial tests showed that users experienced dif-

ficulty in using the head tracking while seated. This constraint and the desire

to minimize experimental variance led us to require users to stand for all three

hardware configurations. For more information on the setup and calibration of

Fish Tank VR using the Oculus Rift, please refer to Appendix A.

Although the head-tracked motion of the Fish Tank display is intrinsically

egocentric, users can only access a small subset of viewing directions by moving

their heads. For instance, the user cannot walk behind the fish tank monitor to

see the back of an object, because the screen is one-sided. Thus, the user must

use another control scheme to access these additional views. We chose the same

allocentric control scheme used in the Viewport Configuration to supplement

head-tracking-based motion. The Fish Tank Configuration therefore is a hybrid
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of egocentric fine motions and allocentric gross motions.

3.4.3 HMD Configuration

Figure 3.6: A non-participant volunteer examines a scene in head-
mounted display configuration.

The Head-Mounted Display (HMD) Configuration employs the Oculus Rift

and an Oculus Touch controller in their typical roles within a virtual reality

system. Users were asked to wear the Oculus headset and interact with virtual

scene by moving about the experiment room and inspecting or manipulating

objects with their headset and controller (Figure 3.6). Due to the limited size

of the experiment room, participants were also equipped with a “teleporter”
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activated by pressing the joystick of the controller. The teleporter could be used

to jump discontinuously between points in the virtual world. This scheme is

common for virtual reality games and was chosen for our experiment because

it is more user-friendly than other common forms of locomotion [4].

Whereas the Fish Tank Configuration includes both egocentric and allocen-

tric motion patterns, the HMD Configuration is purely egocentric, as all motion

– including teleportation – is handled with respect to the user’s own position

and orientation.
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CHAPTER 4

RESULTS

In this chapter we explore the data acquired during our user study using the

tools of statistical analysis. We begin by introducing the dependent variables

broadly. We then answer questions around speed, accuracy, and user perception

in terms of these variables in sections 4.2, 4.3, and 4.4, respectively. We finish

with a summary of our statistical findings, leaving interpretation of the results

to Chapter 5.

4.1 Dependent Variables

Our experiment was designed to ascertain whether performance in three ma-

terial understanding tasks was affected by the usage of egocentric, allocentric,

and hybrid navigation schemes. Performance was measured by the following

dependent variables:

• Average time taken to complete each task.

• Percentage of correct responses for the Scanning and Comparison tasks.

• Average final error in shading parameter for the Tuning Task.

• Self-reported comfort during each task on a Likert-type scale [25].

• Self-reported difficulty during each task on a Likert-type scale.

• Self-reported intuitiveness during each task on a Likert-type scale.

• Self-reported confidence during each task on a Likert-type scale.
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In our evaluation, a superior navigation scheme should reduce average time per

task, tuning parameter error, and perceived difficulty, while increasing percent-

age of correct responses, comfort, intuitiveness, and user confidence.

Average time taken per task, percentage of correct responses, and average

Tuning Task error were all measured by software logging. Timing data was

measured as the duration from the moment a new trial was loaded to the mo-

ment the user gave a verbal response to the prompt. Response correctness was

recorded with keyboard commands operated by an experimental observer. Tun-

ing Task error was calculated as the difference in nanometers between the refer-

ence object’s diffraction grating spacing, and the tuned object’s diffraction grat-

ing spacing at the end of each Tuning trial. The remaining self-reported quanti-

ties were recorded by a written post-experiment survey.

In contrast to the above, task, user, hardware configuration, and recording

procedure were all considered as independent variables in our analysis.

4.2 Speed

Each of the Comparison, Tuning, and Scanning tasks involved a series of indi-

vidual trials for the user to complete. The participants’ speed was measured by

the time taken to perform each trial. In general, the distribution of user response

times was highly right-skewed. We found that these samples closely matched

a log-normal distribution in shape. The log-normal distribution has been pre-

viously proposed as an appropriate model of user response times [45], so we

conducted our analysis under the assumption of log-normality.
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One convenient property of the log-normal distribution is its duality with

the normal distribution. Under the assumption of a log-normal distribution,

when we apply the natural logarithm to each sample response time, we receive

a collection of log-space response times which are normally distributed. The

resultant data set is compatible with the repeated measures ANOVA available

to us for hypothesis testing.

The one-way repeated measures ANOVA was a natural choice for analy-

sis because each participant attempted the same task in three separate condi-

tions. We cannot expect a user’s speed in one configuration to be independent

from their speed in another, indicating that the repeated measures ANOVA is

required. An additional benefit of the repeated measures ANOVA procedure is

that it is generally more powerful than the independent ANOVA [40]. This is

especially important to our design due to our small number of participants.

In the following subsections, we summarize our analysis of the timing data

from each of the three tasks based on our assumption of log-normality.

4.2.1 Comparison

Table 4.1: Comparison Task Response Time: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 0.110 2 0.055 0.547 0.595 0.099 0.000

Residual 1.005 10 0.100

As explained in the introduction to this section, we performed a logarithmic

transformation on participant response time data collected during the Compar-
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Figure 4.1: Combinatorial plot of mean response time for the Comparison
Task.

ison Task. We averaged each participant’s logarithmicly transformed response

time and conducted a repeated measures ANOVA on the averages (Table 4.1).

The ANOVA revealed no statistically significant relationship between log re-

sponse time and hardware configuration (p = 0.595). Figure 4.1 shows a com-

binatorial plot of the response times across the three configurations with 95%

confidence intervals superimposed over each datum. There is a large overlap

between each pair of confidence intervals, indicating that no conclusion can be

reached with the current data.

It is difficult to produce a valid power analysis from the results obtained

from our repeated measures ANOVA. Although our η2 (0.099) indicates a small

or medium effect, this metric is known to overestimate effect size for small sam-
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ple sizes [44]. ω2, known to be a less biased estimator of effect size for small N

[29], indicates trivial or nonexistent effect size.

If we accept the risk of a power analysis based on η2, we can conclude that a

pool of 330 participants should yield enough power (80%) to determine whether

or not there is a significant interaction between exocentricity and speed of exe-

cution.

4.2.2 Tuning

Table 4.2: Tuning Task Response Time: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 0.209 2 0.105 1.478 0.274 0.228 0.011

Residual 0.707 10 0.071

Just as we did for the Comparison Task, we performed a log transform of

the response time data before beginning our analysis for the Tuning Task. A

repeated measures ANOVA (Table 4.2) showed no significant effect of configu-

ration on the average response time of users during the Tuning Task (p = 0.274).

Confidence intervals around the log-mean of each of the three configurations

show a longer duration on average in the HMD configuration than in the other

two, although this difference is not significant (Figure 4.2).

As mentioned in the previous section, we must be cautious in treating a

power analysis based on η2 as unbiased. With that warning in mind, such a

power analysis indicates that to achieve 0.8 power at the 0.05 significance level,

we would need a pool of 210 participants
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Figure 4.2: Combinatorial plot of mean response time in the Tuning Task .

4.2.3 Scanning

Table 4.3: Scanning Task Response Time: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 0.206 2 0.103 0.724 0.509 0.126 0.000

Residual 1.425 10 0.143

The analysis of user response times in the Scanning Task proceeded identi-

cally to that of the Comparison and Tuning Tasks. A repeated measures ANOVA

(Table 4.3) found no significant effect of hardware configuration on user re-

sponse time in the Scanning Task (p = 0.509). Confidence intervals of mean

response time, shown in Figure 4.3, overlap heavily. An η2 power analysis, with

the same caveats as before, shows that 80% power at the 0.05 significance level
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Figure 4.3: Combinatorial plot of Scanning Task response times.

could be achieved with 204 participants.

4.3 Accuracy

Another set of dependent variables we explored correspond to user accuracy

while performing each task. For each of the Comparison, Tuning, and Scanning

tasks, we analyzed an appropriate metric of user accuracy for dependence on

exocentricity condition (i.e. hardware configuration). In this section, we explain

our choice of metrics, present our findings, and analyze the results. We do this

for each of the Comparison, Tuning, and Scanning tasks in that order.
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4.3.1 Comparison

Table 4.4: Comparison Task Accuracy: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 0.008 2 0.004 0.514 0.613 0.093 0.000

Residual 0.080 10 0.008

Figure 4.4: Combinatorial plot of Comparison Task accuracy.

The Comparison Task required that users give a boolean response to the

question ”are these two boxes made from the same material” sixteen times. The

user response was considered correct in the following two cases:

1. The shading parameters were identical and the user responded ”yes.”

2. The shading parameters differed and the user responded ”no.”
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Otherwise, the responses were considered incorrect. We defined a user’s Com-

parison Task accuracy as the percentage of correct responses given by the user

during the Comparison Task. Accuracy was fairly high in each of the three con-

figurations, with the lowest score for any user in any configuration at 75%,

A repeated measures ANOVA was run on the accuracy averages from the

Comparison Task (Table 4.4). The ANOVA did not indicate that hardware con-

figuration had a significant effect on accuracy (p = 0.613). Furthermore, 95%

confidence intervals constructed around the per-subject average accuracy (Fig-

ure 4.4) showed large overlap.

As explained in the previous section, η2 may overestimate effect size for

small studies like ours. However, ω2 is too small for many of our metrics, so

we include an η2 power analysis for completeness. Based on our η2, we should

be able to determine if an effect on accuracy due to exocentricity exists with 0.8

power at the 0.05 confidence level given 378 participants.

4.3.2 Tuning

Table 4.5: Tuning Task Accuracy: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 127.4 2 63.70 0.277 0.763 0.053 0.000

Residual 2296.4 10 229.64

The design of the Tuning Task allowed us to obtain a continuous error metric

for each Tuning Task trial. During each trial, users adjusted a shading parame-

ter to match a reference. We then used the linear difference between the user’s
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Figure 4.5: Combinatorial plot of Tuning Task error.

approximation of the shading parameter and the reference’s shading parame-

ter as an error metric. Because the shading parameter was diffraction grating

spacing, error in this task has units of nanometers.

We removed the trials whose error was more than three standard deviations

above the mean error from our analysis. We believe that this removal is justified

because these errors were caused by a misunderstanding of the task, rather than

failure to evaluate the difference between materials. Our conclusion that these

errors are due to misunderstanding is supported by the fact that they all tended

to occur within the first few trials that a user attempted.

In order to get a per-user measure of accuracy, we averaged each user’s er-

ror (after removing outliers) per configuration. We ran a repeated measures
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ANOVA on the resultant average errors (Table 4.5). The ANOVA did not reveal

a significant effect (p = 0.763) of hardware configuration on error. Although it

is interesting that Viewport error tended higher than the other configuration-

errors, 95% confidence intervals show a heavy overlap between the mean errors

for each configuration (Figure 4.5).

An η2 power analysis, such as it is, indicates that a collection of 1146 users at

could provide 80% power at the 0.05 significance level.

4.3.3 Scanning

Table 4.6: Scanning Task Accuracy: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 0.002 2 0.001 1.000 0.402 0.167 0.000

Residual 0.012 10 0.001

Accuracy data for the Scanning Task was collected an processed in a similar

manner to accuracy data from the Comparison Task. For each virtual object,

users were asked to determine whether the shape inscribed on the object was a

square, a star, or a circle. User responses were considered correct if and only if

they matched the true shape inscribed on the virtual object. User averages were

then taken an analyzed as in the Comparison Task. The average accuracies in

the Scanning Task were quite high, with every user-configuration score about

90%.

A repeated measures ANOVA (Table 4.6) found no significant effect of con-

figuration on average accuracy (p = 0.402), and heavily overlapping confidence
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Figure 4.6: Combinatorial plot of Scanning Task accuracy.

intervals (Figure 4.6). An η2 power analysis indicates that for 0.8 power at the

0.05 significance level would be achieved with 120 participants.

4.4 User Perception

We collected survey data from participants with respect to their perceptions

about each of the hardware configurations they used. Users were asked to rate

the comfort, intuitiveness, difficulty, and confidence they experienced in each

configuration on a Likert scale ranging from 1 to 10. Traditionally, a Likert-style

scale contains a neutral option, but there is precedent for an even scale, and even

scales are indicated when users are likely to experience ambivalence between

options [27]. Users completed the same task in each configuration so that only
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configuration varied within subject. A Latin squares experimental design [19]

was chosen to account for order-dependent nuisance effects.

Ordinal data obtained from the survey was distributed in a bell shape. We

modeled each of the the underlying distributions as Gaussians. Following the

assumption of normality, we ran repeated measures ANOVAs on each of the

four user prompts. Our justifications for using this test mirror those given in

Section 4.2 and 4.3. In the following sub-sections, we show the results of our

analysis in order on comfort, intuitiveness, difficulty, and confidence — in that

order — as reported by participants.

4.4.1 Comfort

Table 4.7: Level of Comfort: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 10.77 2 5.386 2.065 0.142 0.103 0.028

Residual 93.89 36 2.608

Users were asked to rate their comfort on a scale between one (uncomfort-

able) and ten (comfortable) of each of the three configurations. A repeated mea-

sures ANOVA (Table 4.7) on the results of the survey did not show a significant

difference in comfort between the three configurations (p = 0.142).

Figure 4.7 shows the mean level of comfort reported by users in each of the

three configurations, along with a 95% confidence interval for each mean. While

the sample mean for the Fish Tank Configuration is noticeably lower than the

others, the confidence intervals all overlap, so no conclusion can be reached.
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Figure 4.7: Combinatorial plot of participant comfort.

We have warned in previous sections that a power analysis based on η2 may

not be valid for such a small sample size, but we include it for completeness.

Given a 0.05 significance level and our estimate of effect size, it would take 306

participants to determine with 0.8 power that a significant effect exists in this

variable.

4.4.2 Intuitiveness

Participants were asked to report how intuitive each hardware configuration

was on a scale from one (confusing) to ten (intuitive). A repeated measures

ANOVA (Table 4.8) showed that hardware configuration had a significant effect

on intuitiveness (p = 0.041), with the mean score of the HMD configuration
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Table 4.8: Assessment of Intuitiveness: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 17.09 2 8.544 3.485 0.041 0.162 0.074

Residual 88.25 36 2.451

Figure 4.8: Combinatorial plot of intuitiveness as reported by participants.

higher than the mean scores of the other two, as is visible in Figure 4.8. The

effect size as understood from η2 (0.162) is moderate, but as understood from

the less biased ω2 (0.074) would be considered small [7].

Given that an effect was found with the ANOVA, we conducted a post-

hoc Bonferroni-corrected t-test [3]. The results of the t-test, presented in Table

4.9, showed a significant difference in user-rated intuitiveness between the Fish

Tank and Head-Mounted Display configurations (pbon f = 0.05).
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Table 4.9: Post-Hoc t-Test for Intuitiveness

Conditions Mean Difference Std. Error t pbon f

Viewport vs. Fish Tank -0.105 -0.582 -0.181 1.000

Viewport vs. HMD -1.211 0.511 -2.371 0.087

Fish Tank vs. HMD -1.105 0.418 -2.643 0.050

4.4.3 Difficulty

Table 4.10: Level of Difficulty: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 2.667 2 1.333 0.364 0.698 0.020 0.000

Residual 132.000 36 3.667

Figure 4.9: Combinatorial plot of difficulty experienced by participants.
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We asked subjects to report the level of difficulty they experienced in each

of the hardware configurations on a scale from one (easy) to ten (difficult). A

repeated measures ANOVA (Table 4.10) revealed no significant effect of config-

uration on user-reported difficulty (p = 0.698). Although on average, the Fish

Tank configuration was rated as the most difficult, large overlap can be seen in

the confidence intervals for the three configurations (Figure 4.9).

With the usual caveats, a power analysis based on the η2 statistic indicates

that to receive a power of 0.8 at the 0.05 significance level, an impressive 8030

participants would need to be surveyed.

4.4.4 Confidence

Table 4.11: User-Reported Confidence: Within Subjects Effects

Sum of Squares df Mean Square F p η2 ω2

Configuration 1.719 2 0.860 0.436 0.650 0.024 0.000

Residual 70.947 36 1.971

Users were asked to rate how confident they felt while using each of the

three hardware configurations on a scale between one (unsure) and ten (confi-

dent). A repeated measures ANOVA (Table 4.11) showed no significant effect

on confidence based on hardware configuration (p = 0.650). Confidence inter-

vals for the means of user-reported scores showed significant overlap between

the three hardware configurations (Figure 4.10). A power analysis based on η2

indicates that 5580 participants would be required to obtain 0.8 power at the

0.05 significance level.
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Figure 4.10: Combinatorial plot of user confidence as reported by partici-
pants.

4.5 Summary

In this chapter, we examined the data gathered from our user study in detail.

Our analysis indicates that of the ten dependent variables we studied, only user

perception of intuitiveness can be shown vary significantly between configu-

rations. We further demonstrated through a set of optimistic power analyses

that any additional conclusions about the remaining variables would require

follow-up studies featuring many hundreds of participants. In the next chapter,

we present our qualitative observations and use them to discuss the quantitative

results from this chapter.
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CHAPTER 5

DISCUSSION

In quantitatively assessing the speed, accuracy, and perception of users in

material understanding tasks across three hardware configurations differing in

exocentricity, we found only one significant result: that intuitiveness as reported

by users varies between hardware configuration. We will explain below why we

believe that this significant result is not very informative. With this one result

removed, our experiments give us no reason to believe that egocentric, allocen-

tric, and hybrid navigation schemes have a significant effect on the performance

of these tasks. We hypothesized that an effect would be readily found, and are

surprised that there is so little signal in our data to indicate that an effect exists.

We discuss this further in the subsequent sections.

5.1 Intuitiveness: Egocentricity or Confounding Factor?

The only significant result in our experiment indicated that users found the

HMD Configuration more intuitive than the Viewport and Fish Tank config-

urations. While it is tempting to interpret this as a preference for egocentric

navigation schemes, we think that our experiment was slightly biased in this

metric and that interpreting these data as a win for egocentrism would be pre-

mature.

Users of the Viewport and Fish Tank configurations had to use a joystick

to change their viewing angles, while users of the HMD configuration could

locomote as usual to achieve the same result. We suspect that the intuitiveness

attributed to the HMD is influenced by the fact that users did not have to learn
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such a control scheme to perform their tasks.

While we may have been more confident in this result if it corresponded to

an increase in speed or accuracy, the absence of significant in those domains

indicates to us that the effect is limited to the user’s perception of the interface.

Although this result could be an interesting data point for the advantages of

VR as a medium, we think its implications for the intuitiveness of egocentricity

should be interpreted conservatively. A more carefully controlled experiment

would be necessary to discern between the factors contributing to this result.

5.2 Observed Behaviors May Explain Lack of Effect

Having hypothesized that an egocentric or hybrid navigation scheme would

prove superior to an allocentric scheme, we were surprised to find so little indi-

cation that an effect existed at all. We returned to our qualitative observations

of participants’ behaviors to investigate what errors in our own reasoning may

have led to this unsupported hypothesis. Informally, we found that user be-

haviors differed from our expectations during the trials. Specifically, while we

expected users to interact constantly with the navigation model to evaluate each

material, we found that:

1. Users do not adjust their viewpoints during evaluation.

2. Users explore the view space only once: at the beginning of their first trial.

We explain these assertions in the subsections below. In the next section, we

present our hypothesis for why the behaviours we observed might dominate in
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a study like our own. Please note that the design of our experiment does not

allow for a numerical assessment of these results. We encourage the reader to

follow our example by interpreting these observations cautiously.

5.2.1 Users Do Not Adjust Viewpoint During Evaluation

Although at the onset of the experiment we expected that subjects would fre-

quently update their viewpoints while evaluating each material, we now be-

lieve that users prefer to rely on a single informative view. This pattern sepa-

rates the processes of navigation and evaluation temporally, and likely uncou-

ples any interactions between the two processes. We discuss below the obser-

vations that suggest this pattern to us.

In the Fish Tank configuration, users relied almost exclusively on the control

stick to find views and almost never moved their heads while evaluating. Fur-

thermore, in all three configurations and tasks, users would pause in one view

while evaluating rather than moving about with the control stick, locomotion,

or head movement. This pattern was evident not just in the Comparison and

Tuning tasks, where users had to memorize one surface in order to compare

to the other, but also in the Scanning task, where the entire surface had to be

understood. In the Scanning task, all but one user relied primarily on rotating

the surface of interest rather than by changing their viewpoints, although either

method could give the same information to the user.

The fact that users did not adjust their viewpoints during evaluation may

partially explain why the exocentricity of each control scheme had no signifi-

cant effect on material understanding in our study. If users are not engaging
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with the navigation scheme, there is likely no meaningful difference between

the configurations.

5.2.2 Users Explore the View Space Only Once

We have mentioned that users would use fixed viewpoints, but moreover, users

always returned to the same fixed viewpoint once they had found one that

helped them to answer the experimental prompt. Users found grazing angles

especially useful in the Scanning and Comparison tasks, and would always re-

turn to a grazing angle upon finding it. Participants in the Tuning Task preferred

to look at the shields head-on, and would attempt to return to the same position

in front of each shield to evaluate. One user in the tuning task went so far as to

put her back to a wall and squat at a consistent height to replicate a viewpoint

she liked for each shield.

It seems then that users not only avoided novel movement while evaluating,

but in fact avoided novel motion altogether: further reducing their interaction

with the motion model being tested. Unfortunately, we did not ask the users for

their motivation in using only the first useful views they found. We conjecture

that because these views continued to work between trials, inertia discouraged

participants from attempting to find a better viewpoint. No conclusion can be

drawn, however, without a follow-up study.
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5.3 Are Single-Peak Reflectance Functions the Culprit?

The preliminary observation that participants appeared reluctant to employ

multiple views in material understanding tasks surprised us. It is possible that

if such a reluctance truly exists it is simply a product of human inertia. That is,

if participants have no reason to change their successful strategies, why would

they? That said, we found it interesting that each task had a small collection of

viewing positions favored by most participants. We suspected there may have

been a deeper reason for this, and began to investigate it further, hoping to re-

veal a new path for future research. We have a tentative explanation for why

participants seemed to stick with a single view for each task. To summarize, we

believe that very few views give good information for material understanding

tasks. To explain more, we introduce the concept of the bidirectional reflectance

distribution function (BRDF), a mainstay of the Computer Graphics literature.

5.3.1 BRDF(s)

Figure 5.1: Cross-sectional diagrams of simple BRDFs (blue) evaluated for
many ωo with fixed ωi (yellow). In the ideal specular diagram,
a normal is annotated for clarity.

Bidirectional reflectance distribution functions (BRDFs) are the Graphics
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community’s tool of choice for describing reflective surfaces. Formally, a BRDF

is a function

f : ΩH ×ΩH → [0,+∞],

where ΩH denotes the unit hemisphere normal to the surface at the point where

reflection occurs. Given an incident direction ωi and an outbound direction ωo,

f (ωi, ωo) gives the proportion of all light entering the surface from ωi which then

leaves the surface toward ωo. The physics of light transport places additional

constraints on BRDFs which we will elide. We encourage the reader to refer to

[33] or [39] for a full discussion thereof. A perfectly diffuse ”Lambertian” BRDF

must satisfy the equation

fdiffuse(ωi, ωo) =
1
π
,

as light coming in toward the surface from any direction should exit the surface

uniformly in every direction. In contrast, an ideal specular BRDF must satisfy

fspecular(ωi, ωo) =


+∞ ωo reflected over the normal from ωi

0 otherwise,

as all of the incident light from a single direction is reflected over the normal.

Most common BRDFs (such as the Phong model in Figure 5.2) fall in between

these two extremes, with some light exiting the surface everywhere, but more of

it exiting at angles close to the reflected direction. Schematic diagrams of these

simple BRDFs are shown in Figure 5.1.

5.3.2 Single-Peak BRDF(s)

We chose the materials for our study that we thought would present interesting

visual effects for users who navigated through the view space. Unfortunately,
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Figure 5.2: Plots of the physically accurate version of the Phong BRDF [24]
for several fixed values of wo, each labeled with a red circle.
Each graph should be understood as the orthogonal projection
of the hemisphere from which wo is drawn, with high-intensity
directions more yellow and low-intensity directions more blue.

we believe we ended up with materials whose BRDFs shared a structure dis-

couraging the behavior we wanted. The BRDFs of the materials we chose seem

to have a single, contiguous, smooth band of large values in the BRDF.

Peaks in the BRDF are interesting because there is a dramatic change in re-

flectance at their borders. We conjecture that reflective behavior at this bound-

ary is highly visible to users. In the case of single-peak BRDFs, this would mean

that there is a small range of viewpoints (the boundary of the sole peak) where

users are most likely to detect reflectance features.

It is interesting to us that users seemed to be drawn to grazing angles in the

Scanning and Comparison tasks of our study. If our conjecture — that users

are attuned to the borders of peaks in the BRDF — were true, this observation

could be explained readily. As shown in Figure 5.3, the peaks in the anisotropic

BRDF used in the Scanning Task subtend a region of the hemisphere reflected

over the normal from the incident light direction. This would indicates that

grazing angles give users the most information about the shape of these peaks,
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especially where anisotropy changes direction.

Figure 5.3: BRDFs of the anisotropic model used in the Scanning Task for
fixed values of wi, each labeled with a red circle, as in Figure
5.2

Grazing angles may give a similar view of the peaks of the wood reflectance

model used in the Comparison task. This model is better described with a bidi-

rectional subsurface scattering reflectance distribution function (BSSRDF), but

there is reason to believe that a single-peak effect could dominate here. Fig-

ure 5.4 shows reflected intensities over the hemisphere from which ωi is drawn

for various points on the surface of wood blocks approximated by our shader.

Notice that these functions also have a single broad peak.

While the single-peak BRDF model may help to explain why users did not

seem to engage with the motion model in the Scanning and Comparison tasks,

we do not think it explains the same behavior in the Tuning task. We will leave

this assessment to future work.
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Figure 5.4: Plots of reflected intensity over the incident hemisphere (pro-
jected to the equatorial disc) for selected surface points of the
Marschner wood model. Reprinted from [26] with permission
from the author.

5.3.3 Multi-Peak BRDFs Exist and Can Be Tested

Our hypothesis that users chose not to vary their view because they had found

the small region of views that were actually useful could be tested if we were

to find BRDFs with more complicated peaks. Fortunately, several well-known

models of glinty and glittery surfaces are available for testing [51, 21, 52, 53].

These more complicated models may encourage users to explore the view space

more, although it is possible that their visual complexity will make the tasks

more difficult overall.
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CHAPTER 6

FUTURE WORK

We have found no evidence of a difference in performance in material un-

derstanding between users employing egocentric and allocentric motion mod-

els. That said, we have not acquired enough data to fully rule out the possibility

that such a difference could exist. Future work may focus upon acquiring a

larger sample of users, especially expert users, to empower statistical equiv-

alence testing. It is also possible that the relative nascence of VR technology

serves as a confounding factor in our experiment. Users more experienced in

VR along with better VR technologies, such as holograms, may give better per-

formance against the perfected desktop setup of the Viewport configuration.

We also highlight several observations in our discussion section which could

serve as hypotheses for further study. We conjecture that the single-peak nature

of the BRDFs used in our study may have made the motion models irrelevant

to material understanding. Experiments with more complicated BRDFs, such

as those found in glinty or glittery materials, may expose a utility in egocentric

or allocentric motion modalities. It is unclear, however, how often these more

complex shading models actually arise in a material design pipeline.

To test if users evaluate materials statically, researchers could track the head

movement of participants as they inspect physical materials. This experiment

could be framed as a semi-structured interview to give clues as to the subjects’

thinking process while they evaluate the material. Additional software logging

on a similar experiment could provide a quantitative examination of user gaze

and motion planning, which may also give more fruitful results. Statistical test-

ing on a larger set of users with head tracking could indicate whether or not
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users do truly avoid exploration in the view space.
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CHAPTER 7

CONCLUSION

We set out to learn whether an egocentric, allocentric, or hybrid motion

model improved user performance in material understanding tasks. To this

end we ran a user study on three common material understanding tasks across

three hardware configurations, each representing a different level of exocentric-

ity. Our preliminary study did not indicate an effect on speed, accuracy, or user

perception of any task. Power analyses based on the η2 statistic suggested that

a study run on 200 - 1000 participants would detect these effects if they existed.

We hypothesized that the single-peak nature of the BRDFs we used in the study

may have stopped users from engaging with the motion controls after they had

found a single good view. Finally, we proposed that a larger study on more

complex materials could be the next step in this line of research.
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APPENDIX A

FISH TANK VR WITH THE OCULUS RIFT

Calibrating a Fish Tank Virtual Reality installation is equivalent to constructing

the viewing frustum defined by the user’s retina and the computer monitor for

each frame. Deering’s 1992 paper gives an explicit form for the four-by-four

projection matrix that produces this frustum [9]. However, this construction re-

quires knowledge of the position of the retina with respect to computer monitor.

With a bit of linear algebra it is possible to track the retina and screen in the

Oculus Rift’s global coordinate system (hereafter called ”world space”). We can

use the pose of a controller mounted on the user’s head with some fixed offset

to approximate the position of the retina in world space for each frame. To track

the screen, we need some way to assign world space coordinates to real-world

positions.

We use a bootstrapping method developed for the Robotic Modeling As-

sistant [32], in which a needle is attached to the VR controller to function as a

”pointer” into the real world. Given the controller’s four-by-four local-to-world

matrix, P, we know there is some constant offset ô such that the position of the

tip in world space can be expressed in homogeneous coordinates as Pô.

We solve for otip by holding the needle tip against a fixed point in physical

space and recording the controller’s pose in at least four orientations this allows

us to construct the linear system. With multiple measurements for the controller

pose (P(1), P(2)...P(n)) and a fixed needle tip, we see that for any i, j,(
P(i) − P( j)

)
ô = 0.

Assuming that each P(k) is affine, this gives us a 3x3 matrix equation for each i- j
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pair. Let Q(i j) = P(i) − P( j). Then we have: Equation A.1.
q(i j)

11 q(i j)
12 q(i j)

13

q(i j)
21 q(i j)

22 q(i j)
23

q(i j)
31 q(i j)

32 q(i j)
33




ox

oy

oz

 =


q(i j)

14

q(i j)
24

q(i j)
34

 (A.1)

Although it is possible that this matrix equation will be uniquely solvable for

o after two measurements, it is more likely that there will be a circle of valid

solutions, and we will need more measurements to determine a unique solution.

To handle these additional measurements, we stack copies of Equation A.1 for

each i- j pair into an over-determined system and execute a least squares solve.

Our code does this with a QR factorization and gives convincing results.

Once we have a known offset from the controller origin to the needle point,

we can record positions of real-world objects in the Oculus Rift’s tracking space.

We use this capability to record the corners of the screen we will use for Fish

Tank VR. From here, we could apply Deering’s view-projection frustum equa-

tion, but we find it more convenient to construct a projection matrix with

GLFrustum and use our own view matrix so that we can choose where to posi-

tion the camera within the virtual scene.
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