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ABSTRACT 

 

The oomycete Phytophthora capsici causes Phytophthora blight on many 

vegetable hosts, resulting in devastating losses for growers in New York and around 

the world. Management of this pathogen requires an integrated approach, and the goal 

of the research presented here is to contribute to continued improvements in 

management recommendations. With this goal in mind, the efficacy of the potential 

biological control fungus Muscodor albus to control Phytophthora blight on five sweet 

pepper cultivars and one butternut squash cultivar via biofumigation was tested in the 

greenhouse. Three different rates of M. albus grown on rye grain (0.55 g/L, 1.9 g/L, 

and 3.75 g/L), mefenoxam (Ridomil Gold EC, Syngenta Crop Protection, Inc.), or 

nothing, were added to P. capsici-infested potting mix, and sweet pepper or butternut 

squash seedlings were transplanted into the potting mix one week later. Plants were 

rated for disease severity on a scale of zero (healthy) to five (dead) one week after 

transplanting. Although application of the highest rate of M. albus slightly reduced 

disease severity on the intermediately tolerant sweet pepper cultivars (Alliance, 

Aristotle, and Revolution), commercially-acceptable control was only achieved with 

the highly tolerant cultivar Paladin. Even Paladin peppers which received no curative 

treatment had low disease severity ratings, so the levels of control achieved on this 

cultivar may not be due to application of M. albus. None of the applied rates of M. 

albus controlled Phytophthora blight on butternut squash, or on the highly susceptible 

pepper cultivar Red Knight. 

 An improved understanding of the P. capsici population in New York will also 

help researchers to make better and more specific recommendations to local vegetable 

producers in the state. Therefore, in 2006 and 2007, 262 isolates of P. capsici were 

collected from 28 fields in New York and characterized for mating type and 



 

mefenoxam sensitivity. No mefenoxam-resistant isolates were recovered from farms 

in western and central New York, while resistant isolates were frequently recovered in 

the Capital District and on Long Island. Both A1 and A2 mating types were recovered 

from many fields across the state. Isolates from three fields in western New York 

(field WNY), the Capital District (field CD) and Long Island (field LI) were selected 

for further characterization using five microsatellite loci. Based on mating type and 

alleles observed at these loci, 12, 20 and 6 genotypes were identified in each field, 

respectively. Both mating types were recovered from all three fields, and in fields CD 

and LI, ratios of A1 to A2 isolates were not significantly different from 1:1, while the 

ratio in field WNY did deviate significantly from 1:1. Fields WNY and LI were not in 

Hardy-Weinberg equilibrium, but field CD was. All three fields were highly 

differentiated from each other, with pairwise fixation indices (FST) ranging from 0.224 

to 0.586. Overall, nearly 46% of the variation across all three fields could be attributed 

to variation among fields, and P. capsici populations in these three fields had different 

levels of diversity. 
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CHAPTER 1 

 

INTRODUCTION 

 

Phytophthora capsici (Leonian) is an important vegetable pathogen because of 

its rapid spread through fields during the growing season, its ability to persist in a field 

for many years in spite of rotation to non-host crops, and the limited availability of 

effective control strategies. First identified in 1918 on Chile peppers in New Mexico 

(Leonian 1922), P. capsici is the causative agent of Phytophthora blight and is found 

world-wide (Erwin and Ribeiro 1996). It is a soil-borne oomycete, and thrives in 

warm, wet weather, causing devastating losses on host crops (Erwin and Ribeiro 1996; 

Hausbeck and Lamour 2004). More than one third of the vegetable acreage (including 

fresh market and processing acreage) in New York is susceptible to Phytophthora 

blight, and many growers have experienced severe losses as a result of epidemics, 

particularly in wet growing seasons.  

 

Sexual reproduction 

Phytophthora capsici reproduces sexually by means of oospores, which are 

formed when antheridia and oogonia fuse (Figure 1.1 A). Because P. capsici is 

heterothallic, production of oogonia and antheridia is stimulated by the presence of 

two different mating types, or compatibility types (A1 and A2), in close proximity 

(Ristaino and Johnston 1999). A few P. capsici isolates do not produce oospores in the 

presence of either mating type (Bowers and Mitchell 1991), or they produce a few 

oospores in the presence of both mating types (Ristaino 1990; Bowers and Mitchell 

1991; Islam et al. 2005). Once oogonia and antheridia have been produced, both 

outcrossing and self-fertilization can occur in other Phytophthora species (Shattock et 
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al. 1986; Ko 1988), so it is likely that the same is true of P. capsici. However, in at 

least one study, all oospore offspring from a cross appeared to be products of 

outcrossing, and not self-fertilization (Lamour and Hausbeck 2001b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Sexual and asexual reproductive structures of Phytophthora capsici. Thick-

walled sexual oospores of P. capsici are produced after the fusion of oogonia and 

antheridia (A). Asexual papillate sporangia of P. capsici are produced on long pedicels 

(B), and release motile zoospores (C). 

Oospores develop within infected stems or fruits of host plants, and the 

oospores remain in the soil after the plant tissue rots, germinating when conditions are 

favorable. Cycles of low and high soil moisture (but not constant saturation) stimulate 

germination, but oospores do not all germinate simultaneously (Hord and Ristaino 

1992; Ristaino and Johnston 1999). A dormancy period of a month, or more increases 
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oospore germination rates (Satour and Butler 1968; Zentmyer and Erwin 1970), and 

either hyphae or sporangia are produced upon germination (Zentmyer and Erwin 1970; 

Hord and Ristaino 1991). Oospore germination rates as high as 51% have been 

achieved in the lab, and germination can occur between 16°C and 32°C, although the 

optimal temperature for germination is around 24°C. In vitro germination rates 

increase when oospores are placed in soil extracts, as opposed to distilled water, and 

light is not required for germination, although germination is improved when oospores 

are formed in the dark.  When oospores were incubated in water, root extract or soil 

extract for up to 12 days, germination rate increased with incubation time (Hord and 

Ristaino 1991). 

Sexual reproduction in P. capsici is common, with both the A1 and A2 mating 

types being found in the same fields in many states, including Connecticut, 

Pennsylvania, California, Ohio, New York, North Carolina, and Michigan (Hausbeck 

and Lamour 2004). Each oospore produces offspring of a single genotype, and a cross 

between two parental isolates can produce many oospore offspring, each with a 

different genotype, and with potentially differential virulence on vegetable hosts 

(Satour and Butler 1968; Bowers and Mitchell 1991), different mating types, and a 

range of sensitivities to the fungicide mefenoxam (Lamour and Hausbeck 2000). This 

can include the production of oospore offspring which are completely resistant to 

mefenoxam, even if the parents were only partially resistant (Lamour and Hausbeck 

2002). Significantly, oospore offspring can also be more virulent than either of the 

parental isolates (Satour and Butler 1968), and they can differ from the parental 

isolates in their pathogenicity on various host differentials (Polach and Webster 1972). 

Thus, oospores supply primary inoculum and a source of genetic diversity at 

the beginning of each growing season and are therefore an important part of the life 

cycle of P. capsici (Bowers and Mitchell 1991; Ristaino and Johnston 1999; Lamour 
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and Hausbeck 2000). As few as one oospore per gram of soil can start an epidemic in 

a field (Bowers and Mitchell 1991), and in multiple Michigan studies, no identical 

isolates (as defined by amplified fragment length polymorphism, or AFLP, 

fingerprints) were collected in successive years in a single field. This suggests that 

only the sexual oospores survived the crop-free winter in Michigan (Lamour and 

Hausbeck 2001b; Lamour and Hausbeck 2003).  

 

Asexual reproduction 

Asexual sporangia are produced on the surface of host tissue, especially when 

relative humidity is high (Weber 1932; Crossan et al. 1954; Zentmyer and Erwin 

1970; Anderson and Garton 2000). Each sporangium can germinate directly to 

produce hyphae, or, in the presence of adequate moisture, each one can produce and 

release 20-40 motile zoospores within a few hours (Zentmyer and Erwin 1970; 

Bernhardt and Grogan 1982; Hausbeck and Lamour 2004) (Figure 1.1, B-C). Like 

oospores, production of sporangia and production and release of zoospores is also 

sensitive to soil water potential (Bernhardt and Grogan 1982; Ristaino and Johnston 

1999).  

Chemotactic zoospores respond to plant root exudates and electrical fields 

(Hickman 1970), as well as to gravity (Erwin and Ribeiro 1996), and can be splashed 

to new plant tissue, or moved in surface water (Ristaino et al. 1994; Café-Filho and 

Duniway 1995; Ristaino et al. 1997; Roberts et al. 2005; Gevens et al. 2007). 

Zoospores of Phytophthora spp. tend to congregate and encyst just behind plant root 

tips, where elongation of roots is occurring and where the concentration of root 

exudates is high (Hickman 1970). Zoospores also attach to crowns or fruits, encyst, 

and then germinate. Hyphae produced either from direct germination of sporangia or 

germination of zoospores enter new host tissue through stomata or via direct 
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penetration (Crossan et al. 1954). In Michigan, the asexual reproductive structures of 

P. capsici rarely overwinter (Lamour and Hausbeck 2002), and in New York, field 

studies suggest that the sporangia and hyphae cannot survive the winter (unpublished, 

Camp, Dillard, Smart). In a Florida study conducted in a controlled environment, 

asexual propagules (mycelia and sporangia) survived for up to 44 days in sandy soil, 

but only at high soil moisture levels (Roberts et al. 2005). Zoospores and sporangia 

tend to be short-lived propagules, while oospores can survive longer in the soil, 

although survival of all propagules of P. capsici is influenced by soil temperature and 

water matric potential (Bowers et al. 1990). This is consistent with observations of 

other Phytophthora spp. (Duniway 1979). 

 

Role of sexual and asexual reproduction in disease cycle 

Asexual reproduction is very important within a single field, in a single 

growing season, allowing for the rapid spread of Phytophthora blight in a susceptible 

crop (Zentmyer and Erwin 1970; Lamour and Hausbeck 2002). One study in North 

Carolina found no correlation between initial density of P. capsici inoculum and final 

incidence of disease on pepper, confirming the importance of secondary inoculum in 

this polycyclic disease (Ristaino 1991). Sexual reproduction is important in 

maintaining the population of P. capsici in a field from year to year. It ensures 

survival of P. capsici in crop-free periods (via oospore production), and also supplies a 

means of outcrossing and increased genetic diversity in the population (Lamour and 

Hausbeck 2002). In general, the ability to reproduce sexually is considered to be an 

advantage for many Phytophthora species (especially heterothallic ones), because it 

allows the formation of oospores which can survive in the absence of a host plant, and 

also provides a mechanism for the removal of deleterious mutations which might 

otherwise accumulate (Goodwin 1997). 
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Host range 

Phytophthora capsici infects a broad range of vegetable crops (Figure 1.2), 

including all cucurbits, peppers, tomatoes and eggplants, but not potatoes (Erwin and 

Ribeiro 1996; Hausbeck and Lamour 2004). Recently, P. capsici was also isolated 

from snap beans in Michigan (Gevens et al. 2008) and Long Island (personal 

communication, M. T. McGrath), and lima beans in Delaware, Maryland and New 

Jersey (Davidson et al. 2002). Symptoms on beans appear as water-soaked foliar 

lesions, stem and pod lesions, and general wilting (Davidson et al. 2002; Gevens et al. 

2008). In artificially-inoculated field trials in New York, we have observed primarily 

pod lesions and some foliar lesions. In a Michigan study, Frasier firs were also 

susceptible to P. capsici, resulting in bronzing of needles and root rot (Quesada-

Ocampo et al. 2009).  

While P. capsici attacks many crop plants, symptoms are not identical on all 

hosts (Café-Filho and Duniway 1995; Erwin and Ribeiro 1996; Ristaino and Johnston 

1999).  Under favorable conditions (high soil moisture and 25°-30°C), infection of the 

crown or roots of the plant can lead to rapid wilting and plant death, especially of 

peppers and cucurbits (Café-Filho and Duniway 1995). Fruit infection results in 

rotting and “melting” of cucurbits, and lesions on pepper, tomato, and eggplant fruit 

(Weber 1932; Erwin and Ribeiro 1996). Fruit infections may be accompanied by 

characteristic powdery white sporulation on the fruit surface when humidity is high 

(Weber 1932; Erwin and Ribeiro 1996; Ristaino and Johnston 1999). In Michigan, 

fruit rot is a serious problem on cucumbers, but not on peppers, while other parts of 

the country report more problems with pepper fruit rot (Hausbeck and Lamour 2004). 

Pepper plants seem to become less-susceptible to at least the crown rot phase of 

Phytophthora blight as they age (Reifschneider et al. 1986; Kim, Y. J. et al. 1989). 
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Figure 1.2 Host range and symptoms of Phytophthora capsici. P. capsici infects a 

variety of vegetable hosts, causing fruit rot, wilting, and plant death. Hosts include 

(but are not limited to) peppers (A), pumpkins (B), cucurbits (C), and beans (D).  

Overall the fact that cucurbit fruits are frequently in direct contact with 

potentially-infested soil makes these fruit especially vulnerable to the fruit rot phase of 

the disease, although plant wilting and death is also common, sometimes accompanied 

by crown rot (Erwin and Ribeiro 1996; Hausbeck and Lamour 2004). In general, 

squash tend to be highly susceptible to Phytophthora blight. While the entire pepper, 

eggplant or tomato plant may be killed by a root or crown infection, the fruit are not in 

direct contact with soil or irrigation water as frequently as cucurbit fruits, and 

infection of tomato or pepper fruit requires this contact with infested soil or water 

(Café-Filho and Duniway 1995). In Michigan, tomato and cucumber plants may 
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remain relatively asymptomatic after infection (although fruit may develop 

symptoms), but symptoms sometimes appear following heavy rain. In addition, fruit of 

all host crops may be latently infected for several days, so that apparently healthy fruit 

is harvested from the field, but later rots during transportation or storage (Hausbeck 

and Lamour 2004).  

Isolates of P. capsici vary in their virulence on different host crops (Palloix et 

al. 1988; Ristaino 1990; Lee, B. K. et al. 2001; Islam et al. 2005; French-Monar et al. 

2006b), and on different cultivars of the same host crop (Reifschneider et al. 1986; 

Kim, F. S. and Hwang 1992; Lee, B. K. et al. 2001; Islam et al. 2005; Silvar et al. 

2006). Similarly, certain P. infestans isolates are better adapted, or even exclusively 

adapted, to infect either tomato or potato, but not necessarily both (Fry et al. 1992). 

While P. capsici isolates generally infect both cucurbitaceous and solanaceous hosts, 

regardless of the isolate‟s origin, some isolates from cucurbits tend to cause less 

severe disease on solanaceous hosts than on cucurbit hosts, and vice versa (Ristaino 

1990; Lee, B. K. et al. 2001). Ristaino compared the susceptibility of peppers to P. 

capsici isolates collected from cucurbits, sweet peppers, and hot peppers. In that study, 

isolates from cucurbits differed in their virulence on peppers and in their morphology. 

However, morphological variability was not sufficient to separate isolates based on the 

host of origin (Ristaino 1990). Islam et al. also observed some variability in optimal 

growth temperatures and in colony morphology of 30 isolates collected from pumpkin 

in Illinois. The clustering of these isolates into virulence groups also corresponded to 

clustering based on random amplified polymorphic DNA, or RAPD analysis (Islam et 

al. 2005). In a Brazilian study utilizing RAPD analysis, 22 isolates of P. capsici 

clustered mostly by host plant from which the isolate was obtained (Luz et al. 2003). 

Mchau and Coffey (1995) also reported extensive diversity of morphological and 

physiological traits of P. capsici isolates collected from around the world. 
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Spread of P. capsici within and between fields 

Evidence collected to date indicates that sporangia are not wind-dispersed but 

that they are spread by splashing or wind-driven water, overhead irrigation, and in-row 

water movement (Ristaino 1991; Ristaino et al. 1994; Café-Filho and Duniway 1995; 

Ristaino et al. 1997; Ristaino and Johnston 1999; Lamour and Hausbeck 2002; 

Hausbeck and Lamour 2004). This is in contrast to P. infestans, which is readily wind-

dispersed (Fry et al. 1992). Ristaino et al. reported that disease spread primarily along 

rows, rather than between rows, except when water drained across rows in a field 

(Ristaino et al. 1994). In the soil, movement of inoculum to plant roots is more 

important in causing symptom development than is movement of roots to inoculum, or 

direct contact between roots of plants (Sujkowski et al. 2000). However, movement of 

zoospores through soil may be limited, depending on the soil type (Café-Filho and 

Duniway 1995). Planting solanaceous and bushing cucurbit crops on raised beds 

covered with plastic mulch can provide a physical barrier between P. capsici in the 

soil and the susceptible host, reducing contact between infested soil and aerial host 

tissues. However, plastic mulch does not prevent the spread of P. capsici within a row 

through the soil, or in surface water on top of the mulch. In fact, surface inoculum of 

P. capsici can spread rapidly on plastic mulch (Springer and Johnston 1982; Ristaino 

et al. 1997). Even on bare soil, P. capsici inoculum can also be spread in surface water 

up to 70 m downstream from inoculum sources with regular furrow irrigation (Café-

Filho and Duniway 1995). Upstream spread is minimal. In New York, we have 

observed that movement of infected fruits or farm equipment between fields, as well 

as cultivation of a field can also spread P. capsici (either oospores or sporangia) 

between and within fields, respectively.  
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Management – cultural practices 

Based on the way in which P. capsici spreads within and between fields, a 

number of cultural practices may be used to prevent the introduction of P. capsici into 

a field, limit spread and disease development during the growing season, or reduce 

inoculum survival from year to year. Exclusion is the first line of defense for a grower. 

Because oospores may be present in either infected fruit or soil, preventing the 

movement of both soil and fruit (even symptomless fruit, which may be latently 

infected) between fields can delay the introduction of P. capsici into a new field.  

Controlling water in the field (by not over-irrigating and by promoting good 

drainage) is perhaps the most important cultural control strategy for Phytophthora 

blight, as it minimizes favorable conditions for the pathogen and limits spread within 

the field (Springer and Johnston 1982; Ristaino 1991; Biles et al. 1992; Café-Filho et 

al. 1995; Café-Filho and Duniway 1996; Xie et al. 1999). In Chile pepper fields of 

New Mexico, disease incidence was higher with furrow irrigation than with drip 

irrigation (Sanogo and Carpenter 2006). Ristaino reported that less-frequent irrigation 

and less rain during a season (especially rainfall events exceeding 2 cm) were 

correlated with later disease onset and lower disease incidence (Ristaino 1991). 

Because delayed onset of disease can be correlated with increased yields (Ristaino 

1991), properly managing water is still an important management strategy even in 

fields with a history of Phytophthora blight. However, in fields and years with high 

rainfall, population densities of P. capsici are not affected by the level of irrigation 

(Ristaino et al. 1992). Thus, where wet growing seasons are relatively common, or 

initial soil populations of P. capsici are extremely high, reducing soil moisture may be 

either not possible, or not helpful in controlling disease (Hausbeck and Lamour 2004). 

Because P. capsici can infest irrigation water, water sources for irrigation of 

susceptible crops should also be chosen with care (Roberts et al. 2005; Gevens et al. 
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2007). Viable P. capsici inoculum has been recovered from irrigation ponds, at very 

low levels, up to 63 days after zoospores were placed in the ponds (Roberts et al. 

2005). In New York, we have observed that infested irrigation water can be a means of 

spreading P. capsici from a single infested field to additional fields on a farm. In 

addition, preventing soil from splashing onto fruit by planting into a mowed cover 

crop (Ristaino et al. 1997), or using trellises to limit contact between cucurbit fruits 

and the ground can be effective, although not always practical, depending on the 

cucurbit cultivar, the scale of production, and the value of the crop (Ristaino and 

Johnston 1999; Hausbeck and Lamour 2004). Although cultivating peppers on plastic 

mulch is common because it increases yields (Ristaino and Johnston 1999), this 

practice can also hasten the spread of Phytophthora blight in a field (Springer and 

Johnston 1982; Ristaino et al. 1997).  

Crop rotation can reduce the amount of inoculum which survives in a field 

from year to year (Ristaino and Johnston 1999), but because sexual reproduction and 

the production of oospores is common in P. capsici, even long rotations (5 years) do 

not completely eliminate P. capsici inoculum from a field (Lamour and Hausbeck 

2001b). The effectiveness of crop rotations can also be reduced by the presence of 

susceptible (but often asymptomatic) weeds in a field during rotation to a non-host 

crop. Susceptible weed species include common purselane, Portulaca oleracea (Ploetz 

et al. 2002; French-Monar et al. 2006a), Carolina geranium, Geranium carolinianum, 

American black nightshade, Solanumn americanum, and S. nigram (French-Monar et 

al. 2006a). 

Soil solarization has the potential to be an effective management tool in 

climates where high summertime temperatures are achieved and maintained for long 

periods of time, but complete control has not been achieved. In a Florida trial, 

oospores, sporangia, and mycelia were buried in soil, but although temperatures of 40-
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45°C were reached at inoculum depths, viable P. capsici cultures were recovered from 

the soil, more than 300 days later. However, inoculum levels (measured in colony 

forming units (cfu) per g soil) were generally lower in solarized soil, compared to 

untreated soil (French-Monar et al. 2007). In another study, solarization reduced 

oospore inoculum of P. capsici to similar levels as those achieved through use of 

methyl bromide only in the upper soil layer (to a depth of 10 cm). At a depth of 25 cm, 

solarization did not reduce inoculum levels (Coelho et al. 1999). 

 

Management - chemical 

In the past, P. capsici had been controlled with the fumigant methyl bromide, 

but as of 2007, a critical use exemption has been required for continued use of this 

chemical to control P. capsici (French-Monar et al. 2007). Clearly, methyl bromide is 

not a long-term sustainable management tool (Hausbeck and Lamour 2004). The 

systemic phenylamide fungicide, mefenoxam inhibits RNA synthesis in P. capsici 

(Davidse et al. 1988) and has been very effective in susceptible populations of P. 

capsici, but resistance to this fungicide has already developed in many populations 

around the United States and internationally (Biles et al. 1992; Ristaino et al. 1997; 

Pennisi et al. 1998; Ristaino and Johnston 1999; Matheron and Porchas 2000a; 

Lamour and Hausbeck 2001a; Hausbeck and Lamour 2004; French-Monar et al. 2007; 

Café-Filho and Ristaino 2008; Davey et al. 2008). Resistance to mefenoxam in P. 

capsici is likely conveyed by a single, incompletely dominant locus, which is unlinked 

to mating type (Lamour and Hausbeck 2000; Lamour and Hausbeck 2002), similar to 

the situation seen in other Phytophthora species. For example, mefenoxam sensitivity 

is controlled primarily by a single dominant gene in P. infestans (Lee, T. Y. et al. 

1999). There is little or no cost to P. capsici in maintaining resistance to mefenoxam, 

in the absence of fungicide application (Lamour and Hausbeck 2001a; Lamour and 
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Hausbeck 2002; Café-Filho and Ristaino 2008), and resistance to the fungicide 

mefenoxam can be induced by exposing P. capsici to ultra violet radiation (Bruin and 

Edgington 1982). Such exposure is common in the field, since sporangia are produced 

on the surface of fruits. It is likely that resistance to mefenoxam arose multiple times 

within a population of P. infestans in the Netherlands (Fry et al. 1991), suggesting that 

mefenoxam could readily occur in P. capsici populations, as well. 

The importance of sexual reproduction in the life cycle of P. capsici 

exacerbates the problem of mefenoxam resistance, by putting the resistance gene into 

a variety of genetic backgrounds in P. capsici. This increases the likelihood that 

resistance to mefenoxam will be present in otherwise well-adapted and competitive 

genotypes and that there will be no cost to maintaining mefenoxam resistance 

(Lamour and Hausbeck 2000). In addition, because oospores may survive for years in 

the soil before germination (Goodwin 1997; Lamour and Hausbeck 2003; Hausbeck 

and Lamour 2004; Babadoost and Pavon 2007; French-Monar et al. 2007), a 

mefenoxam-resistant oospore could escape selective pressure against fungicide 

resistance if it does not germinate during a rotation away from mefenoxam use.  

These studies all indicate that resistance to mefenoxam is likely to develop 

rapidly and to persist in fields where it is not already present, necessitating alternative 

management options. Other fungicide chemistries are available and can reduce losses 

(Matheron and Porchas 2000b; Matheron and Porchas 2007; Matheron and Porchas 

2008), but fungicides do not provide complete protection from P. capsici under 

extremely conducive conditions or high inoculum levels (Matheron and Porchas 

2000a). Therefore, while fungicides can be an important component of an integrated 

management approach, they will not provide a complete and exclusive solution to the 

problem of Phytophthora blight on vegetable crops. 
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Management – host tolerance and resistance 

Host tolerance or resistance would be a highly desirable way to control 

Phytophthora blight.  Several sweet pepper cultivars that are tolerant to P. capsici are 

available, but in New York field trials, these tolerant cultivars did succumb under high 

disease pressure. Previous studies have also reported that lengthy exposures to 

inoculum and high inoculum levels can overcome host resistance in peppers (Smith et 

al. 1967; Barksdale et al. 1984; Kim, Y. J. et al. 1989). The sweet pepper cultivar 

Paladin has consistently shown high levels of tolerance to crown rot caused by P. 

capsici (Ristaino and Johnston 1999; Babadoost and Islam 2002; Johnston et al. 2002; 

Miller 2002; Babadoost 2006; Stieg et al. 2006), and is becoming more popular among 

vegetable growers in New York for that reason. However, it is not completely immune 

from infection by P. capsici, and is not resistant to all isolates of P. capsici, including 

those collected from diverse regions of the United States, like New Jersey and New 

Mexico (Oelke et al. 2003).  The fruit are also prone to silvering and sometimes 

develop spicy flavors as they ripen (Wyenandt and Kline 2006). Red Knight has 

traditionally been a very popular sweet pepper cultivar in New York, but is highly 

susceptible to P. capsici (McGrath and Davey 2007).  

An early study divided 23 isolates of P. capsici into 14 “strains,” based on 

their ability to infect various hosts (tomatoes, eggplants, squash and watermelons) and 

different pepper lines (Polach and Webster 1972). Since then, various studies have 

reported at least 9 (Oelke et al. 2003), 13 (Sy et al. 2008), or 14 (Glosier et al. 2008) 

different races of P. capsici based on susceptibility of different pepper cultivars to root 

rot, and four (Oelke et al. 2003) different races based on susceptibility of peppers to 

foliar blight. Based on ten differential pepper lines, Oelke et al. concluded that P. 

capsici isolates from New Mexico and Turkey are able to overcome more host plant 

race-specific resistance genes (R-genes) than are isolates from New Jersey (Oelke et 
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al. 2003). Glosier et al. reported that races of P. capsici were not geographically 

limited, either internationally or even to regions within the same state (Glosier et al. 

2008). These studies suggest that pepper cultivars may have differential resistance to 

isolates of P. capsici. However, in each study, the number of races reported was only 

slightly smaller than the total number of isolates tested, and further work may be 

needed to define these races more clearly. 

The genetic basis of this resistance is not well understood and may be more 

complex than dominant R-genes. One study suggested that two dominant genes 

without additive effects provided high levels of tolerance to the pepper root rot phase 

of P. capsici in the pepper lines PI129469, PI201232 and PI201234 (Smith et al. 

1967). A single dominant gene conferring resistance to fruit rot has been reported in 

the cultivar Waxy Globe (Saini and Sharma 1978). Another study reported that a 

single dominant gene (with some modification) was responsible for resistance to both 

foliar and root rot phases of Phytophthora blight in the pepper lines Fyuco and P51 

(Barksdale et al. 1984). Ortega et al. (1991) proposed that resistance to Phytophthora 

blight crown rot in the pepper line Criollo de Morelos-334 (CM-334) is controlled by 

genes at three loci, with additive effects among loci. The same authors also suggested 

that there were three resistance genes each in the lines PI201232, PI201234, and Line 

29, and that these three lines, plus CM-334 share one gene in common (Ortega et al. 

1992). According to Reifschneider et al. (1992), two genes in line CNPH 148 (derived 

from CM-334) are responsible for resistance to root and crown rot caused by a 

Brazilian isolate of P. capsici. Sy et al. (2005) reported that single dominant genes are 

responsible for resistance of CM-334 to root rot, foliar blight and stem blight caused 

by a New Mexican isolate of P. capsici, and that the gene for stem blight resistance is 

different from both the gene conferring foliar blight resistance and the gene conferring 

root rot resistance. Recently, Monroy-Barbosa et al. (2008) proposed that there were at 
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least five R-genes in the resistant Chile pepper line CM-334 which confer resistance to 

the root rot phase of Phytophthora blight. Although some genes might be linked, each 

gene appeared to be at a single locus, indicating that pyramiding of more than two R-

genes in a pepper cultivar might be possible (Monroy-Barbosa and Bosland 2008). 

Considering these studies, it is possible that resistance to different phases of 

Phytophthora blight (eg, root rot versus fruit rot) or different races or isolates of P. 

capsici are under the control of different genes which may be inherited independently 

(Reifschneider et al. 1992). This adds to the confusion about the genetics of host 

resistance to P. capsici in pepper, and also suggests potential obstacles in developing 

resistant varieties in other hosts (eg, cucurbits).  

No resistance or tolerance is currently available in commercial Chile pepper 

(Sanogo and Carpenter 2006), eggplant, tomato or cucurbit cultivars. Gevens et al. 

(2006) screened more than 300 commercial cucumber cultivars and plant introductions 

for resistance to the fruit infection stage of P. capsici, and while sporangial production 

was reduced on some cultivars, none had complete resistance to the fruit infection 

stage of the disease. Cucurbita pepo accessions and the wild cucurbit C. lundelliana 

are being screened for possible sources of resistance (Kabelka et al. 2007; Padley et al. 

2007). In a controlled environment, the Korean pumpkin cultivar Danmatmaetdol was 

slightly to highly resistant to infection by P. capsici when a soil drench or wounding 

inoculation technique was used, but showed no resistance when zoospores were 

applied to the foliage. Additionally, resistance was dependent on the P. capsici isolate 

used in inoculation (Lee, B. K. et al. 2001). 

 

Management – biological 

Because of the phase-out of methyl bromide (Hausbeck and Lamour 2004; 

French-Monar et al. 2007), alternative biological fumigants would be useful tools for 
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managing Phytophthora blight in fields with a history of P. capsici infestation. 

Brassica species produce various sulfur-containing glucosinolates, which break down 

to produce some antimicrobial products (Mayton et al. 1996). Therefore, the 

incorporation of Brassica tissue into agricultural soil has been proposed as a way to 

destroy plant pathogens prior to planting susceptible host crops, and reductions in 

inoculum levels have been observed with many pathogens (Mayton et al. 1996; Ochiai 

et al. 2007). In one study, adding chopped or shredded cabbage to soil prior to 

solarization did not significantly reduce the amount of P. capsici inoculum compared 

to solarization, alone (Coelho et al. 1999). Kim, K. D. et al. (1997) reported no 

reduction in disease severity on bell pepper seedlings in the greenhouse when mustard 

residue was incorporated into soil prior to inoculation with P. capsici zoospores. In 

addition, some phytotoxicity of tomato seedlings has been observed after the 

incorporation of cabbage residue into soil (Ramirez-Villapudua and Munnecke 1988). 

The endophytic fungus Muscodor albus has also been considered for use as a 

biofumigant to control P. capsici. This fungus produces a variety of volatile organic 

compounds and inhibits many fungi, oomycetes and bacteria, in vitro (Strobel 2006). 

Because M. albus was first isolated from a cinnamon tree in Honduras, grows slowly, 

and does not produce spores or other survival structures, it is unlikely that it could 

successfully colonize temperate soils, posing a low threat of becoming invasive. 

However, live cultures added to soil could release volatile compounds, killing or 

inhibiting P. capsici inoculum and preventing infection of susceptible host crops 

(Mercier and Manker 2005). Several studies have demonstrated the efficacy of M. 

albus in controlling P. capsici on the susceptible sweet pepper cultivar California 

Wonder (Mercier and Manker 2005),  and Rhizoctonia solani on broccoli (Mercier and 

Manker 2005; Mercier and Jimenez 2007) and radish (Baysal et al. 2007).  
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Population structure of P. capsici 

Worldwide, P. capsici is very diverse, and genetically complex (Forster et al. 

1990; Oudemans and Coffey 1991; Mchau and Coffey 1995; Erwin and Ribeiro 1996), 

especially those isolates collected from vegetable crops and classified as either 

subgroup CAP1 (Oudemans and Coffey 1991) or subgroup CapA (Mchau and Coffey 

1995). Reports vary as to whether populations are structured based on host plant or 

geographic distance. Fifteen isolates collected from around the world did not group by 

either geographic location or host plant when nuclear DNA was analyzed through 

restriction fragment length polymorphism, or RFLP (Forster et al. 1990) and similar 

results were obtained from an isozyme study of 84 isolates (Oudemans and Coffey 

1991). In a Spanish study, 16 isolates collected from a relatively small geographic area 

(multiple farms within 7 km of each other) separated into three groups by RAPD 

analysis, but these groups were not related to variations in virulence on four pepper 

cultivars, or to the specific origin of the isolates. All three groups were closely related 

to each other, but distantly related to isolates from other countries. While the degree of 

similarity between pairs of isolates from different countries could sometimes be 

explained by geographic distance between countries, it could also sometimes be 

explained by host plant (Silvar et al. 2006). In another study, twenty-four isolates were 

collected from processing pumpkins in six locations in Illinois (approximately within a 

30 km radius), and these isolates clustered into six RAPD groups. These groups 

corresponded to differences in disease severity on pumpkin seedlings, but not to the 

geographic origin of the isolates, although this may have been a consequence of the 

close geographic location of the sampling sites (Islam et al. 2005). Bowers et al. 

(2007) used AFLP, RFLP, and sequencing of two ITS regions (regions 1 and 2) and 

several genes to study populations of P. capsici. Using any of these methods, P. 

capsici isolates collected around the United States from diverse vegetable crops did 
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not group by either state or host plant. There was also substantial heterozygosity 

within the two sequenced ITS regions of P. capsici.  

Extensive work has been done in Michigan on P. capsici, including studies of 

the structure of that state‟s population. Lamour and Hausbeck (2000) established that 

sexual reproduction was occurring in Michigan‟s vegetable fields, because oospores 

were found in naturally-infected fruit and because all six combinations of mating type 

(A1 and A2) with mefenoxam sensitivity (sensitive, intermediately sensitive, and 

resistant) were represented in 498 isolates recovered from 11 farms. In addition, eight 

of the sampled farms had approximately 1:1 ratios of A1 to A2 mating types, 

suggesting random mating. 

In a single field sampled in two consecutive years, abundant genotypic 

diversity was found, with more than half of the 262 isolates collected having unique 

AFLP genotypes. There were no genotypes in common between the two years. AFLP 

fingerprinting resulted in 37 polymorphic loci, and a single genotype represented an 

increasing proportion of the collected isolates on three sequential sampling dates 

during one season, indicating that this genotype was well-adapted for the particular 

field, and was out-competing other genotypes in the field that year (Lamour and 

Hausbeck 2001a). This is in contrast to what has been observed for P. infestans in 

sexually-reproducing populations. In the Toluca Valley of central Mexico, genotypic 

diversity did not decrease during an epidemic, but at least 50% of the genotypes 

recovered at each sampling were unique (Fry et al. 1992).  

In addition to providing evidence for selective pressure on oospore progeny as 

P. capsici reproduces asexually throughout the growing season, this study also 

suggests (i) that primary inoculum at the beginning of the second growing season 

came from oospores, and not from asexual propagules that survived the Michigan 

winter; and (ii) that the population structure and gene pool were not substantially 
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affected by the failure of all asexual propagules to survive the winter (Lamour and 

Hausbeck 2001a). This is noteworthy, since genetic drift can occur when genotype 

survival is limited by a crop-free period, or by a winter which kills all inoculum except 

oospores (Fry et al. 1992). Failure to recover the same genotype two years in a row 

can be an indication that genetic drift is occurring (Goodwin 1997). Thus, the fact that 

there is little differentiation between populations from different years indicates that 

genetic drift is not occurring in this Michigan population (Lamour and Hausbeck 

2001a). 

Of 57 isolates collected from a Michigan cucumber field in 1998 and 47 

isolates collected from the same field in 2001 (cropped to tomatoes), 89% of the 

isolates collected had unique genotypes, based on an AFLP analysis, and, again, the 

same genotype was not detected in both years. There were approximately equal 

proportions of A1 to A2 isolates, and 57 unique genotypes were identified. In addition, 

isolates from each year were not grouped together in a cluster analysis, further 

illustrating the lack of differentiation among isolates in the same field over different 

years. These isolates were more similar to each other than to isolates collected from 

other growing regions in Michigan, and are reproductively isolated from populations 

which are as little as 8 km away (Lamour and Hausbeck 2003). Similar results were 

reported in 2002, indicating that, in Michigan, clonal lineages are limited to a single 

field during a single season, and that populations from different geographic regions are 

genetically isolated (Lamour and Hausbeck 2002). A similar situation has been 

observed in the Mexican population of P. infestans, where populations from 

northeastern, northwestern, and central Mexico were significantly different from each 

other (Goodwin et al. 1992), and even within central Mexico, populations from 

different valleys were differentiated (Fry et al. 1992). In contrast, P. infestans appears 

to be panmictic within the Toluca Valley of central Mexico (Fry et al. 1992).  
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  While it is well-established that P. capsici in Michigan is highly diverse and 

that sexual reproduction is important in the Michigan population (Lamour and 

Hausbeck 2000; Lamour and Hausbeck 2001b; Lamour and Hausbeck 2002; Lamour 

and Hausbeck 2003), this may not be true of all populations of P. capsici. In southern 

Italy, 60 isolates recovered from two greenhouse production operations over six years 

were all consistently of the A2 mating type (Pennisi et al. 1998). In coastal Peru, the 

P. capsici population appears to be clonal, with only A2 mating type isolates 

recovered, and nearly identical genotypes reported by AFLP analysis, probably as a 

result of continuous pepper cropping, movement of infested water, or survival of 

asexual propagules during crop-free periods (Hurtado-Gonzáles et al. 2008). P. capsici 

isolates collected from cacao in Brazil were monomorphic at all tested isozyme loci, 

suggesting that this population may also be clonal (Oudemans and Coffey 1991; 

Mchau and Coffey 1995). 

It may be hypothesized that the P. capsici population in New York State is 

similar to the population in Michigan. However, as described above, not all 

populations of P. capsici around the world have similar structures (Oudemans and 

Coffey 1991; Mchau and Coffey 1995; Hurtado-Gonzáles et al. 2008). Similarly, 

populations of P. infestans from different parts of the world also vary in their structure 

(Fry et al. 1992). Therefore, it is important to investigate the nature of the P. capsici 

population in New York, as this will have important implications for local disease 

management and will help researchers make better recommendations to New York‟s 

growers about managing Phytophthora blight.  
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CHAPTER 2 

 

*
EFFICACY OF MUSCODOR ALBUS FOR THE CONTROL OF 

PHYTOPHTHORA BLIGHT OF SWEET PEPPER AND BUTTERNUT SQUASH  

 

Abstract 

The efficacy of Muscodor albus, a potential soil biofumigant, to control root 

and stem rot by Phytophthora capsici, was examined in a greenhouse study.  

Phytophthora capsici-infested potting mix was treated with three rates of M. albus, 

mefenoxam (Ridomil Gold EC, Syngenta Crop Protection, Inc.) or nothing. Seedlings 

of five sweet pepper cultivars and one butternut squash cultivar were transplanted into 

the treated potting mix. After 7 days, the plants were rated on a scale of 0 (healthy) to 

5 (dead). The experiment was conducted three times and there was a significant 

interaction between pepper cultivar and soil treatment. Treatment with the highest rate 

of M. albus resulted in a slight but significant reduction in disease severity on 

Alliance, Aristotle, Paladin and Revolution peppers, compared to the pathogen-only 

control, while no significant decreases in disease severity were observed with 

butternut squash or the highly susceptible pepper cultivar Red Knight. Of the four 

less-susceptible pepper cultivars, M. albus, as applied in this study, reduced disease 

severity to commercially-acceptable levels only on the most tolerant cultivar, Paladin. 

 

                                                
* Camp, A. R., Dillard, H. R., and Smart, C. D. 2008. Efficacy of Muscodor albus for the control  

of Phytophthora blight of sweet pepper and butternut squash. Plant Dis. 92:1488-1492. 
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Introduction 

 Phytophthora capsici (Leonian) was first isolated from Chile peppers 

(Capsicum annuum) in New Mexico in 1918 (Leonian 1922), and since then it has also 

been reported  on sweet peppers, tomatoes, eggplants and cucurbits (Hausbeck and 

Lamour 2004), as well as snap beans (Gevens et al. 2008) and lima beans (Davidson et 

al. 2002). Cucurbit hosts are susceptible to root, crown and fruit rots that result in 

either plant death or rotting of fruit before or after harvest, causing significant yield 

losses (Hausbeck and Lamour 2004). Current control recommendations include 

cultural practices to reduce standing water in the field (Hausbeck and Lamour 2004), 

tolerant cultivars (Johnston et al. 2002; Driver and Louws 2003; Hausbeck and 

Lamour 2004) and chemical fungicides and fumigants (Hausbeck and Lamour 2004). 

In production regions around the country, isolates of P. capsici that are insensitive to 

the fungicide mefenoxam are becoming an increasing problem (Hausbeck and Lamour 

2004). Areas of Michigan have received exemptions to continue use of the fumigant 

methyl bromide in order to continue production of susceptible hosts in the presence of 

mefenoxam-insensitive isolates of P. capsici (Hausbeck and Lamour 2004), but this is 

not a long-term sustainable solution to the problem. Some sweet pepper cultivars that 

are tolerant to P. capsici are available, but no resistance or tolerance is currently 

available for hot peppers, eggplants, tomatoes or cucurbits (Hausbeck and Lamour 

2004). 

 The tropical endophytic fungus Muscodor albus was first isolated from a 

cinnamon tree (Cinnamomum zeylanicum) in Honduras (Strobel 2006). It produces a 

variety of volatile organic compounds that inhibit in vitro a number of fungal, 

oomycete and bacterial species, including plant pathogens (Strobel 2006). Thus, it has 

been proposed that M. albus could have agricultural applications as a soil biofumigant 

to kill soil borne plant pathogens (including P. capsici) (Strobel 2006). Since P. 
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capsici is not aerially dispersed (Hausbeck and Lamour 2004), intentional cultural 

practices could be employed to prevent or at least delay the re-introduction of P. 

capsici into a field that had been fumigated with M. albus. Furthermore, because the 

production of long-lived oospores by P. capsici limits the effectiveness of crop 

rotation to control Phytophthora blight (Hausbeck and Lamour 2004), the potential 

destruction of oospores by biofumigation with M. albus (although not yet 

demonstrated) would be especially useful to growers.  

There have been a number of reports of the successful use of M. albus as a 

biofumigant. Several studies successfully used M. albus to control post-harvest 

diseases of fruits, including gray mold (Botrytis cinerea) on grapes (Gabler et al. 

2006), brown rot (Monilinia fructicola) on peaches (Schnabel and Mercier 2006), blue 

mold (Penicillium expansum), gray mold (B. cinerea) and brown rot (M. fructicola) on 

apples (Mercier and Jimenez 2004), and green mold (Penicillium digitatum) and sour 

rot (Geotrichum citri-aurantii) on lemons (Mercier and Smilanick 2005) . Stinson et 

al. (2003) reported that a rate of 2 g M. albus inoculum in 425 g autoclaved and 

pathogen-infested soil significantly reduced disease severity on sugar beet caused by 

Rhizoctonia solani, Pythium ultimum and Aphanomyces cochliodes, and on eggplant 

caused by Verticillium dahliae, compared to pathogen-only controls. In a field 

experiment, M. albus applied at 3.75 g/L soil or 1.9 g/L soil controlled root and 

hypocotyl rots on radishes caused by R. solani (Baysal et al. 2007).  

In addition, in a greenhouse study, Mercier and Manker (2005) demonstrated 

that M. albus provided complete control of both damping-off of broccoli seedlings 

caused by Rhizoctonia solani and Phytophthora blight on a susceptible sweet pepper 

cultivar (California Wonder). There are no published studies using M. albus to control 

Phytophthora blight on cucurbits. Because P. capsici continues to be a significant 

problem for vegetable growers in New York State, and since previous studies have 
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indicated the potential for the successful control of P. capsici with M. albus, this study 

was initiated in order to test the efficacy of M. albus on additional cultivars and crops. 

The goals of this study were to (i) determine whether M. albus is effective as a 

biofumigant against Phytophthora blight on five sweet pepper cultivars and one 

butternut squash cultivar and (ii) determine whether efficacy of M. albus varies based 

on host tolerance of pepper cultivars. 

 

Materials and Methods 

Plant materials.  Five sweet pepper cultivars were used in this experiment: 

Alliance (Harris, Rochester, NY), Aristotle (Seminis Inc., Saint Louis, MO), Paladin 

(Syngenta Crop Protection, Inc., Greensboro, NC), Red Knight (Seminis Inc.) and 

Revolution (Harris). All cultivars were seeded into Cornell potting mix (composed of 

peat, perlite and vermiculite in a 4:1:1 ratio) and were germinated and grown in the 

greenhouse in 128-cell flats under natural light for 24-38 days before being 

transplanted into treated soil (described below).  Additionally, Butternut squash (cv. 

„Waltham,‟ Stokes Seeds, Inc., Buffalo, NY) were seeded into Cornell potting mix in 

50-cell flats and were germinated and grown under natural light in the greenhouse for 

11-14 days prior to transplanting. 

Preparation of P. capsici inoculum. The P. capsici isolate (NY 0664-01) 

used in this experiment was isolated from a pepper plant in New York in 2006 and is 

sensitive to mefenoxam. The isolate was cultured on 100 mm x 15 mm Petri dishes of 

15% V8 agar for 5-7 days (Lamour and Hausbeck 2000).  Equal areas of each agar 

plate colonized by P. capsici were cut into small cubes about 0.5 cm in diameter and 

the contents of one plate was used to inoculate 1 L of V8-vermiculite substrate (0.5 L 

20% V8 broth and 1 L vermiculite) which had been mixed and sterilized in a 2-L 

Erlenmeyer flask (Ristaino et al. 1988). The agar plugs of P. capsici were mixed into 
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the substrate by gentle shaking and the inoculated flasks were incubated in the dark at 

room temperature for 10 to 12 days and shaken three times per week. Before 

inoculating soil, approximately 1 g of vermiculite was removed from each of the 

flasks and incubated on 15% V8 agar to confirm that P. capsici had colonized the 

substrate. Substrate without P. capsici was also made for use in non-inoculated 

controls.  

Soil inoculation and treatments.  To make infested potting mix, 12 L of P. 

capsici-inoculated V8-vermiculite substrate was thoroughly mixed with 36 L of 

moistened Cornell potting mix to achieve a 1:4 ratio of vermiculite inoculum to 

potting mix, similar to the protocol used by Mercier and Manker (2005). This P. 

capsici-inoculated potting mix was then divided into five portions (each containing 

about 9.5 L) for treatment with different rates of M. albus. The M. albus used in this 

trial was obtained from AgraQuest, Inc. (Davis, CA) and had been grown on rye grain 

before being dried for storage. Three of the P. capsici-inoculated soil portions were 

treated with M. albus formulated on rye grain at a rate of 3.75, 1.9, or 0.55 g/L of soil. 

The remaining two portions were left untreated for the P. capsici-only control and the 

mefenoxam + P. capsici control. After treatment, the potting mix in each portion was 

mixed thoroughly and used to fill 30 square plastic pots (10.16 cm) with 

approximately 300 cc of potting mix. 

To produce potting mix for the no-pathogen controls, uninoculated V8-

vermiculite substrate was mixed with Cornell potting mix in a 1:4 ratio, as above. The 

potting mix was divided into 4 portions for treatment with M. albus inoculum at the 

three rates described above, and one portion of soil was left untreated. From each 

container, 30 pots were filled with approximately 300 cc potting mix, as for the 

inoculated soil. 
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In total there were nine soil treatments for each of the five pepper cultivars and 

one squash cultivar: P. capsici only, P. capsici + mefenoxam, P. capsici + M. albus at 

3.75 g/L, P. capsici + M. albus at 1.9 g/L, P. capsici + M. albus at 0.55 g/L, no M. 

albus + no P. capsici, only M. albus at 3.75 g/L, only M. albus at 1.9 g/L and only M. 

albus at 0.55 g/L. All pots from all treatments were covered with plastic and stored in 

the dark at 20-22°C for seven days, to enable the M. albus to grow and fumigate the 

soil (Stinson et al. 2003). 

Efficacy of M. albus to control P. capsici on sweet peppers.  One week after 

the soil was inoculated, two pepper seedlings were transplanted into each pot. All 

seedlings were thoroughly watered prior to transplanting. Five replications of each 

treatment and cultivar combination were arranged in a randomized complete block 

design on greenhouse benches.  The greenhouse was kept at approximately 24°C 

during the day and 20°C at night, with about 15 h of natural light. Approximately 100 

ml of water was added to each pot (from the top), except for those pots which were to 

be treated with mefenoxam. Pots treated with mefenoxam received 100 ml each of a 

Ridomil Gold EC solution (Syngenta Crop Protection, Inc.) at a rate of 1.5 L/ha. All 

pots were watered 2-3 days after transplanting with 150 ml of water, gently poured 

onto the top of the pot to avoid splashing. 

Each pot (containing two plants) was rated as a unit using a scale adapted from 

Silvar et al. (2006): 0 = both plants healthy; 1 = less than or equal to 50% of total stem 

area with lesions and/or less than or equal to 50% of all leaves wilted or missing; 2 = 

more than 50% of total stem area with lesions or more than 50% of all leaves wilted or 

missing; 3 = less than or equal to 50% of total stem area having lesions and more than 

50% of all leaves wilted or missing, or vice versa; 4 = more than 50% of total stem 

area having lesions and more than 50% of leaves wilted or missing, but growing tip 

still upright and green; 5 = both plants dead. Plants were rated when the P. capsici-
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only control plants were dead (7 days after transplanting).  The entire experiment was 

repeated three times, thus with five replicates per experiment there were 15 ratings for 

each treatment-cultivar combination. 

Efficacy of M. albus to control P. capsici on butternut squash. In the 

butternut squash experiment there were a total of nine soil treatments (as in the pepper 

experiment), but only one butternut squash cultivar. One week after the soil was 

inoculated, two squash seedlings were transplanted into each pot, and pots were 

watered with either 100 ml of water or 100 ml of mefenoxam (Ridomil Gold EC at a 

rate of 1.5 L/ha). Five replications of each treatment were arranged in a randomized 

complete block design on a greenhouse bench.  The greenhouse was kept at 

approximately 24°C during the day and 20°C at night, with approximately 15 h of 

natural light. All pots were watered 2 to 3 days after transplanting with 150 ml of 

water gently poured onto the top of the pot to avoid splashing.  Each pot (containing 

two plants) was rated as a unit using the same scale described above.  Plants were 

rated when the P. capsici-only control plants were dead (7 days after transplanting).  

The entire experiment was repeated three times, thus with five replicates per 

experiment there were 15 ratings for each treatment. 

Statistical Analyses. For both the pepper experiment and the butternut squash 

experiment, results were pooled for statistical analysis across all three repetitions of 

the respective experiment. Control treatments which did not receive P. capsici (ie, no 

M. albus + no P. capsici, only M. albus at 3.75 g/L, only M. albus at 1.9 g/L and only 

M. albus at 0.55 g/L) were not included in the statistical analysis, so that there were a 

total of five treatments and either five pepper cultivars or a single butternut squash 

cultivar in each analysis. All data were analyzed using SAS version 9.1.3 (Cary, NC).  

Data from the pepper experiment was analyzed using a nonparametric test for 

two-way factorial experiments, described by Shah and Madden (2004). It was 
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followed by calculation of the relative treatment effects and their 95% confidence 

intervals using the LD_CI macro written by Brunner et al. (Brunner et al. 2002). The 

relative treatment effects are estimated using the ranks of the observations and are 

directly related to the values of the observations, so that smaller relative treatment 

effects for a treatment indicate smaller values for the observations (disease severity 

ratings) in that treatment (Brunner et al. 2002). Relative treatment effects always have 

values between 0 and 1, and the disease severities on two treatment-cultivar 

combinations can be said to be significantly different from each other if the 95% 

confidence intervals of the relative treatment effects do not overlap.  

Data from the butternut squash experiment was analyzed using a Kruskal-

Wallis test performed with the program „npar1way.‟ Rank sums calculated with this 

program were then used to perform a Bonferroni-Dunn test (Sheskin 1996). 

 

Results 

Disease development on pepper and butternut squash. Disease developed 

rapidly in pathogen-inoculated controls. After 3 or 4 days, leaves began to wilt and 

water soaked lesions were observed on the stems just above the soil line of the 

butternut squash and Red Knight peppers that had been treated with only P. capsici. 

Seven days after transplanting, all of these butternut squash and Red Knight peppers 

were rated either 4 or 5. No phytotoxic effects of M. albus were observed on any 

pepper cultivar or on Waltham butternut squash. 

Susceptibility of sweet pepper cultivars. As expected, there were differences 

in susceptibility among pepper cultivars.  Paladin was the most tolerant pepper cultivar 

and Red Knight was the most susceptible pepper cultivar (Table 2.1, Figure 2.1). The 

susceptibility of Alliance, Aristotle and Revolution peppers was intermediate to that of 

Paladin and Red Knight, with Revolution being the most tolerant of the three 
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intermediately-tolerant cultivars (Figure 2.1, Table 2.1).  

 
Figure 2.1 Disease severity on sweet peppers treated with Muscodor albus. Graphical 

representation of the relative treatment effects for each combination of treatment 

applied to potting mix and pepper cultivar and its effect on disease severity of 

Phytophthora blight on sweet peppers. Disease severity was rated on an ordinal scale 

from 0 (healthy plants) to 5 (dead plants), 7 days after transplanting, and data was 

combined from the three experiments. Error bars indicate the 95% confidence 

intervals of the relative treatment effects. The first two letters and numbers indicate 

the soil treatment (m1 = 0.55 g/L Muscodor albus, m2 = 1.9 g/L Muscodor albus, m3 

= 3.75 g/L Muscodor albus, u = Phytophthora capsici only, and rd = mefenoxam). The 

second one or two letters indicate the pepper cultivar (p = Paladin, al = Alliance, r = 

Revolution, ar = Aristotle, and rk = Red Knight). 
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Table 2.1 Disease severity on five sweet pepper cultivars treated with Muscodor 

albus. Median disease rating, mean rank, relative treatment effect (p̂ij) and 95% 

confidence interval of the relative treatment effect for combinations of soil treatment 

and sweet pepper cultivar.
a 
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Treatment-cultivar 

combination 
Median

b
 

Mean 

rank
c
 

p̂ij 95% CI for p̂ij 

Alliance     

 M. albus 3.75 g/L 4.0 202.5 0.471 (0.425, 0.519) 

 M. albus 1.9 g/L 4.0 202.5 0.649 (0.566, 0.724) 

 M. albus 0.55 g/L 5.0 305.0 0.686 (0.600, 0.760) 

 P. capsici only 5.0 305.0 0.694 (0.615, 0.763) 

 Mefenoxam 0.0 48.0 0.151 (0.122, 0.187) 

Aristotle     

 M. albus 3.75 g/L 4.0 202.5 0.525 (0.434, 0.615) 

 M. albus 1.9 g/L 5.0 305.0 0.654 (0.556, 0.739) 

 M. albus 0.55 g/L 5.0 305.0 0.700 (0.594, 0.787) 

 P. capsici only 5.0 305.0 0.715 (0.623, 0.792) 

 
Mefenoxam 0.0 48.0 0.191 (0.118, 0.303) 

Paladin     

 M. albus 3.75 g/L 0.0 48.0 0.139 (0.116, 0.167) 

 M. albus 1.9 g/L 0.0 48.0 0.226 (0.176, 0.286) 

 M. albus 0.55 g/L 1.0 116.5 0.235 (0.187, 0.292) 

 P. capsici only 1.0 116.5 0.250 (0.201, 0.307) 

 
Mefenoxam 0.0 48.0 0.172 (0.103, 0.282) 

Red Knight     

 M. albus 3.75 g/L 5.0 305.0 0.794 (0.753, 0.829) 

 M. albus 1.9 g/L 5.0 305.0 0.794 (0.753, 0.829) 

 M. albus 0.55 g/L 5.0 305.0 0.812 (0.794, 0.829) 

 P. capsici only 5.0 305.0 0.794 (0.753, 0.829) 

 
Mefenoxam 1.0 116.5 0.352 (0.240, 0.485) 

Revolution     

 M. albus 3.75 g/L 3.0 155.0 0.454 (0.388, 0.521) 

 M. albus 1.9 g/L 4.0 202.5 0.583 (0.462, 0.693) 

 M. albus 0.55 g/L 4.0 202.5 0.607 (0.493, 0.709) 

 P. capsici only 4.0 202.5 0.642 (0.553, 0.722) 

  Mefenoxam 0.0 48.0 0.210 (0.154, 0.282) 
a
 Rating data taken 7 days after transplanting was combined from the three experiments. 

b
 Disease severity was rated on an ordinal scale from 0 (healthy plants) to 5 (dead plants). 

c
 Mean rank is the average of the rank scores assigned to all replicates of each treatment-

cultivar combination. Thus, treatment-cultivar combinations with smaller mean ranks received 
lower disease severity ratings.  
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Efficacy of M. albus to control P. capsici on sweet peppers.  Results of the 

pepper experiment are presented as median disease severity rating, relative treatment 

effect and 95% confidence interval of the relative treatment effect (Table 2.1). 

Although median ratings between two treatment-cultivar combinations may be the 

same, whether or not there is a significant difference is determined by the 95% 

confidence interval of the relative treatment effect. To more easily visualize 

significant differences, relative treatment effects and their 95% confidence intervals 

are graphed in Figure 2.1.  

Mefenoxam and the highest rate of M. albus, but not the other rates, 

significantly decreased disease severity on Alliance, Aristotle, Paladin and Revolution 

peppers. Although both mefenoxam and the highest rate of M. albus significantly 

reduced disease severity compared to the pathogen-only control, mefenoxam provided 

better control than M. albus. There were no significant differences in disease severity 

between Revolution peppers and either Alliance or Aristotle peppers when these 

cultivars were treated with the highest rate of M. albus. Only treatment with 

mefenoxam significantly reduced disease severity on Red Knight peppers (Figure 2.1, 

Table 2.1). Overall, only the use of the cultivar Paladin (in combination with any 

treatment applied to the soil), or other sweet pepper cultivars treated with mefenoxam 

resulted in median disease ratings of 0 or 1 (Table 2.1).   

Interaction between pepper cultivar and treatment of soil on disease 

severity. Both sweet pepper cultivar and soil treatment had significant effects on 

disease severity ratings (P < 0.0001; Table 2.2). The interaction between soil 

treatment and cultivar was also significant (P < 0.0001; Figure 2.2, Table 2.2). Thus, 

disease severity on each pepper cultivar varied with the treatment applied to the soil, 

but disease severity did not vary in the same way across all cultivars. 
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Table 2.2 Interaction between treatment of potting mix and sweet pepper cultivar. 

Results of nonparametric analysis of variance for the effects of treatment and cultivar 

on disease severity caused by P. capsici on sweet peppers in the greenhouse.
a
 

  Analysis of variance-type statistics
b
 

Effect dfN dfD F P value 

Treatment 3.81 226 90.3 <0.0001 

Cultivar 3.57 226 107.25 <0.0001 

Treatment x Cultivar 11.8 226 4.97 <0.0001 
a
 Treatments were 0.55 g/L M. albus, 1.9 g/L M. albus, 3.75 g/L M. albus, P. capsici only, and 

mefenoxam. Cultivars were Paladin, Alliance, Revolution, Aristotle, and Red Knight. Disease 

severity was rated on an ordinal scale from 0 (healthy plants) to 5 (dead plants), 7 days after 

transplanting. Data was combined from the three experiments. 
b
 dfN = numerator degrees of freedom, dfD = denominator degrees of freedom. 

 

 

 

 

 

 

 

 

Figure 2.2 Visualization of the interaction between pepper cultivar and treatment of 

potting mix. Median disease severity caused by Phytophthora blight on five pepper 

cultivars across five treatments applied to potting mix. All potting mix was infested 

with Phytophthora capsici and treated with mefenoxam, three rates of Muscodor 

albus, or no additional treatment. Disease severity was rated on an ordinal scale from 

0 (healthy plants) to 5 (dead plants), 7 days after transplanting, and data was combined 

from the three experiments. The fact that the lines representing the different cultivars 

do not remain equidistant across the soil treatments indicates that an interaction has 

likely occurred, and this is confirmed by the analysis shown in Table 2.2 (Sheskin 

1996). 
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Efficacy of M. albus to control P. capsici on butternut squash.  The 

butternut squash cultivar „Waltham‟ was highly susceptible to P. capsici (Table 2.3).  

Treatment with mefenoxam significantly reduced disease severity on butternut squash 

compared to treatment with either P. capsici alone or P. capsici with any rate of M. 

albus (Table 2.3). Mefenoxam was the only treatment that prevented rapid plant death 

(Table 2.3).  

 

Table 2.3 Disease severity on butternut squash treated with Muscodor albus. Effect of 

soil treatments on median disease severity caused by P. capsici on butternut squash in 

the greenhouse.
a 

Treatment Disease Severity
b
 

M. albus 3.75g/L 4.5a 

M. albus 1.9g/L 4.0a 

M. albus 0.55g/L 5.0a 

P. capsici only 5.0a 

Mefenoxam 0.0b 
a
 The cultivar Waltham was used and disease severity was rated on an ordinal scale from 0 

(healthy plants) to 5 (dead plants), 7 days after transplanting. Rating data was combined from 

the three experiments.  
b
 Medians followed by the same number are not significantly different from each other by a 

Kruskal-Wallis test followed by a Dunn‟s test at p = 0.05. 

 

Discussion 

P. capsici continues to be a serious disease of peppers and cucurbits in 

temperate climates, in spite of the use of crop rotation and fungicides (Hausbeck and 

Lamour 2004). Previous studies have documented the successful control of soil-borne 

(Mercier and Manker 2005; Baysal et al. 2007) and post-harvest (Mercier and Jimenez 

2004; Mercier and Smilanick 2005; Gabler et al. 2006; Schnabel and Mercier 2006) 

diseases using M. albus. Mefenoxam currently provides good control of Phytophthora 

blight in fields where P. capsici is still sensitive to the fungicide, but mefenoxam-

insensitive isolates are prevalent in many fields (Hausbeck and Lamour 2004), 

including both Long Island and some areas of upstate New York (Hausbeck and 
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Lamour 2004); unpublished data). There are, however, still some locations in upstate 

New York that have mefenoxam-sensitive populations (unpublished data).  Because 

insensitivity to mefenoxam can develop in populations of P. capsici that are repeatedly 

exposed to the fungicide, alternative control methods for Phytophthora blight are 

needed, whether chemical, biological, or cultural (Hausbeck and Lamour 2004).  

Under the conditions of this study, the previously-described complete 

biofumigation effects of M. albus on P. capsici were not observed. Addition of the 

highest rate of M. albus did reduce disease severity in 4 of the 5 pepper cultivars 

tested, but the level of disease was still very high in all cultivars except Paladin. The 

potting mix in the Mercier and Manker (2005) study was inoculated with P. capsici at 

a much higher rate (inoculum to potting mix ratio of 1:1, compared to 1:4 in this 

study); thus the level of inoculum does not account for the difference observed 

between these two studies.  A likely explanation for the results obtained by Mercier 

and Manker is the rate of M. albus used to fumigate the potting mix. Soil was 

inoculated with 25g of M. albus (grown on rye grain, as in this experiment) per liter of 

potting mix, which is a significantly higher rate than was used in this study (the rate 

suggested by the manufacturer). Also, different strains of the pathogen were used in 

each study and these strains may differ in aggressiveness on pepper. 

It has been reported that the volatile compounds produced by M. albus do not 

diffuse long distances through the soil (Mercier and Manker 2005). Thus, perhaps not 

all P. capsici inoculum in the pots was exposed to M. albus volatiles when M. albus 

was added to the potting mix at low rates, regardless of how thoroughly it was mixed 

into the soil. This could explain why M. albus effectively controlled P. capsici 

(Strobel 2006) and P. erythroseptica  (Schotsmans et al. 2008) in in vitro experiments 

(where the volatiles do not have to diffuse through soil). Volatiles produced by M. 

albus may also diffuse over longer distances through air in storage containers than 
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through soil, accounting for the successful use of M. albus to control post-harvest 

diseases. In addition, Stinson et al. (2003) reported that soil pathogens were 

differentially inhibited depending on the formulation of M. albus, so it is also possible 

that M. albus grown on a different substrate (other than rye grain) might result in 

better control of P. capsici.  

The pepper cultivar „Paladin‟ is widely reported to be tolerant to P. capsici 

(Babadoost and Islam 2002; Johnston et al. 2002; Driver and Louws 2003; Hausbeck 

and Lamour 2004) and was the most tolerant of the cultivars included in this study. 

However, it has been noted that this tolerance can be overcome in the field under 

conducive environmental conditions (Hausbeck and Lamour 2004).   Because the 

highest rate of M. albus used in this study significantly reduced disease severity on all 

pepper cultivars except Red Knight, it is possible that a high rate of M. albus could 

effectively limit losses of tolerant pepper cultivars under high disease pressure. In this 

study, Revolution was more susceptible than Paladin, but not as susceptible as Red 

Knight peppers, which is consistent with a previous report of some tolerance of this 

cultivar to P. capsici in the field (40% incidence after artificial inoculation; Louws and 

Driver 2007).  

There have been mixed reports of the tolerance level of the pepper cultivar 

Aristotle to Phytophthora blight, ranging from 20% mortality (Driver and Louws 

2003) to 91% mortality (McGrath and Davey 2007) in field trials. One study reported 

Alliance peppers to be fairly susceptible to Phytophthora blight (more than 60% 

incidence after artificial field inoculation; Louws and Driver 2007). Under the 

conditions of this study, both Aristotle and Alliance peppers responded similarly to the 

applied soil treatments and together with Revolution peppers were classified as „less 

tolerant,‟ since they were slightly less susceptible than Red Knight peppers. The 

differences in reported levels of tolerance on each pepper cultivar over multiple 
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studies may be due to different experimental conditions and the use of different 

isolates of P. capsici.  

Red Knight is a highly susceptible pepper cultivar (McGrath and Davey 2007) 

and similar results were seen in this study, where Red Knight was the most susceptible 

cultivar tested. Application of M. albus did not reduce disease severity on Red Knight, 

and, in sharp contrast to Paladin, treatment with mefenoxam produced a substantial 

reduction in disease severity on Red Knight. 

As applied in this study, M. albus did not control P. capsici on butternut 

squash. All plants exposed to P. capsici (except those treated with mefenoxam) died 

rapidly. Although no Phytophthora resistance is currently available in butternut 

squash, research is in progress to identify sources of resistance to P. capsici (Kabelka 

et al. 2007; Padley et al. 2007). The results of the present study indicate that M. albus 

does not control P. capsici on highly susceptible cucurbit hosts.   

As applied in this study, M. albus did not provide complete biofumigation of 

P. capsici-infested soil; however, at 3.75 g/L it did significantly reduce disease 

severity on partially-tolerant pepper cultivars. Therefore, while M. albus will likely 

not protect highly susceptible host crops from infection with P. capsici, it is possible 

that M. albus could be used in combination with host plant tolerance to reduce severity 

of Phytophthora blight. Additional studies are needed to determine if the use of M. 

albus in conjunction with resistant cultivars could be part of an effective integrated 

pest management program. 
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CHAPTER 3 

 

SENSITIVITY TO MEFENOXAM AND POPULATION STRUCTURE OF 

PHYTOPHTHORA CAPSICI IN NEW YORK  

 

Introduction 

The heterothallic oomycete Phytophthora capsici causes Phytophthora blight 

on many hosts, including peppers, cucurbits, eggplants, tomatoes (Erwin and Ribeiro 

1996; Hausbeck and Lamour 2004), and beans (Davidson et al. 2002; Gevens et al. 

2008), and results in devastating crop losses around the world (Erwin and Ribeiro 

1996). Recently, Fraser fir has also been identified as a host (Quesada-Ocampo et al. 

2009). P. capsici reproduces asexually by means of sporangia and zoospores, and 

sexually, by means of oospores (Erwin and Ribeiro 1996). Production of sporangia 

and release of zoospores is especially rapid under wet conditions, such as those caused 

by heavy rain, over-irrigation, or poorly-drained field soil (Zentmyer and Erwin 1970; 

Duniway 1979; Bernhardt and Grogan 1982).  Movement of water (via drainage, 

windblown rain, splashing from soil onto aerial plant tissue, etc.) is an important 

dispersal mechanism for this pathogen within a field (Ristaino et al. 1994; Café-Filho 

and Duniway 1995; Ristaino et al. 1997), and because spores of P. capsici are 

common in surface water used for irrigation, they can also be spread between fields by 

water movement (Roberts et al. 2005; Gevens et al. 2007). In New York, we have 

observed that movement of infected fruits, infested soil, or farm equipment can spread 

P. capsici within and between fields, and similar observations have been made in 

Michigan (Hausbeck and Lamour 2004). Wind dispersal does not appear to be 

important in the long-distance spread of P. capsici (Lamour and Hausbeck 2002; 

Hausbeck and Lamour 2004). Because P. capsici is heterothallic, both the A1 and the 
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A2 mating types must be present in close proximity for the long-lived, overwintering 

oospores to be produced (Ristaino and Johnston 1999). Thus, in cold climates where 

the more tender asexual propagules (hyphae, sporangia, and zoospores) cannot survive 

the winter, sexual reproduction is required for survival from one growing season to 

another (Duniway 1979; Bowers et al. 1990; Lamour and Hausbeck 2003; Babadoost 

2007). 

Cultural control methods include avoiding or limiting exposure of hosts to 

excess moisture in the field (Springer and Johnston 1982; Ristaino 1991; Biles et al. 

1992; Café-Filho et al. 1995; Café-Filho and Duniway 1996; Xie et al. 1999), rotating 

to non-susceptible host crops (Hausbeck and Lamour 2004), removal of susceptible 

weed hosts from the field (Ploetz et al. 2002; French-Monar et al. 2006), and planting 

tolerant sweet pepper varieties (Ristaino and Johnston 1999; Johnston et al. 2002; 

Miller, S. A. et al. 2002; Stieg et al. 2006). In addition, potentially-infested soil or 

plant material should not be discarded in vegetable production fields, because of the 

potential to move P. capsici spores to new locations in this way (Hausbeck and 

Lamour 2004). The phenylamide fungicide mefenoxam is very effective against 

susceptible isolates of P. capsici, but resistance has already developed in many 

populations (Biles et al. 1992; Ristaino et al. 1997; Pennisi et al. 1998; Ristaino and 

Johnston 1999; Matheron and Porchas 2000; Lamour and Hausbeck 2001a; Hausbeck 

and Lamour 2004; French-Monar et al. 2007; Café-Filho and Ristaino 2008; Davey et 

al. 2008).  

Numerous genetic methodologies can be used to study the population structure 

of diploid organisms, like P. capsici. Microsatellite, or simple sequence repeat (SSR) 

markers have been used to study a variety of plant pathogens, including Phytophthora 

infestans (Lees et al. 2006; Widmark et al. 2007), Phytophthora ramorum (Ivors et al. 

2006; Prospero et al. 2007), Phytophthora cinnamomi (Dobrowolski et al. 2003), 
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Phaeosphaeria nodorum (Blixt et al. 2008), and Cryphonectria parasitica (Kubisiak et 

al. 2007). These genomic regions are composed of a string of one to six base pairs 

repeated some variable number of times, and the size of each microsatellite locus is 

directly related to the number of repeats at that locus. The number of repeats may 

differ between individuals as a result of unequal crossing over during recombination 

or slippage during replication of DNA. Thus, different alleles at each microsatellite 

locus can be distinguished by amplifying the locus with a polymerase chain reaction 

(PCR) and separating the PCR products based on size using electrophoresis. 

Microsatellites are very useful molecular markers because they are co-dominant and 

can be neutral (if chosen from non-coding regions of the genome). In addition, many 

alleles may be present at a single locus, and the presence of microsatellite alleles of 

different sizes can be easily scored and compared between different studies (Tautz and 

Renz 1984; Queller et al. 1993).  

 Many studies have undertaken the characterization of P. capsici populations by 

various molecular techniques, and in various parts of the world (Oudemans and Coffey 

1991; Mchau and Coffey 1995; Lamour and Hausbeck 2000; Lamour and Hausbeck 

2001a; Lamour and Hausbeck 2002; Lamour and Hausbeck 2003; Islam et al. 2005; 

Silvar et al. 2006; Bowers et al. 2007; Hurtado-Gonzáles et al. 2008). Several of these 

studies have indicated little or no population substructure based on the geographic 

origin of the samples, either on local (isolates collected from fields within a region) or 

global (isolates collected from different countries) levels (Forster et al. 1990; Mchau 

and Coffey 1995; Islam et al. 2005; Silvar et al. 2006; Bowers et al. 2007). In 

Michigan, where Phytophthora blight has been devastating to the pickling cucumber 

industry (Hausbeck and Lamour 2004), such characterization has indicated that 

mefenoxam resistance is widespread (Lamour and Hausbeck 2000), sexual 

reproduction is common (Lamour and Hausbeck 2000; Lamour and Hausbeck 2003), 
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populations within fields are highly diverse (Lamour and Hausbeck 2001a), and little 

or no gene flow occurs between populations in fields separated by at least 1 km 

(Lamour and Hausbeck 2001b; Lamour and Hausbeck 2002).  

Although not all populations of P. capsici have the same characteristics as 

those found in Michigan (Mchau and Coffey 1995; Hurtado-Gonzáles et al. 2008), 

preliminary reports of P. capsici in New York are consistent with what has been 

observed in Michigan, including the recovery of both A1 and A2 mating types from 

the same field on Long Island and in upstate New York, as well as the recovery of 

mefenoxam-resistant isolates from a single field in upstate New York (Hausbeck and 

Lamour 2004). Because the population structure of plant pathogens can have 

important implications for the biology of the pathogen and disease management (Fry 

et al. 1992; McDermott and McDonald 1993; Milgroom 1995; Milgroom 1996; 

Goodwin 1997), it was important to conduct a survey of P. capsici in New York, using 

biological characteristics like mating type and mefenoxam sensitivity, as well as 

microsatellite markers to characterize the population. Knowledge of the specific P. 

capsici populations affecting New York growers will help in the development of 

appropriate management recommendations that are specific for New York. The 

objectives of this study were to determine: (i) to what extent isolates of P. capsici in 

New York are resistant to mefenoxam; (ii) whether P. capsici in New York is highly 

diverse; (iii) whether populations in New York are structured based on geographic 

location. 

 

Materials and Methods 

Collection of symptomatic plants. In 2006 and 2007, plants showing 

characteristic symptoms of Phytophthora blight were collected from growers‟ fields in 

four vegetable-production regions of New York: western, central, the Capital District 



 

55 

(near Albany, New York), and Long Island. In the single field sampled in western 

New York in 2007, some symptomatic plants were collected from recently-rogued 

plants, and others were collected from nine sites in the same field with two to seven 

plants sampled at each site (Figure 3.1). From all other fields, symptomatic plants 

were sampled at random (statistically arbitrarily). In 2006, fields in western and 

central New York were sampled in August and September. In 2007, samples from 

western New York were collected in late June and samples from central New York 

were collected in late July. Various fields on Long Island were sampled in late August 

through early September 2007, and in early November 2007. Fields in the Capital 

District were sampled in late September 2007. 

 
Figure 3.1 Relative location of sampling sites in an approximately 1.5 ha field located 

in western New York (field WNY) from which plants showing symptoms of 

Phytophthora blight were sampled in June 2007. Each dot indicates a location where 

two to seven plants were collected. The genotypes which were recovered from each 

site in the field are also indicated.  

 

Isolation and confirmation of P. capsici. Small pieces of symptomatic plant 

tissue were surface disinfested in 10% bleach for two to three minutes, rinsed in sterile 

distilled water and plated on PARP (25 mg pentachloronitrobenzene (Sigma-Aldrich 

Co., St. Louis, MO), 250 mg ampicillin sodium salt (Fisher Scientific, Fair Lawn, NJ), 

10 mg rifampicin (Fisher Scientific) dissolved in 1 ml 95% ethanol, 0.4 ml pimaricin 

(2.5% aqueous solution; MP Biomedicals, LLC, Solon, OH), 17 g cornmeal agar 
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(Becton, Dickinson and Company, Sparks, MD), and 1 L distilled water), or PARPH 

(PARP, plus 20 mg/L hymexazol; Sigma-Aldrich); recipe adapted from 

Schmitthenner, A.F. and Bhat (1994). Plates were incubated at room temperature until 

colonies began to grow from the tissue, at which point edges of these colonies were 

transferred to new PARP or PARPH plates. Isolates were identified as P. capsici by 

isolation on selective media (PARP or PARPH), production of ovoid, papillate 

sporangia on long pedicels (Leonian 1922) when grown on 15% unclarified V8 

(UCV8) agar and exposed to light, and species-specific polymerase chain reaction 

(described below). To obtain single zoospore cultures of each isolate, colonies were 

transferred to UCV8 agar and incubated at room temperature under lab lighting to 

induce sporulation, as previously described (Lamour and Hausbeck 2000). Only single 

zoospore cultures were used in the following experiments. Both prior to and after 

single zoosporing, cultures were maintained on UCV8, PARP, or potato dextrose agar 

(PDA; 39 g/L, Becton, Dickinson and Company) and transferred every 1-2 months 

until stored. To store isolates, plugs taken from the expanding edge of a single 

zoospore culture on PDA were transferred to sterile distilled water and maintained in 

the dark at room temperature (Schmitthenner, A.F. and Bhat 1994). Stored isolates 

were taken out of storage and restored approximately every 12 months. 

Mating type and mefenoxam sensitivity. To determine the mating type of 

each isolate, a 5-10 mm plug taken from a 1-3 week old PARP culture was transferred 

to the center of a UCV8 plate, approximately 3 cm away from two plugs of a P. 

capsici isolate of known A1 mating type (ATCC number MYA-2338). This procedure 

was repeated with a known A2 isolate of P. capsici (ATCC number MYA-2290), and 

both plates were incubated in the dark for at least a week before being inspected under 

a light microscope for the presence of oospores. Isolates which formed oospores with 

the A1 mating type standard, but not with the A2 mating type standard were 
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determined to be mating type A2, and vice versa (Tooley et al. 1985). Plates 

containing both the A1 and A2 test strains were included as positive controls. 

To determine whether isolates were sensitive to mefenoxam, a circular disk 

was cut from the edge of a 1-3 week old PARP culture of each isolate using a sterile 

10 mm cork borer. Disks were transferred to the center of 100 mm-wide UCV8 plates 

amended with no mefenoxam, 5 µg/ml mefenoxam, and 100 µg/ml mefenoxam 

(Goodwin et al. 1996). Media was amended with Ridomil Gold EC (Syngenta Crop 

Protection, Inc., Greensboro, NC) to give the appropriate amount of active ingredient. 

Plates were incubated in the dark for 3-7 days, until mycelia on the 0 µg/ml 

mefenoxam control had covered at least half of the plate. The entire diameter of each 

colony was measured at its widest point, and the diameter of the plug was subtracted 

from the diameter of each colony before reporting colony growth on mefenoxam-

amended media as a percentage of the no-mefenoxam control. An isolate was scored 

as sensitive, if growth on 5 µg/ml mefenoxam-amended UCV8 was less than 40% of 

growth on the unamended UCV8; intermediately resistant, if growth on 5 µg/ml 

mefenoxam-amended UCV8 was greater than 40% of growth on the unamended 

UCV8, but growth on 100 µg/ml mefenoxam-amended UCV8 was less than 40% of 

growth on the unamended UCV8; or resistant if growth on both 5 µg/ml and 100 

µg/ml mefenoxam-amended UCV8 was more than 40% of growth on the unamended 

UCV8 (Silvar et al. 2006). All mefenoxam sensitivity tests were conducted at least 

twice. 

Harvesting mycelia and extracting DNA. Single zoospore cultures of each 

isolate were grown for one to three weeks on PARP before three to four plugs 

(approximately 1 cm in diameter) were transferred to approximately 12 ml of sterile 

potato dextrose broth (24 g/L, MP Biomedicals, Solon, OH) in 15 mm x 100 mm Petri 

dishes (Fisher Scientific). Plates were sealed with Parafilm and incubated in the dark 
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for 5 days to 3 weeks, depending on how quickly the mycelia grew. Mycelia were 

harvested by vacuum filtration, separated from agar plugs, and wrapped in aluminum 

foil or stored in microcentrifuge tubes and frozen at -20°C until DNA was extracted.  

DNA was extracted using the Qiagen DNeasy Plant Mini kit (Valencia, CA) or 

the MoBio UltraClean™ Soil DNA kit (Carlsbad, CA), following the manufacturers‟ 

instructions, with slight modifications to the Qiagen protocol, as follows. To disrupt 

the tissue in the first step of the Qiagen extraction protocol, 40-80 mg of thawed 

mycelia (not lyophilized) were placed in a round-bottom 2 ml microcentrifuge tube 

with a sterile ball bearing and shaken in a Qiagen TissueLyser at 30 cycles per second 

for 1 minute and 30 seconds. The process was repeated if the tissue was not 

completely ground. In the final step of the kit protocol, the incubation with Buffer AE 

was extended to 15 minutes and Buffer AE was added in 2 aliquots of 50 μl each (with 

centrifugation following each incubation), to improve yield. With the MoBio kit, 30-

70 mg of thawed mycelia was used for extraction and the spin filter was incubated for 

15 minutes at room temperature with Solution S5 before the final elution of DNA. 

Confirmation of isolates as P. capsici using species-specific primers. 

Extracted DNA was amplified with P. capsici-specific primers (PC-3, 5‟-

GTGTTGTCCTTCGGGTCGACTG-3‟ and PC-6R, 5‟-

GGAAAAGCATTCAATAAGCGCCTG; Zhang et al. 2008). For this reaction, the 

total volume was 25 μl, containing 2.5 μl extracted genomic DNA, 0.2 μM primers, 

0.2 mM total dNTPs, 2.5 μl 1x ThermoPol reaction buffer with 2 mM MgSO4, and 0.5 

U Taq DNA polymerase (New England Biolabs, Ipswich, MA). The reaction took 

place in either an Eppendorf Mastercycler® gradient (Eppendorf, Westbury, NY) or a 

PTC-100™ Thermo Cycler (MJ Research, Boston, MA) PCR machine with an initial 

incubation of 5 minutes at 94°C, followed by 35 cycles of 94°C for 45 seconds, 62°C 

for 45 seconds, and 72°C for 45 seconds, and a final incubation step at 72°C for 10 
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minutes. The expected product was 219 base pairs in length and products were 

visualized on a 1% agarose gel. Negative controls containing no genomic DNA were 

run with all reactions to check for contaminated reagents, and DNA from known 

isolates of P. capsici were included as positive controls. 

Amplification and analysis of microsatellite fragments. Of the isolates 

collected in 2007, confirmed as P. capsici, and characterized for mating type and 

mefenoxam sensitivity, isolates from three fields were selected for molecular analysis 

of population structure using five microsatellite markers. One field each in western 

New York, the Capital District, and Long Island (subsequently referred to as fields 

WNY, CD, and LI, respectively) was chosen. Microsatellite regions were amplified 

from genomic DNA using primers obtained from Dr. Adele McLeod (University of 

Stellenbosch, South Africa) and are not significantly similar to known proteins or 

expressed genes (personal communication). Forward primers AC11-F, TTC5-F, 

CTT16-F, AAG16-F and TTC18-F were labeled at the 5‟ end with fluorescent dyes 

(Applied Biosystems, Foster City, CA), and reverse primers were unlabeled (Table 

3.1). Each PCR reaction occurred in a total volume of 25 μl, containing 25 ng of 

genomic DNA, 0.25 μM primers, 0.16 mM total dNTPs, 2.5 μl GeneAmp® 10x PCR 

Buffer with 15 mM MgCl2, and 0.63 U AmpliTaq® Gold (Applied Biosystems, Inc.). 

For amplification of locus TTC18, 2.5 μl Standard Taq buffer with 1.5 mM MgCl2
 
and 

0.63 U Taq DNA polymerase (New England Biolabs) was used, instead of the Applied 

Biosystems Taq and buffer. All reactions took place in either an Eppendorf 

Mastercycler® gradient or a PTC-100™ Thermo Cycler PCR machine and used a 

touchdown program: 20 cycles of 94°C for 40 s, 60°C for 40 s (with a reduction of 

0.5°C per cycle), and 72°C for 20 s, followed by 20 cycles of 94°C for 40 s, 50°C for 

40 s, and 72°C for 20 s, ending with a 10 minute incubation at 72°C. Exposure of 

primers and PCR products to light was minimized to avoid degradation of the 
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fluorescent dyes.  

 

Table 3.1 Primer sequences for amplification of five microsatellite loci from 

Phytophthora capsici. Each forward primer was labeled at the 5‟ end with the 

indicated fluorescent dye, while reverse primers were not labeled.  

Locus Dye Forward primer (5'-3') Reverse primer (5'-3') 

AC11 PET GCTACAAGCTGCCACAGGTGTC CACCGCAGATTCGCTAAGAGCC 

TTC5 VIC GTCGAGATCTGGTCGGTTCTAG CTGTTTACTGCGCCAATCACCTG 

CTT16 6-FAM TGAGCTGCATTGTGAACGG TTACCACCTCGATGGTGC 

AAG16 NED GCTTGCATCAATTTATCGCAG ATTGTGAACGGTCATCACTG 

TTC18 6-FAM CTTGATCAATGGCGACACAG GCGCCTCCTTCTACTTATCG 

 

PCR products for loci TTC5, CTT16 and AAG16 were mixed in a 1:1:1 ratio, 

while products for loci AC11 and TTC18 were analyzed individually. For fragment 

analysis, 1 μl of either mixed or unmixed PCR product was added to a 0.2 ml well of a 

96-well plate (Fisher Scientific, Fair Lawn, NJ) with 10 μl hi-di formamide (Sigma-

Aldrich) and 0.2 μl GeneScan™-500 LIZ® Size Standard (Applied Biosystems, Inc.). 

Plates were sealed with Microseal „B‟ Film (BioRad, Hercules, CA) to prevent 

evaporation, spun down briefly (approximately 1000 rpm for 1 minute), and wrapped 

in aluminum foil to prevent degradation of fluorescent dyes. Fragment size was 

determined on a 3730xl DNA Analyzer (Applied Biosystems, Inc.), and resulting 

electropherograms were visualized and peaks were scored in Peak Scanner (Applied 

Biosystems, Inc.). If peaks were not clear, larger volumes (2 or 3 μl) of PCR products 

were re-analyzed, or were analyzed separately (in the case of loci TTC5, CTT16 and 

AAG16). Amplification of the TTC18 locus did not always produce clear peaks with 

the New England Biolabs Taq and Standard Taq buffer. In these cases, reactions were 

repeated using AmpliTaq® Gold with GeneAmp® 10x PCR Buffer, or New England 

Biolabs Taq with ThermoPol.  

Statistical analysis. A chi-square goodness-of-fit test was used to determine 

whether mating types of isolates recovered from fields WNY, CD and LI were in a 1:1 
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ratio (Sheskin 1996). The probability that isolates recovered from the same field with 

the same five-locus (not including mating type) genotype were the products of sexual 

reproduction, instead of being clones (Psex), was calculated using GenClone software, 

without considering departures from Hardy-Weinberg equilibrium in each field 

(Arnaud-Haond et al. 2005; Arnaud-Haond and Belkhir 2007). All other analyses were 

done with Arlequin (Excoffier et al. 2005). To test the level of differentiation between 

P. capsici populations in the three fields (WNY, CD and LI), and between isolates of 

different mating types within each field, pairwise FST values were calculated (1000 

permutations) using Nei‟s method, which considers the number of identical DNA 

fragments (or alleles) shared between or among populations (Nei and Li 1979). An 

analysis of molecular variance (AMOVA) was used to estimate the variation across all 

three fields which resulted from differences among fields (FST), and to estimate 

fixation indices (FIS) in each field, using 5000 permutations, according to the methods 

of Weir and Cockerham (1984). To test the hypothesis of random mating in each field, 

an exact test of Hardy-Weinberg equilibrium was performed on each locus in each 

field using a Markov chain with 1,000,000 steps and 5,000 de-memorization steps.  

Both FIS and FST estimate population differentiation or deviation. FIS estimates 

the deviation of a population from random mating, thereby estimating the amount of 

inbreeding in the population (Goodwin 1997; Balloux et al. 2003). FST estimates the 

deviation of populations (or subpopulations) from each other, and may be used to 

describe either a pairwise comparison (eg, between two fields, or between two mating 

types within a field), or it may be reported for a single population. In the former case, 

FST estimates the differentiation between the two populations (or subpopulations). In 

the latter case, it can be interpreted as the proportion of the total variation in a 

population which is accounted for by variation among different subpopulations (Hartl 

and Clark 1997). In this study, the three fields are subpopulations of P. capsici within 
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the New York population. 

 

Results 

Isolate collection, mating type, and sensitivity to mefenoxam in New York. 

In 2006 and 2007, 262 isolates of P. capsici were recovered from symptomatic 

summer squash, pumpkin, pepper, tomato, winter squash, and eggplant, confirmed 

with P. capsici-specific PCR primers, and characterized with respect to mating type 

and mefenoxam sensitivity. The number of isolates recovered per growing region 

ranged from 19 to 136, and the number of fields from which isolates were recovered in 

each region ranged from two to 13 (Table 3.2). Of the 28 fields sampled, 10 or more 

isolates were recovered from 10 fields, and both mating types (A1 and A2) were found 

in five of these fields. Isolates of both mating types were recovered from each growing 

region. All of the isolates recovered from central and western New York were 

sensitive to mefenoxam, while mefenoxam resistance was widespread in the Capital 

District and on Long Island (Table 3.2). In the Capital District, mefenoxam-resistant 

isolates were recovered from all but two fields, and 63% of the isolates collected in 

this region were resistant to mefenoxam. In Long Island, only six of the 13 fields 

sampled contained mefenoxam-resistant isolates, resulting in 25% of the recovered 

isolates being either intermediately or fully resistant to mefenoxam. Detailed 

information about all fields sampled in 2006 and 2007 and the mating type and 

mefenoxam sensitivity of isolates collected in these fields is presented in Appendix 4. 
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Table 3.2 Summary of mating type and mefenoxam sensitivity of isolates of 

Phytophthora capsici collected from different growing regions of New York in 2006 

and 2007. 

 Total 

Isolates Fields
b
 

Mating Type  Mefenoxam Sensitivity
c
 

Region
a
 A1 A2   S I R 

Western NY 37 2 9 28  37 0 0 

Central NY 19 4 3 16  19 0 0 

Capital District 70 9 38 32  26 0 44 

Long Island 136 13 81 55   102 2 32 

All of NY 262 28 131 131  184 2 76 
a
 Growing region in New York from which the isolate was collected. 

b
 Number of fields from which isolates were recovered. 

c
 S = sensitive, I = intermediately sensitive, and R = resistant to the fungicide mefenoxam. 

 

The three fields selected for analysis with microsatellite markers (WNY, CD, 

and LI) were representative of the growing regions in which they were located, in that 

both mating types were recovered from each field and only mefenoxam sensitive 

isolates were recovered from field WNY. In fields LI and CD, 39% and 43%, 

respectively, of the isolates collected were either intermediately or fully resistant to 

mefenoxam (Table 3.3). In fields CD and LI, ratios of A1 to A2 isolates were not 

significantly different from a 1:1 ratio, but the ratio of A1 to A2 isolates collected in 

field WNY did differ significantly from 1:1 at P = 0.001 (χ
2
 = 11.11, df = 1). When 

data were clone-corrected, the ratio of A1 to A2 isolates did not differ significantly 

from 1:1 in any of the three fields, but this difference may be due to the reduction in 

sample size caused by clone correction. 
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Table 3.3 Mating type and sensitivity to mefenoxam for Phytophthora capsici isolates 

collected in 2007 from three fields in New York. Isolates from these three fields were 

further characterized using five microsatellite markers. 

 Total 

Isolates 

Mating Type  Mefenoxam Sensitivity
b
 

Field
a
 A1 A2   S I R 

WNY 36 8 28  36 0 0 

CD 23 9 14  13 0 10 

LI 44 20 24   27 1 16 
a
 Field in New York from which the isolate was collected; field WNY was located in western 

New York, field CD was located in the Capital District, and field LI was located on Long 
Island. 
b
 S = sensitive, I = intermediately sensitive, and R = resistant to the fungicide mefenoxam. 

 

Microsatellite analysis of population structure in three fields. One or two 

alleles were amplified at each of the five microsatellite loci in all 103 isolates studied. 

Across all fields, three to eight alleles were observed at each microsatellite locus, but 

one or two alleles tended to predominate at each locus in each field. Twelve alleles 

were observed in only one field, and only five alleles were observed in all three fields. 

In fields WNY, CD and LI, one to five, three to five, or two to four alleles, 

respectively, were observed at each locus. Except for loci TTC5, CTT16 and AAG16 

in field WNY, all loci were polymorphic in all fields (Table 3.4).  
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Table 3.4 Allele sizes and frequencies at five microsatellite loci in Phytophthora 

capsici isolates collected from three fields in New York in 2007. 

    Allele frequencies
b
 

Locus Size
a
 WNY CD LI 

AC11 232 0.00 0.02 0.00 

 239 0.00 0.09 0.57 

 241 0.68 0.89 0.36 

 243 0.26 0.00 0.00 

 259 0.06 0.00 0.07 

     

TTC5 434 1.00 0.72 0.83 

 440 0.00 0.22 0.17 

 446 0.00 0.07 0.00 

     

CTT16 307 0.00 0.70 0.86 

 310 0.00 0.00 0.07 

 326 1.00 0.24 0.07 

 335 0.00 0.04 0.00 

 338 0.00 0.02 0.00 

     

AAG16 274 0.00 0.70 0.88 

 277 0.00 0.00 0.07 

 291 1.00 0.24 0.06 

 299 0.00 0.04 0.00 

 302 0.00 0.02 0.00 

     

TTC18 359 0.03 0.00 0.52 

 371 0.00 0.00 0.07 

 374 0.01 0.02 0.00 

 377 0.44 0.41 0.00 

 380 0.14 0.15 0.34 

 383 0.38 0.26 0.00 

 386 0.00 0.15 0.00 

  389 0.00 0.00 0.07 
a
 Allele sizes in base pairs. 

b
 Allele frequencies among isolates collected in each of three fields in New York; field WNY 

was located in western New York, field CD was located in the Capital District, and field LI 

was located on Long Island. 
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Genotypes were distinguished by mating type of each isolate and the alleles 

observed at the five microsatellite loci. In fields LI, CD and WNY 6, 20, and 12 

genotypes, respectively, were identified, resulting in 14%, 87%, and 33%, 

respectively, of the recovered isolates in these fields having unique genotypes. Based 

only on the five microsatellite loci, 14%, 83%, and 28% of isolates in fields LI, CD, 

and WNY, respectively, had unique genotypes. Individual genotypes were designated 

by the field name (CD, LI or WNY) followed by a number. Some genotypes (CD-3 

and LI-1; CD-8 and CD-9; WNY-8 and WNY-9) were only distinguishable by mating 

type (Table 3.5). In field CD, each genotype was represented by only one or two 

recovered isolates, while in fields WNY and LI, up to 11 and 15 isolates, respectively, 

represented a single genotype. Only one genotype (WNY-1) was found in more than a 

single field (fields WNY and CD). In field WNY, where the relative collection 

location of each isolate was noted, multiple genotypes were frequently recovered from 

the same sampling site in the field, and most genotypes were recovered from multiple 

sampling sites (Figure 3.1). In addition, on two occasions, two different genotypes 

were isolated from different lesions on the same plant (WNY-5 and WNY-6; and 

WNY-3 and WNY-5, respectively). 
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Table 3.5 Genotypes of Phytophthora capsici isolates collected from three fields in 

New York and distinguished by mating type and allele size (in base pairs) at five 

microsatellite loci. 
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  # Isolatesa       Microsatellite locusb 

Genotype WNY CD LI  MTc  AC11 TTC5 CTT16 AAG16 TTC18 

CD-1 0 1 0  A2  232/241 434/434 307/326 274/291 377/377 

CD-2 0 1 0  A2  232/241 434/434 326/326 291/291 377/383 

CD-3 0 1 0  A1  239/239 434/434 307/307 274/274 380/380 

LI-1 0 0 15  A2  239/239 434/434 307/307 274/274 380/380 

CD-4 0 1 0  A2  239/239 434/446 307/307 274/274 383/383 

LI-2 0 0 5  A1  239/241 434/434 307/307 274/274 359/359 

LI-3 0 0 15  A1  239/241 434/440 307/307 274/274 359/359 

CD-5 0 1 0  A1  239/241 434/440 307/307 274/274 380/380 

CD-6 0 1 0  A1  241/241 434/434 307/307 274/274 383/383 

CD-7 0 2 0  A1  241/241 434/434 307/307 274/274 386/386 

CD-8 0 1 0  A1  241/241 434/434 307/326 274/291 377/377 

CD-9 0 1 0  A2  241/241 434/434 307/326 274/291 377/377 

CD-10 0 1 0  A2  241/241 434/434 307/326 274/291 383/383 

LI-4 0 0 3  A2  241/241 434/434 310/310 277/277 371/371 

WNY-1 8 1 0  A2  241/241 434/434 326/326 291/291 377/377 

WNY-2 1 0 0  A1  241/241 434/434 326/326 291/291 377/377 

WNY-3 1 0 0  A2  241/241 434/434 326/326 291/291 377/380 

WNY-4 1 0 0  A2  241/241 434/434 326/326 291/291 377/383 

WNY-5 11 0 0  A2  241/241 434/434 326/326 291/291 383/383 

CD-11 0 1 0  A2  241/241 434/434 326/335 291/299 374/380 

CD-12 0 2 0  A1  241/241 434/440 307/307 274/274 377/377 

CD-13 0 1 0  A2  241/241 434/440 307/307 274/274 380/383 

CD-14 0 1 0  A1  241/241 434/440 307/307 274/274 383/383 

CD-15 0 2 0  A2  241/241 434/440 307/326 274/291 377/377 

CD-16 0 1 0  A2  241/241 434/440 307/335 274/299 377/377 

CD-17 0 1 0  A2  241/241 434/440 307/338 274/302 380/386 

CD-18 0 1 0  A2  241/241 434/446 307/307 274/274 386/386 

CD-19 0 1 0  A2  241/241 440/446 307/307 274/274 383/383 

WNY-6 1 0 0  A2  241/243 434/434 326/326 291/291 374/380 

LI-5 0 0 5  A2  241/259 434/434 307/326 274/291 359/389 

WNY-7 1 0 0  A2  241/259 434/434 326/326 291/291 377/377 

WNY-8 1 0 0  A1  241/259 434/434 326/326 291/291 380/380 

WNY-9 2 0 0  A2  241/259 434/434 326/326 291/291 380/380 

LI-6 0 0 1  A2  241/259 434/440 307/326 274/274 359/389 

WNY-10 2 0 0  A1  243/243 434/434 326/326 291/291 359/380 

WNY-11 3 0 0  A2  243/243 434/434 326/326 291/291 377/377 

WNY-12 4 0 0   A1   243/243 434/434 326/326 291/291 377/383 
a Number of isolates of each genotype collected from three fields in Western New York (WNY), the 

Capital District (CD), or Long Island (LI). 
bAllele sizes in base pairs observed at each of five microsatellite loci. 
c Mating type. 
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In field LI, observed levels of heterozygosity differed significantly from those 

expected under Hardy-Weinberg equilibrium at four of the five loci, while observed 

and expected heterozygosity were significantly different at only one locus in field CD. 

Because only a single allele was observed at three of the five loci in field WNY, 

observed and expected heterozygosity could only be calculated for two loci in this 

field, but observed heterozygosity differed significantly from expected heterozygosity 

at both of these polymorphic loci (Table 3.6). All reported Psex probabilities were 

calculated for the first re-encounter of a genotype, and ranges were 0.02-0.97, 0.03-

0.17, and 0.00-0.84 in fields WNY, CD, and LI, respectively. Psex was less than 0.05 in 

only one of six multi-isolate genotypes in field WNY, and in only one of four, and two 

of five multi-isolate genotypes in fields CD and LI, respectively. When the same five-

locus genotype was identified in more than one isolate, the number of isolates 

recovered per genotype ranged from 2 to 11 in field WNY, and from 3 to 15 in field 

LI. Only one or two isolates with the same genotype were recovered in field CD. For 

some genotypes in field LI (LI-1 and LI-3), Psex values fell below 0.05 by the third re-

encounter of an isolate, while this occurred only after five re-encounters for genotype 

WNY-5, and after seven re-encounters for WNY-1/WNY-2, which had identical 

microsatellite genotypes, but different mating types. 
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Table 3.6 Exact test of Hardy-Weinberg equilibrium for each of five microsatellite 

loci in Phytophthora capsici isolates collected from three fields in New York in 2007. 

Field and locus N
a
 Ho

b
 HE

c
 P

d
 SD

e
 

WNY      

 AC11 36 0.14 0.47 0.00000 0.00000 

 TTC5
f
 36 NA NA NA NA 

 CTT16
f
 36 NA NA NA NA 

 AAG16
f
 36 NA NA NA NA 

 TTC18 36 0.25 0.65 0.00000 0.00000 

CD      

 AC11 23 0.13 0.20 0.21277 0.00042 

 TTC5 23 0.52 0.44 0.62415 0.00052 

 CTT16 23 0.39 0.47 0.5926 0.00045 

 AAG16 23 0.39 0.47 0.59644 0.00054 

 TTC18 23 0.17 0.73 0.00000 0.00000 

LI      

 AC11 44 0.59 0.55 0.00815 0.00010 

 TTC5 44 0.34 0.29 0.32181 0.00045 

 CTT16 44 0.14 0.25 0.00001 0.00000 

 AAG16 44 0.11 0.23 0.00012 0.00001 

  TTC18 44 0.14 0.61 0.00000 0.00000 
a
 Number of isolates. 

b
 Observed heterozygosity at each locus. 

c
 Expected heterozygosity at each locus under Hardy-Weinberg equilibrium. 

d
 P-value for the exact test of Hardy-Weinberg equilibrium using a Markov chain with 

1,000,000 steps. 
e
 Standard deviation 

f
 Because only a single allele was observed at each of these loci in field WNY, no calculation 
of observed and expected heterozygosity was performed. 

According to Wright, values for fixation index (FST) less than 0.05 are 

consistent with low, but still potentially important, levels of genetic differentiation 

between populations, or among subpopulations within a larger population. Values 

between 0.15 and 0.25 suggest moderately great differentiation, and values exceeding 

0.25 indicate very great levels of differentiation (Wright 1978; Balloux and Lugon-

Moulin 2002). Based on these guidelines, pairwise comparisons between each of the 

three fields indicated high levels of differentiation between fields (Table 3.7). The 

state-wide population of P. capsici was also highly differentiated, with an FST value of 
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0.459. In fields WNY and LI, isolates of the A1 and A2 mating types were highly 

differentiated (FST = 0.285, P = 0.001 and FST = 0.329, P = 0.000, respectively), while 

A1 and A2 populations in field CD were less differentiated (FST = 0.088, P = 0.040). 

According to Brown (1979), a value for FIS between 0 and 0.3 is characteristic of an 

outcrossing population, while FIS > 0.9 is characteristic of an inbreeding population. 

Intermediate values for FIS suggest that both outcrossing and inbreeding occur in a 

population (Goodwin 1997). In fields WNY, CD and LI, fixation indices (FIS) 

calculated from an average of all loci were 0.656 (P<0.000), 0.308 (P=0.002) and 

0.315 (P=0.001), respectively. All presented data was calculated without clone 

correction. Results calculated from clone-corrected data were similar, except in some 

cases for field LI, where the population size was drastically reduced by clone 

correction (from N=44 to N=6), rendering these differences suspect. 

 

Table 3.7 Pairwise comparisons between populations of Phytophthora capsici 

collected in three different fields in New York. Differentiation is estimated by FST 

values calculated based on observed alleles at five microsatellite loci. 

Pairs of Fields FST values
a
 

WNY v. LI 0.586 

WNY v. CD 0.428 

CD v. LI 0.224 
a
 FST values calculated with 1000 permutations; p<0.00000. 

 

Discussion 

A successful integrated management strategy for Phytophthora blight in New 

York requires both knowledge of the effectiveness of various management strategies, 

and also a better understanding of the population of P. capsici affecting New York‟s 

growers. The prevalence of mefenoxam-resistant isolates in Long Island and the 

Capital District means that mefenoxam is no longer an effective management tool for 

P. capsici in these regions. This is a significant finding, because mefenoxam had 
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previously been an important component of Phytophthora blight management on some 

crops in the Capital District. The fact that no resistant isolates were recovered from 

central or western New York indicates that mefenoxam resistance, if present, is not as 

widespread in these regions as it is in the Capital District and Long Island. Hausbeck 

and Lamour (2004) previously reported the recovery of mefenoxam-resistant isolates 

of P. capsici from a single field in upstate New York, but not from a field on Long 

Island.  

Based on observations in Michigan (Lamour and Hausbeck 2002), asexual 

propagules of P. capsici should not be able to survive the winter in New York, and our 

observations support this hypothesis (unpublished, Camp, Dillard, Smart). On many 

farms in New York, Phytophthora blight is a recurring problem from year to year 

(even after rotation to non-susceptible hosts), thus oospores are a likely source of 

inoculum. These oospores could not be produced without sexual reproduction and the 

presence of both mating types in close proximity (Ristaino and Johnston 1999). For 

this reason, the presence of both mating types in the same field has been interpreted as 

evidence for sexual reproduction in heterothallic oomycetes (Lamour and Hausbeck 

2000; Widmark et al. 2007), although it does not prove that sexual reproduction is 

happening (Fry et al. 1992). Therefore, the frequent recovery of both A1 and A2 

isolates of P. capsici from the same field in New York supports the hypothesis that 

sexual reproduction is occurring in these populations. In fields LI and CD, A1 and A2 

isolates were recovered in a 1:1 ratio, providing additional evidence for both sexual 

reproduction and random mating in these fields (Fry et al. 1992; Liu et al. 1996; 

Milgroom 1996; Lamour and Hausbeck 2000; Lamour and Hausbeck 2003). The 

failure to recover both mating types from some fields in this study may be an artifact 

of small sample size, and does not rule out the possibility of sexual reproduction in 

those fields.  
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The history of field WNY is consistent with the hypothesis of sexual 

reproduction resulting in oospores as the primary inoculum at the beginning of each 

growing season in New York. In 2004, the grower reported problems with 

Phytophthora blight on eggplant planted in field WNY. A susceptible host crop was 

not planted in the field again until 2007, when symptomatic summer squash were 

collected for this study in late June. Assuming that asexual propagules did not survive 

over three winters, the 2007 epidemic in this field was probably started by germinating 

oospores. A study of the mapped recovery of P. infestans isolates from a single field in 

Sweden almost always recovered a particular genotype from only a single sampling 

site in the field, and this was interpreted as evidence for oospores as the primary 

inoculum in the epidemic (Widmark et al. 2007). If oospores were the primary 

inoculum in field WNY, and since P. capsici is not wind-dispersed, there are several 

potential explanations for the recovery of the same genotype from multiple sampling 

sites in field WNY. Movement of P. capsici inoculum in water across long distances 

within rows is well-documented (Ristaino et al. 1994; Café-Filho and Duniway 1995), 

while movement in water across rows may be somewhat less common (Café-Filho and 

Duniway 1995), depending on field-specific drainage patterns and other water 

movement in the field. Field WNY received 2.18 cm and 3.68 cm of rain nine and 11 

days, respectively, prior to the sampling date, and the grower had also irrigated 

periodically prior to sampling. These water events could account for movement of 

asexual propagules within the field. In addition, harvesting had already begun in this 

field, and workers had been moving throughout the field as they “spot-rogued” 

infected plants. These activities could have spread inoculum in soil on shoes, or as 

spores clinging to clothing. Furthermore, movement of animals through the field (eg, 

deer) could have spread asexual propagules throughout the field. It is also noteworthy 

that only two of the five microsatellite loci used in this study were polymorphic in the 



 

74 

field WNY population, thereby decreasing our ability to differentiate clones. 

Interestingly, the genotypes which were recovered from the greatest number of 

sampling sites in this field (WNY-1/WNY-2 and WNY-5) were also the most likely to 

contain multiple clonal lineages, based on calculated Psex values, and these values did 

not drop below 0.05 until the seventh and fifth re-encounter of the genotype, 

respectively. 

The number of unique genotypes recovered in field CD and the fact that this 

population was in Hardy-Weinberg equilibrium even late in the season is consistent 

with high levels of sexual reproduction in this field (Burdon and Roelfs 1985; Tooley 

et al. 1985; Goodwin et al. 1992; Sujkowski et al. 1994; Ivors et al. 2006).  However, 

relatively low proportions of unique genotypes were recovered in fields WNY and LI, 

and loci were generally not in Hardy-Weinberg equilibrium, suggesting clonality and 

rare outcrossing (Balloux et al. 2003; Ivors et al. 2006). The moderate to high 

differentiation between A1 and A2 isolates collected in all three fields is also more 

consistent with a non-randomly mating population where asexual reproduction is very 

important, and sexual reproduction is less important (Fry et al. 1991; Fry et al. 1992; 

Sujkowski et al. 1994; Milgroom 1996). Although clonal populations of P. capsici 

have been reported in Brazil (Oudemans and Coffey 1991; Mchau and Coffey 1995) 

and coastal Peru (Hurtado-Gonzáles et al. 2008), a strictly clonal population of P. 

capsici could not survive the winter in New York. Therefore, the occurrence of what 

appears to be rare outcrossing in fields WNY and LI probably has another explanation.  

These observations may be explained, first, by the importance of asexual 

reproduction in the life cycle of P. capsici. After sexual oospores germinate to initiate 

an epidemic, secondary inoculum is produced asexually, allowing for the rapid spread 

of P. capsici throughout a field during an epidemic (Zentmyer and Erwin 1970; 

Ristaino 1991). Subsequent selection for a relatively small number of genotypes which 
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dominate a field population later in the epidemic has been seen in Michigan, giving 

the false impression of a less-diverse resident population when numerous isolates are 

collected with identical genotypes (Lamour and Hausbeck 2002). Clone correction (or 

including only one isolate of each genotype in the analysis) can remove the effects of 

clonal reproduction from consideration, but this decreases the population size, making 

it more difficult to reject the null hypothesis of random mating (Lenski 1993; Maynard 

Smith et al. 1993; Milgroom 1996). In some studies the choice to clone correct or not 

to clone correct data can greatly influence the results (Lenski 1993), but this was not 

the case in our study.  

Because fields CD and LI were sampled relatively late in the growing season 

(September and November, respectively), selection and asexual propagation could 

have affected the populations in these fields. However, meaningful asexual 

reproduction and selection could also have occurred prior to the sampling of field 

WNY in late June. Ironically, more unique genotypes were recovered from field CD 

than from field WNY, even though the former was sampled later in the season. 

Perhaps the diversity and structure of the P. capsici population in field CD (or in the 

Capital District) differs from P. capsici populations in other parts of New York. 

Similar findings were reported in a study of the Mexican population of P. infestans, 

where isolates collected in the northwestern part of the country represented only a few 

genotypes, while almost all isolates collected in central Mexico had unique genotypes 

(Goodwin et al. 1992). However, it should be noted that field CD is located along the 

Mohawk River and floods nearly every year. The high level of diversity observed in 

this field could be a result of inoculum from upstream farms being deposited in the 

field during these flooding events, resulting in inflated estimates of genetic diversity.  

Apparent deviations from a population structure consistent with frequent 

sexual reproduction could also be related to sampling strategy. In this study, all 



 

76 

samples were collected from infected plants, rather than from soil. Studies in 

Michigan have also sampled infected plants (Lamour and Hausbeck 2000; Lamour and 

Hausbeck 2001a; Lamour and Hausbeck 2001b; Lamour and Hausbeck 2002; Lamour 

and Hausbeck 2003), but surveys of P. sojae and P. capsici in Ohio either performed 

enzyme-linked immunosorbent assays (ELISA) directly on sampled soil, or baited the 

pathogen from the soil (Schmitthenner, A. F. et al. 1994; Miller, S. A., Madden, L. V., 

and Schmitthenner, A. F. 1997; Dorrance et al. 2003). Sampling soil instead of 

infected plants might be expected to result in recovery of a larger number of unique 

genotypes, since recovered isolates are most likely oospore offspring, and do not have 

to successfully infect the host plant in the field, a pre-condition which could exert pre-

sampling selective pressure. In Michigan, highly diverse populations were consistently 

recovered, in spite of sampling only symptomatic plants, suggesting that this sampling 

method does not always lead to a severe underestimation of diversity (Lamour and 

Hausbeck 2000; Lamour and Hausbeck 2001a; Lamour and Hausbeck 2001b; Lamour 

and Hausbeck 2002; Lamour and Hausbeck 2003). 

It is difficult to compare the levels of diversity observed in Michigan‟s 

population of P. capsici with those observed in this study, because Michigan studies 

have used a different method (AFLPs) to characterize populations of P. capsici. If 

anything, this study may have underestimated the genetic diversity in NY, since our 

technique allows two isolates to be definitively distinguished as different genotypes, 

while isolates with the same six-locus genotype are not necessarily genetically 

identical. The Psex values calculated in each field support this conclusion, because for 

most multi-isolate genotypes they exceed 0.05 (Arnaud-Haond et al. 2005).  

Nevertheless, the markers used in this study were sufficient to clearly 

characterize fields WNY, CD and LI as highly differentiated, based on the high FST 

values for pairwise comparisons between fields, as well as the high proportion of 
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variation accounted for by differences among fields (population-wide FST). This 

supports the hypothesis that populations of P. capsici in New York are regionally 

distinct and that gene flow between populations is minimal, as do the facts that (i) 

nearly half of observed alleles at the five microsatellite loci were found only in a 

single field, and (ii) the same six-locus genotype was only recovered from two 

different fields on one occasion. The departures from expected levels of 

heterozygosity under random mating (as indicated by higher FIS values and deviation 

from Hardy-Weinberg equilibrium) in each field are also consistent with low gene 

flow between fields. Brown (1979) predicted FIS values below 0.3 for outcrossing 

populations, and outcrossing (as opposed to self-fertilization) is expected to be 

common in P. capsici, both because it is heterothallic (Goodwin 1997), and also based 

on previous work (Lamour and Hausbeck 2001b). However, a population into which 

little or no new genetic material were moving would increasingly be characterized by 

matings between relatives, resulting in higher levels of inbreeding, even if self-

fertilization were not occurring (Goodwin 1997). This is especially likely if 

subpopulations were founded by small numbers of individuals. If gene flow is 

restricted among fields in New York, then it is likely that a small number of genotypes 

founded each population of P. capsici and that distinct populations have been 

substantially influenced by the characteristics of the founding individuals. Obligate 

sexual reproduction could create new combinations of alleles present in the founding 

population (and alleles which arose through mutation), but different populations would 

grow less similar, over time. This is consistent with observations in Michigan of 

differentiation between populations of P. capsici collected from different fields, but a 

lack of differentiation between populations collected in the same field during different 

years (Lamour and Hausbeck 2001a; Lamour and Hausbeck 2001b; Lamour and 

Hausbeck 2003). The population in a field remains very similar over multiple years, 
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since gene flow among fields is very limited. 

Very low levels of gene flow among fields separated by large distances are 

consistent with known dispersal mechanisms for P. capsici, which include movement 

of water, soil, and plant material, but not aerial dispersal (Ristaino et al. 1994; Café-

Filho and Duniway 1995; Lamour and Hausbeck 2002; Hausbeck and Lamour 2004; 

Roberts et al. 2005). Human activity is the most likely explanation for long-distance 

spread of P. capsici via infected plants and infested soil, and long distance spread via 

water is probably limited to contiguous watersheds. The recovery of genotype WNY-1 

from both western New York and the Capital District may be an example of the 

relatively rare movement of a genotype between distant fields, or the isolate recovered 

in field CD may not actually be a clone of those recovered in field WNY with the 

same six-locus genotype. The Psex values calculated for both fields and discussed 

above support the latter hypothesis. Regardless, these results are consistent with the 

hypothesis that the movement of P. capsici inoculum among distant fields is not 

inevitable, and that modifications in human behavior could have an important impact 

on the spread of this destructive pathogen in New York. Therefore, culled fruit and 

potentially-infested soil should never be transported between vegetable fields. Steps 

should also be taken to prevent the contamination of irrigation sources, and to use only 

uninfested water to irrigate susceptible crops. If mefenoxam resistance is not yet 

present in central and western New York, then preventing the introduction of P. 

capsici inoculum from other parts of the state could be especially important as a 

means of prolonging the efficacy of this fungicide in central and western New York. 

Furthermore, we are not aware of any reports of Phytophthora blight in the Southern 

Tier (south central region) of New York, and preventing the introduction of this 

devastating pathogen onto farms in this region is certainly desirable.  

Characterization of additional P. capsici isolates from around New York could 
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provide additional evidence for these hypotheses and improved management 

recommendations. For example, it is not known how geographically separated two 

New York fields must be, in order for their resident P. capsici populations to be 

different. In Michigan, even fields in close proximity to each other contained 

genetically isolated populations of P. capsici (Lamour and Hausbeck 2001b; Lamour 

and Hausbeck 2002). Watersheds and drainage patterns may also play an important 

role in determining which populations of P. capsici are distinct in New York. This 

study does not address temporal substructuring of P. capsici populations in the state, 

and knowledge of the similarity between populations from the same field in different 

years could provide additional evidence for the hypothesis that oospores are the source 

of primary inoculum for P. capsici epidemics in New York. 

This study provides the first evidence for geographic sub-structuring of the P. 

capsici population in New York, supporting the hypothesis that long-distance spread 

of P. capsici between growing regions in the state is rare, and possibly preventable. 

These data confirmed somewhat less diversity and recombination in the New York P. 

capsici population than had been anticipated, although sample size and timing, the 

importance of asexual reproduction in the life cycle of P. capsici, and the markers 

used to characterize the population may have impacted these observations. The 

frequent recovery of both mating types from the same field provides additional 

evidence that sexual reproduction is occurring in New York. Also, the failure to 

recover mefenoxam-resistant isolates from western and central New York suggests 

that this fungicide may still be effective in some regions and fields in the state, at least 

for the time being. Mefenoxam is no longer an effective management tool for P. 

capsici in the Capital District region, or on Long Island, where mefenoxam-resistance 

is already widespread. The development of additional polymorphic microsatellite 

markers could help to distinguish additional multilocus genotypes in New York‟s P. 



 

80 

capsici population. However, based on the high levels of differentiation observed 

among the three fields studied here, these five markers may also be useful in future 

investigations of population structure in additional New York fields. 
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APPENDIX ONE 

 
*
EFFICACY OF MUSCODOR ALBUS AND THE FUNGICIDE EF400 FOR 

CONTROL OF PHYTOPHTHORA BLIGHT ON WINTER SQUASH, 2007  
 

 On 29 Jun, a field at the Agricultural Experiment Station in Geneva, NY with 

no history of Phytophthora blight was infested with a mefenoxam-sensitive isolate of 

P. capsici at a rate of 1L of colonized substrate (vermiculite and 20% V8 broth in a 

2:1 ratio) per 20 feet of row. One week later, ten 3.5-week-old butternut squash 

seedlings per treatment plot were transplanted into bare ground on a one foot spacing 

between plants. The six treatments included: the biofumigant fungus Muscodor albus 

(AgraQuest, Inc.) formulated on rye grain applied at a rate of 0.55, 1.9, or 3.75 g/L 

soil, the fungicide EF400 (USAgriTech, Inc.), Ridomil Gold EC (Syngenta Crop 

Protection, Inc.), or with no additional treatment (pathogen only). Both P. capsici and 

M. albus were incorporated into the soil on the same date to a depth of approximately 

four inches, using a rototiller. EF400 was applied as a foliar spray (23 fl oz/A) eleven 

days after transplanting, then applied weekly for the following 3 weeks for a total of 

four sprays using a CO2 pressurized backpack sprayer at 40psi delivering 40 gal/A 

through two flat fan nozzles 19 in. apart. Ridomil Gold EC was applied at 

transplanting as a soil drench (1 pt/A) directed at the crown of the plant, using a CO2 

pressurized backpack sprayer at 40psi delivering 40 gal/A. Each treatment was 

replicated four times in a randomized complete block design. Starting two weeks after 

transplanting, each plant was rated weekly on a scale of 0 (healthy) to 5 (dead). All 

fruit were harvested 27 Sep.  

 Because of a dry growing season (total monthly rainfall (in.) of 2.62, 1.50 and 

2.96 for Jul, Aug, and Sep, respectively), plots were irrigated approximately weekly 

using drip tape in order to produce relatively high disease pressure. None of the 

treatments resulted in yields or incidence that were significantly different from the 

pathogen-only control, although yields were highest and incidence was lowest for 

plots treated with Ridomil Gold EC. On 20 Jun, there were no significant differences 

in incidence of P. capsici between the six treatments. On 6 Aug, M. albus applied at 

0.55 and 1.9 g/L soil and EF400 resulted in significantly higher disease incidence 

compared to Ridomil Gold EC. On 27 Aug, there were no significant differences in 

disease incidence, with the exception of M. albus applied at 1.9g/L soil, which was 

significantly higher than Ridomil Gold EC. No phytotoxicity was observed (Table 

A1.1). 

 

                                                
* Camp, A.R., Lange, H.W., Dillard, H.R., and Smart, C.D. 2008. Efficacy of Muscodor albus and the 

fungicide EF400 for control of Phytophthora blight on winter squash, 2007. Plant Disease Management 

Reports (online). Report 2:V132. DOI: 10.1094/PDMR02. The American Phytopathological Society, 

St. Paul, MN. 
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Table A1.1 Yield and incidence of Phytophthora blight on butternut squash grown in 

soil infested with Phytophthora capsici and treated with Muscodor albus at three rates 

(3.75 g/L, 1.9 g/L, or 0.55 g/L), EF400, Ridomil Gold EC, or no curative treatment. 
Treatment Marketable Yield  Total Yield  Incidencea 

  Fruit wt 

(lb)b 

Fruit 

no.c  

Fruit wt 

(lb)b 

Fruit 

noc  20 Jun 6 Aug 27 Aug 

M. albus 3.75g/L 11.40abd   3.75b  12.17ab   4.50b  1.50a 3.50abc 5.00ab 

M. albus 1.9g/L   9.66ab   4.00ab  11.52ab   6.25ab  2.50a 5.50c 6.50b 

M. albus 0.55g/L   8.00b   3.75b  11.71b   6.50b  3.25a 4.50c 4.75ab 

EF400  17.60ab   6.50ab  22.14ab   8.75ab  1.75a 4.25c 4.75ab 

Pathogen only 11.90ab   5.50ab  14.57ab   8.25ab  1.25a 3.25abc 3.75ab 

Ridomil 24.10a 10.00a  25.68a 11.75a   0.50a 0.50ab 1.25a 
a
 Mean number of plants (out of 10) rated 1 to 5 (on a scale of 0 to 5). 

b
 Mean weight of fruit harvested per plot. 

c
 Mean number of fruit harvested per plot. 

d
 Column numbers followed by the same letter are not significantly different at P=0.05 

determined by Kruskal-Wallis one-way analysis of variance and Bonferroni-Dunn test. 
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APPENDIX TWO 

 
*
TOLERANCE OF HOT AND SWEET PEPPER LINES TO PHYTOPHTHORA 

BLIGHT, 2008 

 

Peppers were seeded in the greenhouse on 14 Apr and transplanted on 11 Jun 

into a field at the Agricultural Experiment Station in Geneva, NY on raised beds under 

black plastic at 13-in. spacing in a randomized complete block design. Red Knight, 

Revolution, Declaration, Paladin, and Aristotle were sweet peppers, while all other 

varieties were hot peppers.  Each experimental unit consisted of one plot of five 

plants, and there were three replications. Prior to laying the plastic, 400 lbs/A fertilizer 

(10-10-10) was broadcast on the field and plants were fertilized at transplant with 40 

lbs/A starter fertilizer (21-5-20). Plants were supplied with approximately 1 in. of 

water per week, as necessary, using drip tape under the plastic. Each plant was 

inoculated on three dates with a water suspension of zoospores from a New York 

isolate of Phytophthora capsici, applied with a hand-pump sprayer: on 6 Aug, 5,000 

zoospores at the crown of each plant; on 8 Sep, 500,000 zoospores at the crown of 

each plant; and on 26 Sep, 500,000 zoospores at the crown, and 500,000 zoospores on 

the canopy. The number of wilted and dead plants was counted two to three times per 

week. 

 The growing season was wet, with 3.45, 4.99, 4.16, and 2.24 in. of rain in Jun, 

Jul, Aug, and Sep, respectively. Because of a wet spot in the field and heavy rains in 

mid to late Jul, some peppers drowned before inoculation. Only plants which were 

healthy on the first inoculation date were rated. Most symptoms developed within the 

first few weeks after the 6 Aug inoculation, with some additional symptom 

development after the second and third inoculations. Later infections may have been 

limited by the woody crown tissue of the older plants (hence, the canopy inoculation 

on 26 Sep). Although tolerance has been reported for the commercial varieties 

Revolution and Declaration, disease severity was high on these varieties, possibly 

because of excessive moisture. By the end of the experiment, all HMX7675, Red 

Knight, Revolution, and Declaration plants were either wilted or dead. The Harris 

Moran pepper lines HPX4488, HPX4571, HPX4555, CM334, PI201234, and 

HPX4465 had the lowest mean AUDPC‟s. The results indicate that some lines have 

the potential to be very tolerant to infection by P. capsici. 
 

 

 

 

                                                
* Camp, A.R., Lange, H.W., Reiners, S., Dillard, H.R., and Smart, C.D. 2008. Tolerance of hot and 

sweet pepper lines to Phytophthora blight, 2008. Plant Disease Management Reports (online). Report 

3:V018. DOI: 10.10994/PDMR03. The American Phytopathological Society, St. Paul, MN. 
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Table A2.1 Incidence of Phytophthora blight on sweet and hot pepper varieties 

reported as area under the disease progress curve (AUDPC). 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
a
The area under the disease progress curve (AUDPC) was calculated for each variety based on 

the proportion of plants in a plot with symptoms (wilted or dead). Plots containing fewer than 

3 healthy plants at inoculation were not included. Means shown are the average among 2-3 

replications, depending on how many plants of each variety were healthy at inoculation.  
b
Means followed by the same letter are not significantly different from each other based on an 

ANOVA of the AUDPC using a General Linear Model (p<0.0001), and separated by a 

Fisher‟s protected LSD test. 

Variety Mean AUDPC
a
   Variety Mean AUDPC

a
 

HMX 7675 300.00 a
b
  HPX 4454 158.33 cdefghijk 

Red Knight 300.00 a  HPX 4491 140.00 defghijkl 

Revolution 290.00 ab  HPX 4447 133.33 defghijkl 

Declaration 280.00 abc  HPX 4550 110.00 efghijklm 

HPX 4565 280.00 abc  HPX 4540 106.67 efghijklm 

HPX 4476 275.00 abc  HPX 4541 100.00 efghijklm 

HPX 4452 270.00 abc  HPX 4458 100.00 efghijklm 

HPX 4569 270.00 abc  HPX 4539 100.00 efghijklm 

HPX 4419 262.50 abcd  HPX 4405 100.00 efghijklm 

HPX 4400 255.00 abcd  HPX 4466 100.00 efghijklm 

HPX 4403 250.00 abcd  HPX 4475 97.50 efghijklm 

HPX 4453 245.00 abcd  HPX 4404 90.00 fghijklm 

Autlan 240.00 abcd  HPX 4480 90.00 fghijklm 

HPX 4473 240.00 abcd  HPX 4570 90.00 fghijklm 

HPX 4412 225.00 abcde  HPX 4548 80.00 ghijklm 

HPX 4446 220.00 abcde  Paladin 60.00 hijklm 

HMX 7652 217.50 abcdef  HPX 4494 60.00 hijklm 

HPX 4479 210.00 abcdef  HMX 7653 60.00 hijklm 

HMX 6667 210.00 abcdef  HPX 4420 60.00 hijklm 

HPX 4566 210.00 abcdef  HPX 4495 50.00 ijklm 

HPX 4554 200.00 abcdefg  Aristotle 40.00 jklm 

HPX 4414 195.00 abcdefg  HPX 4535 30.00 klm 

HPX 4563 195.00 abcdefg  HMX 5658 20.00 lm 

HPX 4461 180.00 abcdefgh  HPX 4556 20.00 lm 

HPX 4442 180.00 abcdefgh  HPX 4488   0.00 m 

HPX 4536 176.67 abcdefghi HPX 4571   0.00 m 

HPX 4415 173.33 abcdefghi HPX 4555   0.00 m 

HPX 4551 165.00 bcdefghij  CM334   0.00 m 

HPX 4397 163.33 bcdefghij  PI201234   0.00 m 

HPX 4418 160.00 cdefghij  HPX 4465   0.00 m 

HPX 4481 160.00 cdefghij       
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APPENDIX THREE 

 
*
TOLERANCE OF SUMMER AND WINTER SQUASH LINES TO 

PHYTOPHTHORA BLIGHT, 2008 

 

Summer squash were direct-seeded on 11 Jun into a field at the Agricultural 

Experiment Station in Geneva, NY under black plastic with 26-in. spacing, and winter 

squash were direct-seeded on 19 Jun on bare soil with 24-in. spacing. Both trials were 

arranged in randomized complete block designs with three replications, and each 

experimental unit consisted of one plot of five or six plants. Fertilizer (400 lbs/A 10-

10-10) was broadcast before seeding, and 40 lbs/A starter fertilizer (21-5-20) was 

applied to summer squash immediately prior to seeding. All plants were supplied with 

approximately 1 in. of water per week, as necessary, using drip tape. Because of 

germination problems and predation of young seedlings by birds, additional seed was 

germinated in the greenhouse in jiffy pots, and transplanted into the field, up to a 

month after the initial seeding date. Plants were inoculated on two dates (6 Aug and 3 

Sep) with two rates of a water suspension of zoospores (for summer squash, 5,000 and 

500,000 zoospores, respectively, and for winter squash, 5,000 and 54,000 zoospores, 

respectively) from a New York isolate of Phytophthora capsici, applied with a hand-

pump sprayer at the crown of each plant. On 8 Sep, 5.5 mL/ft
2
 of a mixture of V8 juice 

and vermiculite (with the same NY isolate of P. capsici growing in it) was evenly 

distributed on the soil surface throughout the winter squash field, especially around 

each developing fruit. Two to three times per week, the number of wilted and dead 

summer squash plants or the number of infected winter squash fruit was counted. 

 The growing season was wet, with 3.45, 4.99, 4.16, and 2.24 in. of rainfall in 

Jun, Jul, Aug, and Sep, respectively. Due to insect damage and germination failure, 

not all plants survived to inoculation. Symptom development in the summer squash 

was uneven, possibly caused by failure to accurately place the zoospores at the crown 

of the plants due to the size of the plants and density of the foliage at inoculation. 

There were few foliar symptoms (wilting) on the winter squash after the zoospore 

inoculations, but fruit infection was severe after inoculation with P. capsici in V8-

vermiculite. Disease tended to be more severe on the yellow summer squash (eg, 

Sunray, Cougar, Superpik, Multipik), than on the green zucchini (eg, Leopard, 

Spineless Beauty). Leopard and Spineless Beauty showed symptoms on the fruit (not 

rated) before the plants began to wilt. The Harris Moran summer squash lines 

(SSXP4508, SSXP4442, SSXP4509, SSXP4441, and SSXP4443) varied in their 

susceptibility to Phytophthora blight, but tolerance in any of the varieties is minimal, if 

it exists, and even the least susceptible varieties still died. There were no significant 

differences in fruit infection among winter squash varieties. 

                                                
* Camp, A.R., Lange, H.W., Reiners, S., Dillard, H.R., and Smart, C.D. 2008. Tolerance of summer and 

winter squash lines to Phytophthora blight, 2008. Plant Disease Management Reports (online). Report 

3:V022. DOI: 10.10994/PDMR03. The American Phytopathological Society, St. Paul, MN. 
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Table A3.1 Incidence of Phytophthora blight on summer and winter squash varieties 

reported as area under the disease progress curve (AUDPC). 

Squash type
a
 Variety 

Mean 

AUDPC
b
 

Summer Sunray 200.00 a
c
 

 Cougar 200.00 a 

 SSXP4508 200.00 a 

 Superpik 200.00 a 

 SSXP4510 186.67 ab 

 Jaguar 186.67 ab 

 SSXP4442 186.67 ab 

 Gold Rush 186.67 ab 

 Multipik 183.33 ab 

 Tigress 173.33 ab 

 Lioness 173.33 ab 

  Supersett 173.33 ab 

 SSXP4509 170.00 ab 

 Zucchini Elite 170.00 ab 

 CMVZ13 166.67 ab 

 Hurakan 160.00 ab 

 SSXP4441 155.56 ab 

 Linda 146.67 ab 

 Spineless Beauty 143.33 ab 

 SSXP4443 141.67 ab 

 Leopard 126.67 b 

Winter WSXP1030 196.88 a
d
 

 WSXP1031 183.33 a 

  Waltham 162.30 a 
a
 Summer squash were rated for incidence of plant symptoms (wilting or death), while winter 

squash were rated for incidence of fruit infection. 
b
 The area under the disease progress curve (AUDPC) was calculated for each variety based 

on the proportion of summer squash plants in a plot with symptoms (wilted or dead), or the 
proportion of infected winter squash fruit. All plots contained at least three healthy plants at 

inoculation, and only these plants were rated for disease. Means represent the average among 

3 replications, unless otherwise noted. 
c
 Means followed by the same letter are not significantly different from each other based on an 

ANOVA of the AUDPC using a General Linear Model (P=0.0726 and P=0.68 for summer and 

winter squash, respectively), and separated by a Waller-Duncan test.  
d 
Only two replications of variety WSXP1030 were included in the analysis because only one 

small fruit was produced in the third replicate (wet part of the field), and the fruit aborted 

shortly after inoculation. 
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APPENDIX FOUR 

 

ISOLATES OF PHYTOPHTHORA CAPSICI COLLECTED FROM NEW YORK IN 

2006 AND 2007 
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Table A4.1 Summary of Phytophthora capsici isolates collected from New York in 

2006 and 2007
a
. The crops from which isolations were made, mating type, and 

mefenoxam sensitivity is summarized for each field. 

# Isolates Location Crop A1 A2 S I R

23 SC (Field CD) pumpkin 9 14 13 0 10
1 GK pumpkin 0 1 0 0 1
2 GP pepper 1 1 0 0 2
4 GT tomato 4 0 0 0 4

10 BE eggplant 10 0 10 0 0

8 BS s. squash 8 0 0 0 8

8 BWS w. squash 0 8 0 0 8

1 BP pepper 0 1 1 0 0

13 0752- zucchini 6 7 2 0 11

70 All of Capital District 38 32 26 0 44

1 0664-1 (2006) pepper 1 0 1 0 0

10 A (2006) w. squash 0 10 10 0 0

6 B (2006) w. squash 0 6 6 0 0

2 0759- pumpkin 2 0 2 0 0

19 All of central New York 3 16 19 0 0

1 06120-1 (2006) pepper 1 0 1 0 0

36 field WNY s. squash 8 28 36 0 0

37 All of western New York 9 28 37 0 0

10 MMHA pumpkin 10 0 10 0 0

5 MM1 pepper 3 2 5 0 0

6 MM2 pepper 4 2 6 0 0

6 MMS2 unknown 4 2 4 1 1

7 MMH pumpkin 6 1 7 0 0

8 MML pumpkin 2 6 0 0 8

11 MMSK pumpkin 0 11 11 0 0

13 MMSN pepper 13 0 12 0 1

12 MMW cucurbit 5 7 12 0 0

44 MMZ (field LI) pumpkin 20 24 27 1 16

4 MMG pumpkin 4 0 0 0 4

7 MMR pumpkin 7 0 7 0 0

3 MMA pumpkin 3 0 1 0 2

136 All of Long Island 81 55 102 2 32

262 All of New York 131 131 184 2 76

Mating Type Mef. Sens.
b

 
a
 Isolates were collected in 2007, unless otherwise noted 

b
 Mefenoxam sensitivity: S = sensitive, I = intermediately sensitive, R = resistant 
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Table A4.2 Detailed list of all Phytophthora capsici isolates collected in New York State during 2006 and 2007. Isolations were 

made from surface disinfested symptomatic plant tissue on selective media. Single zoospore cultures were obtained from each 

isolate, and were tested for mefenoxam sensitivity and mating type. Date on which the plants were sampled from the field, host, 

and the region and county in which the fields were located, along with any other notes about the source of the isolates are included. 

Isolates that begin with the same few letters or numbers were collected from the same field (eg, 0752-, BE, BP, A, B, MMHA, 

MMZ), although isolates collected from western New York in 2007 have a slightly different naming scheme. Isolates are sorted by 

the region from which they were collected.  
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Isolate 

Mef. 

Sens.
a 

MT
b 

From 

Date 

Collected Region County Additional Notes 

0752-01A R A2 zucchini 7/24/07 Capital District Herkimer  

0752-02 S A2 zucchini 7/24/07 Capital District Herkimer  

0752-03 R A1 zucchini 7/24/07 Capital District Herkimer  

0752-04A R A2 zucchini 7/24/07 Capital District Herkimer  

0752-05A R A1 zucchini 7/24/07 Capital District Herkimer  

0752-06 R A1 zucchini 7/24/07 Capital District Herkimer  

0752-08A R A1 zucchini 7/24/07 Capital District Herkimer  

0752-09 R A1 zucchini 7/24/07 Capital District Herkimer  

0752-10 R A2 zucchini 7/24/07 Capital District Herkimer  

0752-12A R A2 zucchini 7/24/07 Capital District Herkimer  

0752-13 R A2 zucchini 7/24/07 Capital District Herkimer  

0752-14 R A2 zucchini 7/24/07 Capital District Herkimer  

0752-15 S A1 zucchini 7/24/07 Capital District Herkimer  

BE-01A S A1 eggplant ~9/25/07 Capital District Rensselaer  

BE-02A S A1 eggplant ~9/25/07 Capital District Rensselaer  

BE-03A S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 2, lesion 1, isolate 1 

BE-04A S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 2, lesion 1, isolate 2 

BE-05A S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 1 

BE-06A S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 2 

BE-07B S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 3, lesion 1, isolate 1 

BE-08A S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 3, lesion 1, isolate 2 

BE-09B S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 3, lesion 2, isolate 1 

BE-10B S A1 eggplant ~9/25/07 Capital District Rensselaer fruit 3, lesion 2, isolate 2 

BP-02A S A2 pepper ~9/25/07 Capital District Rensselaer  

BS-01A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit1, lesion 1, isolate 1 

BS-02A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 1, lesion 1, isolate 2 

BS-03A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 1, lesion 2 

BS-04A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 1, isolate 1 

BS-05A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 1, isolate 2 

BS-06A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 1 
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Sens. MT From 

Date 

Collected Region County Additional Notes 

BS-07A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 2 

BS-08A R A1 s. squash ~9/25/07 Capital District Rensselaer fruit 3, lesion 1 

BWS-01A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 1 

BWS-02A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 1 

BWS-03A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 2, isolate 2 

BWS-04B R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 3, isolate 1 

BWS-05A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 2, lesion 3, isolate 2 

BWS-06A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 3, lesion 1, isolate 1 

BWS-07B R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 3, lesion 1, isolate 2 

BWS-08A R A2 s. squash ~9/25/07 Capital District Rensselaer fruit 3, lesion 2 

GK-01A R A2 pumpkin ~9/25/07 Capital District Schenectady  

GP-05A R A2 pepper ~9/25/07 Capital District Schenectady  

GP-07A R A1 pepper ~9/25/07 Capital District Schenectady  

GT-01Ac R A1 tomato ~9/25/07 Capital District Schenectady  

GT-02Ac R A1 tomato ~9/25/07 Capital District Schenectady  

GT-03Ac R A1 tomato ~9/25/07 Capital District Schenectady  

GT-04Ac R A1 tomato ~9/25/07 Capital District Schenectady  

SC-02A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-03A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-04A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-05A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-06A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-07A R A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-08A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-09A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-10A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-11B R A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-12A R A2 pumpkin ~9/25/07 Capital District Schenectady  
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SC-13.1A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-13.2A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-14.1A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-14.2A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-15A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-17A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-18A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-19A S A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-20A R A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-21A R A1 pumpkin ~9/25/07 Capital District Schenectady  

SC-22A S A2 pumpkin ~9/25/07 Capital District Schenectady  

SC-23A S A2 pumpkin ~9/25/07 Capital District Schenectady  

0664-1 S A1 pepper 8/14/06 central New York Monroe  

0759-08 S A1 pumpkin 7/31/07 central New York Ontario  

0759-11 S A1 pumpkin 7/31/07 central New York Ontario  

A1-1.1 S A2 w. squash 9/18/06 central New York Ontario  

A1-2.1 S A2 w. squash 9/18/06 central New York Ontario  

A1-3.1 S A2 w. squash 9/18/06 central New York Ontario same plant as A1-3.2 & A1-3.3 

A1-3.2 S A2 w. squash 9/18/06 central New York Ontario same plant as A1-3.1 & A1-3.3 

A1-3.3 S A2 w. squash 9/18/06 central New York Ontario same plant as A1-3.1 & A1-3.2 

A2-2.1 S A2 w. squash 9/18/06 central New York Ontario  

A2-3.1 S A2 w. squash 9/18/06 central New York Ontario  

A2-6.1c S A2 w. squash 9/18/06 central New York Ontario  

A2-6.2c S A2 w. squash 9/18/06 central New York Ontario  

A3-3.1 S A2 w. squash 9/18/06 central New York Ontario  

B1-1.1 S A2 w. squash 9/18/06 central New York Ontario  

B1-3.1 S A2 w. squash 9/18/06 central New York Ontario  

B2-1.1 S A2 w. squash 9/18/06 central New York Ontario  
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B2-2.1 S A2 w. squash 9/18/06 central New York Ontario  

B2-3.1 S A2 w. squash 9/18/06 central New York Ontario  

B2-4.1 S A2 w. squash 9/18/06 central New York Ontario  

MM1-1C S A2 pepper 8/28/07 Long Island Suffolk section 1 of field 

MM1-2B S A1 pepper 8/28/07 Long Island Suffolk section 1 of field 

MM1-3A S A1 pepper 8/28/07 Long Island Suffolk section 1 of field 

MM1-4A S A1 pepper 8/28/07 Long Island Suffolk section 1 of field 

MM1-5A S A2 pepper 8/28/07 Long Island Suffolk section 1 of field 

MM2-1A S A1 pepper 8/28/07 Long Island Suffolk section 2 of field 

MM2-2A S A1 pepper 8/28/07 Long Island Suffolk section 2 of field 

MM2-3A S A1 pepper 8/28/07 Long Island Suffolk section 2 of field 

MM2-4B S A1 pepper 8/28/07 Long Island Suffolk section 2 of field 

MM2-5A S A2 pepper 8/28/07 Long Island Suffolk section 2 of field 

MM2-6A S A2 pepper 8/28/07 Long Island Suffolk section 2 of field 

MMA-01A R A1 pumpkin 9/4/07 Long Island Suffolk  

MMA-02A R A1 pumpkin 9/4/07 Long Island Suffolk  

MMA-03A S A1 pumpkin 9/4/07 Long Island Suffolk  

MMG-01A R A1 pumpkin 9/4/07 Long Island Suffolk  

MMG-02A R A1 pumpkin 9/4/07 Long Island Suffolk  

MMG-03C R A1 pumpkin 9/4/07 Long Island Suffolk  

MMG-04A R A1 pumpkin 9/4/07 Long Island Suffolk  

MMH-1A S A2 pumpkin 8/30/07 Long Island Suffolk  

MMH-2A S A1 pumpkin 8/30/07 Long Island Suffolk  

MMH-3C S A1 pumpkin 8/30/07 Long Island Suffolk  

MMH-4A S A1 pumpkin 8/30/07 Long Island Suffolk  

MMH-5B S A1 pumpkin 8/30/07 Long Island Suffolk  

MMH-6A S A1 pumpkin 8/30/07 Long Island Suffolk  

MMH-7A S A1 pumpkin 8/30/07 Long Island Suffolk  
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MMHA-01A S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-02A S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-03B S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-04A S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-05C S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-06a-Ac S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-06b-Bc S A1 pumpkin 9/4/07 Long Island Suffolk Northwest section of field HA 

MMHA-07A S A1 pumpkin 9/4/07 Long Island Suffolk Southwest section of field HA 

MMHA-08A S A1 pumpkin 9/4/07 Long Island Suffolk Southwest section of field HA 

MMHA-09B S A1 pumpkin 9/4/07 Long Island Suffolk Southwest section of field HA 

MML-01A R A1 pumpkin 9/4/07 Long Island Suffolk  

MML-02A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-03A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-04A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-05A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-06A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-07A R A2 pumpkin ~11/1/07 Long Island Suffolk  

MML-08A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMR-02A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC fieldd 

MMR-03A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMR-04A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMR-06A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMR-08A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMR-09A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMR-10 -2A S A1 pumpkin ~11/1/07 Long Island Suffolk LIHREC field 

MMS2-1A R A2 unknown 8/30/07 Long Island Suffolk  

MMS2-2A S A1 unknown 8/30/07 Long Island Suffolk  

MMS2-3A S A1 unknown 8/30/07 Long Island Suffolk  
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MMS2-4A I A2 unknown 8/30/07 Long Island Suffolk  

MMS2-5B S A1 unknown 8/30/07 Long Island Suffolk  

MMS2-6C S A1 unknown 8/30/07 Long Island Suffolk  

MMSK-01A S A2 cucurbit 8/30/07 Long Island Suffolk  

MMSK-03A S A2 cucurbit 8/30/07 Long Island Suffolk  

MMSK-04A S A2 cucurbit 8/30/07 Long Island Suffolk  

MMSK-05A S A2 cucurbit 8/30/07 Long Island Suffolk  

MMSK-06A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-07A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-08A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-09A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-10A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-11A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSK-12A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMSN-01B S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-02A S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-03C S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-04C S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-05A S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-06C S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-09A S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-10B S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-12B S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-13A S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-14B S A1 pepper 8/30/07 Long Island Suffolk  

MMSN-15a-Ac R A1 pepper 8/30/07 Long Island Suffolk  

MMSN-15b-Ac S A1 pepper 8/30/07 Long Island Suffolk  

MMW-02A S A1 cucurbit 8/20/07 Long Island Suffolk  
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MMW-03A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-04A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-05A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-06A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-07A S A1 cucurbit 8/20/07 Long Island Suffolk  

MMW-08 A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-09A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-10A S A2 cucurbit 8/20/07 Long Island Suffolk  

MMW-11A S A1 cucurbit 8/20/07 Long Island Suffolk  

MMW-12B S A1 cucurbit 8/20/07 Long Island Suffolk  

MMW-14A S A1 cucurbit 8/20/07 Long Island Suffolk  

MMZ-01B R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-02A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-03A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-04A S A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-05A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-06A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-07A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-08A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-09A I A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-10A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-11A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-12A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-13A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-14A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-15A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-16A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-17C S  A2 pumpkin ~11/1/07 Long Island Suffolk  
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MMZ-18A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-19A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-20A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-21A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-22A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-23A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-24A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-25A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-26A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-27A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-28A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-29A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-30A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-31C R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-32A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-34A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-35A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-36A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-37A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-39A S A2 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-40A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-41A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-42A S A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-43A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-44A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-45A R A1 pumpkin ~11/1/07 Long Island Suffolk  

MMZ-46A S A1 pumpkin ~11/1/07 Long Island Suffolk  

06120-1 S A1 pepper 9/12/06 western New York unknown  
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E1.02e S A2 s. squash 6/19/07 western New York Erie rogued area 

E1.04 S A2 s. squash 6/19/07 western New York Erie rogued area 

E1.08 S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.09 S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.10 S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.11 S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.12A S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.13 S A1 s. squash 6/19/07 western New York Erie rogued area 

E1.15 S A2 s. squash 6/19/07 western New York Erie rogued area 

E1.16 S A2 s. squash 6/19/07 western New York Erie rogued area 

1.1B S A2 s. squash 6/26/07 western New York Erie mapped - area 1 

2.2 S A1 s. squash 6/26/07 western New York Erie mapped - area 2 

2.3 S A2 s. squash 6/26/07 western New York Erie mapped - area 2 

5.2a-Cc S A2 s. squash 6/26/07 western New York Erie mapped - area 5 

5.2b-Cc S A2 s. squash 6/26/07 western New York Erie mapped - area 5 

5.2E S A2 s. squash 6/26/07 western New York Erie mapped - area 5 

5.4A S A2 s. squash 6/26/07 western New York Erie mapped - area 5 

6.1C S A2 s. squash 6/26/07 western New York Erie mapped - area 6 

7.1C S A1 s. squash 6/26/07 western New York Erie mapped - area 7 

7.2C S A2 s. squash 6/26/07 western New York Erie mapped - area 7 

7.3A S A2 s. squash 6/26/07 western New York Erie mapped - area 7 

7.6B S A2 s. squash 6/26/07 western New York Erie mapped - area 7 

8.1 S A2 s. squash 6/26/07 western New York Erie mapped - area 8 

8.2-1Ac S A2 s. squash 6/26/07 western New York Erie mapped - area 8 

8.2-2Ac S A2 s. squash 6/26/07 western New York Erie mapped - area 8 

8.3 S A2 s. squash 6/26/07 western New York Erie mapped - area 8 

8.4 S A2 s. squash 6/26/07 western New York Erie mapped - area 8 

8.5 S A2 s. squash 6/26/07 western New York Erie mapped - area 8 
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9.1B S A2 s. squash 6/26/07 western New York Erie mapped - area 9 

10.1b-C S A2 s. squash 6/26/07 western New York Erie mapped - area 10 

10.3A S A2 s. squash 6/26/07 western New York Erie mapped - area 10 

10.4B S A2 s. squash 6/26/07 western New York Erie mapped - area 10 

11.1b-A S A2 s. squash 6/26/07 western New York Erie mapped - area 11 

11.2B S A2 s. squash 6/26/07 western New York Erie mapped - area 11 

11.5B S A2 s. squash 6/26/07 western New York Erie mapped - area 11 

11.6B S A2 s. squash 6/26/07 western New York Erie mapped - area 11 
a S = sensitive, I = intermediately sensitive, and R = resistant to the fungicide mefenoxam. 
b MT = mating type. 
c The following pairs of isolates were recovered from distinct lesions on the same plant: GT-01A and GT-02A, GT-03A and GT-04A, A2-6.1 and A2-6.2, 

MMHA-06a-A and MMHA-06b-B, MMSN-15a-A and MMSN-15b-A, 5.2a-C and 5.2b-C, 8.2-1A and 8.2-2A.  
d LIHREC = Long Island Horticultural Research and Extension Center, in Riverhead, NY. 
e All isolates collected from western New York in 2007 were from the same field. 

 

 


