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This dissertation contains three studies of acoustic and olfactory 

communication in several species of nonhuman primates.  The first is a longitudinal 

study of “gecker” distress vocalizations in infant rhesus monkeys (Macaca mullata) 

during the first 24 months of life.  Acoustic and behavioral analyses revealed age, sex, 

and maternal response differences across several temporal, spectral, and amplitude 

measures, but little context-specific acoustic differentiation.  Female geckers showed 

higher spectral peaks and bout durations, while male geckers were higher in amplitude 

and less noisy. Developmentally, gecker usage peaked at four months of age for both 

sexes, with male geckers nonetheless tending to occur at younger ages than those of 

females.  In sum, gecker acoustics appear to be well designed to draw the attention of 

mothers and other listeners, while also potentially becoming aversive.   

The second study examines the acoustic structure and function of “zzuss” 

vocalizations in wild silky sifakas (Propithecus candidus) in northeastern Madagascar.    

Acoustically, the calls combined separate turbulent noise and tonal components, often 

including frequency jumps and rapid, highly frequency-modulated components.  

Although silky sifakas are sexually monomorphic, male and female zzuss calls were 

acoustically different, most importantly in fundamental frequency and amplitude-

related features.  All acoustic measures differed between individuals, with 

fundamental frequency related variables again playing the largest role.  Overall, zzuss 



 

calls are multi-function vocalizations used both for terrestrial disturbance and group 

coordination.  They are shaped for salience, localizability, and caller identification, 

rather than to have word-like meaning. 

The final study examines non-nutritive tree gouging by wild silky sifakas (P. 

candidus) and Milne-Edwards’ sifakas (P. edwardsi).  Species differences were found 

in gouge mark morphology.  Dominant males had longer gouge marks and gouged 

most frequently, with seasonal peaks just before and during the mating season. 

The resource gouging hypothesis was tested and supported in silky sifakas.  A 

multiple regression analysis revealed that the number of gouges per tree species was 

predicted by the percentile rank of those species as food tree species and sleep tree 

species.  Gouging appears to be an honest species specific signal of male status which 

may promote scent longevity and attract the visual attention of conspecifics. 
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CHAPTER 1 

Dissertation Overview 

 

The chapters in this dissertation examine several issues that are of current 

interest in primate communication.  Chapter 2 is a longitudinal study of vocal 

development of rhesus macaque (Macaca mullata) “gecker” distress vocalizations.  

These are amongst the loudest and mostly common produced infant vocalizations by 

this species.  The study is unique because it was a twenty-four month long 

investigation which allowed a complete assessment of vocal usage, acoustic structure, 

and maternal responsiveness until the age at which the call is seldom emitted.   

Infant age and call rate are known to influence the likelihood of macaque 

monkey mothers responding to their infants’ calls (Maestripieri, 1995).  In humans 

and nonhuman primates, extreme infant vocalizations can influence the quality of 

parental care received (Soltis, 2004).  The “coos” of abused rhesus monkey infants 

have been found to differ in structure from the “coos” of nonabused infants 

(Maestripieri et al., 2000).  However, little is known about which particular acoustic 

features of infant monkey calls are most effective at eliciting maternal response.  

Therefore, one of the main goals of the study was to determine how gecker acoustics 

influence maternal response. 

A second major goal of this study was to determine the cues reflected in the 

acoustic structure of this vocalization, and make an informed decision about the 

function of gecker vocalizations based both upon acoustic structure and usage.  

Although many infant calls, like “geckers” are emitted during evident distress, 

spontaneous utterance is also quite common.  The extent of co-occurrence of call 

context and acoustic structure has only been examined in a few studies of primate 
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infant vocalization (Bayert et al., 1990; Jovanovic and Gouzoules, 2001; Kalin et al., 

1992).  Some debate exists about the extent to which calls of infant monkeys or the 

cries of human infants are state-specific (e.g. “hunger” cries, “pain cries” etc…), 

though little evidence exists for acoustically distinct cry types that reflect specific 

needs (Gustafson et al., 2000; Soltis, 2004).  Sex differences have been found in infant 

macaque call rate and duration (Green, 1981; Wallen, 2005), though it is unknown 

whether the overall frequency structure varies according to caller age and sex.  If so, 

such acoustic cues could allow mothers to adjust their responsiveness based upon 

these infant characteristics.  Therefore, the second set of goals was to examine 

variation in the acoustic structure of “gecker” vocalizations as a function of call 

context as well as caller age and sex.    

Chapter 3 examines the structure and function of wild silky sifaka (Propithecus 

candidus) “zzuss” vocalizations.  These lemurs are among the rarest mammals in the 

world, and little has previously been reported about their behavior, ecology, or 

communication system (Mittermeier et al., 2010; Patel, 2009).  Zzuss vocalizations are 

generally considered an alarm call (Petter and Charles-Dominique, 1979; Wright, 

1998).  However, neither the zzuss nor any other alarm calls of the genus Propithecus 

have as yet received detailed acoustic analysis.   

Six major functions have been proposed for primate “loud” calls, a category 

that includes the zzuss vocalization.  These functions include mate attraction and mate 

defense (Semple et al., 2002), territory defense (Mitani, 1985a,b), food advertisement 

(Clark and Wrangham, 1993, 1994), auditory impact (Owren and Rendall, 2001; 

Rendall et al., 2009), predator alarm (Cheney and Seyfarth, 1990; Macedonia and 

Evans, 1993), and group coordination (Trillmich et al., 2004; Rasoloharijaona et al., 

2006). 
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Zzuss vocalizations have most often been hypothesized to function as group 

coordination calls or anti-predator calls against predation by the civet-like fossa, 

Madagascar’s largest carnivore.  Several outcomes are expected if the zzuss is a 

specialized, terrestrial anti-predator call.  First, its acoustic structure and usage are 

predicted to be specific to terrestrial predation contexts.  Associated anti-predator 

behavior is also expected, which for the arboreal silky sifaka should include 

movement upward in the trees with downward staring (Fichtel and Kappeler, 2002; 

Karpanty and Wright, 2007; Macedonia and Evans, 1993; Sauther, 1989).  Finally, 

rates of occurrence are predicted to show both seasonal and circadian peaks congruent 

with fossa hunting patterns.   

Alternatively, if the zzuss call is primarily a group-coordination vocalization, 

most instances would be expected in response to the howl vocalizations of spatially 

separated or lost group members.  In this case, usage should be evenly distributed 

across seasons and times of day.  Those outcomes have been observed for the roar and 

shriek choruses of ruffed lemurs (Varecia spp.), which function both as general alarm 

and group-coordination vocalizations (Geissman and Mutchler, 2006; Pereira et al., 

1988; Vasey, 2003).  Finally, given a group-cohesion function, these sounds can be 

expected to include reliable acoustic cues to caller sex and identity, helping identify 

separated group members to one another while also advertising group size and 

composition to neighboring groups.   

Finally, chapter 3 also examines the acoustic measures that most distinguish 

males and females and individuals from one another.  There is some debate on this 

topic with some considering duration and fundamental frequency to seldom 

distinguish individuals, particularly in broadband noisy calls (Gamba, 2011); while 

others report that fundamental frequency and duration do frequently vary between 

individuals and the sexes, particularly for high frequency tonal harmonically 
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structured calls (Leliveld et al., 2011; Rasoloharijaona et al., 2006).  Zzuss 

vocalizations contain both noisy and harmonic elements, and are therefore well suited 

to test this question. 

Chapter 4 examines tree gouging behavior in silky sifakas (P. candidus) and 

Milne-Edwards’ sifaka (P. edwardsi).  This frequent behavior is performed only by 

males just before chest scent marking.  The scent marks are placed directly over the 

large, visible gouge marks made by biting tree trunks and removing bark using their 

tooth combs.  Details of the form and function of this behavior are unknown, although 

male tree gouging is believed to serve a communicative function since eastern sifakas 

are believed to seldom eat bark.  The first goal of the study was to determine the diet 

of silky sifakas, and confirm that bark was never consumed since western sifakas, such 

as Verreaux’s sifakas, do regularly consume bark (Richard, 1978, 1985). 

Tree gouging may function as a visual-olfactory signal of resource ownership 

and signal willingness to defend high value resources. Amongst primates, several 

exudativorous species (e.g., marmosets, Callithrix sp.; slow lorises, Nycticebus sp.; 

galagos, Galago sp.) scent mark while gouging trees for food resources such as gum, 

sap, and nectar (Bearder and Doyle, 1974; Nekaris et al., 2010; Rylands, 1985).  

Weasel sportive lemurs (Lepilemur mustelinus) frequently gouge trees near their 

sleeping sites.  They do not consume bark or tree exudates; therefore such gouging, 

which may be accompanied by olfactory cues in their saliva, is believed to signal 

sleeping site ownership (Rasoloharijaona et al., 2010).   

Food and sleeping trees are limited resources that are frequently visited by 

other group members, which may lead to a large audience for these gouges and the 

scent marks which accompany them.  Sleep trees and food trees are often along travel 

routes, and gouging these trees may lead to a “bulletin board” (Johnston et al., 1994) 

and increase the likelihood of receivers detecting them (Gosling and Roberts, 2001).  
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Two specific predictions are tested in Chapter 4:  1) The percentiles of tree species in 

the diet of silky sifakas (food tree percentile) is a significant predictor of the number 

of gouges on food tree species, 2) The percentiles of tree species among sleeping trees 

(sleep tree percentile) is a significant predictor of the number of gouges on sleep tree 

species. 

Gouge marks may also be a male status signal.  In many sifaka groups, there is 

only one breeding male even though the group may contain several males (Kappeler 

and Schäffler, 2008; Morelli and Wright, 2006).  Dominant male sifakas are known to 

scent mark at higher rates than subordinate males (Lewis, 2005; Pochron et al., 2005), 

have higher testosterone levels (Kraus et al., 1999; Lewis, 2009), and more darkly 

stained chests due to increased secretion and marking with the sternal gland (Lewis 

2009).  It is therefore predicted that one sifaka male will gouge most and perhaps have 

the largest gouges. 

Gouge marks are a long lasting trace of a sifaka’s presence and may be useful 

tools during population surveys for critically endangered primates, such as the silky 

sifaka.  A final goal of Chapter 4 is to determine the species specific characteristics of 

gouge marks while examining differences in gouge mark morphology between silky 

sifakas and Milne-edwards’ sifaka. 

Chapter 5 reviews the results of the questions posed and the predictions tested 

in this dissertation, while discussing the broader implications of these findings. 
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CHAPTER 2 

Acoustics and behavioral contexts of “gecker” vocalizations in young 

rhesus macaques (Macaca mulatta) 

Erik R. Patel1,2 and Michael J. Owren3

 

 

ABSTRACT 

Loud, pulsed “gecker” vocalizations are commonly produced by young rhesus 

macaques in distressful circumstances. The acoustics, usage, and responses associated 

with these calls were examined using audio recordings and observational data from 

captive, socially living rhesus up to 24 months old. One-hundred-eleven gecker bouts 

were recorded from ten individuals (six males, four females), with most geckers 

produced during the first 6 months of age. A gecker call consisted of a bout of up to 28 

pulses of spectrally structured noise with a single prominent frequency peak. Nine 

contexts of calling were identified, but little evidence of context-specific acoustic 

variation was found. While geckering often triggered responses by the vocalizer's 

mother, the most common outcome was the absence of any reaction. Females 

geckered longer and at higher rates than did males, while also showing acoustic 

evidence of greater vocal effort. Mothers nonetheless responded more often and more 

positively to males. Overall, results show that gecker acoustics vary somewhat with 

vocalizer sex, age, and likely arousal level, but do not reflect detailed aspects of 

behavioral context. Circumstances of production suggest that geckers function 

                                                           
1 Author to whom correspondence should be addressed. Electronic mail: patel.erik@gmail.com 
2 Department of Psychology, 211 Uris Hall, Cornell University, Ithaca, New York, 14853 
3 Michael J. Owren is now at the Department of Psychology, Georgia State University, PO Box 5010, 
Atlanta, Georgia 30302-5010. 
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primarily to draw the attention of mothers, who in turn are selective in responding. 

©2007 Acoustical Society of America4

 
 

 

INTRODUCTION 

Young nonhuman primates produce a variety of vocalizations when in distress, 

which in rhesus macaques (Macaca mulatta) include “coos,” “squeaks,” “screams,” 

“pant threats,” “girneys,” and “geckers” (Maestripieri and Call, 1996; Maestripieri et 

al., 2000; Tomaszycki et al., 2001). Geckers in particular have been described as a 

distress-related vocalization in rhesus monkeys, occurring in large numbers when 

infants are ignored, rejected, or otherwise separated from their mothers. Often 

accompanied by dramatic, convulsive bodily jerking, these loud, explosive, and 

distinctive-sounding vocalizations have received some attention and mention from a 

variety of researchers, but predominantly through qualitative rather than quantitative 

description. Thus, while geckers have also been documented in a number of other 

macaque species, details of their form and function remain unclear (Newman, 1995; 

Green, 1981).  

Altmann (1962) first named geckers onomatopoetically as “ik, ik, ik.” He 

noted that the call is accompanied by spasmodic jerking and occurs during weaning 

and other circumstances of evident infant distress. The sounds were subsequently 

referred to as “geckers” and “geckering screeches” by Rowell (1962; Rowell and 

Hinde, 1962), who described them as a series of 0.1  s squeaks separated by 0.5–1.0  s 

intervals (illustrated in Figure 2.1).  Several subsequent studies have shown geckers to 

be among the most common vocalizations produced by young rhesus. For example, 

                                                           
4 Reprinted with permission from Patel, E.R. and Owren, M.J. (2007).  Acoustics and behavioral 
contexts of “gecker” vocalizations in young rhesus macaques (Macaca mullata).  Journal of the 
Acoustical Society of America 121(1): 575 - 585.  Copyright 2007, American Institute of Physics. 
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Owren et al. (1993) reported that geckers comprised approximately 38% of the total 

number of vocalizations produced by rhesus monkeys during the first year of life, and 

12% in the second year. Figures from Maestripieri et al. (2000) were comparable, with 

geckers making up 43.3% of all vocalizations in the first three months of life. 

Tomaszycki et al. (2001) similarly noted that geckers were the most common 

vocalization over the first 8 months, accounting for 34% of vocal output.  
 
 

 
 
 
Figure 2.1 (a) A representative gecker bout consisting of seven pulses, shown as 
(top) a wave form and (bottom) a narrowband FFT spectrogram (20 ms Hanning 
analysis window, 22.05 kHz sampling rate). The third and fourth pulse shown 
produced higher HNR values than elsewhere, but are nonetheless still likely to reflect 
deterministic chaos in underlying vocal-fold vibration. (b) A gecker bout illustrating 
pulse reduplication in the wave form and a narrowband FFT spectrogram. Pulses are 
first doubled and then tripled. 
 

In spite of the prevalence of these sounds, little quantitative information is 

available concerning their acoustics or function. On the one hand, Newman (1995) 

notes that geckers can routinely occur without apparent cause, and suggests that they 

“may largely be a reflection of the immature state of the central nervous systems 
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underlying vocal expression” (p. 79). On the other hand, many researchers are likely 

to agree with Maestripieri and Call's (1996) characterization that geckers, like most 

primate infant distress calls, occur “when the infant is not in contact with its mother” 

and “signal the infant's need for nursing, transport, or protection” (Maestripieri and 

Call, 1996, p. 620). Critical issues thus include whether rhesus geckers are in fact 

occurring primarily or exclusively in instances of distress, whether geckers have 

specific, context-dependent signaling value, and how other animals respond to these 

sounds.  

Relatively few studies of primate infant vocalization have examined the co-

occurrence of call acoustics and context (e.g., Kalin et al., 1992; Jovanovic and 

Gouzoules, 2001), or found evidence of context-specific vocal subtypes (e.g., Bayart 

et al., 1990). Although also limited, some information is available concerning 

responses to geckers and other distress-related calls. Across primate species, for 

instance, it has generally been found that mothers are most responsive to young infants 

that vocalize at relatively low rates (Maestripieri, 1995; Hauser, 1993). Furthermore, 

females in several species have been reported to produce distress-related calls 

comprised of more call types, emitted at higher rates, and for longer durations than 

males (Locke and Hauser, 1999; Wallen, 2005; Green, 1981). Overall, rhesus females 

do show greater volubility than males, not only in infancy (Newman et al., 1990; 

Tomaszycki et al., 2001), but also in adolescence and adulthood (Erwin, 1975). Thus, 

while sex differences in maternal treatment of primate infants tends to be rare (Wallen, 

2005), Tomaszycki et al. (2001) have nonetheless reported that rhesus mothers are 

more likely to respond to vocalizations by male than by female infants. Despite this 

evidence, rather little is as yet known about the ontogeny or extent of sex differences 

in vocal behavior (Gautier and Gautier 1977; Green, 1981). Furthermore, the few 

studies that are available have typically examined time periods of less than a year 
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(Hammerschmidt et al., 2000; Hammerschmidt et al., 2002; Seyfarth and Cheney, 

1986; Newman, 1995; Snowdon et al., 1997; Owren et al., 1993).  

The current study sought to extend previous work on rhesus geckers by 

examining the acoustics and contexts of these vocalizations as systematically as 

possible in animals up to 24 months of age. The work began with a detailed 

characterization of gecker acoustics and the contexts in which infants produce these 

calls. The data were then used to test for possible specificity in acoustics and contexts, 

age and sex-related differences, and factors that might affect the likelihood of 

responding by mothers or other animals. These questions were examined using a large 

database of calls recorded during a long-term study of two groups of socially housed 

rhesus monkeys living in outdoor cages at a national primate center.  

 

METHODS 

Study site and subjects 

Data were collected during the course of a long-term project on vocal 

development (Owren et al. 1992a, 1992b; Owren et al., 1993). The subset analyzed 

here drew on audio recordings and behavioral data collected between 1986 and 1989 

from ten rhesus macaques (six males and four females) ranging in age from newborn 

to 24 months of age (see Table 2.1). The overall project involved cross fostering a 

small number of neonatal infants between different-species foster mothers (Owren and 

Dieter, 1989), but no such offspring are represented in the data analyzed here. The ten 

subjects included here represented all the rhesus offspring born into the study groups 

during the course of the project from whom there were any usable gecker recordings. 

The subjects were offspring of a total of seven different mothers, all of whom were 

multiparous. Five mothers were represented by a single study subject, one by two 

study subjects, and one by three study subjects. All animals were located at the 
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California National Primate Research Center (CNPRC; University of California, 

Davis), as part of two socially living groups. Group composition varied somewhat  

 

  Table 2.1 Subject demographics and representation in the gecker sample. 

 

 

 

 

 

 

 

 

 

 

 

 

over time, with each of the two cages including 1- 2 adult males, one or no unrelated 

juvenile males, 4 - 6 adult females, and 6 - 8 offspring of those females.  

Each group was housed outdoors in a separate cage constructed from two 

modified commercial corn cribs connected by a rectangular inter-cage unit (Hoffman 

and Stowell, 1973). The cages were approximately 13.6×4.3×3.0 m (with additional 

space created by conical roofs), and contained capture chutes, perches, and pea gravel 

used as replaceable ground cover. During the winter months, screens were installed as 

wind shields and infrared lamps provided heat. The monkeys had continuous access to 

fresh water and received Purina monkey chow twice daily in quantities that ensured a 

plentiful supply for all. Detailed physical examinations of the animals were conducted 
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three times per year by the CNPRC veterinary staff and general health was checked 

daily.  

 

Apparatus and procedure 

Behavioral observations were conducted in 10  min continuous focal sessions 

(Altmann, 1974) occurring in the morning (7:30 AM to noon) in the spring, summer, 

and fall, and in the afternoon (noon to 5 PM) in winter, up to six days per week. The 

daily sampling order was determined quasi-randomly. During sampling, behaviors 

exhibited by the focal animal and others it interacted with were entered as codes on a 

handheld computer, with each entry noting animal identities, any one or more of 63 

concomitant behaviors, as well as the onset time of occurrence. This approach allowed 

documentation of all vocalizations produced by a focal animal during the session, as 

well as the behavior associated with these calls.  

Audio recording was conducted with a four-channel Tascam 234 cassette deck 

(Teac Corporation, Tokyo), and two Sennheiser ME88 microphones (Sennheiser 

Electronic, Old Lyme, CT) placed on stands in fixed positions outside the cage. Calls 

from all animals were routinely recorded, including ad libitum samples that were 

described through supplementary commentary using a lapel microphone connected to 

a separate channel of the cassette deck. Vocalizations were later transferred to .25 in. 

audio tape using either a Uher 4200 Report Monitor (Uher Werke Munchen, Munich) 

or a Fostex A-2 reel-to-reel deck (Fostex America, Norwalk, CA). Calls were 

separated, numbered, and annotated during this process using the coded behaviors and 

any additional, audio-recorded comments.  
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Call selection and analysis 

The vocalization sample was identified by examining the entire database of 

more than 10,000 separately cataloged calling episodes available from the project. 

Gecker vocalizations were identified based on previous annotations in the database 

(Owren et al., 1992a), by matching acoustic features to published descriptions of 

gecker calls (e.g., Rowell and Hinde 1962; Jovanovic and Gouzoules 2001), and by 

ear. A total of 111 analyzable gecker bouts comprising 651 individual gecker pulses 

from the ten vocalizers were identified in this manner (see Table 2.1). A bout was 

defined an as uninterrupted emission of pulsed vocalization by a single animal with 

less than a 5 s pause between pulses.  

Vocalizations were digitized and archived using a sampling rate of 44.1 kHz 

with 16 bit accuracy. Calls were subsequently downsampled to 22.05 kHz for analysis, 

which was conducted using the ESPS/waves+ 5.3 “xwaves” package (Entropic 

Research, Washington, DC), running on an SGI O2 workstation (Silicon Graphics 

Incorporated, Mountain View, CA). The Praat speech analysis package was also used 

in some analyses (Boersma, 2001; available at www.praat.org). Statistical analyses 

were conducted using NCSS 2004 (Jerry Hintze, Kaysville, UT) and SPSS 13.0 (SPSS 

Inc., Chicago, IL).  

 

Acoustic variables 

Twenty-four acoustic measures were extracted (definitions are provided in 

Table 2.2), spanning temporal, amplitude, and frequency-spectrum aspects of the calls. 

Temporal measures of geckering at bout and pulse levels included absolute durations 

(Bout-Dur, Pulse-Dur), and number of pulses per bout (Pulses-Bout). As illustrated in 

Figure 2.1(b), gecker pulses sometimes occur in doubled, tripled, quadrupled, and 

even quintupled form without intervening silent intervals. This phenomenon was 
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referred to as “twinning” by Maestripieri et al. (2000), and here is considered as a 

single phenomenon labeled “reduplication” (Pulse-Redup). Call amplitude was 

characterized based on calculating a signal-to-noise ratio (SNR) for individual bouts,  

 

Table 2.2 The 24 variables used in acoustic analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

defined as the root-mean-square (rms) amplitude of the pulse minus the rms amplitude 

of a representative, adjacent segment of background noise. No attempt was made to 

measure the absolute amplitude of calls. This indirect approach was used as an attempt 

to obtain relative amplitude information for comparisons such as possible age-, sex-, 

and context-related differences. It was arguably justified by the fact that microphones 

were placed in the same locations outside the cages for every session, and based on the 
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assumption that general background noise levels remained roughly constant over time. 

Sources of error for SNR measurements would then be any moment-to-moment 

variation in background noise, and the vocalizer's distance from and relative 

orientation to the microphone.  

Frequency-spectrum (spectral) measurements were made from all 651 total 

pulses in the sample, based on a spectral slice located midway through each pulse. 

This slice was characterized by overlaying a ten-coefficient, autocorrelation-based 

linear predictive coding (LPC) function (0.023  s Hanning window) on a 512-point 

fast Fourier transform (FFT) spectrum (Hanning window) of the same segment 

(further described by Owren and Bernacki, 1998), with frequency and amplitude 

values recovered from the LPC envelope through cursor-based measurement. 

Variables used were the first LPC peak (Peak1), the overall slope of the LPC spectrum 

(Spectral-Tilt), values of each of the 12 coefficients used in the LPC function (LPC1 

to LPC12), and the first four spectral moments of the Fourier spectrum (Spectral-

Mean, Spectral-StDev, Spectral-Skew, Spectral-Kurtosis). Spectral-moment measures 

are particularly well suited to characterizing global features of noisy, broadband 

frequency spectra (Forrest et al., 1988), and are computed by normalizing the Fourier 

power spectrum and treating it as a statistical distribution. The first four moments of 

this distribution are its mean, standard deviation, skewness, and kurtosis, in the normal 

sense of these terms. The last measure was the harmonic-to-noise ratio (HNR) of each 

pulse, extracted using Praat's pitch-based algorithm (Boersma, 1993).  

 

Behavioral variables 

The behavioral contexts of each of the 111 gecker bouts were coded in binary 

fashion according to whether the offspring's mother exhibited any discernible response 

to the vocalizations (Rsp/No-Rsp), as well as being scored as to which of six possible 
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behaviors were occurring just before or during the bout (Before/During) and whether 

vocalizing was followed by aggression, affiliation, or neither (After). Behavioral codes  

are defined in Table 2.3. Coding for Before/During and After variables was based on  

 
Table 2.3 Codes used to characterize behavior occurring before/during and after 
a geckering event. 
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after the vocalization, but rarely exceeded a few seconds on either side. In four cases, 

data were insufficient to determine the Before/During context and those gecker bouts 

included as the context of each vocalization event were determined by the observer, 

behavioral codes recorded just before, during, and after each gecker bout. Behaviors  

who also transcribed the relevant codes for each episode on a daily basis during the 

course of the project. Contexts were thus not inherently limited in time either before or  

were excluded from analyses involving this variable. In 34 cases, mothers were out of 

view, and Rsp/No-Rsp could not be coded. 

 

RESULTS 

Gecker acoustics: General features 

Descriptive statistics for the acoustic features of gecker vocalizations are 

shown in Table 2.4. On average, geckers were emitted in 1 s bouts of four pulses, 

though both bout duration (Bout-Dur) and number of pulses per bout (Pulses-Bout)  

were highly variable. The longest bout observed was nearly 9 s in duration, and as 

many as 28 pulses were observed in a single bout. Reduplication (Pulse-Redup) 

occurred in 34% of all bouts, could include as many as five pulses, but usually 

consisted of just two (72% of total reduplication events). Pearson's correlation 

coefficients revealed that Pulse-Redup was strongly correlated with Bout-Dur (r=0.83, 

p<0.001) and Pulses-Bout (r=0.78, p<0.001).  

Although geckers are likely among the loudest vocalizations emitted by young 

rhesus macaques, mean SNR values were relatively modest (just over 6 dB), while 

showing high overall variability with the loudest geckers at 19.1 dB. The broadband 

noisiness of the sounds was reflected in generally low HNR values and spectral slopes 

that were virtually flat. HNR values did become significantly higher in a few cases 

(see, for example, the third and fourth pulses shown in Figure 2.1(a)), but were never  



 22 

Table 2.4 Descriptive features of gecker vocalizations, based on 111 total bouts 
and 651 total pulses. 
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clearly or purely harmonically structured. LPC analysis revealed a one consistent 

frequency peak just below 3000  Hz (Peak1), with the spectral-moment mean falling 

just above 2000  Hz. LPC analysis revealed a second peak occurring above 7000  Hz 

in some cases, but associated frequency values were highly variable. This peak was 

not discernible in the majority of bouts, and therefore was also not included as a 

reliable component of gecker acoustic structure. When it did occur, the peak was not 

harmonically related to Peak1.  

 

Gecker acoustics: Age and sex 

The effects of age and sex on geckering are shown in Figure 2.2, based on 2-

mo age blocks during which gecker bouts were available from at least three different 

individuals (i.e., months 1–2, 3–4, 5–6, 7–8, and 13–14, respectively). Repeated-

measures General Linear Model analysis of variance (ANOVAs) were used to test for 

possible age effects on acoustics, but independent of individual variation. Results 

revealed that younger infants emitted the fewest pulses per bout, F(4,96)=6.75, 

p<0.05, the shortest pulses, F(4,96)=8.39, p<0.05, and the shortest bouts, 

F(4,96)=7.55, p<0.01. Results from associated Tukey-Kramer multiple-comparison 

posthoc tests are displayed in Figure 2.2.  

A number of sex differences were also found, even when controlling as well as 

possible both for body-size differences between males and females, and for 

differences among individuals. As could be expected, analysis of covariance 

(ANCOVA) with vocalizer age entered as a covariate showed males (M=1.62 kg) to 

be significantly heavier than females (M=1.41 kg), F(1,110)=14.2, p<0.001. Infant 

body weight was therefore entered as a covariate in further repeated-measures 

ANCOVAs. With vocalizer sex as the independent variable, these tests revealed sex 

differences in four temporal, amplitude, and frequency-spectrum aspects of the calls 
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Figure 2.2 Mean percentage of gecker bouts occurring by sex and age, based on 2 
month age blocks, tallied separately for each individual caller 

 

 (see Table 2.5). The strongest effect sizes were found for Peak1, with frequency peaks 

in female being almost 700  Hz higher than in male calls, and for Bout-Dur, where 

female bouts were more than twice as long as male bouts. Other outcomes showed 

male geckers to be higher in amplitude (SNR), and also less noisy (HNR).  
 

Gecker usage: Age and sex 

During the first two years of life, gecker bouts were emitted by infants from 1 

to 17 months of age. Over this period, 75.7% of all gecker bouts occurred during the 

first 6 months of life (see Figure 2.3). Gecker usage peaked at 4 months in both males, 
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Table 2.5 Statistically significant ANCOVA tests for sex differences in gecker 
acoustics with body weight entered as a covariate. 

 
 

26.5% (X2 = 51.7, d.f. = 6, p<0.001), and females, 32.6% (X2 = 16.7, d.f. = 6, p<0.05).  

However, the percentage of gecker bouts used in each month differed between the 

sexes (X2=25.1, d.f. = 11, p<0.01), with male geckers tending to occur at younger 

ages. The greatest proportions of male gecker bouts occurred during months four 

(26.5%), two (16.2%), and one (14.7%), respectively. Females produced the most 

gecker bouts during months four (32.6%), two (14.0%), and 14 (14.0%), respectively.  

 

Gecker usage and contexts 

The behavior occurring immediately before or during a gecker bout was clear 

in all but four of the 111 total cases. Although none of the six categories of 

Before/During behavior could be considered predominant, relative proportions did 

show statistically significant heterogeneity (X2 = 26.7, d.f. = 5, p<0.001). Inf-Follow 

(25.2%) was the most prevalent, followed by Aggr (22.3%) and Spon (22.3%), Mth-

Leave (18.7%), and Affil (9.4%). Inf-Leave (1.9%) could also occur before or during a 

gecker bout, but was rare. Males and females were found to differ in the proportion of 

geckers emitted across these categories (X2 = 23.9, d.f. = 5, p<0.001). Male geckers 
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were most common in Affil (male: 15.4%, female: 0%) and Aggr (male: 27.7%, 

female: 14.3%) contexts, while female geckers were most common in the Inf-Follow 
 

 
 
Figure 2.3 (Color online) Bout duration (Bout-Dur), the number of pulses per 
bout (Pulse-Bout), and pulse duration (Pulse-Dur) are shown as a function of 
offspring age in 2 month blocks. Asterisks signify Tukey-Kramer posthoc tests in 

which at least one comparison to other outcomes shown in the panel was statistically 
significant. 
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context (male: 10.8%, female: 47.6%). Differences in the Inf-Leave, Mth-Leave, and 

Spon categories were all less than five percentage points. The influence of infant age 

on sex differences in Before/During gecker usage was examined in infants up to 6 

months old, and results paralleled the overall pattern of sex differences (X2 = 22.0, d.f. 

= 5, p<0.001). Males geckered most in the Affil (male: 17.0%, female: 0%) and Aggr 

(male: 28.3%, female: 14.3%) contexts, while females geckered most in the Inf-

Follow (male: 5.44%, female: 10.3%) context. However, the male-female difference in 

the Inf-Follow context was less pronounced in these younger infants.  

 

Acoustics and contexts 

A cross-validated, multinomial discriminant-function analysis was conducted 

with Before/During as an independent variable to determine whether the acoustic 

measures considered collectively could be used to discriminate among the six contexts 

associated with geckering. Only 34.8% of the 107 available cases were successfully 

classified, which was nonetheless statistically significant, F(52,343)=2.10, p<0.001. 

Canonical discriminant analysis (Tabachnik and Fidell, 2001) revealed that the first 

canonical correlation (rc=0.59) was significant, F(52,343)=2.06, p<0.0001, with 

Pulse-Redup (1.02), SNR (0.91), and Bout-Dur (−0.67) being the most influential in 

discriminating among the contexts.  

A cross-validated, multinomial discriminant-function analysis was conducted 

with After as an independent variable to determine whether the acoustic measures 

considered collectively could be used to discriminate among the three outcome 

categories associated with geckers. Only 26.6% of the 111 cases were correctly 

classified, which was not a statistically significant proportion, F(26,184)=0.94, 

p>0.55. One-way ANOVA did reveal that the means of some acoustic measures 
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differed as a function of the After context, including HNR, F(2,104)=3.95, p<0.05, 

Bout-Dur, F(2,104)=3.91, p<0.05, and Pulse-Dur, F(2,104)=4.0, p<0.05. Tukey 

posthoc tests demonstrated that the geckers with the longest Bout-Dur and Pulse-Dur 

values were associated with negative outcomes significantly more often than either 

positive outcomes or no outcomes. Geckers with higher HNR values were more often 

associated with positive outcomes than no outcome.  

 

Responses to geckers 

Immediate maternal response coding (Rsp/No-Rsp) was available for 76 

geckering episodes, with mothers found to respond in only 38.2% of these cases, and 

doing so predominantly when the vocalizers were relatively young (M=3.52  mo). 

Although offspring as old as 17 months were still producing geckers, no responses 

were noted to individuals older than 12 months (see Figure 2.4). A clear sex difference 

also emerged, with 47.2% of the gecker bouts emitted by males eliciting an immediate 

maternal response (25/53), compared to only 17.4% from females (4/23), X2 = 6.03, 

d.f. = 1, p<0.014. Male geckers were also responded to (M=3.32 mo) earlier in life 

than females (M=4.75 mo), Mann-Whitney U, z=2.44, p<.02.  

Gecker usage did not deviate significantly from expected proportions across 

the three outcome categories scored for geckers (X2 = 2.65, d.f. = 2, p>0.25). 

Furthermore, no sex difference was found in the outcomes experienced when 

examining offspring across the entire 24 months, X2 = 0.72, d.f. = 2, p>0.68. However, 
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Figure 2.4 Percentage occurrence of immediate maternal response by infant age 
block (mo.) to each gecker bout that received an immediate maternal response. 
Percentages shown sum to 100%, representing all instances that the mother showed an 
immediate response to her offspring's geckering (scored as Rsp, as described in Table 
2.3). 

 

significant differences were apparent for infants that were 7 months of age or older. 

Here, 50% of male bouts were ultimately associated with positive outcomes, but only 

26.7% of female bouts. Conversely, 66.7% of female bouts but only 8.3% of male 

bouts ultimately resulted in negative outcomes, X2 = 10.2, d.f. = 2, p<0.01.  

Multivariate logistic regression analysis was used to identify independent 

acoustic predictors of maternal response as coded through Rsp/No-Rsp. Two subjects, 

female infant LN and male infant MS, contributed a disproportionately high number of 

bouts to this sample, 17 and 23 bouts, respectively. Using a random number generator, 

15 bouts from each were selected for analysis, which reduced the sample to 66 bouts 

from nine individuals (six males, three females), with equivalent numbers of male 

(M=7.7, SD=6.68, range 1–15) and female bouts (M=7.0, SD=6.93, range 3–15). All 

variables that achieved univariate statistical significance at the 0.2 level were entered 

http://scitation.aip.org.proxy.library.cornell.edu/journals/doc/JASMAN-ft/vol_121/iss_1/575_1.html#T3�
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into a forward stepwise model selection procedure for the multivariate logistic 

regression analysis. Two variables, HNR and Peak1, were determined to be 

statistically significant predictors of maternal response in a multivariate model. Like 

HNR, Peak1 can be interpreted as a measure of relative noisiness, as this LPC 

coefficient tends to co-vary with the overall slope of the LPC function. However, the 

measures were nonetheless largely independent. After adjusting for Peak1, the odds of 

a maternal response were 1.42 times greater for each unit increase in HNR (95% 

confidence interval 1.2–2.1). After adjusting for HNR, the odds of a maternal response 

were 3.3 times greater for each unit increase in Peak1 (95% confidence interval 1.2–

9.1). Overall, the likelihood of a maternal response significantly increased for 

vocalizers with higher HNR and Peak1 values. The multivariate logistic regression 

model correctly predicted the presence or absence of maternal response in 80.3% of 

cases, although prediction accuracy was substantially higher for instances of no 

response (92.9%) compared to when a response did occur (58.3%).  

 

DISCUSSION 

Acoustic analyses of rhesus monkey gecker vocalizations during the first 24 

months of life revealed age, sex, and maternal response differences across several 

temporal, spectral, and amplitude measures, but little context-specific acoustic 

differentiation. Geckers of the youngest infants had the shortest bout durations, pulse 

durations, and fewest pulses per bout. Female geckers showed higher spectral peaks 

and bout durations, while male geckers were higher in amplitude and less noisy. 

Developmentally, gecker usage peaked at four months of age for both sexes, with male 

geckers nonetheless tending to occur at younger ages than those of females. More than 

75% of gecker bouts were produced by infants 6 months of age or less, but offspring 

as old as 17 months could also gecker. Over 20% of gecker bouts appeared to be 
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spontaneous, while the majority of these calls were emitted when the offspring were 

following their mothers, receiving aggression from their mothers, or had been left 

behind. Acoustic measures showed some statistical power in discriminant-function 

classification of calls according to six different behavioral contexts associated with 

geckering, but modestly so. The measures discriminating most among these contexts 

were bout duration, pulse reduplication, and signal-to-noise ratio. Mothers responded 

most, and most positively to the geckers of young infants, while also clearly favoring 

males. Maternal response was also more likely when geckers showed a pronounced 

spectral peak and less noisiness.  

 

Acoustics: Structure and function 

Acoustic analysis confirmed that geckers are composed solely of multiple short 

pulses. With just one reliable frequency peak (at just below 3000 Hz), geckers can be 

considered “spectrally structured noise” (Beeman, 1998). The noisiness of gecker 

pulses was reflected in a virtually flat spectral slope (Spectral-Tilt), low tonality 

(HNR), and high spectral standard deviation (Spectral-StDev) relative to spectral mean 

(Spectral-Mean). While the absolute amplitude of geckers was not measured, they are 

likely among the loudest vocalizations produced by young rhesus. Their noisiness 

therefore almost certainly reflects chaotic vocal-fold vibration (e.g., Tokuda et al., 

2002) rather than simple airflow turbulence. The occasional occurrence of periodic 

components within this noise-based spectral structure is also consistent with 

interpreting the sounds as example of deterministic chaos (Wilden et al., 1998). This 

kind of chaos is often a hallmark of elevated vocal effort, for example, occurring as 

subglottal air pressures and vocal-fold tensions increase during vocal production 

(Wilden et al., 1998; Fitch et al., 2002; Brown et al., 2003; Riede et al., 2004). The 

occurrence of pulse reduplications in 34% of all gecker bouts can thus be taken as an 
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indicator of additional vocal-fold instability due to vocal effort, with these events 

being particularly prevalent in longer geckers with a large number of pulses.  

This acoustic structure suggests that geckers are both salient and localizable to 

listeners. Several features, including their abrupt, high-amplitude pulses and 

broadband atonal spectra, likely make geckers particularly difficult to ignore as an 

auditory event (see Owren and Rendall, 1997, 2001). These same features also suggest 

that geckers should be easy to localize in both vertical and horizontal dimensions 

(Brown, 1982; Heffner, 2004; Recanzone and Beckermann, 2004). Moreover, auditory 

localization is facilitated when sounds are produced in conjunction with salient visual 

events (e.g., Heffner, 2004), such as the dramatic, spasmodic whole-body jerking that 

can accompany geckering. Geckers are thus well designed to serve as signals of 

distress, and communicative significance likely adds additional salience for species-

specific listeners. However, these same perceptual features can contribute to these 

sounds becoming annoying as well, particularly with prolonged use (e.g., Todt, 1988). 

In humans, for instance, there is ample evidence both that infant distress vocalizations 

are aversive to caregivers, and that the sounds become significantly more noxious 

when produced in long bouts (Frodi and Senchak, 1990; Levitzky and Cooper, 2000; 

Soltis, 2004). Noisy, so-called “dysphonia” is also prominent among the features 

found to have the greatest negative impact in human infant cries (Wood and 

Gustafson, 2001; Gustafson and Green, 1989; Dessureau et al., 1998), a phenomenon 

now shown to be chaotic vocal-fold vibration (Herzel, 1993).  

 

Acoustics: Age and sex 

Ontogenetic trends mainly involved producing longer pulses, longer bouts, and 

more pulses per bout. Consistent with previous work on primate vocal production, 

these changes likely reflect maturational and growth processes rather than vocal 
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learning per se (Hammerschmidt et al., 2000; Hammerschmidt et al., 2002). Sex 

differences, such as female gecker bouts lasting more than twice as long as those of 

males, were similar to outcomes reported for other distress calls in rhesus 

(Tomaszycki et al., 2001; Erwin, 1975) and Japanese macaques (Green, 1981). The 

single characteristic spectral peak in geckers was also nearly 700 Hz higher in females 

than in males. Male geckers were somewhat less noisy (HNR), as well as being 

substantially higher in amplitude (SNR). These differences were apparent even after 

statistically controlling for body weight, suggesting that the critical factors may 

involve neuroanatomy, hormones, or vocal-fold size and shape, rather than body size 

and associated differences in vocal-tract length (Fitch, 1997).  

Gonadal sex steroids are particularly likely to play a critical role, with 

Tomaszycki et al. (2001) finding that female rhesus up to 8 months emitted longer call 

bouts and used a greater variety of call types than did males of comparable age. 

However, when female fetuses were treated with androgen during the second trimester 

of gestation, the sex difference in later calling behavior was eliminated. The hormone 

treatment was likely to be operating via effects both on inferior temporal cortex 

(Newman and Bachevalier, 1997; Newman et al., 1990) and on the vocal folds 

themselves (Aufdemorte et al., 1983; Saez and Martin, 1976; Hollien et al., 1994). 

Vocal-fold dimensions are largely unrelated to overall body size (Fitch, 1997; Rendall 

et al., 2005), consistent with the current finding that sex differences in gecker 

acoustics persisted after statistically controlling for body size.  

 

Usage: Age and sex 

Although rhesus from 1 to 17 months of age emitted geckers, 75.7% of these 

calls occurred during the first 6 months of life. Geckering peaked at 4 months of age in 

both males and females, similar to results from Berman et al.'s (1994) more general 
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study of rhesus distress calling. Ontogenetic peaks have also been found in other 

primate infant distress calls: stumptail macaque “trilled whistles” at 8 weeks 

(Maestripieri et al., 1995), vervet monkey “care-elicitation” calls at 8–10 weeks 

(Hauser, 1993), chimpanzee “crying” at 6–8 weeks (Bard, 2000), and human infant 

crying at 6 weeks (Barr, 1990).  

The time course involved may reflect the changing quality of the mother-infant 

relationship, with both free-ranging and captive rhesus infants beginning to spend time 

away from their mothers at about 4 months of age (Berman, 1980). A mother's first 

postpartum estrus also occurs around the same point, potentially causing significant 

increases in separation, distress calling and infant tantrums (Berman et al., 1994). 

Males both began and stopped geckering earlier than females (also see Green, 1981), 

consistent with Newman et al.'s (1990) finding that female rhesus vocalize more than 

males during social separation in the second half of their first year. Erwin (1975) has 

argued that this sex difference in rhesus vocalization rates is very general, extending to 

“every age other than the period when the females have reached puberty and the males 

have not” (p. 376).  

 

Accompanying context 

Gecker production was not associated with any single behavioral context, with 

most geckers occurring when an offspring received maternal aggression (22%), when 

there was a proximity change such as mother moving away (19%), or when the 

vocalizer was following its mother (25%). Spontaneous geckers (22%) were also 

common. This finding is compatible with Newman's (1995) argument that at least 

some geckers are artifacts of basic nervous-system development rather than having 

signaling function per se. In a similar vein, Blass (1994) argues that human infant 

crying may function to maintain ideal levels of brain activation during early 
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development. Nonetheless, spontaneous geckers may also reflect distress with purely 

internal causes, or could be related to external circumstances that the observer cannot 

readily see. At present, this issue must be considered unresolved.  

Male geckering was found to be significantly more likely in the context of 

experiencing either aggression or affiliative behavior than was female geckering. 

However, the most striking sex difference appeared for offspring following their 

mothers, a context that accounted for almost half of all gecker bouts in females, but 

only 11% in males. One interpretation of this discrepancy is that females are less 

independent of their mothers than are males, particularly in early infancy (Lindell et 

al., 2003; Simpson et al., 1986; although see Brown and Dixon, 2000). If so, females 

might also become more distressed and vocal when following an inattentive mother 

(Lovejoy and Wallen, 1988).  

 

Acoustics and context 

The contexts found to be associated with geckering are consistent with 

interpreting these sounds as “separation-rejection” vocalizations, but the lack of 

context-specificity suggests they are not differentiated signals of specific need. While 

gecker acoustics supported statistically significant discriminant-function classification 

according to preceeding or co-occurring context, categorization success was only 35% 

correct overall. The upshot is that the degree of acoustic differentiation is unlikely to 

attain the “just noticeable difference” (sensu Nelson and Marler, 1990) necessary for 

conspecifics to reliably infer the context of calling from acoustics alone. Gecker 

variation appears more likely to reflect differences in vocalizer arousal, particularly as 

pulse reduplication, signal-to-noise ratio, and bout duration were the primary variables 

contributing to successful statistical classification. Each of these measures probably 

reflects overall vocal effort, with increasing arousal plausibly associated with higher 
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subglottal air pressures, greater vocal-fold tension, and more prolonged calling. This 

interpretation is consistent with Bayart et al.'s (1990) compelling results with coo calls 

produced by rhesus infants being separated from their mothers. Both infant behavior 

and associated coo acoustics were differentially affected by the degree of isolation, 

with concomitant effects found on hormone levels, monoamine neurotransmitter 

measures, and behavioral arousal. Total isolation produced increases in each of these 

domains, and triggered coos that were longer, harmonically richer, and more 

frequency modulated than those produced when mothers were visible to the infants in 

an adjacent cage.  

 

Maternal response 

Mothers showed an immediate response to only 38% of gecker bouts, and 

these reactions depended on a combination of gecker acoustics, offspring age, and 

whether the vocalizers were male or female. Mothers were most responsive to infants 

aged 4 months or less, and mothers were never observed to react to offspring older 

than 12 months. Maestripieri (1995) and Hauser (1993) have reported similar 

outcomes for stump-tailed macaques (Macaca arctoides) and vervet monkeys 

(Cercopithecus aethiops), respectively. Overall maternal responsiveness here was 

lower than in those studies, but probably because the current subjects were observed 

over a wider age range. Mothers were also more likely to react to male than to female 

geckers, and began to show responses earlier in the infant males' lives. Tomaszycki et 

al. (2001) similarly found that rhesus mothers responded more to males than to 

females across a variety of distress vocalizations, consistent with a general pattern of 

rhesus females showing somewhat greater parental investment toward sons than 

daughters (Bercovitch et al., 2000).  
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Overall, the outcomes experienced by geckering infants were about equally 

likely to be positive or negative, and based again on discriminant-function analysis, 

gecker acoustics could not be used to predict the nature of the outcome, or whether 

there would be any discernible outcome. However, univariate analyses did show that 

geckers with longer bout and pulse durations tended to be associated with more 

negative outcomes such as aggression, while less noisy geckers were associated with 

more positive outcomes. An additional, striking difference was that for offspring 7 

months or older, geckering was followed by aggression from mothers or other group 

members more than 50% of the time for females, but less than 10% of the time for 

males. Similarly, about half the gecker bouts from older male infants were associated 

with positive outcomes such as affiliation and attention, while the comparable figure 

for females was only about one-quarter.  

These differences probably reflect a combination of factors, including the 

vocalizer's age and sex, as well as the potential aversiveness of geckers as auditory 

events. On the one hand, rhesus mothers could be less responsive to, but more 

negative toward females due to their higher calling rates, noisier geckers, and older 

ages when calling. Reinforcement learning has often been proposed as the mechanism 

by which rat pups (D'amato et al., 2005), bird nestlings (Lotem, 1998; Stamps et al., 

1989), or rhesus monkey infants (Berman et al., 1994) adjust their vocalizing towards 

optimal rates of effectiveness. Female rhesus infants may vocalize more often and 

intensively than males because mothers are rarely responding. Mothers may respond 

less to females because females are geckering excessively beyond the ages at which 

maternal response to geckers is crucial to offspring well being.  

On the other hand, females may be more likely to exhibit these calling 

characteristics precisely because their mothers are less responsive and behave less 

positively toward them. If the latter, mothers are behaving differently toward males 
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and females for other reasons, and can in fact likely distinguish their respective 

geckers due to differences such as spectral peak frequencies. In addition, mothers were 

simply less likely to respond to calls from older individuals, which in most instances 

of which were females. Overall, then, while sex differences in both geckering and 

maternal responsiveness are apparent in these animals, the direction of causality 

involved between remains unclear.  

 

CONCLUSIONS 

Taken together, gecker vocalizations are likely to be highly salient and 

localizable to receivers. Gecker acoustics appear to be well designed to draw the 

attention of mothers and other listeners, while also potentially becoming aversive. 

These sounds become even more salient by virtue of regularly being accompanied by 

spasmodic jerking, occurring in lengthy bouts, and being associated with situations of 

evident vocalizer distress. While thus potentially being an effective distress cue, 

geckers are not highly specific to particular circumstances, and only infrequently elicit 

maternal response. The likelihood of maternal response was greatest when geckers 

exhibited pronounced spectral peaks and less noisiness (HNR).  

Most gecker bouts were emitted within the first 6 months of life, with peak 

occurrence when infants were 4 months of age and mothers were experiencing their 

first postpartum estrus. After this age, maternal responsiveness diminished markedly. 

Male infants both began and stopped geckering earlier in life than females, and 

mothers responded more to their calls. Sex differences were also found in gecker 

acoustics, albeit based on an imperfectly balanced sample. Female vocalizations were 

characterized by longer durations and higher-frequency spectral peaks, while male 

geckers were generally less noisy (HNR) and higher in amplitude. Differences in 

neuroanatomy, hormones, and vocal-fold size and shape are all likely to contribute to 
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these acoustic differences. Sex-biased maternal responsiveness is likely attributable to 

sex differences in gecker acoustics as well as the fact that females are emitting geckers 

at older ages than males.  
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CHAPTER 3 

Acoustic and behavioral analyses of silky sifaka (Propithecus 

candidus) “zzuss” vocalizations: Effects of context, sex, and 

individuality 

Erik R. Patel1,2 and Michael J. Owren3

 

 

ABSTRACT 

“Zzuss” calls are among the most common and loudest vocalizations produced 

by Madagascar’s rainforest silky sifakas (Propithecus candidus).  They have been 

hypothesized to be anti-predator calls, raising the issue of possible word-like 

reference, but are also associated with group cohesion and other functions.  Zzuss 

acoustics were examined in relation to context, vocalizer sex, and individual identity.  

Analysis included 160 zzuss vocalizations recorded from nine adults (four females and 

five males).  Acoustically, the calls combined separate turbulent noise and tonal 

components, often including frequency jumps and rapid, highly frequency-modulated 

components.  Call rate did not vary seasonally, but was highest in the early morning. 

Six call contexts were identified, with most vocalizations being produced during 

terrestrial disturbances, spontaneously while resting, and in response to separated 

group members.  Little evidence of context-specificity was found, arguing against 

referential function.  Although silky sifakas are sexually monomorphic, males and 
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female zzuss calls were acoustically different, most importantly in F0- and amplitude-

related features.  All acoustic measures differed between individuals, with F0-related 

variables again playing the largest role.  Overall, zzuss calls are multi-function 

vocalizations used both for terrestrial disturbance and group coordination.  They are 

shaped for salience, localizability, and caller identification rather than to have word-

like meaning. 

 

INTRODUCTION 

Silky sifakas and the “zzuss” vocalization 

The silky sifaka (Propithecus candidus) is a large white sifaka found only in 

northeastern Madagascar.  It is one of the most critically endangered of all lemurs, 

with a global population estimated between 300 and 2,000 individuals (Patel, 2009; 

Mittermeier et al., 2010).  While this species’ common English name comes from its 

long, silky-white pelage, local residents refer to these sifakas as “simpona,” an 

onomatopoetic label referring to its loud, frequency-modulated “zzuss” call (illustrated 

in Figure 3.1).  Neither the zzuss nor any other alarm calls of the genus Propithecus 

have as yet received detailed acoustic analysis, making this commonly produced call a 

good starting point in examining the vocal repertoires of eastern sifakas. 

Qualitative descriptions suggest that zzuss vocalizations may be generalized 

alarm calls.  They are emitted primarily in response to disturbances and potential 

danger, such as during terrestrial predation, intrusion of human observers, when 

animals are suddenly startled, after receiving aggression, and in inter-group encounters 

(Macedonia and Stanger, 1994; Petter and Charles-Dominique, 1979; Wright, 1998).  

However, zzuss calls may also facilitate group coordination.  Group members often 

produce zzuss calls antiphonally when hearing tonal, “howl” vocalizations emitted by 

a distant or “lost” group member.  Zzuss calls are also emitted spontaneously without 
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apparent cause (Irwin, 2006; Petter and Charles-Dominique, 1979).  As the first 

quantitative study of silky sifaka vocalization, the current work examines the acoustics 

and usage of zzuss calls, and contrasts possible accounts of this signal based on 

predator-related, group-coordination, and other functions. 

 

Primate “loud” calls 

Six major functions have been proposed for primate “loud” calls, a category 

that includes the zzuss vocalization.  These functions include mate attraction and mate 

defense (Buesching et al., 1998; Craul et al., 2004; Semple et al., 2002; Wich and 

Nunn, 2002), territory defense (MacKinnon and MacKinnon, 1984; Mitani, 1985a,b; 

Pollack, 1986), food advertisement (Clark and Wrangham, 1993, 1994; Elowson et al., 

1991; Wrangham, 1977), auditory impact (Owren and Rendall, 2001; Rendall et al., 

2009), predator alarm (Cheney and Seyfarth, 1990; Macedonia and Evans, 1993), and 

group coordination (Boinski and Garber, 2000;Trillmich et al., 2004; Rasoloharijaona 

et al., 2006).  The mate attraction and defense hypotheses are typically applied to 

copulation calls or song-like vocalizations in pair-living primates such as indri or 

gibbons, and can be ruled out for rainforest sifakas.  The latter do not have copulation 

calls or song-like vocalizations, and exhibit variable social structures that include, but 

are not limited to living in pairs (Patel, 2009).  Food-advertisement calling is generally 

associated with anthropoid primates with diets of high-quality, clumped foods like 

fruit or gum, and is seldom applied to folivorous prosimians such as silky sifakas. 

Auditory impact, predator alarm, and group coordination functions are likely 

the most relevant for zzuss vocalizations.  Auditory impact refers to having acoustic 

features that are inherently arousing and attention-getting to perceivers, including 

abrupt onsets and dramatic frequency modulation (Owren and Rendall, 1997, 2001).  

Nonlinear phenomena, such as biphonation, subharmonics, frequency jumps, and 
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deterministic chaos, are also hypothesized to induce these kinds of direct effects on 

listeners (Blumstein et al., 2010; Blumstein and Recapet, 2009; Owren and Rendall, 

2001; Reby and Charleton, 2011; Riede et al., 2004).  If so, auditory impact may be 

secondary to other functions in zzuss calls, with existing descriptions of usage 

suggesting predator alarm or group coordination as primary uses (Macedonia and 

Stanger, 1994; Petter and Charles-Dominique, 1979; Wright, 1998). 

 

Predator-related calling 

Specificity and “functional reference” 

A question that naturally arises for any predator-related primate call is whether 

it is specific to a particular kind of threat.  In some cases, such alarms are used 

broadly, as in most nocturnal primates (Evans, 1997; Petter and Charles-Dominique, 

1979; Scheumann et al., 2007; Zimmermann, 1995).  Diurnal primates can also exhibit 

non-specific alarm calls, for example with white-faced capuchin (Cebus capucinus) 

“alerting” vocalizations emitted to many different mammals and snakes, including 

both predators and non-predators (Digweed et al., 2005).  Chacma baboons (Papio 

cynocephalus ursinus) emit tonal “barks” as contact calls, which grade into harsher 

variants of the same call in the presence of large predators (Fischer et al., 2001).  The 

researchers suggest that barks may all reflect the same general affective state, varying 

according to “response urgency” (Owings and Hennessy, 1984) and vocalizer arousal. 

It is also common to observe more specific call usage against aerial than 

terrestrial threats, resulting in a “mixed alarm call system” (Fichtel and Kappeler, 

2002).  In semi-free-ranging ring-tailed lemurs (Lemur catta), for example, “shriek” 

vocalizations occur only to raptors, either when seen overhead or during attack.  In 

contrast, “click” calls are used not only against mammalian predators, but also when 

approached by humans, when moving through the trees, and by mothers to infants 



 51 

(reviewed in Macedonia, 1993).  Similarly, in other lemurs, alarm calls emitted to 

terrestrial predators often show low context specificity.  A number of other “terrestrial 

alarms” in lemurs are notably non-specific, including black-and-white ruffed lemur 

(Varecia variegata) “pulsed squawks,” redfronted brown lemur (Eulemur rufus) 

“croaks” and “woofs,” and Verreaux’s sifaka (Propithecus verreauxi) “growls” and 

“faks.”  In each case, the calls occur not only to predators, but also to nonpredators, in 

a variety of high-arousal social contexts, and spontaneously (Digweed et al., 2005; 

Fichtel and Kappeler, 2002; Macedonia and Evans, 1993). 

Finally, in a few cases, alarm calls of both types are used quite specifically.  

The clearest example comes from vervet monkeys (Chlorocebus pygerythrus), who 

exhibit distinctive alarms calls not only to raptors and terrestrial mammalian predators, 

but also snakes (Seyfarth et al., 1980; Cheney and Seyfarth, 1990).  In these cases, as 

well as for ring-tailed lemur click calls (Macedonia, 1990; Macedonia and Polak, 

1989), the animals produce each vocalization almost exclusively in “appropriate,” 

predator-specific contexts.  “Production specificity” is thus high for these calls 

(Macedonia and Evans, 1993).  Responses of listeners also show strong “perceptual 

specificity,” meaning that they exhibit, distinct, predator-specific escape responses 

when hearing the various calls.  

Acoustically differentiated vocalizations that show both production and 

perceptual specificity are argued to function much like human words (reviewed in 

Evans, 1997; Macedonia and Evans, 1993; Cheney and Seyfarth, 2010).  As 

underlying production and perception mechanisms are not known, however, such 

sounds are typically described as showing language-like, “functional reference” rather 

than having linguistic meaning per se.  Nonetheless, one persistent problem in 

claiming functional reference is that it is difficult to demonstrate strict production 

specificity.  While researchers may observe usage to be quite specific, for example, it 
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is difficult to rule out the possibility that the call can also occur in other contexts.  

Claims of specificity should therefore include systematic long-term data on a species’ 

entire vocal repertoire and across all possible contexts (Crockford and Boesch, 2003; 

Owren et al., 2003; Owren and Patel, 2008).   

 

Predation on silky sifakas 

If silky sifaka zzuss calls have a specialized, anti-predator function, the 

specific predator in question is the fossa (Cryptoprocta ferox).  This carnivore is 

Madagascar’s largest, a solitary species with both cat- and civet-like characteristics, 

both terrestrial and arboreal habits, and active both at night and during the day 

(Hawkins and Racey, 2005; Macedonia and Stanger, 1994; Wright, 1998; Wright et 

al., 1997).  The fossa is furthermore the only documented predator of eastern sifakas 

other than human beings (Goodman, 2003; Irwin et al., 2009; Karpanty and Wright, 

2007; Patel, 2005; but see Day et al., 2009).  Although these sifakas do exhibit marked 

anti-predator behavior and “roars” to several raptors, these animals are among the 

largest lemurs in Madgascar and are not known to be consumed by any extant, 

predatory bird (Goodman and Pidgeon, 1991; Karpanty, 2006; Karpanty and 

Goodman, 1999; Thorstrom and La Marca, 2000).  

 

Group-cohesion functions 

In addition to anti-predator usage, zzuss calling may facilitate “individuals of a 

group dispersed in space to gather” and to “coordinate group movement” 

(Rasoloharijaona et al., 2006, p. 8).  In a classic review of prosimian vocal 

communication, Petter and Charles-Dominique (1979) argue that zzuss vocalizations 

may have dual functions—acting both as an anti-predator alarm and as a group-

cohesion call.  As noted above, several species of rainforest sifakas are known to emit 
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zzuss calls immediately following howl vocalizations from a distant or lost group 

member (Irwin, 2006; Petter and Charles-Dominique, 1979).  Given a group-cohesion 

function, these sounds can be expected to include reliable cues to caller sex and 

identity, helping identify separated group members to one another while also 

advertising group size and composition to neighboring groups.  

Lemurs are different from many other primates in that males and females are 

often generally equivalent in body size (Kappeler, 1990, 1991; Wright, 1999).  Sex 

differences in vocal acoustics occur nonetheless including in crowned lemur (Eulemur 

coronatus) “clicks,” “hoots,” and “tonal” alerting and contact sounds (Gamba and 

Giacoma, 2007).  Individual variation in vocal acoustics has also been reported, 

including in crowned (Gamba and Giacoma, 2007), ring-tailed (Macedonia, 1986), 

and red-bellied lemurs (E. rubriventer; Gamba et al., 2011).  Four vocalizations have 

shown notable individual variability in gray mouse lemurs (Microcebus murinus), 

although with consistently larger differences found in harmonically structured and 

frequency modulated “trills” and “short whistles” than in broadband, noisy “grunts” 

(Leliveld et al., 2011).  Finally, both sex- and individual-related variation is evident in 

the acoustic structure of Milne-Edwards’ sportive lemur (Lepilemur edwardsi) loud 

calls, which may also have a group-cohesion function (Rasoloharijaona et al., 2006).  

Given this overall evidence, as well as the fact that harmonic structure and frequency 

modulation are visible in many zzuss vocalizations (see Figure 3.1), there is reason to 

also expect both sex- and individual-variation in this silky sifaka loud call as well.  
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Figure 3.1 Representative narrowband FFT spectrograms (20-ms Hanning 
analysis window, 16-kHz sampling rate) of (a) one zzuss call from each of five adult 
males (left to right: AS-2, BB, BC, Camp 3-1, PF); (b) each of four adult females (left 
to right: AF, AS-1, BP, Camp 3-2); and (c) examples from one adult male (left: BB) 
and one adult female (right: BP) enlarged to clearly reveal the frequency jumps 
occurring between the lower F0 contour and the rapid, frequency-modulated 
component. 
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The current work 

The goal of this investigation was to characterize the acoustics, usage, and 

behavior associated with zzuss calls, and thereby also determining the function or 

functions of this vocalization.  Several outcomes were expected if the zzuss is a 

specialized, anti-predator call.  First, its acoustic structure and usage were predicted to 

be specific to predation contexts, in this case involving fossa.  Associated anti-

predator behavior was also expected, which for the arboreal silky sifaka should 

include movement upward in the trees with downward staring (Fichtel and Kappeler, 

2002; Karpanty and Wright, 2007; Macedonia and Evans, 1993; Sauther, 1989).  

Finally, rates of occurrence were predicted to show both seasonal and circadian peaks 

congruent with fossa hunting patterns.  Seasonal variation was expected because fossa 

are known to kill more sifakas during the dry than the wet season (Dollar et al., 2007; 

Irwin et al., 2009; Wright, 1998).  Circadian variation was expected because fossa are 

suspected to hunt sifaka in the predawn hours when the lemurs are asleep (Dollar et 

al., 2007; Hawkins and Racey, 2005; Wright, 1998).   

Alternatively, if the zzuss call is primarily a group-coordination vocalization, 

most instances would be expected in response to the howl vocalizations of spatially 

separated or lost group members.  In this case, usage should be evenly distributed 

across seasons and times of day.  Those outcomes have been observed for the roar and 

shriek choruses of ruffed lemurs (Varecia spp.), which function both as general alarm 

and group-coordination vocalizations (Geissman and Mutchler, 2006; Pereira et al., 

1988; Vasey, 2003).  Finally, as described above, sex differences and individual 

variation in zzuss acoustics were specifically expected given a group-coordination 

function. 
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METHODS 

Subjects and study site 

Silky sifakas are large (approximately 6 kg), diurnal, arboreal, and highly 

social.  They inhabit mid-elevation, montane rainforests (generally 700 to 1900 m 

above sea level) within a few protected areas in northeastern Madagascar (Patel, 2009) 

and do not survive in captivity (Mittermeier et al., 2010).  Silky sifakas live in small 

cohesive groups with a mean of 4.3 individuals (± 1.8; range 2 to 9).  Social structure 

is either polygynous or pair-bonded, but occasionally multiple adult males are found in 

the same group.  These animals are territorial and maintain exclusive home ranges.  

The 95% kernel home range size is 41.4 hectares, with a daily path length averaging 

528 m ± 162.  The species is a folivorous seed predator that consumes more than 100 

different plants (Patel, 2009, 201l). 

The study was conducted at two mountainous reserves in northeastern 

Madagascar: Camps 2 and 3 of Marojejy National Park, and Site 1a of Anjanaharibe-

Sud Special Reserve.  At the time of this work, the group at Marojejy Camp 2 was 

comprised of three adult males, two adult females, a juvenile male, and two infants.  

The Marojejy Camp 3 group contained a single adult male, an adult female, and one 

infant.  The Anjanaharibe-Sud group contained one adult male and one adult female 

(see Table 3.1).  Despite some selective logging of precious wood (e.g., rosewood; 

Patel, 2007), the large elevation ranges of both reserves contribute to making their 

rainforests among the most pristine and biologically diverse in Madagascar. Marojejy 

National Park has recently been inaugurated as part of a World Heritage Site cluster 

(Garreau and Manantsara, 2003; Goodman, 1998, 2000; IUCN, 2007), and may 

contain more species of forest-dwelling birds (Goodman et al., 2000), reptiles and 

amphibians (Raselimanana et al.. 2000), and ferns (Rakotondrainibe 2000) than any 
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other reserve on the island.  With 11 species of lemurs, its primate diversity is also 

extensive (Duckworth et al., 1995; Sterling and McFadden, 2000). 
 
 

Table 3.1 Subject demographics and representation in the zzuss sample. 

Subject Sex Site Bouts Calls 

AS-2 Male Anjanaharibe-Sud Site 1a 4 8 

BB Male Marojejy Camp 2 10 13 

BC Male Marojejy Camp 2 11 21 

PF Male Marojejy Camp 2 13 30 

Camp 3-1 Male Marojejy Camp 3 4 8 

AS-1 Female Anjanaharibe-Sud Site 1a 4 12 

AF Female Marojejy Camp 2 14 26 

BP Female Marojejy Camp 2 15 35 

Camp 3-2 Female Marojejy Camp 3 4 7 

  Total    79 160 

  M/s.d. 8.8/4.8 17.8/10.5 
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Apparatus and procedure 

Audio-recording and behavioral observation 

Vocalizations were recorded using equipment and procedures recommended 

by Budney and Grotke (1997), including a Sony TC-D5 PRO IIR stereo cassette 

recorder (Sony Corporation of America, New York), directional Sennheiser MKH-70 

microphone (Sennheiser Electronic Corporation, Old Lyme, CT), MZA-14-P48U 48v 

phantom power supply, MZW 60-1 blimp windscreens, and MZS 20-1 pistol grip 

shockmount.  RF condenser microphones, such as the Sennheiser MKH70, are 

resistant to rainforest humidity and static discharge that can produce audible crackling 

and popping.  Recordings were made on one side of Maxell Professional MS Studio 

60-minute, audio-cassette tapes (IEC Type II; Maxell Corporation of America, 

Woodland Park, NJ) with noise reduction and automatic gain control turned off.  The 

microphone signal was recorded on both channels simultaneously, with offset input 

levels that helped ensure good recording quality across a range of signal amplitudes. 

Vocalizations were recorded using all-occurrence sampling (Altmann, 1974; 

Lehner, 1996) from July 15, 2001 to November 26, 2001, and from January 10, 2003 

to May 31, 2003.  Continuous audio recording of all vocalizations was initiated 

whenever weather conditions permitted and subjects were within 15 meters.  Data 

recorded for zzuss calls included Date and Time, Caller Identity, Anti-Predator 

Behavior, and Context.  Anti-predator Behavior was defined as caller movement of 

one meter or more, or staring for more than 3 s that began within 3 s of vocalizing.  

Movement codes included mutually exclusive categories of “Movement Up,” 

“Movement Down,” and “Movement Horizontally” (versus “No Movement”). Staring 

codes included mutually exclusive categories of “Staring Up” and “Staring Down” 

(versus “No Directed Gaze”).  Context included six mutually exclusive categories: 

“Aerial Disturbance,” “Agonism,” “Howl Vocalization” (by a conspecific), “Other 
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Lemur Species” (within 20 m), “Spontaneously During Rest,” and “Terrestrial 

Disturbance.”  

 

Estimating calling rate 

Zzuss call rate was estimated for the Marojejy Camp 2 group using all-

occurrence counts during known time periods.  Zzuss calls are emitted with a closed 

mouth and it is sometimes difficult for observers to determine individual callers when 

multiple animals are vocalizing.  However, all-occurrence counting was deemed to 

include scoring of virtually every zzuss.  When the group was not traveling and 

remained in the same location for more than five min., all vocalizations heard were 

tabulated and classified into one of the ten main call types that comprise the silky 

sifaka vocal repertoire (Patel, 2009).  The total durations of these rest periods were 

also recorded.  The call rate of the group was then determined by dividing the numbers 

of calls by the durations of the respective sampling periods involved.  While labor 

intensive, this method has successfully been used to estimate call rates in other 

primates, such as gorillas (Stewart and Harcourt, 1994).  Call-rate estimation was 

conducted over 15 months (July 15, 2001 to November 26, 2001 and July 21, 2002 to 

May 31, 2003). 

 

Call selection 

Vocalizations were digitized using a sampling rate of 44.1 kHz with 16-bit 

accuracy.  To improve frequency resolution in Fourier analysis, calls were 

subsequently downsampled to 22.05 kHz.  Analyses were conducted using the 

ESPS/waves+ 5.3 “xwaves” package (Entropic Research, Washington, DC) running 

on an SGI O2 workstation (Silicon Graphics Incorporated, Mountain View, CA).  

Waveforms and spectrograms were first inspected to identify zzuss bouts that did not 
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coincide with noticeable background noise (e.g., river noise, bird song).  A bout was 

defined as a series of one or more consecutive zzuss calls uttered by a single 

individual, preceded and followed by 30 s or more during which no zzuss 

vocalizations were emitted by that caller.  Approximately seven bouts were excluded 

because of high background noise levels.  Seventy-nine zzuss bouts comprised of 160 

individual calls were selected for analysis, representing five adult males and four adult 

females from three different social groups (see Table 3.1).  A similar number of bouts 

were analyzed for males (n = 42) and females (n = 37), with a total of 80 calls for each 

sex.  Although the final sample of calls was not perfectly balanced across individuals, 

we chose not to risk losing statistical power by reducing the already moderate sample 

size any further.  Therefore, at the risk of compromising independence, the entire final 

sample of calls was analyzed.  All calls were preprocessed to remove DC offset, filter 

out 60-Hz energy, and rescale the sound to the full, 16-bit available amplitude range 

(Owren and Bachorowski, 2007). 

 

Acoustic Analysis 

Nineteen continuous acoustic measures were used, spanning temporal, 

amplitude, and frequency-spectrum features of the vocalizations (see Table 3.2 for 

definitions of all variables).  Temporal aspects of zzuss calls were examined by 

determining the absolute duration of each call (Call-Dur), mean interval between calls 

within the same bout (Inter-Call), and the interval from the end of a call and the lip-

smack that often followed (LS-Latency).  The amplitude of each call was estimated as 

a signal-to-noise ratio (SNR) calculated as the root-mean-square (RMS) amplitude of 

the call in dB minus the RMS amplitude of a representative, adjacent segment of 

background noise.  SNR was subject to influence by the vocalizer’s distance from and 

orientation to the microphone, as well as by variation in background noise.  However, 
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such effects were present across the entire sample of calls, with little reason to suspect 

systematic error due to either factor.  Preliminary analyses suggested that many zzuss 

calls exhibit an initial and ending lower-frequency F0 contour that jumps to and from a 

rapid, frequency-modulated middle component (see Figure 3.1c).  This kind of 

frequency jump is an abrupt, discontinuous F0 change and is considered a nonlinear 

phenomenon (Brown et al., 2003; Riede et al., 1997; Riede et al., 2004; Wilden et al., 

1998).  All calls were scored in a one-zero fashion for the occurrence of this nonlinear 

event. 

Frequency-spectrum measurements were made for each call by computing a 

single spectral slice midway through the sound.  Each slice was characterized by 

superimposing a twelve-coefficient, autocorrelation-based linear predictive coding 

(LPC) function (0.023-s Hanning window) on a 512-point FFT spectrum (0.023-s 

Hanning window) over the same segment (Owren and Bernacki, 1998).  Frequency 

and amplitude values were extracted from the LPC envelope through cursor-based 

measurement.  Variables included first and second LPC peaks (Peak 1 and Peak 2), 

overall slope of the LPC spectrum (Spectral-Tilt), and mean, standard deviation, 

skewness, and kurtosis of the Fourier spectrum (Spectral-Mean, Spectral-StDev, 

Spectral-Skew, Spectral-Kurtosis).  The latter were computed as the first four 

moments of the normalized power spectrum, examined as a statistical distribution 

(Forrest et al., 1988).  The number of harmonics present was determined through 

visual inspection of narrow-band, fast-Fourier-transform-based spectrograms (22.05-

kHz sampling rate, 512-point Hanning window) of all calls.  Number of harmonics 

was recorded as an integer value between zero and ten.  Not all calls were 

harmonically structured, but those that were never exceeded ten evident harmonics. 

Procedures used to determine F0 closely resemble those described in Owren 

and Casale (1994) and Bachorowski et al. (2001).  Calls were first downsampled to  
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Table 3.2 The 19 variables used in acoustic analysis. 

Acoustic Measure Definition 

Amplitude RMS amplitude (dB) 

Call-Dur Duration of a zzuss call (s) 

F0-Mean Mean rate of vocal-fold vibration (Hz) 

F0-StDev Standard deviation of the F0 (Hz) 

F0-Min Minimum value of the F0 contour (Hz) 

F0-Max Maximum value of the F0 (Hz) 

F0-Range Difference between F0-Max and F0-Min (Hz) 

F0-Rate F0-Range divided by duration of F0 (Hz/s) 

Harmonic-Num Number of visible harmonics 

Inter-Call Mean interval between calls within a bout (s) 

LS-Latency 
Interval between a call and a subsequent lip-

smack (s) 

Peak 1 Frequency of the first LPC peak (Hz) 

Peak 2 Frequency of the second LPC peak (Hz) 

Signal-to-Noise Ratio (SNR) Difference between the RMS amplitude of a call 
and adjacent background noise (dB) 

Spectral-Mean 
Mean of the normalized frequency spectrum 
(Hz) 

Spectral-StDev Standard deviation of the normalized spectrum 

Spectral-Skew Relative symmetry of the normalized spectrum 

Spectral-Kurtosis Relative peakedness of the normalized spectrum 

Spectral-Tilt Overall slope of the LPC function 
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11.025 kHz to improve frequency resolution and inspected in narrow-band 

spectrographic form.  When possible, the ESPS/waves+ pitch-tracking routine was 

used to extract an F0 contour for each sound, verifying algorithm performance by 

overlaying the contour on its corresponding spectrogram.  However, this approach was 

frequently supplemented by manually enclosing the visible F0 contour using a cursor-

box.  The contour was then extracted as a series of maximum-amplitude points falling 

within that box, with automatic calculation of the mean (F0-Mean), standard deviation 

(F0-StDev), maximum (F0-Max), minimum (F0-Min), range (F0-Range), and rate of 

change (F0-Rate) across the call. 

Statistical analysis 

Statistical analyses were conducted using NCSS 2004 (Jerry Hintze, Kaysville, 

UT) and SPSS 13.0 (SPSS Inc., Chicago, IL).  Nonparametric statistics were used 

when dependent variables were not normally distributed according to Shapiro-Wilk 

and Anderson-Darling tests.  Multinomial, discriminant-function analyses were used 

in call classification by context, sex, and individual caller (e.g., Fischer et al., 2002; 

Gouzoules and Gouzoules, 2000; Macedonia, 1986; Patel and Owren, 2007).  Here, 

principal components analysis was applied before discrimination function analysis 

order to reduce the original, inter-correlated variables to a smaller set of orthogonal 

factors robust to multicollinearity and singularity (Mitani and Gros-Louis, 1995; 

Mundry and Sommer, 2007; Notman and Rendall, 2005). 
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RESULTS 

Zzuss acoustics 

General description 

Descriptive statistics for the acoustic features of zzuss vocalizations are shown 

in Table 3.3.  On average, zzuss bouts contained two, 220-ms calls spaced 2.4 s apart.  

Individual calls were often accompanied by a rapid head jerk, and though emitted with 

the mouth closed, the vocalizations were often high in amplitude.  The mean SNR 

value associated with these calls was almost 13 dB, even though recorded in a noisy 

environment.  SNR values ranged up to a maximum of 66 dB.  LPC analysis revealed 

two consistent frequency peaks, the first at 2670 Hz ± 860 appeared to be a formant, 

and was generally located near the upper frequency limit of the harmonic region.  The 

second peak, found at 6130 Hz ± 1310, was more variable.  The mean Spectral-Mean 

was just above 2400 Hz. As illustrated in Figure 3.1, the vocalizations include a 

broadband “noisy” component bracketing a middle, tonal section.  These noisy regions 

contributed to an overall spectral slope that was virtually flat.  The tonal region of the 

calls exhibited a mean F0-Mean of 1229 Hz ± 620, a mean of 3.7 ± 1.7 harmonics, and 

a mean F0-Range of 1927 Hz ± 1323.  Frequency jumps associated with a strongly 

frequency-modulated middle section occurred in 51.3% of zzuss calls, with the 

frequency modulation exhibiting a high mean F0-Rate of 8970 Hz/s ± 6532.  In the 

remaining 49.7% of the calls, the original F0-contour continued uninterrupted without 

dramatic frequency modulation.  About 80% of zzuss bouts were followed within 1 s 

by an audible lip-smack. 
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Table 3.3  Descriptive acoustics of zzuss vocalizations, based on 79 bouts and 160 
total calls. 

Acoustic Measure M s.d. Min Max Range CV 

Amplitude 73.6 2.57 64.7 79.3 14.9 0.04 

Call-Dur 0.22 0.04 0.10 0.34 0.23 0.18 

F0-Mean 1229.1 619.5 327.8 2704.4 2376.6 0.50 

F0-StDev 44.7 36.6 2.84 211.7 208.8 0.82 

F0-Min 390.6 147.9 168.0 904.4 736.4 0.38 

F0-Max 2317.2 1359.5 390.6 8354.9 7964.3 0.59 

F0-Range 1926.6 1322.8 86.13 8053.4 7967.3 0.69 

F0-Rate 8970.0 6532.1 395.6 37031.5 36635.9 0.73 

Harmonic-Num 3.71 1.69 0.0 10.0 10.0 0.46 

Inter-Call 2.37 1.13 0.22 5.8 5.58 0.48 

LS-Latency 0.54 0.14 0.23 0.97 0.74 0.25 

Peak 1 2671.6 855.9 1580.2 6704.6 5124.4 0.32 

Peak 2 6127.4 1306.4 3670 9400.3 5730.3 0.21 

SNR 13.4 11.7 -7.77 65.77 73.53 0.87 

Spectral-Mean 2432.8 850.1 581.54 4155.2 3573.7 0.35 

Spectral-StDev 1754.8 425.3 898.5 3090.9 2192.5 0.24 

Spectral-Kurtosis 10.8 9.34 -0.42 48.41 48.8 0.87 

Spectral-Skew 2.33 0.99 0.56 6.15 5.59 0.42 

Spectral-Tilt .015 .076 -0.44 0.20 0.64 5.20 
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Influence of caller sex 

Results of nonparametric, univariate testing for sex differences in zzuss 

acoustics are displayed in Table 3.4.  Mann-Whitney U tests revealed sex differences 

in 11 of the 19 acoustic measures.  Two-sample randomization tests, based on 100,000 

Monte Carlo samples (Manly, 1997), were also significant for the same subset of 

measures (all ps < .015).  Female zzuss calls exhibited higher F0-Mean, F0-Range, and 

SNR values, longer LS-Latency, and slightly more negative Spectral-Tilt than male 

versions. F0-Mean, which showed the highest effect size (i.e., 1.1), averaged 1526 Hz 

± 533 for females and 932 Hz ± 557 for males.  A two-proportion test with continuity 

correction confirmed that many more female calls (72.5%) contained frequency jumps 

and a strongly modulated region than did male calls (30.0%), χ2 = 27.2, p < .001. 

Principal-components analysis conducted prior to discriminant-function 

classification revealed four factors with eigenvalues greater than 1.0, which together 

explained 62.7% of the total variance in the original 19 acoustical measurements (see 

Table 3.5).  Factor 1 accounted for the most variance (33.6%), and was most strongly 

associated with F0-Mean, F0-Max, F0-Range, and F0-Rate.  Factor 2 accounted for 

14.3% of the variance and was most strongly associated with Spectral-Tilt and 

Spectral-Mean.  Factor 3 accounted for only 8.2% of the variance and was most 

strongly associated with Amplitude, LS-Latency, and Inter-Call.  Factor 4 accounted 

for 6.6% of the variance and was most strongly associated with Peak 1 and Peak 2. 

Discriminant-function classification of caller sex was based on principal-

component scores, and was initially conducted using approximately 70% of calls, 

randomly selected from the total set of 160. The remaining 30% of calls were used as 

a validation sample.  A final test was conducted on the whole sample, using the 

jackknife (“leave one out”) cross-validation technique to estimate percentage correct 

classification.  The initial model classified 71.3% of the animals by sex, which was 
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statistically above chance, and classification success was similar using the jackknife 

technique at 69.4% (Wilks’ lambda = .738, χ2 = 47.3, d.f. = 4, p < .001).  Calculating 

percentage error reduction helps clarify discriminant-function performance in taking 

chance rates into account (Bachorowski and Owren, 1999), which here was 50%.  

Percentage-correct in the final validation test thus corresponds to a 38.8% reduction in 

the expected error rate.  The canonical structure coefficients showed correlations 

between principal-component factors and the discriminant function to be .80 for 

Factor 1, .41 for Factor 2, -.04 for Factor 3, and .01 for Factor 4.  In other words, the 

F0-related measures captured by Factor 1 were clearly the most influential in 

classifying the acoustical measures according to vocalizer sex.  

 

Influence of individual caller 

Results of nonparametric, univariate testing of individual differences in 

acoustic structure are displayed in Table 3.6.  Kruskal-Wallis one-way, analysis of 

variance by ranks revealed significant individual variation in all acoustic measures (ps 

< .05).  Dunn’s test was used post-hoc in order to examine more precisely which 

acoustic features differed between particular individuals.  This statistic is a 

distribution-free multiple-comparison test that conservatively adjusts alpha level using 

Bonferroni correction according to the number of comparisons (Glantz, 2002).  All 

acoustic measures differed significantly between some pairs of individuals, with the 
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Table 3.4 Statistically significant Mann-Whitney U tests for sex differences in 
zzuss acoustics. 

 
Acoustic 
Measure 

Males 
(M/s.d.) 

Females 
(M/s.d.) 

Directi
on of 

Differe
nce 

Z 

Effect 
Size (d) 

 
P < 

       
Amplitude 73.1/2.9 74.1/2.1 F > M 2.78 .39 .005 

F0-Mean 931.9/556.7 1526.2/532.6 F > M 5.74 1.1 .001 

F0-StDev 35.3/33.5 54.0/37.3 F > M 4.86 .53 .001 

F0-Min 360.8/136.5 420.4/153.7 F > M 3.61 .41 .001 

F0-Max 1745.0/981.6 2889.3/1446.8 F > M 5.49 .93 .001 

F0-Range 1384.2/958.1 2469.0/1417.0 F > M 5.47 .90 .001 

F0-Rate 6223.8/4314.2 11716.2/7210.5 F > M 5.28 .92 .001 

LS-
Latency 

0.51/0.11 0.58/0.15 F > M 2.63 .53 .009 

Peak 1 2629.8/530.8 2713.4/1090.5 F > M 2.59 .10 .01 

SNR 10.6/4.9 16.2/15.4 F > M 3.11 .49 .002 

Spectral-
Tilt 

0.024/0.082 0.005/0.067 M > F 2.90 .26 .004 
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Table 3.5 Critical acoustics of zzuss calls identified through principal components 
analysis. 
 
 
 
Factor 

 
 

Eigenvalue 

 
% Variance 
Explained 

 

 
Acoustic 

Dimension 

 
Associated Acoustic Features 

(item weights) 

  1 6.38 33.6 F0 contour 

 
F0-Mean (.85), F0-Max (.94), 
 F0-Range (.96), F0-Rate (.95) 

 

 2 2.71 14.3 Spectral 
moments 

Spectral-Tilt (.66), Spectral-Mean 
(.68), Spectral-StDev (.89) 

3 1.56 8.23 Duration-
amplitude 

 
Call-Dur (.03), SNR (.1), 

Amplitude (.5), 
F0-StDev (.57), F0-Min (.83), 
LS-Latency (.49), Inter-Call (.40)  

 
     4 1.26 6.64 LPC Peak Peak 1 (.70), Peak 2 (.80) 

 

exception of Call-Dur.  F0 measures and Spectral-Mean differed most between pairs of 

individuals.  The occurrence of frequency jumps and associated, strong frequency 

modulation also varied significantly between individuals (χ2 = 105.9, df = 8, p < .001).  

The percentage of calls containing frequency jumps averaged 43.2% per individual, 

but ranged from 0% (for three individuals) to 92.3%. 

Discriminant-function classification by individual caller was conducted based 

on the same statistical procedures described earlier.  To ensure that these analyses did 

not confound sex and individual, separate sets of discriminant function analyses for 

individual were conducted for the five males and four females.  For males, the initial 

model classified a statistically significant 76.3% of the calls, and classification success 

using the jackknife validation technique was similar at 72.5% (Wilks’ lambda = .085, 

χ2 = 183.475, d.f. = 16, p < .001).  Chance-level assignment was 20% for these five 
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dependent variables, meaning the final validation test produced 65.6% error reduction.  

The canonical structure coefficients showed correlations between principal-component 

factors and the discriminant function to be .76 for Factor 1, .34 for Factor 2, .23 for  
 

Table 3.6 Statistically significant Kruskal-Wallis tests for individual differences 
in zzuss acoustics. 

Acoustic Measure Chi-Square 
Value 

Pairs of Individuals Different 
by Dunn’s Test 

   
Amplitude       26.2*** 2 

Call-Dur       19.6* 0 

F0-Mean       117.9*** 17 

F0-StDev       84.5*** 9 

F0-Min       66.4*** 11 

F0-Max       117.9*** 20 

F0-Range       114.3*** 20 

F0-Rate       112.9*** 18 

Harmonic-Num       52.7*** 10 

Inter-Call       79.1*** 11 

LS-Latency       38.9*** 4 

Peak 1       66.3*** 9 

Peak 2       58.1*** 11 

SNR       50.1*** 10 

Spectral-Mean       80.1*** 15 

Spectral-StDev       24.5** 2 

Spectral-Kurtosis       49.8*** 7 

Spectral-Skew       43.8*** 8 

Spectral-Tilt       34.2*** 4 

*p < .05, **p < .01, ***p < .001 
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Factor 3, and -.13 for Factor 4.  Thus, the F0-related measures captured by Factor 1 

were clearly the most influential in classifying the acoustical measures according to 

individual males.  For females, the initial model classified a statistically significant 

63.8% of the calls, and classification success was similar using the jackknife 

validation technique at 58.8% (Wilks’ lambda = .188, χ2 = 125.37, d.f. = 12, p < .001).  

Chance assignment with four dependent variables is 25%, meaning an error reduction 

of 45.1% in the final validation test.  The canonical structure coefficients showed 

correlations between principal-component factors and the discriminant function to be 

.54 for Factor 1, .28 for Factor 2, .28 for Factor 3, and -.69 for Factor 4.  The spectral 

peaks captured by Factor 4 were therefore the most important in classifying the 

vocalizations by individual female caller, while the F0-related measures captured by 

Factor 1 were influential as well. 

 

Influence of context 

Each of the 160 zzuss calls was assigned to one of the six contexts during 

recording.  A Kruskal-Wallis one-way analysis of variance showed that SNR was the 

only acoustic measure that differed between these contexts (χ2 =16.1, d.f. = 5, p < 

.007).  The highest mean SNRs were associated with Terrestrial Disturbance (M = 

19.2 dB) and Agonism (M = 19.1 dB).  The lowest mean SNRs were associated with 

Spontaneously During Rest (M = 10.2 dB) and Other Lemur Species Within 20 m (M 

= 11.1 dB).  To control for the influence of individual SNR differences on context, an 

additional Kruskal-Wallis test was run using only mean SNR values for each 

individual in each context.  No effect of context was apparent after controlling for 

caller identity (χ2 = 6.73, d.f. = 5, p > .23).  A cross-validated, multinomial 

discriminant-function analysis was then conducted to determine the extent to which 

the principal component scores predicted call context.  No overall effect was found for 
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the first four discriminant functions (Wilks’ lambda = .886, χ2 = 18.6, d.f. = 20, p > 

.55) and all eigenvalues were less than 0.1.  The final model classified only 20.6% of 

cases correctly, against a chance rate of 16.7% 

 

Zzuss usage and associated behavior 

General occurrence 

Zzuss calls occurred mainly in the Howl Vocalization (39.4%), Spontaneously 

During Rest (21.3%), and Terrestrial Disturbance (16.9%) contexts.  To a lesser 

extent, zzuss calls were emitted in the Other Lemur Species (13.1%), Agonism (7.5%), 

and Aerial Disturbance (1.9%) contexts.  A chi-square, goodness-of-fit test revealed 

that observed frequencies were not equivalent across the six contexts (χ2 = 81.8, df = 

5, p < .001).  However, it is possible that some of the “spontaneously” emitted zzuss 

calls were actually responses to unobserved terrestrial disturbance.  No difference was 

found in the relative proportions of zzuss emitted by males and females by context (χ2 

= 3.5, d.f. = 5, p > .62). 

 

Overall, daily, and seasonal variation in call rate 

Analyses confirmed zzuss calls as one of the most common silky sifaka 

sounds, making up 29.9% (14,952 of 50,036) of all vocalizations scored during all-

occurrence counts.  A total of 14,952 zzuss calls occurred during 1,676 resting and 

feeding periods over 1,530 total observation hours.  On average, the group produced 

10.5 ± 45.5 of these vocalizations per hour.  The overall rate was extremely variable, 

however, likely due to the antiphonal nature of zzuss calls and their occurrence across 

multiple contexts.  The highest rate noted was 481 zzuss calls during a 40-minute 

period, while these vocalizations did not occur at all in 54.9% (939 of 1709) of 

sampling periods. 
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Seasonal effects on calling were examined based on reproductive and weather 

cycles established for eastern sifakas living in northeastern Madagascar (Pochron et 

al., 2005; Vasey, 2006).  Zzuss rate was found not to vary significantly between 

gestation (February to April), birth (May to July), lactation (August to October), and 

mating (November to January) reproductive seasons (Kruskal-Wallis, χ2 = 4.0, d.f. = 

3, p > .20).  Rates also did not vary significantly between hot-rainy (January to 

March), transitional-cold (April to May), cold-rainy (June to August), and hot-dry 

(September to December) weather seasons (Kruskal-Wallis, χ2 = 4.6, d.f. = 3, p > .20).  

However, zzuss rate did vary on a circadian cycle (Kruskal-Wallis, χ2 = 48.9, d.f. = 3, 

p < .001).  As displayed in Fig. 2.2, call rate was highest early in the morning soon 

after the animals awoke (5:00 to 7:59 AM).  Rates were also high during late 

afternoon, around the time the group began traveling toward and settling into their 

sleeping trees (2:00 to 4:59 PM).  The lowest zzuss rates occurred during late morning 

(8:00 to 10:59 AM) and early afternoon (11:00 AM to 1:59 PM), respectively.  

 

 

Figure 3.2 Zzuss call rates by time of day for the Camp 2 group. 
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Anti-predator behavior 

Caller Movement could be coded for 92.5% (148 of 160) of the audio-recorded 

vocalizations, with the caller being partially out of view for the remaining instances.  

A chi-square goodness-of-fit test revealed that observed rates were not equivalent 

between the four Caller Movement categories (χ2 = 108.4, d.f. = 3, p < .001).  In the 

majority of cases (56.9%), callers did not move either while or after vocalizing. 

Movement Upward (14.4%) and Horizontally (15.0%) occurred about equally, with 

Movement Downward (6.8%) occurring least.  Caller gaze data were also available for 

these 148 calls, and observed rates were also significantly different between the three 

categories coded for this variable (χ2 = 35.9, d.f. = 2, p < .001).  No Directed Gaze was 

the most common outcome (54.7%).  However, a two-proportion test with continuity 

correction showed that Staring Downward (28.1%) during zzuss calling did occur 

significantly more often than Staring Upward (13.8%), χ2 = 9.14, p < .003.  

 

DISCUSSION 

Structure and function in zzuss acoustics 

General features 

Analyses revealed that zzuss calls are accompanied by a rapid head jerk, and 

most often emitted in bouts of two that are followed by an audible lipsmack.  On 

average, a given group produced more than 10 zzuss vocalizations per hour, although 

not in simultaneous choruses which often characterize their “aerial disturbance” roars.  

However, group members could emit these calls for sustained periods in some cases, 

including one instance of hundreds of zzuss vocalizations occurring over a period of 

about 40 min.  Overall, the calls were most often produced in the early morning hours.  

Zzuss calls are somewhat unusual in routinely showing broadband noise at the 

beginning and end, with a prominent, tonal mid-section.  Aside from zzuss variants in 
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other, related sifakas, this overall structure has not been documented in other lemurs 

(Macedonia and Stanger, 1994), and is not common in mammalian vocalizations 

generally (cf. Beeman, 1998).  Mammals do routinely produce calls in which 

“nonlinear” vocal-fold vibration can create a mix of chaotic noise and tonality (Wilden 

et al., 1998; Fitch et al., 2002; Tokuda et al., 2002).  However, the noise in zzuss calls 

is relatively uniform and appears to reflect turbulent airflow rather than vibration-

based, deterministic chaos—although these two kinds of noise can be difficult to 

distinguish (e.g., Tokuda et al., 2002).  The origins of the noise component of zzuss 

calls are thus as yet unknown.  In contrast, the tonal component clearly reflects 

regular, well-synchronized vocal-fold vibration.  Given the high amplitude, elevated 

mean frequency, and frequent extreme frequency modulation involved, this segment 

almost certainly entails substantial subglottal air pressure and vocal-fold tension (Fitch 

et al., 2002; Riede et al., 2007), which in turn likely reveals a high level of caller 

arousal (reviewed by Zimmermann et al., in press).  The frequency jumps and rapid 

frequency modulation are particularly dramatic, with pitch changes of almost 4 kHz up 

and down occurring over a period of less than 100 ms.  

Frequency jumps have not previously been identified in lemur vocalizations, 

while being found in just over half of the zzuss calls analyzed here—although mainly 

among females.  Although possibly widespread in primate vocalizations, frequency 

jumps have thus far been pointed out only in chimpanzees (Riede et al., 2004) and in 

infant macaques (Riede et al., 1997).  While this phenomenon represents a bifurcation 

in vibration regimes and is thus associated with some instability in vocal-fold action, 

there was no evidence of other nonlinear phenomena.  Some primate species possess 

specializations such as vocal sacs (Hewitt et al., 2002) and vocal membranes or vocal 

“lips” (Mergell et al., 1999) that may contribute to such nonlinearities.  It is unknown 

if Propithecus has such these specializations, although vocal membranes are found in 
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ring-tailed lemurs (Schön Ybarra, 1995; Stark and Schneider, 1960) and could be 

implicated by the rapid and extreme degree of frequency modulation shown here.  

 

Perception 

Both the acoustic structure and behavioral circumstances of zzuss calling likely 

makes these sounds highly audible, salient, and localizable. For example, while 

audiograms are not available for Propithecus spp., frequency sensitivity data are 

available for ring-tailed lemurs and some sifaka-sized monkeys.  Overall body size is 

important in such comparisons, as region of greatest auditory sensitivity in mammals 

is roughly inversely related to head (and body) size in (Masterton et al., 1969).  Ring-

tailed lemurs are smaller than sifakas, with maximal sensitivity at 8 kHz (Heffner, 

2004) and strong sensitivity between 5.7 and 16 kHz (Ramsier and Dominy, 2010).  

Silky sifakas would thus be expected to show greatest sensitivity at lower frequencies, 

which is consistent with finding that the somewhat larger blue monkey (Cercopithecus 

mitis) whose region of highest sensitivity lies between 1 and 16 kHz (Brown and 

Waser, 1984).  The 2.4 kHz spectral mean of zzuss vocalizations likely makes these 

calls readily perceptible to silky sifakas.  Furthermore, while ambient noise is often 

highest between 2 and 4 kHz in African rainforests, levels are lowest early in the 

morning (Waser and Brown, 1986), when zzuss calls are most common.  Zzuss 

vocalizations are also generally produced by animals 6 to 25 m above the ground (E. 

R. Patel, pers. obs.), which significantly improves transmission range relative to 

calling from locations closer to the ground (Waser and Brown, 1984; Mitani and Stuht, 

1998). 

The high amplitudes, frequency jumps, and extreme frequency modulation of 

many zzuss calls likely makes these sounds highly attention-getting, and are well 

designed for interrupting a conspecific listener’s ongoing behavior and triggering 
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autonomic changes consistent with response readiness (Owren and Rendall, 2001; 

Rendall et al., 2009).  Broadband noisiness and frequency modulation are also both 

major contributors to localizability in mammals, with high-frequency spectral cues 

being particularly important for the vertical plane (Brown et al., 1980; Brown et al., 

1982; Recanzone and Beckermann, 2004).  Auditory localization is further facilitated 

when salient visual events are also produced when vocalizing (Heffner, 2004), such as 

the head jerk that accompanies zzuss calls.  

 

Acoustic variation by sex 

Acoustics and classification 

Sex differences were found in the majority of acoustic measures, with the 

highest effect sizes observed for F0-related features, followed by aspects of call 

amplitude.  For example, F0-Mean values were approximately 60% higher in females 

than in males, and their calls were also much more likely to exhibit frequency jumps 

(72.5%) and extreme frequency modulation than were male versions (30.0%).  Sex 

differences also included female zzuss calls having higher amplitudes and SNR 

values, long latencies to lipsmack, slightly higher first spectral peaks, and slightly less 

noisy calls (slightly lower Spectral-Tilt).  There were no sex differences in call 

duration, which has also been the case for crowned lemur vocalizations (Gamba and 

Giacoma, 2007). 

Discriminant-function classification was just over 71% correct by sex, 

statistically higher than expected by chance but only an intermediate degree of error 

reduction at less than 40%.  Classification by sex was thus not as accurate as in a 

number of other primate studies (Leontopithecus rosalia: Benz et al., 1990; Eulemur 

coronatus: Gamba and Giacoma, 2007; Indri indri: Giacoma et al., 2010; Pan 

troglodytes: Mitani and Gros Louis, 1995; Callithrix kuhlii: Smith et al., 2009).  On 
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the one hand, any evidence of sex differences is of interest given that silky sifakas are 

considered monomorphic (Kappeler, 1990, 1991; Lawler et al., 2005).  On the other 

hand, the overall similarity across sexes suggests that differences in vocal acoustics 

will likely not occur primarily based on anatomical features correlated with overall 

body size, such as vocal-tract length (although contrast recent reviews by Patterson et 

al., 2008 and Rendall et al., 2007).  The frequency difference found in the first 

spectral peak of male versus female calls does hint at some divergence in body size, 

but the discrepancy was quite small.  

 

The origin of sex differences 

More pronounced differences are to be expected in call characteristics with 

greater “lability,” such as call duration and F0 features.  For example, zzuss call 

duration is probably not importantly influenced by vocalizer body-size, but could 

reflect underlying neural “programming,” vocal effort, or other factors.  While no sex 

differences occurred in zzuss duration, other monomorphic species such as indri 

(Giacoma et al., 2011) and sportive lemurs (Rasoloharijaona et al., 2006) do show 

such differences.  F0 characteristics can also be considered labile, even in an 

evolutionary context.  For example, larynx size is relatively unconstrained by body 

size, while overall larynx morphology is considered rather uniform among primates 

(Ankel-Simons, 2007), at least in the absence of additional specialization.  F0 

characteristics are largely proportional to vocal-fold length and thickness in nonhuman 

primates and humans (Rendall et al., 2005; Titze, 1989), meaning that selection 

pressure can act relatively freely in modifying larynx dimensions, vocal-fold size, and 

associated F0 characteristics.   

A reasonable conclusion is therefore that, while similar in overall size, silky 

sifaka males and females probably do differ in larynx and vocal-fold dimensions.  
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Some new world monkeys also exhibit little or no sexual dimorphism in weight, 

skeletal features, or pelage color/pattern, yet show sex differences in vocalization 

structure and laryngeal sac size (Hershkovitz, 1977).  Examples include “trills” and 

“long calls” produced by monomorphic golden-lion tamarins (Leontopithecus rosalia: 

Benz et al., 1990), as well as the “phee” calls of Wied’s black-tufted-ear marmosets 

(Callithrix kuhlii: Smith et al., 2009) and common marmosets (Callithrix jacchus: 

Norcross and Newman, 1993).  Developmentally, sex differences in laryngeal 

morphology have been traced to targeted gonadal steroid hormone effects occurring 

during reproductive maturation (e.g., Abitbol et al., 1999; Aufdemorte et al., 1983; 

Beckford et al., 1985).  As call types within a primate’s vocal repertoire can vary in 

the extent to which they exhibit sex differences, other silky sifaka vocalizations may 

show greater or smaller effects.        

 

Acoustic variation by individual 

Acoustics and classification 

Differences between individual callers were found in all acoustic measures.  

Call duration and amplitude contributed relatively little in either sex, while F0-related 

measures were important in both cases.  Spectral peaks also showed statistically 

significant variability, although more so in females than in males.  Discriminant-

function analysis successfully classified 73% of calls from the five males and 59% 

from the four females, with corresponding error-reduction rates of 66% and 45% 

respectively.  Interpreting these outcomes is complicated by the small sample sizes 

involved, but taking them at face value implies that silky sifaka males may show more 

variation in body-size and vocal-production anatomy than females.  The acoustics of 

sooty mangabey (Cercocebus torquatus atys) grunts have also been found to be more 
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individually distinctive in males than in females—which is at least partially 

attributable to possibly greater male body-size variation (Range and Fischer, 2004).   

 

The origin of individual differences 

In general, vocal-tract filtering has been identified as an anatomically grounded 

feature that can be particularly well suited for creating individual distinctiveness in 

spectrally dense primate calls (Owren et al., 1997; Rendall et al., 1998).  For instance, 

such effects have been observed in broadband, noisy lemur calls, including grunts in 

red-bellied lemurs (Gamba et al., 2011) and snorts in crowned lemurs (Gamba and 

Giacoma, 2007).  In other primates, examples include a variety of calls, incluing tonal 

“coos” and noisy grunts in macaques (Rendall et al., 1998), tonal grunts in chacma 

baboons (Fischer et al., 2002; Owren et al., 1997; Rendall et al., 2009), and noisy 

grunts in sooty mangabeys (Range and Fischer, 2004).  The relative stability of vocal-

tract filtering effects can be contrasted with the lability of features such as temporal 

measures and F0-related acoustics, which may therefore be less likely to contribute 

significantly to individual distinctiveness (Gamba et al., 2011).  

Yet, it is not clear that such vocal-tract filtering is a critical factor in individual 

distinctiveness in zzuss calls.  For example, the two frequency peaks measured here 

likely did not directly reflect vocal-tract filtering.  They were also more important in 

females—who were less well classified by individual than were males.  Instead, the 

current findings point specifically to F0-related features as being the most important, 

an outcome that has also been reported for tonal, frequency-modulated calls in both 

gray mouse lemurs (Leliveld et al., 2011) and sportive lemurs (Rasoloharijaona et al., 

2006).  Further, both F0 modulation and filtering-related spectral peaks contribute 

significantly to individual distinctiveness in ring-tailed lemur contact vocalizations 

(Macedonia, 1986).   
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Zzuss function 

Contexts of zzuss calling 

Overall, there was little evidence of context specificity for zzuss calls.  

Acoustically, only SNR appeared to differ among production contexts, but the 

statistical effect disappeared after controlling for individual variation.  The highest 

values were evident during terrestrial disturbance and agonistic contexts, but this trend 

was more likely indicative of generally higher caller arousal in these circumstances 

(Zimmermann et al., in press) rather than context-specific acoustic variation per se.  

Zzuss calls were also emitted in a variety of contexts, notably during terrestrial 

disturbance, spontaneously while resting, and in response to howls by distant group 

members.  The calls were also sometimes, but less frequently emitted when other 

lemur species were present, during agonism within the group, and in some cases of 

aerial disturbance.  Although it is possible that some of the “spontaneous” zzuss calls 

were emitted to terrestrial disturbances that the humans could not see, there would 

have been little effect on the overall heterogeneity of usage.  

 Zzuss calling also showed little seasonal variation, as might have been 

expected if the calls were not predominantly predator-related, in that fossa tend to hunt 

sifakas more during the dry season than at other times (Dollar et al., 2007; Irwin et al., 

2009; Wright, 1998).  The calls were produced at higher rates when sifakas were first 

waking up in the morning, which may be when fossa are hunting sifakas most actively 

(Wright, 1998).  However, elevated rates at that time of day may also reflect increased 

predator-related vigilance rather than predator-specific usage. While callers did stare 

downward more than upward, they seldom moved upward. Furthermore, that most 

common outcome was that zzuss calls were not associated with any particular gaze 

direction.  
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Implications for zzuss function 

The key criteria for functionally referential vocalizations are high production 

specificity and high perceptual specificity.  Finding low production specificity for the 

zzuss call here is consistent with previous research in Verreaux’s and Milne-Edwards’ 

sifakas in which playbacks of fossa vocalizations to Milne-Edwards’ and Verreaux’s 

sifakas did not elicit significant change in general activity, vigilance, height in canopy, 

or escape behavior (Fichtel and Kappeler, 2002; Karpanty and Wright, 2007).  Neither 

species uttered their hypothesized terrestrial predator vocalizations more after the 

playbacks than in a control period, although Verreaux’s sifakas did look downward 

more than upward after hearing the sounds.  As in the current study, the researchers 

found that the “alarm” vocalization was given across a number of contexts associated 

with high caller arousal (Fichtel and Kappeler, 2002).  Perceptual specificity was not 

tested in the current work, but evidence from other sifaka species suggests it would 

also be low.  For example, playing back “growl” calls that Verreaux sifakas calls emit 

to terrestrial predators has not been found to evoke clear escape responses—although 

subjects did look downward more than upward when producing the calls (Fichtel and 

Kappeler, 2002).   

Overall, silky sifaka zzuss calls, cannot be considered functionally referential 

signals. Instead, like Verreaux’s sifaka growl and fak calls, they are likely best 

interpreted as having both anti-predator and group-coordination functions. On the one 

hand, the calls do occur in the context of both terrestrial and (occasionally) aerial 

disturbance—including when human researchers first start to follow these animals 

from the ground (E. R. Patel, personal observation).  On the other hand, every howl 

vocalization heard from a spatially separated or lost group member elicits immediate 

zzuss calls from group members (E. R. Patel, personal observation). This result 

strongly supports a group-coordination function.  
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The findings furthermore reinforce previous evidence that anti-predator calls 

used against terrestrial species are less likely to be narrowly used or to evoke specific 

escape responses than are aerial predator vocalizations.  While there is no doubt that 

zzuss calls are triggered by the threat of predation, it may not be possible for listeners 

to respond effectively exclusively based on hearing the call by itself.  As predators, 

fossa exhibit both terrestrial and arboreal habits, thereby decreasing the chances that a 

particular or “standardized” escape response will work across most predation attempts.  

One conclusion, therefore, is that there has been little selection pressure on silky 

sifakas for more differentiated calling, at least as far as terrestrial predation is 

concerned.  A second, broader conclusion is that the lack of specificity shown by these 

zzuss calls underscores that even threat-related primate vocalizations need not be 

context-specific and word-like to be effective communication signals.  In other words, 

rather than simply viewing such calls though the lens of language and symbolic 

meaning, they should be understood on the own terms. In this case, the calls may be 

best interpreted as multi-purpose sounds that have mainly been selected for high 

salience.  

 

The role of acoustic variation by sex and individual 

The multi-function nature of zzuss vocalizations may be consistent with the 

pattern of sex- and identity-related acoustic variation found.  Specifically, 

classification results were stronger by individual than by sex, which must be 

considered at least somewhat surprising even in this generally monomorphic species.  

However, while listeners need not necessarily be able to distinguish either the sex or 

identity of a caller to effectively respond to alarm calls, effective group-cohesion 

function does require individual distinctiveness.  For example, being separated from 

the group for even a few days can prove fatal, particularly in juvenile silky sifakas 
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(E.R. Patel, personal observation).  Speculatively then, while there may not have been 

significant selection for individuality in zzuss calls stemming from their use as anti-

predator vocalizations, such cuing is important in allowing a lost animal to recognize 

and home in on zzuss calls heard antiphonally from its own particular group (see also 

Gamba et al., 2011; Macedonia, 1986; Rasoloharijaona et al., 2006). 

 

CONCLUSIONS 

A 15-month study of the loud zzuss vocalization that characterizes the silky 

sifaka lemur—one of the world’s rarest mammals—shows this call to typically include 

sections of turbulent noise, frequency jumps, and rapid, as well as rather extreme, 

frequency modulation.  Long-term data further shows that the zzuss usage and 

acoustic variation were consistent with having a combined function as a terrestrial-

disturbance and group-coordination call.  These results are consistent with outcomes 

from a number of other lemur and monkey species, but inconsistent with at least two 

aspects of some current research on primate communication. 

First, the lack of specificity in producing and responding to zzuss vocalizations 

underscores that signals need not have reference-like meanings in order to be 

functional.  Rather, zzuss calls are perhaps most strongly marked by having relatively 

extreme acoustic features that make them well suited to a more general, attention-

getting and alerting function that is useful across a variety of contexts.  One can also 

surmise that this kind of generalized function likely represents an evolutionarily older 

and more common condition for primate vocalizations.  Given the greater complexity 

involved, reference-like function probably emerges more rarely—for instance in 

circumstances of particularly well-differentiated threats and response strategies.  

Second, sex- and identity-related variation in acoustic structure were found in 

spite of this species’ generally monomorphic anatomy and lack of pronounced vocal-
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tract filtering effects.  In other words, vocal dimorphism can evidently occur even in 

the absence of other, common sexually selected primate traits, and individual 

distinctiveness can be mediated by acoustic cues that some have argued to be too 

labile to provide stable identity cuing.  Overall, selection on the zzuss call appears to 

have acted more strongly on its acoustic characteristics than the way it is used.  
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CHAPTER 4 

Non-nutritive tree gouging in wild silky sifakas (Propithecus candidus) 

and Milne-Edwards’ sifakas (P. edwardsi) 

                      

Erik R. Patel1,2

   

 

ABSTRACT 

Male sifakas routinely gouge trees just before chest scent marking, leaving 

long lasting visible marks.  Eastern sifakas, such as silky sifakas (Propithecus 

candidus) and Milne-Edwards’ sifakas (P. edwardsi), are believed to seldom consume 

bark or any tree exudates.  Therefore, male gouging is generally considered unrelated 

to foraging but rather is communicative in function, although the form and function of 

this remarkable behavior has not previously been examined in detail.  In this study, 

gouging behavior and the physical marks on trees were examined in wild silky sifakas 

and Milne-Edwards’ sifakas in Madagascar.  Species differences were found in gouge 

mark morphology.  Dominant males gouged most frequently and tended to have 

longer gouge marks.  Gouging was most frequent just before and during the mating 

season.  The resource gouging hypothesis was supported which proposes that gouging 

and associated scentmarking of critical resources (such as food and sleeping trees) 

advertises ownership and may facilitate relocation.  Most of the 102 gouged tree, vine, 

and epiphite species were food species (61.8%), and many were known species of 

sleeping trees (38.2%).  Moreover, multiple regression analysis revealed that the 

number of gouges per tree species was predicted by the percentile rank of those 
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species as food tree species and sleeping tree species.  Gouging appears to be an 

honest species-specific signal of male status that may promote scent longevity, attract 

the visual attention of conspecifics, and possibly remove the scentmarks of 

conspecifics. 

 

INTRODUCTION  

Many mammals, particularly felids and ungulates, create visual anomalies in 

conjunction with scent mark deposition.  For example, wild tigers (Panthera tigris) are 

known to urine mark in scrapes made on the ground (Smith, 1989).  Rutting male roe 

deer (Capreolus capreolus) that mark with scent glands between their hooves and on 

their heads, paw the ground to leave scratch marks and rub their antlers and head 

against tree branches to create scars (Johannson and Liberg, 1996).  In some cases tree 

death can result from extreme debarking produced by extensive body rubbing on tree 

trunks by moose (Alces alces gigas) and bison (Bison bison) (Bowyer et al., 1994; 

Bowyer et al., 1998), these phenomena were well known to 19th century American 

biologists: 

 
“…the satisfaction [Moose and Bison] take in rubbing themselves 
against whatever will oppose resistance, whether it be rocks, trees, 
bushes, or a clay-bluff; the telegraph-poles, however, erected along the 
railroads that cross their range, afforded them especial delight as 
scratching posts, and soon became as well smoothed and covered with 
tufts of hair and grease from their unctuous hides as are the posts about 
a farmer’s cattle yard.” Allen (1877), p. 468 

 

In England, bark stripping followed by urination and scent marking by eastern gray 

squirrels (Sciurus carolinensis) was a widespread problem with 50% to 100% of the 

trees damaged in some locations (reviewed in Koprowski, 1991).  Reward money was 

actually issued in the 1950’s for killing squirrels to mitigate this behavioral pattern: 
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“In 1953 the Forestry Commission launched a bounty scheme, whereby 
a shilling was paid for the tail of every grey squirrel killed anywhere in 
England, Scotland, or Wales.  Between March 1953 and the end of 
September 1955 nearly £33,000 was paid out.  At the beginning of 
1956 the reward was doubled…”  Shorten (1957), p. 151 

 
 

Amongst primates, several exudativorous species scent mark while gouging 

trees with their teeth for food resources such as gum, sap, and nectar.  Wild marmosets 

(Callithrix spp.) of both sexes often place circumgenital scent marks and urinate in 

newly opened exudate sources (Lacher et al., 1981), as well as gouging and scent 

marking dead wood that has no nutritional value (Coimbra-Filho and Mittermeier, 

1976; Rylands, 1985).  Captive male and female Asian slow lorises (Nycticebus spp.) 

facial scent mark and urinate in the majority of their gouges.  Freshly gouged 

branches, likely to contain the most exudate, are scent marked most while gouging 

(Nekaris et al., 2010).  The earliest observations come from gummivorous galago 

species (Galago sp.) that repeatedly bite branches, though often in non-foraging 

contexts, and rub their chest glands on the bite marks (Bearder and Doyle, 1974; 

reviewed in Schilling, 1979). 

Remarkably, some lemur species gouge and scent mark trees exclusively in 

non-foraging contexts.  Sifaka males, for example, routinely gouge trees by biting tree 

trunks removing bark, and then chest scent marking over the resulting depression 

created by the gouge (Lewis, 2005; Patel and Girard-Buttoz, 2008; Pochron et al., 

2005).  Such tree gouging and bark removal, for presumably non-nutritive reasons, has 

only been described in a few primate species, all of which are lemurs.  Powyzk (1997, 

2002) first considered the function of this behavior in diademed sifakas (Propithecus 

diadema) and proposed that males gouge just before over-marking in order to remove 

the scent marks of females, thereby preventing other males from retrieving olfactory 
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cues to female estrus.  Gouging has also been noted in male Alaotran bamboo lemurs 

(Hapalemur alaotrensis) that scratch papyrus reeds with their lower teeth and then rub 

the scratched spot with their well-developed brachial glands (Nievergelt et al., 1998).  

A similar behavioral pattern has been observed in captive greater bamboo lemurs 

(Prolemur simus) (pers. obs.).  In the most recent gouging study to date, it has been 

discovered that nocturnal weasel sportive lemurs (Lepilemur mustelinus) also gouge 

trees for non-nutritive, communicative reasons, although it is not associated with scent 

marking behavior.  Male and female sportive lemurs were found to gouge trees 

adjacent to their sleeping trees, but not sleeping trees per se, which suggests that 

gouging signals sleep site ownership and may be a form of saliva scent marking 

(Rasoloharijaona et al., 2010).  In most of these species, individuals may gouge many 

times per day resulting in long-lasting, visible marks that are believed to have a 

communicative function.    

The goal of this study was to conduct the first detailed examination of gouging 

in a Propithecus species in order to distinguish between several possible 

communicative functions.  Because western dry-forest sifakas occasionally consume 

bark (Richard, 1985), the first goal of this study was to confirm that gouging is 

actually non-nutritive in silky sifakas and bark is not part of their diet.  Therefore, the 

first long-term dietary study was undertaken of this critically endangered species 

(Patel, 2009). 

 There is only one breeding male in many sifaka groups, even though the group 

may contain several males (Kappeler and Schäffler, 2008; Morelli and Wright, 2006).  

Dominant male sifakas are known to scent mark at higher rates than subordinate males 

(Lewis, 2005; Pochron et al., 2005), have higher testosterone levels (Kraus et al., 

1999; Lewis, 2009), and more darkly stained chests due to increased secretion and 

marking with the sternal gland (Lewis, 2009).  It is therefore predicted that gouging is 
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a male status signal and that one sifaka male will gouge most and likely have the 

largest gouges. 

Some mammals scent mark critical resources such as food trees and sleeping 

sites in order to facilitate relocation and advertise ownership and willingness to defend 

these resources (honey badgers: Begg et al., 2003; sportive lemurs and bamboo 

lemurs: Irwin et al., 2004; otters: Kruuk, 1992; marmosets: Lazaro-Perea et al., 1999; 

golden lion tamarins: Miller et al., 2003), but this hypothesis has not been extensively 

tested in eastern sifakas.  Such resources are also highly visited by other group 

members, leading to a potentially large audience for these gouges and the scent marks 

that accompany them.  Sleep trees and food trees are often found along travel routes, 

and gouging these trees may produce a “bulletin board” effect (Johnston et al., 1994) 

that increases the likelihood of receivers detecting them (Gosling and Roberts, 2001).  

It is therefore predicted that silky sifakas gouge predominantly on tree species known 

to be food trees and sleeping trees.  Finally, as gouge marks may be a species-specific 

trace of the critically endangered silky sifaka, they can serve as a census tool during 

population surveys if correctly identified.  A final goal was therefore to identify key 

features of silky sifaka gouge marks, and to determine how they differ from gouges in 

a closely related sifaka species.    Therefore, the gouge marks of Milne-Edwards’s 

sifaka (Propithecus edwardsi) were also studied.  This work occurred at a field site 

where gouges were made rather low in height which permitted actual measurements 

and video recording of gouging behavior as well as photos.                                                 

Two specific predictions of the resource gouging hypothesis will be tested in 

this study.  First that, the percentiles of tree species in the diet of silky sifakas (food 

tree percentile) is a significant predictor of the number of gouges on food tree species, 

and second that the percentiles of tree species among sleeping trees (sleep tree 

percentile) is a significant predictor of the number of gouges on sleep tree species. 
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METHODS 

Study site and subjects 

For silky sifakas, data were collected on a single group from July 12 2009 to July 3 

2010 at Camp 2 (Marojejia) of Marojejy National Park in northeastern Madagascar (See 

Table 4.1).  For Milne-Edwards’ sifakas (Propithecus edwardsi), the data presented are 

measurements and photos of gouge marks by members of Group 4 (2 adult males, 3 adult 

females, 1 juvenile female) at Ialatsara Private Reserve in southeastern Madagascar from 

August and September 2007. 
 
Table 4.1 Silky sifaka subjects in the Camp 2 group of Marojejy N.P. 

Individual Age-Sex Class 

 
Age Estimate1 

(years) 
 

Years in Group 

AF Adult Female 20 to 25 9+ 

BP Adult Female 15 to 20 9+ 

LV Adult Male 10 to 15 3+ 

CC2 Subadult Female 4 4+ 

FB Juvenile Male 3 3+ 

TL3 Juvenile Male 2 2+ 

MB Infant Male 1 1+ 
1Age estimates refer to the start of the study in July, 2009 are based on dental wear for AF and BP. 
2 Emigrated (natural dispersal) in September, 2010 and no longer in the group. 
3 Disappeared from the group in February, 2011 and presumed dead since too young to disperse. 

 

Gouge behavior in silky sifakas 

All occurrences of gouging by group members were recorded in Rite-in-the-

Rain field data books (Altmann, 1974; Lehner, 1996).  Focal sampling was not 

conducted here for two reasons.  First, because gouging is a quick unpredictable 



 106 

behavior that often occurs while the group is traveling rapidly.  Secondly, because 

each gouged tree species had to be identified by a local botanical expert (Mr. Jean 

Chrysostome Bevao), which often took 5 to 10 minutes and would have created too 

many interruptions in the focal data being collected for the dietary study (see below). 

For each gouge, the following data were recorded: "Date/Time", "Tree 

species", "Height", and "Name of the gouging individual".  Local names for trees were 

initially determined by consultation with the local botanical expert who worked daily 

with our team.  Scientific names were subsequently confirmed when dried samples 

were identified by a professional botanist (Honoré Andriamiarinoro) at Missouri 

Botanical Garden in Antananarivo, Madagascar.  

 

Sleeping trees in silky sifakas 

Each afternoon, the silky sifaka group was followed to their sleeping trees. 

When eyes were closed and heads were down for more than 15 minutes, it was 

assumed that the current tree was their sleeping tree.  Each sleeping tree was then 

flagged, numbered, and a GPS point was taken of the location.  Species and local 

names were also identified for each sleeping tree.  The height of each sleeping 

individual and each sleep tree was also estimated.    

 

Diet composition in silky sifakas 

Data on feeding behavior were collected using random two hour focal animal 

sampling of all seven group members (Altmann, 1974; Lehner, 1996).  For each 

feeding bout, the following data were recorded: "Food species", "Plant part eaten", and 

"Feeding start and stop times to the nearest second".  Activity height of the focal 

subject was determined using five minute instantaneous samples.  Food species was 

initially recorded as a local/vernacular name (identified by Mr. Bevao) and later 



 107 

identified with scientific names at the Missouri Botanical Garden (identified by Mr. 

Andriamiarinoro) using botanical samples which were collected, pressed, and dried 

from every food species. Most of the samples were dried in the nearby city of 

Sambava using Cole Parmer drying ovens which were brought from the United States. 

These ovens are capable of maintaining a stable low temperature of approximately 40 

degrees Celsius. 

 

Gouge measurements, photos, and video of silky sifakas and Milne-Edwards’ 

sifaka 

Milne-Edwards’ sifaka tree gouging behavior was recorded using a Sony 

Handycam DCR VX2100 Camcorder.  Silky sifaka tree gouging behavior was 

recorded using a Sony Handycam HDR-CX 150 High Definition camcorder.  Gouge 

marks were measured for Milne-Edwards’ sifakas, but not for silky sifakas, as their 

gouge marks were too high to measure.  When a Milne-Edwards’ sifaka was observed 

gouging, the length, width, and height of each gouge was immediately measured 

whenever possible.  Photos of newly gouged marks were taken for both species.  Each 

photographed mark was later scored for specific aspects of gouge shape, including: 1) 

Number of discrete marks, 2) Overall shape, 3) Presence/Absence of the “bird 

footprint” pattern (see Figure 4.2). 

 

RESULTS 

Gouge size, shape, and substrates 

1169 total silky sifaka gouges, made only by males, were documented on 102 

species of trees, vines, and epiphytes (see Figures 4.1 and 4.2; Table 4.6).  Almost all 

gouges occurred on the trunks and limbs of living trees (94.7%), although some vines 

(3.7%) and epiphytes (1.6%) were also gouged.  In two rare instances, infant MB 
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gouged the branches of a dead tree.  The number of silky sifaka gouges per plant 

species ranged from 1 to 95 with a mean of 11.5 ± 18.8.  Gouge height averaged 8.4 m 

± 3.8.   

One high-quality video was made of tree-gouging in silky sifakas and is 

available online: http://vimeo.com/30899285.  Photos were taken of 30 newly gouged 

marks by silky sifaka adult male LV.  Six of these photos were too low in quality 

(wrong angle, low resolution, or too dark) to be evaluated.  In the 24 usable silky 

sifaka gouge photos, all gouges were found to be single irregular polygons (see Figure 

4.2), including circular (83.3%), rectangular (12.5%), and one triangular mark (4.2%).  

None exhibited the “bird footprint” pattern (described below), which has never been 

observed in silky sifakas (pers. obs.).  Most were circular (83.3%) in overall shape, 

though a few were rectangular (12.5%), and one was triangular (4.2%). 

One high quality video was made of tree gouging in Milne-Edwards’ sifakas 

and is available online: http://vimeo.com/30452561.  Measurements were made of 38 

Milne-Edwards’ sifaka gouges from two adult males, BR (n = 34) and BO (n = 4).  On 

average, each gouge was 2.84 cm ± .72 long, 1.99 cm ± .63 wide, and .30 cm ± .10 

deep.  Photos were taken of 42 Milne-Edwards’ sifaka gouges.  66.7% of the gouges 

exhibited a distinctive morphology that will be labeled the “bird footprint” pattern (see 

Figure 4.2).  Here, each gouge was comprised of a single larger oval region and 

several thinner “bullet” shapes with a small ungouged region in between.  Field 

observations suggest that it is likely the larger oval region is made by upward 

movement of the toothcomb, while the several thinner “bullet” shapes are made by the 

downward gouging and dragging of the canines and incisors.  The remaining 33.3% of 

gouges were single circular irregular polygons similar to silky sifaka gouges.   

 

  

http://vimeo.com/30899285�
http://vimeo.com/30452561�
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Photo: Eric Mathieu 

Figure 4.1  Silky sifaka adult male LV gouging (Marojejy National Park).  
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Individual and seasonal differences in silky sifaka gouging 

 

 

 
Figure 4.2  Representative gouge marks from silky sifakas (top two photos with a 
single round irregular polygon per gouge) and Milne-Edwards’ sifakas (bottom two 
photos with the “bird footprint” pattern showing the scraping of individual canines and 
toothcomb).  Total gouges per photo: upper left (1), upper right (1), bottom left (3), 
bottom right (4).  Photos by Erik Patel (top left), Kristen Alldredge (top right), and 
Cedric Girard-Buttoz (bottom left and right). 

 

Among the four silky sifaka males (see Table 4.2), significant differences were 

found in the number of total gouges per male (χ2 = 1460.9, df = 3, p < .001).  Most 

gouges were made by adult male LV (73.3%) who is the dominant male (E.R. Patel, 
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unpubl. data), although juveniles MB (10.8%), TL (9.8%), and FB (6.1%) also 

periodically gouged.  It was surprising that the 1-2 year old infant gouged more than 

the older juveniles.  Males also differed in the heights at which gouges were made 

(Kruskal-Wallis, χ2 = 18.7, d.f. = 3, p >.001), with the adult male and juvenile TL 

tending to gouge at lower heights than juvenile FB and the infant.  Significant 

differences were furthermore found in the total number of gouges per month (χ2 = 

204.6, df = 9, p < .001).  For both the adult male and the younger males, the largest 

number of gouges was observed in November and December, just before and during 

the onset of the mating season (See Figure 4.3).  

Measurements were made of 38 Milne-Edwards’ sifaka gouges from two adult 

males, BR (n = 34) and BO (n = 4).  BR is known to be the dominant male (J. Foltz, 

pers. comm.).  Gouge mark length was significantly longer in the dominant male BR 

(2.93cm ± .67) than BO (2.13cm ± .81; Mann-Whitney U, z = 1.77, p < .04).  The 

mean gouge width of BR was .52 cm higher than the mean width for BO, though this 

outcome was not significant (Mann-Whitney U, z = 1.41, p > .07).  Gouge depth was 

not different between the two males (Mann-Whitney U, z = .546, p > .57).  

 

Table 4.2  Gouging patterns for each male silky sifaka. 

Male Age-Class Total 
Gouges (%) 

Mean 
Gouge 

Height (m) 

Most 
Gouged 

Tree (%) 

Rank 
(Percentile) of 
Most Gouged 

Food Tree 

Rank 
(Percentile) of 
Most Gouged 

Sleep Tree 

LV Adult 
 

857 (73.3%) 8.2 

 
Hazinina 
(9.0%) 1 (99.0) 6 (85.7) 

FB Sub-Adult 71   (6.1%) 9.5 
Tavolo     
(9.9%) 26 (74.3) 3 (92.9) 

TL Juvenile 115  (9.8%) 7.9 
Mankavia 

(8.7%) 15 (85.1) 40 (4.8) 

MB Infant 126  (10.8%) 9.4 
Paka       

(8.7%) 35 (65.3) 2 (95.2) 
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Figure 4.3 Number of silky sifaka gouges per month by the adult male and three 
juvenile males    

 

Silky sifaka diet 

3828 focal hours of feeding data were collected.  Of the 101 food species 

consumed, most were trees (75.25%) and vines (15.84%).  Epiphyte ferns (2.97%), 

epiphyte hemi-parasites (2.97%) and terrestrial parasitic plants (1.98%) were also 

eaten. One non-plant food, soil, was also sometimes eaten (.99%).  The most 

commonly consumed plant part was leaves (48%).  While predominantly folivorous, 

they consume considerable amounts of seeds (31%) as well. They are frequent seed 

predators, consuming more seeds than fruit, and often discarding fruit to access seeds.  

However, fruit alone (11%) was also periodically consumed, as well as flowers and 

flower buds (10%).  Bark was never eaten, nor were any other exudates consumed 

(See Figure 4.4).  The percentile rank of each of the 101 food species consumed was 
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determined based upon the total feeding time on each food species.  These percentile 

ranks were used in the multiple regression analysis described below.  A full listing of 

all silky sifaka food species is presented in Patel (2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Percentage feeding time for plant parts in the silky sifaka diet.   

 

Silky sifaka sleep trees 

Sleeping tree data were obtained on 314 nights.  Each night the individuals within 

the group slept in 1 to 6 different trees within 25 meters of one another.  Individuals 

commonly slept alone or huddled in groups of two (particularly mother and infant).  The 

largest sleeping huddles contained three group members.  All individuals slept high in the 

canopy with mean sleeping heights of 15.5 m ± 4.09; mean sleeping tree height was 19.1 

m ± 4.38.  Mean activity height throughout the day (11.6 m ± 5.30) was lower than mean 

sleeping height (Mann Whitney U, Z = 26.9, p < .001).   

339 sleeping trees were flagged, identified, numbered, and comprised of 44 

species.  79.5% (35/44) of these sleeping tree species were food species.  The seven most 
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used sleeping tree species (all of which are highly preferred food trees) accounted for 

75.2% of all sleeping trees.  The number of nights a given tree species was used by at least 

one silky sifaka ranged from 1 to 329 nights and averaged 28.4 ± 62.3.  The number of 

nights a specific sleeping tree (n = 339) was slept in by at least one silky sifaka ranged 

from 1 to 47 nights and averaged 3.8 ± 5.4.  Preferences were also apparent for individual 

sleeping trees.  30 sleeping trees (8.8% of sleeping trees) were slept in more than 10 times 

and accounted for 40.6% of all sleep trees.  93.3% of these highly preferred individual 

trees were food trees.  The percentile rank of each of the 44 sleeping tree species was 

determined based upon the number of nights the species was used as sleeping tree.  These 

percentile ranks (see Table 4.6) were used in the multiple regression analysis described 

below.  A full listing of all silky sifaka sleeping trees species is presented in Patel (2011). 

     

Gouging distribution on silky sifaka food and sleep tree species 

63 (61.8%) of the 102 gouged tree, vine, and epiphyte species were known 

silky sifaka food species, and 39 (38.2%) of the gouged species were known sleeping 

tree species.  Because silky sifakas sleep very high in the canopy it was seldom 

possible to count gouges on sleeping trees, particularly given the ever dimming light.  

However, gouging of a sleeping tree just before sleeping was observed on 16 

occasions. 

Table 4.6 displays the number of gouges for each gouged species and the 

percentile rank of each of these species as food trees and sleeping trees.  Using the 

data in Table 4.3, a Spearman rank correlation matrix (with row-wise removal of 

missing values) was constructed to examine the monotonic pair-wise association 

between the numbers of gouges, food tree percentile, and sleep tree percentile.  

Number of gouges was moderately correlated with food tree percentile (r = .44, p < 
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.001, n = 62) and sleep tree percentile (r = .58, p < .001, n = 38).  Food tree percentile 

was not significantly correlated with sleep tree percentile (r = .08, p > .69, n = 28).   

A multiple-regression model was conducted to examine the extent to which the 

numbers of gouges made on particular trees were predicted by the extent to which 

those tree species are food trees and sleeping tress for this group of silky sifakas.  With 

an adjusted R-square of .424, the model successfully accounted for 42.4% of the 

variance (see Table 4.3).  Table 4.4 displays ANOVA results indicating that the linear 

relationship between the variables is significant (F2,25 = 10.95, p < .001).  Table 4.5 

shows the multiple linear regression equation estimates including the intercept.   Both 

of the independent variables, food tree percentile (t = 2.788, p < .001) and sleep tree 

percentile (t = 3.807, p < .001) were significant positive predictors of the number of 

gouges.  Examination of the standardized beta coefficients revealed that sleep tree 

percentile (beta = .556) was a better predictor of the number of gouges than food tree 

percentile (beta = .407).  No evidence of collinearity was found, as seen in the low 

variance inflation factor (VIF = 1.00) for each independent variable.  A scatterplot of 

the independent variables revealed no relationship.  Cook’s D was low for all rows, 

ranging from .000 to .365, which indicates that no single observation had a 

disproportionately large influence.  A Sharpiro-Wilk normality test of the residuals 

(test value = .946, p > .15) and examination of the normal probability plot found that 

the residuals were approximately normally distributed.  Finally, “residual versus 

predicted” and “residual versus predictor” plots did not reveal gross deviations from 

constant variance. 
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Table 4.3 Model Fit Summary 

Model R R Square 
Adjusted R 

Square 
. 

  Std. Error  
   20.735 

 
     1 .683a    .467 .424 

a Predictors: (Constant), Sleep Tree Percentile, Food Tree Percentile 

 

 

 
 
Table 4.4  ANOVA Results of the Multiple Linear Regression Model 

Model 
Sum of 
Squares df 

Mean 
Square    F P < 

   1 Regression  9412.225 2 4706.112 10.946 .001a 
Residual  10748.454 25 429.938   
Total  20160.679 27 

    
aPredictors: (Constant), Sleep Tree Percentile, Food Tree Percentile 
bDependent Variable: Number of Gouges 

 
 
 
 
Table 4.5 Coefficients of the Linear Regression Model 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t P < B Std. Error Beta 
    1 (Constant) -33.800 15.069  -2.243 .034 

Food Tree 
Percentile 

.471 .169 .407 2.788 .010 

Sleep Tree 
Percentile 

.529 .139 .556 3.807 .001 

aDependent Variable: Number of Gouges 
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Table 4.6  Genera, local names, and characteristics for all trees, vines, and 
epiphytes gouged by silky sifakas (n = 1169 gouges). 

 
Genus 

 
Local Name 

Gouge Count 
(Percentage) 

Food Tree 
Rank 

(Percentile) 

Sleep Tree 
Rank 

(Percentile) 
Uapaca Paka 95 (8.1) 35 (65.4) 2 (95.5) 
Symphonia Hazinina 89 (7.6) 1 (99.0) 6 (86.4) 
Criptocarya Tavolo 81 (6.9) 26 (74.2) 3 (93.2) 
Eugenia Rotro 67 (5.7) 6 (94.1) 7 (84.1) 
Weinmannia Lalona 56 (4.8) 2 (98.0) 1 (97.7) 
Mammea Vongo 55 (4.7) 11 (89.1) 15 (65.9) 
Syzigium Biando 51 (4.4) 14 (86.1) 25 (43.2) 
Ficus Mankavia 44 (3.8) 15 (85.2) 40 (9.1) 
Mimusops Nanto 38 (3.3) 10 (90.1) 4 (90.9) 
Polyscias Voantsilana 37 (3.2) 29 (71.3) 2 (95.5) 
Unknown Tsilomparimbarika 34 (2.91) 98 (3.0) 8 (81.8) 
Calophyllum Todinga 29 (2.48) 19 (81.2) 23 (47.7) 
Albizia Volomborona 24 (2.1) 4 (96.0) 13 (70.5) 
Ficus Fotsidity 21 (1.8) 9 (91.1) 24 (45.5) 
Dichapetalium Vahivy 19 (1.6) 7 (93.1) N/A 
Chrisophyllum Famelona 18 (1.5) 33 (67.3) N/A 
Albizia Sambalahy 18 (1.5) 18 (82.2) 32 (27.3) 
Diospyros Maintimpototra 17 (1.5) 25 (75.3) N/A 
Schefflera Aviavilahy 16 (1.4) 30 (70.3) N/A 
Plagioscyphus Soretry 16 (1.4) 5 (95.1) N/A 
Homalium Hazombato 15 (1.28) 34 (66.3) 17 (61.4) 
Erithroxylum Tapiky 14 (1.2) 16 (84.2) 33 (25.0) 
Unknown Tsimialarano 13 (1.1) 73 (27.7) N/A 
Unknown Vintanona 13 (1.1) 41 (59.4) N/A 
Ficus Voara 13 (1.1) 21 (79.2) N/A 
Canarium Haramy 12 (1.0) 57 (43.6) 5 (88.6) 
Grewia Sely 12 (1.0) 68 (32.7) N/A 
Schizoleana Tsiarinkarina 12 (1.0) 23 (77.2) 12 (72.7) 
Mascarenhasia Barabanja 11 (.94) 17 (83.2) 37 (15.9) 
Unknown Lalombary 11 (.94) N/A 14 (68.2) 
Potameia Antaivaratra 10 (.86) 74 (26.7) 21 (52.3) 
Ampelocysios Vahinkiribina 10 (.86) 12 (88.1) N/A 
Vernonia Biaty 9 (.77) 80 (20.8) N/A 
Pittosporum Maimbovitsika 9 (.77) 31 (69.3) 39 (11.4) 
Bathiorhamnis Telotritry 9 (.77) 45 (55.5) 20 (54.5) 
Tinopsis Fandifihana 8 (.68) 47 (53.5) N/A 
Homallum Mankaranana 8 (.68) 28 (72.3) N/A 
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Table 4.6 (Continued) 
 

Genus 
 

Local Name 
Gouge 
Count 

(Percentage) 

Food Tree 
Rank 

(Percentile) 

Sleep Tree 
Rank 

(Percentile) 
Dombeya Hafomena 7 (.60) 83 (17.8) N/A 
Unknown Mongy 7 (.60) N/A N/A 
Ficus Nonosay 7 (.60) 13 (87.1) N/A 
Unknown Mantalany 6 (.51) N/A 19 (56.8) 
Tambourissa Ambora 5 (.43) 65 (35.6) 26 (40.9) 
Abrahamia Haramy 

tangongona 5 (.43) 39 (61.4) 17 (61.4) 

Ocotea Tafonana 5 (.43) 50 (50.5) 11 (75) 
Garcinia Vongomena 5 (.43) 53 (47.5) N/A 
Oiospyros Hazonankodavitra 4 (.34) 84 (16.8) N/A 
Unknown Piro 4 (.34) N/A 9 (79.5) 
Abrahamia Rotro fotsy 4 (.34) 37 (63.4) N/A 
Bakerella Taintsitsihy 4 (.34) 8 (92.1) N/A 
Gouania Vahintsivory 4 (.34) 22 (78.2) N/A 
Unknown Ombavy 4 (.34) 76 (24.8) N/A 
Treculla Sitindry 4 (.34) 40 (60.4) N/A 
Homalium Hazambato 4 (.34) 34 (66.3) N/A 
Ampalis Ampaly 4 (.34) 41 (59.4) N/A 
Unknown Hazomafana 3 (.26) N/A 29 (34.1) 
Apodytes Lengo 3 (.26) 58 (42.6) N/A 
Aphloia Ravimbafotsy 3 (.26) 32 (68.3) N/A 
Abrahamia Tarantana 3 (.26) 59 (41.6) 30 (31.8) 
Ficus Trotroboara 3 (.26) 27 (73.3) N/A 
Landolphia Vahindrobanga 3 (.26) 3 (97.0) N/A 
Unknown Andravokona 2 (.17) N/A N/A 
Unknown Fanjavasarotra 2 (.17) N/A N/A 
Ficus Hamontana 2 (.17) 24 (76.2) 38 (13.6) 
Oncostemum Hasintoho 2 (.17) 43 (57.4) N/A 
Unknown Hazomena       2 (.17) N/A N/A 
Polyscias Loha       2 (.17) 62 (38.6) N/A 
Oncostemum Maimboloha       2 (.17) 56 (44.6) N/A 
Unknown Menahihy       2 (.17) N/A N/A 
Unknown Sarimanga       2 (.17) N/A N/A 
Unknown Tomenja       2 (.17) N/A N/A 
Unknown Tsivahibahitra       2 (.17) N/A N/A 
Unknown Dead Stick       2 (.17) N/A N/A 
Unknown Baroabe       1 (.09) N/A N/A 
Unknown Baromaitso       1 (.09) N/A 28 (36.4) 
Abrahamia Fanonahona 1 (.09) 48 (52.5) N/A 
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Table 4.6 (Continued) 
 
Genus 

 
Local Name 

Gouge 
Count 

(Percentage) 

Food Tree 
Rank 

(Percentile) 

Sleep Tree 
Rank 

(Percentile) 
Streblus Hampaly 1 (.09) 38 (60.40) N/A 
Harungana Harongana 1 (.09) 43 (57.4) N/A 
Unknown Hasina 1 (.09) N/A N/A 
Unknown Kabob'ala 1 (.09) N/A N/A 
Unknown Lalombary 1 (.09) N/A 14 (68.2) 
Unknown Mena voajofo 1 (.09) N/A N/A 
Unknown Somitrorana 1 (.09) N/A N/A 
Unknown Somotraorana BR 1 (.09) N/A N/A 
Unknown Tafomena 1 (.09) N/A N/A 
Unknown Tofonambory 1 (.09) N/A N/A 
Unknown Trotroka 1 (.09) N/A 42 (4.5) 
Unknown Trotrokoala 1 (.09) N/A 35 (20.5) 
Unknown Tsaramanga 1 (.09) N/A N/A 
Unknown Tsetseala 1 (.09) N/A N/A 
Unknown Tsialaramy 1 (.09) N/A N/A 
Unknown Tsifontso 1 (.09) N/A N/A 
Unknown Tsirangadranga 1 (.09) N/A N/A 
Unknown Vahileho 1 (.09) N/A N/A 
Unknown Vahimivotro 1 (.09) N/A N/A 
Unknown Vahimpanafana 1 (.09) N/A N/A 
Landolphia Vahimpingitra 1 (.09) 19 (81.2) N/A 
Unknown Vahinamalona 1 (.09) N/A N/A 
Unknown Valangariky 1 (.09) N/A N/A 
Unknown Valotra 1 (.09) N/A 27 (38.6) 
Unknown Vamivohotro 1 (.09) N/A N/A 
Unknown Voalombona 1 (.09) N/A N/A 
Unknown Voantsilankazaha 1 (.09) N/A 44 (.01) 

 

DISCUSSION 

Silky sifaka diet 

The intensive dietary study described in this report identified more than 100 

silky sifaka foods (Patel, 2011) and confirms that silky sifakas are folivorous seed 

predators.  Although more than 3800 hours of feeding data were collected, bark was 

never eaten, nor were tree exudates consumed.   
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However, silky sifakas at the Andaparaty field site in the Makira Natural Park, 

have been observed very rarely to consume the bark of Harungana trees (pers. obs.).  

Other eastern sifakas, such as diademed sifakas (P. diadema), also very occasionally 

consume bark and exudates, for example, feeding on bark accounted for .005% and 

exudates .006% of overall feeding time (Irwin, 2008).  Virtually all tree gouging in 

eastern sifakas is therefore probably non-nutritive and does not serve as a means of 

exudativory (Burrows and Nash, 2010).  However, western sifakas such as P. 

verreauxi, are reported to use their tooth comb to scrape and consume bark more 

frequently (Richard, 1978).  

 

Gouging functions  

Several functions of primate non-nutritive gouging have been proposed.  

Gouging may be a visual signal attracting conspecifics to scentmarks accompanying 

the gouge (Epple, 1970).  By removing bark, gouging may promote scent longevity by 

creating a more absorptive substrate (Rylands, 1985).  Gouging may remove female 

scentmarks and allow gouging males exclusive access to olfactory cues of female 

reproductive state (Powzyk, 1997, 2002).  Like scentmarking, gouging may be 

performed competitively between males and function as a male status signal 

(Kappeler, 1998).  Also like scentmarking, gouging may be a form of resource 

marking that advertises ownership of critical resources and facilitates relocation 

(Lazaro-Perea et al., 1999; Miller et al., 2003; Rasoloharijaona et al., 2010).  

 

Male status function        

The results of this study support the idea that gouging, like scent marking, 

functions as a male status signal.  73.3% of all silky sifaka gouges observed in this 

study were made by the dominant male who was the only adult male in this group.  In 
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slightly less than one year he gouged 857 times.  Between the onset of adulthood at 5 

years of age and an estimated maximum life expectancy of 27 years (King et al., 

2005), he may gouge nearly 20,000 times in his lifetime.  Gouging is likely to be 

energetically costly and may be an honest signal of male quality.    

Although data were only obtained on two adult male Milne-Edwards' sifaka, 

the gouge marks of the dominant male were actually longer in size than the 

subordinate male.  Seasonal patterns in silky sifakas also support a male status 

function.  For both the adult and three younger males, the largest number of gouges 

was observed just before and during the mating season, in November and December.  

These results are consistent with previous research on sifakas which has found that 

rates of male chest scent marking are influenced by male dominance status and season 

(Lewis, 2005; Pochron et al., 2005; Patel, 2006).  Dominant male silky sifakas and 

Milne-Edwards’ sifakas may gouge and scent mark more than subordinates because 

they are engaging in more overmarking (Patel, 2006; Patel and Girard-Buttoz, 2008).  

Given the size of the gouge marks (measured for the first time in this study), it is 

possible that males may be gouging out the scent marks of females in order to obtain 

exclusive access to odor cues of female estrus (Powzyk, 1997, 2002).  Consistent with 

this, occurrences of males overmarking females accounts for the highest proportion of 

overmarks in silky sifakas and Milne-Edwards' sifaka.  However, males do frequently 

overmark other males which may be more consistent with a competitive male status 

function (Patel, 2006).     

Male-male competition is substantial in sifakas, resulting in extreme male 

reproductive skew (i.e., one male siring most offspring).  This level of competition 

may not be expected, for example given the lack of sexual dimorphism in body size 

and canine size, a female dominant social system, and a tendency for even sex ratios 

(Kappeler and Schaffler, 2008).  The most reproductively successful sifaka males have 
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been found to have longer legs and greater thigh circumference than males siring 

fewer offspring.  Male-male competition in this genus seems “…more dependent on 

traits related to locomotor performance rather than on traits related to fighting ability” 

(Lawler et al., 2005, p. 273).  Gouging and scent marking, do in fact, require 

considerable locomotor ability, considering how often gouging and marking occurs 

and how rapidly males overmark the scent marks of females and other males.  In silky 

sifakas it is not unusual for the adult male to lag behind, out of view.  However, once a 

female scent marks, particularly during the mating season, the male seemingly “comes 

out of nowhere” leaping explosively between multiple trees to overmark her 

scentmark generally in less than 2 minutes.  Such episodes like this happen dozens of 

times each day in the mating season (Patel, 2006).  Intrasexual selection for longer and 

stronger legs may allow some males to be more effective at gouging, scentmarking, 

and overmarking. 

 

Critical resource function   

The hypothesis that gouge marks function to signal critical resources, such as 

food trees and sleeping sites, was supported.  61.8% of the 102 gouged tree, vine, and 

epiphyte species are known silky sifaka food species, and 38.2% of the gouged species 

are known sleeping tree species.  The multiple regression analysis tested this 

hypothesis more precisely.  Food tree percentile and sleeping tree percentile were 

significant predictors of the number of tree gouges accounting for 42.4% of the 

variance.  Males within a group may vary in the extent to which they gouge critical 

resources (see Table 4.2).  It is indeed telling that the dominant male gouged hazinina 

trees (Symphonia spp.) most, which is the most favored silky sifaka food (for the 

Marojejy Camp 2 group), as well as the sixth most preferred sleeping tree.   
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Gouging of food trees may improve foraging efficiency and advertise 

willingness to defend these resources.  In eastern sifakas, gouging and scent marking 

occur continuously throughout the day, throughout the home range, often as the group 

is traveling.  Given the large home ranges (95% kernel = 41.4 ha), daily path lengths 

(528 ± 162m), and considerable dietary diversity (>100 food species) of silky sifakas 

(Patel, 2011), gouging may also facilitate relocation of foods.  In contrast to current 

results, Verreaux’s sifakas have not been found to preferentially scent mark food trees 

(Lewis, 2006).  This discrepancy may be attributable to differences between species or 

study methodology.  In the Verreaux's sifaka study, a "food tree" was defined as a tree 

an individual fed in just before or just after it was scent marked.  In the current study, 

a "food tree" is a tree species determined to be part of the silky sifaka diet during the 

course of a one year dietary study. 

In the current study, sleeping tree percentile better predicted the number of 

gouges by silky sifakas than food tree percentile.  In retrospect, this difference is not 

surprising given the sleeping tree species preferences identified.  The seven most slept 

in tree species (all of which are highly preferred food trees) accounted for 75.2% of all 

sleeping trees.  Sleeping trees are likely to be a high priority resource since they are 

predominantly food trees and afford protection against predation by the fossa.  The 

latter is Madagascar’s largest carnivore and the only known predator of eastern 

sifakas, other than humans (Karpany and Wright, 2007; Patel, 2005).  Milne-Edwards’ 

sifaka may utilize several strategies against fossa predation, such as sleeping higher in 

the trees than when resting during the day, and almost never sleeping in the same area 

on consecutive nights (Wright, 1998).  Similarly, silky sifakas in this study slept at 

higher heights when resting and group members never slept in the same trees on 

consecutive nights, even though some specific sleep trees were reused many times 

over time. 
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Non-nutritive gouging in sportive lemurs 

Results thus suggest that male silky sifakas routinely gouge and scent mark 

their sleeping trees in order to advertise status, resource ownership, and food locations.  

Weasel sportive lemurs (Lepilemur mustelinus) also gouge trees near sleeping sites 

exclusively in non-foraging contexts.  In this species, however, both sexes gouge with 

equal frequency and no scentmarking has been observed.  Moreover, weasel sportive 

lemurs (L. mustelinus) have never been seen to gouge their actual sleeping trees, 

which could lead to predation.  Gouging only occurs in proximity to, rather than on, 

sleeping trees.  Unlike sifakas, sportive lemurs are cavity-nesting primates that sleep 

in tree holes.  In other words, gouging trees adjacent to their sleeping trees may signal 

use and ownership of these very limited resources without compromising the ability to 

evade predation.  Because eastern sifakas have a much larger home range and never 

sleep in the same region on consecutive nights, they may need to gouge sleeping trees 

to facilitate relocation.  Any increased likelihood of predation may be offset by 

sleeping very high in the trees.  Male golden lion tamarins (Leontopithecus rosalia) 

increase scentmarking rates soon before entering their sleeping tree cavities, despite 

high predation at these sites.  Like silky sifakas, they may do so because these scent 

marks both facilitate their search for preferred tree cavities and are likely to be 

encountered by conspecifics (Franklin et al., 2007). 

Despite different patterns of gouging, eastern sifakas and weasel sportive 

lemurs both seem to gouge locations that are often visited by conspecifics.  These 

locations have a large “audience” and thereby serve as olfactory “bulletin boards” 

(Johnston, 1994; Rylands, 1985).  Trees at Ialatsara Private Reserve, for example, 

have been found to have more than 100 gouge marks made by Milne-Edward’s sifakas 

(P. edwardsi) (Patel and Girard-Buttoz, 2008).  Gouge marks in both sportive lemurs 
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and sifakas may function as visual signals attracting conspecifics to chemical cues 

deposited by the gouger, and reduce the inefficiency of transmitting chemical signals 

so indirectly by scent marks (Gosling and Roberts, 2001).  Milne-Edwards sifaka 

gouge marks that were revisited 5 months after they were made were still quite visible 

(pers. obs.).  Saliva contained within the gouge marks may contain chemical cues 

utilized by females in the selection of sociosexual partners (meadow voles: Ferkin and 

Johnston, 1995; Mongolian gerbils: Smith and Block, 1991).  Saliva may also contain 

androgen hormones that can influence female estrus (boars: Groschl, 2010).  

 

Promoting scent longevity 

Gouging may also be a technique to promote scent longevity and prevent scent 

contamination.  Estimated scent mark persistence durations are generally quite brief.  

Scent marks may persist for ten days in dwarf mongooses (Helogale parvula; Rasa, 

1973), a week in klipspringer antelope (Oreotragus oreotragus; Roberts, 1998), and 

up to 100 days in laboratory living golden hamsters (Mesocricetus auratus; Johnson 

and Schmidt, 1979).  The high amount of rainfall in the humid forest habitats of silky 

sifakas and Milne-Edwards’ sifaka likely considerably reduce scent mark persistence 

times (Regnier and Goodwin, 1977).  By removing tree bark, gouging may create a 

smooth unadulterated or uncontaminated surface upon which scents can be deposited.  

Tree bark is much more chemically complex than the wood beneath it and can contain 

a variety of living organisms such as insects, mosses, fungi, and other plants (Harkin 

and Rowe, 1971).  Scent marking the bark may well alter the chemical composition of 

the scent mark in unpredictable ways.  For sifakas, gouging out a clean substrate 

beneath the bark may permit the oily secretions of their sebaceous chest glands to fix 

or preserve the volatile components in their anogenital secretions (Powzyk, 1997, 

2002; Scordato et al., 2007).  Gouging in sifakas is almost always followed by chest 
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scent marking over the gouge mark which is immediately followed by ano-genital 

rubbing.  The order of these behaviors (gouge, chest mark, ano-genital mark) is 

remarkably consistent and likely to be functional. 

 

Potential gouging dental specializations 

The silky sifaka adult male in this investigation is estimated to gouge 20,000 

times in his lifetime.  A final question is whether the morphology of the sifaka 

toothcomb can be considered an adaptation for tree gouging.  A variety of cranial 

(Vinyard et al., 2003) and dental features (Eaglan, 1986) have been identified as 

potential specializations for exudativory in primates.  For example, the “short tusked” 

anterior dentition of marmosets and the large tooth combs of fork-marked lemurs are 

generally considered adaptations for gummivory (reviewed in Nash and Burrows, 

2010).  Anatomists have remarked that amongst folivorous lemurs, sifakas have an 

unusually robust four-tooth comb.  It is characterized by a “marmoset-like” 

morphology with high crowned teeth in the comb, which is narrow mesiodistally 

(Eaglen, 1986; Rosenberger, 2010).  However, since no sex differences have been 

reported in toothcomb structure or wear to date, it seems unlikely that silky sifaka 

toothcombs are specialized for tree gouging.  Lemur dentition does correlate with diet 

to some extent (reviewed in Cuozzo and Yamashita, 2006), and their robust tooth 

combs may therefore have evolved to facilitate periodic bark extraction and 

consumption by both sexes, which is seen more often in western sifakas (Richard, 

1985).  Sifaka tooth combs may be an example of a preadaptation where the dental 

morphology shared by both sexes, evolved for dietary reasons, yet permits one sex to 

gouge trees on a daily basis as a communication signal.   

 

 



 127 

 

C ONC L USI ONS 

Non-nutritive tree gouging by male eastern sifakas likely serves multiple 

functions.  This study has found evidence that gouging, like scent marking, functions 

as a male status signal as well as signalling critical resources.  Because gouging is 

generally accompanied by chest (and maybe saliva) scent marking, it is difficult to 

separate the unique functions of gouging per se.  However, preliminary data suggests 

that comparing responsiveness to male scentmarks with and without gouges may 

permit several gouging-specific hypotheses to be tested (Patel and Girard-Buttoz, 

2008).  Unique functions of gouging may include attracting the visual attention of 

conspecifics, promoting scent longevity by removing bark and scent marking the more 

absorptive wood beneath, and gouging out the scent marks of conspecifics (Powzyk, 

1997, 2002; Rylands, 1985).   
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CHAPTER 5 

Dissertation Conclusion 

 

This dissertation examined a number of issues that are of current interest to the 

fields of primate vocal and olfactory communication.  The results of the first long-

term study of the silky sifaka (Propithecus candidus) are also presented.  The goals of 

the three studies within this dissertation were reviewed in Chapter 1.  This final 

chapter reviews the results and discusses the broader implications of the findings. 

The twenty-four month longitudinal study described in Chapter 2 identified 

several infant characterstics and acoustic features which influenced the likelihood of 

mothers responding to their infants’ “gecker” vocalizations.   Mothers were most 

responsive to tonal high frequency geckers with high harmonic-to-noise ratio (HNR) 

values and high values for the first spectral peak (see Figure 2.1.a.).  High frequency 

variants of a distress call have often been correlated with increased arousal and pain as 

well as being perceived as aversive by receivers (human infants: LaGasse et al., 2005; 

redfronted lemurs: Fichtel and Hammerschmidt, 2002; pig-tailed macaque: Gouzoules 

and Gouzoules, 1989; piglets: Weary et al., 1998).  Contrary to the results presented in 

Chapter 2, low HNR values (increased noisiness) are more often associated with high 

arousal contexts likely to induce receiver response (chacma baboons: Fischer et al., 

2001, Rendall, 2003; infant elephants: Stoeger et al., 2011; bonnet macaques: Coss et 

al., 2007).  However few studies have assessed receiver responses to variation in 

HNR.   

Why might rhesus mothers be more responsive to gecker bouts containing 

more tonal gecker pulses?  Tonal geckers may have higher mean frequencies and 

thereby lead to greater maternal response.  Tonal geckers are also generally found 
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within heterogenous bouts which also contain more typical noisy geckers (see Figure 

2.1.a.).  Heterogenous bouts, due to their novelty and variation, may be more salient to 

mothers (Todt, 1988; Jovanovic and Gouzoules, 2001).  A third possibility is that this 

result is an artifact of mothers in general being more responsive to the geckers of 

males who have higher HNR’s than the geckers of females. 

Even after controlling for body weight, the geckers of males were found to be 

less noisy, louder, shorter, and have lower spectral peaks than female geckers.  These 

results importantly show that sex differences in the acoustic structure of infant 

vocalizations are evident within the first two years of age.  These acoustic cues to 

infant sex are possibly utilized by mothers since maternal responsiveness was higher 

for male geckers (47.2%) than female geckers (17.4%). 

Acoustic cues to infant age were also found, although they were restricted to a 

few temporal measures.  Younger infants emitted fewer pulses per bout, shorter 

pulses, and shorter bouts.  These slight changes can be assumed to be maturational 

change, as seen in other nonhuman primates (Hammerschmidt et al., 2001; Winter et 

al., 1973).  Mothers may have utilized these cues since they were most responsive to 

young infants.  Although infants as old as 17 months emitted geckers, more than 75% 

of the geckers to which mothers responded were emitted by infants 4 months old or 

younger.  Overall, mothers showed immediate response only to 38% of gecker bouts 

which is similar to stump-tailed macaques (Maestripieri, 1995).  That most geckers 

were not responded to, particularly for older infants, suggests that geckers of older 

infants may not be an honest reflection of need (Maestripieri, 2002). 

Acoustic variation did not differ appreciably between contexts which suggests 

that geckers are not differentiated signals of specific need.  Geckers were produced in 

nine major behavioral contexts.  Most geckers occurred while the infant was following 

its mother (25%), after receiving maternal aggression (22%), and when the distance to 
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the mother changed such as when mothers moved away (19%).  Spontaneous geckers 

(22%) were also common, which is consistent with the idea that some geckers are 

artifacts of basic nervous system development rather than having signaling functions 

per se (Newman, 1995). 

In sum, geckers are likely to be highly salient and localizable to receivers.  The 

overall acoustic structure of geckers consists of multiple pulses of broadband noise 

with occasional periodic components.  With just one reliable frequency peak just 

below 3000Hz, geckers can be considered “spectrally structured noise” (Beeman, 

1998).  Their abrupt, high-amplitude pulses and broadband atonal spectra likely make 

geckers particularly difficult to ignore as an auditory event (Owren and Rendall, 1997, 

2001). These same features also suggest that geckers should be easy to localize in both 

vertical and horizontal dimensions (Brown et al., 1982; Heffner, 2004; Recanzone and 

Beckermann, 2004). Moreover, auditory localization is facilitated when sounds are 

produced in conjunction with salient visual events (e.g., Heffner, 2004), such as the 

dramatic, spasmodic wholebody jerking that can accompany geckering. Geckers are 

thus well designed to serve as signals of distress, and communicative significance 

likely adds additional salience for species-specific listeners. 

Chapter 3 discusses a 15 month study of zzuss vocalization structure and 

function in wild silky sifakas inhabiting the mountainous rainforests of northeastern 

Madagascar.  These calls are one of the loudest and most commonly produced silky 

sifaka vocalizations.  However, neither the zzuss nor any other alarm calls of the 

genus Propithecus have as yet received detailed acoustic analysis.    

Acoustic analyses revealed that zzuss bouts, on average, are comprised of two, 

220-ms calls spaced 2.4 s apart.  While vocalizing, callers rapidly jerk their heads as if 

sneezing, and for unknown reasons most calls are followed by an audible lipsmack 

within 1 s.  Though emitted with the mouth closed, signal-to-noise ratio was quite high 
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confirming that these are “loud” calls.  An average of 10.5 zzuss calls were produced 

by the group per hour, but up to several hundred calls have been documented within 

one hour.  The acoustic structure of zzuss calls is somewhat unique in routinely 

showing broadband noise at the beginning and end, with a prominent, tonal mid-

section.  This overall structural pattern has not been documented in other lemur genera 

(Macedonia and Stanger, 1994), and is not common in mammalian vocalizations 

generally (cf. Beeman, 1998).  The rapid frequency modulation and frequency jumps 

are particularly dramatic, with fundamental frequency changes of almost 4 kHz up and 

down occurring in less than 100 ms.  51.3% of zzuss calls contained frequency jumps 

which have not previously been identified in lemur vocalizations.  Frequency jumps 

have thus far only been found in chimpanzees (Riede et al., 2004) and in infant 

macaques (Riede et al., 1997), though they are probably more widespread. 

 Zzuss vocalizations have most often been hypothesized to function as group 

coordination calls or anti-predator calls against predation by the civet-like fossa, 

Madagascar’s largest carnivore.  Some of the predictions of the anti-predator 

hypothesis were partially supported.  16.9% of zzuss calls were emitted during 

obvious terrestrial disturbances.  21.3% of zzuss calls were emitted spontaneously 

while resting which may include some terrestrial disturbances which were not readily 

observable to us as researchers but were noticed by the animals. Callers also stared 

downwards (28.1%) more than they stared upwards (13.8%).  Zzuss were also 

produced at higher rates when sifakas were first waking up in the morning, which may 

be when fossa are hunting sifakas most actively (Wright, 1998).  However, several 

predictions were not well supported.  Acoustic variation showed little evidence of 

context specificity.  In other words, there was no zzuss variant or call subtype which 

was emitted during terrestrial disturbances or any of the other five major contexts.  

Callers seldom moved upwards, in most cases (56.9%) there was no movement.  
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Finally, although fossa tend to hunt sifakas more during the dry season (Dollar et al., 

2007; Irwin et al., 2009; Wright, 1998), call rate did not vary seasonally. 

The predictions of the group coordination hypothesis were more strongly 

supported.   39.4% of zzuss calls were emitted in response to the “howl” lost calls of 

distant group members; which is higher than any of the other five contexts.  Seasonal 

peaks in call rate were not predicted and not observed.  Callers were not predicted to 

move, and seldom did so.  Sex and individual differences were found in zzuss acoustic 

structure which is characteristic of other lemur group cohesion calls (Milne-edwards’ 

sportive lemur: Rasoloharijaona et al., 2006; gray mouse lemurs: Leliveld et al., 2011; 

ring-tailed lemurs: Macedonia, 1986).    Thus, zzuss usage and acoustic variation are 

consistent with having a combined function as a terrestrial-disturbance and group-

coordination call.  They cannot be considered functionally referential calls due to the 

low production specificity documented in this study.   

Individual differences in zzuss acoustic structure were slightly more robust 

than the sex differences.  59% of the calls from the four females and 73% of calls from 

the five males were successfully classified according to discriminant function analysis.  

Calculating percentage error reduction helps clarify discriminant-function 

performance by taking chance rates into account.  Error reduction for classification by 

individual would be 66% for males and 45% for females.  Classification success was 

just over 71% correct by sex, statistically higher than expected by chance but only an 

intermediate degree of error reduction at less than 40%.  Classification by sex was thus 

not as accurate as in a number of other primate studies (Leontopithecus rosalia: Benz 

et al., 1990; Eulemur coronatus: Gamba and Giacoma, 2007; Indri indri: Giacoma et 

al., 2010; Pan troglodytes: Mitani and Gros Louis, 1995; Callithrix kuhlii: Smith et 

al., 2009).  However, since silky sifakas are considered monomorphic (Kappeler, 

1990, 1991; Lawler et al., 2005), any evidence of sex differences is of interest. 
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Finally, Chapter 3 also examined which acoustic features most distinguished 

individuals and the sexes.  This is a topic of some debate.  On the one hand, broadband 

noisy calls (e.g. “grunts”) and tonal calls with low fundamental frequencies (e.g. 

“coos”) have often been found to differ between individuals and the sexes in acoustic 

measures related to vocal tract filtering; namely, spectral peaks or formants which are 

proportional to the caller’s vocal tract length and possibly body size (e.g., red-bellied 

lemurs: Gamba, 2011; chacma baboons: Owren et al., 1997; rhesus macaques: Rendall 

et al., 1998).  Fundamental frequency measures, by contrast, are not proportional to 

body size, though they are proportional to vocal fold size and shape.  Such 

observations have motivated some researchers to claim that fundamental frequency is 

“…a weak parameter for providing individual cues” (Gamba, 2011, p. 5).  Recent 

work in small bodied nocturnal lemurs paints a different picture.  High frequency tonal 

calls with considerable frequency modulation differ between individuals and the sexes 

in fundamental frequency measures (gray mouse lemurs: Leliveld et al., 2011; Milne-

edwards’ sportive lemurs: Rasoloharijaona et al., 2006).   

Silky sifaka zzzus calls were found in this study to differ between individuals 

and the sexes in both fundamental frequency measures and spectral peaks; although 

the fundamental frequency measures were particularly effective at distinguishing 

males from females.  For example, F0-Mean values were approximately 60% higher in 

females than in males, and their calls were also much more likely to exhibit frequency 

jumps (72.5%) than were male versions (30.0%).  Call duration was the only acoustic 

measure that did not differ between individuals, nor did it distinguish males and 

females.  Sex differences also included female zzuss calls having higher amplitudes 

and SNR values, longer latencies to lipsmack, slightly higher first spectral peaks, and 

slightly less noisy calls. 
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Chapter 4 examined the form and function of male tree gouging behavior in 

two species of eastern sifakas.  Eastern sifakas may be the only group of primates that 

routinely gouge trees for non-nutritive communicative reasons. The goal of this study 

was to conduct the first detailed examination of gouging in a Propithecus species in 

order to distinguish between several possible communicative functions.  A one year 

study was conducted of silky sifaka (Propithecus candidus) gouging in relation to 

their dietary and sleeping tree preferences.  During a one month study of Milne-

edwards’ sifakas (P. edwardsi), gouge marks were actually measured.  

More than 3800 hours of feeding data were collected and confirms that male 

gouging in silky sifakas is non-nutritive.  Though more than 100 plant foods were 

identified, bark was never eaten, nor were tree exudates consumed.  These results 

resemble other eastern sifakas but differ from western dry forest sifakas, such as P. 

verreauxi, where up to 15% of their feeding time can be spent on bark during certain 

seasons (Richard, 1978, 1985). 

The results of this study support the hypothesis that gouging functions as a 

male status signal.  During one year, the dominant male silky sifaka gouged 857 times 

which accounted for 73.3% of all gouges observed.  Gouging was most frequent just 

before and during the mating season.  In Milne-edwards’ sifakas, the more dominant 

of two males actually had longer measured gouge marks.  Given the obvious energetic 

costs and the high frequency, it is reasonable to consider gouging an honest signal of 

male quality.  

Gouging may also facilitate species recognition.  Species differences were 

found in gouge mark morphology.  66.7% of Milne-edwards’ sifaka gouge marks were 

examples of the highly distinctive “bird footprint” pattern which was never observed 

in silky sifaka gouge marks.  All silky sifaka gouge marks were single irregular 

polygons, generally roundish.   
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The resource gouging hypothesis was tested and supported in silky sifakas.  

61.8% of the 102 gouged tree, vine, and epiphyte species were known food species, 

and 38.2% of the gouged species were known sleeping tree species.  Moreover, a 

multiple regression analysis revealed that the number of gouges per tree species was 

predicted by the percentile rank of those species as food tree species and sleep tree 

species.  Sleep tree percentile better predicted the number of gouges by silky sifakas 

than food tree percentile which is not surprising given the strong sleeping tree species 

preferences identified in this study.  The seven most slept in tree species (all of which 

are highly preferred food trees) accounted for 75.2% of all sleeping trees.  Critical 

resources such as food trees and sleeping sites may be preferentially gouged in order 

to facilitate relocation and advertise ownership and willingness to defend these 

resources.  These locations are likely to be highly visited and scent marked by 

conspecifics, thereby having a large “audience” and serving as olfactory “bulletin 

boards” (Johnston et al., 1994; Rylands, 1985).  Gouging may deposit olfactory cues 

in saliva which may contain androgen hormones influencing female estrus and be 

utilized by females in the selection of sociosexual partners (Ferkin and Johnston, 

1995; Groschl, 2010). 

Gouge marks may also be visual signals that attract conspecifics to scent 

marks.  Similarly, the scratch marks with urination in felids and the tree-rubs of moose 

and bison may function as “scent mark flags”.  Sifaka gouge marks may be visible for 

5 months or longer (Patel and Girard-Buttoz, 2008) long after the scent mark has 

faded.   

Finally, gouging may prevent scent contamination, a hypothesis that has not 

been proposed previously.  By removing tree bark, gouging may create a smooth 

unadulterated or uncontaminated surface upon which scents can be deposited.  Tree 

bark is much more chemically complex than the wood beneath it and may contain a 



 142 

variety of living organisms such as insects, mosses, fungi, and other plants (Harkin 

and Rowe, 1971).  Scent marking the bark may well alter the chemical composition of 

the scent mark in unpredictable ways.  For sifakas, gouging out a clean substrate 

beneath the bark may also permit the oily secretions of their sebaceous chest glands to 

fix or preserve the volatile components in their anogenital secretions (Powzyk, 1997, 

2002; Scordato et al., 2007).   

             Non-nutritive tree gouging by male eastern sifakas likely serves multiple 

functions.  This study has found evidence that gouging, like scent marking, functions 

as a male status signal as well as signalling critical resources.  Because gouging is 

generally accompanied by chest (and maybe saliva) scent marking, it is difficult to 

separate the unique functions of gouging per se.  However, preliminary data suggests 

that comparing responsiveness to male scentmarks with and without gouges may 

permit several gouging-specific hypotheses to be tested (Patel and Girard-Buttoz, 

2008).  Unique functions of gouging may include attracting the visual attention of 

conspecifics, promoting scent longevity by removing bark and scent marking the more 

absorptive wood beneath, and gouging out the scent marks of conspecifics (Powzyk, 

1997, 2002; Rylands, 1985).   
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