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This thesis develops tight upper and lower bounds on the relative
error in various schemes for performing floating-point arithmetic, proposes
axioms for characterizing the significant properties embodied by these
schemes, and gives examples to illustrate how these axioms may be used to

reason about the correctness of floating-point programs.

Three addition schemes are considered: (1) chopped addition, (2)
addition with both pre and post-adjustment rounding, and (3) addition with
Pre-adjustment chopping and post-adjustment rounding., Schemes for
performing both rounded and chopped multiplication and division are also

considered.

Our tight bounds are consistent with the commonly held opinion that a
binary base minimizes the maximum relative errors in floating~-point
arithmetic. Also, these bounds show that one guard digit is optimal for
minimizing the maximum relative errors in chopped addition. The bounds
derived for each of the addition schemes considered are as tight as

possible.

One guard digit and two guard bits are shown to be sufficient to round
the result of an exact addition to the nearest floating-point number. We
show how this scheme can be implemented using a single post-adjustment
shift, no rounding overflow, and (for certain implementations) requiring no

more time than an addition that chops instead of rounds.



Two approaches are considered for axiomatizing floating-point
arithmetic. In one approach, a set of floating-point numbers is associated
with each floating-point expression, and the assignment statement is
modeled as a nondeterministic selector of ome of the members in the set.
In the alternative approach, the floating-point operations are modeled in
terms of two cropping functions whose significant properties are
characterized by a small set of axioms. In both cases, the axioms
characterizing floating-point arithmetic are used with Dijkstra's weakest
pre-condition calculus to provide an axiomatic framework for reasoning

about floating-point programs.

Finally, the common practice of modelling the floating-point
operations by a single function that chops or rounds the result of the
corresponding exact operation is shown to be invalid for many

implementations of floating-point arithmetic.
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1. Introduction

Forty years after Konrad Zuse built what is probably the first mechan-
ical floating-point binary computer [42, p.169], it appears that floating-
point arithmetic is still not well understood. The literature is fraught

with errors (we shall indicate several), the hardware is still designed by

T

expediency 's and, consequently, the software often incorporates subtle

11

"tricks™ to overcome the inadequacies of the hardware design''.

The development of fast and accurate algorithms for performing the
elementary floating-point operations (+, -, x, /) is still an active area
of basic research [7,20,23,27,43,63,74], and a general theory of floating-
point arithmetic is just now underway [21,41,45,46]. In fact, specifica-
tion of a standard system for floating-point arithmetic is a current, hotly

debated topic [3,9,33,49,59,62].

Given the state of tumult described above, the objective of this
thesis is to enhance the confidence one has in reasoning about computer
programs that use floating-point arithmetic. To attain this objective, we
first study floating-point arithmetic to determine the effect of the number
representation, various numbers of guard digits, and various rounding or
chopping schemes upon the accuracy of the arithmetic. Then we present two

models of floating-point arithmetic and show how each lends itself to

TViz. any computer that doesn't perform rounded arithmetic
(IBM 360/370 [35,36] and Univac 1100 [41]), or that rounds incorrectly
(cbc 3000, 6000, and Cyber-70 [26,41]).

1""Viz. Kahan's fudge-factor of 0.46 in his algorithm for comput-
ing the sum of a list of numbers [39]. See also Dekker [11] and Liddiard
[49].




rigorous correctness proofs of the Floyd-Hoare style. The motivation for

developing proofs in this style is given in section 3.2.

!
1




2. Floating-Point Hardware Design Considerations

eeothe rounding strategy inherent to a floating-point
microprogram of a computer (or calculator) is the worst
place for a machine designer to demonstrate originality,
in particular if his own experience with numerical
calculation is rather limited. The chaos of careless
and exotic rounding strategies in our present computers
seriously impedes the production of clean numerical
software. Dodges and tricks, costly to develop, which
might be necessary to overcome the difficulties with
rounding effects on one computer may be unnecessary or
even damaging on another....

-- Christian Reinsch [59]

2.1 Qverview

In section 2, we derive tight upper and lower bounds on the relative
errors in floating-point arithmetic as functions of the base and the number
of digits employed for representing the floating-point numbers. Using
these bounds, we argue that a binary representation is optimal for minimiz-
ing the maximum relative errors. Also, it follows that unbiased rounding
schemes yield greater worst case negative relative errors than those that
round with positive bias and greater worst case positive relative errors

than those that round with negative bias.

We investigate the hardware register requirements for performing
floating-point arithmetic and show that one guard digit is optimal for
minimizing the maximum relative errors in chopped addition. We show that
one guard digit and two guard bits are sufficient to round the result of an
exact addition to the nearest floating-point number. Finally, we show how
this scheme can be implemented with a single post-adjustment shift, no
rounding overflow, and requiring no more time than an addition that chops

instead of rounds.
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2.2 Eloating-Point Numbers and QOperations

A floating-point number (fp number) is a number that can be expressed

in the form

t .
(s) = d, pP~t (2.2.1)
i=1
where £ 2 2 is the base, p is an expopent in some fixed range,

-M; SpsSM (Ml. M, 2 0), t 21 is the number of digits, each digit lies

in the range 0 < di < B, and 8 = +1 is the sign. We shall assume that all

fp numbers are normalized:; hence, if some di # 0 then dl z 0.

For any real number x, let Lx ] denote the greatest integer s x (or
floor( x )). When we say that x 2 0 is ghopped to g digits, we mean that x,
expressed in the normalized form of (2.2.1) with unbounded p and t, is

replaced by
L qu-p JBP‘Q

When we say that x 2 0 is rounded to g digits, we mean that x is replaced

by
L qu-p Jpp-q + AT

where

N —

Ar = 0 if x-LxpdP JgP7? <

Ar = ﬁp-q if x - 1L qu‘p JBp-q 2 %ﬂ

For x < 0, x rounded or chopped to g digits is defined to be the negative

of -x rounded or chopped to g digits, respectively. Henceforth, we use the

word cropping to denote either rounding or chopping.

o T A
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Suppose that some cropping scheme is used in performing arithmetic
upon fp numbers in a t-digit accumulator with g 2 0 guard digit registers
and a one bit overflow xegister. The guard digit registers are used to
extend the precision of the accumulator to t+g digits, for accumulating

intermediate results generated by an fp operation. (See figure 2.2.1.)

Figure 2.2.l. Layout of registers for performing fp
arithmetic. (OB, AC, and GD denote the overflow bit,
accumulator, and guard digit registers, respectively.)

For the purposes of this thesis, an fp gperator, represented by ome of
@, ©, ®, ¢, denotes a hardware or software implementation of the opera-

tions addition, subtraction, multiplication, and division, respectively.

Formally, let F = F(B, t. M, Mz) denote the set of fp numbers
defined by specific fixed values of B, t. M, and M,. Then, for a given fp
implementation, the fp operations are partial functions of the form

FxF »> F.

These definitions illustrate the chief differences between exact and
fp arithmetic: because of limitations in range (i.e. M; and Mz) and preci-
sion (i.e. t), the numbers that cam be used as inputs, outputs, or inter-
mediate operands of the fp operations form a finite subset of the (infin-
ite) set of reals, IR. In fact, the fp operations have been characterized
above as partial functions, because usually nonme of them is even def ined

for all members of F xF.

If an fp operation is not defined because the normalized result of the
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corresponding exact operation has an exponent larger than Mz. then the
exponent is said to have gverflowed. On the other hand, if an fp operation
is not defined because the normalized result of the corresponding exact

operation has an expoment smaller than -M;, then the exponment is said to

have underflowed.

2.3 Eloating-Point Multiplication

Consider x®y, the fp product of the fp numbers x and y drawn from
F = F(B, t, Hl' Mz). Given that exponent overflow and underflow do not

occur, we assume for any x and y in F that

x‘y = yOx (2.301)
- (x®@y) = (=-x)®y (2.3.2)
(x=0 v y=0) = x0y =0 (2.3.3)

We shall be considering the maximum relative cropping errors in @,
For this purpose, assumptions (2.3.1) - (2.3.3) allow us, without loss of
generality, to restrict our attention to x and y satisfying x,y > 0.
Also, since we shall be concerned only with relative errors, we assume
without loss of genmerality, that the exponents (in the normalized represen-
tations) of x and y are both zero. Henceforth, the gxpopent of the fp

number x refers to the exponent in the normalized representation of x.

Suppose that x®y is formed as follows.
(1) Product Formation: The product xy is determined exactly in a t digit

accumulator with t guard digit registers and no overflow registers.

(2) Post-Adjustment: The product xy is cropped to t digits and then left-

shifted 0 or more positions to place its leftmost nonzero digit in the most
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significant digit position of the accumulator.

Let us define
Ap = the error incurred by discarding the least significant digits of xy
(Ap 2 0);
Ar = the amount by which the t-th digit of xy is incremented when xy is
cropped to t digits.
Thus, if cropping is performed by chopping, then
Ar = 0

otherwise cropping is performed by rounding and

-L-t

Ar = 0 if Ap < %B (2.3.4)

-L-t

Ar = B - if Ap 2 %3'L°t

(2.3.5)

where L is the number of leading zeros in xy prior to post-adjustment crop-

ping (L 2 0).

It follows that x®y can be described by
x®y = xy - Ap + Ar (2.3.6)

and the relative error in x®y can be described by

X0y = xy _ AT = Ap
EX’Y = xy - G‘;y - Ar) + AP (2.307)

Since x and y are > 0 and normalized, we see from (2.2.1) that

B-l < Xo y < 1 -B-to Thus.

-2

B2 s xy s 1-2p"t+p2t

Consequently, 0 S L S 1. Furthermore, if xy is rounded as described above,

the result would still be < 1, and no overflow registers are needed. If a

"carry" could propagate beyond the most-significant digit position in the
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accumulator, this phenomenon would be called rounding overflow.

Suppose cropping is performed by chopping. Since x,y > 0, Ap 2 0,
and in this case, Ar = 0; we see from (2.3.7) that Exey S 0. That 0 is a
least wupper bound on Exﬁy is determinea by observing Excy = 0 when

X®y = Xy.

To obtain a lower bound on ExOy' observe that for z > 0 and w 2 0, the
function f(w,z) = w/(z+w) is maximized by minimizing z and maximizing w.

Consequently, a lower bound on E_ g is obtained by substituting in (2.3.7)

y

the smallest possible value for x®y and the largest possible value for Ap.

Recall that L is the number of leading zeros in xy prior to post-

adjustment cropping. For each L, the smallest possible value of x®y is

B-L-l. Also, the largest possible value of Ap is obtained when each of the

digits in xy - x®y equals B-1l. Consequently, for each L, Ap can be no

larger than B-L(B-t - B-Zt).

Summarizing for ghopped x®y,

E . -AP 5 -B-L(ﬁ-t - B Zt)
-t
S (2.3.8)
B +(1-8")
> -(1-p%plt

One can verify that bound (2.3.8) is indeed attained for B = 2 and t = 4,

with

+ 2-4 and y = 2-1 + 2-3 + 2-4

Consequently, (2.3.8) is a lower bound for all B 2 2, t 2 1, and a greatest

lower bound for g = 2 and t = 4.
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Suppose now that cropping is performed by rounding. From (2.3.4) and

(2.3.5) we see that the nonzero error in x®y takes two cases:

Case 1. Ar = 0 . and Ap < %B-L-t (2.3.9)
Case 2. Ar = B-L-t and Ap 2 %B-L-t (2.3.10)

Consider case 1. Since x,y >0, Ar = 0, and Ap 2 0, it follows from

(2.3.7) that Excy < 0, as in the case of chopped x®y described previously.

We observed that a lower bound on Ex@y is obtained by substituting in
(2.3.7) the smallest possible value for x®y and the largest possible value

for Ap.

But, since Ap omnly accounts for

From (2.3.9) we have Ap < %B-L-t.

error to the left of the last guard digit, it follows that, for each L, Ap

(g8"

- 8"2%), Also, as in the case of chopped

x9y, for any L the smallest value of x®y is ﬂ-L-l.

can be no larger than B-L

Summarizing for case l, we have

. -phEpTt - 7Y
E = _ ., 2
xQy x®y + Ap gLl gL (%ﬂ-t a2ty
-G -85 (
— . 2.3.11)
Bt 1 (% - B ty
s - gt

One can verify that bound (2.3.11) is indeed attained for B = 2 and any

t 21, with

Consider case 2. Since x,y > 0, and for any L, Ar > Ap, it follows
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from (2.3.7) that Exey > 0. Before post-adjustment rounding, for each L,

the fp product must be at least ﬁ-L-l. I.e. x®y - Ar 2 5°L-1. Since
Ap 2 %ﬂ-L-t. from (2.3.6) we obtain
xy = (x®y - Ar) + Ap 2 ﬁ-L-l + %3-L-t
Summarizing for case 2, we have
1 -L-t
e . Ar - Ap < 2P
x@y ~  (x@y - Ar) + Ap -L-1 1 _-L-t
B + 5B
2 !
1
_ 2
- t-l 1 (2.3-12)
B + 3
1 1-t
< EB

One can verify that bound (2.3.12) is indeed attained for B = 2 and t = 5,

with

1 -t 1
_ (E L Z (2.3.13)
- - s E s = o3
Bt 1 . (1 - B t) x®y Bt 1 . %

where the equalities are attained for certain values of B and t.

It is straightforward to show that the first t significant digits of
the product of two t-digit numbers may be obtained by accumulating partial
sums in a t-digit accumulator with one guard digit and no overflow bits.
If an additional guard bit is also available to indicate whether the

t+2nd digit of the exact product is 2 %B. then results identical to those

generated by the 2t-digit rounding scheme described above may be obtained.
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For information concerning the statistical effect of various numbers of
guard digits upon the accuracy of fp multiplication, see Goodman and Feld-

stein [23] and Bustoz, Feldstein, and Goodman [7].

The rounding scheme described above is said to have a positive bias,
because Ap 2 %B-L-t is rounded away from zero. If our scheme were modi-
fied to round an error of exactly %B-L-t toward or away from zero with
equal probability, then the scheme would be called unbiased. 1In the
unbiased rounding scheme, the bound on the positive relative error would be
the same as in the scheme with positive bias. However, the magnitude of
the negative relative error bound would increase to the same value as the
positive relative error bound. Also, the 1 guard digit + 1 guard bit

rounding scheme mentioned above would have to be augmented by an additional

(so called) "™sticky™ bit for distinguishing Ap; = (%B) B-L-t-l and Ap,
satisfying
G < oap, < Gprnpt (2.3.14)

The greater liklihood for cancellation of errors with an unbiased rounding
scheme in computational procedures [43,44] is certainly adequate justifica-
tion for the modicum of additional hardware cost and very slightly larger

relative error bounds.

Perhaps more important than the exact value of the bounds derived inm
this section is the functional dependence of the bounds upon B and t which
they demonstrate. For example, taking into account the fact that a factor
of logBZ/logBl more bits are needed to represent a number in base Bl than

in base Bz. the bounds presented in this section all indicate that base 2

would incur the smallest maximum relative errors for any given number of
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pits. In sections 2.4 and 2.5 we shall see that base 2 yields the smallest
pbounds on the relative error in ¢, ©, and ©, as well. This observation is
particularly significant for @ and ©, since the bounds we derive for @ and

@ are as tight as possible.

2.4 El ing-Point Divisi

Consider x@y, the fp quotient of the fp numbers x and y drawn from
F = F(B, t, M M2)° Given that exponent overflow and underflow do not

occur, we assume for any y ¥ 0 and x in F that

-(x¢y) = (-x)¢y = x¥(-y) (2.4.1)

x=0 = xPy =0 (2.4.2)

As in the case of fp multiplication, described in section 2.3, we
shall be considering the maximum relative cropping errors in @#. For this
purpose, assumptions (2.4.l1) and (2.4.2) allow us, without loss of general-
ity, to restrict our attention to x and y satisfying x,y > 0. Also, as in
section 2.3, we assume without loss of generality that the exponents of x

and y are both zero.
. 1
Suppose that x@y is formed as follows .

(1) Pre-Adjustment: x is placed inm a t-digit accumulator with no overflow
bits. It is then right-shifted 1 positiom, placing its least significant
digit in a guard digit register. Denote the shifted x by x'. (Note: x is

shifted to ensure x' < y.)

1This algorithm is similar to the division algorithms given by
Wilkinson [70], Knuth [42], and Hill and Peterson [28].




- 13 -

(2) Quotient Formation: By performing exact subtractions in the t-digit
accumulator with single guard digit, the first t significant digits of x'/y

are determined exactly and stored in a t+ 1 digit quotient register.

(3) Post-Adjustment: The contents of the quotient register are left-
shifted 0 or more positions to place the leftmost nonzero digit in the most
significant digit position of the quotient register. This shifted quotient
is then cropped to t digits, making use of the remainder -- the result of

the final subtraction during quotient formation.

Let us define
Aq = the error incurred by discarding the remainder from the t-digit
quotient (Aq 2 0);
Ar = the amount by which the rightmost digit of the quotient is
incremented when the quotient is cropped to t digits.
Thus, if cropping is performed by chopping, then
Ar = 0

otherwise cropping is performed by rounding and

Ar = 0 if Aq < 37" (2.4.3)
ar = TV e aq 2 BT (2.4.4)

vhere L is the number of leading zeros in the quotient register, prior to

post-adjustment shifting (L 2 0).

It follows that x¢y can be described by

x¢y = x/y - Aq + Ar (2.4.5)

and the relative error in x¢y can be described by

x¢y - x/y _ Ar - Aq
Exdy - —%y_z - W' Ar) + Aq (2.406)
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Since x and y are > 0 and normalized, we see from (2.2.1) that

[} 1 S X ys1l-8 t. Thus, if x < y,

) -2 -1 . . -
32<_L.__ts£;L_<xsls(1-B‘)Bl (2.4.7)
1 -8B

from which it follows that the quotient has exactly one leading zero (L =

1) and rounding overflow cannot occur. Otherwise, x 2 y, yielding

-1 -1 )
gl < % < “—9_—1— = x < 1-8° (2.4.8)
B

from which it follows that the quotient has no leading zeros (L = C), and,
once again, rounding overflow cannot occur. That rounding overflow cannot
occur by rounding the quotient of two normalized fp numbers was also

noticed by Knuth [42].

Suppose cropping is performed by ghopping. We use the same reasoning
as that employed for chopped x® to conclude that 0 is the least upper

bound on hx¢y' Similarly, to obtain a lower bound on Exdy’ we can immedi-=

ately conclude that Exdy will be as negative as possible when xdy is

replaced by B-L-l and Aq is made as large as possible.

Let rem denote the remainder after t significant digits of x/y are
obtained. By the definition of division, rem < yﬁ-L-t. Moreover, since y
has no more than t significant digits,

rem < (y - B-t)ﬂ-L-t

Hence,

rem _ (y-p gt
y Yy

= (1 - B-t/y)B-L-t
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-t ~tyq ,-L-t
< [1-87/(1 -7
Summarizing, we have for chopped x9y,

e . o_cag o, -0 - 7Y - 76
xdy xd} + Aq B-L-l + B-L-t [l - B-t/(l - B-t)]

-[1 - 1/(g* - 1]

= (2.4.9)
gt e - 1/t - 13

> -gl7t 1 - 1/¢p% - D]

One can verify that bound (2.4.9) is attained for B = 2 and t = 2, with

-1 -2

x = 2 and y = 2" + 2

Consequently, (2.4.9) is a lower bound for all B 2 2, t 2 1, and a greatest
lower bound for B = 2 and t = 2. We do not know whether this bound is also

attained for other choices of B and t.

Suppose now that cropping is performed by rounding. From (2.4.3) and

(2.4.4) we see that the nonzero error in x¢Py takes two cases:

Case 1. Ar = 0 and Aq < '%B-L-t (2.4.10)
Case 2. Ar = B-L-t and Aq 2 %B_L-t (2.4.11)

Consider case 1., From (2.4.6) and (2.4.10) it 1is evident that
Exdy S 0. Once again, we see that (2.4.6) is made as negative as possible

by substituting p-L-l for x¢y, and the largest possible value for Aq.

-L-t-l. a maximum value of Aq is attained when the

Since Aq < (-;'B) B
t+lst significant digit of the quotient is %B - 1l, and the subsequent

remainder is as large as possible. Namely,

e _ -ty omLet-l
Aq=£-§25(%ﬁ-1)31‘”+(y BJB !

-1, (- 2p7%glotel
-t
1 -8

A———

< (%B - l)B-L-t
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-L-t[ -t-1

= 27Vt - 27 - 57

Sunmarizing for case l, we have

1l -L-t -t-1 -t
- A =587 0 - 287 - 8T

2 - - -
x@y + Aq B-L-l +%B-L-t:[l - 28 t l/(l - t)]

x@Fy

-1 - 287" - 03 |
= - - (2.4.12
Bt e 20 - 287" - 1)

> -LplTtr - 287/t - 1)

Although we have shown that (2.4.12) is a lower bound on Exdy for all
B222, t 21l; we have not found values of x and y for which (2.4.12) is

precisely attained.

Consider case 2. From (2.4.6) and (2.4.11) it is evident that

. _ o-L-t 1l -L-t . .
Exdy > 0. Moreover, since Ar = B and Aq 2 55 are identical to the
expressions for Ar and Ap in case 2 of rounded multiplication (2.3.10), we
obtain the same upper bound on Ex¢y as that derived for case 2 of Exey

(2.3.12).

Therefore, for rounded x¥y, we have shown (using cases 1 and 2) that

N -

-2 - 287Gt - 1]

IA

< E (2.4.13)

t-1

x9y 8 . %

B0+ 20 - 2871 /(8" - 103

for all g 2 2, t 2 1., We have not found values of x and y for which these

bounds are precisely attained.

From (2.4.7) and (2.4.8), we see that the contents of the quotient

. -2 -t .
register may assume values between B and 1 - B . If, instead, the con-
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tents were allowed to take on values between ﬂ-l and g (1 - B-t). then

pre-adjustment could be eliminated, and post-adjustment would require

exactly 0 or 1 right-shifts. Alternatively, if it could be determined
before quotient formation whether x < y or x 2 y, then only x 2 y need be i
right-shifted, the quotient register could be shortened to t digits, and mno

left-shifts would be required for post-adjustment.

If chopping is performed by rounding, then Aq must be compared with "
%B-L-t. Probably the easiest way to do this is to:extend the quotient
register by an additional digit (in fact, a bit is sufficient), and let the
quotient formation process determine the t+1 st significant digit of the

quotient.

The remarks comparing biased and unbiased rounding at the end of sec-
tion 2.3 apply here equally well. We can distinguish between Aq1 = Ap1 and
Aq, = Ap,y (see 2.3.14) by comparing the remainder from the ¢t+1

significant-digit quotient with zero. (No "sticky" bits are needed.)

As in section 2.3, all the error bounds derived for x@y indicate that

base 2 would yield the smallest worst-case relative errors.

2.5 Eloating-Point Addition |

Consider x®y and x®y, the fp sum and difference of the fp numbers x
and y drawn from F = F(B, t, M Mz). Henceforth, we use the word addi-
tion to denmote either ® or ©, and the word sum to denote the result of

either ® or ®. Given that exponent overflow and underflow do not occur, we

assume for any x and y in F that

xX®y = y®x (2.5.0.1)

A
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x0y = x@® ( ~-y) (2.5.0.2)
x6y = -(yex) (2.5.0.3)
x®0 = x (2.5.0.4)
y=-x = x@y=0 (2.5.0.5)

Note that assumptions (2.5.0.1) - (2.5.0.5) are made, given that exponent
overflow and underflow do not occur. Thus, for example, (2.5.0.3) need not
hold for y©x = the most negative fp number in a 2's complement number sys-
tem if negating the most negative fp number would result in exponent over-
flowe In a 2's complement number system where the most negative fp number
is defined to be the negative of the most positive fp number, exponent
overflow cannot occur from negations, and (2.5.0.3) holds for all fp x and

y such that y©x does not yield exponent overflow or underflow.

Also, note that assumptions (2.5.0.1) - (2.5.0.5) are made with
respect to the pumbers that have fp representations, and do not necessarily
apply to the fp representations themselves. (Assumptions (2.5.0.3) and
(2,5.0.4) do not always hold among the l's complement representations of
Xx©®y and y © x. For example, +0 ® (-0) = -0, and x =y = [x@y = -0
& -(y ®x) = +0] .) These assumptions do hold for any reasonable imple-

mentation of B complement, B -1 complement, or sign-magnitude arithmetic.

As in the case of fp multiplication and division considered in the
previous sections, we shall be studying the maximum relative cropping
errors in ® and ©. For this purpose, assumptions (2.5.0.1) - (2.5.0.5)
allow us, without loss of generality, to restrict our attention to x and y
satisfying x 2 y > 0. Finally, since we shall be concerned only with rela-

tive errors, we assume without loss of gemerality, that the exponent of x

(but not necessarily the exponent of y) is zero.
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2.5.1 Chopped Addition: Scheme S1

Suppose that x®y and x8y are formed as follows.

(1) Pre-Adjustrent: y is right-shifted until its exponent equals the
exponent of x, and then shifted y is ghopped to t+g digits. Let the

resulting value be denoted y'.

(2) Addition: The sum (x+y' or x-y') is performed exactly in a t+g

digit accumulator with one overflow bit.

(3) Post-Adjustment: The sum (x+y' or x-y') is shifted left or right to
place its leftmost nonzero digit in the most significant digit position in

the accumulator. This shifted sum is then chopped to t digits.

In scheme Sl. x®y incurs two errors:

Ay = the error in representing y in t+g digits, because of right=-

shifting y before the addition (Ay 2 0);

Ad = the error in representing x®y in t digits, because the guard digits

were discarded after the addition (Ad 2 0).

It follows that x®y can be described by

X ey x + (y - Ay) - Ad

(x + y) - (Ay + Ad) (2.5.1.1)

and the relative error in x®y can be described by

x®y - (x+y) _ - (Ay + Ad)
xey (x +vy) T x ey + (Ay + Ad) (2.5.1.2)
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Since x 2y >0, Ay 2 0, and Ad 2 0, we see that Ex@y < 0. That 0 is
a least upper bound on Exey is determined by observing Exey = 0 when

ny = X+yo

To obtain a lower bound on ExGy’ recall that for z > 0 and w 2 0, the
function f(wez) = w/(z+ w) is maximized by minimizing z and maxirizing w.
Consequently, as in the case of chopped multiplication, a lower bound on

E is obtained by substituting in (2.5.1.2) the smallest possible value

x@y
for x®y and the largest possible value for Ay + Ad.

The carry-out of the leading digit in x®y can cause x®y to be shifted
some number of positions, R, to the right during post-adjustment. Since
during addition there can be at most one digit of carry-out from the most
significant digit in the accumulator, it follows that for x 2y > 0O,
0 <R <1l. For each such R, it is easy to see that the smallest possible
value of x®y is BR-I. Moreover, the absolute error in x®y, namely Ay + Ad,
will be as large as possible when x®y picks up the first t digits from an
exact sum having B -1 in positions t+1 ,.ses 2t. Consequently, for each R,

the largest possible value of Ay +Ad is BR(B-t - B-Zt).

Summarizing, we have for x®y,

p o o cyrad -7t - 57
x®y x ® y+ (Ay + Ad) BR-l + BR(B-t _ B-z:)
_ .-t
t-l(l B )_t (2.5.1.3)
B +(1-8")
> - (1 - B-t) B].'t

Bound (2.5.1.3) was derived independently by Thiran [63], who indicated

that it is attained for all g =z 2, t 2 1, when
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x = gt and oy = (-pHpt

consequently, (2.5.1.3) is a greatest lower bound on Ex@y'

It is important to note that (2.5.1.3) is independent of g, the number
of guard digits. Intuitively, any digits of y that are retained by the
guard digit registers to participate in the fp sum of x and y are later
discarded when the sum is chopped to t digits. Consequently, when x and y
have the same sign, the chopped fp sum using 0 guard digits yields exactly
the same result as if an infinite number of guard digits were available.
In fact, the addition may be speeded up in this case by not allowing any
guard digits to paricipate in the sum; hence, addition is not performed at
all if the exponents of x and y differ by 2 t. This speedup is especially
significant if addition is performed in an extended precision accumulator

(g 2 t).

Consider now x®y. As in the case of x®y, two errors are incurred.
Borrowing the definitions of Ay and Ad from the discussion of x®y, it fol-

lows that x®y can be described by

x®y = x = (y-Ay) - Ad

(x - y) + (Ay - Ad), Ay 2 0, Ad 2 0 (2.5.1.4)

and the relative error in x®y can be described by

x0y-(x-y) _ - (Ad - Ay)
Xey = (x - y) = X © ¥ + (Ad _ Ay) (2.5.1.5)

E

Assumptions (2.5.0.2) and (2.5.0.5) allow us to consider only x # y in
x0y. Thus, for x > y > 0, any lower bound on Exey must occur when Ad 2 Ay,
and any upper bound on Exey must occur when Ay 2 Ad. If Ay = Ad, then xOy

is exact, so we may neglect this possibility without loss of generality.
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Suppose Ad > Ay 2 0. Recall that, for z > 0 and w 2 0, the function
f(wsz) = w/(z+w) is maximized by minimizing z and maximizing w. Conse-

quently, a lower bound on E o is obtained by substituting in (2.5.1.5) the

y

smallest possible value for x8y and the largest possible value for Ad - Ay.

The minimum value of x®y is obtained by subtracting from the smallest

possible x the largest y satisfying x > y > 0. Thus,
xey 2 pl-(l-ptly = pt-d (2.5.1.6)

Let L be the number of leading zeros in x-y' prior to post-
adjustment. From (2.5.1.6) we see that 0 S L < t, for x >y > 0. For each
such L, the smallest possible value of x®y is ﬂ-L-l. Moreover, the abso-
lute error in x®y, namely Ad - Ay, will be as large as possible when Ay = 0
and each of the guard digits equals Bp-1. Consequently, for each L, Ad - Ay

can be no larger than 13-1'(ﬁ“t - B-t-g).

Summarizing, we have

- - (Ad = Ay) - g7L(g"t - g7t78)
Evey = X0y + (8d - &y) 2 TIL-1 . .-L .-t .-t-g
B +B8 (B -8 )
(1 - a8
c-1(1 B =) (2.5.1.7)
B +(1-p8)
> —(1 - B-g) Bl-t (20501.8)

One can verify that bound (2.5.1.7) is indeed attained when

-1 -t

x = BT +p and y = p 8

Consequently, (2.5.1.7) is a greatest lower bound on Exey’

Note that if g = 0 then Ad = 0. This case is not handled here,

because we are considering the case where Ad > Ay 2 0. Bound (2.5.1.7)

E——
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does not appear in Thiran's paper [63] since he considered the error in x@y
together with the error in x®y, and for g < t, (2.5.1.3) is a2 gmaller lower
bound than (2.5.1.7). However, it is important to consider (2.5.1.7)
because it shows a dependence upon g, whereas (2.5.1.3) does not. In fact,
(2.5.1.7) tells us to minimize the number of guard digits in order to
ninicize the negative relative error in x®y, and (2.5.1.3) tells us that by
choosing the minimum number of guard digits, we will peither increase nor

decrease the worst-case relative error in x®y! (Recall, E < 0, indepen-

x®y
dent of g.) But, before we can settle upon a particular value of g, we

must consider also an upper bound on the (positive) relative error in Exey'

Suppose that Ay > Ad 2 0. Let q be the number of digit positions y is

shifted to the right before forming x®y. Since the expoment of x = 0 and

N

the minimum exponent for y = -Bﬁ, it follows that 0 £ g Ml. Note that
if 0 < q < gs then Ay = 0. This case is not handled here, because we are
considering the case where Ay > Ad 2 0. For each q such that 0 € g < ¢q

< M,» the smallest possible value of x-y is obtained by subtracting the
1

largest fp number with exponent = =-q from the smallest possible value of

X+ Thus, min(x-y) = 3_1 - 5_q(l - B-t).

The largest possible value of Ay-Ad is obtained when Ad = 0, and q-g
digits of y with size B=-1 have been right-shifted beyond the rightmost
guard digit register. That is, for each qs» Ay-Ad can be no larger than
B-t-g - B-t-q. Finally, since y can contain no more than t nonzero digits, !

we need consider only 0 € q-g < t; i.e. it is sufficient to consider 0 < g

< q < min(g +t, Ml).

Summarizing, we have

e
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£, = (Aycad p t78 - g7td
X0y X -y B-l _ B-q(l _ B't)

g t(gi® - 1)
(g3t - 1) + 57"

(2.5.1.9)

- 1 (2.5.1.10)

pt*e™l 4 g8l - 1) + 12/(pY7E - 1)

For g = 0 and q = 1, (2.5.1.9) leads to Exey < Bp-1., This bound is, in

fact attained when
_ _ -1 -t
x = B and y = p (1-8")

Thus, if no guard digits are used to form x®y, then the relative error
may be as large as (B-1) x 100 percent! Note well that this worst case
error will not at all be affected by changing t, the number of digits in
the fp operands. According to the characterization of the fp arithmetic
given in [26,41], an error of precisely this magnitude is possible on the
Univac 1100 series computers with single-precision numbers and on the CDC

6000/Cyber-70 series computers with double precision numbers.

We shall take the point of view that forming x€y requires at least one
guard digit. For g 21, (2.5.1.10) is maximized when q is a maximum.

Since we are assuming q S min(g+t, Ml)’ we make the additional reasonable

assumption that g+t < M) and substitute g+t for q in (2.5.1.9). This

yields
E. < p° (g" - 1) (2.5.1.11) .
X0y (Bt+g~l 1)+ B-t ?

(1 -8"H

- = (2.5.1.12)
Bt+g 1 _ (1-p ty

Bound (2.5.1.12), except for a missing "-" in p-t in the denominator

e
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of (2.5.1.12) (probably the result of 2 typing error), was derived indepen-

dently by Thiran [63]. He indicated that this bound is attained when

X = ﬁ-l and y = ﬁ_t-g(l -85

Consequently, (2.5.1.12) is a least upper bound on Exey.

For x8y, observe that the maximum negative relative error (2.5.1.7) 1is
minimized by minimizing the number of guard digits, g, and that the maximum
positive relative error (2.5.1.12) is minimized by maximizing the number of
guard digits. Also, note that the magnitude of (2.5.1.7) 1is strictly
greater than the magnitude of (2.5.1.12) for every choice of g 2 2, t 2 1,
and g 21, except when B = 2 and g = l. Thus, except for the latter,
exceptional case, it follows that the optimal value of g 2 1 for minimizing

the maximum relative error in x8y is g = 1.

For x6y where B = 2, (2.5.1.7) and (2.5.1.12) tell us that the magni-
tude of the maximum positive relative error with g = 1 is 2 the magnitude
of the maximum negative relative error with g = 1, but < the magnitude of

the maximum negative relative error with g 2 2. That is,

-1 -t -g
(1-2"1) (1-25 (1 -278)
< < =

2ty -27h 2t - (1 -27Y 2 + (1 - 278

for g 2 2 and t 2 1. Consequently, the optimal value of g 21 for minimiz-
ing the maximum relative error in x®y when B = 2 is also g = l, even though
in this case, the maximum relative error is given by (2.5.1.12) instead of

(2.5.1.7).

The choice of one guard digit is also bemeficial for x®y, since it
makes the carry-propagate delay small, it allows the same hardware to be

used for x@y as x®y, and, as we saw in the previous section, it has no

Es———
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effect upon the maximum relative error in x®y.

The experiments of Kuki and Cody [44] show that the average number of
significant digits in the sum of mixed-sign summands is largest for chopped
arithmetic when the number of guard digits is smallest. They observe that
in the case of mixed-sign summands, "™the absence of guard digits...actually
helps to neutralize round-off errors....If guard digits are used...the sum
will statistically tend toward zero [have a large negative error] regard-
less of the sign combination....This tendency becomes more pronounced as
more guard digits are used."™ Kuck, et. al. [43] show analytically that the
average bias in representing real numbers as fp numbers is minimized by
minimizing the number of guard digits. They observe that the error in fp
addition can be considered as just the error in representing the exact sum
of two fp numbers. Hence, they argue that the average bias in the fp sum
is also minimized by minimizing the number of guard digits, consistent with
the statistical experiments of Kuki and Cody. Thus, from the standpoint of
accuracy, efficiency, and hardware cost, the choice of one guard digit for

performing chopped addition is best.

An important consequence of the preceding paragraph 1is that, for
chopped arithmetic, the fp sum has a greater worst-case error, a greater
average error (measured by the number of significant digits), and a greater
bias when an extended precision accumulator (g 2 t) is used than when it is
not. Although this fact follows directly from the work by Kuki and Cody
(44] and the work by Kuck et. al. [43], it appears that this fact is not

generally known.

Thiran [63] concludes that, ™Ma single accumulator with one guard digit

and a double length accumulator give rise to exactly the same maximum

- e
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error™, because he uses the same maximum error bound to bound the error
when the summands have like signs as when the signs differ. Kaneko and Liu
[40] conclude that, "even with one guard digit, a single-precision accumu-
lator can perform addition almost as accurately as a double-precision accu-
mulator if the radix is moderately large". Not only have we shown that one
guard digit yields more accurate results than a double-precision accumula-

tors but since the worst-case error in ® and © is given by (2.5.1.3), we

see that the maximum relative error is smallest when the radix is as small %
as possible, namely B = 2. In fact, apparently, not even Kuck et. al. ;
[43], fully appreciate the superior performance of using just one guard ;

digit for chopped addition, since their preferred scheme employs a special

aha

"sticky" bit with one guard digit to produce the same results as if an

infinite precision accumulator was used.

[ Yo

We showed in the previous section that if the exponents of x and y
differ by t or more, then x®y = x, and thus x®y need not be explicitly
formed by the hardware. We now specify conditions under which less accu- !

rate results would occur if x®y were actually formed than if it were not.

Suppose that the exponents of x and y differ by q 2 0. (We have been
assuming without loss of generality that the exponent of x equals 0, and
the exponent of y is strictly smaller than the exponent of x. Hence, we
now let the exponent of y be =-gq.) During pre-adjustment, the leading
digit of y is shifted q places to the right, leaving q leading zeros in the
fractional part of y. If t+1 < q< t+g-1, then during subtraction a
borrow is obtained from the low-order nonzero digit in X, which will leave
digits of size B-1 in positions t+1 ,.eesq to the right of the radix in
the fp sume. If x 2 ﬁ-l. then the leading digit of the sum will be nonzero

and no post-adjustment shift is necessary. We have noted that digit

e
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position t+1 contains B - 1; consequently, the relative error incurred by

chopping after the t-th digit of the sum is at least

e - /x - ) (2.5.1.13)

The error would have been only
y/(x - y) s B_t-l(l - p-t)/(x - y)

if subtraction had not been performed. If x = B-l. then there will be
exactly one leading zero digit in the fp sum, necessitating exactly one
shift during post-adjustment. (Digit positions 2 se.s.sq will be of size
B-1.) In this case, the digit that was in position t+ 2 of the sum prior
to post-adjustment is found in position t+1 after post-adjustment. Thus,
if t+2 < q< t+g-1, it follows from our previous remarks that position
t+1 of the post-adjusted sum will contain a digit of size B-1. The rela-
tive error incurred by chopping after the t-th digit of the sum 1is once
again given by (2.5.1.13), whereas the (smaller) error that would be

incurred if subtraction had not been performed is
y/(x -y) s 7R - g /x - )

For completeness, it should be noted that t+1 < q < t+g-1 is not
vacuous when g 2 2, and t+2 < q<t+g-1 is not vacuous when g 2 3.
Thus, these remarks apply to most extended precision accumulators (g 2 t)

as a special case.

Finally, we note that Oliver [55] also published bounds on the maximum

relative error in scheme S1 at about the same time as Thiran. However, his

bounds are not as sharp as the bounds derived here or given by Thiran,
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2.5.2 Rounded Addition: Scheme S,

Suppose that x®y and x®y are formed as follows.

(1) Pre-Adjustment: y 1is right-shifted until its exponent equals the
exponent of x, and then the shifted y is rounded to t+g digits. Denote

the resulting value by y'.

(2) Addition: The sum (x+y' or x-y') is performed exactly 1in a t+g

digit accumulator with one overflow bit.

(3) Post-Adjustment: The sum (x+y' or x-y') is shifted left or right to

place its leftmost nonzero digit in the most significant digit position in

the accumulator. This shifted sum is then rounded to t digits.

Formally,
x@y = x+ (y-Ay+Ar) - Ad + Ar,
= (x +y) + (Ar1 - Ay) + (Ar2 - Ad) (2.5.2.1)
x©y = x - (y=-Ay+Ar;) - Ad + Ar,
= (x-y) - (Ar; - Ay) + (Ar, - Ad) (2.5.2.2)
where,
. 1 -t~
Arl = 0 if Ay < -EB &
ar, = B EE ir Ay = 1pg7t7®
1 2
. 1 _-L-t
Ar2 = 0 if Ad < -Z'B
@ ar, m BTt if a2 3T
L is the number of digit positions x+y' or x-y' is left-shifted during
| post-adjustment (-1 < L € t), and the definitions of Ay and Ad are the same
as for chopped addition (Ay 2 0, Ad 2 0).

———
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Scheme S, was used by Wilkinson [70,71] for his a priori error ana-
lyses, with g = 0 (single-precision accumulator) and g = t (double-
precision accunulator). He did not give a posteriori bounds on the rela-
tive error in ® or © for g = 0, but the fp difference between the following
fp nunbers shows that a relative error of 100 percent is attainable, with

anyBZ 2.

(2.5.2.3)

(Although the rounding schemes used on the CDC 3000 and CDC 6000/Cyber-70
series computers [26,41] are somewhat different than scheme 52’ it 1is
instructive to note that these popular computers produce identically the

same results and errors in forming the rounded fp difference indicated by

(2.5.2.3) as scheme S, with g = 0!)

Wilkinson claimed that with g = t the relative error in @ and € could

be bounded as follows. ;

| s 3p'Y if g =t (2.5.2.4)

Later, Kaneko and Liu [40] showed that if 1 £ g < t, then Wilkinson's bound

(2.5.2.4) for scheme S, should be increased by a factor of 1/(1 - g"8).
Their bounds follow.
1l 1-t -g .

Apparently, Thiran [63] decided that (2.5.2.5) was an unsatisfactorily
"loose" bound, since he subsequently derived the following precise bounds

for scheme SZ'

Let

(1 +8°8)

N

- - (2.5.2.6)
Bt v 21 - 78

————————
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1
B, = 2 (
2 = t-l + l 205.2.7)
p 7
3-8 g™
By = T (2.5.2.8)

Now, for B > 2,

-34 < Ex®y' Exey < Bl if g = t-1 (2.5.2.11)
-B, < Exey. Exey < B, if g =t (2.5.2.12)

-B, < Exey. Exey < By if 1 =g (2.5.2.13)
-B, < Exey. Exey < By if 2 <g<t-2 (2.5.2.14)
-B, < Exey. Exey < By if t-1<g=<st (2.5.2.15)

(oliver [55] also published bounds for scheme 52 at about the same time as

Thiran. However, Oliver's bounds are not as sharp as possible.)

Thiran pointed out that Kaneko and Liu's bound (2.5.2.5) is looser
than necessary for all B =22 and 1 £ g < t. He also mentioned that
Wilkinson's bound (2.5.2.4) only bounds the error for g = t when B > 2., If

B = 2, the greater upper bound, By is attained by x®y, where

1 ey = o -27Hotl (2.5.2.16)

In fact, by closely examining (2.5.2.10) - (2.5.2.15), one sees that
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the bounds for B > 2 and B = 2 differ opnly when g = l or g = t. When

g = ls the fp difference between the numbers

< = B-l and y = (1 _A%ﬁl-t)ﬁ-z
i yields a negative relative error of size
L
E = : (2.5.2.17)
Sy - - Ledelo
*= (B-l)ﬁtl+-l-

N

which has a larger magnitude than B4 only if B = 2. That is, only when
p = 2 do we have p-1 =1 in (2.5.2.17). (Note that t 2 3 is required for
bound B3 to be applicable.) When g = t, the positive relative error in x®y
requires special treatment for the case of B = 2, because only when B = 2
is it possible to find an fp number y such that rounding the 2t-th digit of
y during pre-adjustment will cause a carry to propagate into the (t+ 1) st
digit of y, thereby making y a candidate for an additional round during

post-adjustment. (The y given in (2.5.2.16) is one fp number that enjoys

| this property.) Thus, only when B = 2 do we have 1 (carry) = %B (criterion

for rounding).

Wilkinson's oversight in regard to (2.5.2.4) with B = 2 can probably ;
be traced to his (erroneous) statement [70, p. 8], "If by=b, > ¢t then x,
is too small to have any effect as far as the first t significant digits of
the sum are concerned, and we have

fl(x1 + x2) = x

(In his notation, b, is the exponent of x,;, b, is the exponent of x,, and
1 1 2 2

f1(x) + x,) 1is the fp sum of the signed fp numbers, x;, and X,e)

Wilkinson's statement is false not only for B = 2 with the fp sum of

E——
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(2.5.2.16), but, without making reference to Wilkinson, Knuth [42, section

4.,2.1, exercise 5] has shown that it is false for any B 2 2 with x®y, where

X = B and y = (% + B-t) B't"l

2.5.3 Rounded Addition: Scheme S,
Suppose that x®y and x8y are formed as follows.

(1) Pre-Adjustment: y is right-shifted until its exponent equals the
exponent of x, and then the shifted y is ghopped to t+g digits. Denote

the resulting value by y'.
(2) Addition: (Same as scheme S,)

(3) Post-Adjustment: (Same as scheme SZ)

Formally,
x®y = x + (y - Ay) - Ad + Ar
= (x + y) - (Ad + Ay) + Ar (2.5.3.1)
x0y = x - (y - Ay) - Ad + Ar
= (x = y) - (Ad - Ay) + Ar (2.5.3.2)
where, :
Ar = 0 if Ad < 155'1”
Ar w pEE if Ad 2 13;3'L't
L is the number of digit positions x+y' or x-y' is left-shifted during {
post-adjustment (-1 S L £ t), and the definitions of Ay and Ad are the same
as for chopped addition (Ay 2 0, Ad 2 0).

The relative error in x®y and x®y is given by

S
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x®y - (x+y) _ Ar - (Ad + Ay) .

Froy ™ (x +y) © ey - a0 7 (ad 7 &y) (2:3:3:3)
X9y - (x-y) _ Ar - (Ad - Ay) .

aney = (X - yy - (X e y - Ar) + (Ad - Ay) (405-304)

If g = 0, then it is clear that rounding in scheme S; can only take

place when ® yields a carry into the overflow bit. (Post-adjustment round-
ing has no effect for &, since with g = 0 the number of nonzero digits in
x0y will always be < t.) Moreover, the maximum relative error will be
attained in the same case that has given rise to the maximum relative error
for chopped addition with g = C (2.5.1.9). Thus, if no guard digits are
used for scheme S3, then the maximum relative error will be (B -1) x100
percent, as we saw for chopped addition. Henceforth, we shall assume that

z 1,

o
o

Consider x®y. We investigate the nonzero error in x®8y with the fol-

lowing separate, but exhaustive cases. (Refer to 2.5.3.1.)

Case 1. Ad < -%ﬂ-L-t and Ad + Ay > Ar = 0 (2.5.3.5)

Case 2. Ad 2 %a'l"t and  Ad + Ay < Ar = B UTF (2.5.3.6)
-] - -L-

Case 3. Ad 2 %B L-t and Ad + Ay > Ar = 8 ¢ (2.5.3.7)

Consider case l. (Ar = 0) Using reasoning analogous to that employed
in the previous sectiomns, it 1s evident that Exey may be bounded below (for
case 1) by substituting in (2.5.3.3) the smallest possible value for x®y

and the largest possible value for Ad+ Ay.

Since we have defined L to be the number of positions x + y' 1is

shifted to the left during post-adjustment, and since a carry-out from the

i
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most significant digit in the accumulator requires a right-shift during

post-adjustment, it follows that -1 < L < 0.

From (2.5.3.5) we see Ad < %B-L-t. But, since Ad only accounts for

error to the left of the last guard digit, and g 2 1, we have
Ad < -123'1"“ -ptE (2.5.3.8)

Likewise, Ay only accounts for error to the right of the last guard digit.

Hence,

Ay < B-t-g (2-5.3.9)

Combining (2.5.3.8) and (2.5.3.9), we obtain the following bound on the

total absolute error in x@y.

Ad+ Ay < 5 EE

But, since y can have no more than t nonzero digits, it follows that the

absolute error in x®y can contain no more than t nonzero digits. Conse-

quently,
Ad + Ay < %3-1": - gLzt if B > 2
Ad + Ay s 2 LTt ptbmatml e g oy
. . . -L-1
For each L, -1 < L < 0, the smallest possible value of x®y 1is g .
Summarizing for case 1 with g > 2,
-L 1 t -2t
o ) - (Ad + Ay) Ry -BTGGB T -BT)
x®y ~ x@®@y+ (Ad + A -L-1 -L 1 -t -2t
Y Y R o I R
-3 -87H
- t‘l 1 "t (2.5.3-10)




- 36 -
P T T
s (2 B )B
And, for case 1 with g = 2,
. _ - (Ad + Ay) . R ORI N
C) - -] = ] - — -
x®y x ® y + (Ad + Ay) S R AP 13}
- -2th
= g o (2.5.3.11)
2ty (% - 27t h
—t— -
> - -2 by it
Note that (2.5.3.10) is attained by x®y when
x = gt and oy = (3-89
and (2.5.3.11) is attained by x®y when
= L I ST T L |
x = 3 and y = (2 2 )2

Note alsoc that bounds (2.5.3.10) and (2.5.3.11) are independent of g, the

number of guard digits.

Consider case 2. (Ar = B-L-t) Recall that L is the number of digit
positions that x+y' can be shifted to the left during post-adjustment, but
prior to rounding. (Equivalently, L is the number of leading zeros 1in
x+7y'.) Thus, prior to post-adjustment rounding, for each L, -1 <L=<0O0,

-L-1 . -L-1 .
the fp sum must be at least B 3 le€esy X@y -~ Ar 2 B . Since

1 _-L-t .

Ad 2 5B » from (2.5¢3.1) we obtain

-L-1 -L-t

x+y = (x@®y=-Ar) + (Ad +Ay) 2 B + %ﬂ

By (2.5.3.6) we know that Ad+ Ay < Ar. Thus for eack L, the largest possi-

ble value of Ar - (Ad+ Ay) occurs when Ay = 0 and Ad =-%B_L-t.

—————————————————————
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Sunmarizing for case 2 with g 2 2,

1oLt

Ar - (Ad + Ay) 2

Exey x +y) S 1 1 Lt
B + 5B

; L
l = t-lz l (2.503-12)
| P

1 1-t

< -Z—B

One can verify that (2.5.3.12) is indeed attained by x®y when
1 -t
x = 1-8 and y = (1 + EB) B

Once again, note that (2.5.3.12) is independent of g, the number of guard

digits.

i Consider case 3. From the discussion preceding (2.5.1.3), we know

, that the largest possible value of Ad+Ay is

max (Ad + Ay) = B-L(B-t _ B-Zt) -L-t

i Consequently, case 3 cannot arise.

Consider now x©y. Assumptions (2.5.0.1) - (2.5.0.5) allow us, without
loss of generality, to restrict our attention to x and y satisfying x > y >
0. We investigate the nonzero error in x®y with the following separate,

but exhaustive cases. (Refer to 2.5.3.2.)

A Case 1. Ad < Lg% ana Ay + o0 < Ad (2.5.3.13)
2

Lt and Ay + 0 > Ad (2.5.3.14)

(N Lo

Case 2. Ad <

—
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U _q

Case 3. Ad 2 %B'L't and Ay + B Y < Ad (2.5.3.15)
Case 4. Ad 2 %p'L't and Ay + B'L't > Ad (2.5.3.16)

Consider case l. (Ar = 0) Using reasoning analogous to that employed
in the previous sections, we see that Exey may be bounded below by substi-

tuting in (2.5.3.4) the smallest possible value for x8y and the largest

possible value for Ad -Ay.

From (2.5.1.16) it is evident that 0 < L < t. For each such L, the
smallest possible value of x®y is ﬁ-L-l. From (2.5.3.13) we have
Ad < %ﬁ-L-t. But, since Ad only accounts for error to the left of the

. . -L - -t-
last guard digit, and g 2 1, it follows that Ad < B C%B t. B t £).

Moreover, Ad - Ay is maximized when Ay = 0.

Summarizing for case 1 with B = 2,

_a Ll -t _ -t-p
e - - (Ad - Ay) N B (z8 - ")
%9y x @y + (Ad - Ay) ﬁ_L-l + B-L (%B-t _ B-t-g)
-k -8
(3 )

= T (2.5.3.17)

-1 1 -
B+ (3-8
1 - 1-t
> = (3-8 0)B
One can verify that (2.5.3.17) is indeed attained when

x = B+ B and y = (% + B-g)ﬂ-t

By examining (2.5.3.17), we see that the negative relative error applicable

to case 1 is minimized by minimizing 2, the number of guard digits.

Consider case 2. From (2.5.3.14), note that Ar = 0 and Ay > Ad 2 0.

_
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Thus, the maximum relative error applicable to case 2 is identical to that
attributed to chopped addition when Ay > Ad 2 0. (Refer to 2.5.1.9 -

2.5.1.12.)

Consider case 3. From the discussion preceding (2.5.1.7), we see that

the largest possible value of Ad is

maxAd = B-L(B-t - B-t-g) < B-L-t

Consequently, case 3 cannot arise.

Consider case 4. (Ar = ﬂ-L‘t) Let q be the number of digit positions h
y is shifted to the right during pre-adjustment. From the discussion

preceding (2.5.1.9), we see that 0 < q < M.

Suppose q S g. Note that this implies Ay = 0. Prior to post-
adjustment rounding, for each L, 0 < L £ t, the fp difference must be at

-L-1 1

least B I.e.s xOy-ArZﬁ-L-. From (2.5.3.16) we have

Ad 2 %B-L-t. Thus, for each L,
Ar - Ad < B-L-t “%B-L-t - %B-L-t

Summarizing for case 4 with q S g and B 2 2,

1 _-L-t
. _ (Ar - Ad) ) 7 B
xOy (x @y - Ar) + Ad B-L-l . %B-L-t |
1
= 2 (2.5.3.18)
- t-l 1 () e [
B + 3

(Note that (2.5.3.18) is independent of g.) One can verify that (2.5.3.18)

is indeed attained when

e



Suppose now q > g« If L = 0, then prior to post-adjustment rounding,
the fp diffcerence must be at least B-l. I.eesy X8y = Ar 2 B-l. IfL =20
and g = 1, then during post-adjustment the contents of the single guard
digit is shifted left. Consequently, Ad = 0 and no rounding is performed;

hence, case 4 does not apply.

Maintaining the assumption that ¢ > g, let us now consider g 2 2.

Since q 2 3, then prior to post-adjustment rounding, the fp difference must

be at least B-l - 3-3. I.es x©y = Ar 2 B-l - 3-3. Note that this

implies L s 1.

For q > g, the largest possible value of Ay is obtained when q-g

| digits of size B-1 are right-shifted beyond the rightmost guard digit

? register., Thus, for each qs Ay can be no larger than ﬂ-t-g "9, since

- B

1 _-L-t .. . .
Ad 2 EB s the guard digit registers must contain at least one nonzero

digit. Consequently, 1 £ q-g st-1. (If t =1, then case 4 with ¢ > g
does not apply.) ioreover, since 0 <€ q s Hl. we have 1 < g < q s
min(g+c-1, Hl). In what follows, we make the reasonable assumption that

g+t-l < I’Ilu

For each q (1 € g <qs g+t=-1), and each L (0 £ L s 1), we conclude

Lot (2.5.3.19)

Ay + (Ar - Ad) s B (g8 -p"Y + %ﬁ
(Ad - Ay) =2 %B'L't -p t(E-p8Y (2.5.3.20)
Hence, for case 4 with q > g, B 22, and L = 0,

E - Ay + (Ar - Ad)

X8y (x &y - Ar) + (Ad - Ay)
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BE (B8 - g + 37"

S - - - - -
A e A L
(B8 -5+ 3
. _ - - (2.5.3.21)
Bl e - BB -4 D)
- — T E! > 0 (2.5.3.22)
[ +1/(BE-p9+H1-1

I1f, on the other hand, L = 1, then

. _ Ay + (Ar - Ad)
x0y -~ (x ey - Ar) + (Ad - Ay)

- -cr - - -1
BEE - + 587"

TR R Rt B R B

IN

('8 - gl

B - "2+ - (plE -l D
- — e > 0(2.5.3.23)
[r - " +/( 8- Tem1-1

Je show that for all q (1 < g < q), (2.5.3.22) is strictly greater
than (2.5¢3.23). In fact, it 1is sufficient to demonstrate this for
q >g 2 2, since we have shown above that if g = 1 and L # 0, then case 4

does not apply.

Note that the desired result is obtained if we can show

BB - gl ot -2
B B + 1
- - l < t-l (2‘5'3024)
pg-pq+§ +1
Vle see that
1-¢ 1- 1 1
Bg'Bq+5 (B - 1)

~g

1 - - 1
pe-pgl+s pE-pg 143
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-1
< BT
B *+3
-1 1
B+ 3
= =7 15a
B +3

where a = % if =2, and a = %% if B > 2. Hence, (2.5.3.24) will be ver-

ified if we can show

+ 1) (2.5.3.25)

for each B and its corresponding a. lultiplying both sides of (2.5¢3425)

by B ¢ and rearranging, we obtain

1 - 5-2 - aB-l 2 (a - 1)‘3-2 2 (a - l)B-t (2.5.3.26)

where the final inequality comes from the fact shown previously that t 2 2

for case 4 to apply. From (2.5.3.26) we obtain immediately

T (2.5.3.27)

Equality in (2.5.3.27) is achieved for (B = 2, a = %). and strict inequal-

ity for (B > 2, a = Tz)' Thus, we have verified (2.5.3.24); and hence

also that (2.5.3.22) 1is strictly greater than (2.5.3.23), which was

[

desired.

From (2.5.3.19) and (2.5.3.20), observe that bound (2.5.3.22) was
derived with L = 0 and Ad = %B-t. But since L = 0, it follows that no
post-adjustment shifts are performed, and the contents of the guard digits
before the subtraction is also given by %B-t. Note that this implies that
the leftmost guard digit was nonzero before the subtraction. Hence,

v it st ..

e
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Observe that (2.5.3.21) is maximized when q = t. Consequently, for
case 4 with q > g and B 2 2, we may conclude from (2.5.3.21) and

(2.5.3.22),

- 1, -g .-t
i 7 + B & . B
E

xey < t-l -t (2.5.3028)

B e - (G+pE -8

-t)Bl-t

< (% + B-g - B

One can verify that (2.5.3.28) is indeed attained when

x = B+ and y = (% +p8-pHp "

The maximum relative error in ® and © may now be summarized for scheme

S, as follows.

Let
(3 - B9 )
A, = — (2.5.3.29
1 gL, (L e
(-85 )
A, = —— - (2.5.3.30
2 ﬁt 1 . (% - B t‘.)
3 -phH
| A3 = t-1 1 -t-1 (2.5.3.31)
| B+ (3-8 )
i
| L
A 2 (2.5.3.32)
4 % el 1 el
t B 2
T+ (878 -pH
A (2.5.3.33)
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g8 -38""
gt -1 -8TY)

A (2.5.3 '34)

6 -

Given 1 = g £ t, it 1is easy to see that

A, S A, < Ay < AL £ Ag (2.5¢3.35)

1 2 3

Also, it can be shown that for all 1 £ g < t, we have &g = Aq» with equal-

ity holding when B = 2, g = 1, and t = 1. Thus, for g > 2,

-4, < Exey. Exey < Ag if 1sg<t (2.5.3.36)
and for B = 2,

liote that bounds A, and A3 are independent of g, the number of guard
digits. Since the derivation of A5 required 1 S g < q =< t, A5 does not
apply 1if g z t. In this case, the upper bounds in (2.5.3.36) and
(2.5.3.37) are replaced by the next highest bound, Aus which is seen to be

independent of g. Thus, for g > 2,

-4, < Exey, Exey < A, if g2t (2.5.3.38)
and for B = 2,
-Ay < Exey, Exey S A, if g2t (24543.39)

When 1 < g < t, we see from (2.5.3.35) that Ay < Ay < Ag. Thus, for
this case, the maximum relative error will be minimized by minimizing A5.
Since for any fixed t, Ag is minimized by maximizing g, we conclude that
wore guard digits are better for scheme S3 with 1 € g < t. Additional
guard digits have no effect upon the maximum relative error in scheme §, if

2 tl

14
o

s A

s
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2.5.4 Comparison Between Schemes S;» Sy and S,

The worst-case relative error in each of the schemes is copied below

l for ease of reference.

- a~t
, st ¢ c-1(1 B ) if g2l (2.5.4.1)
s B +(1-8")
11+ 878 if 1sg<t
S : B = (205.4-2)
2 = -
1 ﬁt L, %(1 - 88 or g=t & B =2
% if g>t
Bz - —t'_—i—'—l (2.50403)
. B + -2- or g =t & B z2
| 7+ BE-8
S . A = p - - if 1 s g <t (205.4.4)
i Rt Y )

For purposes of comparison, we assume that each scheme employs at
least one guard digit (g 2 1), and that the fp numbers have fractions con-

taining at least three digits (t 2 3).

By comparing (2.5.4.1) = (2.5.4.5), we find that C exceeds the worst-
case relative error for every case of scheme S,, and for every case except
one of scheme Sj. If B=2 and g = 1, then C is strictly smaller tham the
maximum relative error in scheme S,, given by Ag. Thus, when binary arith-

metic is used with onme guard digit, chopping is better than the S; scheme

of rounding.

For 1 s g <t, we find that B, S Aq» with equality holding omnly when

B=2and g =t-1. Thus, if less than an entire double precision accumu-

_
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lator is available, then rounding scheme S2 produces a strictly smaller
i wvorst-case error than rounding scheme 83. unless B =2 and g = t=-1, in
which case, the worst-case errors for the two schemes are identical.
(Rounding during pre-adjustment will not reduce the maximum relative error

if p=2and g =t-1.)

If =2 and g = t, then the maximum relative error in S, is given by
B» and the maximum relative error in S, is given by B, It is easy to
show that B2 < Bl‘ Thus, in this case, rounding in scheme S3 produces
smaller worst-case relative errors than scheme Sz. (Rounding during pre-
adjustment actually increages the maximum relative error in this case,
because the pre-adjustment round can cause an undesirable post-adjustment

rounds)

If g2t and B#2 2, or g >t and P = 2, then the worst-case relative
in S2 is identical to the worst-case relative error in 83. Thus, in this
case, pre-adjustment rounding has po gffect upon the worst-case relative

error. These observations are summarized in table 2.5.4.l1.

| | | | | | |
| | g=1 | 1<g<t-1 | g=t-1 | g=t I g>t |
| | | | | | |
| | | | | | |
: B=2 ! S, <8, <8, } S, <85 <8, : S, =84 <8, : S5 <8, <8; : S,=85 <8, :
| I | | | | |
:B’z : §9 <53 <8, llsz<s3<s1 :sz<33‘51 'lsz=s3‘51 =s2=s3<s1 :

Table 2.5.4.1. Comparison of worst-case relative errors for addition
schemes Sl. 82. and S3.

Taking into account the fact that a factor of longllogB1 more bits

are needed to represent a number in base B; than in base B,» (2.5.4.1) -

—
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l (2.5.4.5) all indicate that base 2 would incur the smallest worst-case
relative errors for any given number of bits, as we found for @ and 9.
Also, using these precise bounds, it is apparent that, contrary to Brent
(4] and Cody [8], the systems (B,=2, t1=22) and (B,=4, t,=11.5) do mot
have identical worst case errors. (The latter scheme represents a 23-bit,
base 4 number system.) Rather, (Bl.tl) yields strictly tighter relative
error bounds for each of §; - S3 as well as for the multiplication and
division schemes schemes presented in sections 2.5.3 and 2.5.4. (For mul-
tiplication and division, however, note that the derived bounds are not as
tight as possible for all choices of B and t.) Two factors contribute to
this result: First, comparing a base 2 representation with a base &
representation having an extra bit of precision, the extra bit of precision
is an extra bit of information that may be discarded when a negative error
is incurred. Also, if the guard digits are chosen to hold ¢, + 1 bits, then
the pre-adjustment round of scheme S, can induce an undesirable post-
adjustment round with (ﬂz. t2). but not with the (shorter) numbers of
(BI. tl). Fortunately, it is true that for fixed B, the relative errors do

indeed decrease with increasing t.

For completeness, we mention that Liddiard [49] has indicated a
preference for base 2, because base 2 minimizes the variation in precision

among the fp numbers, caused by a variable number of leading zero bits.

Though the worst-case relative error im scheme §; is independent of g»
the number of guard digits, we saw in section 2.5.1 that the next largest
relative error is smallest when g = 1. Examining (2.5.4.2) and (2.5.4.4),
we see that if 1 < g < t, then the worst-case relative error in both §, and

5, is minimized by making g as large as possible. Note, however, that when

e
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g 2t in scheme S3s or g > t in scheme Sy additional guard digits have na
effect upon the worst-case relative error. Let us consider what effect, if
any, additional guard digits have upon the less-than-worst-case relative

error when g 2 t.

Suppose that the exponents of x and y differ by q 2 0. We saw in sec-
tion 2.5.1 that if x = B-l and q 2 t+2, or if x * ﬁ-l and q 2 t+1, then
digit position t+1 of the exact, normalized difference, x~-y will contain
a digit of size Pp-1. Thus, if sufficient guard digits are available to

form x-y exactly, then after rounding the result to t digits, we will find

x. Note also that if q 2 t+1, then digit position t+1 of the

xOy

exact, normalized sum, x+y, will contain a digit equal to 0. Thus, if
sufficient guard digits are available to form x+y exactly, in this case

also, rounding the result to t digits will yield x®y = x.

Siﬁce x+y and x~-y do not need to be formed explicitly when the
exponents of x and y differ by q 2 t+2, it follows that maximum precision
t-digit results may be obtained by forming x+y or x-y exactly using t+1
guard digits i’f qSt+l, and aborting the ® or ® if q > t+1, Note that
no pre-adjustment rounding is required. Moreover, if t +1 guard digits are
used, then it can be shown that S, and 54 yield identical results, regard-

less of whether the ® or © is aborted for q > t+1.

In summary, from the standpoint of accuracy and hardware cost, it
appears so far that the choice of scheme 83 using base 2 with t+1 guard
digits for performing rounded addition is best, where the addition 1is
aborted when q > t+1 for efficient operation. In fact, t+1 guard digits

are not necesgsary to obtain maximum precision. In section 2.5.5 we intro-

duce scheme 85. which for any base uses only 1 guard digit and 2 guard bits
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to achieve the precision described here for that base with t+1 guard
digits. Note that the maximum relative errors for scheme 53 with t+1
guard digits are givem by (2.5.3.38) and (2.5.3.39), and that these bounds
are independent of g 2 t. Finally, note that if this scheme were to be
unbiased, then the maximum positive relative error would be unchanged, but
the magnitude of the negative relative error bound would increase to the

same value as the positive relative error bound.

2.5.5 Efficient Schemes for Accurately Performing Rounded Addition:

Schemes S4 and 85

Knuth [42, section 4.2.1, exercise 5] shows that any sum obtained by
scheme 83 with t+1 guard digits can be achieved with only 2 guard digits

and the following rounding scheme.
Scheme 84.

Let L a ] denote the greatest integer < a (or floor(a)).

Let [ a] denote the least integer 2 a (or ceiling(a)).

(1) Pre-Adjustment: y is right-shifted until its exponent equals the
exponent of x. Let fy denote the fractional part of y. For x®y, replace

f_ b
yY

B-t-zlﬂt+2 fy_' (2.505.1)

For x9y, replace f.y by

ST TR (2.5.5.2)

(2) Addition: (Same as schemes S, and 83)
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| (3) Rost-Adjustment: (Same as schemes S, and S;)

Note that both (2.5.5.1) and (2.5.5.2) imply that all digits of y
right-shifted beyond the second guard digit register are discarded. How-
ever, in (2.5.5.2), the second guard digit is incremented if any of the

discarded digits is nonzero.

Both Yohe [74] and Kulisch [46] have shown how the pre-adjustment
increment required by (2.5.5.2) can be eliminated from scheme S, by using
an additional 1 bit register. In their scheme, this "sticky" bit is set to
1 if any nonzero digit of y is right-shifted beyond the second guard digit
register during pre-adjustment. Otherwise, the sticky bit remains O. This
sticky bit participates in ® and © simply as an extra bit of precision for
y. That is, it has no effect in x9y, and in x®y its sole effect is to
require a "borrow"™ from the least significant digit of x if any nonzero
digits of y were discarded during pre-adjustment. It is straightforward to

see that this scheme is equivalent to scheme S,.

Thus far we have seen how a t-digit accumulator with 1 overflow bit, 2
guard digits, and a sticky bit may be used to form maximum precision sums
without any pre-adjustment rounding. We now show how we may obtain the
same precision, replacing the second guard digit by a single bit. and per-
forming post-adjustment rounding with one shiffing operation. (Garner [20]
also mentioned that maximum precision sums were possible, with the second
guard digit replaced by a single bit, but he did not give all the details
for its implementation.) Later, we indicate how this scheme may be imple-
mented so that it requires no more time than the slowest chopped addition

of scheme Sl.

e
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§ Scheme SS‘

We use the following notation:

OB = overflow bit

AC = t-digit accumulator
GD = guard digit

GB = guard bit

SB = Msticky"™ bit

Il = concatenation of bits

if Bl -> SLI D Bz -+ SLZ D oo U Bn -+ SLn fi
denotes a selection and execution of one of the statement lists

SLl peces SLn' depending upon the Booleans Bl XXX Bno

The registers required for scheme Sg are detailed below.

Il O T Iy
0B <===mmme=ce-- AC ==-=mmeccaca- > GD GB SB

Prior to After After

pttle . pttl £,] [xy or xey | xey xOy
y GB SB GB SB GB SB
=0 0 0 0 0 0 0
>0 & <1/2 0 1 0 1 1 1
=1/2 1 0 1 0 1 0
> 1/2 1 1 1 1 0 1

Table 2.5.5.1. Contents of GB and SB before and after
forming x®y and x®y.

(1) Pre-Adjustment: 1load y imto AC; rightshift(AC ||GD) wuntil the
exponent of y equals the exponent of x; set GB and SB as indicated by
table 2.5.501.

(2) Addition: x * (OB|IAC|IGD||IGB||SB) is performed exactly, with GB
and SB participating as two additional bits of precision for y.

(3) Post-Adjustment:

if OB =1 -+ rightshift( OB ||AC ||GD) one digit position;
add p/2 to (AC || GD)

—
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O OB=0 & leftmost digit of ACZ20 -
add p/2 to (0B |lAC |IGD);
if OB =1 + rightshift( OB || AC) one digit position
O OoB=0+ skip
fi
O OB=0 & leftmost digit of AC=0 -
add 1 to (AC|1GD||GB);
leftshift( AC || GD ) until it is normalized
£i

Consider x®y formed by scheme Sge Recall that we have assumed without
loss of generality that x and y are normalized fp numbers with x 2y > 0,
and that the expoment of x equals 0. Thus, the exact sum, x+y, may be

bounded as follows.

Bl < x+y s (1-pH+ -5 = 2-257" (2.5.5.3)

From (2.5.5.3) we see that x+y can have a fraction-overflow value of at
most 1. That is, after adding x and y, but before post-adjustment shifting
and rounding, either OB = 0 and the leftmost digit of AC # 0 (mo fraction-
overflow), or OB = 1 (fraction-overflow value = 1).  In the former case,
the first t+1 digits of x+y are contained in (AC || GD), and a properly
rounded t-digit sum is obtained by incrementing (OB || AC || GD) with g/2 and
right-shifting (OB || AC) one digit position if fraction-overflow occurs.
In the latter case, the first t+1 digits of x+y are contained in
(0B || AC), and a properly-rounded t-digit sum is obtained by right-shifting

(OB || AC | | GD) one digit position, and then incrementing (AC || GD) by p/2.

Note that in the latter case, the increment is equivalent to incre-
menting x+y by (pg/2) ﬂ-t. We see from (2.5.5.3) that an increment of at
least 2ﬁ-t is necessary to produce a fraction-overflow value greater than

. -t .
1, and that an increment must exceed 1+28 to produce a fraction-

——————
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overflow value greater than 2. Consequently, rounding x+y as described
above cannot yield a fraction-overflow value greater thamn 1 if B < 4, and
the fraction-overflow value can never exceed 2 for any B 2 4, Since the
leftmost digit in AC can hold a "2% when B 2 4, and since it can hold a "1"
when B < 4, we conclude that fraction-overflow cannot occur from rounding a

right-shifted sum.

Consider x®y formed by scheme Sge Note that incrementing GD by g/2
will increase x=-y by (p/2) ﬁ-t-l. and incrementing GB by 1 will increase

x=y by an amount not greater than B-t-l. However, since
Xx-y < x S 1- p-t

an increment of at least p-t is required to produce fraction-overflow.

Thus, no fraction-overflow can occur from the S5 scheme for x®y,.

If the exponents of x and y are equal, then prior to rounding, the
exact difference, x -y, will be contained in AC, and (GD || GB || SB) will be
0. Thus, in this case, scheme SS cannot alter the exact difference con-

tained in AC.

If the exponent of x exceeds the exponent of y by 1, them prior to
rounding, the exact difference, x-y, will be contained in (AC || GD), and
(GB || SB) will be 0. If the leftmost digit in AC is nonzero, then no
left-shifting is required for post-adjustment, and a properly-rounded t-
digit result will be placed in the accumulator by incrementing
(0B || AC || GD) by B/2. On the other hand, suppose that the leftmost digit
in AC is 0. Since GB is also 0, incrementing (AC ||GD || GB) by 1 cannot
alter the exact difference contained in (AC||GD). Subsequent 1left-

shifting of (AC || GD) will place all nonzero digits of x -y within AC.

,
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Suppose that the expoment of x exceeds the exponent of y by 2 or more.
1f (GB || SB) is 0 prior to forming x®y, then (GB || SB) has the desirable
effect of not altering x®y. If (GB || SB) is nonzero prior to forming x®y,
then some nonzero digits of y were shifted out of (AC ||GD) during pre-
adjustment. In this case, (GB || SB) necessitates a "borrow"™ from the least
significant digit of x, as would have happened if no digits of y were lost.
Finally, we see from table 2.5.5.1 that GB will contain a "1™ after forming

x€y, only if
1
f J < -2' (2.505.4)

That is, GB will contain a "1™ only if the digits of fy shifted out of

(AC | | GD) during pre-adjustment are S %B-t-l, but not all O.

Note that when the exponent of x exceeds the expoment of y by 2 or
more

x-y > p -8B 2 B

Consequently, x -y can introduce aL most one leading 0 into AC. If the
leftmost digit in AC is nonzero, then as in the previous case, incrementing
(0B |1AC || GD) by B/2 will leave a properly-rounded t-digit result in AC.
Otherwise, the first t nonzero digits of x-y will be contained in
(AC ||GD), and (GB || SB) will be set in the manner indicated by table
2.5.5.1. Note that incrementing (AC || GD || GB) by 1 will cause a "carry"
to propagate into GD only if GB contained a "1™ prior to incrementing.
From (2.5.5.4) we see that this occurs precisely when fy contains nonzero
digits of size s (ﬂ/Z)ﬁ-t-Z. This condition correctly specifies when the
guard digit should be incremented to yield a properly-rounded t-digit

result in (AC || GD). Subsequent left-shifting can place this result

Y
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entirely within AC. This completes our proof of the correctness of scheme

SS'

Now we indicate how rounded addition can be performed in essentially
the same amount of time as chopped addition. This efficiency is possible
for fp implementations that represent fp numbers in sign-magnitude form,
but perform fp arithmetic in 2's complement. (Viz. IBM 360/370 [2,35,36]

and DEC PDP-11 [57,58].)

In converting a negative 2's complement number to its corresponding
sign-magnitude form, the 2's complement representation is usually comple-
mented and incremented, so that its magnitude may be obtained. This action
is performed regardless of whether chopped or rounded arithmetic is used.
Thus, by combining the increment required for conversion with the increment
required for rounding, a single addition may be used to perform both opera-
tions simultanegusly. Hence, any rounded addition may be performed in
essentially the same time as that required for a negative chopped sum. (A

few extra hardware gate delays are needed to decide the increment size.)

Similar efficiency is attainable for fp implementations that perform
arithmetic in 1's complement, regardless of the fp number representation.
(In the CDC 6000/Cyber-70 series computers, l's complement arithmetic is
performed upon fp numbers with a 1's complement number representation
[26,41].) To form a correct l's complement sum, the carry-out from the
sign-bit must be added to the least significant digit position in the accu-
mulator. This action is performed regardless of whether chopped or rounded
arithmetic is used. By combining the increment required to form a correct
1's complement sum with the increment required for rounding, a single addi-

tion may be used to perform both operations gimultapeously, analogous to
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the case with 2's complement arithmetic. Once again, we see that rounded
addition may be performed in essentially the same time as that required for

chopped addition.

2.6 Summary of Floating-Point Hardware Design Considerations

We have analyzed the relative errors in various floating-point arith-
metic schemes as a function of the base and number of guard digits
employed. We obtained tight upper and lower bounds for the maximum rela-
tive errors in each scheme, and indicated how the schemes compare for each

possible choice of base and number of guard digits.

One surprising result is that chopped addition yields smaller worst-
case errors when fewer guard digits are used, with one guard digit yielding
the smallest worst-case errors. Computer designers can no longer justify
attempts to avoid implementing rounded addition by adding more guard
digits, since additional guard digits with chopping can only increase the

worst-case relative errorse.

Another interesting result is that from the standpoint of minimizing
worst-case relative errors, none of the schemes Sl’ Sys oT 83 is uniformly
the best or worst for every possible choice of base, B, and number of guard
digits, g If g =1 and B = 2, then the chopped addition scheme, Sl. is
superior to rounding scheme S3. but rounding scheme 5, is superior to both.

If g =t and B = 2, then rounding scheme S3 is best.

Maximum precision base B sums were shown to be attainable with scheme
53 and g = t+1l. Using scheme 85. we showed how the hardware requirements

for this precision can be reduced to g = 1 (one guard digit) and two addi-
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tional bits. In this scheme, a second post-adjustment shift, required by

conventional schemes to deal with fraction-overflow caused by roundings 1s

pever needed.

Using our tight error bounds, we confirmed the commonly held opinion
that arithmetic in base 2 yields the smallest worst-case relative errors
[455+8,43]. However, from these bounds it is apparent that, contrary to
Brent [4] and Cody [8], base 4 yields greater worst-case errors than base
2, even if the base 4 numbers are granted one more bit of precision than
the base 2 numbers. Also, we mentioned that Liddiard [49] had indicated a
preference for base 2, because base 2 minimizes the variation in precision
among the floating-point numbers, caused by a variable number of leading

zero bitse.

Finally, we have indicated how certain implementatiomns of floating-
point addition can produce properly-rounded sums in essentially the same
amount of time as they take to produce chopped sums. Thus, for these

implementations, we argue that rounded addition is npof inferior to chopped

addition on the grounds of efficiency, as is commonly assumed.




3. Program Correctness Proofs

3,1 Qverview

In section 3, we introduce Dijkstra's Guarded Command Language and
present two approaches for reasoning about floating-point programs writtem

in this language.

The first approach associates a set of floating-point numbers with
each floating=-point expression and models the assignment statement as a

nondeterministic selector of one of the elements in the set.

The second approach models the floating-point operations by single-
valued functions, whose significant properties are characterized by a small
set of axioms. Interesting properties of floating-point arithmetic are
derived from the axioms, and examples are given to illustrate how these

axioms and theorems may be used to prove floating=-point programs correcte.

The common practice of modelling the floating-point operations by a
single function that crops the result of the corresponding exact operation
is shown to be invalid for many implementations of floating-point arith-

metic.

3.2 Background and Motivation

Be sure of it; give me the ocular proof.
-- Shakespeare, Othello

Let us first of all follow reasom, it is the surest
guide. It warns us itself of its feebleness and
informs us of its own limitations.

-- Anatole France, Credo of a Sceptic
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®... A proof is an argument that convinces the reader (or listener) of
the truth of a statement™ [25]. The ability of a proof to comnvince depends
upon the clarity of its presentation, the comprehensiveness of its argu-
ment, and whether or not the inferences used can be considered self-
evident. The assumptions stated during the course of the argument serve to
define and delineate the object of the proof. Thus, from this perspective,
the assumptions, if stated, have no bearing upon the convincing power of

the proof, but gnly upon the proof's domain of applicability.

Proofs may be more or less formal depending upon the extent to which
mathematics is used to assist the argument. In particular, mathematics 1is
well-suited for making the argument precise, explicit, and well-organized.
Unfortunately, the amount-of detail required to make an argument precise
and explicit sometimes becomes excessive, resulting in a proof that is
cumbersome to generate and difficult to understand, thus detracting from
the goal of a clear presentation. In such cases, an argument with fewer
explicit details is warranted, leading to a proof that is more informal.
The convincing power of an informal proof, however, depends upon its abil-
ity to evoke the belief that amy details not given precisely and explicitly

could be supplied upon request.

In the preceding discussion, we have used the words "belief", Mclar-
ity", "self-evident™, "can be considered®, and Mability to evoke®. These
words suggest that proofs possess certain subjective qualities. De Millo,
Lipton, and Perlis [13] build a good case for this point of view, emphasiz-
ing that a proof must be confirmed by an educated community before it "can
be considered® valid. The proof may fail to be confirmed because its

presentation is obscure, its argument is incomplete, or there is evidence

——



- 60 -

that an inference 1is incorrect. In the latter case, the proof 1is
incorrect, and in any of these cases, the proof is inadequately unconvinc-
inge (Proving a computer program to be correct by executing it omn test

cases often fails to convince because of argument incompleteness.)

By noticing that proofs are somewhat subjective, this does not imply
that the truths they purport to demonstrate must necessarily also be sub-
jective. On the contrary, we insist that such truths are entirely objec-
tive: A given algorithm either meets its specification or it doesn't. An
algorithm either implements a specified function or it doesn't. It either
runs in Nlog N time or it doesn't. Thus, if a proof is confirmed by a
number of informed judges, we have no guarantee that the proof is correct.
However, our confidence in the proof, and hence also the consequent of the

proof, is dramatically increased.

Although confidence in a proof builds after it is confirmed by an
informed community, proofs do have value even in relative isolation. Per-
sonal misconceptions parading under the guise of Mobvious truths" are often
dispelled by a considered attempt to explain why these "truths"™ are so.
And, if there is only one person to be brought to a particular way of
thinking, is there a more satisfactory way than with a carefully planned,

rational argument?

Let us consider program correctness proofs. To say that a program has
been proven "correct™ means that the program has been shown to satisfy a
particular specification. Indeed, apart from its specification., the
"correctness™ of a program is a meaningless concept.

Hull [34] has expressed confusion about this point, wondering what it
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means to claim that a particular piece of numerical software is "correct".
i For a given problem, some programs are faster than others, some are more
accurate than others, and some are reliable for a wider range of data than
others. Also, he asks, "What is meant by the correctness of a program for
playing chess?®™ The solution to this dilemma is actually quite simple.
The specification for a program, by definition, is a statement of all the
necessary properties of the program. To say that the program has been pro-
ven "correct", therefore, means that it meets all of these properties.
Attaimment of additiomal properties, such as the guality of a program, in
so far as they are unspecified, is a concern separate from that of correct-
ness., (Compare elegant vs. baroque proofs in mathematics.) An appropriate
question to ask, however, is, "What properties should be required of a par-
ticular program?® This question can only be answered in view of the

program's intended use.

Hoare [29] has observed that correctness proofs are useful not omly to
argue for the reliability of computer programs, but also as documentation
and as aids to program portability and modifiability. The assumptions
stated during the course of a proof serve to define and delineate the
domain for which the reliability of a program segment is assured, and indi-

cates why.

An individual who claims a distaste for these proofs or doubts their
usefulness on the grounds that they are "long, ugly, and boring"™ [14], or
difficult to generate and difficult to understand, has misunderstood what a
proof is. We reiterate, a proof is nothing more or less than a convincing
argument. As long as the trustworthiness of computer programs is of

interest, we have no recourse but to rely upom correctness arguments (or
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proofs). In fact, it may be argued that even if test cases are used to
instill confidence in a particular program, reasons should be given to
explain clearly what the tests demonstrate and why anyone's level of confi-

dence should be raised.

1f, for whatever reason, one chooses to produce an inconclusive argu-
ment for the correctness of his program, it is imperative that he be cog-
nizant of the following: First, that his argument is not conclusive;
second, that techniques are now available to produce a conclusive argument;
and finally, that choosing the bumpy road to hit-or-miss reliability may
have disasterous consequences when a ™miss™ becomes a ™hit"™ during a pro-

duction run.

Distaste for the formalism of some program correctness proofs is not a
valid criticism of all correctness proofs, but only of certain presenta-
tions. However, this distaste suggests that for human readability,
correctness proofs should be presented informally, introducing formalism

only where it is essential for clarity and precision.

Proofs that are substantially formal, however, have value for three
reasons. First, they make the analysis explicit so that errors become
apparent. Second, they systematize the reasoning so that mechanical assis-
tance becomes possible. And fimally, because they are explicit and sys-
tematic, they result in a better understanding of the reasoning involved in

informal proofs.

Mathematical formalism has been used to reason about the correctness
of computer programs since the ENIAC. Von Neuman and Goldstine [68], in

1947, and Turing [65], in 1948, published papers analyzing the cropping
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errors in matrix computations. These papers are said to have "laid the
foundation for modern error analysis™ [70]. 1In fact, associating logical
assertions with computer programs also appears to have its origin with von

Neuman, Goldstine, and Turing [22,661].

The papers by Floyd [18], in 1967, and Hoare [29], in 1969, urged that
program semantics be placed on a solid axiomatic foundation to make the
benefits of formal deductive logic accessible to program correctness
proofs. Hoare observed, "™[for any deteministic computer]...all the pro-
perties of a program and all the consequences of executing it in any given
enviromment can, in principle, be found out from the text of the program
itself by means of purely deductive reasoning.™ Floyd and Hoare are con-
sidered by some to have donme for program correctness what Euclid did for

geometry [47].

The first proofs that made use of explicit axioms and formal deductive
logic treated small, determministic, sequential programs that use exact
arithmetic [30]. Subsequently, formal proof techniques were developed to
reason about procedures with parameters and recursion [31], nondeteminism
[15,16), concurrency [56], and security [69]. These techniques have been
applied sucessfully to large programs [24,69], but in each case, exact

arithmetic was assumed.

Since the time of the ENIAC, numerical analysts have constructed
nhneroue proofs of bounds on the acumulated error and temination (or con-
vergence) for programs that use (inexact) floating-point arithmetic. How-
ever, with only a few exceptions [12,37,60], the proofs of error bounds
assume termination, and the proofs of termination assume exact arithmetic.

Moreover, the- techniques that have been applied seem quite heuristic,
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relying upon the exceptional skill and experience of the numerical analyst.
In fact, it is precisely because of the exceptional skill required to write
floating-point programs that the term Manalyst™ has been applied to those

individuals who do.

Various models have been proposed for studying floating-point arith-
metic. Some of the best known are the Mbackward™ or Ma priori" error model
of Wilkinson [70,71], the "interval™ error model of Moore [53,54], and the
"significance™ model of Metropolis [50,51]. More recently, alternative
models have been proposed by Miller et. al. [38,52], Brown [6], Oliver

[55], and Aggarwal et. al. [1].

The analyses that employ these models have, to the best of this
author's knowledge, all side-stepped the problem of rigorously proving cer-
tain relationships among program variables to be invariant, in spite of
inexact arithmetic. Some analyses include a detailed account of the error
incurred in each floating-point expression, but only on a single pass
through a loop [60]. Other analyses apply only after the loops in these
programs are "unwound" a fixed number of times and replaced by straightline
code [38,52]. Still others claim certain invariant relationships, but
neglect to rigorously prove that these relationships are, indeed, invariant
[11,32,37,70]. Moreover, it appears that systematic techniques necessary

to do this have, prior to this thesis, not been developed.

The work presented in section 3 illustrates various approaches for
wedding Wilkinson's "backward™ error model of floating-point arithmetic
with Dijkstra's calculus of "weakest pre-conditions" [16] in an attempt to
place the analysis of floating-point programs on a solid axiomatic founda-

tion.
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3.3 Dijkstra's Guarded Command Language (GCL)

Because of the expressive power of Dijkstra's Guarded Command Language
(6CL) [16], we shall use it to describe our programs. This presents no
difficulty for applying the techniques of section 3 to programs expressed
in PASCAL, ALGOL, PL/I, or FORTRAN, since (except for PL/I's ferk and
joim) the control structures of these languages can be expressed in terms

of GCL.

GCL contains five primitive statement types and a construct for com-

bining th em e

l. [empty statement] skip

2. [halt statement] abert

3. [assignment statement] x := E

4. [alternative statement] if B, »s,, 0O .- O B +sL fi
5. [iterative statement] do B +sL; O .-« 0O B =~ SL, od
6. [composition of statements] S15 Sp3 vee 3 S

where "E" denotes an arithmetic expression, 'Bi" denotes a Boolean expres-
sion, "S." denotes one of the statements (1) - (5), and "SL." denotes a
list of one or more statements, combined as in (6). In the alternative and
iterative statements, Boolean Bi is said to be a guard for statement list
SLi. because SLi can only‘be executed when Boolean B, is true. Indeed, GCL
gets its name from the fact that it employs the guarded command constructs,
'Bi -+ SLi'. (We say more about each of the statement types below.) The
syntax of E and Bi shall be identical to that of PASCAL. We refer the

interested reader to either of the references [72,73] for a precise

e



- 66 -
definition.

The assigmment statement is similar to that in PASCAL, ALGOL, PL/I,
and FORTRAN, except for two features. First, expression evaluation is not
permitted to have side-effects. That is, evaluation of E is not allowed to
change the value of any variable. And secondly, the assignment statement
is extended to allow several distinct simple variables on the left-hand
side and several expressions on the right-hand side. For example,

X)» Xy X IS El’ EZ’ E3

The above statement is executed as follows. First, the values denoted
by El' E,» and E3 are determined. Then the values are assigned to the sim-
ple variables Xps Xg» and X3 respectively. This statement is particularly

helpful for interchanging the values of two variables:
x.y:=y.x

For the alternative statement, the guards Bl. Bz.-o-. Bn are
evaluated in some order. If guard B, is found to be true, then the
corresponding statement list SLi is executed. If two or more guards are
true simultaneously, then a nondeterministic (arbitrary) choice between the
true guards is made, and the corresponding statement list is executed. If

none of the guards is found to be true, then the program aborts.

Because of the ability of the alternative statement to nondeterminist-

ically select from a number of alternatives, this statement allows an algo-

rithm to be expressed in its most general form, freeing its definition from
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artificially biased choices. For example,

n
»

if x2y »> z:

0 y2x +» 2

1]
<

f£i

is a completely general description of an algorithm for setting z to the
maximum of X and y. Any deterministic implementation of this algorithm is
a special case of the description, biased by the treatment of the case

X = Y.

As a final consideration for the alternative statement, we note that
since the program aborts when all the guards are found to be false, this
statement encourages the programmer to consider every possible alternative.
The mathematical notions of functional definition by cases and proof by

cases are natural analogs to this statement.

The iterative statement (or ™loop") is similar to the alternative
statement: The guards Bl' Bz.--- ’Bn are evaluated in some order, and if
guard Bi is found to be true, the corresponding statement list SLi is exe-
cutede If two or more guards are true simultaneously, then a nondeter-
ministic choice between the true guards is made, and the corresponding
statement list is executed. The activity of evaluating guards, selecting
and executing statement lists is continued until all the guards become
false. 1If it is always the case that some guard is true, this activity
continues forever; hence, we have an "infinite loop®. If all the guards
are initially false, none of the statement lists is executed, and the

effect of the iterative statement is equivalent to that of a skip.

———e——



- 68 -
3.4 Predicates and Predicate Iransformations

A predicate is a statement about certain variables that may be true or

false, depending on the possible values of those variables. For example,

is a predicate, which is true if and only if all the possible values of x
are < each possible value of y. We shall use predicates, such as the one

above, to describe the state of program variables.

Let "wp( M, P)" denote the set of all initial states such that activa-
tion of mechanism M is guaranteed to result in an activity that terminates,

achieving a final state satisfying predicate P. For example,
wp( ™x := x+1", x 20 )

denotes the set of all possible initial values of x such that executing
X := x+1 is guaranteed to terminate with x 2 0. Or, expressed simply,

x2 -1,

"wp(M, P)* is called the weakest pre-condition for mechanism M and

post-condition P, because it demotes the largest set of states for which P
is attained after executing M. Thus, "wp(M, P)" gives the necessary and

sufficient condition for P to be true after executing M.

wp is known as a predicate transformer, because given M, wp maps any

predicate P, specifying a post-condition, into another predicate, specify-
ing the corresponding pre-condition. In the above example, wp mapped

"x 2 0" to "x 2 ~1",

In the next section we define wp for each of the GCL statements, and
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indicate how they can be used to reason about the correctness of programs
expressed in GCL. However, before leaving the present section, we describe

four important properties of wp, due to Dijkstra [16].
1. [Law of Excluded Miracle] For any mechanism M, we have
wp( M, false ) = false

No states satisfy the predicate "false™. Thus, the Law of the Excluded
Miracle says that for any mechanism M, no initial state can cause M to ter-
minate without reaching a final state. For mechanisms M that never ter-
minate, there is no initial state for which any predicate P is ultimately

attained. Thus, if M runs indefinitely, then for all P, wp( M, P) = false.

2, [Law of Monotonicity] For any mechanism M and any post-conditions
Q and R such that
Q = R for all states,

we also have

wp( My, Q) = wp( M, R)

This law is obvious, since Q = R means that the set of states denoted by Q

is a subset of the set of states denoted by R.

3. [Law of Conjunction] For any mechanism M and any post-conditions Q

and R, we have
Cw(M, Q) & wp( My R) ] = wp( M, Q&R )
This law states that for any mechanism M, activating M in an initial state

1s guaranteed to yield a final state satisfying the conjunction of Q and R,

if and only if that initial state is guaranteed to yield a final state \
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satisfying Q and satisfying R.

4. [Law of Disjunction] For any mechanism M and any post-conditions Q
and R, we have

Cwp(M, Q) v wp( My R) ]I = wp(M, QVR)

This law states that for any mechanism M, activating M in an initial state
is guaranteed to yield a final state satisfying the disjunction of Q and R,
provided that the initial state is guaranteed to yield a final state satis-
fying Q or satisfying R. If mechanism M is deterministic, then the impli-
cation in the other direction also holds. For nondeterministic M, however,
the reverse implication is not valid. We refer the interested reader to

the reference [16] for an explanation.

3.5 Semantic Characterization of GCL

Using the wp predicate transformer, the semantics of the GCL primi-
tives is precisely defined here in terms of their effect upon predicates.
Except for theorem 1, the treatment in this section is due to Dijkstra

(161,
Axiom Al. [Empty Statement] For any post-condition R,
wp( "skip", R ) = R
That is, skip does not alter the state of any program variables.
Axiom A2. [Halt Statement] For any post-condition R,
wp( "abort", R ) = false

That is, there is no initial state in which abert may be activated to
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yield a properly terminating activity.

Axiom A3, [Assignment Statement] For any arithmetic expression E and
any post-condition R,

wp( "x := E", R ) = Dom(E)&R‘E

where Dom(E) is a predicate representing the set cf states for which E is
defined, and R; means that all free occurrences of x in R are replaced by
E. Thus, x := E is guaranteed to terminate with post-condition R valid, if
both Dom(E) and R; are valid before executing x := E. (We refer the
reader to section 3.4 for an example.) In case := has several left and

right-hand sides, the definition is similar. For example,

WP( "xln x2’ X3 = El' EZ’ E3". R )

x1|x 'x3
Dom(El) & Dom(Ez) & Dom(E3) & RE JE.,E
1772773
X)sXgeXy
where R means that all free occurrences of x,, X,, and x, in R are
EI’EZ'E3 1 2 3

simultaneously replaced by El. E2. and E3. respectively.,

Axiom A4. [Alternative Statement] For any set of Booleans Bis oot

Bn’ and any post-condition R,

wp( "if B, »sL, O ..o OB ~+sL f£i", R )
= (BIVc.oVBn)

§(Vi: 1lsisn: B = wp( SL;s» R ) )

That is, if **+ £i is guaranteed to terminate with post-condition R valid,
if and only if before executing if <<+ £fi, one of the B, is true, and for
any true Bi’ executing the corresponding statement list, SLi’ is guaranteed

to terminate with R valid.

he————eeeee———
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[(Iterative Statement or "Loop™] Instead of defining wp for the loop,
we introduce a theorem which may be proven from the definition, and which
for our purposes, we shall find more useful. The interested reader 1is

refered to [16] for the definition, and for the proof of a similar theorem.

Before stating the theorem, we introduce the following notation. We
shall call an arbitrary set A discrete if and only if for any x and y in A
there are only a finite number of distinct values z in A satisfying
x S z<Sy, For example, any finite set is discrete; also, the integers

form a discrete set. Let IR denote the set of real numbers.
Iheorem 1. If for some set of Booleans Bl. cee, Bn’ and some predicate P,
(1) [Vi: 1lsisn: P&B;, = wp(SL;, P)]

for some t defined on a discrete subset of R, and some T not appearing in

any SLi»

(2) [Vi: 1lsisn: P&B, = t 201

(3) [Vi: 1lsis<n: P&B;, = wp(" :=¢t;SL" t<T)]

then
P = wp( "do B, -+ SL; Q.- 0 B, *+ SL_ od",

P&«(Blv---VBn))

Proviso (1) states that P is jinvariant. That is, P is guaranteed to
be true after executing any SLi’ if P and the corresponding B, is true

beforehand.

Provisos (2) and (3) are conditions sufficient to ensure that the loop

will terminate. Specifically, proviso (2) states that if some SL; can be
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executed (because B; is true), then t must not be less than 0. Proviso (3)
states that for each SLi that can be executed, executing SL; is guaranteed
to decrease t by some positive amount. Thus, since t is bounded below and
monotone decreasing on a discrete set, the loop is guaranteed to terminate.

In fact, t is a bound on the number of iterationms that can be performed.

Finally, given provisos (1) - (3), the consequent of the theorems is
that the loop is guaranteed to terminate with P true and Bys ¢e*s B false,

if P is true before execution.
Axiom A5. [Composition of Statements] For any post-condition R,
VP( "Sl; Szno R) = VP( Sl. VP( 520 R))

That is, post-condition R is guaranteed to hold after exgcuting Sl; 82 s if
and only if S| is guaranteed to terminate in a state satisfying wp( SZ’R)°
The generalization of wp for the composition of an arbitrary number of

statements is straightforward and left to the reader.

Let us examine the tools we have accumulated thus far. We have the
GCL language for writing programs; we can use predicates to specify the set
of states that are acceptable when the program terminates; and, we can use
the wp transformer on the text of the program to mechanically derive all
the initial states that are guaranteed to yield one of the desired fimal
states. Consequently, a program can be considered "correct" for any speci-

fied set of initial states contained by the derived set. We illustrate

this approach in the next few sections.
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3.6 A Eirst Approach for Proving Program Correctness

Come now, and let us reason together. -= Isaiah 1:17

Agree with me if I seem to speak the truth. -- Socrates

Given a hardware or software implementation of some scheme of fp
(floating-point) arithmetic, one could, in principle, define a function
that modeled each fp operation exactly. However, because of the mathemati-
cal tedium that this approach would incur, it is doubtful whether any
insight beneficial to proving programs correct would be obtained by doing

SO

The approach adopted here and in section 3.7 is to model the fp opera-
tions by a small set of axioms, which are intended to capture the fundamen-
tal properties in common with many fp arithmetic schemes. Because of this
approach, irrelevant implementation details are absent from our proofs.

Also, each result proved is ensured a broad domain of applicability.

As a first approach to reasoning about fp programs, let us associate a
set of fp numbers with each fp expression. Recall that F denotes the set

of all fp numbers supported by some fp implementation. Now, let

® = one of the fp operators &, ©, @, ¢

the exact operator corresponding to ©

an element of F

X

E;» Ep = two fp expressions

then we define
{ x}
{ -x }

sss———
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E|®E, = {(E1°E2)(1+8)6F: -A <8<}

where A and p bound the relative error in all the operators @, ©, @, ¢.

(Typically, 0 < A, » << 1.) Thus, for w, x, y, z in F,

x0y = {(x-y)(1+38)eF: -A<¢§& Syl
wgz = {(w/z)(1+52) € F : -xsszsp}
wd(xey) = {(w/z)(1+52)eF: 2 €x0y & -A<5,5p}

Note that if x-y = 0, then x®y = {0} and w@# (x@y) = {}. Moreover, if

A=pn =0, then the fp operators are exact, and E|®E, = {E1° E, }e.

Now, for any set E = {vl. cee .vn}. let us interpret the assignment

statement "x := EM by
if true > x := v

O true =+ x := 2

O true + x :=v

That is, "™x := E" denotes a nondeterministic selection of ome of the

members of E.
From the definition of wp given in section 3.5, we conclude

wp("x := E", P) =
Dom(E) & wp( "™k := vl". P)

& wp("x := vo"s P)

e
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& wp("x := v, P)

wvhere Dom(E) is a predicate characterizing the set of states for which E

is defined.

This approach leads us to the following fp axiom, which replaces the

assignment statement axiom of section 3.5,

Axiom A3'. For any fp expression E and any post-condition R,

wp("x := E", R) = Dom(E) & (VveeE: R::)

That is, x := E is guaranteed to terminate with post-condition R valid, if
before executing x := E, it is the case that E can be evaluated in a state
for which E is defined, and R:: is valid for every possible value of E.

Note that axiom A3' reduces to axiom A3 when A = p = 0.

We illustrate the use of axiom A3' in the following correctness proof.

Example: Given n 2 0 and fp vectors x[1:n] and y[l:n]l. Use fp arithmetic
to determine the exacL inner product of x[1:n] and ;[lzn]. where x and ;
are perturbed versions of x and y. Bound the amount by which X and ; devi-

ate from x and y.

Program:
z.k:=0'0; {P}
do k*n + {P & kZn}

k ¢

k +1;

z @ x(k]Jeylk] {P}

z 3

od

—
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Note that k is incremented exactly. To simplify the presentation, we
assume k 1is always in range, and that neither overflow nor underflow
occurse "{™ and "}" delimit predicates, called assertions, which are
claimed to be valid whenever the flow of control reaches the points at

which they occur in the given program.

Predicate P is defined by
P = [0<k<n & z=z2z & z =0 &

(Vj: 1sjsks: 33§ .ng): -xssij).sgj)sp &

23 = U iy a s s a8 )2

P gives bounds on k and states that variable z is the kth element of some

(3)  k (j) (j-l).

}j=0’ where z the exact

sequence {z is defined in terms of z
product x[j] y[j], and certain perturbations. Note that P is claimed to be

true regardless of the number of times the do ¢*+ od loop is executed.

Thus, in this sense, P is claimed to be invariant.

We now justify our claim that predicate P is invariant.

Proof of the Invariance of P:

It is trivial to see that P holds immediately before executing the de
eoe od loop, and that k # n is valid if the loop guard is found to be

true.

If P is to hold at the end of the loop, for each iteration, then by
axiom A5, the following must hold at the beginning of the loop, for each

iteration.

eeeess———
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Q = wp(™k :=k + 1", R)

where R = wp("z := z @ x[k]ey[k]", P)

Since, by assumption, overflow and underflow do not occur, axiom A3"'
applies to R with

Dom( z ® x[k]®@y[k]) = true

Thus,

R = (Vvezex(klaylk] : P.)

Also, by assumption, k is incremented exactly and is in range. Conse-
quently, axiom A3 applies to Q with
Dom(k+1) = true
Thus,
Q = R{EH
(Vvezeox[ktllJoay[k+l] : P

Zy k )
Vs k+1

Therefore, by performing the indicated substitutions in Q and applying

theorem 1, we see that the invariance of P is established if

P & k#zn = Q

where

Q = (Vvezex[k+tl]oy[k+l] :
[0<k+l1<Sn & v-= z(k+1) & z(O)= 0 &
(Vj: 1sjsk+l: 35{5).5?) :

(3) .(3)
A s8;0.8,3 sy 8

3 = GO Lyt assin a s 5N )

10—
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Note that

P & k#zn = 0=k <n

= 0<k+l]l <n

(k)

From the definition of E = z ® x[k+1] @ y[k+1] we have

(Vv eeE: (361.82:

(k)

v=_(z + x[k+1] y[k+1] (1 + 8§)) (1 + 82) ))

Since P implies the existence of the sequences {5§J) }1§=1. {623) }l;_l
{z(J) }13:0. with z(k)= z, the desired result, namely, P & k#n = Q, fol-

lows.

Therefore, P is invariant with respect to the loop in the given pro-
gram. Also, since k is incremented by 1 each iteration using exact arith-

metic, the program is guaranteed to terminate attaining the assertion

P & k=n QED

Let us summarize what we have accomplished thus far. By specifying P,
we captured in a static., mathematical object what we thought to be the
essence of a particular, sequential program. Then, using purely mechanical
means, we yerified that the state of affairs described by P & k=n would
indeed be established by the program when it terminates. To complete the
proof that the program computes the innmer product of perturbed vectors
x[1:n] and ;[lzn]. we need omnly apply conventional error analysis to the
mathematical object described by P & k=n., In fact, once we have verified

that the program will terminate and establish P & k=n, the program plays

e
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no further role in the analysis: all subsequent analysis is performed upon

the static, mathematical object described by P & k=n.

Backward Exror Analysis:
P = [0<ksSn & z-= z(k) &
(j) |k
for some sequence {3, }j=1

such that (1'-x)k-J+2 < 1-+5§j) < (1.+u)k'j+2:

if k=0
(k) _
Z

x[i1y051 (1+8i3) e k=20 3

J

nM =
—

If we define

3] = =185y m xti1aes{IH? for 15550

;[j] = y[j] (1+82j)) » y[j](1+5:§j))1/2 for 1 £ j<n

then z(k) may be rewritten as
if k=0
)0
k - -—
r x(31ylj] if 1 Sksna
j=1

= z(n). Since we have shown that the given

Note that P & k = n = 2z
program is guaranteed to terminate with P & k = n valid, we now see that
this result may be considered as the exact inner product of the perturbed

Bounds on the error in x and y are given above.

QED

vectors x[1:n) and y[l:nl.

e
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Example: Given fp x and y, determine conditions sufficient to guarantee

w = z upon termination of the following program.

Program:

€ (ad
W
t td
-
®
(%]
we

N
"
b
®
«<

If neither overflow nor underflow occurs, we would expect in all cases
that w = z upon termination. However, let us see what happens if we just

apply axiom A3' repetitively:

P = wp("z :=x0y", w=2)

(VvlexOy: v =)

Q = wp( "™ :=tey", P)

= (Vvy etey: (Vv1€x9y=V2=V1))
R = wp("™ :=x", Q)
= (Vvy, ex0y: (Vv ex®y: vy=v;))

We see that R is valid if and only if x®y is a singleton set or

empty. By definition of x@®y, this occurs if and only if the interval with
endpoints (x+y) (1 -a), (x+y) (1+p) contains no more than one fp number.
(For example, it occurs whem A = p = 0.)  Also, if "w := t@y" is replaced
by "w := y@x", then a similar treatment shows that the commutativity of @
cannot be concluded. Therefore, since we are unable to infer from axiom
A3' many of the important cases in which two fp variables are equal, we
conclude that this axiom is, by itself, inadequate to capture all the sig-

nificant properties of fp arithmetic.

_
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To meet the inadequacy of axiom A3', we considered supplying the fol-

lowing as an additional axiom for dealing with fp sets E.

For any predicate P with free variables Vi and Vo and for any
fp expression E,

v
2,

(VVIEE:(VVZEE:P)) PN (Vvlef:Pvl

That is, if P holds for all values Vi and 2 drawn from the same set, would
we be justified in concluding that P is valid with all occurrences of v,

replaced by Vs and conversely?

The indicated equivalence is trivial if E is empty. For nonempty Es

(VvleE: (VvZeE: P))

_ - v
= (VvleE:(3v2=vleE:Pv2))
1

from which, the implication, "=>", is established. For "<" ve give a
counterexample. Suppose P = (v1 = v,). Applying the proposed axiom, we

obtain
(VVIEE: (VVZGE:V1=V2)) g (VVIGE:V1=VI)

Since the right-hand side is a tautology, "=>" is trivial. However, since
the left-hand side is valid only if E is a singleton or empty, "<" is

invalid.

Therefore, we have shown that if the left-hand side of the proposed
axiom is valid, we are justified in concluding the right-hand side. How-
ever, since the right-hand side is not sufficient to establish the left-

hand side, the former may pot be considered as a sufficient pre-condition

s
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for the latter.

There is something fundamentally inadequate about axiom A3'. It is
true that axiom A3' is able to capture the fact that the result of anm fp
operation is an fp number chosen from an interval, and that the identity of
the number is known with no more precision than knowledge of the endpoints
of the interval will allow. However, it is incapable of demonstrating that
an fp operation delivers identical results each time it is applied to
identical operands. That is, axiom A3' is unable to demonstrate that each

fp operation is a functiom.

Consequently, we discard axiom A3', reject the axiom proposed above,
and return to our original set of axioms. In the next section, we show how
these axioms may be augmented to support a model of fp arithmetic, with the

single-valuedness of the fp operations preserved.

3.7. A Second Approach for Proving Program Correctpness

In section 3.7, we use the axioms introduced in section 3.5, augmented
by axioms for characterizing what appears to be the significant features of
fp arithmetic. We present the additional axioms in section 3.7.1 and use
them to prove fp programs correct in section 3.7.2. Several theorems about

the arithmetic are proved in the Appendix.

3.7.1 Axioms for Floating-Point Arithmetic

Entia non sunt multiplicanda praeter necessitatem.
(Entities must not be multiplied beyond what is
absolutely necessary.) -- Occam's Razor

Everything should be made as simple as possible, but
not simpler. -- Albert Einstein

heeeess——
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Let R denote the set of real numbers. Let Dom be a unary predicate
defined on fp expressions, such that Dom(E) is true only for states in
which E is well-defined. We assume that the relations, <, <, =, #Z, 2, and
>, implemented for fp numbers, are identical to the relations defined on

R. For notational convenience, index i is assumed to range over the set

{1,2}.

We present axioms characterizing: T, CRi, MIN, MIN, MAX, MAX, ;”i’
pi» ® ©, @, and ¢#. Informally, F is the set of fp numbers; MAX and MIN
are the largest and smallest positive fp numbers; CRi denotes two cropping
functions, each of which maps reals to fp numbers; MIN and MAX are the
underflow and overflow threshholds; and )'i and My denote the negative and
positive relative error bounds for CRi'

Fl. F is a finite subset of R
F2. 0.1 e F
F3. MAX e F & (Vxe F: x S MAX )

Foo MINe F & (VxeF: x>0 = x 2 MIN)

F5. (Vxe R : CRi(x)el‘&

(VyszeF: ysxsz = y<CR,(x)s2z))
F6. 0 < MIN < MIN & MAX < MAX
F7005Xiop.i<1
F8. (Vxe R: [ MINS x < MAX = x(1-2;) SCR(x) S x(1+p.) 1)

F9. (Vxsy e R: xsy = CR;j(x)sCR;(y))

sssssssss———
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F10. (Vx e R : CRi(-x) = -CRi(x) )

Fll. (Vx,y e F: xy20 & Dom(xey) = x@y = CRy(x+y) )
F12. (Vx,y ¢ F: xy <0 & Dom(x0y) = x®y = CR,(x+y) )
F13. (Vx,y € F : Dom(x®y) = xe@y = CRy(xy) )
Flée. (Vx,y e F: Dom(xdy) = x@y = CRi(x/y) )

F15. (Vx,y e F : x0y = x0(-y) )

F5 says that the CR; are fairhful, in the sense defined by Dekker
(11,12]; F9 and F10 say that the CR; are monotone and anti-symmetric about
03 F15 defines © in terms of ®; and Fll - Fl4 describe how x®y, x®y, and

x@y are functionally related to the exact sum, product, and quotient.

Many analyses (for example, those of Dahlquist and Bjorck [10], For-
sythe, Malcolm and Moler [19], and Sanderson [60]) define all the fp opera-
tions in terms of a single cropping function, usually denoted by "fl",
However, this idealization is pot valid for many implementations of ©.
(For example, it is not valid for either single or double precision arith-
metic on the IBM 360 or 370, where the number of guard digits used, g, is
equal to l. Also, it is not valid for chopped arithmetic on the CDC
6000/Cyber-70 series computers, where g = t (single precision) or g=0
(double precision). We conclude section 3.7.l by giving counterexamples
for each of the addition schemes introduced in section 2.5.) If less than
t+1 guard digits are used, cancellation of leading digits, which is possi-
ble for x®y when the signs of x and y differ, may cause the exact sum x+y

to be cropped to a different fp number than that obtained from w®z, where

esssss——
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w+z = x+y, and ws z have the same sign. Thus, these implementations
require Lwg cropping functions: ome for x@y when the signs of x and y

differ, and the second to be used in all other cases.

Virkkunen [67] noted that the exact sum, x+y, rounded to a specified
number of digits, will not be realized by scheme S, with base 2 or base 10
and certain numbers of guard digits. For scheme S1 he noted that when x
and y have opposite signs, the exact sum, chopped to a certain number of
digits, will not be realized for any base and any finite number of guard
digits, since the entire x is discarded if | x| is sufficiently small,
However, we are not requiring that our CR; yield the same result as chop-
ping or rounding the exact sum, but only that the CRi are single-valued
functions and satisfy axioms F1 - F15. It is believed that this thesis is
the first attempt to model all the fp operations in terms of exactly two

cropping functions.

We saw in section 2.5 that 100 percent errors are possible from addi-
tion schemes S1 - S3 when no guard digits are employed. (Recall also, that
we have shown 100 percent errors are possible from rounded additions on the
CDC 6000/Cyber-70 series computers.) Since errors of this size are not
allowed between MIN and MAX by axioms F7 and F8, at least one guard digit
is required of the fp implementations supported by these axioms. Virkkunen
[67] has recently shown that onme guard digit is sufficient for chopped
scheme S1 and rounded scheme 82 to satisfy the faithfulness property embo-
died by axiom F5. Therefore, we conclude that the axioms given above are
sufficiently general to hold for either rounded or chopped arithmetic,
under a variety of implementations, provided that at least one guard digit

is employed for all the fp operations.
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Note that the axioms support various treatments of overflow and under-
flow. If Dom is defined to be true everywhere, then the fp operations are
closed on F: all real numbers x 2 MAX are mapped by CRi to MAX, and all
real numbers x such that 0 S x < MIN are mapped by CR; to either 0 or MIN.
(We prove this in the Appendix.) Alternatively, by defining Dom to be
false for real x > EZE. and false for real x such that 0 < x < MIN, over-
flowed and underflowed operations produce undefined results. Finally, note
that by defining DPom( x¢¥0) = false, division by zero can be handled in a

clean and attractive waye.

Knuth gave about 20 desirable properties of fp arithmetic in section
4.2.2 of [42] and in the associated exercises. However, it is apparent
that he intended only to demonstrate the desirability of these properties,
rather than to present a minimal set of axioms, since from his presentation
it is not clear which properties are to be assumed as axioms and which are
to be derived as theorems. We show in the appendix that all but two of
these properties can be derived from F1 - F15. The two exceptional cases,
which are noted in the appendix, arise from the fact that our axioms allow
underflowed results to be set to zero, whereas his axioms do not apply if

underflow occurs.

Wirth [73] clearly defines 9 axioms for fp arithmetic. However, some
of these axioms have subcases. (For example, x@®y = y®x and x@®y = y@x
are presented as one axiom.) By treating each subcase as a separate axiom,
one can count 18 distinct axioms. Wirth's axioms allow underflowed results
to be set to zero, and with one exception, can all be derived from Fl -

F15. His axiom A7,

x 2y 2 0 = (xey)ey = x

1 —
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cannot be derived from F1 - Fl15. In fact, the following counterexample
shows that this property does not hold for any of the schemes S1 - S3.

introduced in section 2.5.

Scheme §;, with g 2 1 and 3 2 2:

x=plept y=gpt
_ -1
(xey)ey = 8 z x

-1 -t 1 -t
x=p +8 y =38
_ -1 -t
(xey)ey = g~ +28 =z x
On the grounds of succinctness, we prefer axioms Fl1 - F15 to the

axioms of Knuth and Wirth. But axioms Fl1 - F15 are also desirable, because
they provide a characterization for the processes that give rise to the

properties Knuth and Wirth have enumerated.

Brown [6] gives only 4 axioms, and Dekker [12] gives 8 sets of < 4
axioms for characterizing fp arithmetic. (Dekker's axiom sets differ onm
their assumptions concerning underflow, overflow, precision, faithfulness,
and whether rounding or chopping is used.) Even though the axiom sets pro-
posed by Brown and Dekker are quite succinct, they are unable to demon-
strate that fp addition and multiplication are commutative, and that each
of the fp operators is monotone and anti-symmetric about zero. In fact, we

find these axioms to be inadequate for the same reason that we discarded

=
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axiom A3' in section 3.6. That is, they are unable to demonstrate the fact
that regardless of whether the arithmetic rounds or chops, each fp opera-
tion delivers identical results each time it 1is applied to identical
operands. Since we consider this property to be significant from the
standpoint of proving programs correct, we prefer F1 - F15 to any of the

axiom sets proposed by Brown or Dekker.

In summary, we believe that Fl1 - Fl5 provide a characterization of fp
arithmetic at the proper level of abstraction for reasoning about implemen-

tation independent properties of fp programs.

For each of the addition schemes introduced in section 2, we now give
counterexamples to indicate where ® cannot be modeled by a single function
of the exact sum,

Scheme S1

with 0 €S g <t and B 2 2:

x = ﬁ-l y = _B‘g-t-l
w=(1-8 t)ﬁ"l z= (1-p8 B-t-l
x+y = w+z = pl.-getsl

but, x @ y = B0 and we z=pgl-pgtl

Scheme 52

with g =0 and B > 2:

(Same as for scheme S; with g = 0 and B > 2.)

e ————
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| with g =0 and B = 2:
X = 2-'1 y = - p-t-1
w=(1- 2-1:)2"l 2= 0
X+y = w+z = 2'1 - z‘t'l

“l .97t nd wez=2l.-gtl

with g =1 and B 2 2:

x=p L y=_2B-t-1

w=-p gt z= 3

xX+y = w+z = B-l - %B't'l

but, x ® y = B-l - ﬂ-t-l and v @ z = B-l
with 2 S g <t and B > 2:

x=p y=-(z3+ 88

w=(1- B-t)ﬂ-l zz= ( % - B‘g)B‘t'l

X+y = w+z = B-l - %B't'l - th‘S’l

but, x ® y = B-l and w ® z = B'l - B‘t‘l
with 2 S gst-1 and B = 2:

x =271+ g7t y=-(1+ 27827t}

w =2 z = (1 - 2‘8) 2't'l




‘ C o -

X+y = w+ 2z = 27l 4 p7tel L gmemtel

but, x & y = 2.l and w ® z = 2"l + 27t

Scheme 83

with g =0 and B 2 2:

(Same as for scheme S, with g = 0 and B 2 2.)

withg =1 and B > 2:
x = p} e - 1 e
w=(-p"5p! 2= pTt2
X+y = w+z = B‘l - B-t-l R B-t-z

-1 -1 -t-1

with g =1 and g = 2:

x =271 y=-(1-2"32t

w = 2-1 -2t z= 2773

xX+y = w+z = 2'1 - g7t 4 pmt-3

but, x @y = 21 =271 L4 vez=271-2t

with 2 S g st and B 2 2:

(Same as for scheme S, with 2 S g St and B > 2.)

Suppose that ® is performed by any of the schemes Sl’ Sys or S3. with

g > t guard digits. We show that in these cases, © gan be modeled by a
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single function of the exact sum.

Note that the exact sum of fp x and y, chopped or rounded to a speci-
fied number of digits, will be formed by x®y as long as no digits are lost
during pre-adjustment. That is, the chopped or rounded t-digit sum x®y is
certain to be a function of the exact sum x+y, as long as the exponents of

x and y differ by an amount < g.

For g > t, it is sufficient to show that @ can be modeled by a single
function of the exact sum of fp x and y, where the exponents differ by an
amount 2 t+ 2, and ome or more nonzero digits is lost during pre-
adjustment. Suppose that the signs of x and y differ. Under the stated
conditions, we find that after addition, but prior to post-adjustment

shifting:

(1) the leftmost first or second digit in the sum is nonzero;
(2) digit positions t+1 and t+ 2 contain digits of size

g -1; and,
(3) some nonzero digit to the right of position t+g in the

exact sum was lost during pre-adjustment.

Given conditions (1) - (3), we see that the exact sum x+y has 2 2t +1 sig-
nificant digits, with a nonzero digit t places to the right of the most
significant digit positiom. Since there are no fp w and z with the same
sign whose exact sum can satisfy these conditions, the desired result fol-
lows. Once again, note that this result is independent of base and crop-

ping scheme.

It is also true that ® gcan be modeled by a single function of the

A ——
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exact sum, in the peculiar case of scheme 82. where B = 2 and g = t. As
noted above, x®y is certain to be a function of x+y as long as no digits
are lost during pre-adjustment. Suppose that fp x and y have opposite
signs, that their exponents differ by an amount 2 t+1, and that some
nonzero digit is shifted out of the guard digit registers during pre-
adjustment. If the exact sum x+y contains 2 2t+1 significant digits,
then an argument similar to that given above shows that there are no fp w
and z with the same sign, such that w+z = x+y. Otherwise, x+y will con-
tain exactly 2t significant digits. Under the stated conditions, it can be
shown that the pre-adjustment round causes the addition step of x®y to
deliver the same leading t+ 2 digits as occur in the exact sum x+y. Con-
sequently, for any fp w and z with the same sign, such that w+z = x+y,
forming w@ z incurs no pre-adjustment rounding, and the addition step here

also, produces the same t+ 2 leading digits as the exact sum x+y. The

desired result follows.

3.7.2 Correctness Proofs

In this section we show how axioms Al - A5, together with axioms Fl -
F15, can be used to reason about the correctness of fp programs. Theorems
refered to in this section with the prefix "TH™ are proved from Fl - Fl5 in

the appendix.

Consider the program that was inadequately handled by our first

approach for proving program correctnesse.

Example: Given fp x and y, determine conditioms sufficient to guarantee

w = z upon termination of the following program.

e——————s———
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Brogram:
t := x;
w it ey;
Z:=x0y

Applying axiom A3 repetitively, we obtain:

P = wp(%z := x0y", w=2z)

= Dom(x®y) & w=x@y

Q = wp(" :=tey", P)

= Dom(t®y) & Dom(x®y) & t@®y = x@y

R = wp(™t :=x", Q)
= Dom(x) & Dom(x®y) & Dom(x®y) & x®y = x@y

= Dom(x®y)

That is, the given program will terminate with w = z, provided only that x
and y are initialized so that x@y is defined. This is the result we

desired. QED

Consider the inner product program introduced in section 3.6. Compare
the following treatment with that of section 3.6, Also, note how the Dom
predicate lends itself to reasoning about overflow, underflow, and bounds

on the relative error.

Example: Given n 2 0 and fp vectors x[1:n] and y[l:n]l. Use fp arithmetic
to determine the exact innmer product of x[l:n] and y[1l:nl, where X and y
are perturbed versions of x and y. Bound the amount by which X and ; devi-

ate from x and y.

———
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zy k 3= 0, 0; {P}
do k#n =+ {P & k #n}
k :=k + 1;
z := z ® x[(k]ey[(k] {P}

od
In order to direct our attention to fp arithmetic, we def ine
(Vj: Dom(j+1) = true )

Also, we define

(i) 0 if j=0

z - .
z(J-l)Ox[j]Oy[j] if 1S j<n

P m [0Sksn & z:= z(k) ]

Predicate P gives bounds on k and states that variable z is the kth element

of some sequence {z(J) }g=0' where z(J) is defined in terms of z(J-l).

x[ 3]s y[jls and fp gperators €, and @.

We now derive conditions which are sufficient to ensure that predicate

P is invariant with respect to the do *++ od loop in the given program.

Derivation of Conditions to Ensure the Invariance of P:

It is trivial to see that P holds immediately before executing the do
se* od loop, and that k # n is valid if the loop guard is found to be

true.

If P is to hold at the end of the loop, for each iteration, themn by

s
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axiom A5, the following must hold at the beginning of the loop, for each

iteration.
Q = wp(™k :=k + 1", R)
where R = wp("z := z @ x[k]ey[k]l", P)

Since, by definition, Pom( k+1) = true, applying axiom A3 to Q yields

k

Z
[ Dom(E) & Pp ]k+l

o
"

where E =& z o x[k]ey[k]

Therefore, by performing the indicated substitutions in Q and applying

theorem 1, we see that the invariance of P is established if
P & kzn = Q

where

Q = Dom( z @ x[k+l] 0y[k+1] ) &

0sk+l<n & z o x[k+1]@y[k+l] z(k+1)

Note that

P & k#n = 0sk <n

= ] <Sk+]1 <n

(k+1)

For 1 s k+1 < n, the definition of z yields

z(k+1) = z(k) ® x[k+1] @ y[k+l]

Finally, from the definition of P, we see that P & k # n => Q, provided

0 <k <n = Don( (K)o x[k+1] ® y[k+1])

ssssss——
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That is, P is guaranteed to be invariant with respect to the do +++ od

loop, provided the above condition holds among the x and y vectors.

If the above condition holds for each k, then since k is incremented

using exact arithmetic, the program will terminate attaining the assertion

P & k=n
QED
Backward Error Analysis:
Let us define
(Vvewe F: Dom(vew) = [m5v+wsm])
(Vvewe F: Dom(vew) = [ MINS vw < MAX 1)
A o= max{).i}. ; = max{ui} for i =1,2
With these definitions, axioms F8 and Fll - Fl3 give us
1<jsn & Dom( 3D e x[jley(jl) =
aaij).sgj) : -A S 5§j).s§j) Spc:
N P R S E S L RT IS PRCRTIEL
Consequently, by induction on j, we obtain
P & [Vj: 0sj<n: (3.7.2.1)

pom( 203 @ x[j+1]eylj+1]) 3

= [0<sk<n & z=z(k) &

for some sequence {SgJ) }1;___1

such that (1-n)%"3*2 < 1+5§J) < (1+;)k'.1"'2 .

s ———
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0 if k=0
z(k)

xGIyt1 sy if 1sksa 3

J

nMx
—

From this point, the error analysis is identical to that given in section

3.6. QED

From (3.7.2.1) and the definition of Dom, given above, it is
straightforward to determine conditions sufficient to preclude overflow and

underflow. For example, if

(Vj: 1sjsn: x[jlyljl20)

then neither overflow nor underflow will occur, provided

n .

r x[i1yli1(1+m™ 2 < mx s
j=1

n . . =yn=-j+2

r x(31y033Q-=-2) 2 MIN
J=1

We leave further analysis of the static, mathematical object described by

P & k = n to the numerical analysts.

In the following example, note how the inexactness of fp arithmetic is

taken into account in reasoning about terminationmn.

Example: Suppose f is continuous in [xo. Yo J, 0 < x5 < Yo and
£( xo) <0 < £( yo). Determine an x and a y such that for some a and some
n > 0,

xsSasy & f(a)=0 & y=-x<nq

esssss———
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Xe ¥ 3T Xy Ygi
{p}
do yox > ¢ ~+
{P & yox > g}
z := E;
if £f(z) <0 +» x :=2z

O £f(z)20 =+ y:=2z

fi
{P}
od
where E 1s one of
E, = x®(yex)g2

E, = x0(xey)g2

E; = ye(yex)¢g2
E, = ye(xey)g2

Eq = (x¢2)e(yd2)
EgZ = (x0y)92

and, for the present, we assume that f is computed exactly.

In order to direct our attention to the effect of fp arithmetic upon
termination (or convergence) of the preceding program, we define
(Vj: 1s3js6: Dom(Ej) = true )

Also, we define

P = [0« X SxSys Yo & f(x)s0s<£f(y) ]

e—eeesssssssss—
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For each choice of E, we now derive conditions sufficient to ensure
that predicate P is invariant with respect to the do +++ od loop in the
given program. That is, these conditions will guarantee P to be valid
immediately before the first iteration and after each subsequent iteration.
Clearly, the second conjunct in P guarantees a root of f in the interval

[xn YJ .

In the previous example, the use of sequences, defined in terms of fp
operations, freed the proof of the invariance of P from any comsideration
of error in the fp operations. In fact, with this approach, the invariance
proof demonstrates only that the fp operations are applied under the condi-
tions and in the order dictated by statically specified sequences. How-
ever, we saw that such an approach requires an error analysis to be per-
formed inductively upon these sequences, when the inexactness of the fp

operations must finally be taken into account.

In the present example, P is not defined in terms of sequences, but
only in terms of the initial and current values of x and y. With this
approach, the invariance proof is more complicated, because it must take
into account the inexactness of fp arithmetic. However, a separate induc-

tion during the error analysis is not needed.

Derivation of Conditions to Ensure the Invariance of P:

It is trivial to see that P holds immediately before executing the do
eee od loop, and that y®x > e is valid if the loop guard is found to be

true.

If P is to hold at the end of the loop, for each iteration, then by

e—————————————



axiom A5, the following must hold at the beginning of the loop, for each

iteration.
R = WP( "z := E"’ Q)

where, by axiom A4,
Q - [f(Z)SO = wp(.x ¢= Z", P) &

f(z) 20 = wp("y := 2", P) ]

and, by axiom A3,

wp( " := 2", P) = P:
wp( "y := 2", P) = Pi
wp( "z := E", Q) = Q;

Therefore, by theorem 1, the invariance of P is established if

P & yex >¢g = R

where
R=[f(E)s0 =
0 <xgsEsys<y, & f(E)sO0<f(y) 1 &
[ f(E) 20 =
0<xo$xSESyo & f(x)s0s f(E) ]
Note that

P & xSEsy = R

Consequently, the invariance of P will be established for each choice of E

if we can show

P & yex>eg = xS E<y (3.7.2,2)

We shall see that (3.7.2.2) follows from our proof that the given program

—



' - 102 -

terminates.

From theorem 1, we see that program termination is guaranteed provided
we can determine a t, defined on a discrete set, such that
P & yex>e = t 20 (3.7.2.3)
and

P & yex >e = wp("I :=¢t; SL", t < T) (3.742.4)

where "SL"™ denotes the body of the do +++ od loop, and T is some variable

not appearing in SL.

Def ine
tEy-x
Note that t is the exact difference between program variables x and y.
Since x,y € F, it follows that x, y, and t take on values from discrete
sets.. With this t, conditions (3.7.2.3) and (3.7.2.4) imply that the
number of fp values between x and y strictly decrease each iteration, with
X remaining S y. Clearly, these conditions are sufficient to guarantee

termination.

We now derive conditions sufficient to establish (3.7.2.3) and
(3.7.2.4).
Derivation of Conditions to Emsure Iermination:

Note that P = xSy = t 20, which establishes (3.7.2.3).

The derivation of wp(SL, t < T) is identical to the derivation of

wp( SL, P), given above. We find that

wp(SL, t <T) = (3.7.2.5)

———



[ f(E) S0 = y-E<T] &

[ f(E) 20 = E-x<T]

Thus, by axioms A3 and A5,

wp( ™ :=t; SL", t < T)
[ f(E)s0 = y-E<y-x] &

[ f(E) 20 = E-x<y-x]

In summary, (3.7.2.4) will be established and termination guaranteed
if we can show

P & y®x >g = x <E<y (3.7.2.6)

Note that the condition we derived to demonstrate the invariance of P,

(307.202). follows a fortioril from (3.7.2‘6)0

From axioms Fl10, F12, Fl4, and F15 we see that

[Vx,ye F: E x®(yex)g2 xe(xey)¢2 = E,]

yo(xey)g2

"
[52]
»
—

[Vx,yeF : Eq ye(yex)¢2

Consequently, for all possible fp x and y, E; delivers exactly the same
results and errors as EZ' and E3 delivers gxactly the same results and

errors as Ea. In other words, E1 is functionally equivalent to EZ. and E3
is functionally equivalent to E,.

Henceforth, we direct our attention to showing (3.7.2.6) for El’ E3.

Esi and E6 3

Lemma 1l: If y-x 2 max { MIN, 2(1-x2)’1m} then the relative

error bounds Aio ngo given by axiom F8 are applicable to El'

esssssssss——
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Broof of Lemma:
Note that the bounds 1, Hi» given by F8 are applicable to

El = x‘(YQX)¢2
provided that

(1) MIN S y-x < MAX,

(2) MIN s 1E(yex) < MAX, and

(3) MIN < x+ (yex)g2 < MAX
By F3, F4, and P = (0 < x S y), we obtain

By hypothesis, y -x 2 MIN. Thus, by axiom F6 and (3.7.2.7), (1) is esta-

blished.
Since (1) is valid, it follows by axioms F8, F12, and F15 that
(y-x)(1-2,) s yeox (3.7.2.8)

By hypothesis, y-x 2 2(1-1,) ' MIN. Thus, by (3.7.2.8)
MIN s %‘(yex)

From (3.7.2.7) we see that y -x < MAX. Thus, by axioms F5, F12, and F15
1i(yex) S MAX

which establishes (2).

We have noted that MIN S y-x < MAX. Thus, by (3.7.2.1) in the proof

of TH4O,

s ———
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0 s (yex)¢2 < y ~ X (307.209)

Finally, (3) follows from (3.7.2.7) and (3.7.2.9). QED

Lemma 2: If y-x 2 max {MIN, 2(1-}.2)-1EH.N} then the relative

error bounds Xi. Bi» given by axiom F8 are applicable to E3.
Proof of Lemma:
Similar to the proof of lemma 1. QED

Lemma 3: If x 2 2MIN and (y-x)/x 2 2y, /(1 - 1) then the relative

error bounds li, o given by axiom F8 are applicable to ES'

Proof of Lemma:
Note that the bounds Ais By given by F8 are applicable to

Eg = (x¢2)0(yd2)

provided that

(1) MIN s %x. % < MAX, and

(2) MIN < x92+yd2 s MAX

By hypothesis, x 2 2MIN. Thus, by axiom F6 and (3.7.2.7), (1) is

established.
Since (1) is valid, it follows by axioms F8 and Fl4 that

x92+ 382 s F(x+y) (1+y) (3.7.2.10)

By hypothesis, (y-x)/x 2 2 /(1 -ul). Rearranging, we find that this
is equivalent to

x+y S 2(1+p1)-1y (3.7.2.11)

P
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Thus. by (3.7.2.7). (3.7.2010). (307.2.11). and 3Xi0m F6’
x¢2+ yg2 < MAX

Also, since (1) is valid, it follows from TH2.5, F5, F6, and Fl4 that

MIN s x¢2 +yg2
which establishes (2). QED

Lemma 4: If x+y < MAX and (y-x)/x 2 211/(1-11) then the rela-

tive error bounds ki’ Bis given by axiom F8 are applicable to E6.
Proof of Lemma:
Note that the bounds Ai' By given by F8 are applicable to

E, = (xey)g2
provided that

(1) MIN s x+y S MAX, and
(2) MIN s %(xOy) < MAX

By hypothesis, x+y < MAX. Thus, by axiom F6 and (3.7.2.7), (1) is

established.
Since (1) is valid, it follows by axioms F8 and Fll that
(x+y)(1-ll) S x@y (3.7.2.12)

By hypothesis, (y-x)/x 2 2%, /(1-2;). Rearranging, we find that this
is equivalent to

x+y 2 2(1'&1)-1)( (307.2.13)

Thus. by (3.7.2.7)’ (3-702.12). (307.2.13). and axiom F6’

Ve
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MIN S 5(xey)
Finally, by (3.7.2.7) and axioms F3, F5, F6, and Fll,

xOySﬁ—AX.

which establishes (2). QED

Now, given that lemmas 1-4 are satisfied, by (3.7.2.7) and axioms F8,

Fll1, F12, Fl4, and F15, we obtain

[x+5(y-0(1-2)=2) W1-2) s E (3.7.2.14)
S [x+ 30y +p)+p) WL+y))

[y - 5(-00+p)L+p) Wl-2y) s E (3.7.2.15)
S [y - 3(y=0(1=2,)(1=2) W(1+p,)

(ixa-ap +dya-apia-a) s ks (3.7.2.16)

1 1

< [Ex(li-pl) + fy(1+p1) ](1+u1)

2

taxep-ap? s B s ey 1ep? (3.7.2.17)

Note that the bounds on ES' given by (3.7.2.16), are identical to the
bounds on Eg, given by (3.7.2.17). Thus, even though Eq and E; are not
functionally equivalent, our analysis shows that, for fp x and y satisfying
lemmas 3 and &4, ES and E6 are equally precise expressions for computing the

midpoint of x and y.

From (3.7.2.14) we see that (3.7.2.5) can be guaranteed for E;» pro-

vided

x < [x+3y-x00-2)0-2DW1-2) &  (3.7.2.18)

A
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y > [x+3(y-0+p)(1+p) WL+p)

After some algebra, (3.7.2.18) yields

_ 22
yxx > 1 5 & (3.7.2.19)
(1-2,)(1=2))
2
- _.,1/3_ y-x o
(p<2 1) = - > 5

2 - (1+p2)(1+p1)

where ; = max { Hps Hple Let A = max { A AZ}. Throughout the remaining

analysis, we assume both :< 21/3-1 and A < 21/3-1. These assumptions
are reasonable for eituer rounded or chopped arithmetic in any base that

uses 2 3 digit numbers and at least one guard digit.

It is interesting to note that if chopped arithmetic is used, then
m = 0, and the second conjunct of (3.7.2.19) becomes y > x. Thus, if
chopped arithmetic is used, and the conditions of lemma 1 are satisfied,
then E, is guaranteed to deliver a value strictly less thamn y: positive
relative errors, including those that may result from forming y ®x, are of

no consequence for ensuring El < Y.

For E3. a derivation similar to that which gave (3.7.2.19) yields in

this case
2
- 1/2 _ y-x 2
2p
- - 1/2 y-Xx 2
(A <1-(2p))7°7) = x (T2 )(T-2)(1+r,) - 24,
1/3 1/3

Note that since we are assuming both ; <2 -1 and & < 2 -1, the con-

sequents of the preceding implications apply.

A
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If chopped arithmetic is used to form E3. then as before, we observe
M} = 0. However, in contrast with E)» we cannot conclude any conditions
sufficient to guarantee Eq <y that are independent of positive relative

errors.

For both Eg and E¢» a derivation similar to that which gave

(3.7.2.19), yields in this case

_ 22, (2-1,)
== 1 ; & (3.7.2.21)
(1-2,)
- 2p; (24 4,)
(wy <2t2-1) = r=x, A -
2‘(1+p1)

Since we are assuming ; < 21/3-1. the consequent of the latter conjunct
follows.
It is interesting to note that the conditions

2p1
l"ul

J-X
X 1'-11 & X 2

from lemmas 3 and 4 follow, a fortiori, from (3.742.21).

If chopped arithmetic is used to form E5 and E6' then By = 0, and the
second conjunct of (3.7.2.21) becomes y > X, as we sav for El‘ Thus, E5 is
guaranteed to deliver a value strictly less than y, provided only
y >x 2 2MIN; E6 is guaranteed to deliver a value strictly less than y

provided only y > x & x+y < MAX.

Summarizing, we obtain the following conditions which are sufficient

to establish (3.7.2.5).

ss——
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For El and EZ:
y = X > maX{ MIN! 2(1')‘2)-1m' le } (3.7.2.22)

where

71 & max 2 ° 2
For E3 and E4=

y-x > max {MIN, 2(1-2,) ' MIN, y,x } (3.7.2.23)

where
22.2 2;.12
Y, = max -2 )02-Q+p)A+p) ] (1=2)=2)A+p) -2y,

For ES:
x 2 2MIN & y-x > 13X (3.7¢2.24)
where
= ]
3 (1-2,)2 2-(1+p)?
1 1
For E6:

x+y S MAX & y-x > y3x (3.7.2.25)

From (3e7.2.22) = (3¢7+2.25) and (3.7.2.7) we have y-x > x 2 MIN.
Thus, by (3.7.2.7) and axioms F8, F12, and Fl5,

(y=x)(1l+p,) 2 yox
Since by (3.7.2.5), y©x > &, it follows that
-1
y -x > e(l"’pz)

Therefore. by (3 -70206) and (3.7 02022) - (3 07 02025). temimtion iB

guaranteed if &, Xy and y, are chosen as follows.

A
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For E1 and EZ:

g 2 (1+p.2) max { MIN, 2(1"12)-IM9 ylyo}

For E3 and E4:

e 2 (l+p,) max {MIN, 2(1-2,) ' MIN, v, ¥,}
2 2 290

For ES:

c 2 (1+|12)y3y0 & Xy 2 2 MIN

For E6:

1——

e 2 (1+P2)73Y0 & Yo < EMAX QED

Values of Ao M Tje MIN, and MAX are summarized below for the IBM

360/370, DEC PDP-11, and CDC 6000/Cyber-70 computers. To four decimal-

place accuracy, MIN = MIN and MAX = MAX.

IBM-S IBM-L DEC-S DEC-L CDC-S
(chopped) (chopped) (rounded) (rounded) (chopped)
1 9.53710-7 2.22010'16 5.96010-8 1.38810-17 7.10510-15
2 8.94110-7 2.08210-16 5.96010-8 1.38810-17 7.10510‘15
y 0 0 5.96010'8 1.38810’17 0
o 5.96010‘8 1.38810-17 5-96010'8 1.38810-17 2.52410‘29
MIN 5.39810'79 5-39810-79 2.93910'39 2.93910-39 7.82910-295
MAX 7.23710+75 7.23710+75 1.70110+38 1.70110+38 2.53010+322
71 1.90710'6 4.44010'16 1.19210'7 2.77610-17 1.42110-14
7y 1.78810'6 4.16410-16 1.19210‘7 2.77610-17 1.42110-14
18 3.81510‘6 8.88010-16 2.38410‘7 5.55210‘17 2.84210°14

Table 3.7.2.1. Values of li. Bis Vg0 MIN, and MAX for the IBM 360/370,

DEC PDP-11, and CDC 6000/Cyber-70 computers. (The suffixes "S™ and "L"
denote short and long precision, respectively. Also, "d.dddloee" de-

notes d.ddd x 10%€.)
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From table 3.7.2.l, several observations are made. (Recall that B =
base of the arithmetic, t = number of digits in the fraction, and g =
number of guard digits employed.) First, we note that the conventional
bounds given by

B for chopped arithmetic

7B for rounded arithmetic

equal max {xi. By } to within (at least) four decimal-place accuracy, for
each of the given computers. However, the table shows that these bounds
are inadequate to capture the fact that with chopped arithmetic, Ay <N if

g <ti p < 0; and o is a factor of B-g smaller than Ay

Also, to within (at least) four decimal-place accuracy,

Yl - 2 Al [} 72 - 2 lz. 73 = 4 l.l

Conséquently. for each of the given computers, El and E2 can be expected to
be about fwice as accurate as E5 and E6. E3 and E4 are expected to be mar-
ginally more accurate than E; and E, on the IBM 360/370 with either short
or long precision, and pot significantly more or less accurate om the other

two computers.

Since E5 requires X 2 2 MIN, and E6 requires Yo s 2MAX. we see that
in addition to being more accurate, E; - E, can be guaranteed to work for a

wider range of values than either E5 or E6.

Finally, for completeness, we mention that to within (at least) four
decimal-place accuracy, Dekker's [12] bound for El is 1dentical to our

211. However, without giving a derivation, he concludes that a bound of

approximately 3 Xl, rather than our 4-&1. is sufficient to guarantee that a

e
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similar program with E6 for computing the midpoint of x and y will ter-

minate.

Reasoning About Correctly Solving the Given Problem:

From the invariance of P, we are guaranteed that [x, y] contains a

root of f. We now give conditions characterizing n, such that y-X S n.

If y-x 2 MIN upon termination, then from (3.7.2.7) and axioms F8,
F12, and F15,

(y-x)(l-xz) < yox
Since upon termination, y®x S g, it follows that
y - x S max{ MIN, :;(1--},2).1 }

Because MIN < g, the desired result follows, provided n is chosen so that

-1
n 2 g(1 12)

Eurther Considerations:

For the sake of simplicity, the given program was developed to find
only positive roots, as of f. In fact, this restriction is not necessary
for the preceding analysis to apply. Suppose f is defined on the intervals
{-a, -b], [0]s, and [cy d], where a, by, ¢y d € F, and =a S b S 0 <
¢ < d. By evaluating f(-b), £(0), and £f(c), it can immediately be
determined whether either of the intervals [ <b, 0] or [0, c¢] contain a
root of f. For the interval [c,d], the analysis given above applies.
For the interval [ -a, -bJ], this analysis will also apply, provided X, and

Yo are chosen so that xj;, y, 2 MIN, and £( -Ej) is evaluated each iteration

1
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to determine which of x and y is to be updated.

Also, the analysis of the given program was performed assuming that f
is computed exactly. If, in fact, f is computed with fp arithmetic, then
the preceding analysis indicates that the program will converge to within nq
of a genuine root of some perturbed continuous function f + 8f. Let a
denote a real root of f, and let ¢ denote the corresponding root of
f +6f. Also, let jnt( @, &) denote the smallest closed interval contain-

ing both @ and ¢. Wilkinson [70] has shown that under certain conditions,
[xs y1 n int(a, &) 2 {}

will be left invariant by a program similar to the one given above. We

refer the interested reader to the reference for details.

3.8 Summary of the Approaches for Proving Program Correctness

Quod nunc ratio est, impetus ante fuit.
(What now is reason was formerly impulse.)
-- Ovid, Remediorum Amoris

We have presented two approaches for reasoning about the correctness
of floating-point (fp) programs. The first approach associates a set of fp
numbers with each fp expression and models the assignment statement as a

nondeterministic selector of one of the elements in the set.

This approach appears to adequately capture the fact that the result
of an fp operation is an fp number chosen from an interval, and that the
identity of the number is known with no more precision than knowledge of
the endpoints of the interval will allow. However, since this approach

does not capture the single-valuedness of the fp operations, it is

A
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inadequate to demonstrate certain significant properties of fp programs.

The second approach models the fp operations by single-valued func-
tions, whose significant properties are characterized by 15 fp axioms.
This set of axioms was noted to be sufficiently general to apply across a
wide range of fp implementations: the axioms support various treatments of
overflow and underflow, and either rounded or chopped arithmetic, provided
that at least one guard digit is used. Also, these axioms were shown to be
sufficiently powerful to prove several properties that have been reported
to be desirable for fp arithmetic. It is believed that these axioms are
the first attempt to model all the fp operations in terms of exactly two

cropping functions.

This approach appears to provide an adequate framework for reasoning
about the correctness of fp programs, systematically accounting for the
limitations of range and precision embodied by these programs. Two ways
were shown for specifying the invariant predicate associated with a loop in
fp programs. One way is to make use of sequences, defined recursively in
terms of fp operations. This approach frees invariance proofs from any
consideration of error in the fp operations. In fact, with this approach,
an invariance proof demonstrates only that the fp operations are applied by
the program under the conditions and in the order dictated by the stati-
cally specified sequences. Thus, the invariance proof is used to determine
whether the fp algorithm embodied by these sequences is gorrectly imple-
mented. However, we saw that such an approach requires an error analysis
to be performed inductively upon these sequences, when the inexactness of

the fp operations must finally be taken into account, to reason about

whether the implemented algorithm solves a given problem.
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The alternative approach was to specify the invariant, not in terms of
sequences, but only in terms of the initial and current values of the pro-
gram variables. With this approach, the invariance proof is more compli-
cated, because it must take into account the inexactness of fp arithmetic.

However, a separate induction during the error analysis is not needed.

The former approach for specifying invariants provides a dramatic
separation of concerns that is probably preferable for large programs. The
latter approach, which consolidates some of these concerns and treats them
together, may be preferred for programs that are sufficiently small, so

that the amount of detail that must be handled at once remains manageable.

Finally, we showed that the common practice of modelling the fp opera-
tions by a single function that crops the result of the corresponding exact
operation is invalid for many fp implementations. For schemes §; and Sq,
we showed that Lfwo cropping functions are necessary if and only if g s t.

For scheme 82. we showed that fwo cropping functions are necessary if and

only if p=2&g <t or B >2&¢gsSt.
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Some Theorems Provable from Axioms Fl - ElS

Numerical subroutines should deliver results which
satisfy simple, useful mathematical laws whenever
possible. [Such laws make] ... a great deal of
difference between whether mathematical analysis of
computational algorithms is worth doing or worth
avoiding! Without any underlying symmetry properties,
the job of proving interesting results becomes
extremely unpleasant. The enjoyment of the tools one
works with is, of course, an essential ingredient of
successful work.

-~ Donald Knuth [42]

The index i is assumed to range over the set {0,1}.

Theorems Characteriziag the FP Parameters

THI. (Vx e F : CRl(x) = CR2(x) =x )

Broof:
xeF = xe€e R by Fl
= x < CRi(x) < x by F5
QED

THZ.(Vxe]R:xZMAX=>CR1(x)=CR2(x)=MAX)
Proof:
xe€ R = CR/(x) ¢ F | by F5

= cai(x) S MAX by F3

MAX £ x & x € R

= CRi(MAX) < CRi(x) by F9
= MAX < CRi(x) by F3, THI
QED

- 118 -
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TH2.5 ( Vx € R : MIN S x < MIN = CR;(x) = CRy(x) = MIN )
Broof:

x € R & MIN < x S MIN

= x>0 & CRj(x) 2 x(I -3;) by F3, F4, F6, F8
= CR;(x) >0 by F7
= MIN S CRi(x) < MIN by F4, F5

QED

Proof:
xe F = CRi(-x) = - CR,(x) by F10
= CRi(-x) = -x by TH1
= =-x€ F by F5
QED
TH4. (Vx € F : x 2 -MAX )
Proof:
Obvious, by F3 and TH3. QED

TH5. (Vx e F: x <0 = x < -MIN)
Proof:

Obvious, by F4 and TH3. ' QED

TH6. (Vx e R : [ -MAX < x < - MIN
= x(1+pi) < cni(x) < x(l-xi) 1)
BProof:

Obvious, by F8, F10, and TH3. QED

The theorems which follow assume Dom = true., TH7 - TH27 were posed

as desirable axioms and theorems for fp arithmetic by Knuth [42].

A
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Theorems Characterizimg FP Addition amd Subtractionm

TH7. (Vx,y € F : x®y = y@€x )

Proof:
xoy € F = [ x®y = CRi(x+y) = yex ] v
[ x@y = CRy(x+y) = yox ] by Fl1, F12
QED
TH8., (Vx,y € F : x©y = x®(-y) )
Broof:
Axiom F15. QED
TH9. (Vx,y e F : x©y = -(y®ex) )
Proof:

Xo,y € F = x0y = x0(-y) by F15
= CRj(x-y) for j=1v j=2 by Fl1, F12
= -CRj(y-x) by F10
= =(ye(-x)) by Fl1, F12
= - (yex) by F15

QED
THIO. ( Vx,y e F : -(x®y) = (~-x)®(-y) )
Proof:
xeye F = -(xo0y) = -(x0(-y)) by F15
= (-y)oex by TH9
= (-y) o (-x) by F15
= (-x) e (-y) by TH7
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THIl. (Vx,y e F: y=-x = x@y =0)

Broof:
X2y € F & y = -x = x@y = CRy(x+y) by F12
= CR,(0)
=0 by F2, THI
QED

Note: The implication in the other direction, required by Knuth, does

not hold if for some x,y e F : 0 < x+y < MIN = CRZ(x+y) = 0.

TﬂlZ.(Vxe]F:x90=x)

Broof:
xe F = CR/(x) = x®0 = CR,(x) by Fl1, F12
= x00 =x by TH1
QED

THI3. (Vx e F: 0e(0ex) = x )

Proof:
xeF = 0oe(0ex) =0e(-(00x)) by F15
= 0@(-(00(-x))) by F15
= -((-x)®0))e®0 by TH7 (twice)
= x by TH12 (twice)
QED

TH14., (Vx,y,2 € F: xSy = x0zS yoz)
Broof:
Xe Yyo2 € F & xy 20
= [x02=CR1(x+z) & yOz=CR1(y+z)J v

C x®z = CRy(x+2z) & y®z = CRy(y+2z) ] by Fl1, F12
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= x®z < yoz by F9, x<y

Xe 52 € F & xys<0 & xSy
= [xs0sy & zs0] v
[xs0sy & z201

= [xez=CR1(x+z)SCR1(z) =z &

y®z = CRy(y+z) 2 CR)(2) = z ] v
[ xez = CRZ(x+z) < CR2(z) =z &
yOz = CRl(y"'Z) 2 CRI(Z) = 2z ] by Fll. F12. THl

= x®z s yeéz

QED
THI15e (VWwsXeys2 € F: w20 & z20 = x0y s (xow)o(yoez) )
Broof:
wexeF & w20

= 06x S wéex by TH14

= x00 < x0w by TH7

= X S x0y by TH12
WeXey€eF & w20 & z20

= x0y < (xo0w)oy by TH14, x S xOw

= yo(xow) by TH7

S (yoz)e(xow) by TH14, y S yez

= (xow)e(ye®z) by TH7

QED

Theerems Characteriziag FP Multiplicatioa amd Divisioa

TH16. ( Vx,y €e F : x@y = y@x )
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Proof:
Xey € F = x@y = CRy(xy) = yox by F13
QED
TH17. (Vx,y e F : (-x)oy = =-(x0y) )
Broof:

Xxsy e F = -xe F & (-x)0y=CR1(-xy) by TH3, F13
= -CRl(x y) by F10
= -(x0y) by F13

QED
THI18., (Vx e F : 1@x =x )
Proof:
xeF = 10x=CR1(x) by F13
= x by THI1
QED

The proofs of TH19 - TH24 are very similar to the proofs of TH16 -

TH18, and are omitted.

THI9. (Vx,ye F: (x=0 VvV y=0) = xe@y=20)

Note: The implication in the other direction, required by Knuth, does

not hold if for some x,y € F : 0 < xy < MIN = CRl(xy) = 0.

x@ (-y) )

TH20. ( Vx,y € F : (-x)9dy

TH2l. (Vx,y € F : (~x)9y = -(xdy) )

TH22. (Vx e F: 0¢x =0 )
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TH23. (Vx € F x¢1l =x)

TH24. (Vx € F x$x =1)

e

TH25. ( VX, y,2 € F : x<y & z>0 = x@z<yeoz)
Broof:
Xs o2 € F & xSy & z>0

= xzSyz

= CRl(x z) < CRl(y z) by F9
= x@z s ya@z by F13
QED

TH26. (Vx,y,2 € F: xSy & 2>0 = x@¢zs ydz)

Broof:
Similar to the proof of TH25. QED

TH27 « (VXyy,2 € F: xSy & z2>0 = z¢x22z9y)
Proof:

Similar to the proof of TH25. QED

Theeorems Characterizing Other Useful FP Properties

TH28. (Vx,y e F: xSy = yox 20)

RBroof:

Xy € F = yox = yo(-x) by F15
= CRj(y-x) for j=1 v j=2 by Fl1, F12
p3 CRj(O) by F9, xSy
= 0 by F2, THI

QED
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TH29. (Vx,ye F: (x20 & y21) = x@y 2x)

Rroof:
X,y € F = x@y = CRy(xy) by F13
2 CR,(x) by F9, x20, y21
= x by TH1
QED

The proofs of TH30 - TH35 are very similar to the proofs of TH28 -
TH29, and are omitted.
TH30. (Vx,ye F: (x20 & 0Ssy<1l) = 05 x0y<x)
TH3l. (Vx,ye F: (x20 & y21) = 0<x¢y<x)
TH32. (Vx,ye F: (x20 & 0<ys1l) = x¢y2x)

TH33. (Vx,y € F 0<xs<sy = 0sx¢ysl)

TH34, (Vx e F: x@x 20 )

Note: x 20 = x@x > 0 is false if for some x € F : 0<x2<m
= CRI(x2)=00
TH35. (Vx e F: x>0 = 1¢x20)

Note: x# 0 = 1¢x 20 is false if for some x € F : 0 < 1/x < MIN

= cnl(llx) = 0.

TH36. (Vx, ye F: y20 = x®y 2 x )

Proof:
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XsyeF & y20
= 0ex < yeox by TH14
= x00 < xoy by TH7
= X S x0y by TH12
QED
TH37. (Vwsx,y,z2 € F: xysSwz = x®y S woz )
Proof:
WsXeysz € F = [ xoy CRl(xy) &
waz = CR(wz) ] by F13
= x@0y S wez by F9, xysSwz
QED
TH38. (VWwexsysz € F: x/ysSw/z = x@yswdz)
Broof:
Similar to the proof of TH37. QED
TH39. (Vwexoy,2 F : [(xy 20 © wz 20) v xty € F V wtz ¢ F ]
= [xtySswz = xo0y < woz ] )
Broof:
[Lvixsys2€F & xy20 < wz 20 ]
= [x0y=CRj(x+y) &
wez = CRj(w+ z) ] for j=1v j=2 by F11, F12
= x0y S woz provided x+y < w+ 2 by F9
Ws Xs Yo 2 € F
= xoy = CRj(x+y) for j=1v j=2 by Fl1, F12
< CRj(w+ z) provided x+y S w+ z by F9

=T w+tz by THl, wtze F
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CRj(w+ z) for j=1 & j=2 by TH1

wéz by Fll, Fl2

The proof is similar when x+y € F.

QED
TH40. (Vx,y e F: [ x=y VvV MINS y-x < MAX ]
= xsxo((yex)g2) sy )
Rroof:
Xe y€F & x=y
= yox = yo(-x) =0 by F15,THI1
= (yex)g2=0 by TH22
= x0( (yox)g2) =x by TH12
= x=x0( (yoex)g2) =y
Xy € F & MINS y-x
= y>x by F6
= yox 20 by TH28
= (yex)¢g220 by TH31
= xeo( (yox)dg2) 2x by TH36
Let Ay = y-x for x,y € F & MIN S Ay < MAX.
We now show:
(y-ay)eo[ (ye( y-Ay))¢21]1 < y
LetX;Emin{zel‘:0<Ay$z}.
Now, Ay ¢ 2 = cr (% Iy) by Fl4

Suppose Ay s K; S 2MIN. Then,

1._
CR, (3 Ay) S MIN , by F5
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S Ay by hypothesis

Suppose 2 MIN < X; S MAX. Then,

1 — 1 —
CRI(E Ay) s §Ay(1+u1) by F8
< A—y- ‘ by F7, Y <l
By definition of Z;’

AY > Ay92 ¢ F = Ay 2 Ay 9 2

Thus, MIN S Ay < MAX => Ay 2 Ayd 2. (3.7.2.1)
ye(y-Ay) = CRj(Ay) for j=1v j=2 by F11, F12, F15
< Ay by F5, Ay S Ay ¢ F
= (yo(y-Ay)) 92 < Ayg2 by TH26
< Ay by (3.7.2.1)

= (y-Ay)e( (yo(y-Ay)) g2

S (y-Ay) eay by TH7, TH14
= CR.(y) for k=1 v k=2 by F11, Fl12
=y by THI1

QED
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