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As of October 2013, around 285 million people are visually impaired worldwide. For an 

important subset of these, this visual impairment is genetic. That is, they have inherited mutant 

genes that prevent sight by affecting an element critical for vision. Understanding the genetic 

basis of these diseases offers insight into the mechanisms involved in photoreceptor 

development, function, and maintenance as well as significant potential for therapies addressed 

at cure or prevention. In recent decades, understanding of the cellular and molecular mechanisms 

of vision has expanded dramatically. In particular, many genes have been discovered that are 

vital for normal function of the retina, the delicate, multilayered, light-sensitive layer at the back 

of the eye that connects by the optic nerve to the brain.  

Retinitis pigmentosa (RP) is a subgroup of inherited eye diseases causing retinal degeneration. In 

the U.S.A alone, an estimated 100,000 people have inherited RP, either as an autosomal 

dominant, autosomal recessive, or X-linked disease. Among these, about 50% of cases of 

autosomal recessive RP cannot be explained by so far identified genes, and for many of the 

known genes, their role in vision is unclear.  

The dog also suffers from inherited eye diseases. The canine disease homolog of RP is referred 

to as Progressive Retinal Atrophy (PRA). Because of the unique population structure and genetic 



	
  

differences within and among the various breeds of dogs, this animal model offers a remarkable 

tool for discovering genetic mechanisms in vision and serves as a therapeutic model for potential 

gene therapy.  

In the present work, we have investigated nine different canine diseases (OSD, erd, prcd, cd, 

crd1, crd2, crd3, Basenji PRA, and Italian Greyhound PRA), characterized them, discovered the 

genes responsible for their phenotype, and determined the broad spectrum of breeds affected by 

them. These studies utilized classical genetic methods such as linkage and candidate gene 

approaches, and were expanded to employ Linkage Disequilibrium and Association Studies. We 

discovered two novel genes, PRCD and STK38L, both of which cause PRA in dogs, but had not 

previously been recognized as involved in vision or visual disorders, and thereby identified novel 

pathways critical for vision, as well as genes potentially responsible for human RP. We also 

identified novel mutations in six known genes (COL9A2, COL9A3, ADAM9, PDE6B, IQCB1, 

and SAG) that cause five different diseases, and thereby established new animal models for 

potential gene therapy in their human counterparts. We identified the exact deletion points of the 

cd disease in a broad spectrum of breeds affected by this disease, showing that they are all 

inherited Identical By Descent (IBD). We discovered the potential involvement of a microRNA 

in retinal degeneration in the Italian greyhound PRA, the first such evidence in a large animal 

model, and the first suggestion that retinal degeneration can be caused by alteration in gene 

expression regulated by microRNA. We developed screening tests for all the above diseases so 

these diseases can be eliminated from affected breeding lines. We showed that, in the dog, 

pooled samples might be used for association studies, when research budgets are limited. 
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1.1 Retinal diseases.  

1.1.1  The retina, phototransduction and visual cycle 

Vision is one of our five senses and is defined by the ability to interpret the surrounding 

environment by processing information encoded in visible light. There are various physiological 

components involved in vision, which are the focus of much research in psychology, cognitive 

science, neuroscience, and molecular biology. Light incident on the cornea, at the front of the 

eye, is focused by the lens onto the retina at the back of the eye. The retina mediates our visual 

perception. This approximately 0.2 mm thick central nervous tissue, is the first station in many, 

in a cascade of events that ends in the brain and the ability to see (Figure 1.1). It has a 

complexed- layered- structure consisting of neuronal and supporting cells: Retinal pigment 

Ephithelium cells in the RPE, photoreceptor cells in the photoreceptor layer, bipolar cells, 

Amacrine cells and Horizontal cells in the inner nuclear layer, outer and inner plexform layers, 

Ganglion cells layer, and the nerve fiber layer.  

 

Figure 1.1. The retina. Several layers of cells are observed. In the photoreceptor layer different 
segments are identified: the outer nuclear layer, the inner segment, and the outer segment. Cones 
and rods are denoted by black arrows. Image is modified from Wikipedia, public domain. 
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The photoreceptor cells are categorized into two groups: the rods and the cones. These lie in the 

outer part of the retina, the region farthest from incoming light. Light travels through the 

transparent inner retinal layer (all cells mentioned above) before it can be captured by the 

photoreceptor cells. The retinal pigment epithelial (RPE) cells then absorbs scattered light, or 

light not absorbed by the photoreceptor cells. The photoreceptor cells have a unique and 

immaculate organization, which allow the cells to execute their function. They are polarized cells 

that consist of a synaptic region, a cell body, an inner segment (IS) and an outer segment (OS). 

The nuclei are adjacent to the bipolar cells, and are present in a ratio of about 1:20 cones to rods. 

In humans, the macula lays in the center of the retina, a region where 100% of the cells are 

cones. The “molecular machinery” involved in biosynthesis, energy metabolism, and membrane 

trafficking is taking place in the IS, which is connected to the OS by a connecting cilium. The 

OS is comprised of membranous discs surrounded by a plasma membrane. The discs are orderly 

arrayed perpendicular to the axis of the OS. In humans, about 1,000 discs are stacked in one rod 

cell. Over 90% of the total protein in the OS is rhodopsin, a G-protein coupled receptor, densely 

packed within the disc lamellae (~25,000 molecules/µm2). 

Vision in vertebrates begins when a light is absorbed by the rhodopsin, the rod photoreceptor 

visual pigment, which consists of an apoprotein, opsin, and a chromophore, 11-cis retinal. This is 

the beginning of the phototransduction. The light initiates the isomerization of 11-cis retinal and 

as a result activates rhodopsin. Photoactivated rhodopsin activates the heterotrimeric G protein 

transducin by catalyzing the exchange of GDP to GTP. The dissociated alpha unit of transducin 

then activates cGMP-phosphodiesterase, which rapidly hydrolyzes cytoplasmic cGMA. The 

decrease in cGMP concentration in the cell causes the cGMP-gates cation channels to close, and 

as a result, the cell becomes hyperpolarized and releases less glutamate transmitters to its 
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connected bipolar cells. This continues to cause chain reactions from the bipolar cells to the 

ganglion cells, and the message is then transferred to the brain through the optic nerve. 

When light hits a rhodopsin molecule it changes 11-cis retinal conformation by isomerization to 

all-trans retinal. All-trans retinal is then liberated from opsin, reduced to all-trans retinol, leaves 

the rods and “diffuses” to the RPE, where it undergoes a series of enzymatic reactions to be 

converted back to 11-cis-retinal. 11-cis retinal returns back to the OS where it regenerates 

rhodopsin and completes the visual cycle. For further review on the structure and biology of the 

retinal cells- refer to reference 1. 

Rods mediate vision in dim light and if they are dysfunctional, can cause night blindness, and 

cones mediate vision in day light and the perception of colors, and if dysfunctional can result in 

day blindness. A percentage of blindness occurs due to genetic mutations in genes essential for 

normal function of these photoreceptor cells and the RPE cells. These are usually inherited as 

autosomal recessive (ar), autosomal dominant (ad) or X-linked traits.  The diseases are generally 

classified based on whether the disease primarily affects the rods or the cones, though this task is 

problematic since the diseases show substantial clinical and genetic overlap.  

1.1.2  Retinitis pigmentosa 

Retinitis pigmentosa (RP) represents the most frequent cause of inherited visual impairment, 

with a worldwide prevalence of about 1:4,0002. In RP, the rods are the cells that are initially 

affected, resulting in night blindness and tunnel vision (peripheral vision is lost, center vision is 

preserved). Later, with the progression of the disease, the cones are affected as well, which can 

result in a complete blindness. It encompasses a clinically and genetically heterogeneous group, 

with a large variability in the age of onset, rate of progression, retinal appearance, and final 

outcome. The disease can be inherited by any of the three classical modes of inheritance, ar (20-
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25%), ad (15-20%), and X-linked (10-15%), as well as mitochondrial inheritance3 (rare). 

Furthermore, almost half of all RP cases are simplex (only one person in the family is affected) 

in which the inheritance pattern cannot be determined, and no family history is reported4. RP 

patients can also be categorized into two main groups: “typical” or “non-syndromic” where the 

disease is confined to the eye, and “complicated” or “syndromic” where the patients suffer from 

non-ocular findings.  

Currently, RP is known to be caused by mutations in over 50 genes (RetNet, 

https://sph.uth.edu/retnet/), which presents significant progress since the first mutation associated 

with RP in human was identified5 (a proline to histidine change at amino acid position 23 in 

rhodopsin). Additional genes causing RP in large portions of the patients are RDS6, ABCA47, 

RPE658, PDE6A9, PDE6B10, USH2A11, RPGR12, and RP213. The more genes and mutations are 

discovered, and the more patients screened, the more it becomes apparent that phenotype and 

genotype relationship is inconsistent, and neither can be used to predict the other. Not only can 

different mutations in different genes cause the same phenotype, the same mutations can cause 

different phenotypes, and not only between families, but also within families. Interaction 

between genes may also affect the final outcome, and modifiers can influence the level of 

penetrance in dominant diseases with incomplete penetrance. 

 

1.1.3  Other retinal degeneration diseases 

Photoreceptor cell degeneration can be caused by other diseases, which have their own 

characterizations, but also share many symptoms with RP. Those include macular degeneration 

(MD), cone degeneration (CD), and cone-rod degeneration (CRD). These disorders can present 

at any stage of life but predominantly cause severe visual loss in early to middle age. The most 
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common photoreceptor degeneration though is age-related macular degeneration (AMD), which 

accounts for greater than one-half of blindness and visual impairment in industrialized 

countries14,15. As in RP, these diseases are mostly recognized as monogenic forms of progressive 

photoreceptor cell death, but most of the recognized gene mutations account for only a small 

fraction of cases. Almost all causal mutations are rare (minor allele frequency (MAF) <<0.01). 

The diseases start with cone cell malfunction, resulting in day blindness, which can then progress 

to night blindness (CRD) or not (CD). Also like RP, they can be expressed as part of a syndrome. 

ABCA4 is the most common mutated gene in autosomal recessive cone-rod dystrophy, CNGA3 

is the most common in autosomal recessive cone dystrophy, and in both diseases there are still 

60-90% cases with unknown genetic causality. Some diseases are congenital and as such it is 

unclear if the disease starts in the cone or the rod cells. An example of the latter is Leber congenital 

amaurosis (LCA), where the patients are severely visually impaired or blind from birth. They 

present with nystagmus and a retinal appearance that varies from normal to mild pigment 

mottling with mild vascular attenuation to severe pigmentation and vascular attenuation that 

resembles the fundus in RP-like dystrophies. Their ERG shows no function of either the cones or 

the rods in the first year of life. The distinction between some retinal dystrophies can be very 

subtle or even arbitrary, and mutation of a single gene can result in varied clinical diagnoses. For 

example, at end stage CD can hardly be distinguished from CRD and LCA clinically, and 

molecular-genetically overlaps with CD, CRD and RP.  

 

1.2 The Dog as an animal model 

In humans, gene discovery is still not near saturation yet for either monogenic disorders or 

complex traits. Although monogenic diseases present a simpler goal, complex traits harbor 

challenges that researchers struggle to overcome. Recent studies have used strategies of 
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hypothesis- free fine mapping of genes and loci to identify underlying factors in common 

complex diseases with major impact on public health (Wellcome trust case control consortium, 

2007). The successful reports mainly involved the collection of very large study cohorts for any 

individual trait and international collaborations on an unprecedented scale. That said, detecting 

genes underlying diseases might not always need large global population samples. Samples of 

individuals from genetically isolated populations (population isolates) have proved immensely 

useful in the identification of rare recessive disease genes by way of homozygosity analysis. One 

of the most impressive examples is the data in genetic studies provided by the company Decode 

Genetics in Iceland (http://www.decode.com). They have identified by linkage, and more 

recently by genome- wide association studies (GWAS), an impressive number of variants 

contributing to the development of common/complex diseases and traits in the Iceland 

population.  

 Other isolated populations with proven value in gene mapping are found in Finland, 

where 35 monogenic diseases have been mapped and cloned, as well as complex traits such as 

schizophrenia16; the Micronesian Island of Kosrae17, Northern Sweden18, and the Chamorro 

people of Guam19 where complex traits such as plasma plant sterol, Schizophrenia, and Guam 

neurodegenerative disease were mapped.  

 Systematic studies of common genetic variants are facilitated by the fact that Linkage 

Disequilibrium (LD) exists in the human population, because of shared common ancestry and 

historical and prehistorical population bottlenecks. Early information documented the existence 

of LD in the human genome20,21 limited to a small number of regions in the genome and to a 

small number of individuals. With the development of advanced technology and statistical tools, 

and the explosion of data from the rest of the genome, it became clear that the human genome 
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displayed more LD than previously predicted, and the LD varied across regions, showing a 

segmented structure22-24.  

 These observations suggest that researchers can benefit from LD- based methods and at 

the same time emphasize the need to study LD structure at high-density resolution and in more 

populations. The HapMap project phase I characterized 1.3 million human SNPs, and 3.1 million 

in phase II, in 270 individuals from 4 geographically diverse populations (The international 

HapMap Consortium 2005; The international HapMap Consortium 2007). The paradigm 

underlying association studies is that linkage disequilibrium can be used to capture association 

between markers and nearby un-typed SNPs. However, the Phase II HapMap data shows that 

there is much more complexity in the structure of the human genome: there are long-range 

similarity among haplotypes but more striking is the fact that about 0.5-1.0% of all high- 

frequency SNPs are untaggable (no other SNP within 100Kb has an r2 of at least 0.2). As a 

result, one can imagine that in the research of common diseases, with no homogenous population 

in particular, GWAS will require a much more condensed SNP genotyping than is available, with 

high risk of missing the rare alleles. The causative allele might be located on several haplotypic 

backgrounds, thereby diluting its signal to an extent that precludes its identification by genetic 

means.  

However, this is not observed in populations that are genetically more homogenous such as 

found in populations that are geographically isolated. In those populations the LDs are larger, 

and as a result, GWAS requires fewer markers (up to 30% less). In these populations, the use of 

a dense genotype platform would result in a good coverage of the genome and small number of 

gaps, and sometimes could be very beneficial in cases of rare alleles25. 



	
   9	
  

 Dogs evolved through mutually beneficial relationships with humans, and their history 

can be traced back from 15,000 to 100,000 years ago26. The needs of the humans in different  

times and places for dogs with specific traits, ranging from hunting and herding to guarding and 

companionship, resulted in selection forces that have created about 400 modern dog breeds. As a 

consequences of these stringent breeding programmes and periodic population bottlenecks, the 

breeds mimic “human isolated populations” as far as the structure of their genetic pool, giving 

rise to a high prevalence of breed-specific diseases, including cancer, blindness, heart diseases, 

epilepsy, hip dysplasia and deafness. Most of these diseases are also commonly seen in human 

populations, with similar clinical symptoms.  

 The first draft of the canine Boxer genome was published in 2004 with a 7.6X 

coverage27. Since then two additional assemblies have been released (CanFam2- 2005 and 

CanFam3- 2011) improving the annotation and the SNP database. Subsequent contributions to 

the canine genome after the release of the first assembly have focused on better understanding 

canine chromosomal structure and LD. Gray and her group28 showed that only 5% reduction in 

nucleotide diversity is a result of domestication whereas the loss of nucleotide diversity with 

breed formation averaged 35%. Other studies suggested that the Linkage disequilibrium (LD) 

within breeds extended over distances of several megabases, but across breeds only tens of 

kilobases27,29. Sutter and his group showed that LD depends on the breed under study, and can 

vary up to 10 fold in breeds that range from rare to popular, and whose population histories 

feature a range of popular sire and bottleneck effects. Together with the strong selection that 

breeders had imposed in order to achieve the specific traits desired in each breed, the breeds now 

have an excess of inherited diseases, expressed on a relatively homogenous genetic background. 
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As such, the canine can be used as a model for human diseases, with population structural 

advantages that can be exploited. 

 

1.3 PRA and other retinal diseases in the dog population 

Dogs suffer from various forms of naturally occurring retinal diseases causing blindness, with 

the most common one known as progressive retinal atrophy (PRA). Over 100 breeds are affected 

with PRA, and some minor and major differences in appearance can be recognized between 

them, from age of onset to rate of progression, to clinical abnormalities. The disease was 

recognized as the homolog to RP in humans, and the disease of both species shared genetic, 

clinical and pathological features30.  

Dogs are born with an undeveloped retina that reaches maturity around 5-8 weeks postnatally. 

As a mature retina, the structure is broadly similar to that of man, consisting of layers of 

specialized cells. The major difference between human and canine retina is in the localization of 

the cones: in humans an area named the fovea contains only cone cells, whereas such an area 

does not exist in the canine retina. In the canine retina, the closest parallel to the human fovea is 

a region identified with a higher concentration of cones than other more cone-dilute regions in 

the retina. Despite these differences in eye development and structure, the phenotypic similarities 

and heterogeneity observed in humans are very close to the ones observed in dogs. The retinal 

diseases in dogs, as in humans, can be classified as progressive, stationary, or developmental. All 

forms of inheritance are observed: autosomal dominant PRA (ADPRA), autosomal recessive 

PRA (ARPRA), and X-linked. The clinical observation of any of these types of diseases can be 

assessed in several ways: (i) Ophthalmologic examination by an Ophthalmologist, evaluating the 

health of the retina by its ability to reflect light back (increased reflectivity of the tapetal region 
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indicates a diseased retina), the number of visible branchpoints in blood vessels in the back of 

the eye (retinal vascular attenuation indicates disease) and appearance of the optic nerve (pallor, 

atrophy of the optic nerve head= disease); (ii) A physiological examination: electroretinogram 

(ERG) measures the ability of the rods and cones to generate an electrical signal when exposed 

to light; (iii) a histological morphology is possible only on research colony dogs or donated 

retinas from privately owned dogs, where the disease can be accurately assessed in comparison 

to the unique and well defined structure of a healthy retina. Retinal diseases can start in the cones 

and then affect the rods (cone-rod dystrophies, CRD), start in the rods and then affect the cones 

(rod-cone dystrophies, RCD) or can be confined to only one type of photoreceptor cells. Since 

the retina of the dog is not fully developed when it is born, it is easier to identify where and when 

the disease initiated, which many times is difficult to do in humans.  

PRA is characterized by initial degeneration of the rod photoreceptor cells. Mutations causing 

PRA can affect the rods only or rods and subsequently cones. The dominance of rod involvement 

in PRA affected dogs manifests as night blindness, and can progress to complete blindness in 

cases where cones are secondarily affected. In contrast, cone-rod dystrophies in dogs affect 

predominantly the cones, which would result initially in day blindness, with rods being affected 

later or to a lesser extent.  

There is a broad age of onset range in various breeds. All diseases can be categorized to two 

main groups: early onset, and late onset. In dogs, early onset PRA/CRD manifests during the 

postnatal retinal differentiation period (2-6 weeks) and results from abnormal to arrested retinal 

development or progressive degeneration immediately after retinogenesis. These diseases 

typically result in relatively rapid progression toward end-stage retinal degeneration, and can be 

clinically evident in young adult dogs (1-2 years of age). In contrast, late-onset PRA/CRD shows 
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pathological changes after the retina is fully developed and mature, and sometimes these diseases 

do not appear until well after reproductive maturity. Usually the progression is very slow, and 

some dogs do not show any behavioral symptoms until very late in life. 

 

1.4 Statement of purpose 

Hereditary retinal degenerations (HRD), caused by mutations in essential genes expressed in the 

retina, are characterized by dysfunction and often death of rod and cone photoreceptors. These 

HRDs are genetically heterogeneous, with more than 200 causative loci (including 202 identified 

genes) recognized to date in humans (RetNet: https://sph.uth.tmc.edu/retnet, 2013). The diseases 

can be subdivided by clinical phenotype, and include retinitis pigmentosa (RP), cone-rod 

dystrophy (CRD), retinal dysplasia (RD), and Leber congenital amaurosis (LCA), among many 

others.  

My goal was to use the dog population, suffering from similar diseases, to accelerate the 

discovery of genes responsible for HRD in the dog, with the aim to successfully identify the 

locus and the mutation for each disease, and to evaluate the effect of the mutation on RNA 

stability and the morphology of the retina at different ages of retinal development.  

This was undertaken in several breeds segregating different specific ocular diseases, using 

meiotic linkage analysis (colony-derived informative pedigreed samples); linkage disequilibrium 

analysis (population-based samples); and genome-wide association analysis on both individual 

samples (colony-derived, and population-based), and pooled samples (colony-derived, and 

population-based) (Figure 1.2).  
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Figure 1.2. Flow chart of all the studies, the breeds affected, and the methods in which the loci 
were mapped. OSD and erd were mapped by linkage analysis on colony-pedigrees; prcd and cd 
were mapped by linkage analysis on colony-pedigrees with a combination of linkage 
disequilibrium using affected dogs from other breeds; crd1 and crd2 were mapped by GWAS 
using colony-derived dogs; and crd3, IGPRA and PRA in the Basenji breed were mapped by 
GWAS on purebred dogs. 

  

In chapter 2 I describe how useful and efficient these approaches were to map the genes and 

discover the mutations for eight different diseases: in subchapters 2.2 and 2.3 I describe how 

using meiotic linkage analysis in colony-based pedigrees enabled us to identify three mutations 

in three different genes (Figure 1.3): a deletion mutation in Col9A2 causing Oculoskeletal 

dysplasia (OSD) in the Samoyed breed and an insertional mutation in Col9A3 causing OSD in 
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the Labrador retriever breed (Subchapter 2.2); a novel gene was identified, STK38L, causing 

early retinal degeneration (erd) disease in the Norwegian Elkhound dogs (Subchapter 2.3). A 

SINE insertion in exon 4 of the gene, results in exon skipping and the removal of S100B binding 

site from the mRNA, as well as an important phosphorylation residue. This is the first time that 

this gene has been associated with retinal degeneration, or any vision problem, and suggests a 

role for new pathways and genes in the vision cascade. 

The emerging data from studies on the genome structure of purebred dogs27-29 suggested that we 

could use Linkage Disequilibrium (LD) to reduce regions responsible for diseases that are shared 

among several breeds. In subchapters 2.4 and 2.5, using Linkage Disequilibrium (LD) across 

pure breeds, I was able to identify disease- associated- haplotypes inherited identical by descent 

(IBD) in multiple breeds sharing the same disease, and consequently reduce the LD intervals 

(Figure 1.3). An affected haplotype composed of 98 polymorphisms was shared between 14 dog 

breeds suffering from progressive rod- cone degeneration (prcd), and the LD was reduced from 

1.5 Mb interval to 106 Kb (Subchapter 2.4). This work excluded all known genes within this 

interval, suggesting that the causative mutation for prcd is a novel gene, and focused our 

attention on the conserved sequences. We identified a novel gene, PRCD, that was mutated in 

these dogs31, characterized the molecular structure of the gene, and the effect of the mutation on 

the retina, and established its potential to cause RP in humans. Following our discovery, three 

unrelated families were identified with mutations in the PRCD gene31-33. In Subchapter 2.5, I 

was able to identify the specific deletion point of the cone-degeneration (cd) disease affecting 

Malamutes, previously mapped to CFA2934 and identified a 0.5 Mb shared- haplotype among the 

affected Malamutes, an affected Miniature Australian Shepherd (MAS), a Siberian Husky and 

Alaskan sled- dogs. This work shows that cd, which was previously thought to be breed specific, 
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is caused by an identical mutation in other breeds (IBD). This suggests that other canine 

diseases, thought be to limited to one breed, may be genetically homogeneous in closely, or even 

distantly, related breeds. 
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Figure 1.3. Schematic presentation of work- flow on four different diseases, number of dogs 
used in each study, and final outcome. OSD in Labrador retriever and Samoyed and erd in 
Norwegian Elkhounds were mapped by linkage analysis while cd and prcd were mapped by 
using linkage and linkage disequilibrium. 
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The fast growing database of single nucleotide polymorphisms (SNPs) and the development of 

high throughput Chips in the canine model, made it possible for the research community to 

explore the possibility of mapping disease-genes in dog populations by means of association, and 

move away from families and linkage. In Subchapters 2.6, 2.7, 2.8, and Chapter 3, I explored 

that idea and was able to identify the loci and causative mutations for four different retinal 

diseases (crd3, crd1 and crd2, and Italian greyhound PRA) using population-based samples 

(crd3 and IGPRA) or colony-pedigreed dogs (crd1 and crd2) (Figure 1.4).  

 

Figure 1.4. Schematic presentation of work-flow on five different diseases in five different 
breeds mapped by Genome-Wide- Association. The total number of dogs (Blue), number of 
affected dogs (red), and number of control dogs (black), as well as number of pooled samples are 
noted. crd1 and crd2 are rare diseases and colony-derived dogs were used, while crd3, IGPRA 
and PRA in the Basenji were mapped using DNA from purebred dogs. 

We discovered a novel mutation in ADAM9 that is responsible for a late-onset cone-rod 

dystrophy in the Glen of Imaal terrier breed and is the homolog of human cone-rod dystrophy 9 
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(Subchapter 2.6). ADAM9 belongs to a family of genes that was only recently recognized as a 

major group of genes causing retinal degeneration. We characterized its gene structure, the 

mutation effect on the cone and rod cells, the progress of the disease, and suggested this animal 

model as a gene therapy model for the human counterpart. In Subchapter 2.7 we show and 

disscuss how two different genes (PDE6B, and IQCB1), working in separate pathways, caused 

similar diseases in two closely related breeds. This emphasizes the heterogeneity of retinal 

degeneration and the need for genetic screening to better understand the cause of each disease, 

even when the symptoms are similar.  These phenotypic similarities were seen also in the late 

onset PRA in the Basenji breed and the Italian Greyhound, as they exhibit the same phenotype as 

dogs affected with prcd. After proving these two diseases are non allelic to prcd, we mapped the 

loci by GWAS (Subchapters 2.8 and Chapter 3).  

The unique genetic structure of the Basenji breed35 inspired me to try to map the gene with a 

very small number of dogs (Figure 1.4). We mapped the disease using only 6 affected dogs and 

three controls, all related to each other but not too closely, which allowed a higher level of 

heterozygosity. We identified a non-stop mutation in the SAG gene and developed a screening 

test (Subchapter 2.8). We mapped the IGPRA to a region on chromosome 11, and identified a 

new pathway to RP: down regulation of Col27A1 and mir455 were retina- specific and 

associated with this late onset PRA (Chapter 3).  

I was also curious to see if the unique genetic structure of dog breeds would permit researchers 

to run association studies using pooled samples when studying simple mendelian traits, to benefit 

laboratories with small budgets. I compared GWAS results from individual samples and pooled 

samples in four diseases: crd1, crd2, crd3 and IGPRA (Figure 1.4), and the results (Chapter 4) 

clearly show that genotyping pooled samples (5 dogs in each pooled sample) and using them in 
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GWAS analysis was successful in mapping the genes. The correct locus was identified, but the 

trade-off was a larger LD, as rare recombinant animals were missed. 

For all of these 10 genes, I developed genetic tests, which can be used to screen dogs, identifying 

carriers, affected and genetically normal dogs, thus helping breeders to create a healthy breeding 

program that would prevent the birth of blind dogs.  

More importantly, we discovered new genes and pathways involved in vision and suggested 

potential therapeutic approaches for blindness in humans. 
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CHAPTER TWO 

 

IDENTIFICATION OF NINE GENES INVLOVED IN EIGHT RETINAL DISEASES IN THE 

DOG POPULATION USING LINKAGE, LINKAGE DISEQULIBIRIUM AND GENOME-

WIDE- ASSOCIATION ANALYSES. 
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2.1 Summary 

The eye is an extremely complex, yet well defined organ that has an incredible responsibility: to 

capture light throughout the day and night, translate and transfer it to the brain so we can see. 

The retina, which is responsible mainly for the translation of the photon to an electrical signal 

and transfer it to the brain, is shown to express thousands of genes, however their role in vision is 

known and understood for only a small fraction of them. In this chapter I hope to show that we 

can use blind dogs to help us better understand how the retina functions, as well as helping the 

dog population by reducing the number of blind dogs. We had identified nine genes and 

mutations that are causing blindness in dogs, of which two are completely novel in sight. These 

newly discovered genes and pathways are candidates for RP and other ocular diseases in humans 

and can help explain a portion of the patients with no genetic resolution. 
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2.2  Col9a2 and Col9a3 mutations in canine autosomal recessive oculoskeletal   

 dysplasia. 

 

Oculoskeletal dysplasia segregates as an autosomal recessive trait in the Labrador retriever and 

Samoyed canine breeds, in which the causative loci have been termed drd1 and drd2, 

respectively. Affected dogs exhibit short-limbed dwarfism and severe ocular defects. The disease 

phenotype resembles human hereditary arthro- ophthalmopathies such as Stickler and Marshall 

syndromes, although these disorders are usually dominant. Linkage studies mapped drd1 to 

canine chromosome 24 and drd2 to canine chromosome 15. Positional candidate gene analysis 

then led to the identification of a 1-base insertional mutation in exon 1 of COL9A3 that 

cosegregates with drd1 and a 1,267-bp deletion mutation in the 5’ end of COL9A2 that 

cosegregates with drd2. Both mutations affect the COL3 domain of the respective gene. 

Northern analysis showed that RNA expression of the respective genes was reduced in affected 

retinas. These models offer potential for studies such as protein-protein interactions between 

different members of the collagen gene family, regulation and expression of these genes in retina 

and cartilage, and even opportunities for gene therapy. 

Following our discovery, a human family segregating Stickler syndrome disease was identified 

carrying a mutation in Col9A21, and a further family segregating Stickler syndrome disease was 

identified carrying a mutation in Col9A32. 

For the complete research results please refer to: 

Goldstein O, Guyon R, Kukekova A, Kuznetsova TN, Pearce-Kelling SE, Johnson J, Aguirre 

GD, Acland GM. COL9A2 and COL9A3 mutations in canine autosomal recessive oculoskeletal 

dysplasia. Mamm Genome. 2010 Aug;21(7-8):398-408. 
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2.3  Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). 

 
Fine mapping followed by candidate gene analysis of erd — a canine hereditary retinal 

degeneration characterized by aberrant photoreceptor development — established that the 

disease cosegregates with a SINE insertion in exon 4 of the canine STK38L/NDR2 gene. The 

mutation removes exon 4 from STK38L transcripts and is predicted to remove much of the N 

terminus from the translated protein, including binding sites for S100B and Mob proteins, part of 

the protein kinase domain, and a Thr-75 residue critical for autophosphorylation. Although 

known to have roles in neuronal cell function, the STK38L pathway has not previously been 

implicated in normal or abnormal photoreceptor development. Loss of STK38L function in erd 

provides novel potential insights into the role of the STK38L pathway in neuronal and 

photoreceptor cell function, and suggests that genes in this pathway need to be considered as 

candidate genes for hereditary retinal degenerations. This is the first time that the 

STK38L/NDR2 pathway has been implicated in photoreceptor development or disease. With 

hindsight, however, it is reasonable to expect such a role, given the importance of the polarized, 

highly regulated, circadian growth and renewal cycle in photoreceptors, and the proposed roles 

for STK38L in other, especially neuronal, tissues. STK38L and its interacting partners, S100B 

and the Mob proteins, thus provide novel candidate genes for hereditary retinal disorders of 

humans and other species. 

For the complete research results please refer to: 

Goldstein O, Kukekova AV, Aguirre GD, Acland GM. Exonic SINE insertion in STK38L causes 

canine early retinal degeneration (erd). Genomics. 2010 Dec;96(6):362-8. 
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2.4  Linkage disequilibrium mapping in domestic dog breeds narrows the progressive  

 rod-cone degeneration interval and identifies ancestral disease-transmitting   

 chromosome. 

 

Canine progressive rod–cone degeneration (prcd) is a retinal disease previously mapped to a 

broad, gene-rich centromeric region of canine chromosome 9. As allelic disorders are present in 

multiple breeds, we used linkage disequilibrium (LD) to narrow the ∼6.4-Mb interval candidate 

region. Multiple dog breeds, each representing genetically isolated populations, were typed for 

SNPs and other polymorphisms identified from BACs. The candidate region was initially 

localized to a 1.5-Mb zero recombination interval between growth factor receptor-bound protein 

2 (GRB2) and SEC14-like 1 (SEC14L). A fine-scale haplotype of the region was developed, 

which reduced the LD interval to 106 kb and identified a conserved haplotype of 98 

polymorphisms present in all prcd-affected chromosomes from 14 different dog breeds. The 

findings strongly suggest that a common ancestor transmitted the prcd disease allele to many of 

the modern dog breeds and demonstrate the power of the LD approach in the canine model. 

 

For the complete research results please refer to: 

Goldstein O, Zangerl B, Pearce-Kelling S, Sidjanin DJ, Kijas JW, Felix J, Acland GM, Aguirre 

GD. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone 

degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics. 2006 

Nov;88(5):541-50.  
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2.5  Genomic deletion of CNGB3 is identical by descent in multiple canine breeds and  

 causes achromatopsia. 

Achromatopsia is an autosomal recessive disease characterized by the loss of cone photoreceptor 

function that results in day-blindness, total colorblindness, and decreased central visual acuity. 

The most common causes for the disease are mutations in the CNGB3 gene, coding for the beta 

subunit of the cyclic nucleotide-gated channels in cones. CNGB3-achromatopsia, or cone 

degeneration (cd), is also known to occur in two canine breeds, the Alaskan malamute (AM) and 

the German shorthaired pointer. We characterized the achromatopsia phenotype in a new canine 

breed, the miniature Australian shepherd (MAS). Genotyping revealed that the dog was 

homozygous for a complete genomic deletion of the CNGB3 gene, as has been previously 

observed in the AM. Identical breakpoints on chromosome 29 were identified in both the 

affected AM and MAS with a resulting deletion of 404,820 bp. Pooled DNA samples of 

unrelated purebred Australian shepherd, MAS, Siberian husky, Samoyed and Alaskan sled dogs 

were screened for the presence of the affected allele; one Siberian husky and three Alaskan sled 

dogs were identified as carriers. An identical shared affected haplotype, 0.5 Mb long, was 

observed in all three breeds and defined the minimal linkage disequilibrium (LD) across breeds. 

Since the MAS is not known to be genetically related to the AM, other breeds may potentially 

carry the same cd-allele and be affected by achromatopsia. 

For the complete research results please refer to: 

Yeh CY*, Goldstein O*, Kukekova AV, Holley D, Knollinger AM, Huson HJ, Pearce-Kelling 

SE, Acland GM, Komáromy AM. Genomic deletion of CNGB3 is identical by descent in 

multiple canine breeds and causes achromatopsia. BMC Genet. 2013 Apr 20;14(1):27. 

* First and second authors Contributed equally. 
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2.6  An ADAM9 mutation in canine cone-rod dystrophy 3 establishes homology with  

 human cone-rod dystrophy 9. 

Cone-rod dystrophies are severe hereditary retinal diseases characterized by primary dysfunction 

and loss of cone photoreceptors accompanying or preceding that of rods. A clinically similar 

disorder, termed canine cone-rod dystrophy 3 (crd3), segregates in the Irish Glen of Imaal 

Terrier (GIT) breed of dog as an adult onset trait of previously undetermined mode of 

inheritance. We report results of a GWAS that found significant association to crd3 on canine 

chromosome 16 (CFA16), and led to identification of a deletion mutation in the canine ADAM9 

gene that cosegregates with the disease. The mutation removes approximately 23 kb of genomic 

sequence, including exons 15 and 16, and results in a premature stop codon in exon 17. The 

mutant protein translated from this transcript is predicted to be truncated, lacking the last 287 

amino acids of the C-terminus, part of the cysteine-rich domain, the complete epidermal growth 

factor (EGF)-like domain, the transmembrane domain, and the cytoplasmic tail. The association 

of this deletion mutation in canine ADAM9 with crd3 establishes this canine disease as 

orthologous to CORD9 in humans, and offers opportunities for further characterization of the 

disease process, and the potential for genetic therapeutic intervention. 

 

For the complete research results please refer to: 

Goldstein O, Mezey JG, Boyko AR, Gao C, Wang W, Bustamante CD, Anguish LJ, Jordan JA, 

Pearce-Kelling SE, Aguirre GD, Acland GM. An ADAM9 mutation in canine cone-rod 

dystrophy 3 establishes homology with human cone-rod dystrophy 9. Mamm Genome. 2010 

Aug;21(7-8):398-408.  
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2.7 IQCB1 and PDE6B mutations cause similar early onset retinal degenerations in  

 two closely related terrier dog breeds. 

We previously identified two early onset autosomal recessive retinal degenerations in American 

Staffordshire terrier dogs, and American Pit Bull Terrier dogs. In both diseases very young dogs 

(less than one year old) were affected by severe photopic and scotopic visual impairment, which 

progressed to more severe blindness in early adulthood. Because of the similarity of these two 

diseases, they were termed crd1 and crd2 (for cone-rod dystrophy 1, and 2, respectively). For the 

same reason, and because these two breeds of dog are physically similar and share common 

ancestry, a cross breeding complementation test was undertaken to prove that the two diseases 

were nonallelic. Structural photoreceptor abnormalities were observed in crd1-affected dogs as 

young as 11 weeks old. Rod and cone inner and outer segments were abnormal in size, shape and 

number. In crd2-affected dogs, rod and cone IS and OS were abnormal as early as 3 weeks of 

age, progressing with age to severe loss of the OS, and thinning of the ONL by 12 weeks of age. 

GWAS identified association at the telomeric end of CFA3 in crd1-affected dogs and on CFA33 

in crd2-affected dogs. Candidate gene evaluation identified a three bases deletion in exon 21 of 

PDE6B in crd1-affected dogs, and a cytosine insertion in exon 10 of IQCB1 in crd2-affected 

dogs. These findings provide new large animal models for comparative disease studies and 

evaluation of potential therapeutic approaches for the homologous human diseases. 

For the complete research results please refer to: 

Goldstein O, Mezey JG, Schweitzer PA, Boyko AR, Gao C, Bustamante CD, Jordan JA, Aguirre 

GD, Acland GM. IQCB1 and PDE6B mutations cause similar early onset retinal degenerations 

in two closely related terrier dog breeds. Invest Ophthalmol Vis Sci. 2013 Oct 25;54(10):7005-

19.  
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2.8 A non-stop S-antigen gene mutation is associated with late onset hereditary retinal  

 degeneration in dogs. 

In the Basenji breed, the adult onset of PRA was observed, with initial visual loss in dim light 

(night blindness), which gradually progressed to total blindness. Initial visual loss affects the 

peripheral visual field, but unless the dog is used for high visual performance tasks such as 

agility work, the reduction in the visual field (tunnel vision) may not be apparent. 

Despite tunnel vision and night blindness, many Basenjis affected with PRA retain adequate 

forward daylight vision for many years, sometimes for their entire natural life. This phenotype 

highly resembles the progressive rod-cone degeneration (prcd) disease. However,  a 

complementary breeding test for dogs affected with prcd excluded allelism between these two 

similar diseases, and this has been confirmed with PRCD genotyping. Blood samples from six 

affected cases and three nonaffected controls were collected, and DNA extraction was used for a 

genome-wide association study using the canine HD Illumina single nucleotide polymorphism 

(SNP) array. Homozygosity and linkage disequilibrium analyses favored one chromosome, 

CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T>C), 

which would result in the addition of 25 amino acids (p.*405Rext*25). 

Identification of this non-stop SAG mutation in dogs affected with retinal degeneration 

establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis 

pigmentosa in humans, and offers opportunities for genetic therapeutic intervention. 

For the complete research results please refer to: 

Goldstein O, Jordan JA, Aguirre GD, Acland GM. A non-stop S-antigen gene mutation is 

associated with late onset hereditary retinal degeneration in dogs. Mol Vis. 2013 Aug 

27;19:1871-84. 
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3.1 Summary 

The Italian Greyhound breed suffers from a late onset progressive retinal atrophy (IG-PRA). 

Previously we excluded this disease as allelic to PRCD. Here we used population-based genome- 

wide-association- analysis of affected and control dogs, and mapped the disease to a locus on 

CFA11. Candidate gene analysis by retinal RT-PCR and exon scanning failed to find the 

causative genetic variation. A combination of DNA-next generation-sequencing, RNA and 

smallRNA-Seq, and Allele-specific pyrosequencing revealed down-regulation of Col27A1 and 

mir455 in dogs heterozygous for the risk allele, suggesting that the IGPRA is caused by low 

levels of mir455.  

 

3.2 Introduction 

The clinical term Progressive Retinal Atrophy (PRA) refers to a broad category of hereditary 

retinal degenerations that segregate in various breeds of dog, and represent the canine equivalent 

of Retinitis Pigmentosa in humans. Like RP, PRA in different families has differing and often 

family-specific distinguishing features such as mode of inheritance, age of onset, rate of 

progression and other aspects of clinical presentation. The archetypal presentation of PRA, and 

of RP, is as an autosomal recessive trait first manifesting in early adulthood with rod visual 

deficits (night-blindness) that progresses to deficits in cone-mediated vision, accompanied by 

ophthalmoscopic evidence of degenerative retinal thinning, and eventual total blindness. Such 

hereditary retinal degenerations account for about 50% of all forms of PRA, and of RP. 

PRA in the Italian Greyhound (IG) is clinically a paradigmatic autosomal hereditary retinal 

degeneration. Affected dogs are visually, behaviorally, and ophthalmoscopically 

indistinguishable from nonaffected dogs when young (i.e from weaning at ~ 6-8 weeks of age, 
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through at least 2 years old). Ophthalmoscopic changes typical of PRA start to become apparent 

at about 3 to 5 years of age, and are indistinguishable from other canine adult onset forms of 

PRA, such as prcd1 and crd32.  

The Italian Greyhound population in the USA is a very small and inbred breed, and as in any 

such group, especially when the disease phenotype is noticeable only at an older age, the mode 

of inheritance is difficult to decode. We had previously suggested that the disease is autosomal 

recessive and showed that the Italian greyhound PRA (IGPRA) is non-allelic to prcd3.  

Here we established the phenotypic characterization of the disease and mapped the locus to a 

region on chromosome 11, by genotyping an affected and a control group using the Illumina 

High-definition canine SNP array. Association analysis identified the minimum linkage 

disequilibrium. Candidate gene analysis and RNA evaluation suggest a novel mechanism for 

retinal degeneration: downregulation of microRNA expression. This opens the door not only to a 

large group of candidate genes for RP, but also suggests a potential gene therapy, and offers a 

large animal model in which to test therapy. 

 

3.3  Material and Methods 

3.3.1  Animals 

The IGPRA strain of dogs, maintained at the Retinal Disease Studies Facility (RDSF) in Kennett 

Square, PA, derives from one affected Italian greyhound dog, which was outbred to a beagle. 

Their progeny was used to generate pedigrees segregating IGPRA. Selected dogs from this strain 

were evaluated by DNA and RNA analysis (Figure 3.1). Blood samples were also collected from 

95 purebred Italian greyhound privately owned dogs, as well as other breeds, and DNA 

extracted. All procedures involving animals were undertaken according to IACUC approved 
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protocols at Cornell University and the University of Pennsylvania, and in adherence to the 

ARVO Resolution for the Use of Animals in Ophthalmic and Vision Research. 

3.3.2 Disease phenotype evaluation 

Purebred, privately owned dogs were evaluated by certified Ophthalomologist, mostly by Drs 

Aguirre and Acland. A routine Ophtahalmoscopic evaluation was carried out and results 

reported.  

3.3.2.1 ERG analysis- in selected cases, electroretinography was undertaken either to confirm 

diagnosis, or to establish diagnosis before ophthalmoscopic evidence of disease, using methods 

described previously4,5, or by using a modified Ganzfeld dome fitted with the LED light stimuli 

transferred from a ColorDome stimulator (Diagnosys LLC, Lowell, MA, USA), as described by 

Komáromy6.  

3.3.2.2 Morphological analysis- from selected colony dogs, eyes were enucleated post mortem 

and processed for morphologic evaluation using a triple-fixative protocol, essentially as 

described previously2. For selected retinas, in vivo retinal imaging was performed under general 

anesthesia using a combined cSLO/sdOCT (Spectralis HRA/ Optical Coherence Tomography- 

OCT, Heidelberg, Germany) instrument. Near-infrared en face imaging was done using near 

infra-red and short wave autofluorescent mode with the 55o lens, and overlapping images were 

acquired. Vertical and horizontal sdOCT parallel raster scans were obtained using a 30 o lens. All 

four central quadrants (superior, inferior, nasal and temporal) were scanned with the following 

settings: 30 o x 20 o scanned area with 49 sequential B-scans separated by a 120 µm distance and 

an average of 9 ART per scan. As well, single scans averaged (n=100) sequential B-scans were 

taken in a 30 Degree area (line) on the four cardinal points and centered in the optic disc. 
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3.3.3 SNP array and Genome-wide association analysis 

We genotyped 23 affected and 18 unaffected dogs on the Illumina canine HD SNP array 

following the manufacturer’s standard protocol (Illumina Inc, San Diego, California). The dogs 

were mostly related to each other, with a few dogs that had no parents or grandparents in 

common. For each dog in the affected group we matched a relative in the control group. 

Genotypes were called using the GenomeStudio algorithm (Illumina Inc, San Diego, California). 

We included another dog that was a duplicate of one of the affected dogs, and also a duplicate of 

one of the non-affecteds, to check for accuracy and consistency. The association analysis 

included only one copy of data of the duplicated animal. Out of the 23 affected dogs, 19 were 

purebred Italian greyhound dogs, diagnosed with PRA by certified Ophthalmologists, and of 

which we were therefore confident of their disease status; two were from our colony-derived 

pedigree. An additional two dogs were included, each having a phenotype that was not typical of 

the other affected dogs. These dogs had a tentative diagnosis of PRA, as we could not be 

confident that the diagnosis was accurate, or that the disease was the same as in the other Italian 

Greyhounds. We ran an association analysis using only the 21 dogs of which we were convinced 

of their status, excluding the two dogs with the tentative diagnosis. Genotype calls were 

converted into a Plink-format file and associations were tested using the PLINK7 association 

command without pedigree or sex information (http://pngu.mgh.harvard.edu/purcell/plink/). 

 

3.3.4 Candidate gene evaluation 

Retinal RNA was extracted from a 9 weeks old heterozygous dog (IG72, Figure 3.1), and several 

control normal dogs, as previously described8. Comparison between IG72 cDNA PCR products 

and the sequences from the control dogs was performed with Sequencher 4.2.2 Software (Gene 
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Codes Corporation, Ann Arbor, MI). The genes that were screened were: zinc finger protein 618 

(ZNF618), alpha-1-microglobulin/bikunin precursor (AMBP), kinesin family member 12 

(KIF12), collagen, type XXVII, alpha 1 (Col27A1), microRNA455 (mir455), orosomucoid 1 

(ORM1), AT-hook transcription factor (AKNA), and Deafness autosomal recessive 31 

(DFNB31). Each gene was identified on the CanFam 2.0 seqeunce and primers were designed to 

amplify over lapping fragments of the predicted cDNA, and in some cases, to amplify exons 

from genomic DNA (Supplement Table 3.1). Two polymorphisms in AKNA gene were screened 

on a large number of dogs: a SNP in exon 3, at position 71,624,795 (CanFam 2.0), and a 21 bp 

deletion in intron 4 at position 71,618,401-421 (CanFam 2.0). For exon 3 SNP, a restriction test 

was developed: PCR product of primers flanking the SNP (Supplement Table 3.2, primer pair 1) 

was digested with MaeIII restriction enzyme for 2 hours at 370C, and load on an 8% acrylamide 

gel for size evaluation. The wild-type allele (Guanine) creates a restiction digestion site, resulting 

in two visible bands of 83 and 26 bp, while the risk allele (adenine) eliminates the restriction site 

and the amplicon is visible as a 109 bp band. Primers flanking the 21 bp deletion in intron 4 of 

the AKNA gene (Supplement Table 3.2, primer pair 2) were used to amplify a 239 bp product 

from a normal chromosome, and a 218 bp band from the affected chromosome. 

Col27A1 exon 1 was missing from the CanFam 2.0 and 3.0. Our genome-comparison between 

the dog, human and mouse suggested that exon 1 is within a 1.45 Kb gap, between 71,444,080 

and 71,445,532 (CanFam 2.0). Primers were designed flanking the gap as well as primers located 

in the predicted exon 1 based on the most conserved bases between human, mouse, and cat 

homologs (Supplement Table 3.3A). 

After retrieving part of exon 1 from RNA-seq data, primers were designed to amplify the gap at 

the 5’ end of the gene based on the newly retrieved sequences (Supplement Table 3.3B), as well 
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as a combination of known sequence and new sequence (Supplement Table 3.3C). PCR was run 

using KAPA2G Robust HotStart ready mix kit (KAPA Biosystems), 950C for 3 minutes, 

following by 40 cycles of 950C- 15 sec, 580C- 15 sec, and 720C- 15 sec, ending with 10 minutes 

at 720C. Products were run on agarose gels, cleaned, sequenced by the Sanger sequencing, and 

aligned. A contig was created with Sequencher 4.2.2 Software.  

Primers were also designed to cover conserved regions upstream to Col27A1 (Supplement Table 

3.4).  

3.3.5 Next genenration sequencing 

We used Illumina next-generation-Sequencing (NGS) technology to sequence DNA, retinal 

RNA, and retinal small RNA from selected dogs. RNA and small RNA libraries were done using 

the same RNA extractions. For assessing the run quality of each lane and estimating the base-

calling error rate, a small % of the Illumina control sample, phiX, was added to each lane of the 

flowcells. The error rate was estimated by aligning the reads from each lane to the phiX 

reference genome. 

 

3.3.5.1 Next-generation-sequencing- genomic DNA 

Creating libraries 

We included DNA from one affected and one normal purebred Italian Greyhounds. These dogs 

were chosen from the 41 dogs genotyped by the SNP array. The affected dog was the proband of 

the colony pedigree (Blue square, Figure 3.1). We also included one colony heterozygous dog 

(IG73, Figure 3.1). Each genomic DNA was converted to an Illumina sequencing library using 

Illumina’s TruSeq DNA LT Sample Prep kit v2 according to the manufacturer’s protocol. 

Briefly, genomic DNA was sheared using a Covaris sonicator and indexed Illumina adaptors 
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were ligated onto the ends of the DNA fragments, followed by enrichment by PCR. These 

genomic DNA libraries were pooled and run in two lanes of a HiSeq2500 rapid run flowcell, on 

a paired-end, 2 x 100 bp run. Reads were loaded onto GenomeBrowse and compared between 

affected and reference genomes, affected and normal and affected and a heterozygous dog. 

DNA-seq analysis 

Reads were mapped to CanFam3 using Bowtie29. Reads with mapping quality <20 were 

removed with Samtools10. Duplicated reads were then removed using the MarkDuplicates tool 

from picard [http://picard.sourceforge.net.]. Finally, we performed local-realignment around 

indels using the RealignTargetCreator and IndelRealigner tools from GATK11,12. SNPs were then 

called in the three samples, between the samples, and vs CanFam3, using the UnifiedGenotype 

tool of GATK11,12. 

3.3.5.2 Next-generation-sequencing- RNA and small RNA 

Creating libraries 

We extracted RNA from six female dogs: three IG-colony-derived heterozygous dogs (IG72, 

IG73, IG74, Figure 3.1) and three control colony-derived dogs, each control having a different 

genetic background. RNA quality and quantity was measured on a spectrophotometer, and 1 ul 

was run on a formaldehyde agarose gel to assess RNA integrity. Each RNA sample was 

converted to an Illumina sequencing library using Illumina’s TruSeq RNA Sample Prep kit v2 

according to the manufacturer’s protocol. Briefly, polyA+ RNA was isolated, treated with 

divalent cations to fragment, and converted to double-stranded cDNA with random priming for 

both first and second strand synthesis. Indexed Illumina adaptors were ligated onto the ends of 

the cDNA fragments, followed by enrichment by PCR. These RNA-seq libraries were pooled 

and run in a single lane of a HiSeq2000 high output flowcell on a single-end, 100 bp run. For the 
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small RNA analysis, the RNA was converted to an Illumina sequencing library using Illumina’s 

TruSeq Small RNA Sample Prep kit according to the manufacturer’s protocol. Briefly, Illumina 

adaptors were ligated onto the ends of the RNA fragments and reverse transcribed and amplified 

with indexed PCR primers. After size selection for small RNA, these libraries were pooled and 

run in a single lane of a HiSeq2000 high output flowcell on a single-end, 50 bp run. 

SmallRNA-seq analysis 

Reads were trimmed to 22 bases from the start of the reads with fastx_trimmer [FASTX-Toolkit, 

http://hannonlab.cshl.edu/fastx_toolkit/index.html]. They were then aligned to CanFam3 with 

Bowtie29. The alignment files were compared using Cufflinks13 using the three normal animals 

as replicates of a ‘sample’ and the three heterozygotes as replicates of a second ‘sample’. To 

check for significant differences in level of expression between the three heterozygous IG and 

the three normal dogs we ran Cuffdiff. 

RNA-seq alignments and differential allelic expression quantification 

TruSeq adapter sequences were trimmed and quality filtered using the trimmomatic software14. 

RNA-seq reads were aligned to the dog reference genome (canFam3, http://genome.ucsc.edu/) 

using TopHat v215 with three mismatches. Total gene expression level, quantified by FPKM 

(Fragments Per Kilobase-pair of exon Model), was calculated for all samples using Cufflinks 

software13 based on all mapped reads from the TopHat alignments. The multiple mapped reads 

were weighted using the “-u” parameter in Cufflinks. The expression level was normalized 

across samples using quartile normalization. Differentially expressed genes between the disease 

and control samples were called using Cuffdiff program.  De novo SNP calling was performed 

on combined RNA-seq data only from reads that mapped uniquely to the dog reference sequence 

with ≥30 read depth, using SAMtools software16. Problematic SNPs, such as those with a third 
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allele, near an indel position, or at the exon-intron junctions, were excluded from the analysis. 

Allele-specific expression ratio was quantified in each sample, as the number of reference allele-

containing reads divided by the total coverage at each identified SNP position17. 

RNA-seq analysis to retrieve exon 1 of Col27A1 

The sequences of human, mouse and cat Col27a1 Exon1 were obtained from the UCSC genome 

browser [http://genome.ucsc.edu/]. Human and mouse Col27a1 was available as RefSeq, cat was 

determined by alignment to human and mouse RefSeq. The Illumina sequences were blasted 

against the human and cat exon1 and sequences matching exon1 were aligned in Sequencher 

v4.2.2 software (Gene Codes Corporation, Ann Arbor, MI). We used the UCSC browser blat 

function to confirm alignment of the canine contig to human Col27A1 exon 1. 

3.3.6 Allele-specific pyrosequencing 

Retinal RNA was extracted from 11 dogs: four littermates produced by crossing an affected dog 

to a normal (IG70, IG72, IG73, IG74 in Figure 3.1), and 7 controls. For two animals, IG70 and 

one of the control dogs, RNA was extracted also from kidney, cerebellum, ear cartilage, and 

Knee cartilage. Three of the 7 controls were the 3 control dogs chosen for RNA and small RNA 

seq experiment. Two ug of each RNA sample was treated with DNase to minimze DNA 

contamination. cDNA was then prepared with Oligo-dT as previously described8.  

We designed allele-specific pyrosequencing PCR and sequencing primers to target four 

informative exonic SNP positions in COL27A1 using PyroMark Assay Design Software Version 

2.0.1.15 (Qiagen, CA): one on exon 29, one on exon 32, and two on the last exon, exon 61 

(Supplement Table 3.5). The primers were checked to make sure they do not contain any SNPs 

to eliminate potential biased amplification. We assayed the allelic percentages in both genomic 

DNA and total RNA samples.  Pyrosequencing PCR amplification was carried out in 50 µl 



	
   46	
  

system using Ampli-Taq Gold polymerase (Life Technologies) under the following cycling 

conditions: 1 cycle of 95o C for 5 min, 45 cycles of 95o C-45 sec, 60o -68o C-30 sec, 72o C-20 sec, 

followed by 1 cycle of 72o C for 10 min. Six ul of PCR products were checked on an agarose gel 

to confirm positive products in the RT samples and no product in the RT(-) negative control 

samples and then prepared according to the manufacturer’s protocol and then loaded on the PSQ 

96MA Pyrosequencer (Qiagen, CA) with the PyroMark Gold Reagents (Qiagen, CA) using the 

Allele Quantification method (AQ). Two technical replicates were done for each gene in each 

sample. 

 

3.4 Results 

 

3.4.1 Disease phenotype  

The Italian greyhound strain was derived from an affected IG dog (Blue square, Figure 3.1) that 

was bred to a normal beagle. Their heretozygous F1 progeny were then intercrossed and 

backcrossed to generate a pedigree segregating the PRA phenotype.   
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Figure 3.1. Colony-derived-three-generation-pedigree segregating IGPRA. A purebred affected 
Italian greyhound dog (Blue square and arrowed) was bred to a normal beagle. F1 heterozygous 
dogs were intercrossed. Their affected offspring were then outcrossed to normal beagles to 
generate more heterozygous dogs. Circle= females, Squares= males. Filled symbols are affected 
dogs. Half filled symbols are heterozygotes. 
 
 
 
3.4.1.1 Electroretinogram analysis 

Selected dogs from the colony were checked for their retina function using electroretinography 

as previously described4,5 . At two years of age, the ERG showed normal functions of cones and 

rods (Figure 3.2, A). At approximately 5-6 years of age, ERGs started to show abnormal 

responses (data not shown) and by 9 years of age, no responses were recorded (Figure 3.2, B).  



	
   48	
  

 

 
 

 

Figure 3.2. Electroretinograms from a PRA-affected Italian Greyhound.  
A. ERG recorded at 2 years of age, using methods described previously4,5. Traces present, in 
descending order, ERG responses to single flashes of red, blue and white light; 5 Hz low 
intensity white flashes (Rod); and 30 Hz high intensity white light flicker (Cone). Red and White 
traces represent mixed rod-cone responses; Blue and Rod traces are rod-specific; and Cone traces 
are cone-specific. All responses are broadly within normal limits, although, normal response 
parameters specific for the Italian Greyhound breed have not been defined. B. ERG recorded at 9 
years of age, using a modified Ganzfeld dome fitted with the LED light stimuli transferred from 
a ColorDome stimulator (Diagnosys LLC, Lowell, MA, USA), as described previously6. All 
responses are essentially nonrecordable, including rod specific (DA Blue), cone specific (LA 
White, 29 Hz Flicker), and mixed rod-cone traces (FA Red, DA White). 
 

 

3.4.1.2 Morphological analysis 

Histological analysis of IGPRA retinas showed a substantial loss of Outer Nuclear Layer (ONL) 

already at 19 months of age (Figure 3.3. B). Photoreceptor outer segments are markedly reduced 

in both number and size. The end stage of disease is observed in a 9 year old IGPRA affected 

retina with severe retinal degeneration where no photoreceptors are observed (Figure 3.3. C). 
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Figure 3.3.  Retinal Morphology of Normal and PRA affected dogs. 1 micron plastic sections of 
canine retinas, fixed in glutaraldehyde / formaldehyde /cacodylate buffer, post fixed in osmium 
tetroxide; stained with methylene blue/Azure II and counterstained with paraphenylenediamine. 
A. A normal retina of a 2.3 years old dog. The outer nuclear layer (ONL) is thick, inner and outer 
segments (IS, OS) are well organized, and aligned. B. The retina of a 19- months- IGPRA- 
affected dog is artefactually detached. There is substantial loss of Outer Nuclear Layer (ONL) 
nuclei. Photoreceptor outer segments are markedly reduced in both number and size. C.The end 
stage of disease is observed in a 9 year old IGPRA affected retina with severe retinal 
degeneration. No photoreceptors are observed. Bar = 50 microns. 
 

 

 

The retinas were also evaluated by fundus images and OCT in selected cases. The degeneration 

of the retina can be seen using OCT imaging. At 9 years of age, an affected IGPRA retina is 

markedly thin, much thinner than near the optic nerve (Figure 3.4 A and B). At an early age, 

ophthalmoscopic changes can become apparent at about 3-5 years of age, evidenced by irregular 

reflectivity progressing to hyperreflectivity of the tapetal fundus (the first clinical indications of 

significant retinal thinning). These early changes are followed at later ages by progressive retinal 

vascular attenuation and pallor of the optic nerve head (Figure 3.4 C). 
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Figure 3.4. Retina of the right eye of a 9- year- old- PRA-affected Italian Greyhound. 
A, B. OCT image from temporal fundus. The green arrow in panel A indicates the region 
scanned to produce the high- resolution cross-sectional retinal image in panel B. The retina is 
markedly thinned - clearly much thinner than the edge of the optic nerve head, and hardly thicker 
than the retinal vessels traversed by the OCT scan. This is typical of endstage PRA, and 
representative of scans recorded across the entire retina of both eyes of this dog. C. Montage of 
cSLO images from the same eye, demonstrating generalized retinal thinning, and advanced 
retinal vascular attenuation, typical of endstage PRA. The fundus of the left eye was essentially 
identical. 
 

3.4.2 SNP array and Genome-wide association analysis 

 All 42 samples in the SNP array results passed quality control. Duplications had reproducibility 

frequency of 1.0 (all genotype calls were the same between duplicates). Among the 42 samples, 

9 had one parent genotyped, and 6 had both parents genotyped, and heritability analysis showed 

an average of 0.999876 Heritability Frequency, suggesting no mixup of samples, and high 

accuracy in genotype calls. Genome-wide association analysis between 21 affected dogs and 18 

controls showed a hit on chromsome 11, with 37 SNPs carrying a –log10(P) higher than 4.0 

(Table 3.1, Figure 3.5).  
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Figure 3.5. Manhattan plots summarizing results of GWAS in the IGPRA. The X-axis shows  
canine chromosomes 1-38, plus the X-chromosome represented as chromosomes 39 and 41. The 
Y-axis is the probability statistic (-log10[observed P]). The highest peak is observed on 
chromosome 11.  
 

Table 3.1. Top hits (-Log10(P)>5) of GWAS in the IGPRA Study. 

Number SNP Chromosome 
Location 

(CanFam 2) -Log10(p) 
1 BICF2S23353375 11 71,517,224 6.450 
2 BICF2P480550 11 71,676,384 6.173 
3 TIGRP2P153210_rs8848930 11 72,141,083 6.158 
4 BICF2S2304129 11 72,471,087 6.132 
5 BICF2P871149 11 72,605,864 6.132 
6 BICF2S23549389 11 71,166,278 5.737 
7 BICF2P1149744 11 71,319,056 5.737 
8 BICF2P482199 11 71,524,550 5.737 
9 TIGRP2P152528_rs8622499 11 70,872,927 5.207 

10 BICF2P85632 11 70,907,305 5.207 
11 BICF2P970535 11 72,514,090 5.207 

 

The genotype calls from chromosome 11 were retrieved and haplotypes were assembled to 

identify the minimum LD interval. Since the age of onset is late, and the breed is very small, two 

modes of inheritance models were equally considered: autosomal recessive (AR) and autosomal 
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dominant with incomplete penetrance (ADIP). We then analyzed the genotype results in two 

ways, each time assuming a different mode of inheritance. 

 

Under the AR model, we looked for the homozygous block shared by all affected dogs. There 

was no block of homozygosity shared by all affected dogs. We identified a block that was shared 

by 17 dogs, while 5 dogs were heterozygous, and one dog was homozygous to a different 

haplotype. This block was identified between 71,590,374 and 71,732,636, 142.3Kb long 

(Supplement Table 3.6). Fine mapping and discovery of additional polymorphisms reduced the 

interval to 135.1 Kb, between 71,590,418 and 71,725,500 (data not shown). This interval 

included two genes, DFNB31 and AKNA.   

Under the ADIP model, we compared the genotypes across all dogs to identify the minimal LD 

block, that is, where we can identify dogs that carry the risk haplotype but have one SNP in the 

proximal or distal end that does not share alleles with the rest of the risk haplotype. The LD was 

established between 71,319,056 and 71,676,384 (357.3Kb, Supplement Table 3.7) and after 

additional genotyping it was reduced to 285.6 Kb, between 71,347,359 and 71,632,998 

(Supplement Table 3.7). This interval excluded DFNB31 coding sequence, and included a 

potential 3’ end of DFNB31 gene, AKNA gene in partial, ORM1, Col27A1, mir455, KIF12, 

AMBP and ZNF618 in partial. 

 

3.4.3 Candidate gene analysis 

We did not have access to a retina from a young affected dog. For all the RNA-based 

experiments we used F1 retinas (IG72, Figure 3.1). A total of eight genes were screened by 

retinal cDNA amplification of IG72 and several normal dogs. We also screened some of the 

genes by exon scanning, genotyping affected and normal dogs. AMBP, KIF12, and ORM1 did 
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not show PCR products in any of the dogs, suggesting these genes are not expressed in the retina, 

at least not at the age that retinas were harvested (9-12 weeks old). Many exonic SNPs were 

found in the rest of the genes. In Table 3.2 we listed only those where the affected allele is 

different from that in the deposited Boxer genome.  
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 Table 3.2. Coding polymorphisms found in the five genes screened in an affected dog that were different from the database. 
 

# Alleles Location Exon Allele in database 
IGPRA 
affected allele Syn/Nonsyn Comments 

A. DFNB31 gene. 
1 G/C 71,651,318 10 C G Syn.  

B. AKNA gene. 
1 A/G 71,628,236 2 G A Syn rs22170430 
2 A/G 71,624,795 3 G A Nonsyn. Valine to Methionine 
3 A/G 71,608,978 10 A G Syn  
4 C/T 71,608,592 11 T C Syn rs22145577 
5 A/G 71,605,654 14 A G Nonsyn Threonine to Alanine 
6 C/T 71,605,625 14 C T Syn  
7 C/T 71,600,884 16 T C Syn  
8 T/A 71,597,104 20 T A Nonsyn Cysteine to Serine 
9 A/G 71,596,770 21 A G Syn  

10 T/C 71,596,732 21 T C Nonsyn rs22163584, Valine to Alanine 
11 A/G 71,596,706 21 G A Nonsyn Valine to Isoleucine 

C. Col27A1 gene. 

1 
GCG 
repeat In Gap 1 4+5 4+8 Nonsyn 

The normal allele is 9-interrupted 
Alanine, and the risk allele is 12. 

2 C/T 71,454,607 3 C T Syn rs22165112 
3 C/T 71,455,246 3 T C Syn  
4 C/T 71,455,763 3 T C Nonsyn rs22124807, Serine to Proline 
5 A/G 71,455,803 3 A G Nonsyn rs22124806, Histidine to Argenine 
6 C/G 71,516,225 19 G C Syn  
7 A/G 71,516,229 19 A G Nonsyn Isoleucine to Valine 
8 C/T 71,540,880 32 C T Nonsyn Proline to Leucine 
9 C/T 71,545,574 36 C T Syn  

10 C/G 71,567,725 55 G C Nonsyn rs22127846, Glycine to Argenine 
11 A/C 71,567,736 55 C A Syn  
12 C/T 71,576,710 61 T C Syn rs22124152 

D.  ZNF618 (exon 3 to last exon) 
1 A/G 71,302,910 3 A G Syn rs22165000 
2 C/T 71,316,759 5 T C Syn rs22117863 
3 A/G 71,330,124 10 A G Syn  
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Exonic non-synonymous SNPs were further investigated and the set of 41 dogs were genotyped 

for the SNP A/G in exon 3 of the AKNA gene, at position 71,624,795. We also identified a 21 bp 

deletion in intron 4 of that gene (position 71,618,401-421) and included it in our screening. The 

two SNPs were in a complete linkage in this set of 41 dogs, and segregated with the disease. 

Expanding the screening to a large set of Italian greyhound dogs, as well as a control group of 

269 dogs from over 36 different breeds (Supplement Table 3.8) showed that one copy of the 21 

bp deletion polymorphism is present in 14 dogs not affected with PRA from nine breeds which 

do not segregate this disease, suggesting that this deletion is not a causative allele. The risk allele 

“A” on exon 3 was not found in any of the control dogs, and the genotype AA was never 

observed in IG dogs with a normal phenotype at the risk age or older. The risk allele changes a 

Valine to Methionine, although the human and mouse counterparts carry the A allele and a 

methionine at the protein level.  

 

Col27A1 5’ end 

The Col27A1 5’ end is missing from CanFam3 and all previous assemblies. This gap includes 

the 5’UTR as well as exon 1 and part of intron 1. Amplifying across the gap with primers 

designed based on the sequence available failed to give any products. After retrieving some of 

the missing sequences by DNA-Seq analysis and RNA-seq analysis (see results in these sections 

to follow) we were able to amplify across the genomic gap and identified exon 1 of Col27A1 in 

affected, carrier and normal dogs. The affected allele has a 9 nucleotides insertion compared to 

the database (GCGGCGGCG, Figure 3.6). The insertion, in frame with the ORF, adds 3 alanine 

molecules to an alanine repeat, expanding the repeat from 9 to 12 amino acids. Although this 

expands the alanine repeat from 9 to 12 and compared to other species (6, 2, and 9 alanine amino 

acids in human, mouse and cat, respectively) seems high, it does not segregate with the disease, 
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and other dogs from other breeds also showed 12 repeats of alanine in this position (Beagle and 

Border Collie, data not shown). 

PCR of conserved regions upstream to Col27A1 found no SNPs or potential mutations. 
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Figure 3.6. Canine Col27A1 exon 1 coding sequence in a normal Boxer dog and in an affected IG, its translation to protein, and the comparison to human, cat, 
mouse and rat. N=number of interrupted amino acid alanine. In red is the addition 9 bases (GCGGCGGCG) resulting in an addition of three alanines. 
 
Boxer-­‐	
  exon	
  1	
  (CD)	
  (n=9):	
  
ATG GGA GCG GGA GCG GCG CGG GGG GCC CGA GGC ACG GCG GCG GCG GCG GAG  
  M   G   A   G   A   A   R   G   A   R   G   T   A   A   A   A   E 
GCG GCG GCG GCG GCG CGC GGG GG 
  A   A   A   A   A   R   G 
 
An	
  affected	
  IG-­‐	
  exon	
  1	
  (CD)	
  (n=12):	
  
ATG GGA GCG GGA GCG GCG CGG GGG GCC CGA GGC ACG GCG GCG GCG GCG GAG  
  M   G   A   G   A   A   R   G   A   R   G   T   A   A   A   A   E 
GCG GCG GCG GCG GCG GCG GCG GCG CGC GGG GG 
  A   A   A   A   A   A   A   A   R   G 
	
  
Human	
  first	
  exon	
  (n=6):	
  
ATG GGA GCG GGA TCG GCG CGG GGG GCC CGA GGC ACA GCG GCG GCG GCG GCG 
  M   G   A   G   S   A   R   G   A   R   G   T   A   A   A   A   A 
GCG CGC GGG GG  
   A   R   G  
 
Cat	
  (n=9): 
ATG GGA GCG GGA TCG GCG CGG GGG GCC CGA GGC ACA GCG GCG GCG GCG GCG  
  M   G   A   G   S   A   R   G   A   R   G   T   A   A   A   A   A 
GCG GCG GCG GCG CGC GGG GG 
  A   A   A   A   R   G 
	
  
Mouse	
  (n=<2?):	
  
ATG GGC ACG GGA TTC GCG CGG GGG GCC CGA GGC ACA GCG GCG TCA GGA CCC  
  M   G   T   G   F   A   R   G   A   R   G   T   A   A   S   G   P 
GGG GG 
  G 
	
  
Rat	
  (n=<2?):	
  
ATG GGC CTG GCG CGG GCG ACC GCG GGG CTG GGG CCG TGC TGT CCG CCT GCT  
  M   G   L   A   R   A   T   A   G   L   G   P   C   C   P   P   A    
CCG GCG CTC CTG GGC GCA GGG CTG CGC TGG GG 
  P   A   L   L   G   A   G   L   R   W    
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Col27A1 allelic expression bias 

In sequencing retinal cDNA from an IGPRA-heterozygous dog (IG72, 9 weeks old) three SNPs 

in the Col27A1 coding sequence were found. Inspection of chromatogram peaks showed that the 

risk allele of each SNP is underexpressed (exon 29, risk allele G- position 71,539,783; exon 32, 

risk allele T- position 71,540,880; exon 61, risk allele C- position 71,576,758, CanFam2). The 

same phenomenon was also observed for IGPRA-heterozygous dogs IG73 and IG74 (Figure 3.7-

A). Sequence of genomic DNA from the latter two dogs confirmed that they are heterozygous for 

these three SNP alleles (Figure 3.7-A). The allelic difference in expression of Col27A1- retinal- 

mRNA as observed by the difference in the height of the peaks in the chromatograms was not 

observed for any of the neighboring genes in these dogs (data not shown).  

To confirm the bias in the risk allele expression on exon 61, we ran RT-PCR on retinal cDNA 

from IG70, IG72, IG73, and IG74, using different primer pair combinations (Supplement Table 

3.1,D-I, primer pairs 8, 9, 16,17). The same difference in the peak of the risk allele, where the C 

(risk) peak was always much lower than the T (wildtype) peak, was identified in all PCR 

products amplified from retinal RNA of obligate heterozygote dogs. This bias in allele 

expression was not observed in PCR products from a retinal cDNA extracted from an age-

matched normal dog, which tended to exclude imprinting of the gene (Figure 3.7-B). Moreover, 

we extracted RNA from other tissues known to express Col27A1 (kidney, cerebellum, ear 

cartilage and knee cartilage) from two animals: IG70 and a normal dog. The bias in the risk allele 

expression was retina-specific (Figure 3.7-C): in the kidney, cerebellum, ear cartilage and knee 

cartilage of IG70 dog both alleles were expressed roughly in equal amount as observed from the 

height of the peaks, with both forward and reverse sequencing reactions. 
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Figure 3.7. Chromatograms of genomic and cDNA PCR products of Col27A1 amplicons. Level of expression is roughly measured by 
the height of the peaks in genomic and cDNA PCR products. A. IG73 and IG74 genomic and retinal cDNA PCR chromatogram of a 
SNP in exon 61. The risk allele is cytosine (C) B. Retinal cDNA PCR chromatograms of IG70, 72, 73 and 74- all heterozygous to the 
risk allele tyrosine (T) in exon 32, and a normal retina. C. IG70 cDNA PCR chromatogram of brain, kidney, cartilage from ear and 
knee, and retina of exon 61 SNP. The risk allele is cytosine in exon 61 (C). The bias in expression is retina specific: only in the retina 
is the C allele under represented, with a much lower peak. 
 

C.	
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To quantify and confirm these observations, we researched this on two levels: (i) we looked at 

the reads of all the genes within the LD interval from RNA-Seq NGS experiments and compared 

the number of reads of each allele in the heterozygous IGPRA dogs, to those of the control 

group; and (ii) we ran allele-specific pyrosyquencing measurements for Col27A1 using the same 

dogs and an additional three control dogs (see results in the following sections).  

 

9.4.4 Next Generation Sequencings (NGS) 

Three genomic DNA and six retinal RNA samples were converted to an Illumina sequencing 

library and sequenced. The overall estimated error rate was less than 1% in the DNA and mRNA 

experiments, but higher than 1% in the smallRNA (Table 3.3).  
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Table 3.3 Statistics on Illumina multiplex NGS experiments. A. Genomic DNA samples, three dogs 
multiplexed in one lane, run in duplicate, 100 bp paired-end reads. B. Retinal mRNA samples- six dogs 
multiplexed in one lane, 100 bp- single-end reads. C. Retinal SmallRNA samples- six dogs multiplexed in 
one lane, 50 bp- single-end reads. 
 

Lane Dog ID 
Bar 
Code 

Number of 
reads % PF * 

% Perfect 
Index 
Reads 

% of >=Q30 
Bases (PF) 

Mean 
Quality 
Score (PF) 

A. Genomic DNA samples. 

1 
IGPRA 
affected AGTCAA 168,012,398 90.25 79.3 88.32 34.87 

1 IG normal AGTTCC 117,448,060 90.9 79.27 89.1 35.13 

1 

IG 
heterozygous 
(IG73) ATGTCA 114,738,530 90.89 75.76 88.16 34.83 

Estimated error rates: 0.21% and 0.55%. 

2 
IGPRA 
affected AGTCAA 174,219,396 89.55 95.39 88.21 34.84 

2 IG normal AGTTCC 121,639,254 90.24 95.34 89.04 35.1 

2 

IGPRA 
heterozygous 
(IG73) ATGTCA 119,253,536 90.21 94.67 87.97 34.77 

Estimated error rates: 0.19% and 0.52%. 
B. Retinal mRNA samples. 

8 
IGPRA Het 1 
(IG72) GTGGCC 43,163,139 88.97 97.67 90.24 35.32 

8 
IGPRA Het 2 
(IG73) GTTTCG 35,122,816 87.91 97.75 90.52 35.45 

8 
IGPRA Het 3 
(IG74) CGTACG 27,771,266 89.15 96.52 90.78 35.53 

8 Control 1 GAGTGG 38,265,540 89.76 96.28 91.17 35.66 
8 Control 2 ACTGAT 32,887,071 89.87 97.97 90.83 35.52 
8 Control 3 ATTCCT 39,633,028 89.16 97.77 90.92 35.56 
Estimated error rates: 0.54% 
C. Retinal Small RNA samples. 

2 
IGPRA Het 1 
(IG72) ATCACG 22,893,484 77.97 94.97 88.94 35.86 

2 
IGPRA Het 2 
(IG73) CGATGT 15,523,954 78.25 95.73 88.99 35.86 

2 
IGPRA Het 3 
(IG74) TTAGGC 18,786,152 78.32 95.57 89.3 36.03 

2 Control 1 ACAGTG 20,392,073 78.14 95.41 89.16 35.93 
2 Control 2 GCCAAT 18,976,310 77.7 94.16 88.75 35.78 
2 Control 3 CAGATC 23,139,376 77.86 95.35 89.05 35.89 
Estimated error rates: 1.2% 
* PF= Pass filter.  
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9.4.4.1 DNA whole-genome-sequencing 

DNA from one affected IG (Blue square, Figure 3.1), one normal IG dog, and one F1 colony dog 

(IG73) were barcoded, pooled together, and run twice (see methods). The affected dog had a 

combined number of 342,231,794 reads; the normal dog 239,087,314 reads; and the 

heterozygous colony dog 233,992,066 reads (Table 3.3). The average estimated error rate for the 

first read was 0.2% and 0.535% for the second read. The percentage of reads that passed filter 

was between 89.55 and 90.9. We identified 1,427 SNPs within the LD interval (68,316,896-

68,603,033 on CanFam 3.0, data not shown). 356 SNPs were identified where the affected dog is 

homozygous for the alternate allele, the normal dog is homozygous for the reference allele or the 

SNP reads do not contradict this criterion (Supplement Table 3.9A). Those SNPs have the 

potential to be a causative allele for IGPRA. If the risk allele was observed in the normal dog but 

only in one read, we included it as well. We also identified 28 indels and repeats that followed 

the above criterion: 3 microsatellites, 5 insertions or deletions of Cytosine in a stretch of Cs, 14 

indels, and 6 insertions or deletions of 2 or more bases (Supplement Table 3.9B). 

 

Col27A1 5’ end gap 

Search for DNA- Seq reads that align to the sequence proximal and distal to the 5’ end gap of 

Col27A1 extended the 5’ end of the genomic DNA gap by 57 bp, and the 3’ end by 171 bp 

(Supplement Figure 3.1). PCR amplification with GC-rich enzyme and primers designed on the 

newly retrieved sequences of a boxer and a colony-derived affected dog was successful and 

alignment of the two sequences to each other revealed several polymorphisms (Supplement 

Figure 3.2).   



	
   63	
  

3.4.4.2 RNA Next-generation-sequencing 

The numbers of reads were between 27,771,266 reads and 43,163,139 (Table 3.3), and the 

estimated error rate was 0.54%. About 90% of the reads mapped uniquely to the genome. Within 

the LD interval, no reads were found for AMBP and KIF12, a result that agrees with the RT-

PCR experiment. Although we did not detect any PCR products for ORM1 on an agarose gel, a 

small number of reads were present that mapped to this gene, which might suggest that the gene 

is expressed in the retina but in an amount not detectable by gel electrophoresis.  

Relative allelic expression analysis: 

We used the mRNA data to estimate the level of expression of each allele for any of the genes 

within the LD interval in animals that were informative, i.e. had both alleles in a specific exonic 

SNP. The overall expression of ZNF618 and ORM1 was very low compared to Col27A1, AKNA 

and DFNB31 genes: the average number of reads per SNP was 51.57, 41.71, for ZNF618 and 

ORM1 respectively, and 276.69, 1266.65 and 924 for Col27A1, AKNA, and DFNB31, 

respectively (Table 3.4). We asked two questions: (i) within each of the heterozygous IG dogs, 

was there an allelic expression bias of Col27A1, and if so, was it restricted to Col27A1, or was it 

shared by all genes in the LD interval. (ii) For each of the genes in the LD interval, were there 

significant differences in allelic expression bias between the two groups: the heterozygous IG 

group and the control group. To answer these questions we calculated the risk allele expression 

ratio for all the informative SNPs in the three IG dogs, and the minor allele ratio in the control 

dogs (Table 3.4). For the absolute numbers - see Supplement Table 3.10). We looked at the 

average of these ratios to determine bi-allelic or mono-allelic expression. We then calculated the 

deviation from 0.5, the ratio that we expected if there was no allelic expression bias, and ran a t-

test to check for significant differences between the two groups in question.  
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In all genes except for Col27A1 the allelic expression bias was not significantly different in the 

IG heterozygous dogs from that in control dogs (Table 3.5), and all showed bi-allelic expression 

(average risk allele expression ratio between 0.45 and 0.64 in IG group and average minor allele 

expression ratio in the control group between 0.38 and 0.5 (Table 3.4). Col27A1 allelic 

expression bias was significantly different in the IG heterozygous dogs compared to the control, 

with a P- value of 0.0006 (Table 3.5). The risk allele was always under-represented with an 

average risk allele expression ratio of 0.21, 0.27 and 0.18 for IG72, IG73 and IG74 respectively 

(Table 3.4).  
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Table 3.4. Relative allele expression in genes within the LD interval in informative dogs as derived from RNA-seq reads data. 
 

Total counts 
Risk allele expression 

ratio (#of risk allele/total 
# of reads) 

Minor allele expression ratio 
(# of minor allele/# of total 

reads) SNP_ID CanFam3 
position 

Reference 
allele 

Alter 
allele 

Coverage Reference 
count 

Alternate 
count 

CanFam2 
position 

IG72 IG73 IG74 Control 
1 

Control 
2 

Control 
3 

Risk 
allele 

ZNF618 
rs22165000 68,272,447 A G 48 4 44 71302910 * * * 0.33 * * G 
rs22164999 68,272,466 A G 39 32 7 71302929 * * 0.75 * * * A 
chr11_68299661 68,299,661 A G 41 11 30 71330124 * * 0.5 * * * G 
chr11_68332484 68,332,484 G A 77 66 10 71362947 * * 0.67 * 0.41 * G 
chr11_68332860 68,332,860 C T 47 38 9 71363323 * * * * * * C 
rs8968699 68,333,123 C T 47 34 13 71363586 * * * 0.43 * * C 
rs8968700 68,333,381 T C 62 4 58 71363844 * * * 0.43 * * C 

Average: 51.57 Average:   0.64 0.40 0.41   
ORM1 
rs9188097 68,557,019 T C 37 9 28 71587323 * * * 0.25 0.5 * C 
chr11_68557358 68,557,358 G A 40 27 13 71587662 0.73 0.5 0.33 0.5 * * A 
chr11_68557816 68,557,816 G A 54 40 14 71588120 * * * * * * G 
chr11_68558082 68,558,082 C T 31 24 7 71588386 0.25 0.4 0.75 * * * C 
chr11_68558749 68,558,749 A G 35 13 22 71589053 * * * * * * G 
chr11_68559346 68,559,346 C T 46 19 27 71589650 * * * * * * T 
chr11_68559366 68,559,366 G A 49 19 30 71589670 * * * * * * A 

Average: 41.71  Average:  0.49 0.45 0.54 0.38 0.50     
Col27A1 
chr11_68425869 68,425,869 A G 94 33 61 71456098 * 0.27 * * * * A 
chr11_68509555 68,509,555 G A 97 64 33 71539783 0.18 * 0.14 * 0.43 * G 
chr11_68510591 68,510,591 C T 76 53 23 71540880 0.08 0.1 0.09 * * * T 
chr11_68525287 68,525,287 C T - - - 71555591 * * * * 0.34 * C 
chr11_68544801 68,544,801 A C - - - 71575105 * * * 0.41 * * A 
rs22124152 68,546,406 T C 454 161 293 71576710 * * * * * * C 
chr11_68546454 68,546,454 C T 459 269 190 71576758 0.22 0.26 0.15 * 0.29 * C 
chr11_68546511 68,546,511 C G 290 97 193 71576815 * * * * * * G 
chr11_68546704 68,546,704 A C 146 45 99 71577008 * * * * * * C 
chr11_68546777 68,546,777 A G 439 140 299 71577081 * * * * * * G 
chr11_68547035 68,547,035 G A 195 94 101 71577339 0.3 0.33 0.33 0.35 * * G 
rs22139258 68,547,670 G A 340 207 133 71577974 0.29 0.34 0.25 * 0.35 * G 
chr11_68547749 68,547,749 T C 182 145 37 71578053 0.18 0.3 0.12 0.36 * * C 

 Average: 252.00 Average: 0.21 0.27 0.18 0.37 0.35     
AKNA 
chr11_68561787 68,561,787 C T 1626 1416 208 71592091 * * * * 0.47 * C 
rs22069543 68,562,441 G A 1265 254 1008 71592745 * * * 0.46 0.45 * A 
chr11_68569222 68,569,222 C T 1755 1603 150 71599526 * * * * 0.5 * C 
chr11_68570580 68,570,580 A G 821 128 692 71600884 * * * * * * G 
chr11_68575321 68,575,321 G A 1628 310 1318 71605625 0.55 0.54 * * * * A 
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chr11_68577401 68,577,401 G A 1301 979 321 71607705 0.45 0.47 * * * * G 
chr11_68578296 68,578,296 C T 1238 932 300 71608600 0.46 0.5 * * * * C 
chr11_68578674 68,578,674 T C 930 330 600 71608978 0.53 0.49 * * * * C 
chr11_68580620 68,580,620 G A 931 810 120 71610924 * * * * * * G 
chr11_68591406 68,591,406 A G 1297 590 706 71621710 0.45 0.43 * * * * A 
rs22122505 68,593,585 G C 1089 931 158 71623889 * * * * * * G 
rs22122506 68,593,599 C T 948 815 131 71623903 * * * * * * C 
chr11_68593630 68,593,630 G A 1116 781 334 71623934 0.49 0.5 * * 0.48 * G 
rs22122509 68,593,713 C A 874 744 128 71624017 * * * * * * C 
chr11_68594017 68,594,017 C T 1327 952 374 71624321 0.53 0.53 * * 0.5 * C 
rs22122510 68,594,098 C G 1398 1170 225 71624402 * * * * * * C 
chr11_68594225 68,594,225 A G 1546 980 566 71624529 0.46 0.53 * * * * A 
rs22122511 68,594,462 G A 1514 1077 431 71624766 0.52 0.46 * * 0.47 * G 
chr11_68594491 68,594,491 C T 1578 1151 426 71624795 0.48 0.47 0.47 * * * T 

Average: 1272.7 Average:  0.49 0.49 0.47 0.46 0.48     
DFNB31 
chr11_68617832 68,617,832 T C 1016 605 410 71647797 0.57 0.47 0.5 * * * C 
chr11_68617936 68,617,936 T C 1585 899 684 71647901 0.53 0.57 0.51 * * * C 
chr11_68618606 68,618,606 A G 1032 896 136 71648571 * * * * * * A 
chr11_68619188 68,619,188 A T 1063 926 130 71649153 * * * * * * A 
chr11_68621353 68,621,353 G C 481 283 198 71651318 0.52 0.55 0.5 * 0.48 * C 
chr11_68635719 68,635,719 T C 553 403 148 71665684 0.68 0.56 0.63 * 0.38 * T 
chr11_68671292 68,671,292 C T 738 505 233 71701257 0.6 0.52 * * * * C 

Average: 924 Average:  0.58 0.53 0.54  0.43     
 
*  Dog is not informative for that SNP 
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Table 3.5. T-test results for significant differences between allelic expression bias between the heterozygous IG dogs and the control 
dogs for each gene. 
 
Gene ZNF618 ORM1 Col27A1 AKNA DFNB31 
Statistics/groups IG Control IG Control IG Control IG Control IG Control 
Mean 0.14 0.1 0.1667 0.0833 0.2817 0.1386 0.031 0.0243 0.055 0.07 
SDa 0.1277 0.0476 0.1001 0.1443 0.0897 0.0463 0.0173 0.019 0.0523 0.0707 
SEMb 0.0737 0.0238 0.0409 0.0833 0.0211 0.0175 0.0038 0.0072 0.014 0.05 
Nc 3 4 6 3 18 7 21 7 14 2 
P-valued 0.5809  

not significant 
0.3377  

not significant 
0.0006 

significant 
0.3962  

not significant 
0.7179  

not significant 
 

a- Standard Deviation 
b- Standard Error of the Mean 
c- Number of data points 
d- Two tailed P-value unpaired t-test. 

 

 



	
   68	
  

Relative abundance of transcripts: 

The RNA-Seq fragment counts can be used as a measure of relative abundance of transcript. 

Expression analysis of all RNA-seq data using Cufflinks generated normalized Fragments Per 

Kilobase of exon per Million fragments mapped (FPKM). COL27A1 expression in control 

individuals was 1.5-fold higher than the F1 heterozygous dogs on average, suggesting potential 

reduction of total expression in affected samples as well. This ratio of 1.5 is very close to the 

value expected if the risk allele expression is reduced approximately 10-20%. The average 

control/IG-het FPKM ratio for the other genes in the LD interval was 0.74, 0.88 and 0.71 for 

ZNF618, AKNA, and DFNB31, respectively, which suggests no difference in total expression of 

these genes between the two groups. Cuffdiff analysis identified 106 genes with significant 

differences in level of expression between the two groups (Supplement Table 3.11). The top 

score of p=5.00E-05 was shared by 59 genes (Table 3.6). Outside the LD region, the top five 

genes with total expression reduction in IG-het samples were: ANKS4B, DPY19L2, RASL11A, 

CRYM, and GADD45G with average control/IG-het FPKM ratio of 7.89, 7.07, 6.32, 5.23 and 

4.3, respectively (log2(fold_change)= -2.98, -2.82, -2.66, -2.38, -2.1) . The top five genes with 

higher expression in IG-het samples compared to controls were NOTCH4, TNNI2, MYLPF, 

CAPN6 and MKRN2-AS1 with average control/IG-het FPKM ratio of 5.67, 5.62, 4.76, 4.59, and 

4.22, respectively (log2(fold_change)= 2.5, 2.49, 2.25, 2.2, 2.08), (Table 3.6) 
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Table 3.6. Cuffdiff analysis of RNA-seq reads between control dogs and IG heterozygous dogs. The list includes the genes with the 
most significant difference in expression between the two groups (p-value-uncorrected for multiple testing=5.00E-05, q-value 
corrected=0.0110218). In bold is the higher number of the two. 
 
 
 

Number Gene_id Gene Locus Value_1a Value_2b 
Log2(fold
_change) Test_statc 

1 ENSCAFG00000017810 ANKS4B chr6:23657103-24217826 14.7401 1.86649 -2.98135 -2.85372 
2 ENSCAFG00000003176 DPY19L2 chr14:46787464-46881015 2.65667 0.375765 -2.82172 -4.90261 
3 ENSCAFG00000006798 RASL11A chr25:12315962-12318638 22.3406 3.53283 -2.66077 -6.23349 
4 ENSCAFG00000017807 CRYM chr6:23657103-24217826 24.8682 4.75495 -2.3868 -4.47202 
5 ENSCAFG00000002174 GADD45G chr1:96744757-96746752 11.1038 2.58121 -2.10494 -5.14077 
6 ENSCAFG00000031664 KCNT2 chr38:3305568-3382572 3.37359 0.85451 -1.98111 -4.06635 
7 ENSCAFG00000019134 PPL chr6:36497461-36541298 2.28724 0.581794 -1.97503 -4.14373 
8 ENSCAFG00000006714 NLRP14 chr21:30722678-30756070 1.83171 0.501719 -1.86824 -3.20277 
9 ENSCAFG00000023684 - chrX:121060226-121074003 1.9279 0.547474 -1.81617 -3.19666 

10 ENSCAFG00000000492 - chr12:1013177-1021690 3.55046 1.02932 -1.78632 -2.98578 
11 ENSCAFG00000013763 Q2LC20_CANFA chr20:42231834-42263250 3.97622 1.17822 -1.75479 -3.77628 
12 ENSCAFG00000025465 TRPV6 chr16:6691520-6705704 2.92284 0.893114 -1.71045 -3.26907 
13 ENSCAFG00000000538 VIP_CANFA chr1:42941848-42950730 4.86565 1.5423 -1.65754 -3.45848 
14 ENSCAFG00000029483 C17orf67 chr9:31635471-31654119 62.1904 21.1012 -1.55937 -6.38461 
15 ENSCAFG00000007199 - chr27:2221688-2229112 11.5803 3.96361 -1.54679 -4.01687 
16 ENSCAFG00000004404 - chr19:22979380-23044911 1.58121 0.551966 -1.51838 -3.09268 
17 ENSCAFG00000007375 PARP4 chr25:18447412-18538508 5.03721 1.7896 -1.49299 -3.78555 
18 ENSCAFG00000028905 CDKN2C chr15:10218823-10225053 55.7227 24.1923 -1.20372 -3.82904 
19 ENSCAFG00000004130 NEBL chr2:12126777-12229218 17.9102 8.15899 -1.13432 -3.38298 
20 ENSCAFG00000007539 ADML_CANFA chr21:33472109-33474520 12.7947 6.43024 -0.992601 -2.78398 
21 ENSCAFG00000032483 LY96 chr29:22493775-22515117 34.2359 17.6329 -0.95724 -3.38232 
22 ENSCAFG00000017664 SLC14A1 chr7:45378306-45408131 15.0399 7.84565 -0.938832 -2.81636 
23 ENSCAFG00000012904 CDK1 chr4:12885999-12898957 70.5831 38.1764 -0.886641 -3.30066 
24 ENSCAFG00000020110 Q4W6L5_CANFA chr6:54709521-54720797 44.7585 25.2714 -0.824653 -2.76379 
25 ENSCAFG00000015239 C1orf114 chr7:29141745-29173572 83.2129 47.3228 -0.814271 -2.85471 
26 ENSCAFG00000023759 MT2_CANFA chr2:59607925-59608825 179.274 102.14 -0.811619 -4.39619 
27 ENSCAFG00000008873 - chr26:9970455-9975820 255.426 149.951 -0.768418 -3.006 
28 ENSCAFG00000006193 - chr16:27598816-27614612 39.8399 23.6591 -0.751817 -2.52272 
29 ENSCAFG00000018849 SNX29 chr6:30317097-30822479 14.9604 24.6087 0.718015 2.32246 
30 ENSCAFG00000025128 TRAC chr8:2943108-2952167 130.913 222.552 0.765537 3.01681 
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31 ENSCAFG00000009901 - chr38:1474699-1542627 14.7048 25.1243 0.772789 2.40359 
32 ENSCAFG00000011477 BSN chr20:39612348-39628313 4.16641 7.27205 0.803557 2.3408 
33 ENSCAFG00000031504 UBAP1L chr30:29475497-29489123 81.1432 142.778 0.815232 3.12021 
34 ENSCAFG00000016397 VPS13D chr2:83901305-84132453 24.8109 45.0315 0.85996 2.75266 
35 ENSCAFG00000004038 HIPK2 chr16:9090726-9244272 28.3184 51.801 0.871238 2.79822 
36 ENSCAFG00000004375 NUP210 chr20:3636670-3722019 3.68209 6.74686 0.873691 2.48661 
37 ENSCAFG00000020254 NFAT5 chr5:80003597-80115099 4.54118 8.3556 0.879677 2.42235 
38 ENSCAFG00000006985 Q2EFX7_CANFA chr26:5315659-5476358 5.99268 11.0752 0.886055 2.48337 
39 ENSCAFG00000018418 RHBDL3 chr9:40633359-40660779 25.6011 49.5661 0.953149 3.2839 
40 ENSCAFG00000005194 PFKFB3 chr2:29732444-29748084 58.6269 114.273 0.962848 3.47457 
41 ENSCAFG00000013739 TET1 chr4:19768258-19889904 2.27243 4.57145 1.00842 2.57845 
42 ENSCAFG00000016302 VWCE chr18:55104014-55125461 3.81192 7.89682 1.05076 2.79413 
43 ENSCAFG00000015078 FAM184B chr3:62753439-62887350 2.38213 5.0254 1.07698 2.91737 
44 ENSCAFG00000014201 DNAAF2 chr8:26251159-26295095 4.63608 9.78829 1.07815 2.76583 
45 ENSCAFG00000016786 DNAH2 chr5:32600483-32659183 0.740779 1.63042 1.13813 2.6472 
46 ENSCAFG00000016065 - chrX:44508996-44509863 49.836 121.907 1.29052 4.55046 
47 ENSCAFG00000029478 - chr9:10287951-10304725 5.76627 15.1094 1.38973 4.20572 
48 ENSCAFG00000008253 ACTA1 chr4:9812781-9815574 2.35588 6.48882 1.46169 3.23504 
49 ENSCAFG00000000296 GPR126 chr1:33969265-34107014 0.757815 2.38019 1.65116 3.86754 
50 ENSCAFG00000011417 RPL4 chr27:21855204-21856473 4.82751 17.8928 1.89003 4.31819 
51 ENSCAFG00000031904 MKRN2-AS1 chr20:6027419-6034350 0.618453 2.60856 2.07652 3.50834 
52 ENSCAFG00000018175 CAPN6 chrX:84351484-84377324 0.251976 1.15798 2.20025 3.34512 
53 ENSCAFG00000016543 MYLPF chr6:17719682-17721750 3.0976 14.7401 2.25052 5.48009 
54 ENSCAFG00000010068 TNNI2 chr18:46077957-46079538 0.688972 3.87324 2.49103 4.04836 
55 ENSCAFG00000000791 NOTCH4 chr12:1586323-1608575 1.2213 6.92773 2.50397 5.79464 
56 ENSCAFG00000023827 CRBB2_CANFA chr26:19298946-19308447 1.20963 0 - nan 
57 ENSCAFG00000001705 MB chr10:28574067-28583590 0 1.04489 inf nan 
58 ENSCAFG00000008062 - chr8:8320212-8323009 0 17.9946 inf nan 
59 ENSCAFG00000028985 - chr1:111083447-111083951 0 5.22049 inf nan 

a- FPKM of the gene in the control dog group 
b- FPKM of the gene in the IG heterozygous dog group 
c- The value of the test statistic used to compute significance of the observed change in FPKM 
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Col27A1 5’ end gap 

When screening Col27A1, we identified all predicted exons except exon 1. After comparing the 

dog genome to human and mice, we concluded that canine exon 1 was missing from the 

assembly, and mapped to an approximately 1.5 Kb gap. PCR amplification with primers flanking 

the gap failed. We then used the mRNA-seq data to try to obtain exon 1 sequence by looking for 

reads overlapping exon 2, and homologous to human, mouse, and cat exon 1. Fishing exon 1 

with exon 2 yielded no reads. Homology analysis found reads homologous to human, mouse and 

cat exon 1, and alignment of those reads retrieved 127 bp from Col27A1: 87 bp from the 5’ UTR 

and the first 40 bp of the coding sequence (Supplement Figure 3.1)  

 

9.4.4.3 SmallRNA Next-generation-sequencing 

To evaluate the total level of microRNA expression in IGPRA affected dogs and normal control 

dogs, we ran SmallRNA next generation sequencing experiment in three IGPRA-heterozygous 

dogs and three control dogs. There were between 15,523,954 and 23,139,376 reads (Table 3.3). 

Although the percentages that passed filter were lower than in the DNA and retinal mRNA 

experiments, for those reads that passed filter, the percentage of bases receiving or exceeding a 

minimal quality score of 30 was high. Cuffdiff analysis showed 12 SmallRNA genes that 

significantly differed in level of expression between the IG-heterozygous dogs and control dogs 

(Table 3.7A). Of those, mir3609 expression was the most significant with a 6.66 IG-het/control 

FPKM ratio. SNORD12 and SNORD15b were also significantly different with ratios of 4.208, 

and 6.462, respectively. Mir455 showed 2.16 ratio of expression between controls and IG-

heterozygous dogs, which correlates with almost mono-allelic expression of the mir gene in the 

IG-het dogs. When comparing this to other mir genes (mir96, mir1, mir133, mir142, mir365-a, 
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and mir184) located on different chromosome, ratios between the higher and lower expressions 

were between 1.1 and 1.8 suggesting no difference in level of expression in these mir genes 

(Table 3.7B). 
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Table 3.7. SmallRNA genes with significant fold change between IG heterozygous dogs and control dogs,and several mir genes. A. 
SmallRNA-seq reads with significan expression change. B. Results for six mir genes. In bold is the higher number of the two. 
 

# Gene_id Gene Locus 
Location 
(CanFam3.0) value_1a value_2b 

log2 
(fold_change) test_statc p_valued q_valuee 

Signi
fican
t Comment 

A. Significant SmallRNA 

1 XLOC_002016 mir3609 chr6 
10632457-
10632481 706450 4.70E+06 2.7346 -4.90613 9.29E-07 0.00251641 yes   

2 XLOC_002521 

no good 
match in 
human- 
maybe intron 
in BC048201 

chrUn_AAE
X03025000 1106-1136 388142 14184.5 -4.77419 4.66165 3.14E-06 0.00330688 yes   

3 XLOC_002533 
3' UTR of 
LSAMP 

chrUn_AAE
X03025644 1881-1909 736876 38808.8 -4.24697 4.62969 3.66E-06 0.00330688 yes   

4 XLOC_000383 

no good 
match in 
human- 
maybe intron 
in chrM 
JA760600/60
2 chr13 

24498136-
24498180 87752.6 10127.9 -3.11511 4.20764 2.58E-05 0.0149019 yes   

5 XLOC_001124 SNORD12 chr24 
35959255-
35959338 1732.88 7292.91 2.07332 -4.17577 2.97E-05 0.0149019 yes   

6 XLOC_001533 
intron in 
SLC39A8  chr32 

23782524-
23782547 787580 4.28E+06 2.44362 -4.15167 3.30E-05 0.0149019 yes   

7 XLOC_000859 - chr2 
78054717-
78054744 1.19E+06 271100 -2.13643 4.01856 5.86E-05 0.0226604 yes 

Same 
sequence 
exists also 
on CFA35, 
CFA13, and 
CFA14. 

8 XLOC_001949 
intron in 
PDE4B chr5 

44325505-
44325527 1.02E+07 2.08E+06 -2.2934 3.97385 7.07E-05 0.0239473 yes   

9 XLOC_000970 SNORD15b chr21 
23181792-
23181839 33475.1 216303 2.6919 -3.91969 8.87E-05 0.0247581 yes   

10 XLOC_001987 
not 
conserved chr5 

78836580-
78836605 999469 228319 -2.13011 3.91238 9.14E-05 0.0247581 yes   

11 XLOC_002517 

RNA45S5- 
45S pre-
ribisomal5 

chrUn_AAE
X03024183 8316-9719 347.533 34.2786 -3.34177 3.84871 0.000118741 0.0287679 yes   

12 XLOC_001550 
not 
conserved chr33 

17014722-
17014747 1.67E+06 412238 -2.01788 3.83137 0.000127433 0.0287679 yes 

Same 
seqeunce 
exist on 
CFA21, and 
partial seq 
also on 
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other 
chromosom
es. 

B. mir455, mirs involved in RP, and randomly chosen mir. 

1 XLOC_000295 mir455 chr11 
68461904-
68461971 109364 50585 -1.11236 1.72886 0.0838349 0.996532 no   

2 XLOC_000438 mir96 chr14 
7068725-
7068831 636555 510625 -0.318021 0.598127 0.549755 0.996532 no   

3 XLOC_002189 mir-1 chr7 
66214417-
66214439 3.39E+06 3.07E+06 -0.139106 0.244712 0.80668 0.996532 no   

4 XLOC_001132 mir-1 chr24 
46481115-
46481137 3.08E+06 3.85E+06 0.322895 -0.593623 0.552765 0.996532 no   

5 XLOC_002190 mir133 chr7 
66217499-
66217560 27281.7 34806 0.351404 -0.671885 0.501657 0.996532 no   

6 XLOC_001133 mir133 chr24 
46490513-
46490574 26609.6 32937.6 0.30779 -0.596623 0.550759 0.996532 no   

7 XLOC_002439 mir142 chr9 
32977392-
32977455 10500.3 12967.2 0.304441 -0.665962 0.505436 0.996532 no   

8 XLOC_002038 mir365-a chr6 
28873144-
28873206 77.1565 138.998 0.849202 -0.335066 0.737575 0.996532 no   

9 XLOC_001400 mir184 chr3 
57914448-
57914509 847.245 801.287 -0.080461 0.0889373 0.929132 0.996532 no   

 
 

a- FPKM of the gene in the control dog group 
b- FPKM of the gene in the IG heterozygous dog group 
c- The value of the test statistic used to compute significance of the observed change in FPKM 
d- The uncorrected p-value of the test statistic 
e- The False-discovery-rate-adjusted p-value of the test statistic 
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3.4.5 Allele-specific pyrosequencing. 

To further evaluate the accuracy of the RT-PCR sequencing and RNA-seq results, suggesting 

almost mono-allelic expression of Col27A1, we executed allele-specific pyrosequencing 

experiments of four informative SNPs in the gene. We compared the levels of allelic expression 

between retinas of heterozygous dogs (n=4) and normal dogs (n=7), and between retina and other 

tissues (kidney, cerebellum, ear cartilage and knee cartilage of one IG heterozygous and one 

control dog). Primers targeting the SNP on exon 29 did not work and produced low to no PCR 

products, and PCR on ear cartilage for Col27A1 showed no product. One control dog (control 

dog number 4) was not informative to any of the SNPs. Control dog number 7 was only 

informative for the third SNP but its results were not reliable due to positive products in the 

negative control of the RT. The rest of the results of the allele-specific pyrosequencing 

experiment support the results we observed in RNA-seq. In the IG heterozygous dogs we 

observed lower-allelic expression of the Col27A1 risk allele (12-30% expression), while bi-

allelic expression was observed in the control dogs (0.3-0.65%), (Table 3.8). Moreover, the bias 

in expression was retina specific. In heterozygous IG we observed bi-allelic expression in the 

kidney, cerebellum and ear cartilage, where Col27A1 is expressed (0.5-0.7, Table 3.8). These 

differences were statistically significant with P-value of 0.0003 between retinal and non-retinal 

tissues in IG70, and 0.0116 between retinas of IG heterozygous dogs, and control retinas (Table 

3.9).  
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Table 3.8. Average risk allele expression ratio in IG heterozygous and control dogs in retinal and 
non-retinal tissues and genomic DNA. Numbers were corrected according to background reads 
in homozygous dogs, or genomic DNA.  
 

Exon 32- SNP 
71,540,880 

Exon 61- SNP 
71,576,758 

Exon 61- SNP 
71,577,339 Sample 

number Tissue DNA 
genotype 

Average 
of T allele 

DNA 
genotype 

Average of 
C allele 

DNA 
genotype 

Average of 
C allele 

1 IG72 retina C/T 0.12 C/T 0.28 C/T 0.26 
2 IG73 retina C/T 0.12 C/T 0.26 C/T 0.25 
3 IG74 retina C/T 0.12 C/T 0.25 C/T 0.22 
4 IG70 retina C/T 0.30 C/T 0.28 C/T 0.24 
5 IG70 kidney C/T 0.70 C/T - C/T - 
6 IG70 cerebellum C/T 0.62 C/T 0.51 C/T 0.53 
7 IG70 knee cartilage C/T 0.64 C/T 0.50 C/T 0.50 
8 Control-1 retina C/T 0.63 C/T 0.65 C/T 0.53 
9 Control-1 kidney C/T 0.60 C/T 0.69 C/T 0.57 

10 Control-1 cerebellum C/T 0.49 C/T 0.61 C/T - 
11 Control-1 knee cartilage C/T NA C/T 0.61 C/T 0.53 
12 Control-2 retina C/C 0.00 C/C 0.97 C/T 0.39 
13 Control-3 retina C/C 0.00 C/T 0.31 T/T 0.08 
14 Control-4 retina T/T 1.00 C/C 1.04 C/C 0.88 
15 Control-5 retina C/T 0.60 C/T 0.47 C/T 0.33 
16 Control-6 retina C/T 1.12 C/C 1.00 C/T 0.63 
17 Control-7 retina C/C 0.00 C/C 0.95 C/T - 
18 IG73 gDNA (20 ng) C/T NA C/T 0.50 C/T 0.53 
19 IG74 gDNA (20 ng) C/T NA C/T 0.50 C/T 0.51 
20 IG70 gDNA (20 ng) C/T NA C/T 0.48 C/T 0.47 
21 Control-1 gDNA (20 ng) C/T NA C/T 0.54 C/T 0.50 
22 Control-2 gDNA (20 ng) C/C NA C/C 1.00 C/T 0.47 

 
(-) = results were not available due to DNA contamination in the RT-PCR (RT negative control 
was not zero).  
NA= results were not available due to failed PCR.  
Red allele is the risk allele in IG dogs.  
Blue allele is the paternal allele in control dogs. 
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Table 3.9.  Statistical analysis of the differences of pyrosequencing results between groups. A. 
T-test of the differences between IG70 retina results and other tissues of this dog (kidney, 
cerebellum, and knee cartilage). B. T-test of the differences between IG heterozygous dogs and 
control dogs of their deviation from 0.5 allele ratio. 
 
A. T-test between average risk allele expression ratio in IG70 retina compare to 
non-retina tissues. 
 Retina Non-retina tissues 
Mean 0.2733 0.5714 
SD 0.0306 0.0809 
SEM 0.0176 0.0306 
N 3 7 
Unpaired two-tailed t-test: 0.0003- significant 
B. T-test between average allele expression deviation from 0.5 in IG heterozygous 
dogs and control dogs in retina. 

 
IGPRA-

heterozygous Controls 
Mean 0.275 0.154 
SD 0.0665 0.1325 
SEM 0.0192 0.0419 
N 12 10 
Unpaired two-tailed t-test: 0.0116- significant 
 

Out of the 42 dogs that were run on the Illumina SNP array, five dogs carried one copy of the 

risk haplotype in the locus of Col27A1 and mir455 and were affected with IGPRA, while 13 

dogs carried one copy of the risk haplotype but showed no symptoms of disease, and were 

considered phenotypically normal. We ran an association between these two groups. The highest 

P-value was shared among 10 SNPs with P-value of 0.0001021 (-log10(P)=3.99), six on CFA3 

and four on chromosome X (Table 3.10A). Interestingly, in the middle of the 811.7 Kb LD 

interval on CFA3 (CFA3: 60,345,668-60,345,668) mir184 is located (Table 3.10B) and 

ADAMTS7 is located in the distal end of the LD. We sequenced mir184 on a subset of dogs 

(n=12, Supplement Table 3.11A). Although we did not find polymorphisms in the pre-miRNA 

conserved sequence (83 bp at position 60,776,998-60,777,080 CanFam 2), we found 3 SNPs in 

the pri-miRNA sequence (226bp, 204 bp, and 34 bp upstream to the conserved pre-miRNA; 



	
  

	
   78	
  

Supplement Table 3.11B). Expanding this genotyping to the complete IG population is needed to 

be able to evaluate if any of the SNPs can explain some of the imprinting.  

Table 3.10. Top hits of GWA analysis between IG dogs carrying one copy of the risk haplotype 
in Col27A1 locus that are affected with PRA (n=5) and that are not affected with PRA (n=13). 
A. The most significant SNPs (–log10(P)=3.99) and their location. B. Genes within the significant 
interval on CFA3. 
 
A. Most significant SNPs and location. 

CFA SNP Position 
3 BICF2G630342052 60,345,668 
3 BICF2G630342252 60,485,857 
3 BICF2G630342336 60,604,161 
3 BICF2P635067 61,006,592 
3 BICF2G630342761 61,145,506 
3 BICF2P314519 61,157,377 
X BICF2G630533117 26,859,917 
X BICF2G630533113 26,864,307 
X BICF2G630532418 28,194,061 
X BICF2G630532410 28,202,238 

B. Genes within the significant locus on CFA3. 
Gene Name Position 
MTHFS 5,10-methenyltetrahydrofolate 

synthetase (5-formyltetrahydrofolate 
cyclo-ligase) (MTHFS), transcript 
variant 1, mRNA 60,344,001-60,376,340 

KIAA1024 KIAA1024 60,598,504-60,610,818 
TMED3 transmembrane emp24 protein 

transport domain containing 3 60,695,345-60,701,640 
ANKRD34C ankyrin repeat domain 34C 60,708,285-60,723,156 
Mir184 Mir 184 60,776,998-60,777,070 
RASGRF1 Ras protein-specific guanine 

nucleotide-releasing factor 1 60,858,018-60,951,418 
CTSH cathepsin H 60,968,460-60,978,236 
MORF4L1 mortality factor 4 like 1 60,991,592-61,013,174 
ADAMTS7 ADAM metallopeptidase with 

thrombospondin type 1 motif, 7 61,053,256-61,087,513 
TBC1D2B TBC1 domain family, member 2B 61,089,422-61,135,752 
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3.5 Discussion 

MicroRNAs are small single-stranded RNA molecules used by the cell to regulate gene 

expression through base-pairing to partially complementary mRNA sequence. This serves to 

enhance RNA decay or to inhibit translation18-20. They are transcribed in the nucleus, either 

independently or as part of the introns of protein-coding genes21,22. The single strand RNA goes 

through several processes to release pre-miRNA (usually about 70-100 bp long) into the 

cytoplasm out of which Dicer cuts it to 20-24 bp long. The short molecule binds to target 

molecules with complementary sequence and represses translation, or enhances rate of decay. 

We mapped the Italian greyhound PRA disease to a distinct interval on CFA11. Within the LD 

interval a significant RNA expression level difference of Col27A1 gene and mir455 were 

observed between F1 IGPRA dogs and normal dogs. Mir455 is a microRNA gene located in 

intron 10 of the Col27A1 gene. The Col27A1 risk allele was expressed at levels of about 20% of 

the total transcript. The total level of expression of mir455 in controls relative to IG 

heterozygous was 2.16, almost mono-allelic expression in the heterozygous dogs, suggesting a 

very low level of mir455 in affected dogs. We did not have retinal samples from homozygous 

affected dogs to check their level of expression of Col27A1 and mir455 and we will explore that 

once these animals become available. Our observations from both RNA-seq and micro-RNA seq 

that both Col27A1 and mir455 are down-regulated in the affected chromosome almost to the 

same digree, suggest that mir455 is transcribed from the Col27A1 intron, and most likely does 

not have an independent promoter. This agrees with the observations made by Monk and his 

group23, where levels of Col27A1 and mir455 were upregulated in macrophages after candida 

exposure at the same level.  
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In recent years, more than 250 retinal microRNA genes have been identified24, with studies in 

small animal models showing that miRNA genes have a major role in eye development and 

retina25. More specifically, six different retinal miRNA genes showed changes in expression in 

four different mouse models for retinitis pigmentosa26,27. To the best of our knowledge, this is 

the first time that altered mir gene expression has been reported to be associated with retinal 

degeneration in a large animal model, and the first time where tissue specific allelically biased 

expression is associated with a disease.  

Interestingly, in our IGPRA model, we not only observed a low level of mir455 expression, but 

we also observed a significantly high level of mir3609 expression. Lower levels of mir455 would 

result in higher expression of its target coding genes compared to controls, and a high level of 

mir3609 would result in low expression of its target coding genes compared to controls. Many of 

mir3609's target genes are known to cause retinal degeneration when mutated: these include 

Rho, ABCA4, PDE6A, and LCA5 (Supplement Table 3.13). We did not find these target genes 

for mir455 of mir3609 to be significantly differentially expressed in IG heterozygous dogs 

compared to the controls from RNA-seq analysis. Further investigation of altered expression of 

the mir genes and their target genes are necessary, testing a larger number of dogs, and 

specifically dogs that are affected and are homozygous for the risk haplotype in Col27A1.  

 

The three IG heterozygous dogs used for the RNA-seq, SmallRNA-seq and allele-specific 

pyrosequencing experiments were all littermates of an affected sire bred to a normal beagle dam 

(as well as the fourth sibling in the pyrosequencing experiment) (Figure 3.1). In all four dogs the 

allele that was down-regulated was the risk allele transmitted from the affected father. This 

suggests that the mutation yet to be found is affecting the level of expression of Col27A1 and as 
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a result also mir455. We do not believe this is random parental imprinting, especially since we 

see both paternal and maternal alleles expressed in the controls (Supplement Table 3.12). One 

control dog though showed a complete monoallelic expression in exon 32 (control dog number 6, 

Supplement Table 3.12) expressing only the paternal allele, but that bias was not observed in an 

exon 61 informative SNP. We do not currently have an explanation for this monoallelic 

expression in exon 32, except that a primer bias might be present in that specific dog. A 

repetition of the experiment with different primers is in progress. We do not have evidence for 

imprinting from the control dogs but to completely rule out an imprinting scenario, we would 

design the reciprocal breeding experiment of breeding, mating an affected female to a normal 

male, and measure the level of risk allele expression in the heterozygous offsprings, to determine 

whether the same bias in allelic expression is observed.  

 

To understand the factors underlying the incomplete penetrance of the disease we compared the 

genome wide SNP alleles in the five affected dogs heterozygous for the Col27A1 risk allele to 

the 13 dogs heterozygous to the risk allele and phenotypically normal. Interestingly the 

autosomal locus that was the most significant was CFA3, in a region that includes mir184. 

Several targets for miR-184 have been described, including that of mediators of neurological 

development, and apoptosis, and a mutation in the seeded sequence (the first 8 bases of the 

mature microRNA, important for recognition of the target mRNA) of mir184 that causes eye 

disease and cataract28-30. It was also observed that mir184 has an imprinted paternal expression in 

some cases and it is known that mir genes compete on shared targets31,32. This information makes 

the modifier hit on mir184 a very interesting candidate for such, and encourages further 

investigation. 
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We did not find an obvious mutation that can explain retina specific down regulation of Col27A1 

and mir455. A list of polymorphisms in the affected chromosome was extracted from the DNA-

seq experiment. A few regions were also not covered by the deep sequencing, and need to be 

retrieved by individual PCR experiments. An interesting finding though was the poly-alanine 

expansion in exon 1 of Col27A1. It was reported that in the dog polyglutamine and polyalanine 

are variable in numbers and that transcriptional activities of both of these types of amino acid 

repeat domains are present, with polyglutamines reported to drive transcription and polyalanines 

repressing it33,34. Although it seems that the high number of alanine repeats in the exon (n=12) is 

fixed in the IG, and it is not unique to this breed, it might be necessary but not sufficient to cause 

down-regulation of Col27A1. 

 

The microRNA world is far from being understood at the molecular level and the network of all 

their targets, as well as the redundancy of their function. Knockout models and rapidly 

accumulating human miRNA-disease association data are suggesting that miRNA genes can 

function as modifiers35. We believe that the IGPRA dog model offers a unique opportunity to 

explore the effect of mir455 on retinal degeneration, and also explore other mir genes as 

modifiers for the disease. This might shed light on the mir cooperation network in the retina, and 

the pathways in which they react. Moreover, miRNA genes are now considered therapeutic 

agents in inherited retinal diseases, especially after the substantial progress in developing 

efficient delivery systems for small RNA molecules36,37. These dogs can offer a large animal 

model for microRNA gene therapy for late onset PRA. 
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Supplement Table 3.1. Primers used to screen candidate genes for IGPRA.  
 

Primer  

pair 

Forward Primer 
name Forward primer sequence 

Forward 
primer 
location 

Reverse Primer 
name Reverse primer sequence 

Reverse 
primer 
location Size 

A. DFNB31 gene. 
A-i. Primers used to amplify retinal cDNA. 
1 DFNB31_F1 GTTTCCCTCGGACCCCAGGAC 5’ UTR DFNB31_R1 GACTTGTCGTTGACGCGCAGAAT Exon1 779 
2 DFNB31_F2 GGCATCTACGTGTCGCTGGTG Exon 1 DFNB31_R2 GAACTGGCGATCCACTTGGTCT Exon 4 641 
3 DFNB31_F3 CTCAAGTCATCCCAGCACCTCAT  Exon 4 DFNB31_R3 ACAGCCTCACCAGTTTCCTCCAG  Exon 8 626 
4 DFNB31_F4 CACCTACTCCGTGGTCTCCTACAG  Exon 7 DFNB31_R4 CTCCTTGCTACACCTGCTCTTGGT  Exon 10 838 
5 DFNB31_F5 CCTCCACACTGTCCCAGCTCTC  Exon 10 DFNB31_R5 ATGTCTTCCTGCTACCCTGGCTAC  3'UTR 604 
6 DFNB31_F6 ATGAAGGCGCAGCTGGACGGCCT  Exon1 DFNB31_R6 TGTAGATGTGGTTGGTGATGTAGCC  Exon2 757 

7 DFNB31_F7 CCAGCTGCTCTTCGACCAGTACAC Exon 1 DFNB31_R7 CACCAGGTTCACCTTCTTCTCGTC 
Exon2+
3 568 

8 DFNB31_F8 CACTGCCTCAACGCCTACCAC Exon 1 DFNB31_R8 CACGGACAACAGCAGCTTCTTAGAG Exon2 501 
9 DFNcDNAF1 CGGGGACGAGAAGAAGGTGAAC Exon2+3 DFNcDNAR1 GGAACTGGCGATCCACTTGGT Exon 4 313 

10 DFNcDNAF2 GGGCTCAGAAGCAGAGAGCAGT Exon3 DFNcDNAR2 GAGAACTTGGCGTTGGTGTTGAA 
Exon6+
7 489 

11 DFNcDNAF3 GAAGGAACAAGCAAGCTGGGATT Exon5+6 DFNcDNAR3 GCTGTAGGAGACCACGGAGTAGGT Exon 7 381 
12 DFNcDNAF8 CCTGGTGCTGAGACGGGAGAT Exon 7 DFNcDNAR8 GGGGACACAGAGGGCATAGACG Exon 10 528 

13 DFNcDNAF4 CCACTCGGGCATCGTCTTCTC Exon 10 DFNcDNAR4 GAGCTGGGACAGTGTGGAGGCT 
Exon 
10+11 415 

14 DFNcDNAF4 CCACTCGGGCATCGTCTTCTC Exon 10 DFNcDNAR5 AGCTGGGACAGTGTGGAGGCG 
Exon 
10+11 412 

15 DFNcDNAF6 GGGCACGAACCAGCACTTTGT Exon 10 DFNcDNAR6 GCACTTTTCTTCACACGGACCAC Exon 12 324 

16 DFNcDNAF7 AGACAGATCGCCTCCACCAAGA Exon 11 DFNcDNAR7 GCCCTTGAGGAGCTTATAGTGCTG 

Exon 
13-  
3’ UTR 473 

A-ii. Primers used to amplify genomic DNA 
1 DFNB31_intron1F CTGGGGAAGAAAAACAAAGGTTGG Intron 1 DFNB31_intron2R CTGGGTCAGGCAAGGAGAACAG Intron 2 489 
2 DFNB31_intron2F GTTCACGTCACCCACCCTCCA Intron 2 DFNB31_intron3R CAGCTCCTGCCCTCTCTCTCC Intron 3 254 
3 DFNB31_intron3F GAGCCAGTGTCCTCCAAGCAG Intron 3 DFNB31_intron4R TCTAACTCCCAGACCCCTTTCCTC Intron 4 573 
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4 DFNB31_intron4F CTATGGGCTGCTGTCTCCTGTCCT Intron 4 DFNB31_intron5R GCGGGTGTGATTTTCTGTGTCTA Intron 5 585 
5 DFNB31_intron5F GTCTGAGATGGGGCCTGTAACG Intron 5 DFNB31_intron6R CACCCGATTCTTTGGGTTCTCA Intron 6 461 
6 DFNB31_intron6F CAAGATGCCAGCGAGGACGAG Intron 6 DFNB31_intron7R CAAGGGACAGAGCCAGGAAGG Intron 7 533 

7 DFNB31_intron7F 
GGGGAGATAGGGGATTTTAGAGA
A Intron 7 DFNB31_intron8R AGACATAAGGGGGTGGCAGGAAG Intron 8 286 

8 DFNB31_intron8F GGAGAGCCCCAAACAAAAAGC Intron 8 DFNB31_intron9R GGCAAACAAACAGCCAGAGTCC Intron 9 493 

9 DFNB31_intron9F CCCCTGTTGTTGTTGTTTTTCCAT Intron 9 DFNB31_intron10R ACACTGGCTCCCACTTTGTGC 
Intron 
10 970 

10 DFNB31_intron10F ACAGCATCCCAGCTCTATCACCTC Intron 10 DFNB31_intron11R CTCACTTCTTCTCCGTGGTGGTC 
Intron 
11 380 

11 DFNB31_intron11F CTGAGCGGGTGTCCTGGCTAA Intron 11 DFNB31_exon13R CGATGTAGTCTCTCTCCTTGGTCTTG Exon 13 822 
12 DFNB31_intron12F CACTGAGCCTGTTTTCCTAATCA Intron 12 DFNB31_3UTRR GCTTTCTTCTCCTGGTTCTGG 3’ UTR 499 
B. AKNA gene 
B-i. Primers used to amplify retinal cDNA. 

1 AKNA_cDNA_F1 GTGGCAGCTCCGTCTCCTGAAG 
Exon 2-5’ 
UTR 

AKNA_cDNA_R
1 GACCAGTCTCATGCTCCAGTCTTG Exon3 484 

2 AKNA_cDNA_F2 AGAAAGTTCCATCGTGCCTCTCAG Exon 3 
AKNA_cDNA_R
2 GGGGTGGTAGCTCTCATCTTTGG Exon 3 817 

3 AKNA_cDNA_F3 CTGCCGATGCCTCCAAGTACG Exon 3 
AKNA_cDNA_R
3 GGCCCAAGAAGCCAATTCCTG Exon 6 671 

4 AKNA_cDNA_F4 CAGTCGGTGGTATGGTGGTCAG Exon 5 
AKNA_cDNA_R
4 CTCACTGCTGGTGGCGCTAAG Exon 10 666 

5 AKNA_cDNA_F5 CAGAAGCAGCCAGAGCCTGAG Exon 9 
AKNA_cDNA_R
5 ACTTCCCTCCAAGCTGGTCAGA Exon 12 687 

6 AKNA_cDNA_F6 CCCTGGCTGAAAGAAGTCACAGG Exon 11 
AKNA_cDNA_R
6 AGACGCTTGGAAATCCGCTTC Exon 15 670 

7 AKNA_cDNA_F7 GaGGTCCCCGGCTCAGAGTTC 
Exon 
14+15 

AKNA_cDNA_R
7 ACTCACGGACAGTTGGGGCATC 

Exon 
17+18 459 

8 AKNA_cDNA_F8 GGCGAGCCAGGTCTTCCTCAG Exon 17 
AKNA_cDNA_R
8 CTCTGCGTGCGTTTCTCCTTG Exon 21 453 

9 AKNA_cDNA_F9 CTCCCACTGACACTGTGCGATGT Exon 20 
AKNA_cDNA_R
9 GCCACCCTGTGTTGCTGAGTCT 

Exon 
22-
3’UTR 573 
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B-ii. Primers used to amplify genomic DNA 
1 AKNA_F1 AAACCCCCTCCTTCTGACAAACAC 5’ UTR AKNA_R1 GGACTAACTCTCCAAGTGCCGATG Intron 1 563 
2 AKNA_F2 CCGTCATCCTCCTGGTTTCTCTAA Intron 1 AKNA_R2 AACACCCTCCATTCCCCACCT Intron 2 629 
3 AKNA_F3 GGTGGTGTTTCCATTTGCTGAGAC Intron 2 AKNA_R3 GTGTTTCCATTGCCCCCTGAG Exon 3 431 
4 AKNA_F4 CTCAACTGGCCGTGACTGAAGAG Exon 3 AKNA_R4 GTTCTGGGGTTTGCGTGTAGC Exon 3 403 
5 AKNA_F5 TACCTGGGAAGGGGAAACTGATG Exon 3 AKNA_R5 TGCCTAGAGACGTGAGTCCAGCTT Intron3 700 
6 AKNA_F6 GAGGTTCCCCAAAGATGAGAGC Exon 3 AKNA_R6 GCAGAGAGAGAGGCAGAGACACAG Intron 3 557 
7 AKNA_F7 GGGGTAGAGGCGGGGAAGAGT Intron 3 AKNA_R7 GGGACCTTGTGGTAGATGGAGGAC Intron 4 468 
8 AKNA_F8 GTGATGGTGTGAATGAAGGTGAGG Intron 4 AKNA_R8 GCTGCTCTGGCTCTGGGTAAGAT Intron 5 433 
9 AKNA_F9 AGCTGTGTGATCTGGGGCAGAC Intron 5 AKNA_R9 CTTTCAAGCACAACTGGAGGGAGT Intron 6 586 
10 AKNA_F10 GGATTCACGGAGTGTGTTTCCTTC Intron 6 AKNA_R10 GACAGTGTGTCTGGGATTCTCTGG Intron 7 223 
11 AKNA_F11 GCCCAGGAGATGGGTCTCTGC Intron 7 AKNA_R11 GACTTGGGTAATCCCTCCCCACT Intron 8 496 
12 AKNA_F12 TTCCCTTTTCACCTTGTTGTTTCG Intron 8 AKNA_R12 AGCCCCCTCGCTTTCCATACT Intron 9 551 

13 AKNA_F13 CGTGAAAGGGTGAGAGGGTTG Intron 9 AKNA_R13 GATACCTACAGAGCACAGAGAGGAACA 
Intron 10 
+Exon11 403 

14 AKNA_F14 CTGGAGCGGTGAGTACCAGGAC 
Exon 10 
+Intron 10 AKNA_R14 TAATACCATCCAACCCTGCCTCTG Intron 11 485 

15 AKNA_F15 TACCCAAGTTCCTGAAGCCTGAGA Intron 11 AKNA_R15 GAGGCAGCACTGGGCATAAGTC Intron 12 672 
16 AKNA_F16 ATCCTTCCCCTCTTCCTCAGC Intron 12 AKNA_R16 GCACCTTGATTCCCAGGCTACC Intron 13 442 
17 AKNA_F17 GGGTGAAGGATGGAGTGACAGAC Intron 13 AKNA_R17 TTTGTTGTTGTTGTTGTTGGTTTGA Intron 14 683 
18 AKNA_F18 GTGCTGAAGTGGTGGACAGATGG Intron 14 AKNA_R18 GAGGAGAAATACAGGGAGCGAGGT Intron 15 670 
19 AKNA_F19 GCAGGAGAGGGACAGGGTTGG Intron 15 AKNA_R19 TGAGAGTAGGAGAGGGGTGTGAGTT Intron 16 383 
20 AKNA_F20b GCGTAAAATCTCACCCACTGACATC Intron 16 AKNA_R20b CGTCCATCCACGTCCTTGTCT Intron 17 465 
21 AKNA_F21 GTGTGCGTCGGCTGCTGTTACTA Intron 17 AKNA_R21 CGCTCTGAAGTCCTACTGTGTGTCA Intron 18 689 
22 AKNA_F22b GCCCTGTTAGCCGTTGCTTAG Intron 18 AKNA_R22b CGATGCCTGAGTGAATGAATGAAC Intron 19 583 
23 AKNA_F20 CCCAGTGACCCAGACATGACATC Intron 19 AKNA_R20 AGGAAGGTGGGAGAGGAAGGTTCT Intron 21 621 

24 AKNA_F22 CCATTTTCGAGGTGAAGACACTGA Intron 21 AKNA_R22 GAGACTCAGGAGGGGTCTGTGG 
Exon 22- 
 3’ UTR 498 

C. ORM1 gene- Primers used to amplify retinal cDNA. 
1 ORM1_cDNA_F1 TGCCCACACACAGCCCGTTAT 5’ UTR ORM1_cDNA_R1 GTTCCTTCAGCCTCTCCTCCTTGT Exon 6 673 
2 ORM1_cDNA_F1 TGCCCACACACAGCCCGTTAT 5’ UTR ORM1_cDNA_R2 GCAACTGAGACCAAAACCTGAGAT 3’UTR 776 
3 ORM1_cDNA_F1 TGCCCACACACAGCCCGTTAT 5’ UTR ORM1_cDNA_R3 TGAGCGACTGAATGAGCCAAC 3’UTR 835 
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D. Col27A1 gene 
D-i. Primers used to amplify retinal cDNA. 
1 Col27A1_cDNA_F2 CAATCGGGCTTCATCTTTACGC Exon 3 Col27A1_cDNA_R2 GTGGGTGGGGCTGACTTTGTG Exon 3 986 
2 Col27A1_cDNA_F3 TCGGTCCCTTCTCCTTCTGTGATA Exon 3 Col27A1_cDNA_R3 GGTCCCCTTTCTGTCCCTTGG Exon 5+6 880 

3 Col27A1_cDNA_F4 TCCTCCTGGGCCTTATGGAAAC Exon 5 Col27A1_cDNA_R4 GCTTACCCTTCATGCCTTCTGG 
Exons 
20+21 824 

4 Col27A1_cDNA_F5 GCCTCTGGGGAAAATTGGAGA Exons 18+19 Col27A1_cDNA_R5 GTCACCCTTCATCCCGGCTTC 
Exons 
34+35 841 

5 Col27A1_cDNA_F6 ACTTGGCCCTCCAGGAGAGATG Exon 33 Col27A1_cDNA_R6 TGATGCCTTTGTGTCCATCGTAAC 
Exons 
40+41 533 

6 Col27A1_cDNA_F7 GTCCTGAAGGAAAACCTGGGAAG Exon 38 Col27A1_cDNA_R7 GTAACCCACTTTCGCCCTTGAATC 
Exons 
48+49 774 

7 Col27A1_cDNA_F8 GGGAAGAGAGGAAATCCAGGTGTG Exon 48 Col27A1_cDNA_R8 GCGTCTTAATGCTCTGGATGAGGT Exon 58 630 
8 Col27A1_cDNA_F9 ATGGACACAAATGGAGCACTGAAA Exon 57 Col27A1_cDNA_R9 CAGGAGGTCAGAGGTCAGAGGAAG Exon 61 689 
9 Col27A1_cDNA_F10 CACCATCCACTGCCTTAACATGAC Exon 60 Col27A1_cDNA_R10 CTTCTCTCACCTCTTTCCCAGGTG 3’ UTR 844 
10 Col27A1_cDNA_F12 GCGATTCCTGTCCTCCAGTGC  Exon 3 Col27A1_cDNA_R12 GATAGCCCTTGTGTCCCTTTCGT  Exons 7+8 356 
11 Col27A1_cDNA_F13 GTCCTCCTGGGCCTTATGGAA  Exon 5 Col27A1_cDNA_R13 GACCTCGTTCCCCAAAGTCTCC  Exon 13 435 
12 Col27A1_cDNA_F14 GTAGGAGACCCTGGCCCCAAAG  Exon 10 Col27A1_cDNA_R14 GACACACCTGGAACCCCTTGTTC  Exon 17 353 

13 Col27A1_cDNA_F15 GTGTGTCAGGAGACCCTGGATTC  Exon 17 Col27A1_cDNA_R15 GTCACCCTTTTCTCCCATGATCC  
Exons 
25+26 455 

14 Col27A1_cDNA_F16 AACCTGGGAGGAAGGGGTTTC  Exon 23 Col27A1_cDNA_R16 CATCTCTCCTGGAGGGCCAAGT  Exon 33 554 
15 Col27A1_cDNA_F17 ATGAGGGGAGCAAAGGGACTCT  Exon 28 Col27A1_cDNA_R17 ATCTCACCCAGCTGTCCTTGGTAG  Exon 39 635 
16 Col27A1_cDNA_F18 AGATCTTTGAAGCAGGGGGTCAGT  Exon 60 Col27A1_cDNA_R18 CCACTCCTACAGGGCAGACAACAG  3’ UTR 362 
17 Col27A1_cDNA_F19 TCAGATGAACTTTCTGCACCTGCT  Exon 60 Col27A1_cDNA_R19 GCCTCCTCCTCCTCCTCTTCC  3’ UTR 402 
18 Col27A1_cDNA_F14 GTAGGAGACCCTGGCCCCAAAG  Exon 10 Col27A1_cDNA_R13 GACCTCGTTCCCCAAAGTCTCC  Exon 13 160 

19 Col27A1_cDNA_F17 ATGAGGGGAGCAAAGGGACTCT  Exon 28 Col27A1_cDNA_R5 GTCACCCTTCATCCCGGCTTC 
Exons 
34+35 336 

20 Col27A1_cDNA_F20 GAAAGGGACACAAGGGCTATCCTG Exons 7+8 Col27A1_cDNA_R20 CCCTCTTGCCAGGAACACCAG Exon 12 231 
21 Col27A1_cDNA_F21 TCCTGGCAAGAGGGGCAAGAT Exon 12 Col27A1_cDNA_R21 ACCTGGAACCCCTTGTTCACC Exon 17 250 
22 Col27A1_cDNA_F22 ACTTGGCCCTCCAGGAGAGATG Exon 33 Col27A1_cDNA_R22 AGCTGTCCTTGGTAGCCCTTGG Exon 39 381 
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D-ii. Primers used to amplify genomic DNA. 
1 Col27A1_intron1_F CTGCCCTGTGACCTTGGCTTATC Intron 1 Col27A1_intron2_R CCCTGCCCCTTACAAAACTTCAAA Intron 2 570 
2 Col27A1_intron2_F TGTGCCTACAATGAGGATGTCCAG Intron 2 Col27A1_exon3_R8 GCAAAAAGGAAGGCATGGTTCAC Exon 3 400 
3 Col27A1_intron8_F TCACATTCCTGCCCTTCTCTTTGT Intron 8 Col27A1_intron9_R ACCAGAACCCCTTTCTTCTGCTCT Intron 9 404 
4 Col27A1_intron9_F AGAAGAAAGGGGTTCTGGTGCTGT Intron 9 Col27A1_intron10_R GATCCCCCATCACCTGTCCAC Intron 10 489 
5 Col27A1_intron11_F CAGGCCCTCTGTGACTTCCTCTC Intron 11 Col27A1_intron12_R CCCAGACACTACTGACCCAGACAA Intron 12 477 
6 Col27A1_intron12_F CCAGTAGCCAGTCCCTGAGAAGTT Intron 12 Col27A1_intron13_R TGGGCCTCCCATTATTTACAAACTC Intron 13 664 
7 Col27A1_intron13_F CTTCTCGGACACTGACAAGTGGAA Intron 13 Col27A1_intron14_R GAACTATGCAGGAAAGGGCTCAGA Intron 14 514 
8 Col27A1_intron14_F ATTGCACTGGTCCCCCTTTTAGAT Intron 14 Col27A1_intron15_R CAGGAGACTCAAGCTCAGCACAAG Intron 15 509 
9 Col27A1_intron15_F CACCTGGGGCATAGAAACTGTACC Intron 15 Col27A1_intron16_R CAAGGAAGAAGCTGGGGAATACAG Intron 16 661 
10 Col27A1_intron34_F CTTTGGTCCTTGGGAACGAGGT Intron 34 Col27A1_intron35_R CTACGTTGTGGAGATGCTGGTTTG Intron 35 340 
11 Col27A1_intron35_F GGTCTGCTCCTCGTTTCTGAAGAG Intron 35 Col27A1_intron36_R CCCTTACCCCAGAGAGGCTGTAGT Intron 36 576 
12 Col27A1_intron36_F ATCCAAACGGAGCATTGAGGTTTA Intron 36 Col27A1_intron37_R AGCAGCAAGTTCTGGTGAGGAATC Intron 37 614 
E. mir455 gene. 
1 MIR455F1 AGCCTCGGTTTCCTTGTCTGTG  MIR455R1 TTGTCCCCACTCTCCCTTACATTG  731 
2 MIR455F2 AGCATCTAACCCATCCGAGAGC  MIR455R2 GGGACCTGACTGCCTTGACTC  517 
F.  KIF12 gene- Primers used to amplify retinal cDNA. 
1 KIF12_cDNA_F1 CTTCTCCTGCACCGTCTTCACCTT 5’ UTR KIF12_cDNA_R1 AGGCTGCGGTTGATGCTGTTC Exon 5 585 
2 KIF12_cDNA_F2 GCTCTACATCAGCCGCCAAACT Exon 4 KIF12_cDNA_R2 GGCACCATCACACAGGGACAC Exon 11 759 
3 KIF12_cDNA_F3 GTGCCTCCTCTGTGCCTGCTAC Exon 11 KIF12_cDNA_R3 ATTTCATCACCTGTTCCTGGCTTC 3’ UTR 780 
F.  ZNF618 gene. 
F-i. Primers used to amplify retinal cDNA. 
1 ZNF618_cDNA_F1 GCAGCCAGAAGAGCACCAAGG  Exon 3  ZNF618_cDNA_R1 TACTGATGGGGGCGTGTAAGG  Exon 10 720 
2 ZNF618_cDNA_F2 ACTGACGAGGTGAAGGAGGAACC  Exon 8 ZNF618_cDNA_R2 CTCTTCTACGACAGCAGGTGGTGA  Exon 13 423 

3 ZNF618_cDNA_F3 AAAACTCCAGCGAACCCTACACCT  
exon 
11+12 ZNF618_cDNA_R3 TACACCGTCCTGATTTCCGACA  Exon 14 688 

4 ZNF618_cDNA_F4 CGAGGGCAACCACATCAAGAG  Exon 14 ZNF618_cDNA_R4 GCAGGTAATCATACACTTCGTTTTTCC  Exon 14 923 
5 ZNF618_cDNA_F5 GCCCTACCAGCACGAGGAGAT  Exon 14 ZNF618_cDNA_R5 CAAGGACAGAGAGCGTCAAGTCAC  3'UTR 970 
F-ii. Primers used to amplify genomic DNA. 
1 ZNF618F1 AGTGGGACTGGGGGTTGGTTT Intron 5 ZNF618R1 GAGAGAGAGGACACCTGGATGGAG Intron 6 447 
2 ZNF618F2 AAGGATGGGGAGGATGACGAG Intron 6 ZNF618R2 AGAACCCTGTTTGTGGGATGAGTG Intron 8 519 
3 ZNF618F3 GACAGATGATGTCAGGGAGAGAAGC  Intron 8 ZNF618R3 TGCTCAGGAAATGTGTGGTGATCT  Intron 9 455 
4 ZNF618F4 GGAGTTGGAGGGAGGGAGCAT  Intron 9 ZNF618R4 GAGGGAACCGTCTTGTCTAGGTGA  Intron 10 498 
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5 ZNF618F5 GGGTGGCAGGTCCAAATGACTTAG  Intron 10 ZNF618R5 ATGGGAAGAGACCAAGAACAGCAG  Intron 11 664 
6 ZNF618F6 AAGTGCAGAGCCCCAGTGTGT  Intron 11 ZNF618R6 CCACAGCCTTCCAGAGCCTTCT  Intron 12 617 
7 ZNF618F7 CGCCATGCTGTAGTTCTTGTTTTG  Intron 12 ZNF618R7 TCACAATTCCCAAGGATGAGGTCT  Intron 13 369 
8 ZNF618F8 CCAGTTTGTGTGCAAGATGAAACC  Intron 13 ZNF618R8 TTTAGCGCCAGTGTGTTGAAGTTG  Exon 14 537 
9 ZNF618F9 CGTGGTGAGTGGGAAGGAGTTC  Exon 14 ZNF618R9 CAGCAGCAACGAGTCTGTGACC  Exon 14 655 
10 ZNF618F10 CTGTGCCTTGAACTCGGTGGT  Exon 14 ZNF618R10 GCAGGTAATCATACACTTCGTTTTTCC  Exon 14 725 
11 ZNF618F11 GCCCTACCAGCACGAGGAGAT  Exon 14 ZNF618R11 CACGCACACACTGAAAAAGCACT  3’ UTR 603 
12 ZNF618F12 CACTGTCGCAAACAAAGAAAAGGA  3’ UTR ZNF618R12 TCCTACCAATCTGCACACCTGAAA  3’ UTR 404 
13 ZNF618F13 CTGAGTGGGAAAGAGGGAAGACAC  3’ UTR ZNF618R13 TTGAGGAACAAAAAGGGCAACTGA  3’ UTR 652 
14 ZNF618F14 CTCTGCTAGGAGGCACTGAATGTC  3’ UTR ZNF618R14 ACTACTGTCGTGGAAGGAGGCTCA  3’ UTR 592 
15 ZNF618F15 GGGGTTCTGGTCGTTCTCTGG  3’ UTR ZNF618R15 GGGACACCGTTCTGGTCTACAGTC  3’ UTR 605 
16 ZNF618F16 TAAGTCCGCTCCATCCCTTCCT  3’ UTR ZNF618R16 CCCAGCAGCAAAGCAAAACAG  3’ UTR 521 
17 ZNF618F17 GAGCATCCGCATACCCTTTGAT  3’ UTR ZNF618R17 CTGCCACCTTGTCACCGTATCTG  3’ UTR 511 
18 ZNF618F18 GCAGGTAGAAGGTAGACGCCACTG  3’ UTR ZNF618R18 GAGCCAGCAGAAGACCAAAGAGC  3’ UTR 503 
19 ZNF618F19 GATGTGTCCTGCTCCCCAGTTCT  3’ UTR ZNF618R19 CTTCCTCGGACGGTTCTCTCCT  3’ UTR 636 
20 ZNF618F20 GTCTGTGAGCAAGGAGGCTTGG  3’ UTR ZNF618R20 GGTTCACCATAACTGGCCTAGCAA  3’ UTR 695 
21 ZNF618F21 GTGCTCGCAGAGACGGGAAGA  3’ UTR ZNF618R21 GGGCTGTGCCCCTTAAAGAACT  3’ UTR 664 
22 ZNF618F22 ACAGAGGAGGCCCTGTTAGGTCTG  3’ UTR ZNF618R22 TTGAGTTTCTTGCACTCGGAGAGA  3’ UTR 690 
23 ZNF618F23 CACCCCCGTCCTTTCTCAGTAGTT  3’ UTR ZNF618R23 CATCACGAAACTGATTTTGGCTGT  3’ UTR 643 
24 ZNF618F24 TGTTTGTCCTTTGGGTTTTTCGTT  3’ UTR ZNF618R24 ATGAGGGACTCAGGTCAAGCTCAC  3’ UTR 667 
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Supplement Table 3.2. Primers designed for high-throughput screening of two polymorphisms in AKNA. 
 
 

Primer 
pair 
number Polymorphism 

Location on 
chromosome 
11  
(CanFam 2) Forward primer Reverse primer 

Restriction 
Enzyme 
used for 
digestion 

Product 
size of a 
normal 
allele 

Product 
size of 
an 
affected 
allele 

1 

SNP- A/G (A 
is the risk 
allele) 

71,624,795 
(AKNA, 
exon 3) AGTTTGAAGCGGAGGATGTGGAC GCCTCATCCGGTTCCTCTTCAG MaeIII 

83 bp 
+26 bp 109 bp 

2 21 bp deletion 

71,618,401-
421 (AKNA 
intron 4) GGCCAGAGACAGATCCCCAAAG CTTTTCCATCAGCACCCCTTTCCT None 239 bp 218 bp 
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Supplement Table 3.3. Primers used to amplify through the gap at the 5’ end of Col27A1.  
 

Primer  

pair 

Forward Primer 
name Forward primer sequence 

Forward 
primer 
location 

Reverse Primer 
name Reverse primer sequence 

Reverse 
primer 
location 

Expected 

Size 

A. Primers ordered before NGS new sequence data 
1 Col27A1_5_gap_F1 ggacaggctagtgtgcatttgtgt Pre-gap Col27A1_5_gap_R1 gcacagggtcttctggagaaagtg Intron 1 2448 
2 Col27A1_5_gap_F2 gcgtgtgactgagtttggggtaag Pre-gap Col27A1_5_gap_R2 gctctcgcgttttctctctcacac Intron 1 1768 
3 Col27A1_5_gap_F3 gcctgggtcaaggtgtgcagt Pre-gap Col27A1_5_gap_R3 tttctctctcacacgcgcaaaat Intron 1 1600 
4 Col27A1_5_gap_F4 gttgtggttgtgcgaacttgct Pre-gap Col27A1_5_gap_R4 actcgctcgccctttacaacc Intron 1 1783 

5 Col27A1_5_gap_F2 gcgtgtgactgagtttggggtaag Pre-gap Col27A1_h_exon1_R1 CCGCGCCGATCCCGCTCCCAT 
Human 
exon 1  

6 Col27A1_h_exon1_F1 
TCGGCGCGGGGGGCCCGAGGCAC
AG 

Human 
exon 1 Col27A1_gap_R7 tttacaaccaggccaccagctc Intron 1  

7 Col27A1_h_exon1_F2 GCCATGGGAGCGGGATCGGCG 
Human 
exon 1 Col27A1_5_gap_R4 actcgctcgccctttacaacc Intron 1  

8 Col27A1_h_exon1_F3 GCCATGGGAGCGGGATCG 
Human 
exon 1 Col27A1_5_gap_R2 gctctcgcgttttctctctcacac Intron 1  

B. Primers ordered based on new sequence was retrieved from DNA-seq and RNA-seq NGS data. 
1 k9exon1F1 GCTCGGGAGCATGAAGTAGGG Exon 1 newgapR1 gctctcgcgttttctctctcacac Intron 1  
2 k9exon1F1 GCTCGGGAGCATGAAGTAGGG Exon 1 newgapR2 GGCTCCCCGGAGCAGGGACGT Intron 1  
3 newgapF1 GTTGAGCTCCCGACTCTTACC 5’ end K9exon1R1 CCGCTCCCGCTCCCATGG Exon 1  
4 newgapF1 GTTGAGCTCCCGACTCTTACC 5’ end K9exon1R2 GGGCCCCTACTTCATGCT Exon 1  
C. Primer combinations of A and B.  
1 Col27A1_5_gap_F3 gcctgggtcaaggtgtgcagt Pre-gap K9exon1R2 GGGCCCCTACTTCATGCT Exon 1  
2 Col27A1_5_gap_F4 gttgtggttgtgcgaacttgct Pre-gap K9exon1R1 CCGCTCCCGCTCCCATGG Exon 1  
3 Col27A1_5_gap_F4 gttgtggttgtgcgaacttgct Pre-gap K9exon1R2 GGGCCCCTACTTCATGCT Exon 1  
4 k9exon1F1 GCTCGGGAGCATGAAGTAGGG Exon 1 Col27A1_5_gap_R3 tttctctctcacacgcgcaaaat Intron 1  
5 k9exon1F1 GCTCGGGAGCATGAAGTAGGG Exon 1 Col27A1_gap_R7 tttacaaccaggccaccagctc Intron 1  
6 k9exon1F1 GCTCGGGAGCATGAAGTAGGG Exon 1 Col27A1_5_gap_R4 actcgctcgccctttacaacc Intron 1  
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Supplement Table 3.4. Primers used to amplify conserved regions upstream to Col27A1.  
 
Primer  

pair Forward primer name Forward primer sequence Reverse primer name Reverse primer sequence 

Amplicon location 

(CanFam2) 

Size 

(bp) 

1 Col27A1_cons_F1 cttcggcttgggacttttcctaaa Col27A1_cons_R1 acacaaatgcacactagcctgtcc 71443034-71443704 671 
2 Col27A1_cons_F2 agaagaatgctctgggcagcttt Col27A1_cons_R2 caaggtgtctggtttcagcaaact 71442562-71443080 519 
3 Col27A1_cons_F3 gccttcctgtgccttgaccac Col27A1_cons_R3 cctgccttgaaacctgagcagt 71429485-71430315 831 
4 Col27A1_cons_F4 ccccttaaatgccccaggaat Col27A1_cons_R4 gtcctgctccctgtggacctg 71423177-71423549 373 
5 Col27A1_cons_F5 caggtggacatcgagggagataat Col27A1_cons_R5 ttccattagcagaaggaccagagg 71414326-71415140 815 
6 Col27A1_cons_F6 ctggccggctctcaagtgatg Col27A1_cons_R6 aattcccagaggggttggggtact 71410672+71411535 864 
 
 

 

Supplement Table 3.5. Primers used in allele-specific pyrosequencing assay. 
 
Primer 

ID Sequence Location Length 
Amplicon 
size (bp) Type Use_with Pyro_amplicon_name Targeted_SNP CanFam2 

2164 /5Biosg/GAGGGGAGCAAAGGGACTCT Exon 28 20 PCR_F_biotin 2165 
2165 TCTCTCCTGGAGGGCCAAGT Exon 33 20 PCR_R 2164 

2166 CCCCGGCTGGTCCGT Exon 29 15 

263 
Pyro_primer 
(reverse) 

2164-
2165 

COL27A1_exon29_SNP68509555 chr11_68509555 71,539,783 

2167 ACTCGGGCACGCGAGGCT Exon 31 18 PCR_F 2168 
2168 /5Biosg/CTCTCCTGGAGGGCCAAGTG Exon 33 20 PCR_R_biotin 2167 

2169 GCTTCCCGGGCATCC 
Exon 
31+32 15 

119 
Pyro_primer 
(forward) 

2167-
2168 

COL27A1_exon32_SNP68510591 chr11_68510591 71,540,880 

2170 CTTTTCACCTTCCGGACCCA  Exon 61 20 PCR_F 2171 

2171 /5Biosg/AGGAAGCACGCAGGTCCAAC 
Exon 61-
3UTR 20 PCR_R_biotin 2170 

2172 GAAGCAGTACCGCCT Exon 61 15 

116 
Pyro_primer 
(forward) 

2170-
2171 

COL27A1_exon61_SNP68546454 chr11_68546454 71,576,758 

2173 /5Biosg/CCTGGGAAAGAGGTGAGAGAAGG 
Exon 61-
3UTR 23 PCR_F_biotin 2174 

2174 TTCACAGTGGGAGGTAGCTAGCA 
Exon 61-
3UTR 23 PCR_R 2173 

2175 ATCCCACCCTCTGGC 
Exon 61-
3UTR 15 

117 

Pyro_primer 
(reverse) 

2173-
2174 

COL27A1_exon61_SNP68547035 chr11_68547035 71,577,339 
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Supplement Table 3.6. Homozygosity block in the affected dogs. Genotype calls are denoted as AA, AB or BB. The homozygous 

block observed in 18 affected dogs is boxed. Dogs 22 and 23 from the affected group were not used in the GWAS due to unclear 

phenotype. 
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Supplement Table 3.7. LD block under autosomal dominant with incomplete penetrance mode of inheritance model. Boxed is the LD 
interval. Dog 21 has a different haplotype not shared with any of the affected. In the control group, dogs 2,3,5-8,10-14, 16 and 17 are 
heterozygous. [AA] is homozygouse adenine. AA is homozygous to one allele denoted on the SNP array as A (compare to B- the 
alternate allele). In blue are new SNPs that were not on the SNP array and define the LD block. 
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Supplement Table 3.8. Number of dogs and breeds screened for AKNA- exon 3 SNP at position 
71,624,795. Part of this group was also genotyped for the deletion in intron 4 at position 
71,618,401-421. 
 
 
Number Breed Number of dogs 
1 American Cocker Spaniel 5 
2 American Eskimo 5 
3 Australian Cattle dog 13 
4 Australian Shepherd 5 
5 Basenji 5 
6 Berger Picard 5 
7 Border Collie 6 
8 Borzoi 39 
9 Chesapeake Bay Retriever 4 
10 Chinese Crested 11 
11 Corgi, Welsh Pembroke 4 
12 Elkhound 1 
13 English Cocker Spaniel 13 
14 English Mastiff 1 
15 English Springer Spaniel 5 
16 Entlebucher Mountain Dog 5 
17 Glen of Imaal Terrier 9 
18 Golden Retriever 7 
19 Gordon Setter 5 
20 Greyhound 9 
21 Ibizan hound 2 
22 Irish Wolfhound 14 
23 Kuvasz 2 
24 Labrador Retriever 5 
25 Miniature Pinscher 8 
26 Nova Scotia Duck Tolling Retreiver 5 
27 Old English Sheepdog 9 
28 Papilion 6 
29 Pomeranian 8 
30 Portuguese Water Dog 6 
31 Shetland Sheepdog 8 
32 Siberian Husky 5 
33 Soft Coated Wheaton Terrier 5 
34 Tibetan Terrier 5 
35 Toy Manchester Terrier 2 
36 Whippet 22 
 Total 269 
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Supplement Table 3.9. SNPs identified in the LD interval that have the potential to be causative 
of IGPRA. 
 

IG73 (F1 
heterozygous 

dog) 

Normal dog Affected dog Location Reference 
allele 

Alternate 
allele 

Genotypea 
Alleles 
countsb Genotypea 

Alleles 
countsb Genotypea 

Alleles 
countsb 

68,317,690 T C 1/1 0,6 0/0 6,0 1/1 0,9 
68,317,704 C T 1/1 0,7 0/0 6,0 1/1 0,9 
68,318,054 T G 1/1 0,9 0/0 7,0 1/1 0,7 
68,318,079 C G 1/1 0,7 0/0 6,0 1/1 0,6 
68,318,088 T C 1/1 0,7 0/0 5,0 1/1 0,8 
68,318,157 A T 1/1 0,6 0/0 3,0 1/1 0,12 
68,319,399 G A 1/1 0,10 0/1 5,1 1/1 0,18 
68,319,646 T G 1/1 0,5 0/0 5,0 1/1 0,11 
68,319,656 A G 1/1 0,4 0/0 5,0 1/1 0,13 
68,319,900 A G 1/1 0,3 0/0 7,0 1/1 0,9 
68,319,959 C T 1/1 0,5 0/0 7,0 1/1 0,5 
68,319,984 A G 1/1 0,7 0/0 5,0 1/1 0,3 
68,320,066 A G 1/1 0,7 0/0 4,0 1/1 0,5 
68,320,147 C T 1/1 0,1 0/0 5,0 1/1 0,8 
68,320,148 A G 1/1 0,1 0/0 3,0 1/1 0,8 
68,320,207 C A 1/1 0,3 0/0 3,0 1/1 0,8 
68,320,348 T G 1/1 0,9 0/0 4,0 1/1 0,10 
68,320,349 A T 1/1 0,9 0/0 5,0 1/1 0,10 
68,320,376 A T 1/1 0,7 0/0 3,0 1/1 0,8 
68,320,451 C T 1/1 0,8 0/0 7,0 1/1 1,6 
68,321,029 G A 1/1 0,15 0/0 10,0 1/1 0,20 
68,321,161 C A 1/1 0,11 0/0 8,0 1/1 0,7 
68,321,173 T A 1/1 0,13 0/0 8,0 1/1 0,7 
68,322,467 T C 1/1 0,15 0/0 11,0 1/1 0,21 
68,322,883 A T 1/1 2,5 0/0 5,0 1/1 0,13 
68,323,301 T A 1/1 0,5 0/0 14,0 1/1 0,12 
68,323,310 T G 1/1 0,7 0/0 14,0 1/1 0,11 
68,323,312 T C 1/1 0,7 0/0 13,0 1/1 0,11 
68,323,566 T C 1/1 0,14 0/0 10,0 1/1 0,8 
68,323,658 T C 1/1 0,10 0/0 12,0 1/1 0,12 
68,323,746 T G 1/1 0,12 0/0 11,0 1/1 0,9 
68,323,946 T A 1/1 0,8 0/0 13,0 1/1 0,3 
68,323,947 T A 1/1 0,8 0/0 12,0 1/1 0,3 
68,324,835 T A 1/1 0,7 0/0 5,0 1/1 0,15 
68,324,854 A C 1/1 0,6 0/0 5,0 1/1 0,13 
68,325,555 C T 1/1 0,14 0/0 4,0 1/1 0,10 
68,328,583 A C 1/1 0,10 0/0 8,0 1/1 0,7 
68,328,584 G A 1/1 0,10 0/0 8,0 1/1 0,7 



	
  

	
   100	
  

68,333,381 T C 1/1 0,4 0/0 5,0 1/1 0,10 
68,334,388 C T 1/1 0,8 0/0 6,0 1/1 0,10 
68,334,405 C T 1/1 0,7 0/0 6,0 1/1 0,14 
68,334,864 G T 1/1 0,3 0/0 5,0 1/1 0,3 
68,335,122 G C 1/1 0,1 ./.  1/1 0,1 
68,335,501 A G 1/1 0,1 ./.  1/1 0,2 
68,337,445 C T 1/1 0,1 0/0 2,0 1/1 0,4 
68,337,534 C G 1/1 0,2 0/0 3,0 1/1 0,4 
68,337,768 G C 1/1 0,2 0/0 2,0 1/1 0,4 
68,338,478 A G 1/1 0,6 0/0 13,0 1/1 0,7 
68,338,634 C A 1/1 0,3 0/0 5,0 1/1 0,4 
68,338,658 A G 1/1 0,1 0/0 5,0 1/1 0,1 
68,338,693 A C 1/1 0,1 0/0 2,0 1/1 0,1 
68,338,922 T C 1/1 0,3 0/0 2,0 ./.  
68,338,941 T C 1/1 0,2 0/0 2,0 ./.  
68,339,094 T C 1/1 0,3 0/0 4,0 1/1 0,2 
68,339,327 A T 1/1 0,7 0/0 3,0 1/1 0,4 
68,339,639 T C 1/1 0,1 0/0 5,0 1/1 0,4 
68,339,743 T C 1/1 0,2 0/0 3,0 1/1 0,3 
68,339,749 T C 1/1 0,2 0/0 4,0 1/1 0,3 
68,339,772 A G 1/1 0,2 0/0 4,0 1/1 0,3 
68,340,011 T C 1/1 0,2 0/0 2,0 1/1 0,7 
68,340,119 T C 1/1 0,9 0/0 7,0 1/1 0,9 
68,340,134 G A 1/1 0,9 0/0 3,0 1/1 1,9 
68,340,594 C A 1/1 0,10 0/0 6,0 1/1 0,7 
68,340,942 G A 1/1 0,4 0/0 3,0 1/1 0,8 
68,341,349 T A 1/1 0,9 0/0 15,0 1/1 0,11 
68,341,368 G A 1/1 0,6 0/0 16,0 1/1 0,16 
68,341,410 A G 1/1 0,9 0/0 17,0 1/1 0,9 
68,341,793 T C 1/1 0,10 0/0 8,0 1/1 0,10 
68,342,037 G A 1/1 0,4 0/0 14,0 1/1 0,5 
68,342,056 G A 1/1 0,5 0/0 10,0 1/1 0,8 
68,342,362 C G 1/1 0,8 0/0 6,0 1/1 0,18 
68,342,753 C A 1/1 0,9 0/0 7,0 1/1 0,14 
68,342,799 A G 1/1 0,9 0/0 6,0 1/1 0,18 
68,342,933 G A 1/1 0,5 0/0 10,0 1/1 1,11 
68,343,259 C G 1/1 0,10 0/0 9,0 1/1 0,7 
68,343,327 C T 1/1 0,8 0/0 6,0 1/1 0,13 
68,344,047 A G 1/1 0,8 0/0 8,0 1/1 0,7 
68,344,432 C A 1/1 0,10 0/0 6,0 1/1 0,10 
68,344,535 G A 1/1 0,6 0/0 9,1 1/1 0,13 
68,344,657 G T 1/1 0,4 0/0 4,0 1/1 0,3 
68,344,872 C T 1/1 0,10 0/0 2,0 1/1 0,11 
68,345,206 A G 1/1 0,5 0/0 6,0 1/1 0,6 
68,345,244 T C 1/1 0,4 0/0 6,0 1/1 0,10 
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68,345,320 A G 1/1 0,8 0/0 13,0 1/1 0,12 
68,345,374 C T 1/1 0,10 0/0 9,0 1/1 0,15 
68,345,652 A G 1/1 0,6 0/0 11,0 1/1 0,5 
68,345,809 T C 1/1 0,5 0/0 2,0 1/1 0,9 
68,345,839 A G 1/1 0,7 0/0 5,0 1/1 0,12 
68,346,457 T C 1/1 0,4 0/0 1,0 1/1 0,11 
68,346,520 C T 1/1 0,3 0/0 2,0 1/1 0,12 
68,346,830 C T 1/1 0,4 0/0 5,0 1/1 0,6 
68,346,844 T A 1/1 0,4 0/0 6,0 1/1 0,6 
68,346,858 A G 1/1 0,4 0/0 6,0 1/1 0,5 
68,346,901 T C 1/1 0,2 0/0 12,0 1/1 0,2 
68,347,388 G T 1/1 0,5 0/0 1,0 1/1 0,5 
68,347,402 A G 1/1 0,4 0/0 2,0 1/1 0,5 
68,347,562 T C 1/1 0,7 0/0 6,0 1/1 0,6 
68,347,747 T G 1/1 0,6 0/0 8,0 1/1 0,15 
68,347,781 T C 1/1 0,8 0/0 5,0 1/1 0,14 
68,348,161 G C 1/1 0,2 0/0 5,0 1/1 0,3 
68,348,188 T C 1/1 0,2 0/0 3,0 1/1 0,3 
68,348,732 C T 1/1 0,7 0/0 8,0 1/1 0,10 
68,348,789 A G 1/1 0,2 0/0 7,0 1/1 0,6 
68,348,842 C T 1/1 0,5 0/0 6,0 1/1 0,3 
68,349,117 T C 1/1 0,7 0/0 7,0 1/1 0,3 
68,349,222 A T 1/1 0,9 0/0 4,0 1/1 0,5 
68,349,328 T C 1/1 0,2 0/0 5,0 1/1 0,5 
68,349,703 A G 1/1 0,5 0/0 2,0 1/1 0,9 
68,349,717 T C 1/1 0,8 0/0 2,0 1/1 0,10 
68,349,921 G A 1/1 0,4 0/0 2,0 1/1 0,8 
68,350,238 G A 1/1 0,3 0/0 4,0 1/1 0,3 
68,350,289 T C 1/1 0,5 0/0 4,0 1/1 0,2 
68,350,295 G T 1/1 0,6 0/0 5,0 1/1 0,3 
68,350,396 T C 1/1 0,4 0/0 4,0 1/1 0,2 
68,350,409 C T 1/1 0,5 0/0 5,0 1/1 0,3 
68,350,563 C T 1/1 0,1 0/0 5,0 1/1 0,1 
68,350,938 A G 1/1 0,2 ./.  1/1 0,4 
68,350,955 G A 1/1 0,1 ./.  1/1 0,3 
68,351,005 C G 1/1 0,2 0/0 3,0 1/1 0,3 
68,351,027 C A 1/1 0,2 0/0 3,0 1/1 0,5 
68,351,209 G A 1/1 0,1 0/0 1,0 1/1 0,1 
68,351,220 T G 1/1 0,1 0/0 1,0 1/1 0,1 
68,351,303 T C 1/1 0,1 0/0 5,0 1/1 0,7 
68,351,345 G A 1/1 0,2 0/0 4,0 1/1 0,4 
68,351,360 G A 1/1 0,2 0/0 4,0 1/1 0,4 
68,351,367 T C 1/1 0,2 0/0 4,0 1/1 0,4 
68,351,379 G A 1/1 0,2 0/0 2,0 1/1 0,4 
68,351,526 G A 1/1 0,4 0/0 1,0 1/1 0,3 
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68,351,582 G C 1/1 0,3 0/0 1,0 1/1 0,5 
68,351,821 G A 1/1 0,3 0/0 1,0 1/1 0,4 
68,356,000 T C 1/1 0,8 0/0 7,0 1/1 0,9 
68,356,673 A G 1/1 0,9 0/0 7,0 1/1 1,4 
68,357,477 A G 1/1 0,8 0/0 2,0 1/1 0,7 
68,357,573 C T 1/1 0,9 0/0 4,0 1/1 0,11 
68,357,584 C T 1/1 0,10 0/0 4,0 1/1 0,11 
68,357,827 C T 1/1 0,2 0/0 4,0 1/1 0,7 
68,358,060 A T 1/1 0,7 0/0 2,0 1/1 0,18 
68,358,243 A G 1/1 0,5 0/0 2,0 1/1 0,9 
68,358,379 A G 1/1 0,4 0/0 1,0 1/1 0,7 
68,358,465 G A 1/1 0,7 0/0 2,0 1/1 0,3 
68,358,621 C T 1/1 0,5 0/0 1,0 1/1 0,4 
68,358,736 C T 1/1 0,2 0/0 2,0 1/1 0,3 
68,358,800 G T 1/1 0,3 0/0 1,0 1/1 0,4 
68,359,245 A G 1/1 0,5 0/0 14,0 1/1 0,5 
68,359,326 T C 1/1 0,10 0/0 8,0 1/1 0,7 
68,359,387 C T 1/1 0,7 0/0 7,0 1/1 0,7 
68,359,412 A G 1/1 0,7 0/0 5,0 1/1 0,8 
68,359,422 T C 1/1 0,8 0/0 5,0 1/1 0,7 
68,359,526 C T 1/1 0,4 0/0 5,0 1/1 0,5 
68,359,622 T C 1/1 0,10 0/0 8,0 1/1 0,7 
68,359,671 C T 1/1 0,10 0/0 4,0 1/1 0,10 
68,359,760 C G ./.  0/0 2,0 1/1 0,6 
68,359,773 C T ./.  0/0 2,0 1/1 0,5 
68,359,783 G A 1/1 0,1 0/0 1,0 1/1 0,7 
68,360,443 C G 1/1 0,3 0/0 2,0 1/1 0,4 
68,360,627 C T 1/1 0,4 0/0 8,0 1/1 0,8 
68,360,669 A G 1/1 0,3 0/1 10,1 1/1 0,10 
68,360,696 T C 1/1 0,1 0/1 8,1 1/1 0,9 
68,361,086 C G ./.  ./.  1/1 0,2 
68,361,385 G T 1/1 0,2 0/0 3,0 1/1 0,2 
68,361,425 C A 1/1 0,2 0/0 1,0 1/1 1,2 
68,362,558 C T 1/1 0,5 ./.  1/1 0,4 
68,362,585 G T 1/1 0,3 ./.  1/1 0,5 
68,362,767 G A 1/1 0,5 0/0 2,0 1/1 0,11 
68,363,146 T C 1/1 0,3 ./.  1/1 0,1 
68,364,390 C T 1/1 0,3 0/0 4,0 1/1 0,6 
68,364,646 C T 1/1 0,5 0/0 4,0 1/1 0,8 
68,364,814 C T 1/1 0,4 0/0 5,0 1/1 0,5 
68,364,912 G A 1/1 0,5 0/0 4,0 1/1 0,7 
68,365,034 G A 1/1 0,3 0/0 5,0 1/1 0,4 
68,365,055 G A 1/1 0,6 0/0 5,0 1/1 0,6 
68,367,586 A G 1/1 0,2 0/0 3,0 1/1 0,3 
68,370,040 G A 1/1 0,9 0/0 6,0 1/1 0,15 
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68,370,526 A G 1/1 0,6 0/0 4,0 1/1 0,11 
68,370,984 C T 1/1 0,2 0/0 4,0 1/1 0,8 
68,371,086 C T 1/1 0,11 0/0 6,0 1/1 0,13 
68,371,164 A T 1/1 0,7 0/0 7,0 1/1 0,7 
68,371,564 T G 1/1 0,5 0/0 4,0 1/1 0,10 
68,375,183 G A ./.  0/0 1,0 1/1 0,5 
68,375,952 C T 1/1 0,7 0/0 4,0 1/1 0,9 
68,378,360 C T 1/1 0,12 0/0 5,0 1/1 0,7 
68,389,284 T C 1/1 0,4 0/0 9,0 1/1 0,5 
68,389,455 G A 1/1 0,3 0/0 4,0 1/1 0,6 
68,397,694 T C 1/1 0,5 0/0 5,0 1/1 0,8 
68,413,798 A G ./.  ./.  1/1 0,2 
68,413,799 A C ./.  ./.  1/1 0,2 
68,413,800 A G ./.  ./.  1/1 0,2 
68,416,922 G A 1/1 0,4 0/0 3,0 1/1 0,9 
68,418,424 C T 1/1 0,13 0/0 2,0 1/1 1,10 
68,418,565 G A 1/1 0,5 ./.  1/1 0,10 
68,419,840 T C 1/1 0,2 ./.  1/1 0,3 
68,419,888 G A 1/1 0,2 ./.  1/1 0,3 
68,427,362 C G 1/1 0,9 0/0 6,0 1/1 0,5 
68,427,367 A C 1/1 0,9 0/0 4,0 1/1 0,4 
68,428,111 A G 1/1 0,7 0/0 10,0 1/1 0,4 
68,428,119 A T 1/1 0,6 0/0 9,0 1/1 0,4 
68,429,781 G A ./.  0/0 7,0 1/1 0,12 
68,429,865 A G 1/1 0,5 0/0 7,1 1/1 0,14 
68,429,992 C T 1/1 0,3 0/1 8,1 1/1 0,17 
68,430,343 C T 1/1 0,5 0/0 7,0 1/1 0,6 
68,430,655 C G 1/1 0,6 0/0 1,0 1/1 0,5 
68,430,690 G T 1/1 0,5 0/0 1,0 1/1 0,6 
68,430,724 C T 1/1 0,3 0/0 1,0 1/1 0,3 
68,431,413 C T 1/1 0,11 0/0 4,0 1/1 0,7 
68,431,481 G A 1/1 0,8 0/0 5,0 1/1 0,3 
68,431,578 T C 1/1 0,4 0/0 9,0 1/1 0,7 
68,431,620 T C ./.  0/0 8,0 1/1 0,5 
68,432,110 T A 1/1 0,7 ./.  1/1 0,5 
68,447,605 G A 0/1 1,10 0/0 9,0 1/1 0,10 
68,452,062 C T 1/1 0,5 0/0 8,0 1/1 0,11 
68,453,305 C T 1/1 0,6 0/0 8,0 1/1 0,3 
68,455,000 C T 1/1 0,5 0/0 3,0 1/1 0,8 
68,456,319 T C 1/1 0,13 0/0 5,0 1/1 0,2 
68,458,749 C T 0/1 3,2 0/0 4,0 1/1 0,13 
68,461,635 T C 1/1 0,7 0/0 2,0 1/1 0,5 
68,462,663 C T 1/1 0,5 0/0 3,0 1/1 0,11 
68,465,132 C T 0/1 5,3 0/0 1,0 1/1 0,7 
68,466,760 C G 1/1 1,2 0/0 7,0 1/1 0,10 
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68,467,124 C T 0/1 6,1 0/0 4,0 1/1 0,10 
68,468,160 G A 0/0 3,1 ./.  1/1 0,6 
68,469,058 C A 0/1 7,1 0/0 2,1 1/1 0,3 
68,469,105 C G 1/1 0,6 0/0 4,0 1/1 0,3 
68,469,267 C T 0/1 4,3 0/0 5,0 1/1 0,1 
68,470,478 C T 1/1 0,8 0/0 5,0 1/1 0,6 
68,472,696 A T 0/1 4,3 0/0 9,0 1/1 0,10 
68,472,715 A C 1/1 1,2 0/0 6,0 1/1 0,8 
68,472,795 T C 0/1 2,1 0/0 3,0 1/1 0,11 
68,472,804 T C 0/1 2,1 0/0 4,0 1/1 0,11 
68,473,119 G A 0/1 3,3 0/0 6,0 1/1 0,8 
68,473,268 T C 0/1 2,1 0/0 5,0 1/1 0,13 
68,475,417 G A 1/1 0,11 0/0 4,0 1/1 0,9 
68,475,589 G A 1/1 0,9 0/0 11,0 1/1 0,13 
68,476,026 C A 1/1 0,6 0/0 6,0 1/1 0,5 
68,478,047 T C 1/1 0,3 0/0 4,0 1/1 0,4 
68,478,536 C T 1/1 0,5 0/0 3,0 1/1 0,5 
68,478,735 C T 1/1 0,2 0/0 4,0 1/1 0,7 
68,479,093 C T 1/1 0,2 0/0 9,0 1/1 0,11 
68,479,546 C G 1/1 0,6 0/0 3,0 1/1 0,3 
68,481,860 C T 1/1 0,2 0/0 6,0 1/1 0,5 
68,483,358 A G 1/1 0,6 0/0 1,0 1/1 0,5 
68,484,044 C T 1/1 0,3 0/0 5,0 1/1 1,8 
68,485,091 C T 1/1 0,12 0/0 6,0 1/1 0,9 
68,485,254 C T 1/1 0,5 0/0 11,0 1/1 0,5 
68,485,540 C T 1/1 0,7 0/0 4,0 1/1 0,5 
68,485,600 C T 1/1 0,8 0/0 5,0 1/1 0,7 
68,485,747 T C 1/1 0,11 0/0 7,1 1/1 0,8 
68,485,757 C T 1/1 1,12 0/0 7,0 1/1 0,8 
68,485,797 A T 1/1 0,12 0/0 5,0 1/1 0,6 
68,485,945 G T 1/1 1,4 ./.  1/1 1,4 
68,486,633 G C 0/1 3,3 0/0 5,0 1/1 1,5 
68,486,742 C G 1/1 0,4 0/0 5,0 1/1 0,5 
68,487,732 C T 0/0 4,0 0/0 6,0 1/1 0,3 
68,489,176 G A 1/1 0,4 0/0 4,0 1/1 0,5 
68,489,177 T A 1/1 0,4 0/0 4,0 1/1 0,5 
68,489,191 A G 1/1 0,4 0/0 3,0 1/1 0,5 
68,489,199 T C 1/1 0,3 0/0 2,0 1/1 0,6 
68,489,351 C T 0/1 4,2 0/0 5,0 1/1 0,4 
68,490,035 C T 0/1 2,3 0/0 5,0 1/1 0,15 
68,490,885 G A 1/1 0,3 0/0 9,0 1/1 0,5 
68,492,423 G A 0/1 5,2 0/0 5,0 1/1 1,8 
68,493,634 A C 0/1 5,2 0/0 7,0 1/1 0,3 
68,494,321 G C 0/1 4,2 0/0 10,0 1/1 0,6 
68,494,989 A G 0/1 5,4 0/0 9,0 1/1 0,16 
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68,496,142 T C ./.  0/0 1,0 1/1 0,8 
68,496,601 C T 0/1 4,3 0/0 5,0 1/1 0,6 
68,497,722 T C 0/1 5,3 0/0 6,0 1/1 0,6 
68,498,417 C G 0/1 1,4 0/0 5,0 1/1 0,3 
68,509,606 C G 0/1 2,1 0/0 4,0 1/1 0,3 
68,509,608 C A 0/1 3,1 0/0 4,0 1/1 0,3 
68,509,853 G A ./.  ./.  1/1 0,3 
68,509,889 C T ./.  ./.  1/1 0,5 
68,509,962 C T 0/0 2,0 0/0 3,0 1/1 1,7 
68,510,591 C T ./.  0/0 4,0 1/1 0,6 
68,511,661 T G 0/0 1,0 ./.  1/1 0,3 
68,513,145 G A 0/1 4,1 0/0 3,0 1/1 0,7 
68,514,803 T C 0/1 3,5 0/0 4,0 1/1 0,13 
68,527,629 C T 0/1 4,8 0/0 4,0 1/1 0,1 
68,527,639 C T 0/1 4,8 0/0 4,0 1/1 0,6 
68,530,931 G A 1/1 1,5 0/0 4,0 1/1 0,8 
68,531,510 T C 0/1 4,2 1/1 1,1 1/1 0,8 
68,546,406 T C 1/1 0,2 ./.  1/1 0,8 
68,547,672 C T 0/1 1,1 0/0 8,0 1/1 1,18 
68,547,749 T C 0/1 2,4 0/0 8,0 1/1 0,20 
68,548,204 C T 0/1 1,1 0/0 1,0 1/1 0,2 
68,548,517 A G ./.  ./.  1/1 0,9 
68,548,519 C G ./.  ./.  1/1 0,10 
68,548,531 G C ./.  ./.  1/1 3,7 
68,548,737 G A 0/1 4,5 0/0 6,0 1/1 0,6 
68,549,160 G C 0/1 1,5 0/0 5,0 1/1 0,12 
68,549,281 G C 1/1 0,6 0/0 4,0 1/1 0,5 
68,549,306 A T 1/1 0,5 0/0 3,0 1/1 0,4 
68,549,354 T C 0/1 1,4 0/0 2,0 1/1 0,3 
68,549,396 A G 0/1 3,2 0/0 6,0 1/1 0,6 
68,549,415 C A 0/1 4,2 0/0 6,0 1/1 0,6 
68,549,533 C T 0/1 3,4 0/0 5,0 1/1 0,11 
68,550,237 A G 0/1 1,3 0/0 4,0 1/1 0,9 
68,550,292 C T 0/1 2,5 0/0 7,0 1/1 0,11 
68,552,042 C T 0/1 1,3 0/0 4,0 1/1 0,9 
68,552,043 C G 0/1 1,3 0/0 4,0 1/1 0,9 
68,552,213 T C 0/1 1,3 0/0 5,0 1/1 0,2 
68,552,593 G A 0/1 5,7 0/0 3,0 1/1 0,7 
68,552,609 C T 0/1 5,6 0/0 4,0 1/1 0,6 
68,552,673 A C 0/1 7,3 0/0 2,1 1/1 0,11 
68,554,763 C T 1/1 0,1 0/0 6,0 1/1 0,6 
68,555,385 T C 1/1 0,2 0/0 2,1 1/1 0,1 
68,555,826 G A 1/1 0,1 0/0 4,0 1/1 0,1 
68,559,477 A G 1/1 0,3 ./.  1/1 0,2 
68,559,881 T C 0/1 1,1 ./.  1/1 0,9 
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68,560,024 C T 0/1 2,3 0/0 4,0 1/1 0,8 
68,566,184 G A 0/1 4,1 0/0 4,0 1/1 0,6 
68,566,402 C T 1/1 0,7 0/0 1,0 1/1 0,6 
68,566,636 T C 1/1 0,4 0/0 5,0 1/1 0,1 
68,566,680 G A 1/1 0,2 0/0 8,0 1/1 0,5 
68,567,387 C T 1/1 0,2 0/0 3,0 1/1 0,9 
68,568,735 C T 0/1 1,4 0/0 5,0 1/1 0,14 
68,574,189 C A 1/1 0,1 0/0 4,0 1/1 0,2 
68,575,321 G A 0/1 4,7 0/0 2,0 1/1 0,7 
68,575,350 T C 1/1 1,13 0/0 2,0 1/1 0,8 
68,575,477 C G 1/1 0,5 0/0 5,0 1/1 0,12 
68,575,502 C T 1/1 0,4 0/0 3,0 1/1 0,10 
68,575,770 G A 1/1 0,2 0/0 8,0 1/1 1,5 
68,575,934 T G 1/1 0,5 0/0 6,0 1/1 0,15 
68,576,010 T C 1/1 0,4 ./.  1/1 0,6 
68,576,518 G A 0/1 6,4 0/0 12,0 1/1 0,7 
68,576,764 C T 0/1 9,4 0/0 9,0 1/1 0,10 
68,577,616 C T 1/1 1,1 0/0 1,0 1/1 0,2 
68,577,629 G A 1/1 0,2 0/0 1,0 1/1 0,2 
68,577,649 G A 1/1 0,4 0/0 1,0 1/1 0,3 
68,577,690 C T 1/1 0,5 0/0 8,0 1/1 0,5 
68,578,674 T C 0/1 1,3 0/0 2,0 1/1 0,8 
68,578,990 C T 0/1 2,3 0/0 3,0 1/1 0,8 
68,579,013 G A 0/1 2,2 0/0 3,0 1/1 0,10 
68,579,702 C G 0/1 2,1 0/0 1,0 1/1 0,6 
68,580,200 C T 0/1 3,2 0/0 3,0 1/1 0,8 
68,580,248 G A 0/1 2,1 0/0 1,0 1/1 0,6 
68,580,425 A T 1/1 2,1 0/0 1,0 1/1 0,2 
68,580,940 C G 0/1 4,4 0/0 4,0 1/1 0,5 
68,584,468 T C 1/1 0,2 ./.  1/1 0,5 
68,584,470 T C 1/1 0,2 ./.  1/1 0,5 
68,584,492 C A 1/1 0,3 ./.  1/1 0,3 
68,584,498 C G 1/1 0,3 ./.  1/1 0,3 
68,584,505 C G 1/1 0,2 ./.  1/1 0,3 
68,584,511 C G 1/1 0,2 ./.  1/1 0,2 
68,589,035 T C 1/1 0,5 ./.  1/1 0,2 
68,594,491 C T 1/1 0,2 0/0 5,0 1/1 0,13 
68,598,729 C T 0/1 2,4 0/0 4,0 1/1 1,7 
68,598,830 G A 0/1 4,11 0/0 3,0 1/1 0,5 
68,599,310 A G 0/1 4,3 0/0 6,0 1/1 0,6 
68,599,523 G C 0/1 2,1 0/0 4,0 1/1 0,5 
68,600,027 C T 0/1 1,7 0/0 10,0 1/1 0,13 
68,600,292 C T 1/1 0,4 0/0 2,0 1/1 0,6 
68,602,393 G C 0/1 3,1 0/0 7,0 1/1 0,12 
68,602,394 G C 0/1 3,1 0/0 7,0 1/1 0,12 
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68,602,930 C T 1/1 0,6 ./.  1/1 0,6 
68,603,010 A C 1/1 0,10 ./.  1/1 0,12 
68,603,033 C T 0/1 5,7 ./.  1/1 0,10 
 
 
a - 0 is the reference allele, 1 is the alternate allele. 0/0 is homozygous to the reference allele 
(only reference allele is observed in the reads), 0/1 is heterozygous (both alleles are observed in 
the reads) and 1/1 is homozygous to alternate allele (only alternate allele is observed in the 
reads). ./. = reads were not observed. 
b - The first number is the number of reads with the reference allele, and the second number is the 
number of reads with the alternate allele. 
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Supplement Table 3.10. Relative allele expression for informative dogs within the LD interval 

from RNA-seq data. 

 
+  First number is the counts of the reads with the reference allele, second number is the counts of reads with the alternate allele. 

* Dog is not informative for that SNP 

^ Risk haplotype was measured as sum of risk alleles devided by the total number of reads in IG dogs. In the control dogs the 

number was calculated as the sum of the minor alleles devided by the total number of reads. 

In red are the number of reads of the risk allele. 

? The real genotype of the dog based on the reads was not clear 
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Supplement Table 3.11. Cuffdiff analysis of RNA-seq reads between control dogs and IG heterozygous dogs. The list includes only the genes with statistically significant 
                        difference in expression between the two groups. In bold is the higher number of the two.

Number gene_id gene locus value_1a value_2b
log2(fold_
change) test_statc p_valued q_valuee

1 ENSCAFG00000023827 CRBB2_CANFA chr26:19298946-19308447 1.20963 0 - nan 0.00005f 0.0110218
2 ENSCAFG00000001705 MB chr10:28574067-28583590 0 1.04489 inf nan 0.00005f 0.0110218
3 ENSCAFG00000008062 - chr8:8320212-8323009 0 17.9946 inf nan 0.00005f 0.0110218
4 ENSCAFG00000028985 - chr1:111083447-111083951 0 5.22049 inf nan 0.00005f 0.0110218
5 ENSCAFG00000000791 NOTCH4 chr12:1586323-1608575 1.2213 6.92773 2.50397 5.79464 5.00E-05 0.0110218
6 ENSCAFG00000010068 TNNI2 chr18:46077957-46079538 0.688972 3.87324 2.49103 4.04836 5.00E-05 0.0110218
7 ENSCAFG00000016543 MYLPF chr6:17719682-17721750 3.0976 14.7401 2.25052 5.48009 5.00E-05 0.0110218
8 ENSCAFG00000018175 CAPN6 chrX:84351484-84377324 0.251976 1.15798 2.20025 3.34512 5.00E-05 0.0110218
9 ENSCAFG00000031904 MKRN2-AS1 chr20:6027419-6034350 0.618453 2.60856 2.07652 3.50834 5.00E-05 0.0110218
10 ENSCAFG00000011417 RPL4 chr27:21855204-21856473 4.82751 17.8928 1.89003 4.31819 5.00E-05 0.0110218
11 ENSCAFG00000000296 GPR126 chr1:33969265-34107014 0.757815 2.38019 1.65116 3.86754 5.00E-05 0.0110218
12 ENSCAFG00000008253 ACTA1 chr4:9812781-9815574 2.35588 6.48882 1.46169 3.23504 5.00E-05 0.0110218
13 ENSCAFG00000029478 - chr9:10287951-10304725 5.76627 15.1094 1.38973 4.20572 5.00E-05 0.0110218
14 ENSCAFG00000016065 - chrX:44508996-44509863 49.836 121.907 1.29052 4.55046 5.00E-05 0.0110218
15 ENSCAFG00000016786 DNAH2 chr5:32600483-32659183 0.740779 1.63042 1.13813 2.6472 5.00E-05 0.0110218
16 ENSCAFG00000014201 DNAAF2 chr8:26251159-26295095 4.63608 9.78829 1.07815 2.76583 5.00E-05 0.0110218
17 ENSCAFG00000015078 FAM184B chr3:62753439-62887350 2.38213 5.0254 1.07698 2.91737 5.00E-05 0.0110218
18 ENSCAFG00000016302 VWCE chr18:55104014-55125461 3.81192 7.89682 1.05076 2.79413 5.00E-05 0.0110218
19 ENSCAFG00000013739 TET1 chr4:19768258-19889904 2.27243 4.57145 1.00842 2.57845 5.00E-05 0.0110218
20 ENSCAFG00000005194 PFKFB3 chr2:29732444-29748084 58.6269 114.273 0.962848 3.47457 5.00E-05 0.0110218
21 ENSCAFG00000018418 RHBDL3 chr9:40633359-40660779 25.6011 49.5661 0.953149 3.2839 5.00E-05 0.0110218
22 ENSCAFG00000006985 Q2EFX7_CANFA chr26:5315659-5476358 5.99268 11.0752 0.886055 2.48337 5.00E-05 0.0110218
23 ENSCAFG00000020254 NFAT5 chr5:80003597-80115099 4.54118 8.3556 0.879677 2.42235 5.00E-05 0.0110218
24 ENSCAFG00000004375 NUP210 chr20:3636670-3722019 3.68209 6.74686 0.873691 2.48661 5.00E-05 0.0110218
25 ENSCAFG00000004038 HIPK2 chr16:9090726-9244272 28.3184 51.801 0.871238 2.79822 5.00E-05 0.0110218
26 ENSCAFG00000016397 VPS13D chr2:83901305-84132453 24.8109 45.0315 0.85996 2.75266 5.00E-05 0.0110218
27 ENSCAFG00000031504 UBAP1L chr30:29475497-29489123 81.1432 142.778 0.815232 3.12021 5.00E-05 0.0110218
28 ENSCAFG00000011477 BSN chr20:39612348-39628313 4.16641 7.27205 0.803557 2.3408 5.00E-05 0.0110218
29 ENSCAFG00000009901 - chr38:1474699-1542627 14.7048 25.1243 0.772789 2.40359 5.00E-05 0.0110218
30 ENSCAFG00000025128 TRAC chr8:2943108-2952167 130.913 222.552 0.765537 3.01681 5.00E-05 0.0110218
31 ENSCAFG00000018849 SNX29 chr6:30317097-30822479 14.9604 24.6087 0.718015 2.32246 5.00E-05 0.0110218
32 ENSCAFG00000006193 - chr16:27598816-27614612 39.8399 23.6591 -0.751817 -2.52272 5.00E-05 0.0110218
33 ENSCAFG00000008873 - chr26:9970455-9975820 255.426 149.951 -0.768418 -3.006 5.00E-05 0.0110218
34 ENSCAFG00000023759 MT2_CANFA chr2:59607925-59608825 179.274 102.14 -0.811619 -4.39619 5.00E-05 0.0110218
35 ENSCAFG00000015239 C1orf114 chr7:29141745-29173572 83.2129 47.3228 -0.814271 -2.85471 5.00E-05 0.0110218
36 ENSCAFG00000020110 Q4W6L5_CANFA chr6:54709521-54720797 44.7585 25.2714 -0.824653 -2.76379 5.00E-05 0.0110218
37 ENSCAFG00000012904 CDK1 chr4:12885999-12898957 70.5831 38.1764 -0.886641 -3.30066 5.00E-05 0.0110218
38 ENSCAFG00000017664 SLC14A1 chr7:45378306-45408131 15.0399 7.84565 -0.938832 -2.81636 5.00E-05 0.0110218
39 ENSCAFG00000032483 LY96 chr29:22493775-22515117 34.2359 17.6329 -0.95724 -3.38232 5.00E-05 0.0110218
40 ENSCAFG00000007539 ADML_CANFA chr21:33472109-33474520 12.7947 6.43024 -0.992601 -2.78398 5.00E-05 0.0110218
41 ENSCAFG00000004130 NEBL chr2:12126777-12229218 17.9102 8.15899 -1.13432 -3.38298 5.00E-05 0.0110218
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42 ENSCAFG00000028905 CDKN2C chr15:10218823-10225053 55.7227 24.1923 -1.20372 -3.82904 5.00E-05 0.0110218
43 ENSCAFG00000007375 PARP4 chr25:18447412-18538508 5.03721 1.7896 -1.49299 -3.78555 5.00E-05 0.0110218
44 ENSCAFG00000004404 - chr19:22979380-23044911 1.58121 0.551966 -1.51838 -3.09268 5.00E-05 0.0110218
45 ENSCAFG00000007199 - chr27:2221688-2229112 11.5803 3.96361 -1.54679 -4.01687 5.00E-05 0.0110218
46 ENSCAFG00000029483 C17orf67 chr9:31635471-31654119 62.1904 21.1012 -1.55937 -6.38461 5.00E-05 0.0110218
47 ENSCAFG00000000538 VIP_CANFA chr1:42941848-42950730 4.86565 1.5423 -1.65754 -3.45848 5.00E-05 0.0110218
48 ENSCAFG00000025465 TRPV6 chr16:6691520-6705704 2.92284 0.893114 -1.71045 -3.26907 5.00E-05 0.0110218
49 ENSCAFG00000013763 Q2LC20_CANFA chr20:42231834-42263250 3.97622 1.17822 -1.75479 -3.77628 5.00E-05 0.0110218
50 ENSCAFG00000000492 - chr12:1013177-1021690 3.55046 1.02932 -1.78632 -2.98578 5.00E-05 0.0110218
51 ENSCAFG00000023684 - chrX:121060226-121074003 1.9279 0.547474 -1.81617 -3.19666 5.00E-05 0.0110218
52 ENSCAFG00000006714 NLRP14 chr21:30722678-30756070 1.83171 0.501719 -1.86824 -3.20277 5.00E-05 0.0110218
53 ENSCAFG00000019134 PPL chr6:36497461-36541298 2.28724 0.581794 -1.97503 -4.14373 5.00E-05 0.0110218
54 ENSCAFG00000031664 KCNT2 chr38:3305568-3382572 3.37359 0.85451 -1.98111 -4.06635 5.00E-05 0.0110218
55 ENSCAFG00000002174 GADD45G chr1:96744757-96746752 11.1038 2.58121 -2.10494 -5.14077 5.00E-05 0.0110218
56 ENSCAFG00000017807 CRYM chr6:23657103-24217826 24.8682 4.75495 -2.3868 -4.47202 5.00E-05 0.0110218
57 ENSCAFG00000006798 RASL11A chr25:12315962-12318638 22.3406 3.53283 -2.66077 -6.23349 5.00E-05 0.0110218
58 ENSCAFG00000003176 DPY19L2 chr14:46787464-46881015 2.65667 0.375765 -2.82172 -4.90261 5.00E-05 0.0110218
59 ENSCAFG00000017810 ANKS4B chr6:23657103-24217826 14.7401 1.86649 -2.98135 -2.85372 5.00E-05 0.0110218
60 ENSCAFG00000031467 - chr14:22321435-22333226 0.166451 1.10504 2.73093 3.76508 1.00E-04 0.0177494
61 ENSCAFG00000011054 PLEKHG4B chr34:11991028-12042856 0.372462 1.09117 1.55072 2.78831 0.0001 0.0177494
62 ENSCAFG00000002086 TPM2 chr11:52213493-52219776 4.1969 10.0472 1.2594 2.96098 0.0001 0.0177494
63 ENSCAFG00000029782 LRRC14B chr34:11978120-11985313 0.633337 1.37096 1.11414 2.32659 0.0001 0.0177494
64 ENSCAFG00000001486 CPA5 chr14:6578484-6602924 6.41951 12.5292 0.964756 2.51603 0.0001 0.0177494
65 ENSCAFG00000010102 SEMA5A chr34:4783837-5082084 2.49432 4.84793 0.958718 2.4014 0.0001 0.0177494
66 ENSCAFG00000008728 TET3 chr17:48982557-49083545 3.29968 5.91888 0.843 2.38692 0.0001 0.0177494
67 ENSCAFG00000017423 - chr20:49954858-49964416 30.5757 52.3138 0.774807 2.60342 0.0001 0.0177494
68 ENSCAFG00000012713 KIF1A chr25:50859012-50923122 54.7919 88.7482 0.695756 2.25231 0.0001 0.0177494
69 ENSCAFG00000004115 KIAA1549 chr16:9696591-9834339 10.8852 17.6054 0.693652 2.19115 0.0001 0.0177494
70 ENSCAFG00000005788 LAMTOR1 chr21:25981307-25986399 223.401 127.622 -0.807757 -4.01745 0.0001 0.0177494
71 ENSCAFG00000030087 KIAA0101 chr30:28835064-28847133 16.0347 9.13032 -0.812457 -2.42449 0.0001 0.0177494
72 ENSCAFG00000031808 - chr12:69982482-69987647 19.5553 11.0961 -0.817508 -2.5532 0.0001 0.0177494
73 ENSCAFG00000019120 - chr6:36388165-36402849 33.3592 18.2873 -0.86724 -2.67183 0.0001 0.0177494
74 ENSCAFG00000010559 SCGN chr35:23602237-23638101 0.453832 1.62812 1.84298 2.90861 0.00015 0.0244054
75 ENSCAFG00000030662 - chr8:72423344-72430357 0.479142 1.26572 1.40144 2.61226 0.00015 0.0244054
76 ENSCAFG00000010161 Q95KX1_CANFA chr25:37079872-37103255 4.08055 7.7625 0.927758 2.43304 0.00015 0.0244054
77 ENSCAFG00000002838 CCDC104 chr10:56374144-56403051 107.283 66.5037 -0.689919 -2.61688 0.00015 0.0244054
78 ENSCAFG00000029474 GADD45A chr6:77391624-77396500 67.3317 41.6368 -0.693426 -2.38804 0.00015 0.0244054
79 ENSCAFG00000009113 MT1_CANFA chr2:59602960-59604676 21.4034 11.5276 -0.892752 -2.69557 0.00015 0.0244054
80 ENSCAFG00000000996 FABP7 chr1:62084556-62088231 27.2359 11.7661 -1.21088 -4.33737 0.00015 0.0244054
81 ENSCAFG00000009877 ITGB6 chr36:5835307-5909634 0.245485 1.00717 2.0366 3.09065 0.0002 0.0284729
82 ENSCAFG00000004229 - chr19:21387334-21389006 1.2438 4.20193 1.75629 3.42786 2.00E-04 0.0284729
83 ENSCAFG00000031337 - chr9:17335270-17341774 6.64902 13.0362 0.971307 2.63542 0.0002 0.0284729
84 ENSCAFG00000031544 - chrUn_JH373476:43431-56878 6.94758 12.5058 0.848014 2.38296 0.0002 0.0284729
85 ENSCAFG00000032222 DLA-12 chr12:933311-936671 16.4384 28.9237 0.815181 2.57213 0.0002 0.0284729
86 ENSCAFG00000010692 KIAA2018 chr33:17949824-17994649 5.9698 10.0535 0.751941 2.26054 0.0002 0.0284729
87 ENSCAFG00000008199 FMN1 chr30:1781801-2184909 7.13286 11.9821 0.748325 2.23873 0.0002 0.0284729
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88 ENSCAFG00000005775 - chr17:25639733-25751938 9.18094 15.3251 0.739185 2.28845 0.0002 0.0284729
89 ENSCAFG00000011326 PRKCA chr9:13644530-14030778 63.3657 102.392 0.692325 2.4178 0.0002 0.0284729
90 ENSCAFG00000009659 HR chr25:35119991-35138180 12.5057 19.5347 0.643456 2.08639 0.0002 0.0284729
91 ENSCAFG00000004424 C3orf77 chr23:2009612-2086676 3.49914 1.88606 -0.891622 -2.207 0.0002 0.0284729
92 ENSCAFG00000024295 - chr35:24092006-24092663 0.955554 4.46507 2.22427 4.08206 0.00025 0.0341675
93 ENSCAFG00000004058 CABP5 chr1:108147294-108155999 229.011 374.813 0.710752 3.51242 0.00025 0.0341675
94 ENSCAFG00000030812 MRPL51 chr27:38497870-38502110 12.557 7.62125 -0.720394 -2.18942 0.00025 0.0341675
95 ENSCAFG00000028512 - chr31:29108349-29127830 14.8485 8.30609 -0.838075 -2.42566 0.00025 0.0341675
96 ENSCAFG00000011366 KCNB1 chr24:36025471-36119488 84.9956 137.733 0.696417 2.25255 0.0003 0.0390486
97 ENSCAFG00000018854 SEZ6 chr9:43121410-43166314 11.637 18.6497 0.680432 2.09438 0.0003 0.0390486
98 ENSCAFG00000011227 - chr25:44160225-44165426 75.7886 46.0941 -0.717399 -2.34554 0.0003 0.0390486
99 ENSCAFG00000031492 MRPL21 chr18:49094651-49104533 27.8634 16.9082 -0.720648 -2.32742 0.0003 0.0390486
100 ENSCAFG00000007857 SCRG1 chr25:23987090-23989934 45.7902 18.8876 -1.2776 -6.94652 0.0003 0.0390486
101 ENSCAFG00000001488 MDGA1 chr12:6660180-6717647 3.19957 5.64211 0.818356 2.21118 0.00035 0.0438849
102 ENSCAFG00000014434 RC3H1 chr7:25265846-25305007 4.8444 8.27719 0.772825 2.16467 0.00035 0.0438849
103 ENSCAFG00000013973 GFAP chr9:18569003-18579645 18.1663 11.2918 -0.685991 -2.12348 0.00035 0.0438849
104 ENSCAFG00000007047 MAL chr17:34977297-35000278 2.21698 0.446887 -2.31061 -3.44302 0.00035 0.0438849
105 ENSCAFG00000019195 C16orf71 chr6:36665594-36676041 1.51007 3.48157 1.20512 2.5106 0.0004 0.0492505
106 ENSCAFG00000025374 DEM1 chr15:2497652-2498816 22.4939 12.6428 -0.831219 -2.55677 0.0004 0.0492504

a- FPKM of the gene in the control dog group
b- FPKM of the gene in the IG heterozygous dog group
c- The value of the test statistic used to compute significance of the observed change in FPKM
d- The uncorrected p-value of the test statistic
e-The Fase-discovery-rate-adjusted p-value of the test statistic
f- the default of the program when one of the values is zero
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Supplement Table 3.12. Primers used to amplify mir184, and genotype results on a subset of IG dogs. A. primer pair used for mir184 
amplification. B. Genotype results for the three SNPs found downstream the 3’ end of the gene. 
 
A. Primers used to amplify mir184 gene 
Forward primer  Primer sequence Reverse primer Primer sequence Amplicon location Size 
Mir184F1 ggtccccgtaaacagagtatggtg Mir184R1 gccagatgtccagaggagagacg 60,776,605-60,777,244 640 bp 
B. Genotype results for 3 SNPs. 

IG homozygous affecteda IG het normalb IG het affectedc 
# 

SNP 
location Dog 1 Dog 2 Dog 3 Dog 1 Dog 2 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

Normal 
Boxer 

1 60,776,772 T/T A/T A/A A/A A/A A/A A/A T/T A/A A/T T/T T/T 
2 60,776,794 C/C T/C T/T T/T T/T C/T C/T C/C C/T T/C C/C C/C 
3 60,776,964 G/G A/G A/A A/A A/A A/A A/A G/G A/A A/G G/G G/G 
 

a- Dogs that are homozygous to the Col27A1 risk haplotype on CFA11 and are PRA affected. 
b- Dogs that are heterozygous to the Col27A1 risk haplotype on CFA11 and are phenotypically normal. 
c- Dogs that are heterozygous to the Col27A1 risk haplotype on CFA11 and are phenotypically PRA affected. 
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Supplement Table 3.13. Selected mir455 (A) and mir3609 (B) target genes. 
 
Target  gene Full Name 
A. mir455 target genes. 
TMEM212 transmembrane protein 212 
ST6GAL2 ST6 beta-galactosamide alpha-2,6-sialyltranferase 2 
CACNB4 calcium channel, voltage-dependent, beta 4 subunit 
SALL1 sal-like 1 (Drosophila) 
ADAM22 ADAM metallopeptidase domain 22 
PJA2 praja ring finger 2 
ARRDC3 arrestin domain containing 3 
TMED2 transmembrane emp24 domain trafficking protein 2 
B. mir3609 target genes. 

ABCA4 
ATP-binding cassette, sub-family A (ABC1), member 4 [Source:HGNC 
Symbol;Acc:34] 

RHO rhodopsin [Source:HGNC Symbol;Acc:10012] 

LRAT 
lecithin retinol acyltransferase (phosphatidylcholine--retinol O-acyltransferase) 
[Source:HGNC Symbol;Acc:6685] 

CLOCK clock homolog (mouse) [Source:HGNC Symbol;Acc:2082] 

PDE6A 
phosphodiesterase 6A, cGMP-specific, rod, alpha [Source:HGNC 
Symbol;Acc:8785] 

EYA4 eyes absent homolog 4 (Drosophila) [Source:HGNC Symbol;Acc:3522] 
OPN5 opsin 5 [Source:HGNC Symbol;Acc:19992] 
LCA5 lebercilin; Leber congenital amaurosis 5 [Source:HGNC Symbol;Acc:31923] 
EYS eyes shut homolog (Drosophila) [Source:HGNC Symbol;Acc:21555] 
ADAM9 ADAM metallopeptidase domain 9 [Source:HGNC Symbol;Acc:216] 
DFNB31 deafness, autosomal recessive 31 [Source:HGNC Symbol;Acc:16361] 

MOBKL2B 
MOB1, Mps One Binder kinase activator-like 2B (yeast) [Source:HGNC 
Symbol;Acc:23825] 

M6PR 
mannose-6-phosphate receptor (cation dependent) [Source:HGNC 
Symbol;Acc:6752] 

STK38L serine/threonine kinase 38 like [Source:HGNC Symbol;Acc:17848] 

PRPF8 
PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae) [Source:HGNC 
Symbol;Acc:17340] 

CHM choroideremia (Rab escort protein 1) [Source:HGNC Symbol;Acc:1940] 
ELAVL2 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B) 
CNGB3 cyclic nucleotide gated channel beta 3 
CNGA1 cyclic nucleotide gated channel alpha 1 
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Supplement Figure 3.1. Sequence retrieved from DNA-seq and RNA-seq reads in the 5’ end of 
Col27A1, where a gap was observed in the database. The red sequence was retrieved from DNA-
seq reads. SNPs are highlighted in light blue- both alleles were observed in the reads. The upper 
case sequence was retrieved from RNA-seq reads. The black sequence is the 5’ UTR, the blue 
sequence is first 40 bases of the coding sequence -exon 1. 
 
gcgtggccgagcttgcatgtgagtgggtgtgagcgtgtgactgagttt
ggggtaagcgtggacgtgcgtgggagtgtgtatgcaccggcgagcaga
ttgtgaaggtggaggtggaggtggaggtggaggtggcctctaaggccc
gggctgggactggggttgtggttgtgcgaacttgctgggcgctcgcgc
ctgggtcaaggtgtgcagtggcgcgctcccgcgggggaccgcaggggg
tctcggtgggctcccgagggtgtgtgggtgggtgtgcgggtggggggc
gttgagctcccgactcttaccgrgcggacagagaaggg 
[nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnn] 
[gap] 

 
CGCCTGCCCCCTGGGGCGCCCCGGCGGCCCCATGGGGCGCGCCCACAC
TTGCCCCCCGGGCTCGGGAGCATGAAGTAGGGGCCCGCCATGGGAGCG
GGAGCGGCGCGGGGGGCCCGAGGCACGGCGA 
 
[nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnn] 
[gap] 

 
tgtgctctcggttcccggctcggaagyccgtccgtgcgactctccgyt
gcctccagccccgggcttcggcttctgcccggtgcccgcgtctgtgtg
gctctgmacgtccctgctccggggagcccgtccgctcgggtctgtgcg
cctccgtgtgtccccgcgtctccggggccgggccgggccggggcgggg
gggggctcggcgcctgtcattttgcgcgtgtgagagagaaaacgcgag
agccggcgtgtcggagtagagagggcccgaggatcaccaggcattgca
gaggcgggggcgggggcggcagggaacgtccaaggagggagcgtggcc
cagccgggacccgggagctggtggcctggttgtaaagggcgagcgagt
gcaggagcgaggcactgagggtgggtgtgcgtgggagcgagcaaggat
gggagcagccctggggccctacgcgctgtggctcctgctcgctgc 
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Supplement Figure 3.2. Sequence across the gap at the 5’ end of Col27A1 in a boxer (A) and in 
an IGPRA affected dog (B). Highlighted in light blue are polymorphisms between the two dogs. 
In blue is the coding sequence of exon 1. Highlighted in red is the donor site of intron 1. 
 
A. A boxer DNA sequence. 
 
CAGTGGCGCGCTCCCGCGGGGGACCGCAGGGGGTCTCGGTGGGCTCCCGAGGGTGTGTGGGTGG
GTGTGCGGGTGGGGGGCGTTGAGCTCCCGACTCTTACCGAGCGGACAGAGAAGGGGAGAGTGTG
ACCAACACTCAGCAAGCCCACCCACTGGGTGCCCGGGGAAGTCTGTTCCGGGCGGGGGGGGGGG
GCGCTCTGACCTGGGAGCAGGGCCGTGCATGTGTGTGTATGGGCGGTGGGACACTGGTCGTCGC
TGGCGTGGGAGTCTAGCCACTGGGTGCCGGTCCTGGACCTGCCCGGGAACGGGGCTCCTCTCCC
CGTAGGATGTGTCCCGTTTCCCCCTCCATCTCGGCCCCCATCTCGGGCCGCGGTGGTCCTGCGG
GGCGGCCTCGGCCGCCTCCCTCCTCCCGGTGGATCTCGGTTTCCCCGCTGGCACTGGGGTGGGG
GCGGGGGCGGGAGTCTCCGCGGGGCCGCGGGGGGCGGCCGGGGCTGTGCGCGCGGCCGCGGCCG
GCAGGGGGCGGCGTGGGGCAGCGGAGGGCGGCCGGGCGCGGGGAGGGGAGAAGGTGGAGAGCCG
CCGCGGGCCGAGACTTTAAATCGCCTTCATTTCCCCCAAATCCTTCCTTTTGCTCTCCTCCCCC
AGGCCGGCGGGGAGGCCGCTTCCACCGCCCCGCGCGCTCCCTCGCCCGCCCCGCTCGGCCTCCG
GGGGCCGCCAGCAGCCCGCCCGCAAAGTTGGGTCGTCTCGCCTGTTCTCGCCGCGTCTCCTTCC
TCGTCGGTGGAGCAGGACGAGAGCGAGAGGCAGGGGCGAGCGCGGCGCCGGACGCCGGGGACCA
TGGGCCTGGCGCGGGCGCCCGCGGGGCCCCGGCCGCGCCGCCTGCCCGCTGGGGCGCCCCGGGG
CGCGGGGCTGCGCGGGGGGCGCGGGGGCCGCGCGCTGTGAGCCGGCCTGGCGCGGCGGGGCGGG
GGGCCGGCGGCCCCATGGGGCGCGCCCACACTTGCCCCCCGGGCTCGGGAGCATGAAGTAGGGG
CCCGCCATGGGAGCGGGAGCGGCGCGGGGGGCCCGAGGCACGGCGGCGGCGGCGGAGGCGGCGG
CGGCGGCGCGCGGGGGGTGAGTACAAGCTCGGGGGCGCGCCCTCCCCGGCTTCCTGCGGCCCCG
GCCCCGGCCCCGCCCCCCGCCCCCCGCGGGCCCCCCGCGGCCACCGCGAGCTGCGCCCCCCGGC
CCGGCGAGGCCCGGCGAACTGCCTGCCCTGCCCCGCTGGCCGGGCTCCGCGGTCGCGCGGGGCG
CGGGGCGGGGGGCGCGGGGCGGGGGCCGAGCCCCGGTCGCGGCCGGGCGTGGGGGCGGGGGGCG
CCCCGGGGACGCCGGTGCCCACGGGTCCCGGCTCGGAAGTCCGTCCGTGCGACTCTCCGCTGCC
TCCAGCCCCGGGCTTCGGCTTCTGCCCGGTGCCCGCGTCTGTGTGGCTCTGCACGTCCCTGCTC
CGGGGAGCCCGTCCGCTCGGGTCTGTGCGCCTCCGTGTGTCCCCGCGTCTCCGGGGCCGGGCCG
GGCCGGGGCGGGGGGGGGCTCGGCGCCTGTCATTTTGCGCGTGTGAGAGAGAAAACGCGAGAGC
CGGCGTGTCGGAGTAGAGAGGGCCCGAGGATCACCAGGCATTGCAGAGGCGGGGGCGGGGGCGG
CAGGGAACGTCCAAGGAGGGAGCGTGG 
 
B. An IGPRA affected dog sequence. 
 
CAGTGGCGCGCTCCCGCGGGGGACCGCAGGGGGTCTCGGTGGGCTCCCGAGGGTGTGTGGGTGG
GTGTGCGGGTGGGGGGCGTTGAGCTCCCGACTCTTACCGAGCGGACAGAGAAGGGGAGAGTGTG
ACCAACACTCAGCAAGCCCACCCACTGGGTGCCCGGGGAAGTCTGTTCCGGGCGGGTGGGCGGG
GGGGGGGGGCGCTCTGACCTGGGAGCAGGGCCGTGCATGTGTGTGCATGGGCGGTGGGACACTG
GTCGTCGCTGGCGTGGGAGTCTAGCCACTGGGTGCCGGTCCTGGACCTGCCCGGGAACGGGGCT
CCTCTCCCCGTAGGATGTGTCCCGTTTCCCCCTCCATCTCGGCCCCCATCTCGGGCCGCGGTGG
TCCTGCGGGGCGGCCTCGGCCGCCTCCCTCCTCCCGGTGGATCTCCGTTTCCCCGCTGGCACTG
GGGTGGGGGCGGGGGCGGGGAGTCTCGGCGGGGCCGCGGGGGGCGGCCGGGGCTGTGCGCGCGG
CCGCGGCCGGCAGGGGGCGGCGTGGGGCAGCGGAGGGCGGCCGGGCGCGGGGAGGGGAGAAGGT
GGAGAGCCGCCGCGGGCCGAGACTTTAAATCGCCTTCATTTCCCCCAAATCCTTCCTTTTGCTC
TCCTCCCCCAGGCCGGCGGGGAGGCCGCTTCCACCGCCCCGCGCGCTCCCTCGCCCGCCCCGCT
CGGCCTCCGGGGGCCGCCAGCAGCCCGCCCGCAAAGTTGGGTCGTCTCGCCTGTTCTCGCCGCG
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TCTCCTTCCTCGTCGGTGGAGCAGGACGAGAGCGAGAGGCAGGGGCGAGCGCGGCGCCGGACGC
CGGGGACCATGGGCCTGGCGCGGGCGCCCGCGGGGCCCCGGCCGCGCCGCCTGCCCGCTGGGGC
GCCCCGGGGCGCGGGGCTGCGCGGGGGGCGCGGGGGCCGCGCGCTGTGAGCCGGCCTGGCGCGG
CGGGGCGGGGGGCCGGCGGCCCCATGGGGCGCGCCCACACTTGCCCCCCGGGCTCGGGAGCATG
AAGTAGGGGCCCGCCATGGGAGCGGGAGCGGCGCGGGGGGCCCGAGGCACGGCGGCGGCGGCGG
AGGCGGCGGCGGCGGCGGCGGCGGCGCGCGGGGGGTGAGTACAAGCTCGGGGGCGCGCCCTCCC
CGGCTTCCTGCGGCCCCGGCCCCGCCCCCCGCCCCCCGCGGGCCCCCCGCGGCCACCGCGAGCT
GCGCCCCCCGGCCCGGCGAGGCCCGGCGAACTGCCTGCCCTGCCCCGCTGGCCGGGCTCCGCGG
TCGCGCGGGGCGCGGGGCGGGGGGCGCGGGGCGGGGGCAGAGCCCCGGTCGCGGCCGGGCGTGG
GGGCGGGGGGCGCCCCGGGGACGCCGGTGCCCACGGGTCCCGGCTCGGAAGTCCGTCCGTGCGA
CTCTCCGCTGCCTCCAGCCCCGGGCTTCGGCTTCTGCCCGGTGCCCGCGTCTGTGTGGCTCTGC
ACGTCCCTGCTCCGGGGAGCCCGTCCGCTCGGGTCTGTGCGCCTCCGTGTGTCCCCGCGTCTCC
GGGGCCGGGCCGGGCCGGGGCGGGGGGGGGCTCGGCGCCTGTCATTTTGCGCGTGTGAGAGAGA
AAACGCGAGAGCCGGCGTGTCGGAGTAGAGAGGGCCCGAGGATCACCAGGCATTGCAGAGGCGG
GGGCGGGGGCGGCAGGGAACGTCCAAGGAGGGAGCGTGGCCC 
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CHAPTER FOUR: FOUR AUTOSOMAL RETINAL DISEASES IN THE DOG ARE 

SUCCESSFULLY MAPPED BY GENOME-WIDE ASSOCIATION USING POOLED 

SAMPLES. 
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4.1  Summary 

Whole-genome association studies are widely used to identify disease-causing genes, in humans 

as well as in animals. We had previously identified the loci responsible for three cone-rod 

dystrophies in the dog population, affecting the American Staffordshire breed (crd1), the Pit Bull 

Terriers (crd2), and the Glen of Imaal Terries (crd3). We also identified the locus responsible for 

the progressive retinal atrophy segregating in the Italian Greyhounds (IGPRA). This was done by 

means of genome-wide association of single nucleotide polymorphisms on individual dogs. Here 

we were able to identify the four loci by using three affected pooled samples, and three control 

pooled samples, genotyped on the Illumina canine SNP array. The pooled samples represented 

between 9 and 15 dogs in each group (case/control). The analysis combined an association 

analysis with an in house script to account for the neighborhood of each SNP, giving a higher 

score for supporting evidence from the SNP environment. A combination of homozygosity 

analysis and association analysis was also successful for the autosomal recessive diseases. The 

tradeoff for this approach was larger blocks, since the rare recombinants were not detectable. 

This proof of principle is the first one we are aware of done in the canine population, and 

suggests that the pooling strategy for mapping traits, particularly but not limited to autosomal 

recessive traits, is practical and can be beneficial for small research budgets. 

 

4.2  Introduction 

Genome-wide association studies (GWAS) were widely used in mapping clinical diseases and 

traits since 2005, with a significant success reported in more than 1,600 publications for more 

than 200 traits, as listed in The Catalog of Published Genome- Wide Association Studies1. This 

valuable hypothesis-free approach is not limited to human population, and was proven effective 
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in the dog population as well, identifying many genes responsible for inherited traits and diseases 

in different breeds2-6. Unfortunately, GWAS are very costly due to the price of high-density SNP 

arrays. A simple strategy of reducing the cost of a study is to replace individual genotyping with 

genotyping of DNA pools. To date, more than 20 pooled-based GWAS have been published, 

many reporting genome-wide significant associations for diseases and traits such as follicular 

lymphoma, otosclerosis, multiple sclerosis, Alzheimer’s disease, melanoma, psorasis, and skin 

colour7-13. However, the criticism of pooled-based GWAS is that they have reduced power 

relative to conventional GWAS because of errors introduced by estimating allele frequency DNA 

pools. While this is true when studying complex traits, in simple mendelian traits this problem is 

not significant. Association analysis is based on the assumption that if a disease is expressed as a 

result of a mutation in the DNA, all affected individuals would carry that mutant chromosome, 

and linked SNPs would be present in the affected group in a higher frequency than in unaffected 

individuals, the control group. When the disease is inherited as a recessive trait, it usually means 

that the affected individual would have two affected alleles, and in most cases these alleles 

would be identical by decent (IBD). Combining this with the concept of association analysis, that 

would mean that an affected individual would be homozygous for the mutation, as well as for all 

the SNPs that are linked to that mutation, usually SNPs that are in close proximity. Therefore 

pooling affected dogs together should not change the genotype calling in the DNA segment 

carrying the mutation if all affected dogs are IBD, and they are expected to fall within the 

homozygous cluster for those SNPs that are linked to the disease. For any other SNPs that are not 

linked to the disease, genotype signal can fall either within one of the three clusters, AA, AB, 

BB, or outside of them (and then scored as no-call). SNPs in which the alleles proportions are 

deviated from 50-50% (carrier ratio) or 100-0% (homozygous ratio) would most likely get a no-
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call score, since the algorithm would place the score between the clusters. As a result, the 

expected call rate for the pooled samples would be lower than individual samples. We would not 

expect to see that homozygous block in the control group, except for those areas where the 

segmental chromosome is fixed in the breed.  

In this exercise, we examined the pooled sample strategy in four different retinal 

diseases, inherited independently in four separate breeds. Three of them are inherited as 

autosomal recessive (crd1, crd2, and crd3) while the fourth one is inherited as autosomal 

dominant with incomplete penetrance (IGPRA). Detailed description for each disease can be 

found in references 6, 14 and chapter 9. Briefly, crd1 and crd2 are cone-rod dystrophies 

identified in the American Staffordshire Terrier and the American Pit Bull Terrier, respectively. 

Experimental pedigrees were developed, breeding affected dogs to research colony dogs of 

known genetic and phenotypic history. The samples used in the GWAS were collected from 

these mixed-bred affected and unaffected dogs. In contrast, samples for the other two diseases, 

crd3 and IGPRA, segregating in the Glen of Imaal Terrier and the Italian greyhound, 

respectively, were collected mostly from purebred dogs. The exceptions were a few dogs of mix-

breed segregating the diseases (see methods for more details). 

We had previously mapped the loci for all four diseases by running GWAS on individual 

samples. Here we report the results of GWAS on pooled samples, where we pooled five dogs 

into one sample, totaling six samples per disease (three samples in the case group and three in the 

control group), reducing the cost and showing the success of this approach. 
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4.3 Material and Methods 

4.3.1  Samples collection: DNA samples were extracted from blood from affected and control 

dogs from all four different diseases: crd1, crd2, crd3 and IGPRA. All DNAs were diluted to 50 

ng/ul concentration. Three affected- and three control- pooled samples were created for each of 

the four diseases by pooling 5 different dogs per pool, representing between 9 and 15 dogs per 

affected/control group (Table 4.1; some dogs were represented in more than one pooled sample). 

 

Table 4.1. Experimental design of pooled and individual samples used in GWAS for each of the 
four diseases.  
 
 

Pooled samples Individual samples 
Affected Control Affected Control 

Disease 
Experimental 
design 

Pooled samples 
(number of 
dogs per pool) 

Total 
number 
of dogs 

Pooled 
samples 
number of 
dogs per pool) 

Total 
number 
of dogs 

Total 
number 
of dogs 

Total 
number 
of dogs 

crd1 Pedigree-based 3 (x5) 13 3 (x5) 9 17 18 
crd2 Pedigree-based 3 (x5) 13 3 (x5) 12 14a 13a 

crd3 
Population-
based 3 (x5) 13 3 (x5) 15 21a 22a 

IGPRA 
Population-
based 3 (x5) 9 3 (x5) 14 23 18 

 
 
a - Samples run on Affymetrics SNP arrays. 
 

4.3.2  Genome-wide association study (GWAS): 

The pooled samples were genotyped using the Illumina Canine SNP chip (Illumina 

canineHD BeadArrays), which listed 173,662 loci, following the standard protocol. Data from 

the arrays were analyzed using the Illumina GenomeStudio software (v2011.1), genotyping 

module (v1.9.4), and Illumina Genome Viewer (v1.9.0). SNP calling was performed using 

cluster positions provided by Illumina for these BeadArrays and converted to A/B allele calls. 
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Heterozygosity plots were produced by plotting the B allele frequency for each SNP using 

chromosome coordinates from the CanFam2 reference genome. Call rates for all individual 

samples and pooled samples were retrieved from GenomeStudio software, and were calculated 

with the exclusion of the 1,547 markers designed as “intensity only loci”, which are used for 

copy number variants (CNVs) investigation. 

The accuracy of the genotype calls of the pooled samples was measured in the crd1 and 

IGPRA studies only, since individual and pooled samples were both run on the Illumina SNP 

array. For each pooled sample, the genotype calls from the individual samples were retrieved and 

only the SNPs, where all 5 dogs had a genotype call, were analyzed (10 observed alleles, no 

missing data). The composition of the alleles in the pool was determined by the individual 

genotype calls. All SNPs were categorized to 11 categories representing the ratio of the A and B 

alleles in the pool: 10/10 when all 10 alleles observed in the individual genotypes were A, 9/10 

to 1/10 when any number between 1 and 9 of A alleles were observed out of the 10, and 0/10, 

when all alleles observed were B. Within each category, we counted the number of SNPs scored 

as AA, AB, BB, or “no call” in the pooled sample. An error call was defined as follows: when all 

10 alleles were A (all five dogs were homozygous AA), any other call of the pooled sample but 

AA was considered an error call (AB, BB or “no call”). When all 10 alleles were B (all five dogs 

were homozygous BB), any other call of the pooled sample but BB was considered an error call 

(AB, AA or “no call”). When both alleles were present in the pooled sample, in any ratio, an AA 

call or a BB call was counted as an error call, and an AB or a “no call” score were counted as a 

true call, since the “no call” scores were most likely a cryptic heterozygosity (see results for a 

support for this assumption).  



	
  

	
   123	
  

Genotype calls were converted to Plink-format file and association was tested using the 

association command without pedigree or sex information  

(http://pngu.mgh.harvard.edu/purcell/plink/15). The genotype calls for each of the mutation-

bearing chromosome for each disease were retrieved from the files and aligned by location to 

identify the homozygous block.  

Homozygosity analysis: Runs of homozygosity were done on affected pooled samples 

only (n=3) using Plink, on the 172,115 SNPs (the CNVs markers were not included) with the 

following criteria: sliding window criteria: 1000 Kb, 50 SNPs, 0 missing calls, 0 heterozygous 

call, 0.05 threshold; homozygous segment criteria: length- 1000 Kb, 50 SNPs, 50 density 

(Kb/SNP). For crd3 disease this run didn’t give any region of homozygosity shared by all three 

samples in the autosomal chromosomes so more relaxed criteria were used, allowing one missing 

call and one heterozygous call within the sliding windows. The output was then filtered for those 

chromosomes where all three pooled samples shared a homozygous block.  

 

4.3.4 “SNP neighborhood” analysis 

Script in Perl was written to score SNPs by their P-values, as well as their neighboring 

SNPs (Supplement Figure 4.1). Each SNP received a score based on its P-value and the score 

increased as a function of the number of significant SNPs in the SNP’s neighborhood, their P-

value and their distance from the SNP (the definition of neighborhood and significance were 

variables and were changed per each run). The more significant neighbor SNPs existed and the 

closer they were to the SNP, the higher the score for that SNP was. The scores then were scaled 

to a 1-10 scale, with 10 given to a SNP with a significant P-value and the most supporting 

neighborhood. 
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4.4 Results 

4.4.1  Call rate: 

The canine HD Illumina SNPchip array insures an average call rate of 99.8% of the total 172,115 

SNP loci, (http://www.illumina.com/documents//products/datasheets/datasheet_caninehd.pdf). 

The call rates of the pooled samples were observed between 0.752 and 0.868 with an average of 

0.798 for these SNP loci (Supplement Table 4.1). Specifically to crd1 and IGPRA, the average 

of call rates of the pooled samples was 0.808, or a 0.192 of “no call” rate (Table 4.2). The 

average call rate of the dogs that were used in the pools for crd1 and IGPRA studies, and were 

run individually on the arrays, was 0.991, or a 0.009 of “no call” rate (Table 4.2). This result 

suggests that the relative likelihood of a SNP in a pooled sample to be scored as a “no call” due 

to its heterozygous allele composition (has both alleles in any ratio) is 21.33 more than due to a 

real no call as a result of a technical limitation (0.192/0.009). 



	
  

	
  

125	
  

Table 4.2. Call rates of the pooled and individual samples in the crd1 and IGPRA studies. 
 

Pool samples 

Pooled 
sample call 
rate 

Pooled 
sample “no 
call” rate 

Call rate of the five dogs used in each 
pooled sample 

Average of 
call rate in 
the five 
individual 
dogs  

Average of 
“no call” rate 
in the five 
individual 
dogs 

   Dog 1 Dog 2 Dog 3 Dog 4 Dog 5   
Pool_1_crd1_Affecteds 0.805 0.195 0.991 0.993 0.993 0.991 0.994 0.992 0.008 
Pool_2_crd1_Affecteds 0.843 0.157 0.993 0.975 0.993 0.991 0.993 0.989 0.011 
Pool_3_crd1_Affecteds 0.847 0.153 0.993 0.993 0.975 0.993 0.993 0.989 0.011 
Pool_1_crd1_control 0.803 0.197 0.991 0.991 0.992 0.993 0.991 0.991 0.009 
Pool_2_crd1_control 0.868 0.132 0.991 0.994 0.993 0.994 0.993 0.993 0.007 
Pool_3_crd1_control 0.842 0.158 0.993 0.993 0.992 0.994 0.993 0.993 0.007 
Pool_1_IGPRA_Affected 0.771 0.229 0.994 0.991 0.991 0.992 0.992 0.992 0.008 
Pool_2_IGPRA_Affected 0.775 0.225 0.993 0.993 0.992 0.991 0.993 0.992 0.008 
Pool_3_IGPRA_Affected 0.763 0.237 0.992 0.992 0.991 0.992 0.993 0.992 0.008 
Pool_1_IGPRA_control 0.794 0.206 0.993 0.993 0.993 0.994 0.994 0.993 0.007 
Pool_2_IGPRA_control 0.794 0.206 0.992 0.994 0.993 0.990 0.993 0.992 0.008 
Pool_3_IGPRA_control 0.794 0.206 0.994 0.945 0.992 0.990 0.994 0.983 0.017 
Average 0.808 0.192      0.991 0.009 
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4.4.2  Call accuracy:  

The accuracy of the genotype calls in the pooled samples was evaluated on the crd1 and IGPRA 

pooled samples only. The analysis was done only on SNPs with no missing data (92.9% - 97.8% 

of all SNPs). The numbers of AA, AB, BB, and “no calls” were counted within each category of 

“A” allele ratio (Supplement Table 4.2). The number of error calls per sample varied from 4,801 

SNPs to 20,286 SNPs (2.85%-12.06%, Supplement Table 4.3). The lowest numbers of 

percentage of error calls were observed in the categories where all five dogs were homozygous 

to either the A allele or the B allele, or when the ratios of A to B allele were between 0.4 and 0.6 

(Table 4.3, Figure 4.1A). The highest numbers of error calls were observed when the allele ratio 

was 1/10 (either 1 “A” allele and 9 “B” alleles, or 9 “A” alleles and 1 “B” allele), with an 

average probability of making an error call of 0.0209 and 0.0382 (Table 4.3, Figure 4.1A). 

Interestingly, the distribution of error calls was asymmetric, and biased to the B allele: there 

were more error calls when the B allele was in a majority over the A allele (Table 4.3; Figure 

4.1B and C) and the difference was significant by paired 2-tailed t-test: 8.14E-05, 5.27E-06, 

5.48E-06, 5.68E-03 for 1/10, 2/10, 3/10 and 4/10 allele ratio, respectively. The difference was 

not significant when the animals were all homozygous AA compared to all homozygous BB (t-

test=0.28). However, although we have no explanation for this bias, it does not affect the ability 

of the pooled assay to succeed. 

 



	
  

	
  

127	
  

 

Table 4.3. The probability on an error call in each of the categories of the real portion of the A allele in the pool of 10 alleles in each 
of the pooled samples in crd1 and IGPRA studies. 
 
 A/(A+B) = proportion of the “A” allele observed in the individual dogs 
 10/10 9/10 8/10 7/10 6/10 5/10 4/10 3/10 2/10 1/10 0/10 
crd1 pool 1 affecteds 1.31E-04 2.02E-02 5.56E-03 1.02E-03 1.37E-04 6.56E-05 6.02E-04 4.29E-03 1.17E-02 2.93E-02 1.49E-04 

crd1 pool 2 affecteds 9.09E-05 1.26E-02 6.25E-03 6.36E-04 3.64E-05 8.49E-05 4.00E-04 3.81E-03 1.35E-02 2.40E-02 3.03E-05 

crd1 pool 3 affecteds 4.24E-05 9.02E-03 4.92E-03 4.17E-04 5.45E-05 2.42E-05 4.30E-04 3.12E-03 1.05E-02 1.48E-02 4.24E-05 

crd1 pool 1 carriers 8.99E-05 1.73E-02 4.01E-03 7.19E-04 5.39E-05 9.59E-05 3.77E-04 3.00E-03 9.85E-03 3.03E-02 1.26E-04 

crd1 pool 2 carriers 1.55E-04 5.41E-03 1.71E-03 8.92E-05 0.00E+00 1.19E-05 5.35E-05 1.53E-03 9.14E-03 1.03E-02 1.78E-04 

crd1 pool 3 carriers 2.14E-04 1.17E-02 6.85E-03 2.80E-03 9.69E-04 1.65E-03 2.13E-03 6.50E-03 1.17E-02 1.65E-02 4.40E-04 

IGPRA_pool1_affecteds 8.36E-05 2.62E-02 1.70E-03 1.43E-04 0.00E+00 2.99E-05 8.36E-05 1.14E-03 1.01E-02 5.30E-02 9.56E-05 

IGPRA_pool2_affected 4.75E-05 3.65E-02 3.29E-03 1.96E-04 0.00E+00 0.00E+00 1.07E-04 1.65E-03 1.69E-02 6.18E-02 7.73E-05 

IGPRA_pool3_affected 2.39E-05 3.11E-02 3.88E-03 3.29E-04 2.99E-05 3.58E-05 5.74E-04 3.59E-03 2.13E-02 5.83E-02 4.18E-05 

IGPRA_pool1_control 1.01E-04 2.72E-02 1.93E-03 1.19E-04 5.97E-06 5.97E-06 4.18E-05 1.59E-03 1.43E-02 5.28E-02 4.18E-05 

IGPRA_pool2_control 0.00E+00 3.05E-02 5.27E-03 5.62E-04 5.98E-05 1.20E-05 3.05E-04 3.68E-03 1.76E-02 5.80E-02 4.18E-05 

IGPRA_pool3_control 1.06E-04 2.26E-02 1.34E-03 1.31E-04 6.25E-06 0.00E+00 4.38E-05 1.20E-03 1.09E-02 4.93E-02 1.06E-04 

Average 9.05E-05 2.09E-02 3.89E-03 5.97E-04 1.13E-04 1.68E-04 4.29E-04 2.92E-03 1.31E-02 3.82E-02 1.14E-04 
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Figure 4. 1. Distribution of the probability of error calls in pooled samples in the crd1 and the 
IGPRA studies. A. The average of the probabilities of an error call in each of the real A to B 
allele ratios. B. The probability of an error call in each of the real A to B allele ratios in the crd1 
pooled samples. C. The probability of an error call in each of the real A to B allele ratios in the 
IGPRA pooled samples.
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4.4.3  Association analysis:  

 Association analysis was run on each disease separately (three cases versus three 

controls). The number of SNPs with P values lower than 0.05 were 174, 244, 75, and 374 for 

crd1, crd2, crd3, and IGPRA diseases, respectively (Table 4.4, Figure 4.2). In the crd1 study, the 

highest –log10P value was 2.33, observed in four SNPs on CFA7 (Supplement Table 4.4, Figure 

4.2). In the crd2 study, the highest –log10P value was 2.01, observed in two SNPs on the X 

chromosome. The highest –log10P value observed on an autosomal chromosome was 1.55 in 7 

SNPs from varies chromosomes (CFA5, 9, 12, 14, 21, 23, and 32; Supplement Table 4.4, Figure 

4.2). Therefore, since crd2 is inherited as an autosomal recessive disease, there is no significant 

hit on a single autosomal chromosome, and the two- dimension Manhattan plot doesn’t show a 

single peak if we ignore the X chromosome (Figure 4.2). In the crd3 study, the highest –log10P 

value was 2.47, observed in five SNPs on CFA16 (Supplement Table 4.4; Figure 4.2). In the 

IGPRA study, the highest –log10P value was 2.33, observed in one SNP on CFA34. The second 

highest  –log10P value was 1.95 observed in two SNPs: one on CFA10, and one on CFA11 

(Supplement Table 4.4). Two- dimension Manhattan plot shows three peaks on CFA10, 11 and 

34 (Figure 4.2). With the exception of the crd3 study, the association test, run on each SNP as 

independent test, was not sensitive enough to find the mutation- bearing locus with three affected 

and three control samples (CFA3, CFA33, and CFA11 for crd1, crd2 and IGPRA respectively), 

if considering only the top hits. 
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Table 4.4. List of chromosomes carrying SNPs with P- values lower than 0.05. In bold is the 
chromosome bearing the mutation for each disease. 
 
 
 

Chromosome 
Number  
of SNPs 

Total distance 
in Mb 

Median of 
the distance 

between 
SNPs in Kb 

The ratio between the 
number of SNPs and the 

Medain 
A. crd1 disease 

2 18 60.26 482 0.0373 
3 62 5.98 62 1.0000 
4 10 41.51 1,473 0.0068 
5 3 3.93 1,967 0.0015 
6 1 - - - 
7 17 59.29 827 0.0206 
8 1 - - - 
9 1 - - - 
11 2 5.07 5,072 0.0004 
12 15 21.98 1,234 0.0122 
13 1 - - - 
15 2 2.53 2,533 0.0008 
16 3 42.77 21,383 0.0001 
21 18 44.37 1,424 0.0126 
26 4 2.90 882 0.0045 
28 2 4.26 4,255 0.0005 
29 1 - - - 
31 1 - - - 
33 1 - - - 
35 2 1.68 1,678 0.0012 
36 7 8.37 333 0.0210 
37 1 - - - 
38 1 - - - 

Total number 
of SNPs 174    

B. crd2 disease 
1 8 92.42 1,647 0.0049 
3 3 40.21 20,107 0.0001 
4 1 - - - 
5 3 19.43 9,714 0.0003 
6 2 0.66 657 0.0030 
7 1 - - - 
8 2 3.31 3,307 0.0006 
9 1 - - - 
11 2 13.11 13,105 0.0002 
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12 50 56.77 138 0.3623 
13 2 14.48 14,482 0.0001 
14 9 38.40 4,893 0.0018 
16 4 6.84 714 0.0056 
19 9 10.57 378 0.0238 
20 1 - - - 
21 2 0.29 292 0.0068 
22 9 29.41 1,433 0.0063 
23 9 44.27 2,788 0.0032 
24 19 32.62 294 0.0646 
25 4 5.14 867 0.0046 
27 2 7.59 7,591 0.0003 
28 9 24.34 1,924 0.0047 
31 2 0.19 190 0.0105 
32 11 12.61 1,107 0.0099 
33 55 16.69 132 0.4167 
36 1 - - - 
38 1 - - - 
39 21 83.22 807 0.0260 
41 1 - - - 

Total number 
of SNPs 244    

C. crd3 disease 
1 2 15.32 15,315 0.0001 
4 1 - - - 
5 3 23.27 11,636 0.0003 
8 1 - - - 
9 1 - - - 
15 4 2.38 539 0.0074 
16 43 12.38 91 0.4725 
19 1 - - - 
21 1 - - - 
23 2 0.05 45 0.0444 
24 1 - - - 
25 1 - - - 
28 4 5.79 1,159 0.0035 
30 2 26.88 26,882 0.0001 
31 1 - - - 
32 1 - - - 
34 2 1.17 1,168 0.0017 
36 1 - - - 
39 3 88.71 44,356 0.0001 

Total number 
of SNPs 75    

D. IGPRA disease 
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1 64 111.77 315 0.2032 
2 15 32.38 328 0.0457 
3 5 26.86 1,845 0.0027 
4 2 62.10 62,096 0.0000 
5 16 66.71 2,666 0.0060 
6 2 2.54 2,541 0.0008 
7 14 45.42 928 0.0151 
8 8 49.21 3,358 0.0024 
9 16 36.85 1,415 0.0113 
10 18 63.48 1,484 0.0121 
11 65 42.82 64 1.0156 
13 8 47.33 1,233 0.0065 
14 17 56.13 1,705 0.0100 
15 1 - - - 
17 8 42.26 5,875 0.0014 
18 6 10.11 1,409 0.0043 
19 10 32.80 480 0.0208 
21 16 45.34 1,602 0.0100 
22 3 4.42 2,208 0.0014 
23 1 - - - 
24 9 36.01 3,839 0.0023 
25 12 33.53 1,538 0.0078 
26 3 30.48 15,239 0.0002 
27 1 - - - 
29 3 7.76 3,878 0.0008 
30 12 34.52 527 0.0228 
32 8 32.12 250 0.0320 
34 14 36.78 896 0.0156 
36 3 19.10 9,548 0.0003 
38 1 - - - 
39 8 108.68 1,438 0.0056 
41 5 1.57 438 0.0114 

Total number 
of SNPs 374    
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Figure 4.2. Manhattan plots summarizing results of GWAS using pooled samples in four canine hereditary retinal 
degenerations, crd1, rcd2, crd3 and IGPRA. X- axis = canine chromosomes 1-38 plus the X- chromosome presented 
as chromosome 39 and 41. Y-axis = probability statistics (-log10P). Stars marks the top P-values. 
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4.4.4  “Neighborhood” analysis:  

 The association analysis run on each SNP independently does not account for the 

“environment” of each SNP tested, and ignores the information on the number of significant 

SNPs within each locus and their proximity to each other. Since we cannot run haplotype 

analysis due to losing this information when pooling the samples, we wanted to find a way that 

we will still be able to account for the “environment” of each SNP. We counted the number of 

SNPs within each chromosome, and calculated the median of the distances between the SNPs. 

Then we looked at the ratio of the number of SNPs to the median (Table 4.4). In all four diseases 

the highest value of the ratio was observed in the chromosome bearing the mutation, with 1.00, 

0.4167, 0.4725, and 1.0156 for crd1, crd2, crd3, and IGPRA diseases, respectively (Table 4.4). 

In the case of crd2, chromosome 12 also received a high score of 0.3623. This practice mimics a 

haplotype analysis done in non-pooled samples.  

To increase the power of the association test on pooled samples, we went one step 

further, and added a weight to the proximity of the significant SNPs to each other, and to the 

number of SNPs. We defined the neighborhood as 1 Mb interval, and the significant P-value as 

less than 0.1. The perl script (Supplement Figure 4.1) generated a new score for each SNP, 

taking under consideration the P-value of the SNP, and its neighborhood: the number of 

significant SNPs within the neighborhood, their P-value, and the distance between them and the 

SNP. The more neighboring SNPs with significant P-values there were, the higher their P-value 

was, and the closer they were to the SNP, the higher the score of that SNP. Then we scaled it to a 

1-10 scale. The top scores for each disease were in the chromosomes bearing the mutation for 

each disease (Supplement Table 4.5), identifying CFA3, CFA33, CFA16 and CFA11 as the most 

significant chromosome for carrying the mutation for crd1, crd2, crd3, and IGPRA, respectively 
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(Figure 4.3).  This approach also excluded the false positive hits within each disease: in crd1, the 

four SNPs on CFA7 with the highest P-value from the association analysis received a 

neighboring score of 2, suggesting no support from the SNPs’ environment for real association; 

in crd2, the SNPs with the highest P-value from the association analysis on the X chromosomes, 

as well as the ones on the 7 autosomal chromosomes received a neighboring score between 1 and 

3, suggesting no neighboring support for the hit, though CFA12 seams to have some support (bin 

score of 7, data not shown), but not as significant as the CFA33; in IGPRA, the associated 

significant SNP on CFA34 received a neighborhood score of 2, and the one on CFA10 received a 

score of 1.  
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Figure 4.3. Manhattan plots summarizing results of “neighborhood GWAS” using pooled samples in four canine 
hereditary retinal degenerations, crd1, rcd2, crd3 and IGPRA. X- axis = canine chromosomes 1-38 plus the X- 
chromosome presented as chromosome 39 and 41. Y-axis = “neighborhood score”. In all four diseases the disese 
locus was identified (arrow). 
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4.4.5  Homozygosity analysis 

We wanted to see if the loci for all four diseases can be identified by homozygosity 

analysis run on only three samples- the affected pooled samples. Results suggest that this is 

possible with a trade off of some false positive hits, and larger regions to investigate (Table 4.5). 

In the crd1 disease, four chromosomes carried homozygous blocks larger than 1.0 Mb with a 

total of 10.43 Mb candidate regions for carrying the mutation (Table 4.5A). In the crd2 disease, 

only two chromosomes were identified: CFA24 with a 1.29 Mb block, and CFA33 with a 2.31 

Mb block (Table 4.5B). In crd3, six chromosomes carried homozygous blocks larger than 1.0 

Mb with a total of 9.66 Mb candidate regions for carrying the mutation (Table 4.5C). In IGPRA 

disease, only one hit was observed, CFA11 with a 2.79 Mb block interval (Table 4.5D). 

Combining a homozygosity analysis with the P-value from the association analysis reduced the 

candidate region to the disease locus only (Table 4.5). These homozygosity regions can be 

visualized on the heterozygosity plot generated by GenomeStudio (Supplement Figure 4.2).
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Table 4.5. Blocks of homozygosity shared among all three affected pooled samples across 
autosomal chromosomes. In Bold are the chromosomes bearing the mutation for each disease.  
 
 

Number CFA Beginning End 
Size of block 
(in MB) Association hit 

A. crd1 disease 
1 1 3,068,620 4,842,799 1.77 No 
2 2 69,867,312 71,256,781 1.39 No 
3 3 89,216,567 90,861,550 1.64 Yes 
4 3 91,802,222 94,469,321 2.67 Yes 
5 18 5,374,587 8,333,065 2.96 No 

Total 10.43  
B. crd2 disease 
1 24 4,919,402 6,254,584 1.29 No 
2 33 26,970,019 29,283,214 2.31 Yes 

Total 3.6  
C. crd3 disease 
1 12 26,118,989 27,451,074 1.33 No 
2 14 15,757,142 16,986,373 1.23 No 
3 16 27,739,723 29,367,229 1.63 Yes 
4 16 29,451,384 30,580,074 1.13 Yes 
5 17 13,008,182 14,815,215 1.81 No 
6 18 6,956,527 8,210,900 1.25 No 
7 26 6,568,721 7,846,291 1.28 No 

Total 9.66  
D. IGPRA disease 
1 11 68,908,950 71,695,361 2.79 Yes 

Total 2.79  
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4.5 Discussion 

 

There are numbers of factors that influence the ability of GWA studies to detect 

genetic association. Among them are phenotype accuracy, the linkage disequilibrium 

(LD) between the causal variant and the probed SNPs, the number of individuals in each 

group, and the analysis approach taken. Specifically to pooling, there are additional 

factors. These include precision of allele frequency measurements made by the SNP 

genotyping microarray, the accuracy of pool construction by pipetting, the number of 

individuals pooled and the number of pooled samples. Moreover, in pooling, much more 

caution is required in making sure the pooled individuals do indeed have the same 

phenotype, since we lose the ability to compare subphenotype, and we cannot directly 

measure genotype, only allelotype. However, we were able to show in four different 

independent cases, that if all the factors are being carefully considered, the necessary 

measurements are taken, and the correct analysis used, pooled-samples GWAS can be 

successful, saving funds on the arrays, and allowing subsequent replication, fine-

mapping, and sequencing of associated genomic regions.  

The Illumina array has 172,115 SNPs. Our individual samples arrays showed 

99.1% average call rate. That is 170,565 SNPs that technically work well and give a 

genotype call output when using the clustering measures of the array. These SNPs are 

evenly spaced to give an average of ~70 SNPs per Mb. We had shown, that for SNPs that 

worked on all the individual samples (average of 96.8% of all SNPs), the accuracy of the 

pooled sample genotype call using the Illumina software default algorithm for clustering, 

was more than 95%, and most of the error calls were for SNPs where the real allele ratio 
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in the pool was 1/10 (118,104 error calls across all 12 pooled samples out of a total of 

161,035 errors; 73.3%). The direction of the error was as such that a cryptic heterozygous 

pooled-sample was scored as a homozygous sample. The opposite direction, a 

homozygous pooled sample scored as a heterozygous or “no-call”, was very low 

(<0.04%). This would suggest that we are more likely to get false- positive homozygous 

blocks, but we will not miss the homozygous block carrying the mutation. 

We were also able to show that the “no-call” scores in the pool were more likely a 

result of a cryptic heterozygosity in the pooled samples, due to the presence of the two 

alleles, in any ratio. When the disease is inherited as autosomal recessive this is very 

helpful, since the exact ratio is not relevant, as long as we distinguish between 

homozygous and cryptic heterozygous SNPs. 

Our results showed that except for one disease (crd3), the association test on the 

pooled samples for each disease did not yield the correct hit. Since segments of DNA are 

inherited together, looking at haplotypes is usually more powerful than testing each SNP 

in an independent manner. Haplotype analysis in pooled samples is not possible, due to 

the lack of specific genotypes for the individual dogs. When we evaluated the supporting 

or unsupporting neighborhood of each SNP, we mimic haplotype analysis and increased 

the power enough to identify the correct locus for each disease. In crd3 disease, the initial 

association test identified the mutation- bearing locus, maybe due to the fact that the 6 

pooled samples represented 28 different dogs, compared to 22, 23 and 25 in the other 

three studies, and that the control group had mostly normal dogs and not carriers.  

Homozygosity analysis is a valid approach when searching for mutations causing 

autosomal recessive diseases. In theory, if all the animals that are in a pooled sample are 
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homozygous for the same allele, we expect the pooled sample to be scored as 

homozygous as well. It is hard to predict how many homozygous blocks one would find 

in any given set of animals. It depends on the breed, the samples (purebred or mixed), the 

size of the block set forth by the analysis, and the stringency of the analysis. crd1 and 

crd2 are mixed-bred dogs generated by crossing the affected proband dog to a 

nonaffected colony dog, and therefore are expected to have a higher heterozygous 

genome compared to purebred dogs. The number of homozygous blocks in crd1 and crd2 

were 5 (on 4 chromosomes) and 2, respectively.  In crd3, Glen of Imaal Terrier dogs, we 

found 7 blocks (on 6 chromosomes), but only one block in the Italian Greyhound dogs. In 

all four studies, combination of homozygosity analysis with basic association analysis 

identified the correct locus.  

That said, a major limitation of our pooled sample approach was the call error rate 

in cases where the allele ratio was 1/10. That is translated in action to missing the rare 

recombinant animals that would reduce the homozygous block. Another problem with 

pooling samples is that when the score is a “no-call”, there is still a chance that it is not 

due to cryptic heterozygosity, which means that sometimes the observed homozygous 

block is smaller than it really is. Those two problems result in having different 

homozygous blocks in size and location when comparing the homozygous blocks 

observed in the individual runs to the pooled run in crd1 and IGPRA. In the crd1 study, 

the homozygous block on CFA3 was 93,432,486-94,693,816 (1.26 Mb) when individual 

arrays were used for each dog, while when using the pooled samples, two homozygous 

blocks were observed: one of 1.699 Mb size (89,186,028-90,885,261) and one of 2.684 

Mb (91-785,257-94,469,321). The mutation is located distal to the second homozygous 
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block. Although the pooled approach did map the disease to the correct location, the 

potential segment bearing the mutation was not accurately identified, and a further 

genotyping of individual dogs for specific critical SNPs would have been necessary in 

order to establish the correct region. This, economically, would not be a problem, since 

the saving on the arrays leaves more funds for subsequent SNPs genotyping on individual 

dogs. In the IGPRA study, the homozygous block on CFA11 was 69,975,843-71,720,598 

(1.74 Mb) when individual arrays were used for each dog, while when using the pooled 

samples, one homozygous block was observed of 2.83 Mb size (68,891,921-71,720,598). 

The rare recombinant from the proximal end of the block was missed in the pool, 

resulting in a larger block. 
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Supplemental material: 
 
 
Supplement Tables 4.1-4.5. 

Supplement Figures 4.1-4.2 
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Supplement Table 4.1. Call rates of pooled samples: 
 
Pooled sample Call rate 
crd1 Affected samples- pool 1 0.805 
crd1 Affected samples- pool 2 0.843 
crd1 Affected samples- pool 3 0.847 
crd1 obligated carriers samples- pool 1 0.803 
crd1 obligated carriers samples- pool 2 0.868 
crd1 obligated carriers samples- pool 3 0.842 
crd2 Affected samples- pool 1 0.768 
crd2 Affected samples- pool 2 0.792 
crd2 Affected samples- pool 3 0.803 
crd2 obligated carriers samples- pool 1 0.762 
crd2 obligated carriers samples- pool 2 0.752 
crd2 obligated carriers samples- pool 3 0.794 
crd3 Affected samples- pool 1 0.812 
crd3 Affected samples- pool 2 0.786 
crd3 Affected samples- pool 3 0.788 
crd3 obligated carriers samples- pool 1 0.807 
crd3 control samples- pool 2 0.800 
crd3 control samples- pool 3 0.792 
IGPRA Affected samples- pool 1 0.771 
IGPRA Affected samples- pool 2 0.775 
IGPRA Affected samples- pool 3 0.763 
IGPRA control samples- pool 1 0.794 
IGPRA control samples- pool 2 0.794 
IGPRA control samples- pool 3 0.794 

Average 0.798 
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Supplement Table 4.2. The number of SNPs with AA, AB, BB or “no call” genotype calls in the pooled samples, within each 
category of “A” to “B” allele composition. 
 
 
 
 

 A/(A+B) = proportion of the “A” allele observed in the individual dogs 

 
Homozygous 

AA Heterozygous  
Homozygous 

BB 
Pool 
genotype 
call 10/10 9/10 8/10 7/10 6/10 5/10 4/10 3/10 2/10 1/10 0/10 
A. crd1 pool 1- affected dogs 
AA 39,090 3,393 932 171 23 5 1 1 0 0 0 
AB 0 119 1,733 4,333 7,488 7,502 6,848 3,150 1,009 49 1 
BB 0 0 0 0 0 6 100 719 1,965 4,920 52,442 
No call 22 4,090 4,363 4,448 1,609 892 2,500 5583 4,654 3,550 24 
Total 39,112 7,602 7,028 8,952 9,120 8,405 9,449 9,453 7,628 8,519 52,467 
B. crd1 pool 2- affected dogs 
AA 40,208 2,071 1,031 105 5 1 0 0 0 0 0 
AB 0 82 3,346 5,350 8,269 7,699 6,784 3,912 1,367 7 0 
BB 0 0 0 0 1 13 66 628 2,220 3,962 52,812 
No call 15 3,322 3,990 2,356 749 785 2,187 3,973 5,461 2,197 5 
Total 40,223 5,475 8,367 7,811 9,024 8,498 9,037 8,513 9,048 6,166 52,817 
C. crd1 pool 3- affected dogs 
AA 42,791 1,491 813 69 9 0 0 0 1 0 0 
AB 1 1,449 1,164 5,081 8,835 6,864 7,621 3,217 578 411 0 
BB 0 0 0 0 0 4 71 515 1,733 2,453 55,535 
No call 6 3,330 2,599 3,095 936 897 1,984 5,050 2,428 4,241 7 
Total 42,798 6,270 4,576 8,245 9,780 7,765 9,676 8,782 4,740 7,105 55,542 
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D. crd1 pool 1- control dogs 
AA 34,879 2,896 669 120 9 5 0 0 0 0 0 
AB 0 216 3,103 5,945 8,609 9,978 7,636 4,590 1,548 49 2 
BB 0 0 0 0 0 11 63 501 1,644 5,062 47,557 
No call 15 4,887 5,081 2,451 1,031 874 2,400 4,132 6,889 4,050 19 
Total 34,894 7,999 8,853 8,516 9,649 10,868 10,099 9,223 10,081 9,161 47,578 
E. crd1 pool 2- control dogs 
AA 48,583 910 287 15 0 0 0 0 0 0 0 
AB 0 20 1,305 5,627 6,443 8,520 5,469 2,968 333 4 1 
BB 0 0 0 0 0 2 9 257 1,537 1,728 63,000 
No call 26 1,621 5,264 2,026 201 158 1,020 4,762 5,178 945 29 
Total 48,609 2,551 6,856 7,668 6,644 8,680 6,498 7,987 7,048 2,677 63,030 
F. crd1 pool 3- control dogs 
AA 42,574 1,977 1,153 469 130 56 0 1 0 0 0 
AB 0 3,085 1,963 4,032 6,487 6,770 5,783 3,124 1,059 1,039 1 
BB 0 0 0 2 33 222 359 1,093 1,966 2,771 56,514 
No call 36 3,435 2,016 2,546 1,691 2,670 2,110 2,978 2,400 5,643 73 
Total 42,610 8,497 5,132 7,049 8,341 9,718 8,252 7,196 5,425 9,453 56,588 
G. IGPRA pool 1- affected dogs 
AA 29,464 4,394 285 24 0 2 0 0 0 0 0 
AB 0 40 1,902 7,777 9,771 9,923 9,375 4,590 515 7 0 
BB 0 0 0 0 0 3 14 191 1,688 8,867 41,077 
No call 14 5,662 7,271 2,928 332 146 1,494 7,289 8,779 3,554 16 
Total 29,478 10,096 9,458 10,729 10,103 10,074 10,883 12,070 10,982 12,428 41,093 
H. IGPRA pool 2- affected dogs 
AA 32,236 6,136 553 33 0 0 1 0 0 0 0 
AB 1 19 1,304 6,459 9,000 9,607 7,952 2,923 225 0 0 
BB 0 0 0 0 0 0 17 277 2,850 10,398 44,473 
No call 7 4,473 7,564 2,651 314 240 1,841 6,628 7,689 2,379 13 
Total 32,244 10,628 9,421 9,143 9,314 9,847 9,811 9,828 10,764 12,777 44,486 
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I. IGPRA pool 3- affected dogs 
AA 27,422 5,207 649 55 5 0 0 0 0 0 0 
AB 0 138 2,631 7,180 10,161 10,832 8,645 4,445 909 30 0 
BB 0 0 0 0 0 6 96 601 3,567 9,759 38,216 
No call 4 4,626 7,367 3,040 698 626 2,577 6,422 8,287 3,185 7 
Total 27,426 9,971 10,647 10,275 10,864 11,464 11,318 11,468 12,763 12,974 38,223 
J. IGPRA pool 1- control dogs 
AA 32,478 4,549 324 20 1 0 1 0 0 0 0 
AB 1 18 1,626 7,197 9,499 9,937 8,390 3,437 278 7 0 
BB 0 0 0 0 0 1 6 267 2,388 8,853 44,748 
No call 16 4,876 7,342 2,223 244 184 1,715 6,474 7,845 2,573 7 
Total 32,495 9,443 9,292 9,440 9,744 10,122 10,112 10,178 10,511 11,433 44,755 
K. IGPRA pool 2- control dogs 
AA 27,312 5,097 882 94 10 2 0 0 0 0 0 
AB 0 44 2,861 6,929 9,447 10,113 8,516 4,325 972 10 0 
BB 0 0 0 0 0 0 51 616 2,945 9,702 38,493 
No call 0 5,704 6,902 3,345 849 594 2,552 6,101 8,668 4,143 7 
Total 27,312 10,845 10,645 10,368 10,306 10,709 11,119 11,042 12,585 13,855 38,500 
L. IGPRA pool 3- control dogs 
AA 32,727 3,615 214 21 1 0 0 0 0 0 0 
AB 0 22 1,679 6,371 8,243 8,916 7,546 3,412 370 6 0 
BB 0 0 0 0 0 0 7 192 1,740 7,893 45,801 
No call 17 5,077 6,351 1,824 213 140 1,505 5,513 7,712 2,820 17 
Total 32,744 8,714 8,244 8,216 8,457 9,056 9,058 9,117 9,822 10,719 45,818 
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Supplement Table 4.3. Autosomal SNPs with the highest -log10(P)-value for each 
disease. 

 

CFA SNP 
Position 

(CanFam 2) -log10(P) 
crd1 disease: 

7 BICF2G630557683 37,960,556 2.33 
7 BICF2G630557718 38,042,775 2.33 
7 BICF2G630557829 38,251,057 2.33 
7 BICF2P215143 45,627,305 2.33 

crd2 disease 
5 BICF2G63035639 32,845,055 1.55 
9 BICF2P952701 40,598,113 1.55 
12 BICF2P1388209 19,782,720 1.55 
14 BICF2P163164 18,361,055 1.55 
21 BICF2G630650017 26,825,762 1.55 
23 BICF2G630386022 16,896,724 1.55 
32 BICF2G630600742 7,749,679 1.55 

crd3 disease 
16 BICF2P1369072 28,070,386 2.47 
16 BICF2S23248096 28,592,790 2.47 
16 BICF2P207917 28,600,467 2.47 
16 BICF2P355003 28,926,606 2.47 
16 BICF2G630110934 31,510,907 2.47 

IGPRA disease 
34 TIGRP2P398192_rs8631647 31600218 2.33 
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Supplement Table 4.5. Position of SNPs with the max Perl bin score of 10. 
 

# CFA position 
crd1 
1 3 92,888,906 
2 3 92,898,131 
3 3 92,918,288 
4 3 92,920,698 
5 3 92,934,377 
6 3 92,948,610 
7 3 92,959,822 
8 3 93,002,840 
9 3 93,049,536 
10 3 93,359,777 
11 3 93,432,486 
12 3 93,435,448 
13 3 93,443,600 
14 3 93,478,160 
15 3 93,520,425 
16 3 93,539,230 
17 3 93,542,118 
18 3 93,610,097 
19 3 93,618,479 
20 3 93,639,445 
21 3 93,668,058 
22 3 93,684,805 
23 3 93,697,691 
24 3 93,700,678 
25 3 93,731,523 
26 3 93,737,251 
crd2 
1 33 28,044,027 
2 33 28,058,136 
3 33 28,191,052 
4 33 28,206,993 
5 33 28,213,885 
6 33 28,287,462 
7 33 28,299,073 
8 33 28,329,085 
9 33 28,400,636 
10 33 28,426,671 
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11 33 28,457,866 
12 33 28,566,620 
13 33 28,616,373 
14 33 28,633,163 
crd3 
1 16 30,348,569 
2 16 30,390,824 
3 16 30,401,873 
4 16 30,406,905 
5 16 30,434,408 
6 16 30,451,050 
7 16 30,455,364 
8 16 30,473,480 
9 16 30,480,010 
10 16 30,496,748 
11 16 30,509,498 
12 16 30,539,551 
13 16 30,554,749 
14 16 30,569,541 
15 16 30,580,074 
16 16 30,609,221 
17 16 30,636,048 
18 16 30,671,681 
19 16 30,695,399 
IGPRA 
1 11 70,253,263 
2 11 70,268,434 
3 11 70,279,675 
4 11 70,288,934 
5 11 70,304,641 
6 11 70,319,662 
7 11 70,322,734 
8 11 70,385,348 
9 11 70,401,578 
10 11 70,419,090 
11 11 70,438,792 
12 11 70,495,965 
13 11 70,578,183 
14 11 70,588,982 
15 11 70,700,222 
16 11 70,702,225 
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17 11 70,760,338 
18 11 70,872,927 
19 11 70,907,305 
20 11 70,913,592 
21 11 70,950,276 
22 11 70,969,609 
23 11 71,013,919 
24 11 71,025,991 
25 11 71,091,329 
26 11 71,166,278 
27 11 71,192,456 
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Supplement Figure 4.1. Perl script written to give weight to the SNPs based on their p 
value and their “neighborhood” SNPs.  
 
#!/usr/bin/perl 
use strict; 
 
#read in file with snp#, Chromosome, position and p into a set of arrays 
print "What is the location of your data file, with 4 columns, data starting in second row, 
headers in first, first column is snp name, second is snp chromosome, third is position and 
fourth is p value:\n"; 
chomp (my $filename = <STDIN>); 
 
my @snpnum; 
my @chr; 
my @pos; 
my @p; 
my $line=0; 
 
open FILE, $filename or die$!; 
while (<FILE>) 
{ 
chomp; 
($snpnum[$line], $chr[$line], $pos[$line], $p[$line]) = split("\t",$_); 
$line++; 
} 
close FILE; 
 
#ask what distance from current snp is  
print "What is the distance, in bp, from the current snp where you want to find other 
significant SNP's?\n"; 
chomp (my $dist = <STDIN>); 
 
#ask what is the upper level for p to be considered for significance 
print "At what p value is a SNP significant?\n"; 
chomp (my $sigp = <STDIN>); 
 
#some debuging code: 
print "You want to see if there are any snps that are within $dist bp at a better then $sigp 
p value.\n"; 
#print $dist - $sigp,"\n"; 
#print "$snpnum[0] \n"; 
#print "$snpnum[1] \n"; 
#print "$snpnum[-1] \n"; 
#print "$pos[$dist] \n"; 
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#for SNP (same number in each array) set size as 1, then check if same chromosome, 
within distance and under or equal to the set p value, if so set make the size variable 
larger for decreasing p and distance 
my @size; 
my $snp = 0; 
my $checkindex = 0; 
 
foreach (@chr) 
{ 
 $size[$snp] = 1; 
 $checkindex = 0; 
 if (($sigp >= $p[$snp]) && ($chr[$snp] =~ /^[+-]?\d+$/)) 
  { 
   $size[$snp] = $size[$snp]+  (100-(($p[$snp]/$sigp)*100)) ; 
    foreach  (@snpnum) 
    { 
      
      if ($chr[$checkindex] == $chr[$snp]) 
      { 
       if ( abs(($pos[$checkindex])-
($pos[$snp])) <= $dist) 
       {  
        if ($sigp >= 
$p[$checkindex]) 
        { 
         if ($checkindex != 
$snp) 
         { 
          $size[$snp] = 
($size[$snp] 
            
  + (100-(($p[$checkindex]/$sigp)*100))  
            
  + (100-((abs($pos[$checkindex]-$pos[$snp])/$dist)*100))); 
         } 
        } 
       } 
      } 
      
     $checkindex++; 
    } 
  } 
 $snp++; 
 if ($snp % 1000 == 0) 
 { 
  print "processing line $snp\n"; 
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 }  
} 
 
#find the maximum value for the size variable so it can be used to create a weighted size 
variable. 
my $maxsize = 1; 
$snp = 1; 
 
foreach (@size) 
{ 
if ($size[$snp] > $maxsize) 
 { 
 $maxsize = $size[$snp]; 
 } 
$snp++;  
} 
print "The largest size is $maxsize.\n"; 
 
 
#create a weightes size variable, from 1 thru 10, as a percent of the max size. 
my @wsize; 
$snp = 0; 
foreach (@chr) 
{ 
 $wsize[$snp] = int((($size[$snp]/$maxsize)*10)+.5); 
 if($wsize[$snp] == 0) 
 { 
  $wsize[$snp] = 1; 
 } 
 $snp++; 
} 
 
#write a new file, with size as a fourth column and weighted size as a fifth 
$size[0] = "size"; 
$wsize[0] = "wsize"; 
 
open OUTFILE, ">$filename.output.txt"; 
my $linenew = 0; 
foreach (@pos) 
{ 
print OUTFILE 
"$snpnum[$linenew]","\t","$chr[$linenew]","\t","$pos[$linenew]","\t","$p[$linenew]","\t
","$size[$linenew]","\t","$wsize[$linenew]\n"; 
$linenew++; 
} 
close OUTFILE; 
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Supplement Figure 4.2. Heterozygosity plots of the SNPs in the three affected and three control pooled sample on 
CFA3 (A) and on CFA 11 (B). 
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Affected pooled samples 
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Control pooled samples B. 
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CHAPTER FIVE: DISCUSSION- SUMMARY OF RESULTS AND FUTURE 

PLANS. 
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5.1 Summary of findings 

In this work we have touched upon the surface of the heterogeneity of retinal 

degeneration in the canine population, similar to the landscape observed in human 

retinitis pigmentosa. The retina, one might suggest, is the “busiest” organ in our body: to 

deliver vision, an act we do most of the day, and in our modern life- also at night, the 

phototransduction cascade must be tightly regulated to adjust to a wide variety of stimuli, 

including different levels of light and circadian rhythm1-3. In addition, the retina must 

rapidly cope with toxicity of bi-products, and maintain viability of cells under highly 

oxidizing conditions, and extremely rapid regeneration of the visual chromophore1-3. This 

execution would require a complex gene regulation network, which would 

simultaneously implement the many levels of regulations. Therefore, it is easy to imagine 

that any interruption in the balance of this network, might result in a domino effect that 

would eventually (and sometimes immediately) affect the normal function of the retina. 

Many times these imbalances occur due to mutations in the DNA, and if in germ-lines, 

the disease is then inherited from generation to generation. It is apparent that mutations in 

different genes can result in a very similar phenotype, and the same mutation on a 

different genetic background, even a very similar one as in siblings, can result in a 

different phenotype. Deciphering this heterogeneity and understanding the effect of each 

mutation can begin to clarify the complexity of vision impairment. 

Dogs suffer from a broad spectrum of vision impairments, some unique to a specific 

breed, and some shared by many. Since each breed is genetically homogenous for a large 

proportion of its genome, complex traits can become less complex when presented on a 

unified genetic background. The dog model therefore is a great research tool to not only 
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find disease causative genes, but also to understand the many modifiers affecting the final 

outcome of vision.  

This concept was presented, I hope, in this work. We were able to identify the mutations 

in several diseases, some shared by many breeds, such as prcd, and some uniquely 

affecting one breed, such as erd (Figure 5.1). 

 

Figure 5.1. Summary of the research results. The locus, gene and mutation were 
identified in all diseases. Three novel Genes causing PRA were identified: PRCD, 
STK38L, and mir455, suggesting new candidate genes for human inherited RP, and new 
pathways important for photoreceptor function. The DNA alteration in IGPRA is yet to 
be identified. 

Late onset disease Early onset disease 
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5.2 From Linkage to Association and everything in between 

The domestication of the dog from its grey wolf ancestor (c. lupus), unintentionally 

created a valuable genetic model for studying both simple mendelian traits and more 

complex ones. Among its advantages as a research model are: the striking similarities of 

canine diseases to human diseases; accurate breeding records; large families; large LDs; 

and an excellent large animal therapy model. Through the journey I took exploring retinal 

diseases in dogs, I also experienced the evolution of gene-mapping approaches, as data 

emerging from newly developed technologies enabled us to adapt experimental design 

and methods of analysis. Linkage mapping, unlike the candidate gene approach, 

interrogates the entire genome, including unknown genes, using informative families 

segregating the disease. The search is for genetic markers that co-segregate with the 

disease: If no recombination is observed between a marker and the disease phenotype, 

most likely the genomic mutation is physically close to the marker. In practice, access to 

family samples in the “real world” is often extremely difficult when it comes to blood 

collection and phenotype evaluation. For those reasons, purpose-bred research colonies 

were developed. By breeding affected dogs to beagles, and subsequent development of 

three-generation-colony pedigrees segregating the disease under investigation, with many 

littermates of dogs per breeding, and many meioses to look at, linkage analysis was a 

powerful tool to use (prcd, crd1, crd2, cd, OSD, and erd). The outcross to a different 

breed, introduced a high level of heterozygosity and informativeness that was lacking in 

the purebred dog population. However, these experiments were extremely expensive and 

time consuming, and with the late onset diseases in particular sometimes ascertainment of 

phenotype at an early age becomes challenging, resulting in the need to keep these dogs 
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for many years, further inflating the cost. Moreover, as the number of meioses observed 

per breeding in canine pedigrees is limited, multiple breedings are required to generate 

sufficiently large numbers of informative progeny (over 50 dogs on average, Table 5.1).  

The identification of over 2.5 million SNPs, densely and broadly placed across the whole 

genome enabled us to move away from linkage analysis and into association studies. 

Based on the long within-breed LD4,5 (between 0.5 and 5 Mb, depending on the breed) 

10,000-30,000 SNPs are considered sufficient to map a Mendelian trait with high 

penetrance and no phenocopies. Lindblad-Toh and her group suggested that 20 cases and 

20 controls are sufficient to map autosomal recessive traits and 50 of each group to map 

autosomal dominant trait6. We showed the efficiency of this approach by mapping and 

identifying the mutations in five diseases, using between 10 and 20 dogs per each group 

(Table 5.1). In the Basenji PRA disease we were able to map the gene with less than 10 

dogs total (6 affecteds and 3 controls). The average minimal LD was 1.8 Mb, though in 

regions that are gene-rich this interval can still be challenging in hunting for the causative 

mutation. Nevertheless, the reduction in the number of needed dogs, and in time and in 

cost obtained by SNP map genotyping and genome-wide association study (GWAS) has 

been very valuable and powerful. 
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Table 5.1. Study designs, methods of analysis, tools and results in 10 different retinal diseases in the canine population represented in 
this work. 

Disease Breeds affected 

Number of 
affected dogs 

used  

Number of 
unaffected 
dogs used Polymorphism tool CFA 

Mapped 
interval 

(Mb) Gene 
Linkage studies 

OSD - drd1 Labrador retriever 30 50 
Microsatellite (genome-
wide 249 markers) 24 11.5 Col9A3 

OSD - drd2 Samoyed 23 47 
Microsatellite (genome-
wide 249 markers) 15 21 Col9A2 

erd elkhound >50 >50 microsattelitle+SNPs 27 1.6 STK38L 
cd Alaskan Malamude  >50 >50  microsattelitle+SNPs 29 1.18 CNGB3 
prcd Miniature poodle >50 >50 microsattelitle+SNPs 9 1.5 PRCD 
Association studies (colony-derived dogs) 

crd1 American Staffshire Terrier 17 18 
Illumina SNP array 
(173,662 SNPs) 3 1.05 PDE6B 

crd2 Pit bull Terrier 15 13 
Affymetrix SNP array 
(~60,000) 33 2.67 IQCB1 

Association studies (purebred dogs) 

crd3 Glen of Imaal Terrier 21 22 
Affymetrix SNP array 
(~60,000) 16 2.74 ADAM9 

Basenji PRA Basenji 6 3 
Illumina SNP array 
(173,662 SNPs) 25 2.09 SAG 

IG PRA Italian Greyhound 21 18 
Illumina SNP array 
(173,662 SNPs) 11 0.413 

Col27A1/ 
mir455 

Linkage Disequilibrium 

prcd >23 breeds 
10 (from 10 

different breeds) 6 Fine-mapping SNPs 9 0.106  

cd 

Alaskan Malamute, S, Husky, 
Miniautre Australian Shepherd, 
Alaskan sled-dogs 

5 (from 3 
different breeds)* 

4 (from 4 
different 

breeds)** Fine-mapping SNPs 29 0.5-1.04  
*- Miniature Australian Shepherd, Alaskan Malamute, Husky carrying one affected chromosome 
**- Boxer, Miniature Australian Shepherd, Alaskan Malamute, Husky carrying one normal chromosome 
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A synergistic combination of both population study (GWAS) and family-based study (Linkage 

mapping) can be very beneficial, as seen in crd2 disease. Two significant GWAS hits were 

observed: one on CFA12 and one on CFA33. The locus bearing the mutation showed a higher p-

value, however the exclusion of CFA12 was more convincing when one SNP was genotyped on 

a large number of dogs in an informative perdigree, and yielded a non-significant lod score, with 

theta close to 0.5. 

 While the extensive within-in breed LD facilitates initial mapping of a chromosomal region, 

identifying the mutation can be challenging when no obvious candidate gene is available. When 

mapping diseases expressed uniquely in one breed, LD also depends on the location of the 

mutation as we saw in our diseases: closer to the centromer, where recombination is suppressed, 

LD is larger than when the mutation is on the telomeric end of the chromosome (PDE6B and 

Col27A1 are on the telomeric ends of their chromosomes, with LD of 0.413-1.05 Mb compare to 

ADAM9, SAG and IQCB1 which are located more proximal with 2.09-2.74 Mb interval; Table 

5.1). 

PRCD is located on the centromeric end of CFA9. As such, the number of recombinants within 

each available pedigree was very small, making it difficult to narrow the linkage interval. LD 

across unrelated dogs within the same breed in most cases did not reduce the interval. Cross-

breed test matings among several breeds suggested that their diseases were allelic to each other. 

Under the assumption that all the breeds affected with prcd are identical by descent (IBD), 

however, we were able to show that comparing fine-map-haplotypes across breeds was 

extremely efficient in reducing the LD, and the number of candidate genes from 50 to 3. The 

initial locus was mapped by linkage analysis to a 1.9 Mb interval and the identification of an 

ancestral haplotype common to all affected dogs from 14 different breeds reduced the LD to 106 
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Kb. That this approach can sometimes work even within one breed, if dogs are taken from 

different geographic isolates, was shown in for prcd and in the toy poodle breed.  

Researchers have to bear in mind though that running association studies across many breeds 

would only work if the disease allele is inherited IBD, which sometimes is difficult to determine. 

We were able to show that mapping genes in the canine population by means of association can 

be done on pooled samples. Careful steps have to be taken to assure success. The major tradeoff 

for the reduced cost of the experiment is a larger LD interval, as rare recombinants can be 

missed.  

 

5.3 Novel genes, novel pathways 

In this work we were able to identify three novel genes and pathways responsible for 

photoreceptor function and vision: PRCD, STK38L and mir455.  

Reducing the prcd-LD interval to a 106 Kb region encompassing only three known genes was 

critical for the identification of the prcd novel gene. Excluding these three positional candidates 

showed, without a doubt, that the mutation causing prcd had to be a novel gene, and likely one of 

the conserved sequences in the interval. Conservation analysis, together with the analysis of a 

normalized canine EST library7, suggested the presence of a novel gene, with a predicted protein 

of 54 amino acids8. The first 4 amino acids coded by the first exon are highly conserved and 

prcd-affected dogs were homozygous for a G to A transition at nucleotide 5 of the coding 

sequence, resulting in a cysteine to tyrosine change (C2Y)8. This discovery set the ground for 

screening human RP patients for this gene, and identifying two unrelated families with mutations 

in PRCD: one family from Bangladesh carrying the same mutation as observed in the dog8, and 

an Israeli Arab family, with a novel mutation in PRCD causing RP in homozygous recessive 
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individuals9. More recently, a third case of mutated PRCD was identified in a Turkish family 

affected with RP10. These findings establish its etiology in RP. Our protein model suggested a 

transmembrane domain in the C-terminus of the protein, with an alpha-helix structure8. Recently, 

proteomic analysis of the rod and cones discs identified PRCD as one of the main proteins 

expressed, and at levels of molar ratio of about 1:290 between PRCD and rhodopsin11.  

  

We showed that an STK38L mutation causes early retinal degeneration in Norwegian elkhounds, 

and thus, for the first time, implicated a critical involvement of STK38L in photoreceptor 

development and disease. As of today, no human patients with mutations in STK38L or any of 

the proteins that interact with it (S100B, Mob1, Mob2) have been identified as mutated in RP 

patients. However, we anticipate that one or more of these proteins will probably prove to be 

mutated in some portion of the RP patients yet to be resolved. We followed the investigation on 

the erd- affected retinas and showed that during postnatal weeks 7 to 14 some photoreceptor 

cells become committed to apoptosis and some are recruited differentiate such that the ONL 

thickness does not change12. Coincident with this photoreceptor cell death and proliferation 

phase is a change in the visual cell population: both cone types of cells remain (L/M and S-

cones) but the rods that presumably were generated after proliferation now become hybrid 

photoreceptors that express both rod-opsin and cone opsin. These results suggest a role for 

STK38L in the control of cell division and morphogenesis in photoreceptors and possibly other 

retinal neurons. Recently, a group of researchers in Japan provided evidence that STK38L 

phosphorylates Rabin8 at Ser-272 and that this phosphorylation is crucial for ciliogenesis13. They 

propose that NDR2-mediated Rabin8 phosphorylation triggers the switch in binding specificity 

from PS to Sec15 and thereby promotes local activation of Rab8 and ciliary membrane 
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formation. A mutation in this gene therefore would affect ciliogenesis. Defects in primary cilium 

formation impair cell sensitivity to external signals in various tissues and can cause diverse 

genetic disorders14,15. It is yet to be determined if erd is indeed a ciliopathy disease. Our data 

suggest that erd-affected cells have at least some capability to transport proteins to the OS, as the 

outer segment renewal experiments show normal incorporation of labeled opsin into the outer 

segment (although it is redistributed subsequently throughout the rods due to formation of hybrid 

rod/cones which have a cone outer segment disc morphology). 

 

In the IGPRA dogs we were able to associate a disease in a large animal model with an alteration 

in the level of a microRNA gene. Mouse models for RP exist that show alterations in the level of 

expression of several mir genes. Our findings support these observations and suggest that some 

RP patients might be carrying a mutation in one of the mir genes expressed in the retina.  

The overall mir gene network is not fully understood. In mammals, many miRNAs exist as 

duplicates or highly similar genes, which raises the question of both functional redundancy and 

cooperation16-18. Many computational target-prediction tools predict up to a couple of hundred 

targets per miRNA19. However, it was also observed that some miRNAs can control a specific 

gene regulation program through a few major targets, suggesting they may function as 

switches20,21. Although proteomics approach usually demonstrate changes in many genes in 

miRNAs-knockout mice, only a few of those may be critical for a particular phenotype. The 

downstream consequences of low mir455 expression in the retina remain unclear at this point.  

miRNA genes are also known to act as modifiers in pathogenesis22. Our hit to mir184 when 

comparing IG heterozygous dogs affected with PRA to IG heterozygous dogs showing no 

symptoms of PRA suggests that miRNA interaction and cooperation might influence penetrance 



	
  

	
   171	
  

in dominant diseases with incomplete penetrance. The observation that a reduction in mir455 

expression causes a significant change in the expression of mir3609 also suggest that miRNAs 

cooperate in a network, with multiple pathways and feedbacks, and changes in expression of one 

mir may result in changes in expression of other mir genes and maybe also of SNORD genes. 

 

5.4 Future plans 

As in any research, the newly discovered data raises more questions.  

What does PRCD do in the retina? Which genes does it interacts with? What are the modifiers of 

the disease? Why does the gene have such a long 3’UTR? Can PRCD be rescued with gene-

therapy? 

What is the function of STK38L in the retina? Are there any human patients with mutations in 

STK38L or any of its interacting proteins (S100B, Mob1, Mob2)?  

How does low expression of mir455 cause retinal degeneration? What are the target genes of 

mir455? What is its relationship with mir3609 and what role does the latter have in the 

maintenance of the retina? Can mir genes be a therapeutic approach for blindness?  

Is gene therapy possible for IQCB1 in cone-rod dystrophy 2 in the Pit bull terrier? 

 

Some of these questions are very broad and may take years to answer. Some of the questions are 

easier to answer in a mouse model, and some are better answered in a large animal model such as 

the dog. One thing is definite: there is much more to be done! 
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