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Abstract

Discrete choice modeling is experiencing a reemergence of research interest in the inclusion of
latent variables as explanatory variables of consumer behavior. There are several reasons that
motivate the integration of latent attributes, including better-informed modeling of random
consumer heterogeneity and treatment of endogeneity. However, current work still is at an early
stage and multiple simplifying assumptions are usually imposed. For instance, most previous
applications assume all of the following: independence of taste shocks and of latent attributes,
exclusion restrictions, linearity of the effect of the latent attributes on the utility function,
continuous manifest variables, and an a priori bound for the number of latent constructs. We
derive and apply a structural choice model with a multinomial probit kernel and discrete effect
indicators to analyze continuous latent segments of travel behavior, including inference on
the energy paradox. Our estimator allows for interaction and simultaneity among the latent
attributes, residual correlation, nonlinear effects on the utility function, flexible substitution
patterns, and temporal correlation within responses of the same individual. Statistical properties
of the Bayes estimator that we propose are exact and are not affected by the number of latent
attributes.
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1. Introduction1

Discrete choice models are a powerful tool for analyzing consumers’ decisions among2

mutually exclusive alternatives. However, standard discrete choice models consider only3

observable hedonic attributes of the alternatives, failing to incorporate other relevant4

choice components. These additional components may be attitudinal constructs (such as5

pro-environmental preferences), as well as multi-dimensional attributes of quality (such6

as performance) that cannot be measured using a single item. Neglecting these com-7

ponents (omission of a relevant variable) or using proxy variables (measurement error)8

induce endogeneity. Hence, the incorporation of these underlying components is desirable9

to achieve consistent, efficient preference estimators. In addition, structural choice mod-10

els that incorporate underlying attitudes through latent variables (see the seminal paper11

by Ben-Akiva et al., 2001) offer an attractive improvement in modeling choice behavior,12

because the discrete choice model is only a part of the underlying behavioral process13

through which the modeler can better represent quality and attitudinal responses. In14

this paper we propose to use a multinomial probit kernel with latent attributes and15

discrete (categorical ordered) effect indicators to enrich the representation of random16

consumer heterogeneity in transportation choices (cf. Burda and Harding, 2013).17

Although the number of empirical applications of choice models with latent attributes is18

increasing at an exponential rate (Vij and Walker, 2014, Palma et al., 2013, Ben-Akiva19

et al., 2013, Jensen et al., 2013, Hess and Beharry-Borg, 2012, Hildebrandt et al., 2012,20

Rosenberger et al., 2012, Rungie et al., 2011, just to give a few recent examples), the21

standard frequentist estimator (a maximum simulated likelihood estimator, see Bolduc22

and Daziano, 2010) has several problems that have limited applied research. For instance,23

relatively flat areas of the simulated loglikelihood create problems of weak identification,24

local maxima may be multiple, and standard numerical approximations of both the25

gradient and the Hessian do not ensure convergence. In addition, computation cost of26

simulation-aided inference is high for medium-sized problems: finding the maximum27

simulated likelihood estimates can take days even when there are no convergence issues.28

In fact, maximizing the likelihood function exhibits the curse of dimensionality with29

respect to the number of latent variables.1 In a very recently published article, Bhat and30

Dubey (2014) propose to use the maximum approximate composite marginal likelihood31

(Bhat, 2011) as an analytical approximation of the loglikelihood that is well behaved32

(even with numerical approximations of the Hessian), avoiding thus the non-convergence33

problems and dimensionality issues of the standard frequentist estimator. The method34

of Bhat and Dubey (2014) not only is able to handle a probit kernel and a combination35

of continuous and discrete indicators but also converges in minutes for problems with36

500-2,000 observations, whereas restricted specifications take 15 hours or more with the37

standard frequentist estimator. The authors note, however, that larger sample sizes are38

1Each latent variable adds one dimension to the integral of the joint choice probability.
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required to best recover the effects of the latent variables on choice.39

The purpose of this paper is to explore another estimator that avoids the curse of dimen-40

sionality, and addresses other issues such as having exact (small-sample) properties. The41

main contribution is thus the derivation of a general, simultaneous Bayes estimator for a42

multinomial probit model with a panel structure and latent attributes that are endoge-43

nous and manifested through effect indicators that are discrete, continuous, or both. Our44

estimator allows for interaction and simultaneity among the latent attributes, residual45

correlation, nonlinear effects on the utility function, flexible substitution patterns, and46

temporal correlation within responses of the same individual. We effectively propose to47

model choice as a covariance structure model with an augmented space of discrete and48

continuous dependent variables, and identification blocks that are exploited to derive49

the full conditional distributions for Gibbs sampling the posterior of interest.2 There are50

several benefits in the estimator proposed. As discussed in the paper, estimation time51

is in the order of minutes (1-3 minutes for 500 observations and 10,000 repetitions of52

the sampler, 5-15 minutes for 2,500 observations); the estimator is integral, gradient,53

and Hessian free; and inference on transformation of the parameters of interest is eased,54

through the possibility of post-processing Monte Carlo Markov chains to find poste-55

rior distributions and standard errors of welfare measures (willingness to pay, consumer56

surplus), underlying discount rates, and predicted probabilities and shares.57

After analyzing the general behavior of the estimator using a Monte Carlo study, we58

give an empirical application with important insights that are relevant for better under-59

standing travel behavior. By constructing a model of vehicle purchase and commuting60

behavior, we generalize previous findings (Bolduc et al., 2008, Bolduc and Daziano,61

2010, Daziano and Bolduc, 2013b) about urban transportation choices. In particular,62

we present the structural discrete choice model as an alternative approach for deriving63

a continuous, latent market segmentation of consumers. We also provide inference on64

the energy paradox or energy efficiency gap in vehicle fuel efficiency, which aims at65

explaining the observed slow consumer shift to energy efficient technologies with high-66

return rates (Jaffe and Stavins, 1994). In particular, we derive implicit discount rates67

(Hausman, 1979, Train, 1985) that allow for heterogeneity based on a latent variable68

that identifies cost-conscious consumers.69

The rest of the paper is organized as follows. In section 2 we specify both the structural70

and measurement equations of a generalized structural discrete choice model with a71

multinomial probit kernel and latent attributes that are manifested by effect indicators72

that can be either continuous or discrete. We also discuss identification of the parameters73

2Unlike the estimator analyzed in Daziano and Bolduc (2013b), no Metropolis-Hastings simulation is
required for the estimator derived in this paper. Other extensions include simultaneity and interactions,
which are both challenging in the Bayesian context.
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of the model, and we derive a Gibbs sampler based on reduced form of the model. In74

fact, we discuss that when introducing interactions, the Gibbs sampler is based on a75

pseudo-reduced form that requires special attention to take into account stochasticity in76

the parameters of the full conditional distributions. Section 2 ends with a Monte Carlo77

study that analyzes behavior of the estimator for a varying number of alternatives (5-10),78

alternative-specific latent variables, and sample sizes (500; 1,500; 2,500). In section 3 we79

present the discrete-choice experiment about transportation choices – vehicle-purchase80

and commuting-mode choices – in Canadian urban centers. Even though we have used81

a subset of the same dataset in previous work, in this paper we overcome a series of82

simplifying assumptions that were originally used, and are actually still present in most83

current work on latent attributes in discrete choice. Furthermore, the commuting mode84

choice experiment is an addition, as our previous work has focused on specific models85

of vehicle choice. Section 4 summarizes posterior estimates of the joint model, including86

a forecasting exercise, and inference on implicit discount rates when comparing upfront87

costs versus future energy savings. Section 5 concludes by summarizing the main findings88

of this study.89

2. Microeconometric choice model with endogenous attributes90

The statistical model representing random utility maximization behavior treats utility91

as a latent endogenous variable. The problem of latent endogenous variables has led to92

specific econometric models of qualitative dependent variables, including discrete choice.93

Standard discrete choice can be seen as a special case of structural equation modeling94

(SEM) – a class of statistical models common in psychometrics.3 SEM views the relation-95

ship between latent variables (such as utility) and manifest variables or effect indicators96

(such as choice indicators) as a system of simultaneous equations. Two main sub-models97

can be distinguished in SEM: first is the structural model describing potential causal re-98

lations between endogenous and exogenous variables; second is the measurement model99

specifying the relations of latent variables explaining their observable manifest variables.100

2.1. Structural choice model101

In a standard discrete choice setting all attributes are observable and exogenous. How-102

ever, we consider that the attributes are partitioned into a set of observable and exoge-103

nous attributes and a set of attributes that are not only latent but also determined within104

the model (see Rungie et al., 2012). The structural model of a multinomial probit with105

endogenous latent explanatory variables is given by the system of equations we describe106

in this subsection. The model that we analyze fits the promising avenue of research of107

3SEM is based on covariance structure analysis.
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expanding the explanatory factors included in discrete choice models to psychological108

constructs such as attitudes (Rungie et al., 2011). McFadden (1986) and Ben-Akiva and109

Boccara (1987) set the theoretical fundamentals for later development of the compre-110

hensive structural choice modeling framework that we adopt here. These fundamentals111

were revisited by Walker (2001) and Ben-Akiva et al. (2001) in a seminal work that has112

motivated the reemergence of what has been called hybrid choice modeling (HCM) by113

some authors in transportation research (Ben-Akiva et al., 2002).4114

The system combines a discrete choice kernel with a standard SEM for the latent at-115

tributes. There are several relevant expansions in the discrete choice kernel that we116

analyze in this paper (cf. Bhat and Dubey, 2014). First, the discrete choice kernel is a117

multinomial probit model with a full covariance matrix that allows for flexible substi-118

tution patterns that are determined by the data. Second, we assume a panel structure119

that accounts for repeated observations that are typical of stated preference data (cf.120

Elrod and Keane, 1995). In addition, for the latent attributes we adopt a generaliza-121

tion of a Multiple Indicator Multiple Cause (MIMIC) model (Jöreskog and Goldberger,122

1975), which is a sub-model of the more general linear structural relations (LISREL)123

or JKW system of Jöreskog (1973), Keesling (1972), Wiley (1973). The generalization124

comes from considering effect indicators that can be discrete, continuous, or both. Fi-125

nally, we allow for interactions not only among the latent factors (simultaneity in the126

determination of the endogenous latent factors), but also among the latent factors and127

the observable attributes. Interactions are relevant for a more general representation of128

the discrete demand system, where latent factors are used to construct a mechanism of129

continuous market segmentation. This way of representing latent, continuous consumer130

heterogeneity distributions may be especially appealing for marketing and empirical in-131

dustrial organization. We will illustrate this consumer-heterogeneity mechanism in the132

empirical analysis of the next section.133

Consider the following simultaneous system of latent variables (we adopt the notation134

of Bolduc et al. (2005) and Bolduc and Daziano (2010), which is summarized in Table135

B.1):136

Structural equations137

z∗n
(L×1)

= Π
(L×L)

z∗n + B
(L×M)

wn
(M×1)

+ ζn
(L×1)

, ζn ∼ N (0,H−1
Ψ ) (1)

U∗tn
(J×1)

= Xtn
(J×K)

β
(K×1)

+ Y∗tn(Xtn, z
∗
n)

(J×Q)

%
(Q×1)

+ Γ
(J×L)

z∗n
(L×1)

+ νtn
(J×1)

,νtn ∼ N (0,H−1
Σ ) (2)

I∗n
(R×1)

= α
(R×1)

+ Λ
(R×L)

z∗n
(L×1)

+ εn
(R×1)

, εn ∼ N (0,H−1
Θ ) (3)

4The model is also known as the Integrated Choice and Latent Variable (ICLV) model.
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Measurement equations138

Irn
(1×1)

=


1
2
...
Mr

if µ0r < I∗rn ≤ µ1r

if µ1r < I∗rn ≤ µ2r

if µMr−1 < I∗rn ≤ µMr ,

(4)

ytn
(1×1)

= i ∈ Cn iff Uitn − Ujtn ≥ 0, ∀j ∈ Cn, j 6= i, ∀n ∈ N. (5)

where z∗n is an endogenous random vector of individual-specific latent variables that139

enters the utility function as a latent explanatory variable; the matrix Π allows for140

the eventual presence of simultaneity or interactions among the latent variables5 – we141

assume that (1L − Π) is invertible, where 1L represents the identity matrix of size142

L; wn is a vector of “causal indicators” or explanatory variables affecting the latent143

variables; B is a matrix of unknown regression coefficients used to describe the global144

effect of (1L − Π)−1Bwn on the latent variables; and H−1
Ψ is a full covariance matrix145

which describes the relationship among the latent variables through the error term.6 To146

simplify notation, we define the following reduced-form parameters B̃ = (1L −Π)−1B,147

ζ̃n = (1L −Π)−1ζn, and H̃−1

Ψ̃
= [(1L −Π)−1]H−1

Ψ [(1L −Π)−1]′.148

The choice model in equation (2) is written in vector form where we assume that there149

is a total of Jn available alternatives in the set Cn, as well as T choice situations. Hence,150

Utn is a vector of indirect utility functions for individual n and choice situation t; Xtn151

is a design matrix with x′tin designating its ith row; and β is a vector of unknown taste152

parameters. Y∗tn(Xtn, z
∗
n) is a matrix of Q interactions between the observable attributes153

Xtn and the latent z∗n as well as interactions within the latent variables; % is a vector154

of unknown parameters associated with these interactions. Γ is a matrix of unknown155

parameters associated with the latent variables, with γ ′i designating the ith row of matrix156

Γ.7 The choice model is completed with equation (5) which contains the choice indicators157

ytn,∀t, n that manifest the utility maximization process of consumers. Because of the158

normality assumptions regarding the distribution of the random term νnt the choice159

kernel of the system is a panel probit model.160

Equations (3) and (4) represent a system of independent ordered probit models for161

measurement of the latent variables z∗n. Equation (3) is the structural equation of an162

underlying continuous vector of indicators. Thus, I∗n is a (latent) continuous vector of163

manifestations of the latent variables z∗n; α is an intercept vector and Λ is a matrix164

5Π contains zeros in the diagonal.
6Current applications of discrete choice models with latent attributes impose a diagonal matrix. We

generalize the model to allow for correlated latent variables.
7Whereas Γ represents the standard linear effect of the latent variables on the utility function that is

common in hybrid choice models, we also allow for nonlinearities through the interactions Y∗tn(Xtn, z
∗
n).
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of unknown factor loadings. εn is a vector of measurement error terms with covariance165

matrix H−1
Θ . We assume that there are R measurement elements, i.e. a total of R “effect166

indicators” (usually just labeled as “indicators”). For deriving the estimator we assume,167

first, that each observable indicator Irn, r ∈ 1, .., R is a categorical variable that can take168

Mr multinomial, ordinal values. For the r-th manifest variable, instead of observing the169

underlying continuous measurement I∗rn, the sample contains the discrete categories of170

response (for example, answers in a Likert scale.) Irn is therefore a censored version of171

I∗rn = αr +λ′rz
∗
n + εrn > 0.8 µr = (µ0r, . . . , µMr)

′ is a vector of threshold parameters that172

determine the censorship mechanism. Although we formulate the model with all effect173

indicators being ordered, it is straightforward to represent a situation with a mixture of174

binary, ordered, and continuous effect indicators. For instance, if indicator r is dichoto-175

mous, then the measurement equation (4) becomes Irn = 1 if I∗rn > 0 and Irn = 0 if176

Irn ≤ 0. If indicator r is continuous, then measurement equation (4) for that indicator177

is not necessary, as I∗rn is directly manifested.178

Note that the model of interest is a simultaneous equation system with latent variables179

representing both preferences and endogenous underlying attributes, with ordinal effect180

indicators for the underlying attributes. In fact, for the particular case analyzed in this181

paper what we obtain is a simultaneous system of probit models. However, the derivation182

of a joint estimator for the parameters of the system is challenging. We will denote by δ183

the whole set of unknown parameters of the hybrid choice model. Given our assumptions,184

the likelihood of observing both yn = (y1n, ..., yTn)′ and In = (I1n, ..., IRn)′ may thus be185

written as:186

`(y, I; δ) =

N∏
n=1

∫
z∗n

T∏
t=1

Ptn(itn
∣∣z∗n,Xn,θ,H

−1
Σ )

R∏
r=1

f(Irn|z∗n,Λ,µr,H−1
Θ )g(z∗n

∣∣∣wn, B̃,H
−1
Ψ̃

)dz∗n,

(6)
where Ptn(itn

∣∣z∗n,Xn,θ,H
−1
Σ ) is the probability of the chosen alternative in choice situ-187

ation t, which is given by the choice probability of a multinomial probit, with θ being a188

vector that summarizes the parameters of the utility function; where189

f(Irn = m) = Φ

(
µmr − λ′rz∗n

[H−1
Θ ]rr

)
− Φ

(
µm−1r − λ′rz∗n

[H−1
Θ ]rr

)
(7)

with Φ being the cumulative distribution function (cdf) of a standard normal dis-190

tribution, and [H−1
Θ ]rr being the r-th element of the diagonal of H−1

Θ ;9 and where191

g(z∗n|wn, B̃,H
−1

Ψ̃
) ∼ N ((1L −Π)−1Bwn, [(1L −Π)−1]H−1

Ψ [(1L −Π)−1]′).192

From the likelihood function it is clear that the latent attributes z∗n, which we assume193

8I∗rn is the r-th element of I∗n. λ′r is the r-th row of matrix Λ.
9This is the contribution to the likelihood function of one observation of an ordered probit.
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to be individual-specific variables, are the source of intra-respondent correlation. So, in194

our model, choices coming from a same individual are correlated.195

As stated above, the system can be rewritten to accommodate dichotomous and contin-196

uous manifest variables. On the one hand, if Irn is dichotomous, then the measurement197

equation becomes198

Irn
(1×1)

= I[I∗rn>0],∀r, n, (8)

and the density of the dichotomous effect indicator is the following199

f(Irn) = Φ

(
αr + λ′rz

∗
n

[H−1
Θ ]rr

)Irn (
1− Φ

(
αr + λ′rz

∗
n

[H−1
Θ ]rr

))(1−Irn)

. (9)

On the other hand, an observable continuous effect indicator I∗n = In converts equation200

(3) into a measurement equation. In this case,201

f(Irn) =
1

[H−1
Θ ]rr

φ

(
Irn − αr − λ′rz∗n

[H−1
Θ ]rr

)
, (10)

where φ is the probability density function (pdf) of a standard normal distribution.202

To derive a frequentist maximum likelihood estimator of δ we would need to find an203

analytical solution to the problem δ̂ = arg max `(δ; y, I|X,w). However, the joint choice204

probability does not have a closed form and simulation would be required. Note that205

the solution just for the multinomial probit kernel Ptn(itn
∣∣z∗n,Xn,θ,H

−1
Σ ), which is a206

Jn − 1-dimensional integral without a closed form, is computationally very expensive207

(Bolduc, 1993, Geweke et al., 1994). Deriving a maximum simulated likelihood solution208

for equation (6) is even more complex, and requires averaging discrete choice probabilities209

calculated using the GHK simulator (Geweke et al., 1994, Hajivassiliou and McFadden,210

1998, Keane, 1994) at every step of the maximization process. Because of the complexity211

of the standard maximum simulated likelihood estimator (cf. Bhat and Dubey, 2014,212

Bhat, 2011), we propose a Bayes estimator of δ (Hastings, 1970, Geweke, 1989, Albert213

and Chib, 1993).214

2.2. Pseudo-reduced form model215

Consider the following partition of δ:10 the taste parameters of the utility function216

θ = (β′,%′,γ ′)′, the parameters associated with the covariance structure of H−1
Σ , the217

10The definition of the parameters as vectors is presented in equations A.1, A.2, and A.3 in Appendix
A.
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parameters of the structural equation b̃ and the elements in H̃−1

Ψ̃
, and the measurement218

equation parameters λ, and α or µ.11 Bayes estimation requires making draws from the219

following joint posterior distribution distribution:220

P (θ, b̃,α,λ,H−1
Σ , H̃−1

Ψ̃
|y, I). (11)

Even though the latent variables are unobservable by definition, Bayesian estimation al-221

lows one to augment the observed data by simulating the random latent variables through222

Markov chain Monte Carlo (MCMC) methods. With the parameter set augmented by223

the latent U∗n, z∗n, and I∗n the posterior of interest becomes:224

P (U∗, z∗, I∗,θ, b̃,α,λ,H−1
Σ , H̃−1

Ψ̃
|y, I). (12)

As we show below, for estimation of the posterior of equation (12) it is easier to ex-225

ploit the natural conditional independence structure of the unknown parameters. The226

system of reduced form equations is essential to derive the conditional structure that227

is needed for approximating the posterior of interest. In effect, the system of structural228

and measurement equations (1)-(5) can be written as:229  z∗n
I∗n

U∗tn

 =

 B̃wn

α+ ΛB̃wn

ΓB̃wn + Xtnβ + Y∗tn(Xtn, B̃wn + ζ̃n)%

+

 1 0 0
Λ 1 0
Γ 0 1

 ζ̃n
εn
νtn

 (13)

Taking advantage of the fact that each error term is assumed to be normally distributed,230

and considering the identification restrictions discussed in subsection 2.4, one can show231

that the reduced form of the system has the following multivariate distribution (1R is232

the identity matrix of size R):233  z∗n
I∗n

U∗tn

 ∼ N

 µz∗n
µI∗n
µU∗tn

 ,
 H̃−1

Ψ̃
H̃−1

Ψ̃
Λ′ σ′U∗tn,z∗n

ΛH̃−1
Ψ̃

ΛH̃−1
Ψ̃

Λ′ + 1R σ′U∗tn,I∗n
σU∗tn,z

∗
n

σU∗tn,I
∗
n

σU∗tn


 , (14)

11As discussed in the subsection about identification, both α and µ cannot be jointly identified. Thus,
αr = 0 for multinomial ordered effect indicators.
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where the parameters are234

µz∗n = B̃wn

µI∗n = α+ ΛB̃wn

µU∗tn
= ΓB̃wn + Xtnβ + E

[
Y∗tn(Xtn, B̃wn + ζ̃n)|Xtn,wn

]
%

σU∗tn,z
∗
n

= ΓH̃−1

Ψ̃
+ Cov

[
Y∗tn(Xtn, B̃wn + ζ̃n)%, ζ̃n|Xtn,wn

]
σU∗tn,I

∗
n

= ΓH̃−1

Ψ̃
Λ′ + Cov

[
Y∗tn(Xtn, B̃wn + ζ̃n)%,Λζ̃n|Xtn,wn

]
σU∗tn

= ΓH̃−1

Ψ̃
Γ′ + H−1

Σ + %Var
[
Y∗tn(Xtn, B̃wn + ζ̃n)|Xtn,wn

]
%′.

Note that the derivation of the parameters of the multivariate distribution above faces235

the challenge of equation (13) being a pseudo-reduced form, due to the fact that the236

latent attributes z∗ are embedded in the matrix Y∗. Consequently, it is not possible237

to find a full reduced form. Replacing z∗ with Bwn + ζ̃n partly solves the problem, as238

it introduces stochasticity that cannot be directly added to the error term of equation239

(13). Our solution is the derivation and use of the expectations and covariance terms240

that appear in equation (14), and that are relevant for the derivation of the correct241

conditional distributions that enter the Gibbs sampler.242

It is also possible to show that243

π(z∗n|I∗n) ∼ N (E(z∗n|I∗n),Var(z∗n|I∗n)) (15)
π(U∗tn|I∗n) ∼ N (E(U∗tn|I∗n),Var(U∗tn|I∗n)) , (16)

where244

E(z∗n|I∗n) = B̃wn + H̃−1

Ψ̃
Λ′
(
ΛH̃−1

Ψ̃
Λ′ + 1R

)−1

(I∗n − (α+ ΛBwn)) (17)

E(U∗tn|I∗n) = µU∗tn
+ σ′U∗tn,I∗n

(
ΛH̃−1

Ψ̃
Λ′ + 1R

)−1

(I∗n − (α+ ΛBwn)) , (18)

and245

Var(z∗n|I∗n) = H̃−1
Ψ̃
− H̃−1

Ψ̃
Λ′
(
ΛH̃−1

Ψ̃
Λ′ + 1R

)−1
ΛH̃−1

Ψ̃
(19)

Var(U∗tn|I∗n) = σU∗tn
− σ′U∗tn,I∗n

(
ΛH̃−1

Ψ̃
Λ′ + 1R

)−1
σU∗tn,I

∗
n
. (20)

The conditional distributions of equations (15) and (16) – and their parameters as found246

in equations (17-20) – are essential for deriving a Bayes estimator of the parameters247

of the model. In Appendix A we show the derived closed-form expressions for the full248

conditional distributions that allow us to exploit Gibbs sampling (Geman and Geman,249

1984) for deriving the desired Bayes estimator.250
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2.3. Implementation of Gibbs sampling251

Iteration g of the Gibbs sampler for our model of interest is summarized as follows:12252

1. Start with δ(g−1), the values found at the previous iteration.253

2. Conditional on Λ(g−1), H
(g−1)

Ψ̃N
, b(g−1), and I

∗(g−1)
n , and for every individual n, sam-254

ple a new value z
∗(g)
n for the latent attributes from the distribution π(z∗n|I∗n) ∼255

N (E(z∗n|I∗n),Var(z∗n|I∗n)), where E(z∗n|I∗n) is defined in equation (17) and Var(z∗n|I∗n)256

is defined in equation (19).257

3. Given z
∗(g)
n and H

(g−1)

Ψ̃N
, update the values of the parameters B by sampling b(g) ∼258

N
(
(V̌−1

b + W′HΨ̃N
W)−1(V̌−1

b + W′HΨ̃N
Z∗), (V̌−1

b + W′HΨ̃N
W)−1

)
.259

4. Given z
∗(g)
n and I

∗(g−1)
n , update the values of the parameters Λ by sampling λ(g) ∼260

N
(
(V̌−1

λ + Z∗′Z∗)−1(V̌−1
λ + Z∗′I∗), (V̌−1

λ + Z∗′Z∗)−1
)
.261

5. Update the covariance matrix of the structural equation by sampling H
(g)

Ψ̃N
∼262

W (ν̌Ψ̃ +N, Ȟ−1

Ψ̃
+
∑N

n=1 ζ̃nζ̃
′
n).263

6. For every continuous effect indicator r and for all n, I∗rn = Irn.264

7. For every binary effect indicator r and for all n, update the unobserved continuous265

variable I∗rn by sampling from the following truncated normal distributions: I∗(g)rn ∼266

T N (0,∞)(αrn + λ′rz
∗
n, 1) if Irn = 1, or I∗(g)rn ∼ T N (−∞,0](αrn + λ′rz

∗
n, 1) if Irn = 0.267

8. For every multinomial ordered effect indicator r and for all n, update the unob-268

served continuous variable I∗rn given Irn by sampling from the following truncated269

normal distribution: [I
∗(g)
rn |Irn = m] ∼ N (λ′rz

∗
n, 1)I[µm−1<I∗rn≤µm].270

9. For every multinomial ordered effect indicator r and for all n, update the threshold271

parameters µr. If µ−mr = (µ0r, . . . , µm−1r, µm+1r, . . . , µMr r), then conditional on272

I
∗(g)
rn , Irn,λ(g), and µ−m(g)

r sample µmr ∼ U (µ̄m−1r , µ̄m+1r), where273

µ̄m−1r = max {max{I∗rn : Irn = m}, µm−1r}
µ̄m+1r = min {min{I∗rn : Irn = m+ 1}, µm+1r} .

10. Conditional on z
∗(g)
n , θ(g−1), and H

−1(g−1)
Σ , and given the choice indicators ytn,274

update the augmented utility function in differences for every individual n and275

period t by sampling ∆1U
(g)
tn ∼ T N<|yn

(
X∆θ,H

−1
Σ∆

)
, where < is the truncation276

region defined by max∆1Uitn ≤ 0 if ytn = 1, or by ∆1Uitn > max{0,∆1U−itn} if277

ytn > 1.278

11. Given ∆1U
(g)
tn , H

−1(g−1)
Σ , and z

∗(g)
n , update the parameters θ by sampling θ(g) ∼279

N
(
(V̌−1

θ + X′∆HΣ∆
X∆)−1(V̌−1

θ + X∆
′HΣ∆

∆1U), (V̌−1
θ + X′∆HΣ∆

X∆)−1
)

280

12. Update the covariance matrix of the utility function in differences by sampling281

H
(g)
Σ ∼ W (ν̌H−1

Σ
+N, Ȟ−1

Σ +
∑N

n=1 ∆1νnν
′
n∆′1 |σ2

∆,11=1).282

12Details are provided in Appendix A.
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13. Make g = g + 1, and go back to step 1.283

Steps 10-12 of the estimator outlined above expand on the Gibbs sampler derived by284

McCulloch et al. (2000) (Appendix A), which is based on ideas first used by Albert and285

Chib (1993). We note that we also implemented the sampler derived by Imai and van286

Dyk (2005) for the multinomial probit kernel. Whereas the estimator of Imai and van287

Dyk (2005) offers a better convergence rate, for illustrative purposes in this paper we288

preferred to discuss implementation of the Gibbs sampler following the work of McCul-289

loch et al. (2000). A similar situation happens with steps 8 and 9 of the ordered probit290

models. For illustrative purposes we exploit the estimator of Albert and Chib (1993);291

however, our Gibbs sampler can be easily adapted to incorporate the more efficient292

estimator of Jeliazkov et al. (2008), which reverses the order of the conditionals: the293

threshold parameters are drawn marginally, and then the augmented latent indicators294

are generated, conditional on the threshold parameters (Chen and Dey, 2000). In sum,295

further computation gains are possible when using Imai and van Dyk (2005) combined296

with Jeliazkov et al. (2008).297

2.4. A Note on Identification298

Whereas parameter identification is well understood for both standard discrete choice299

models (Ben-Akiva and Lerman, 1985, Train, 2009) and standard latent variable mod-300

els (Stapleton, 1978), general necessary and sufficient conditions are required for joint301

identification of the parameters of the structural choice model of interest. A sufficient302

but not necessary technique for identification is a two-step approach, where separate303

conditional identification rules for the discrete choice kernel and the MIMIC model are304

applied (Walker and Ben-Akiva, 2002). Using covariance analysis reduction, Daziano and305

Bolduc (2013a) show that the joint identification conditions coincide with those estab-306

lished by the two-step analysis. In effect, the reduced form parameters that appear in307

equation (14) are all identified after normalizing scale of the latent variables z∗n, I∗n, and308

U∗tn. Normalization is in general achieved by normalizing either a structural parameter309

or an element of the covariance matrix of the latent variable. For instance, normaliza-310

tion of scale of U∗tn is ensured by fixing the first element of the covariance matrix of the311

choice model in differences (Dansie, 1985, Bunch, 1991, Bolduc, 1992). For continuous312

effect indicators it not necessary to assume a latent factor (I∗n = In). As a result, if313

the measurement equations of continuous effect indicators are not correlated (i.e. H−1
Θ314

is assumed diagonal), then the covariance matrix is identified. However, discrete effect315

indicators require the whole diagonal to be normalized, i.e. H−1
Θ = 1R, where 1R is the316

identity matrix of size R. For multinomial ordered effect indicators, α cannot be identi-317

fied and must be normalized to zero. For z∗n, we can set to one any nonzero coefficient318

in each column of the matrix Λ (see Stapleton, 1978).319
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2.5. Monte Carlo study320

In this subsection a Monte Carlo study is carried out to test performance of the Bayes321

estimator derived above. The simulation plan expands on the study of Daziano and322

Chiew (2012), where the Bayes estimator of a static multinomial probit model with323

observable variables only was analyzed, and on Daziano and Bolduc (2013a), where both324

the Bayes estimator and the maximum likelihood estimator of a hybrid choice model with325

a logit kernel were compared. We considered three sample sizes, with 500; 1,500; and326

2,500 observations. The number of alternatives was varied from 5 to 10. One alternative-327

specific latent variable, each manifested by three indicators, was considered for each case328

(i.e. for a model with 7 alternatives there are 7 latent explanatory variables).329

The data generating process was constructed as follows. All exogenous variables were330

generated first using a random number generator for a population of a pre-specified size.13331

A set of fixed values for the true parameter vector δ0 was then considered. Appropriate332

elements of δ0 (b̃0 and H−1

Ψ̃,0
) and the population causal factors w were used to generate333

the endogenous latent variables z. The deterministic part of the latent utility function334

was then constructed using the marginal utilities β0 as well as the observable attributes335

and the generated latent variables.336

The random utility was completed by adding multivariate normally distributed taste337

shocks νtn. As in Daziano and Chiew (2012), we test four covariance structures (H−1
Σ )338

for the taste shocks, namely an independent and identically distributed (IID) covari-339

ance matrix, an independent but heteroskedastic covariance matrix, a correlated but340

homoskedastic covariance matrix (a nested structure), and a full covariance matrix. For341

the IID structure, H−1
Σ = 1J (i.e. the identity matrix of size equal to the total number342

of alternatives, J). For the heteroskedastic structure,343

H−1
Σ =


1/J 0 · · · 0

0 2/J 0
... . . . ...
0 0 · · · 1

 .
For the simple nested structure, alternatives 1 and 2 have a correlation of 0.5, and al-344

ternatives 3 and 4 have a correlation of 0.75. For the full-covariance structure, elements345

in H−1
Σ were generated as follows. For the diagonal elements, deterministic variances346

equal to {1, 2, . . . , J} were considered. For each off-diagonal element, a correlation coef-347

ficient was randomly generated by drawing from a uniform distribution with parameters348

[−0.95, 0.95] (see Daziano and Chiew, 2012).349

13Three alternative-specific observable attributes were considered. These attributes were generated
by drawing from a uniform distribution with parameters [0, 1].
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The choice indicator was built assuming a deterministic discrete utility maximization350

process, where the chosen alternative for a given individual is the one the maximizes351

the simulated utility. The effect indicators of the latent variables were generated using352

the true parameters λ0 of the measurement equation (4). For estimation purposes, only353

the observable attributes X, observable regressors w, choice indicators y, and observable354

indicators I were kept.355

Given a specific sample size, posterior estimates for the Bayes estimator were calculated356

for each of 100 samples using a process of repetitive subsampling without replacement357

from the simulated population. For each parameter in δ and for each case in the simu-358

lation plan (for example, “sample size of 150 individuals and full covariance”), the bias,359

root mean squared error (RMSE), t-statistic (ratio between the mean of the point es-360

timates and their standard error), and empirical coverage. The empirical coverage was361

obtained as the proportion of the time that the 95% Highest Density Posterior (HDP)362

credible intervals contained the true parameter of interest. We also saved the estimation363

time.364

Convergence of the Markov chain was attained after a relatively low number of repetitions365

of the sampler – the posterior draws exhibited good mixing even with less than 5,000366

repetitions. The posterior estimates were produced using 10,000 repetitions of the Gibbs367

sampler and diffuse priors (precision of 0.1) for a fair comparison with MSLE (Bayes368

estimators and maximum likelihood estimators coincide asymptotically in this case).369

Table B.3 reports the performance analytics for selected parameters (a marginal utility370

for an observable attribute, β1, and two marginal utilities for latent attributes, γ1 and371

γ2). The Bayes estimator performs really well, independently of the sample size and372

covariance structure. The magnitudes of the bias are small, but no clear patterns are373

detected across sample sizes. However, in general, the bias is smallest for the IID structure374

and largest for the full covariance. Adopting a frequentist approach for hypothesis testing,375

the t-statistics indicate that the true parameters are always recovered. In fact, true376

parameters are contained within the bounds of the HDP intervals about 94% of the time,377

indicating that the empirical coverage almost coincide with the desired probability of378

95%. Finally, RMSE decreases as the sample size increases. On average, RMSE decreases379

35% when going from 500 to 1,500 observations, and 15% when going from 1,500 to380

2,500 observations (the smallest reductions are observed for the full covariance case).381

Estimation is fast (Table B.2): 1-3 minutes for 500 observations and 10,000 repetitions382

of the sampler, 5-15 minutes for 2,500 observations.14383

We note that the frequentist solution using the maximum simulated likelihood estimator384

– with numerical evaluation of the gradient – did not converge. In general, the search385

for the maximum stopped at around 200-250 iterations (after about 1-3 days), at which386

14On a Mac Pro, with 3.0GHz 8-core and 64GB (4×16GB) of 1866MHz DDR3 ECC.
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point flat regions of the likelihood were encountered. This situation did not change after387

testing several starting points. In these flat regions, the optimization algorithm fails to388

invert the Hessian, and no step can be defined. In fact, we even encountered convergence389

problems when using a two-step, limited information maximum simulated likelihood esti-390

mator. In particular, for the full covariance structure success rates were as follows: 100%391

for all sample sizes when the number of alternatives was 5; for 6 alternatives, convergence392

was achieved in 80% of the cases with 500 observations, and in 100% of the subsamples393

for the sample sizes of 1,500 and 2,500. With 7 alternatives, convergence was achieved in394

100% of the subsamples only for 2,500 observations, decreasing to 20% for 1,000 observa-395

tions and non convergence was observed for all subsamples of 500 observations. With 8396

alternatives, convergence was achieved 20% of the time, only for 2,500 observations. For397

the rest of the cases, a singular Hessian prevented from achieving convergence. We tried398

a sample size of 10,000 observations for a model with full covariance. Convergence was399

achieved after about 5 days. For the cases that did converge, the true parameters were400

recovered, although RMSE was about 10-20% higher when compared to the Bayes esti-401

mates. The major difference was observed in terms of the empirical coverage. Whereas402

in the Bayesian case the HDP intervals effectively reproduce the desired probability, the403

frequentist confidence intervals did a poor job. For the smallest sample size, the average404

coverage of the credible intervals was only 78%, reaching 84% for the larger sample sizes.405

For some parameters the empirical coverage was as low as 27%, and for other parameters406

the width of the confidence intervals were too large producing a 100% coverage (which407

is not desirable).408

3. The data: transportation choices in Canada409

We use data from a discrete-choice-experiment survey conducted in 2002 in Canada by410

the Energy and Material Research Group (EMRG, Simon Fraser University). The sample411

consists of 866 commuters randomly drawn from households living in Canadian urban412

centers with populations over 250,000.15 The average household income of the sample413

is $62,000 CAD. 75% of the respondents attained undergraduate degrees or completed414

graduate school. 59% of the respondents are women, and 59% of the sampled individu-415

als are 41 years or older. Survey participants were first contacted in a quick telephone416

interview that started with appropriate filters. Results of the telephone interview were417

used to customize a detailed questionnaire that was then mailed to the respondents. The418

final questionnaire had the following five different parts: (1) Transportation options, re-419

quirements and habits; (2) Personal vehicle choice (discrete choice experiment 1); (3)420

Transportation mode preferences (discrete choice experiment 2); (4) Views on trans-421

portation issues; and (5) Sociodemographics. Full details regarding the survey, including422

15866 completed surveys out of 1150 target individuals (75% response rate).
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the design of the questionnaire, the process of conducting the survey and analysis of the423

collected data can be found in Horne (2003).424

The survey contained two discrete choice experiments. The first discrete choice exper-425

iment was on purchase intentions of alternative fuel vehicles (Horne et al., 2005), and426

the second one was on mode choice. Even though we have used the vehicle choice data427

in previous research, either with a frequentist estimator (Bolduc et al., 2008, Bolduc428

and Daziano, 2010) or a Bayes estimator (Daziano and Bolduc, 2013b), in this paper we429

address several challenges that were not solved before. As mentioned in the introduc-430

tion, we now consider discrete indicators, simultaneity in the determination of the latent431

variables, and these simultaneous latent variables also interact with other attributes and432

can be correlated. We also incorporate now a larger number of latent attributes, and it is433

precisely this larger number one of the reasons for the convergence failure of the standard434

frequentist estimator that we tested before. In terms of empirical contributions, we add435

inference on the energy paradox. Finally, the mode choice component of the survey has436

not been used before in the context of modeling latent attributes.437

3.1. Ultra-low-emission-vehicle discrete choice experiment438

The alternatives of the choice experiment on vehicle purchases are given by four energy439

sources: (1) Gasoline-operated internal combustion engine vehicle (SGV); (2) Alternative-440

fuel vehicle (AFV); (3) Gasoline-electric hybrid vehicle (HEV); and (4) Hydrogen fuel441

cell vehicle (HFC). The experimental attributes are the following:442

1. Purchase price (PP ): capital cost of the new vehicle in 10K 2002 CAD$ [02CAD$/10,000].443

2. Fuel cost (FC): monthly operating costs in 100 2002 CAD$ [02CAD$/100-month].444

3. Fuel availability (FA): proportion of stations selling the proper fuel [ratio].445

4. Express lane access (Express): indicator of whether the vehicle would be granted446

access to express lanes of the high-occupancy-vehicle (HOV) type.447

5. Power (POW ): horsepower of the engine of the new vehicle compared to the current448

household’s vehicle [ratio].449

Table B.4 presents the experimental attribute levels. Attributes were customized us-450

ing the stated attribute levels answered by the individuals for their current vehicles451

as benchmark. The attribute levels were combined following an orthogonal design with452

randomized blocks of four choice situations each.453

3.2. Commuting discrete choice experiment454

There are five alternatives in the travel mode choice experiment: (1) Car (driving alone);455

(2) Carpool; (3) Transit; (4) Park & ride; and (5) Walk or cycle (active transportation).456

The experimental attributes are the following:457

16



1. Travel cost (TC): average travel cost per trip in 2002 CAD$ (calculated from a458

monthly expense) [02 CAD$ / month].459

2. Travel or driving time (TT ): one-way commuting in-vehicle travel time in minutes460

[min].461

3. Pickup & drop-off time (PDT ): time spent in pickup and drop-off for carpoolers462

per trip in minutes [min].463

4. Access time (WWT ): total walking and waiting time to public transit per trip in464

minutes [min].465

5. Transfers (TRANS): whether transfers are needed in public transit or not [indica-466

tor].467

6. Bike path (PATH): availability of a bike path [indicator].468

Table B.5 presents the experimental attribute levels. For both travel cost and travel time,469

the attribute levels were customized according to the actual travel cost (NCost) and time470

(NT ime) reported by the respondents when describing their commutes. In the case of the471

active transportation alternative (walk or cycle), travel time was calculated as a function472

of the stated commuting distance NDist and a low and high speed for each mode. The473

attribute levels were combined following an orthogonal design with randomized blocks474

of four choice situations each.475

3.3. Attitudes toward transportation476

The survey also included a set of attitudinal and perceptual questions. Whereas attitu-477

dinal questions are common in market research, standard choice experiments usually do478

not consider measurement of attitudes or perceptions. In the survey, individuals were479

asked to state their degree of support for different transportation policies, as well as their480

evaluation of the seriousness of different transportation problems.481

The transportation policies, evaluated in a discrete Likert scale from one (strongly op-482

posed) to five (strongly supportive), were the following: 1) improving traffic flow by483

building new roads and expanding existing roads; 2) discouraging automobile use with484

road tolls, gas taxes, and vehicle surcharges; 3) making neighborhoods more attractive485

to walkers and cyclists using bike lanes and speed controls; 4) reducing vehicle emis-486

sions with regular testing and manufacturer emission standards; 5) making carpooling487

and transit faster by giving them dedicated traffic lanes and priority at intersections; 6)488

making transit more attractive by reducing fares, increasing frequency, and expanding489

route coverage; 7) reducing transportation distances by promoting mixed commercial490

and residential and high-density development; and 8) reducing transportation needs by491

encouraging compressed work weeks and working from home.492

The transportation problems, evaluated in a Likert scale from one (not a problem)493

to five (major problem), were the following: 1) traffic congestion you experience while494
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driving, 2) traffic noise you hear at home, work, or school, 3) vehicle emissions, which495

impact local air quality, 4) accidents caused by aggressive or absent-minded drivers, 5)496

vehicle emissions which contribute to global warming, and 6) unsafe communities due to497

speeding traffic.498

Another perceptual question asked the respondent to compare driving alone with car-499

pooling, transit, walking, and cycling in terms of 1) safety while driving, 2) comfort, 3)500

impact on the environment, and 4) flexibility. The Likert scale for the rating was from501

one (much worse) to five (much better).502

Respondents rated the importance of the following factors in their mode decisions: 1)503

cost; 2) travel time; 3) comfort; 4) flexibility; 5) safety; 6) privacy; 7) environmental504

impact; 8) reliability; and 9) mode availability. The Likert scale for the responses was505

defined from one (not at all important) to five (very important). Finally, using the506

same scale, individuals rated the importance of the following attributes in their vehicle507

purchase decisions: 1) purchase price, 2) vehicle type, 3) fuel economy, 4) horsepower,508

5) safety, 6) seating capacity, 7) reliability, and 8) appearance and styling.509

After an iterative procedure of dimension reduction common in psychometrics, five la-510

tent factors were identified. These factors represent the following underlying consumer511

segments:512

1. Pro-transit consumers: individuals who favor improvements in public transporta-513

tion514

2. Pro-environment consumers: individuals who favor policies protecting the environ-515

ment516

3. Pro-safety consumers: individuals who consider safety as a relevant aspect of their517

travel decisions518

4. Cost-conscious consumers: individuals who are more sensitive to higher prices519

5. Pro-performance consumers: individuals who value power at a reasonable cost520

These five dimensions were used for defining the MIMIC component of the discrete521

choice system with latent attributes. As mentioned above, in the MIMIC component522

we accounted for effect indicators that are ordinal. The latent variables are manifested523

through a subset of the effect indicators shown in Appendix.524

4. Results525

The joint model is composed of four sub-structures that interact among each other.526

First is the vehicle choice model, based on the discrete choice experiment described in527

subsection 3.2. Second is the mode choice model, which takes into consideration the528
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discrete choice experiment of subsection 3.1. The third element of the joint model is the529

structural equations of the five underlying segments of consumers that were identified.530

The last component is the measurement equations that manifest the latent variables.531

For the first and second sub-structures we considered different models, with differing532

interactions with the latent constructs. We note that in general we used diffuse priors,533

with precision equal to 0.1. (A tight prior is used in the next section to discuss how534

robust the estimates are with respect to the prior choice.)535

4.1. Posterior estimates536

In both the vehicle and mode choice models, each parameter is estimated according to537

a probit model. The error terms of the probit kernel for the vehicle choice model were538

considered independent from those for the mode choice model. However, when introduc-539

ing latent variables, these random unobservables introduce correlation between vehicle540

purchase and commuting mode decisions. The posterior estimates – mean, standard de-541

viation, and selected quantiles including the mode – for the vehicle choice model are542

displayed in Table B.6. Those for the mode choice model are displayed in Table B.7.16543

The estimates reported in both tables were generated with diffuse priors (precision of544

0.1). To check robustness to the prior assumptions, table B.8 reports estimates with a545

tight prior (precision of 100 and zero mean; other means were also tested). Most probably546

due to the sample size, no clear differences or patterns are detected.547

The base vehicle choice model is a standard multinomial probit, without any latent548

attribute. We note that the base model not only includes the observable attributes, but549

also interactions with the sociodemographics to represent random taste variations.17 The550

parameters for the two cost components, purchase price and fuel cost, both have negative551

signs (deterministic taste variations with income were not statistically significant). This552

negative marginal utility suggests that, all else held constant, a vehicle with a higher553

cost would be less preferred by the consumer. The opposite happens for fuel availability,554

access to an express lane, and power, which appear as desirable attributes with positive555

marginal utilities. All the parameters are significantly different from zero at the 5%556

credible level. This is supported by the 2.5% and 97.5% posterior quantiles which can be557

used as an approximation of the respective lower and upper bound of the 95% credible558

interval.559

16For ease of interpretation, in the tables we omit the alternative specific constants, as well as the
nuisance parameters (i.e. the elements of the covariance matrix of the error term in differences) and
interactions with sociodemographics for the base model.

17Although exclusions restrictions are not necessary, for the models with latent variables the effect
of the sociodemographics is only coming from the structural equation of the latent variables. This
hypothesis matches most current work on hybrid choice modeling.
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Vehicle choice model 1 adds the additive effect of the latent pro-environment and pro-560

safety variables. Each has alternative-specific parameters, with the internal combustion561

vehicle set as base. The interpretation is that the underlying concept helps to explain562

the unobservable random heterogeneity that was absorbed by the error term in the563

base model. For the alternative fuel vehicle we fail to reject the null hypothesis that564

pro-environmental attitudes have an effect on the likelihood of choosing this particular565

energy source. This result may be explained by concerns about sustainability of the566

production of biofuel using corn, which was questioned in the media around the time567

that the data was collected.18 However, for both the hydrogen fuel cell and for the hybrid568

vehicles, a consumer with higher pro-environmental attitudes is more likely to choose the569

respective energy-efficient technology. Consistent with previous findings using the same570

data – in a model with just environmental concerns as a latent variable and a multinomial571

logit kernel – the impact of pro-environmental attitudes is higher for vehicles propelled572

by hydrogen. This particular result is consistent with fuel cell vehicles producing no573

harmful tailpipe emissions. In contrast, hybrid electric cars can be described as having574

very efficient internal combustion engines that produce less, but not zero, emissions. The575

effect of pro-safety attitudes are significantly different from zero for both hydrogen fuel576

cell and hybrid vehicles. Consumers who are more concerned about safety features are577

less likely to choose hydrogen or hybrid technologies. In particular, fuel cell vehicles are578

perceived as being much less safe than the other cars. This parameter thus measures579

the consumer fears regarding the low-ignition point of hydrogen. Regarding the safety580

concerns of the hybrid electric technology, the data was collected only two years after the581

introduction of the first hybrid models into the North American market. High voltage582

discharges in the case of a crash may explain some of the consumer concerns.583

Vehicle choice model 2 adds to the base model two interactions. The first one is between584

power and the latent pro-performance variable. This interaction measures the continuous585

variation in the marginal utility of power explained by differences in pro-performance586

attitudes. The posterior mean of the interaction is positive, suggesting that consumers587

that care more about overall performance of the vehicle value more horsepower. Although588

this is the expected result, the 95% credible interval contains zero. The second interaction589

is between fuel cost and the latent cost-consciousness of the consumer. Cost-conscious590

consumers appear as being less satisfied with increases in fuel cost, which is the expected591

result. For this interaction, the null hypothesis of a zero parameter is rejected. We note592

that we also tried the interaction of the latent cost-consciousness with purchase price,593

but the posterior of this interaction was centered at zero with a very small posterior594

variance. Vehicle choice model 3 combines models 1 and 2. The same general conclusions595

about the parameter estimates appear.596

18In fact, AFVs were negatively perceived in general. Everything else being equal, the choice proba-
bility of AFVs was lower than that of any other vehicle.
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The base mode choice model is a standard multinomial probit without latent attributes,597

where the alternative-specific attributes and significant interactions with sociodemo-598

graphics are considered. As expected, the signs of travel cost, travel or driving time,599

pickup & drop-off time, access time, and transfers are all negative. Note that each addi-600

tional minute of both pickup and access time bothers the traveler around 3.17-3.33 times601

more than an additional minute of in-vehicle travel time (considering main effects only).602

This result is consistent with previous findings in the literature. The presence of a bicycle603

path has a positive effect on the probability of commuting via active transportation. The604

2.5% and 97.5% posterior quantiles, which can be used as an approximation of the 95%605

credible interval, indicate that for most of the parameters it is possible to reject the null606

hypothesis of the single parameter being equal to zero. The exceptions are the number607

of transfers and the presence of a bike path.608

Mode choice model 1 introduces the effect of the underlying pro-transit attitudes as an609

attribute with alternative-specific parameters. Note that the active-transportation mode610

(walk or cycle) was set as base. The results show that higher attitudes toward transit611

favor the probability of choosing not only transit but also of being a carpooler. This612

may be explained by the more efficient use of private cars when carpooling. The effect613

of pro-transit on being a solo driver or being a user of park & ride is negative. The614

latter result implies that someone with higher pro-transit attitudes will be more likely615

to choose a trip entirely made using public transportation than to choose a trip where616

only part of the ride is using transit. However, only the effect of the latent pro-transit617

variable on being a solo driver are statistically different from zero. In mode choice model618

2, pro-transit attitudes are only included in the utility of transit. The parameter turns619

out to be positive and significantly different from zero. Finally, mode choice model 3620

extends the previous model by introducing an interaction between travel cost and the621

latent cost-consciousness. The negative sign of the interaction indicates that the more622

cost-conscious the consumer is, the more sensitive she is to changes in travel cost.623

Table B.9 summarizes the structural equation of the latent attributes. Consumer-specific624

characteristics were used to explain the variations in the underlying dimensions that625

are hypothesized as explaining the effect indicators. Pro-transit attitudes are lower for626

households that own a higher number of vehicles. Solo drivers exhibit on average less627

pro-transit attitudes, although the respective parameter is not significantly different from628

zero. Commuters who mostly use public transportation tend to have a more positive view629

of transit, supporting policies that improve the level of service of mass transit. Females630

also tend to have higher pro-transit attitudes; the older the individual gets, the higher631

the pro-transit support; and individuals with medium levels of income also exhibit higher632

pro-transit behavior. In the case of pro-environmental attitudes, we included the latent633

pro-transit variable as one of the causal indicators. The parameter is positive, indicating634

that individuals who favor investments in and priorities for transit also tend to have more635

favorable views regarding protection of the environment. In terms of the econometric636

modeling, the possibility of obtaining this parameter is due to the incorporation of637
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simultaneity in equation (1).Through the latent pro-transit, underlying the determinants638

of pro-environmental attitudes are the pro-transit segments. However, being a female639

has an even more positive effect on environmental concerns. Also, having completed640

university studies appears as a factor that increases pro-environmental behavior. In the641

case of consumers that care about safety, carpoolers appear a one of the determinants,642

as well as bicyclists (with a surprisingly negative impact). Females are more likely to643

think about safety issues; and the older an individuals gets, the higher safety appears as644

a priority in the decisions. Cost-conscious consumers are females and those that have low645

or medium income levels. Consumers with higher income appear as less sensitive to cost,646

which is the expected result (in contrast, no income effects could be detected using the647

base models). Finally, the segment of pro-performance consumers is greatly explained648

by the same segment of those being cost-conscious. At the same time, an effect of age649

becomes apparent, with older consumers caring more about overall performance.650

Table B.10 reports the loading factors of the measurement equation for each of the651

latent attributes. The effect indicator with the highest loading factor was normalized.652

Pro-transit behavior is measured by the support of policies that provide express lanes for653

public transportation modes, improve mass transit, and discourage automobile use. Pro-654

environmental preferences are measured by concerns about emissions that contribute to655

global warming as well as to deterioration of local air quality. Although to a lesser degree,656

pro-environmental preferences are also measured by opposition to building roads and to657

expanding the current infrastructure devoted to private vehicles. Pro-safety attitudes are658

measured by the perception of communities becoming less safe due to speeding traffic, by659

concerns about drivers causing accidents, and by the importance of safety features when660

deciding which vehicle to purchase. Cost-conscious consumers are identified as rating661

purchase price and fuel economy to be highly important attributes that they consider662

when buying a new car, as well as by the importance of the trip cost when making mode663

decisions. Finally, pro-performance attitudes are manifested by the importance of the664

reliability, fuel economy, and horsepower of a potential new vehicle for purchase.665

The structural and measurement equations form a MIMIC model that was estimated666

jointly with the models for vehicle and travel mode choices. For the MIMIC model,667

standard SEM measures of goodness of fit validate the proposed structure.19 In addition,668

we note that in contrast with previous research, we accounted for the ordinal nature of669

the effect indicators.670

19Comparative Fit Index (CIF): 0.900; Root Mean Square Error of Approximation (RMSEA): 0.049.
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4.2. Forecasting travel behavior671

The marginal utilities as well as the parameters of the structural equations of the la-672

tent variables20 describe user behavior in terms of the probability of choosing a specific673

transportation mode. For instance, the marginal utilities weigh the attributes and la-674

tent explanatory variables, allowing us to model the trade-offs faced by the travelers675

and to forecast the market shares of the different alternatives. However, a true under-676

standing of the meaning of the estimates beyond analyzing sign and magnitude of the677

marginal utilities comes from applying the model to forecast different scenarios. Taking678

the experimental design as baseline (base scenario), we simulate the impact on the choice679

probabilities (and thus on the market shares of car, carpool, transit, park & ride, and680

walk or cycle) of the following four hypothetical market conditions:681

1. Scenario 1: Increase in travel cost of car and carpool of 25%.682

2. Scenario 2: Increase in the travel cost of car and carpool of 50%.683

3. Scenario 3: Increase in gasoline cost of 50%684

4. Scenario 4: Increase in power of hybrids of 15%685

The first 3 scenarios consider situations where traveling by car becomes less attractive.686

Scenarios 1 and 2 look at the mode choice impact when driving becomes more expensive687

(increase in fuel costs, increase in parking costs, congestion pricing, additional taxes).688

Scenario 3 measures the impact on vehicle choice of a direct increase in the cost of689

gasoline.21 Scenario 4 represents an improvement in the technology of hybrid vehicles.690

For each scenario, market shares were derived by sample enumeration, i.e. by averaging691

individual choice probabilities. To obtain the individual choice probabilities, for each692

individual in the sample and for every alternative we calculated the corresponding pre-693

dictive posterior probability. Predictive posterior probabilities can be derived by Monte694

Carlo approximation of695

Ptin(X
(1)
tn , yn) =

∫
∆

∫
z∗
Ptn(itn|z∗n,X(1)

n ,θ,H−1
Σ )f(Irn|z∗n,Λ,µr,H−1

Θ )dz∗np(δ|y)dδ, (21)

where X
(1)
tn is the attribute matrix of the conditions set by the new scenario used for696

forecasting, and where p(δ|y) is the posterior distribution of the joint parameter vector697

δ ∈∆. Note that Monte Carlo approximation of equation (21) does not require drawing698

new samples for the posterior of δ, but the same chain generated by the Gibbs sampler699

for estimation of the model can be used.700

20The measurement equations provide identification of the latent variables.
21Although estimated jointly, the vehicle and mode choice experiments were independent.
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Table B.11 presents the results of the forecasting exercise. For each scenario, including the701

base scenario, both the posterior mean and standard deviation of the market shares are702

shown. In addition, the percentage change with respect to the corresponding base model703

estimates are calculated. For mode choice, scenarios 1 and 2 show that the probabilities704

of choosing the modes with the increased costs decrease. However, note that for the base705

model – without latent attributes – carpoolers seem to be more elastic than solo drivers.706

For model 3 – with latent attributes – the percentage change in the market shares of both707

car (driving alone) and carpool is almost identical. In this scenario we did not increase708

the cost of the park & ride alternative (i.e. the increased cost of driving may reflect a709

toll that is avoided when riding transit). Whereas model 3 predicts a 54.3% increase710

in the market share of park & ride for scenario 2, the model without latent variables711

predicts an increase of 68.4%. The differences between the impacts of model 3 and the712

base model respond to the fact that model 3 introduces random consumer heterogeneity713

in the marginal utility of cost through the latent cost-consciousness variable. In the case714

of scenario 3, model 3 allows for unobserved heterogeneity in the marginal utility of fuel715

cost. When we model the effect of an increase in gasoline cost of 50%, model 3 predicts716

a much higher decrease in the number of consumers buying ICVs (-32.9%) than the base717

model does (-24.1%). This result is explained by a higher sensitivity to cost coming for718

cost-conscious consumers. In addition, model 3 predicts a lower decrease in the market719

share of hybrids (-13.2%) than the base model (-19.4%). This can be explained by the720

interaction with the latent pro-environment variable. Finally, for scenario 4 the base721

model predicts similar competition across vehicles after an increase in the horsepower of722

the hybrid car, but model 3 predicts a stronger competition between HEVs and ICVs,723

which is a more realistic result.724

Although the predictions shown above include interactions with the latent attributes, an725

additional exercise is to perform forecasting by actually varying the values of the latent726

variables themselves. We note that since the latent attributes are endogenous and because727

the measurement scale of the latent constructs is unknown, there is no sense in imposing728

a shock directly on the underlying concept (as in “increase of pro-environmental behavior729

of 25%”).22 In structural discrete choice models, a meaningful scenario comes from a shock730

in the structural equation of the latent attribute. For instance, we can forecast the impact731

of a latent attribute having a maximum value by considering the predictive posterior for732

the segment of consumers that exhibit the highest values in the underlying attribute.733

For example, women were determined to have higher pro-environment attitudes. In the734

forecasting exercise, we can predict what would happen if men are represented as having735

the same attitudes as women. Therefore, we define two additional scenarios:736

5. Scenario 5: maximum pro-environment consumers737

6. Scenario 6: maximum cost-conscious consumers738

22Scenarios like this one have been analyzed by a few authors
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Scenario 5 represents a situation were a shock in the structural equation of the latent739

pro-environment variable ensures that all consumers behave as the segment with higher740

pro-environmental attitudes. Scenario 6 introduces the same type of shock but in the741

structural equation that explains cost-consciousness.742

Table B.12 presents the market share forecasts for scenarios 5 and 6. Only the results of743

model 3 are presented, and the percentage change is calculated with respect to the market744

shares of the base scenario. For scenario 5, i.e. individuals becoming more conscious about745

the environment, all commuting modes reduce their market share with the exception of746

transit. In the case of vehicle choice, HFCs are the only vehicles that increase their747

penetration in the market. For scenario 6, i.e. consumers becoming more cost conscious,748

transit and non-motorized modes increase their shares. For the vehicle choice case, cost-749

conscious consumers opt for HEVs.750

4.3. Inference on the energy paradox751

Consumers that are sensitive to fuel cost demand more efficient vehicles (Greene, 2010).752

However, the timing of the vehicle-purchase expense differs from that of fuel expendi-753

tures (intertemporal behavior). Furthermore, previous research has noted a rather sys-754

tematic underestimation of consumers to account for future savings in operating costs755

(McManus, 2007, Fan and Rubin, 2010, Helfand and Wolverton, 2011, Allcott, 2011,756

Allcott and Wozny, 2012). In fact, Sallee (2012) argues that some consumers may even757

be inattentive to fuel costs. The slow consumer shift to energy efficient technologies with758

high-return rates has been called ‘energy paradox’ (Jaffe and Stavins, 1994) or ‘energy ef-759

ficiency gap’ (Hirst and Brown, 1990). Understanding the undervaluation of cost-efficient760

energy-efficiency gains is key for better informing policies aiming at promoting consumer761

adoption of sustainable technologies, including ultra-low-emission vehicles. In particular762

– as noted by Parry et al. (2010) and Bento et al. (2012) – robust estimation of the763

energy paradox is critical for the evaluation of the impact of imposing tighter efficiency764

standards, such as the US Corporate Average Fuel Economy (CAFE) standards, versus765

other policies such as emission pricing or changes in gasoline taxes. If consumers are766

misperceiving energy cost savings, energy efficiency standards are superior to Pigouvian767

taxes (see Bento et al., 2012).768

The difference between the marginal utility of purchase price and that of fuel cost can be769

used as a tool for verifying the presence of a lower elasticity to future energy costs than770

to out-of-pocket expenses at the time of purchase. The idea is to use the ratio of the771

consumer valuations of purchase price and operating costs, as derived from estimates of772

the discrete choice model, to calculate a measure of the energy paradox. In the vehicle773

choice model analyzed in this paper, fuel costs are monthly expenses. To compare changes774

in monthly fuel costs with the single payment at the time of purchase, a rational consumer775

will discount the future costs using her own time preferences. Following Hausman (1979)776
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and Train (1985), the implicit discount rates used by consumers can be inferred from777

a revealed-preference mechanism that makes use of the present value of future energy778

costs. Assuming that the lifespan of the vehicle is large enough,23 the implicit discount779

rate r can be simply estimated using the following ratio as approximation780

r =
βPP
βFC

=
1

WTP∆FC

, (22)

where WTP∆FC is the upfront willingness to pay for a marginal improvement in fuel781

costs. The ratio in equation (22) represents the marginal rate of substitution between782

the (out-of-pocket) capital cost and discounted lifetime operating costs. For the models783

that include the interaction of fuel cost and the latent variable for creating segments of784

cost-conscious consumers, the implicit discount rate can be approximated by785

rn =
βPP

βFC + βcost-consciousnesscost-consciousnessn
, (23)

which is an individual-specific discount rate. Any shock in the causal indicators explain-786

ing the latent cost-consciousness of the consumer will change her time preferences. For787

example, changes in income – measured in discrete intervals in this research – will have788

an impact on the energy efficiency gap for the consumer. Note that estimation of implicit789

discount rates results in making inference on parameter ratios. In general, ratios of the790

parameters of an econometric model are locally almost unidentified (Dufour, 1997). As a791

result, the problem of interval estimation needs robust identification methods. Because792

we used Bayes estimators, postprocessing the ratio for the derivation of credible inter-793

vals (Daziano and Achtnicht, 2014) addresses the problem of potential weak identification794

(Edwards and Allenby, 2003).795

In Table B.13 we present the posterior mean, standard deviation, and median, as well796

as bounds for the 95% HDP intervals of the annual discount rate derived from post797

processing the MCMC parameter samples of both the base model without latent variables798

and the joint model with latent variables and interactions (model 3). In the case of model799

3, because the implicit discount rate is individual-specific, we report the estimates for a800

representative individual with different treatments in terms of income levels. The mean801

discount rate for the base model without latent variables is about 27%. When the latent802

variables are added to the model, it is possible to account for differences in income levels803

due to the interaction with the latent cost-consciousness of the consumers. Note that804

for the model with the latent attributes, the implicit discount rate is individual-specific.805

Table B.12 contains the results for a randomly selected individual. For this consumer, the806

mean discount rate is in the range 16-18%, depending on the income level. Our results807

23Because fuel costs were presented to respondents of the survey as a monthly expenditure, and
because the expected lifetime for light duty vehicles is 14 years (Bento et al., 2013), the expected
lifespan is 168 months.
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from the model with latent attributes are in line with previous findings. In the context of808

a survey to homeowners about appliance choice decisions, Newell and Siikamäki (2013)809

used the experiment of Coller and Williams (1999) for elicitation of time preferences, and810

found a mean discount rate of 19%, with a median of 11%, and a standard deviation of811

23%. Hausman (1979) obtained implicit discount rates for energy costs of air conditioners812

in the range of 5.1-89%, with a mean of 26.4%. For vehicle purchases, Allcott and Wozny813

(2012) find an implicit discount rate of roughly 15%, and Dreyfus and Viscusi (1995)814

provide a range of 11-17%, whereas Busse et al. (2013) find temporal preferences that815

are in line with market interest rates. Regarding these market interest rates, the average816

interest rate for used vehicle loans has been estimated at 6.9% (using information from817

the Surveys of Consumer Finances for 2001, 2004, and 2007, see Allcott and Wozny,818

2012).24 Additionally, Allcott and Wozny (2012) use the average real return of the S&P819

500 from 1945 to 2008 to determine an estimate of 5.8% for the interest rate of the820

opportunity cost of vehicles paid in cash. We finally note that allowing for heterogeneity821

in the determination of energy-paradox measures avoids sorting issues (Hausman and822

Joskow, 1982, Bento et al., 2012).823

5. Conclusions824

In this paper we have shown that structural discrete choice models with endogenous825

latent explanatory variables provide a powerful tool for modeling random consumer826

heterogeneity. Instead of assuming a parametric heterogeneity distribution that is inde-827

pendent from data, structural discrete choice models use effect and causal indicators to828

construct latent attributes that can be used as means of introducing continuous, unob-829

served heterogeneity. As a result, the model is enriched because the data used to update830

the parameters is augmented to include attitudinal responses, while avoiding endogene-831

ity problems. Our paper contains several contributions regarding estimation of discrete832

choice models with latent attributes. Previous research on simultaneous estimation of the833

parameters of hybrid choice models has focused on cross-sectional (conditional or mixed)834

logit-based kernels with continuous indicators for manifesting the latent attributes. We835

have built our model by assuming a multinomial probit with a full covariance matrix836

for full flexibility in the competition among alternatives. Our model also accounts for837

a panel structure through intra-respondent correlation due to individual-specific latent838

variables. The inclusion of latent variables thus provides a very interesting approach to839

the problem of repeated observations in stated preference studies.840

As discussed in the paper, the standard frequentist estimator (using maximum simulated841

likelihood) is computationally expensive due to a poorly behaved simulated likelihood842

24The same authors point out that the real average interest rate reported by dealerships to JD Power
is 8.9%.
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function. In fact, in our Monte Carlo study the maximum simulated likelihood estimator843

exhibited serious convergence problems due to flat regions of the likelihood. Whereas844

Bhat and Dubey (2014) have very recently proposed an analytical approximation of845

the loglikelihood that is well behaved, we have adopted a Bayes estimator instead. The846

main finding is that the Bayesian approach is perfectly suited to a complex hybrid choice847

model that considers temporal effects, correlation, heteroskedasticity, simultaneity in the848

determination of the latent constructs, and interactions between the latent and the ob-849

servable attributes. In fact, the generalized discrete choice model with endogenous latent850

attributes analyzed in this paper becomes a simultaneous system of (multinomial, binary,851

and ordered) probit models. With the appropriate reduced form, the Bayes estimator852

for this system of probit equations becomes a series of normal linear regression models,853

avoiding the curse of dimensionality. In the standard frequentist estimator – in contrast854

– adding more latent variables increases the dimensionality of the integral that needs855

to be simulated for solving the estimator. Our estimator has properties that are valid856

for small samples. For instance, no clear patterns in the bias, t-statistic, and coverage857

were detected in the Monte Carlo study; however, RMSE did decrease with sample size.858

In addition, working with a Bayes estimator allows the researcher to make inference on859

nonlinear transformations of the parameters of interest in a straightforward fashion via860

postprocessing (required for the derivation of welfare measures), including the construc-861

tion of credible sets that are interpreted as a region that contains the true parameters862

with a given probability. Our Bayes estimator converges fast; taking 1-3 minutes for 500863

observations, and 5-15 minutes for 2,500 observations, even with 10 alternatives, full864

covariance, and 10 latent variables.865

Although the estimator that we propose is an extension of the Bayes estimator of static866

multinomial and ordered probit models, one particular challenge that we solved in this867

paper is that the Gibbs sampler is actually based on a pseudo-reduced form. Equation868

(13) contains on its right hand side the latent attributes z∗, which are embedded in869

the matrix Y∗ that accounts for the interactions that have been generally omitted in870

previous work. As a result, it is not possible to find a full reduced form. Our solution is871

to use the expectations and covariance terms that appear in equation (14) and that are872

relevant for the derivation of the correct conditional distributions that enter the Gibbs873

sampler (equations 15-20).874

We also provide an empirical application by constructing a discrete choice model of875

vehicle purchase and commuting behavior. This model expands on our previous re-876

search by exploiting five underlying attitudes to determine segments of pro-transit,877

pro-environment, pro-safety, cost-conscious, and pro-performance consumers. Interest-878

ing insights are derived from the estimates of the structural discrete choice model that879

includes the latent attributes. For example, cost-conscious consumers appear as having880

an continuous sensitivity to changes in travel and fuel costs. This pattern of valuation881

of changes in fuel costs are reflected in an implicit discount rate of future energy savings882

– which is a measure of the energy paradox – that slightly increases with income. In883
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addition, consumers that value safety exhibit a lower probability of choosing not only884

hydrogen cars, but also hybrids. We note that postprocessing was used to derive standard885

errors of the predicted shares and implicit discount rates.886

There are several avenues for further research. First, we could compare the performance887

of the Bayes estimator proposed here with promising frequentist variations, such as the888

one by Bhat and Dubey (2014). The multinomial probit kernel, although being a flexible889

model with unrestricted substitution patterns among the alternatives, is highly paramet-890

ric. In fact, we assumed normally distributed errors for all the equations in the system891

as well as for prior distributions of the parameters of interest. For deriving the sampler892

this is a clear advantage, because normality of the error components allows us to exploit893

data augmentation for the latent variables in a relatively convenient way. In effect, the894

reduced form of the system and the conditional distributions that are derived from this895

reduced form are either normal or truncated normal distributions. In addition, normality896

allowed us to exploit natural conjugacy. For relaxing the Gaussian assumptions, future897

research should explore implementation of Bayesian semi- and nonparametrics. Finally,898

derivation and analysis of Bayes factors for statistical model comparison for the joint899

model is desirable.900
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Appendix A. Gibbs sampler1069

When presenting the system of equations we mentioned that we were keeping the matrix1070

notation for parameters of the latent attributes that is characteristic in structural equa-1071

tion modeling. This notation allows us to derive the reduced form of the model. However,1072

when analyzing the estimator once the conditional distributions of equations (15) and1073

(16) have been found, it is more useful the standard notation of parameters as vectors.1074

We then rewrite the system of structural equations using the following equivalent form:1075

U∗tn
(J×1)

= Xtn
(J×K)

β
(K×1)

+ Y∗tn(Xtn, z
∗
n)

(J×Q)

%
(Q×1)

+ Z∗sn
(J×P )

γ
(P×1)

+ νtn
(J×1)

, νtn∼N (0,H−1
Σ ) (A.1)

z∗n
(L×1)

= Wn
(L×LM)

b̃
(LM×1)

+ ζ̃n
(L×1)

, ζ̃n ∼ N (0, H̃−1
Ψ̃

) (A.2)

I∗n
(R×1)

= α
(R×1)

+ Z∗mn
(R×LR)

λ
(LR×1)

+ εn
(R×1)

, εn ∼ N (0,1R) (A.3)

where the new matrix and vector representations of parameters and variables are defined1076

such that Z∗sn γ = Γz∗n, Wnb̃ = Bwn, and Z∗mn λ = Λz∗n. (The matrix notation for the1077

parameters is needed to derive the covariance matrix of the pseudo-reduced form.)1078

Although the Gibbs sampler is performed simultaneously for the whole demand system,1079

we present the conditional distributions separately for both the multinomial probit kernel1080

and the MIMIC sub-models.1081

Appendix A.1. Conditional distributions of the multinomial probit kernel1082

We start the Gibbs sampler by determining the posterior simulator for the multinomial1083

probit kernel. Note that the vector of conditional indirect utility functions is an unob-1084

servable dependent variable. However, using the notion of data augmentation allows us1085

to treat equation (2) – or its equivalent form given by equation (A.12) – as a standard1086

regression. It is important to mention that the use of data augmentation is straight-1087

forward only when working with a multinomial probit model (Albert and Chib, 1993,1088

Bolduc et al., 1997, McCulloch et al., 2000, Nobile, 2000).251089

To set location of preferences we work with utility differences with respect to an arbitrary1090

base alternative.26 Let ∆1(·)jn = (·)jn−(·)1n be a matrix difference operator. For example,1091

25For other discrete choice kernels, such as a conditional logit or a mixed logit model, Metropolis-
Hastings within Gibb sampling is needed (Daziano and Bolduc, 2013b).

26Without loss of generality we take the first alternative as base.
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∆1Un takes each element of Un and subtracts the base element U1n such that1092

∆1Utn
(J−1×1)

= ∆1


U1tn

U2tn
...

UJtn

 =


−1 1 0 · · · 0
−1 0 1 · · · 0
...

... . . . ...
−1 0 0 · · · 1



U1tn

U2tn
...

UJtn

 =

 U2tn − U1tn
...

UJtn − U1tn

 .
If we stack equation (A.12), we get a regression expression with an unobservable depen-1093

dent variable, observed and latent explanatory variables, and interactions between the1094

observed and unobserved attributes:1095

∆1U = ∆1Xβ + ∆1Y
∗(X,Z∗)%+ ∆1Z

∗sγ + ∆1ν, ∆1ν ∼ N (0,H−1
Σ∆,N

),

∆1U = X∆θ + ∆1ν (A.4)

where θ′ = (β′,%′,γ ′) is the vector of regression coefficients of the utility function;1096

X∆ is an extended attribute matrix built by appropriately stacking the matrices ∆1X,1097

∆1Y
∗(X,Z∗) and ∆1Z

∗s; and where1098

H−1
Σ∆,N

((J−1)TN×(J−1)TN)

= ∆1


H−1

Σ 0J×J · · · 0J×J

0J×J H−1
Σ

. . . ...
... . . . . . . 0J×J

0J×J · · · 0J×J H−1
Σ

∆′1.

In the next subsection we provide a simulator for the latent variable z∗. Therefore,1099

if we take the unconditional observations of the latent attributes, the terms Z∗s and1100

Y∗(X,Z∗) simply enter equation (A.4) as standard observable exogenous attributes.1101

Then, if we simulate observations for the latent utility function then equation (A.4)1102

transforms into a linear regression model with a block-diagonal covariance matrix. In the1103

case of a probit kernel, the properties of the normal distribution make it straightforward1104

to exploit data augmentation techniques for performing simulations for the latent utility1105

function, basically because the utility function has a normal distribution. In fact, recall1106

that from the reduced form of the model we can use equation (16) which says that1107

π(U∗n|I∗n) ∼ N (E(U∗n|I∗n),Var(U∗n|I∗n)).1108

However, we need to describe the conditional distribution of the utility function taking1109

into account the choice indicators yn (McCulloch et al., 2000). Since1110

ytn =

{
1 if max∆1Uitn ≤ 0
i if ∆1Uitn > max{0,∆1U−itn}

, (A.5)

where U−itn represents the set of all utility functions except Uitn, then conditional on1111
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ytn, ∆1Utn has a truncated multivariate normal distribution:1112

π(∆1Utn|yn) ∼

{
N
(
X∆θ,H

−1
Σ∆

)
I[max∆1Uitn≤0]

N
(
X∆θ,H

−1
Σ∆

)
I[∆1Uitn>max{0,∆1U−itn}]

, (A.6)

where H−1
Σ∆

= ∆1H
−1
Σ ∆′1 corresponds to the (J − 1 × J − 1) covariance matrix of the1113

utility-difference error term ∆1νtn ∼ N (0,∆1H
−1
Σ ∆′1). We summarize this truncated1114

normal distribution using the following notation:1115

π(∆1Utn|Z∗s,θ,H−1
Σ∆
, ytn) ∼ T N<|ytn

(
X∆θ,H

−1
Σ∆

)
,∀t, n, (A.7)

where the truncation region < is defined by the inequalities in the measurement equation1116

(A.5).1117

Although data augmentation transforms the estimation problem of the discrete choice1118

kernel into a Bayesian regression, simulations required for H−1
Σ must address the nor-1119

malization of scale. Because we are working with the equation that considers utility1120

differences, using the information contained in the covariance matrix of the model in1121

differences H−1
Σ∆

it is not possible to identify the J(J − 1)/2 elements in the original1122

covariance matrix H−1
Σ . Standard practice is to set the scale of the model by fixing the1123

first diagonal element of H−1
Σ∆

such that σ2
∆,11 ≡ var(∆1ν1tn) = var(ν2tn−ν1tn) = 1.27 Fol-1124

lowing Nobile (2000), it is possible to generate Wishart draws given a diagonal element1125

if we assume the Wishart prior p(HΣ) ∼ W (ν̌H−1
Σ
, ȞΣ) |σ2

∆,11=1 such that1126

π(HΣ) ∼ W (ν̄H−1
Σ
, H̄Σ) |σ2

∆,11=1, (A.8)

where1127

ν̄H−1
Σ

= ν̌H−1
Σ

+N, H̄−1
Σ = Ȟ−1

Σ +
N∑
n=1

∆1νnν
′
n∆′1. (A.9)

Finally, we take p(θ) ∼ N (θ̌, V̌θ) as prior belief, and the regression coefficients of the1128

discrete choice kernel can be sampled from the following posterior conditional distribu-1129

tion:1130

π(θ|Z∗,∆1U,H
−1
Σ ) ∼ N (θ̄, V̄θ), (A.10)

where1131

V̄θ = (V̌−1
θ + X′∆HΣ∆

X∆)−1, θ̄ = V̄θ(V̌
−1
θ + X∆

′HΣ∆
∆1U). (A.11)

27This normalization is equivalent to set the value of the first element of the Cholesky decomposition
of the covariance matrix in differences.

35



Appendix A.2. Conditional distributions of the MIMIC model1132

Given I∗n, equation (15) contains the conditional distribution needed for the data aug-1133

mentation step for the latent z∗n. Effectively, simulated observations of z∗n can be drawn1134

from the normal distribution N (E(z∗n|I∗n),Var(z∗n|I∗n)). Note that π(z∗n|I∗n) accounts for1135

identification of the latent explanatory variables of choice z∗n through the effect indicators1136

I∗n.1137

Using the simulated observations of z∗n, both equations 2 and 3 become linear regression1138

models with general covariance matrices. First, we rewrite these equations considering1139

the regression coefficients in vector form and the explanatory variables as a design matrix.1140

Then we stack the N observations together. For the structural equation of z∗ we obtain1141

z∗
(LN×1)

= W
(LN×LM)

b̃
(LM×1)

+ ζ̃
(LN×1)

, ζ̃ ∼ N (0,H−1

Ψ̃N
), (A.12)

where W is a design matrix containing the elements in wn, ∀n; b̃ is the vector of free1142

unknown parameters in B̃; and H−1

Ψ̃N
is a LN×LN covariance matrix. For instance, if ζ̃n1143

are assumed to be independent across individuals, then H−1

Ψ̃N
would be a block-diagonal1144

matrix given by1145

H−1

Ψ̃N
=


H̃−1

Ψ̃
0L×L · · · 0L×L

0L×L H̃−1

Ψ̃

. . . ...
... . . . . . . 0L×L

0L×L · · · 0L×L H̃−1

Ψ̃

 .

The equivalent expression for equation (3) is1146

I∗
(RN×1)

= α
(RN×1)

+ Z∗
(RN×LR)

λ
(LR×1)

+ ε
(RN×1)

, ε ∼ N (0,1RN), (A.13)

where Z∗ is a specification matrix formed by appropriately using the elements in z∗n, ∀n;1147

and λ is the vector of free factor loadings in Λ.1148

Let λ̃ = (α′,λ′). If prior beliefs for b and λ̃ are described by p(b) ∼ N (b̌, V̌b) and1149

p(λ̃) ∼ N (λ̌, V̌λ) respectively, then it can verified that, conditional on the other param-1150

eters of the model, the posteriors of b and λ are multivariate normal:1151

π(b|Z∗,θ,b, λ̃,y, I) ∼ N (b̄, V̄b) (A.14)
π(λ̃|Z∗,θ,b,y, I) ∼ N (λ̄, V̄λ), (A.15)
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where1152

V̄b = (V̌−1
b + W′HΨ̃N

W)−1, b̄ = V̄b(V̌−1
b + W′HΨ̃N

Z∗) (A.16)

V̄λ = (V̌−1
λ + Z∗′Z∗)−1, λ̄ = V̄λ(V̌−1

λ + Z∗′I). (A.17)

The conditional posterior for the general covariance matrix H−1

Ψ̃N
does not have an easily1153

recognized form. However, as for any linear model with general covariance matrix, it is1154

possible to derive appropriate posterior simulators for particular covariance structures.1155

For instance, if the error terms are assumed to be iid, then the resulting block-diagonal1156

structure, combined with Wishart prior beliefs p(HΨ̃) ∼ W (ν̌Ψ̃, ȞΨ̃) allow us to obtain1157

π(HΨ̃) ∼ W (ν̄Ψ̃, H̄Ψ̃), (A.18)

where1158

ν̄Ψ̃ = ν̌Ψ̃ +N, H̄−1

Ψ̃
= Ȟ−1

Ψ̃
+

N∑
n=1

ζ̃nζ̃
′
n. (A.19)

The estimator for the parameters of the structural equation of the latent variables z∗1159

assumes that the effect indicators are observed. This is the case of a continuous effect1160

indicator, i.e. when the latent variables are manifested through continuous variables.1161

However, it is not possible to condition directly on the effect indicators if these are1162

dichotomous.1163

When the effect indicators are dichotomous, the structural equation becomes a binary1164

probit model. In this case, it is possible to use a simpler version of the sampler pro-1165

posed for the mutinomial probit kernel, which is the standard form of the sampler as1166

suggested by Albert and Chib (1993). In effect, the underlying continuous effect indica-1167

tors are generated by data augmentation using the following truncated normal posterior1168

distribution:1169

p(I∗rn|Irn) ∼
{
T N (0,∞)(αrn + λ′rz

∗
n, 1)

T N (−∞,0](αrn + λ′rz
∗
n, 1)

if Irn = 1
if Irn = 0

. (A.20)

Under fairly mild conditions (Gelfand and Smith, 1990) and for a sufficiently large num-1170

ber of draws, the Gibbs sampler sequence of random draws forms an irreducible and1171

ergodic Markov chain converging at a exponential rate to the joint posterior distribu-1172

tion. In practice, the Bayes point estimates are calculated taking the sample means of1173

the Gibbs sampler draws. The mean of the Gibbs sampler draws – the Bayes estimates1174

– are consistent estimators of the corresponding posterior means (Geyer, 1992). Even1175

though it is complex to derive analytic forms for the covariance matrices of the parame-1176

ters, consistent estimates of these matrices can be obtained from the sample covariance1177

matrices implied by the Gibbs sampler. In other words, the standard errors are simply1178

the standard deviations of the artificial samples generated by the Gibbs sampler.1179
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Appendix B. Tables1180

Notation Definition Dimensions

Structural equation of the latent variables – Eq. (1)
z∗n Endogenous random vector of latent variables for individual n L× 1
Π Simultaneity matrix for the latent variables L× L
wn Vector of exogenous explanatory variables (SEM: “causal indicators”) M × 1

B Matrix of unknown parameters associated with wn (Reduced form: B̃) L×M
b Vectorization of B LM × 1

ζn Error term of the structural equation of the latent variables (Reduced form: ζ̃n) L× 1

H−1
Ψ Covariance matrix of ζn (Reduced form: H̃−1

Ψ̃
) L× L

Structural equation of the indicators – Eq. (3)
I∗n Latent (or observed) vector of indicators measuring z∗n R× 1

α Intercept vector R× 1
Λ Matrix of unknown factor loadings R× L
λ Vectorization of Λ RL× 1

εn Measurement error term R× 1

H−1
Θ Covariance matrix of εn R×R

Measurement equation of the indicators – Eq. (4)
In Vector of observed indicators manifesting both I∗n and z∗n (SEM: “effect indicators”) R× 1

µr Vector of threshold parameters when Irn ∈ In in an ordered variable Mr − 1× 1

Choice model – Eqs (2) and (5)
U∗tn Vector of indirect utility functions for choice situation t J × 1

Xtn Design matrix of exogenous attributes (with row elements x′tin) J ×K
β Vector of unknown preference parameters (marginal utilities) associated with Xtn K × 1

Y∗tn(Xtn, z∗n) Interaction matrix among exogenous and endogenous, latent attributes J ×Q
% Vector of unknown parameters associated with the interactions Y∗tn(Xtn, z∗n) Q× 1

Γ Vector of unknown parameters associated with the endogenous, latent attributes z∗n J × L
νnt Taste shock (random term of the choice kernel J × 1

H−1
Σ Covariance matrix of νnt J × J
ytn Choice indicator 1× 1

Table B.1: Notation being used for the system of equations describing the general model
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N=500 N=1500 N=2500

Nalt IID Heterosk. Nested Full IID Heterosk. Nested Full IID Heterosk. Nested Full
5 0.94 3.61 4.67 0.95 3.17 4.67 1.03 3.76 7.20 0.97 3.48 6.87
6 1.08 3.95 5.32 1.15 3.80 5.39 2.37 4.21 8.35 1.05 4.25 8.41
7 1.31 4.76 9.74 1.38 4.38 6.18 2.74 4.97 9.70 1.67 5.02 9.78
8 1.68 5.54 10.99 1.61 4.95 7.35 3.11 5.78 11.26 1.93 5.83 11.29
9 1.83 6.18 12.16 1.80 4.64 8.28 3.33 6.44 12.26 2.16 4.63 12.29
10 1.98 6.68 13.14 1.99 5.99 9.15 3.58 7.09 13.30 2.39 7.00 13.14

Table B.2: Estimation time – 10,000 repetitions of the Gibbs sampler [min]
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IID N=500 N=1500 N=2500

Nalt Param. Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage
5 β1 0.0155 0.1746 0.0902 93 0.0140 0.3031 0.0481 92 0.0134 0.3529 0.0401 90

γ1 -0.0043 -0.0508 0.0851 90 0.0248 0.5123 0.0543 94 0.0176 0.4582 0.0422 96
γ2 0.0264 0.2834 0.0970 96 0.0305 0.6399 0.0566 90 0.0251 0.7343 0.0424 90

6 β1 0.0227 0.3485 0.0689 91 0.0167 0.4180 0.0434 92 0.0164 0.4696 0.0385 93
γ1 0.0177 0.2517 0.0723 92 0.0124 0.2925 0.0441 96 0.0182 0.4906 0.0413 96
γ2 0.0142 0.2036 0.0713 94 0.0181 0.4264 0.0461 96 0.0285 0.8636 0.0436 95

7 β1 0.0168 0.2327 0.0741 96 0.0054 0.1405 0.0386 94 0.0114 0.3496 0.0346 91
γ1 0.0125 0.1613 0.0786 95 0.0123 0.3044 0.0424 95 0.0212 0.5972 0.0414 96
γ2 0.0242 0.3406 0.0750 94 0.0250 0.6678 0.0450 96 0.0213 0.6534 0.0390 91

8 β1 0.0165 0.2713 0.0631 91 0.0145 0.4213 0.0374 91 0.0132 0.4036 0.0353 95
γ1 0.0197 0.3568 0.0586 96 0.0204 0.4891 0.0465 91 0.0166 0.5592 0.0340 96
γ2 0.0203 0.3033 0.0700 96 0.0249 0.6347 0.0464 94 0.0306 1.0450 0.0423 95

9 β1 0.0186 0.2858 0.0676 94 0.0120 0.2923 0.0426 96 0.0114 0.3625 0.0333 93
γ1 0.0221 0.3860 0.0612 96 0.0193 0.5058 0.0427 93 0.0184 0.5885 0.0363 90
γ2 0.0166 0.2542 0.0673 92 0.0248 0.6475 0.0456 93 0.0301 1.0010 0.0426 92

10 β1 0.0124 0.2081 0.0609 96 0.0171 0.4765 0.0397 94 0.0096 0.3594 0.0285 92
γ1 0.0258 0.4244 0.0659 95 0.0161 0.4279 0.0409 96 0.0157 0.5111 0.0346 91
γ2 0.0104 0.1548 0.0682 92 0.0250 0.7505 0.0417 91 0.0305 1.0766 0.0416 91

Heterosk. N=500 N=1500 N=2500

Nalt Param. Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage
5 β1 -0.0035 -0.0440 0.0805 96 0.0042 0.0937 0.0447 91 0.0019 0.0467 0.0402 96

γ1 -0.0132 -0.1501 0.0890 91 0.0070 0.1381 0.0513 92 0.0022 0.0569 0.0393 91
γ2 0.0053 0.0602 0.0886 95 0.0125 0.2415 0.0531 95 0.0011 0.0317 0.0357 92

6 β1 0.0052 0.0727 0.0712 93 0.0043 0.1050 0.0412 91 0.0043 0.1113 0.0385 96
γ1 0.0001 0.0008 0.0745 95 0.0009 0.0183 0.0488 90 0.0033 0.0842 0.0398 92
γ2 -0.0165 -0.2207 0.0768 95 -0.0014 -0.0269 0.0518 92 0.0058 0.1637 0.0360 92

7 β1 0.0039 0.0477 0.0818 90 -0.0074 -0.1743 0.0430 94 0.0003 0.0093 0.0336 96
γ1 0.0060 0.0704 0.0856 93 -0.0056 -0.123 0.0455 91 0.0047 0.1241 0.0378 93
γ2 0.0013 0.0184 0.0679 91 0.0032 0.0743 0.0429 96 -0.0017 -0.0490 0.0356 94

8 β1 0.0025 0.0369 0.0690 91 0.0051 0.1117 0.0464 92 -0.0035 -0.1032 0.0336 90
γ1 0.0084 0.1212 0.0696 92 0.0085 0.1917 0.0451 95 -0.0006 -0.0199 0.0298 92
γ2 0.0053 0.0685 0.0780 96 -0.0006 -0.0149 0.0389 96 0.0074 0.2346 0.0324 96

9 β1 0.0042 0.0664 0.0631 91 0.0015 0.0351 0.0430 94 0.0005 0.0168 0.0287 95
γ1 0.0051 0.0749 0.0682 94 0.0044 0.1069 0.0416 93 0.0019 0.0588 0.0326 93
γ2 0.0062 0.0839 0.0737 93 0.0059 0.1429 0.0416 93 0.0059 0.1773 0.0337 94

10 β1 -0.0012 -0.0212 0.0586 95 0.0015 0.0413 0.0370 90 -0.0040 -0.1321 0.0306 95
γ1 0.0064 0.0946 0.0683 90 0.0060 0.1409 0.0427 92 0.0037 0.1094 0.0336 93
γ2 -0.0028 -0.0417 0.0661 93 0.0030 0.0767 0.0388 93 0.0084 0.2747 0.0319 93

Nested N=500 N=1500 N=2500

Nalt Param. Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage
5 β1 0.0216 0.3129 0.0724 94 0.0200 0.5051 0.0444 90 0.0178 0.5625 0.0364 93

γ1 0.0071 0.0970 0.0736 92 0.0290 0.7287 0.0493 91 0.0216 0.6119 0.0413 95
γ2 0.0346 0.4275 0.0880 94 0.0371 0.9405 0.0541 94 0.0325 1.1996 0.0424 90

6 β1 0.0262 0.3909 0.0721 91 0.0178 0.4456 0.0436 92 0.0216 0.6448 0.0398 96
γ1 0.0243 0.3907 0.0669 94 0.0179 0.4189 0.0463 96 0.0245 0.7352 0.0414 90
γ2 0.0217 0.3154 0.0720 91 0.0261 0.6685 0.0470 91 0.0348 1.1088 0.0468 93

7 β1 0.0170 0.2427 0.0721 91 0.0096 0.2434 0.0405 95 0.0157 0.5437 0.0329 93
γ1 0.0185 0.2402 0.0793 91 0.0192 0.4682 0.0453 92 0.0276 0.8495 0.0426 92
γ2 0.0304 0.4332 0.0765 96 0.0326 0.8483 0.0504 92 0.0285 0.8865 0.0429 93

8 β1 0.0223 0.3257 0.0719 96 0.0187 0.5083 0.0412 92 0.0176 0.5347 0.0373 96
γ1 0.0226 0.4177 0.0586 94 0.0274 0.6265 0.0516 95 0.0186 0.6164 0.0354 91
γ2 0.0258 0.3441 0.0792 96 0.0318 0.8107 0.0505 95 0.0362 1.2467 0.0464 91

9 β1 0.0216 0.3676 0.0627 96 0.0174 0.3922 0.0477 94 0.0158 0.5202 0.0342 91
γ1 0.0256 0.4202 0.0660 94 0.0255 0.6560 0.0465 94 0.0234 0.7703 0.0383 92
γ2 0.0267 0.4281 0.0679 95 0.0320 0.8668 0.0489 92 0.0359 1.1934 0.0468 90

10 β1 0.0169 0.2979 0.0591 91 0.0243 0.6886 0.0428 90 0.0107 0.3836 0.0300 90
γ1 0.0265 0.4196 0.0686 95 0.0209 0.5659 0.0424 92 0.0201 0.6190 0.0382 96
γ2 0.0233 0.3608 0.0687 93 0.0312 0.8834 0.0472 91 0.0384 1.4442 0.0467 96

Full N=500 N=1500 N=2500

Nalt Param. Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage Bias t-stat RMSE Coverage
5 β1 0.0119 0.1233 0.0973 93 0.0176 0.3183 0.0579 90 0.0244 0.5502 0.0505 94

γ1 0.0169 0.1586 0.1079 90 0.0323 0.5975 0.0629 94 0.0270 0.5904 0.0530 90
γ2 0.0451 0.4635 0.1073 94 0.0448 0.8035 0.0716 95 0.0439 0.9544 0.0635 95

6 β1 0.0353 0.4402 0.0877 90 0.0206 0.4148 0.0537 93 0.0274 0.6495 0.0503 95
γ1 0.0302 0.3648 0.0881 94 0.0291 0.5392 0.0613 95 0.0300 0.7751 0.0490 96
γ2 0.0362 0.4305 0.0916 90 0.0411 0.8107 0.0652 90 0.0396 1.0123 0.0556 91

7 β1 0.0209 0.2388 0.0901 95 0.0201 0.4675 0.0475 94 0.0252 0.6618 0.0457 90
γ1 0.0258 0.3309 0.0823 93 0.0257 0.5654 0.0522 95 0.0310 0.7331 0.0524 92
γ2 0.0412 0.5065 0.0912 96 0.0370 0.8673 0.0565 93 0.0382 0.9284 0.0562 93

8 β1 0.0396 0.6593 0.0719 96 0.0339 0.9395 0.0495 94 0.0274 0.9753 0.0392 93
γ1 0.0382 0.5869 0.0754 96 0.0309 0.7027 0.0538 93 0.0338 1.1271 0.0452 93
γ2 0.0481 0.8073 0.0766 93 0.0467 0.9978 0.0661 95 0.0533 1.7403 0.0615 94

9 β1 0.0301 0.3673 0.0874 94 0.0259 0.6677 0.0467 94 0.0308 1.0923 0.0418 95
γ1 0.0380 0.5621 0.0775 96 0.0276 0.7527 0.0459 93 0.0328 1.1360 0.0438 95
γ2 0.0464 0.6888 0.0818 92 0.0468 1.0628 0.0643 90 0.0507 1.5540 0.0603 90

10 β1 0.0363 0.5297 0.0776 94 0.0241 0.6056 0.0465 90 0.0217 0.7083 0.0375 95
γ1 0.0363 0.5885 0.0716 90 0.0419 1.1593 0.0553 92 0.0366 1.2153 0.0473 92
γ2 0.0562 0.9575 0.0812 93 0.0557 1.5476 0.0664 93 0.0531 1.7630 0.0610 92

Table B.3: Summary of Monte Carlo Study for selected parameters, Bayes estimator
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Attribute SGV AFV HEV HFC

PP 100% PP 105% PP 105% PP 110% PP
105% PP 110% PP 120% PP 120% PP
110% PP
115% PP

FC 100% FC 110% FC 75% ICV 110% FC
110% FC 120% PP 120% FC
120% PP
130% PP

FA 1 0.25 1 0.25
0.75 0.75

Express No No = AFV No
Yes Yes

POW 100% POW 100% POW 100% POW 100% POW
90% POW 90% POW 90% POW

Table B.4: Discrete choice experiment: attribute levels for the vehicle choice experiment. Source: Horne
(2003).

Attribute car carpool transit park & ride walk or cycle

Travel cost 100%NCost 50%NCost $60 /month 25%NCost + TCtransit $0 / month
TC 110%NCost 75%NCost $100 /month 50%NCost +TCtransit

Travel time 90%NTime 90%NTime 105% NTime 95%NTime NDist / (6 or 15 km/hr)
TT 100%NTime 100%NTime 115% NTime 105%NTime NDist / (8 or 20 km/hr))

110%NTime
120%NTime

Pickup & drop-off 5 minutes
PDT 10 minutes

Access time 5 minutes 5 minutes
WWT 15 minutes 10 minutes

Transfers None None
TRANS One One

Bike path Yes
PATH No

Table B.5: Discrete choice experiment: attribute levels for the travel mode choice experiment. Source:
Horne (2003).
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Base vehicle choice model: probit without latent attributes*

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Purchase price (PP ) -2.222 0.714 -3.620 -3.399 -2.235 -1.044 -0.823

Fuel cost (FC) -1.219 0.437 -2.076 -1.940 -1.229 -0.497 -0.361
Fuel availability (FA) 0.740 0.187 0.373 0.431 0.742 1.049 1.107

Express lane access (Express) 0.093 0.040 0.014 0.027 0.094 0.159 0.171
Power (POW ) 0.976 0.367 0.256 0.370 0.982 1.582 1.696

Vehicle choice model 1: probit with two additive latent attributes

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Purchase price (PP ) -0.334 0.118 -0.607 -0.560 -0.330 -0.180 -0.160

Fuel cost (FC) -0.319 0.103 -0.546 -0.507 -0.307 -0.170 -0.150
Fuel availability (FA) 0.560 0.161 0.282 0.314 0.547 0.850 0.910

Express lane access (Express) 0.071 0.032 0.017 0.024 0.068 0.130 0.140
Power (POW ) 1.093 0.375 0.487 0.555 1.054 1.760 1.900

Pro-environment on HFC 0.635 0.086 0.476 0.499 0.632 0.780 0.810
Pro-environment on AFV 0.071 0.133 -0.228 -0.160 0.082 0.260 0.300
Pro-environment on HEV 0.359 0.080 0.218 0.238 0.354 0.500 0.530

Pro-safety on HFC -0.315 0.087 -0.492 -0.462 -0.313 -0.180 -0.150
Pro-safety on AFV 0.094 0.138 -0.129 -0.097 0.075 0.340 0.410
Pro-safety on HEV -0.194 0.077 -0.363 -0.330 -0.188 -0.080 -0.061

Vehicle choice model 2: probit with two latent attributes, interacting

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Purchase price (PP ) -0.337 0.109 -0.578 -0.533 -0.328 -0.176 -0.152

Fuel cost (FC) -0.368 0.102 -0.590 -0.549 -0.360 -0.216 -0.192
Fuel availability (FA) 0.585 0.131 0.354 0.386 0.575 0.817 0.864

Express lane access (Express) 0.067 0.031 0.012 0.020 0.065 0.121 0.134
Power (POW ) 0.999 0.373 0.352 0.438 0.968 1.658 1.792

Pro-performance × power 0.358 0.387 -0.406 -0.274 0.356 0.994 1.141
Cost-cons. × fuel cost -0.228 0.104 -0.449 -0.407 -0.223 -0.066 -0.037

Vehicle choice model 3: probit with four latent attributes, including interactions

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Purchase price (PP ) -0.358 0.116 -0.616 -0.564 -0.346 -0.190 -0.163

Fuel cost (FC) -0.396 0.107 -0.628 -0.587 -0.389 -0.230 -0.210
Fuel availability (FA) 0.616 0.146 0.361 0.396 0.605 0.870 0.926

Express lane access (Express) 0.074 0.033 0.016 0.024 0.072 0.130 0.145
Power (POW ) 0.963 0.365 0.317 0.403 0.941 1.590 1.729

Pro-performance × power 0.531 0.425 -0.262 -0.137 0.517 1.260 1.431
Cost-cons. × fuel cost -0.283 0.108 -0.510 -0.470 -0.278 -0.120 -0.086

Pro-environment on HFC 0.635 0.081 0.480 0.503 0.633 0.770 0.800
Pro-environment on AFV -0.037 0.134 -0.313 -0.258 -0.034 0.180 0.223
Pro-environment on HEV 0.353 0.084 0.213 0.230 0.344 0.500 0.533

Pro-safety on HFC -0.301 0.087 -0.477 -0.447 -0.300 -0.160 -0.133
Pro-safety on AFV 0.189 0.142 -0.062 -0.019 0.177 0.440 0.499
Pro-safety on HEV -0.195 0.084 -0.382 -0.347 -0.187 -0.070 -0.047

*The base model contains statistically significant interactions between the observed attributes and the sociodemographic variables.

Table B.6: Vehicle choice model – diffuse prior, precision = 0.1

42



Base mode choice model: probit without latent attributes*

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Travel cost (TC) -0.016 0.003 -0.021 -0.021 -0.016 -0.012 -0.011

Travel or driving time (TT ) -0.027 0.003 -0.033 -0.032 -0.027 -0.022 -0.021
Pickup & drop-off time (PDT ) -0.074 0.011 -0.095 -0.092 -0.075 -0.057 -0.053

Access time (WWT ) -0.057 0.015 -0.087 -0.082 -0.057 -0.033 -0.028
Transfers (TRANS) 0.294 0.101 0.095 0.126 0.296 0.461 0.492
Bike path (PATH) -0.022 0.054 -0.127 -0.110 -0.022 0.067 0.083

Mode choice model 1: probit with one alternative-specific latent attribute

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Travel cost (TC) -0.007 0.001 -0.009 -0.009 -0.007 -0.005 -0.005

Travel or driving time (TT ) -0.011 0.002 -0.014 -0.014 -0.011 -0.009 -0.008
Pickup & drop-off time (PDT ) -0.039 0.008 -0.056 -0.053 -0.038 -0.027 -0.026

Access time (WWT ) -0.041 0.008 -0.057 -0.054 -0.040 -0.029 -0.028
Transfers (TRANS) -0.035 0.020 -0.077 -0.070 -0.035 -0.003 0.003
Bike path (PATH) 0.016 0.024 -0.029 -0.022 0.016 0.056 0.063

Pro-transit on solo driver -0.270 0.054 -0.371 -0.354 -0.265 -0.178 -0.161
Pro-transit on carpooler 0.012 0.031 -0.044 -0.036 0.010 0.065 0.077

Pro-transit on transit 0.061 0.040 -0.012 -0.001 0.059 0.129 0.145
Pro-transit on park & ride -0.069 0.040 -0.148 -0.135 -0.069 -0.005 0.007

Mode choice model 2: probit with one additive latent attribute (on transit)

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Travel cost (TC) -0.007 0.001 -0.010 -0.009 -0.007 -0.005 -0.005

Travel or driving time (TT ) -0.012 0.002 -0.015 -0.015 -0.012 -0.009 -0.009
Pickup & drop-off time (PDT ) -0.043 0.007 -0.058 -0.055 -0.042 -0.031 -0.029

Access time (WWT ) -0.042 0.008 -0.058 -0.055 -0.041 -0.030 -0.028
Transfers (TRANS) -0.036 0.021 -0.081 -0.073 -0.035 -0.003 0.003
Bike path (PATH) 0.014 0.025 -0.035 -0.027 0.014 0.053 0.062

Pro-transit on transit 0.062 0.031 0.006 0.014 0.060 0.115 0.127

Mode choice model 3: probit with two latent attributes, including interactions

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Travel cost (TC) -0.007 0.001 -0.010 -0.010 -0.007 -0.005 -0.005

Travel or driving time (TT ) -0.012 0.002 -0.015 -0.015 -0.012 -0.010 -0.009
Pickup & drop-off time (PDT ) -0.043 0.007 -0.058 -0.055 -0.043 -0.032 -0.030

Access time (WWT ) -0.042 0.009 -0.060 -0.058 -0.042 -0.029 -0.027
Transfers (TRANS) -0.036 0.021 -0.082 -0.073 -0.035 -0.004 0.002
Bike path (PATH) 0.016 0.026 -0.035 -0.026 0.015 0.058 0.067

Pro-transit on transit 0.064 0.032 0.009 0.017 0.062 0.122 0.136
Travel cost × cost cons. -0.002 0.001 -0.005 -0.004 -0.002 -0.001 -0.0001

*The base model contains statistically significant interactions between the observed attributes and the sociodemographic variables.

Table B.7: Travel mode choice model – diffuse prior, precision = 0.1
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Vehicle choice model 3: probit with four latent attributes, including interactions – tight prior

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Purchase price (PP ) -0.337 0.107 -0.572 -0.525 -0.326 -0.177 -0.153

Fuel cost (FC) -0.363 0.101 -0.577 -0.539 -0.356 -0.209 -0.185
Fuel availability (FA) 0.711 0.147 0.421 0.466 0.713 0.945 0.990

Express lane access (Express) 0.071 0.031 0.015 0.023 0.069 0.126 0.138
Power (POW ) 1.038 0.373 0.366 0.465 1.018 1.687 1.822

Pro-performance × power 0.660 0.425 -0.156 -0.021 0.651 1.366 1.516
Cost-cons. × fuel cost -0.303 0.107 -0.525 -0.486 -0.298 -0.134 -0.101

Pro-environment on HFC 0.616 0.073 0.477 0.498 0.615 0.739 0.762
Pro-environment on AFV -0.183 0.161 -0.546 -0.471 -0.173 0.064 0.108
Pro-environment on HEV 0.295 0.069 0.174 0.192 0.290 0.416 0.443

Pro-safety on HFC -0.291 0.082 -0.459 -0.430 -0.290 -0.159 -0.134
Pro-safety on AFV 0.310 0.187 0.002 0.047 0.291 0.658 0.766
Pro-safety on HEV -0.167 0.071 -0.320 -0.288 -0.162 -0.060 -0.041

Mode choice model 3: probit with two latent attributes, including interactions – tight prior

Attribute Estimate s.d. 2.5% 5% 50% 95% 97.5%
Travel cost (TC) -0.008 0.001 -0.010 -0.010 -0.008 -0.006 -0.005

Travel or driving time (TT ) -0.013 0.001 -0.015 -0.015 -0.013 -0.010 -0.010
Pickup & drop-off time (PDT ) -0.042 0.007 -0.059 -0.056 -0.042 -0.032 -0.031

Access time (WWT ) -0.042 0.007 -0.059 -0.056 -0.042 -0.032 -0.031
Transfers (TRANS) -0.037 0.022 -0.082 -0.073 -0.036 -0.003 0.003
Bike path (PATH) 0.014 0.027 -0.040 -0.031 0.014 0.059 0.069

Pro-transit on transit 0.063 0.032 0.006 0.015 0.061 0.119 0.133
Travel cost × cost cons. -0.002 0.001 -0.005 -0.005 -0.002 0.000 0.000

Table B.8: Prior Sensitivity – model 3 estimates, precision = 100
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Pro-transit

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Number of vehicles -0.205 0.073 -0.348 -0.062

Solo driver -0.125 0.112 -0.345 0.095
Transit user 0.485 0.179 0.134 0.836

Gender 0.200 0.092 0.020 0.380
Income 40K-60K 0.155 0.135 -0.110 0.420

Age 26-55 0.361 0.164 0.040 0.682
Age 56+ 0.685 0.195 0.303 1.067

Pro-environment

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Pro-transit 0.544 0.087 0.373 0.715

Gender 0.124 0.100 -0.072 0.320
University 0.159 0.105 -0.047 0.365

Pro-safety

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Carpooler 0.196 0.183 -0.163 0.555
Bicyclist -0.744 0.362 -1.454 -0.034
Gender 0.457 0.089 0.283 0.631

Age 26-55 0.292 0.165 -0.031 0.615
Age 56+ 0.629 0.193 0.251 -1.007

Cost-consciousness

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Gender 0.296 0.096 0.108 0.484

University 0.075 0.088 -0.097 0.247
Income 60K-80K -0.242 0.149 -0.534 0.050

Income 80K+ -0.533 0.165 -0.856 -0.210

Pro-performance

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Cost-consciousness 0.456 0.186 0.091 0.821

Bicyclist -0.678 0.377 -1.417 0.061
Age 26-55 0.414 0.216 -0.009 0.837
Age 56+ 0.608 0.256 0.106 1.110

Income 80K+ 0.355 0.213 -0.062 0.772

Table B.9: Structural equation
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Pro-transit

Effect indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Express lanes for carpooling and transit 1.000

Making transit more attractive 0.865 0.120 0.639 1.100
Discouraging automobile use 0.619 0.098 0.427 0.811

Pro-environment

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Emissions contributing to global warming 1.000

Vehicle emissions impacting local air quality 0.937 0.057 0.825 1.049
Building new roads -0.218 0.056 -0.328 -0.108

Pro-safety

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Unsafe communities due to speeding traffic 1.000

Accidents caused by drivers 0.972 0.078 0.819 1.125
Importance of safety (veh purchase) 0.779 0.078 0.626 0.932

Cost-consciousness

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Importance of purchase price (veh purchase) 1.000
Importance of fuel economy (veh purchase) 0.821 0.233 0.364 1.278

Importance of cost (mode choice) 0.257 0.115 0.032 0.482

Pro-performance

Causal indicator Estimate s.d. Lower bound 95% CI Upper bound 95% CI
Importance of reliability (veh purchase) 1.000

Importance of fuel economy (veh purchase) 0.528 0.109 0.314 0.742
Importance of horsepower (veh purchase) 0.420 0.089 0.246 0.594

Table B.10: Measurement equation
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Base model Model 3

Base scenario
Alternative share s.d. % change share s.d. % change

Car 0.392 0.011 0.393 0.011
Carpool 0.271 0.010 0.268 0.010
Transit 0.204 0.009 0.202 0.009

Park & ride 0.038 0.004 0.038 0.004
Walk or cycle 0.097 0.006 0.099 0.006

HFC 0.362 0.011 0.361 0.011
AFV 0.038 0.004 0.038 0.004
HEV 0.488 0.011 0.487 0.012
ICV 0.114 0.007 0.115 0.007

Scenario 1: increase of travel cost of car and carpool of 25%
Alternative share s.d. % change share s.d. % change

Car 0.366 0.011 -5.1% 0.371 0.012 -5.7%
Carpool 0.255 0.009 -7.8% 0.253 0.010 -5.6%
Transit 0.225 0.010 10.4% 0.218 0.010 8.1%

Park & ride 0.049 0.005 31.6% 0.047 0.005 25.6%
Walk or cycle 0.107 0.006 9.6% 0.111 0.007 11.6%

Scenario 2: increase of travel cost of car and carpool of 50%
Alternative share s.d. % change share s.d. % change

Car 0.340 0.010 -10.2% 0.348 0.013 -11.5%
Carpool 0.238 0.011 -15.6% 0.237 0.011 -11.5%
Transit 0.245 0.010 19.8% 0.234 0.011 16.0%

Park & ride 0.061 0.007 68.4% 0.058 0.006 54.3%
Walk or cycle 0.118 0.007 18.9% 0.122 0.007 23.5%

Scenario 3: increase in gasoline cost of 50%
Alternative share s.d. % change share s.d. % change

HFC 0.470 0.021 29.8% 0.442 0.027 22.6%
AFV 0.052 0.008 37.5% 0.058 0.008 54.8%
HEV 0.394 0.024 -19.4% 0.422 0.024 -13.2%
ICV 0.087 0.010 -24.1% 0.077 0.011 -32.9%

Scenario 4: increase in power of hybrids of 15%
Alternative share s.d. % change share s.d. % change

HFC 0.300 0.013 -17.5% 0.293 0.018 -18.7%
AFV 0.030 0.004 -16.2% 0.034 0.004 -10.6%
HEV 0.580 0.021 18.2% 0.591 0.024 21.4%
ICV 0.091 0.010 -18.3% 0.082 0.010 -28.3%

Table B.11: Market share forecasts
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Model 3

Scenario 5: maximum pro-environment consumers
Alternative share s.d. % change

Car 0.383 0.013 -2.6%
Carpool 0.255 0.010 -4.9%
Transit 0.236 0.016 16.9%

Park & ride 0.035 0.004 -6.2%
Walk or cycle 0.091 0.006 -8.3%

HFC 0.380 0.011 5.3%
AFV 0.036 0.004 -5.1%
HEV 0.480 0.012 -1.4%
ICV 0.104 0.007 -9.1%

Scenario 6: maximum cost-conscious consumers
Alternative share s.d. % change

Car 0.390 0.011 -0.9%
Carpool 0.267 0.010 -0.3%
Transit 0.202 0.009 0.1%

Park & ride 0.037 0.004 -2.8%
Walk or cycle 0.104 0.007 5.3%

HFC 0.353 0.011 -2.1%
AFV 0.037 0.004 -1.2%
HEV 0.500 0.013 2.8%
ICV 0.110 0.007 -4.6%

Table B.12: Market share forecasts, after a shock in the structural equation of the latent attributes

Vehicle choice base model

Annualized rate Mean Median s.d. LB 95% CI UB 95% CI
r 27.23% 21.09% 22.37% 6.54% 69.30%

Vehicle choice model 3 - randomly selected individual

Annualized rate Mean Median s.d. LB 95% CI UP 95% CI
rn (Income <60K) 16.13% 15.51% 4.22% 7.85% 26.13%

rn (Income 60K-80K) 17.08% 16.05% 4.33% 8.56% 27.47%
rn (Income 80K+) 18.24% 17.67% 4.50% 9.16% 29.00%

Table B.13: Annual implicit discount rate for energy savings
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